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Nonsmooth Newton’s Method and Semidefinite
Optimization

Jie Sun

Abstract— We introduce basic ideas of a nonsmooth Newton’s
method and its application in solving semidefinite optimization
(SDO) problems. In particular, the method can be used to solve
both linear and nonlinear semidefinite complementarity problems.
We also survey recent theoretical results in matrix functions and
stability of SDO that are stemed from the research on the matrix
form of the nonsmooth Newton’s method.

Index Terms—semismooth functions, semidefinite optimiza-
tion, Newton’s method, complementarity problems, stability, vari-
ational inequality.

I. MOTIVATION

A. Reduction of optimization problems to nonsmooth equations

The Karush-Kuhn-Tucker system of a nonlinear optimization
problem is often written asthe complementarity problem

Findx ≥ 0, such thatF (x) ≥ 0 andx • F (x) = 0, (1)

wherex ∈ <n, F : <n → <n, F is continuously differentiable
(smooth), and• stands for the inner product.

Let<n
+ be the nonnegative orthant of<n and let(·)+ be the

projection onto<n. It is easy to show that the complementarity
problem is equivalent to the following nonsmooth equation

Find a root of G(x) = x− (x− F (x))+ = 0. (2)

Thus, solving (1) is equivalent to solving (2).
Now we generalize the above idea. Given a closed convex set

K ⊆ <n, a mappingF : <n → <n, the variational inequality
problem, denoted by VI(K, F ), is to find a vectorx ∈ K such
that

( y − x )T F (x) ≥ 0, ∀ y ∈ K.

The solution set of this problem is denotedSOL(K, F ). Of
fundamental importance to the VI is its normal map:

Fnor
K (z) ≡ F (ΠK(z)) + z −ΠK(z), ∀ z ∈ <n, (3)

whereΠK denotes the Euclidean projector ontoK. It is well
known that ifx ∈ SOL(K, F ), thenz ≡ x− F (x) is a zero of
Fnor

K ; conversely, ifz is a zero ofFnor
K , thenx ≡ ΠK(z) solves

the VI (K, F ). WhenK is in addition a cone, the VI(K, F ) is
equivalent to the CP(K, F ):

K 3 x ⊥ F (x) ∈ K∗,
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whereK∗ is the dual cone ofC; i.e.,K∗ ≡ {y ∈ <n : yT x ≥
0, ∀x ∈ K}.

We note two points. 1. Problem (1) is a special case of CP
(K, F ), whereK = <n

+. 2. The functions in (2) and (3) are
compositions of smooth functions and the projection function,
hence are nonsmooth but Lipschitz continuous.

B. Semidefinite optimization problems

LetSn denote the space ofn×n symmetric matrices; letSn
+

andSn
++ denote the cone ofn×n symmetric positive semidef-

inite and positive definite matrices, respectively. We could con-
sider problem VI(K, F ) and CP(Sn

+, F ), respectively, where
K ⊂ Sn andF : Sn → Sn. These are, in a sense, the most
general SDO problems. To fully understand them, more discus-
sion ought to be made.

We write A � 0 to mean thatA is a symmetric positive
semidefinite matrix. For any two matricesA andB in Sn, we
write

A • B ≡
n∑

i,j=1

aijbij = tr(AB)

for the Frobenius inner productbetweenA andB, where “tr”
denotes the trace of a matrix. TheFrobenius normonSn is the
norm induced by the above inner product:

‖A ‖ ≡
√

A • A =

√√√√ n∑
i,j=1

a2
ij .

Under the Frobenius norm, the projectionΠSn
+
(A) of a matrix

A ∈ Sn onto the coneSn
+ is the unique minimizer of the fol-

lowing convex program in the matrix variableB:

minimize ‖A−B ‖
subject to B ∈ Sn

+.

Throughout the following discussion, we letA+ denote the
(Frobenius) projection ofA ∈ Sn onto Sn

+. This projection
satisfies the following complementarity condition:

Sn
+ 3 A+ ⊥ A+ −A ∈ Sn

+, (4)

where the⊥ notation means “perpendicular under the above
matrix inner product”; i.e.,C ⊥ D ⇔ C •D = 0 for any two
matricesC andD in Sn. The projectionA+ has an explicit
representation. Namely, if

A = PΛPT , (5)



whereΛ is the diagonal matrix of eigenvalues ofA andP is a
corresponding orthogonal matrix of orthonormal eigenvectors,
then

A+ = PΛ+PT ,

whereΛ+ is the diagonal matrix whose diagonal entries are
the nonnegative parts of the respective diagonal entries ofΛ.
Define three fundamental index sets associated with the matrix
A:

α ≡ { i : λi > 0 }, β ≡ { i : λi = 0 },

γ ≡ { i : λi < 0 };

these are the index sets of positive, zero, and negative eigenval-
ues ofA, respectively. Write

P = [ Wα Wγ Z ]

with Wα ∈ <n×|α|, Wγ ∈ <n×|γ|, andZ ∈ <n×|β|. Thus the
columns ofWα, Wγ , andZ are the orthonormal eigenvectors
corresponding to the positive, negative, and zero eigenvalues of
A, respectively.

Any function from a topological vector spaceX to Sn is
called a matrix function. In particular, ascalar matrix function
is a functionF : Sn → Sn defined through a scalar function
and eigenvalues

F (X) = Pdiag(f(λ1(X)), ..., f(λn(X)))PT ,

where f : < → < is a scalar function andPT XP =
diag(λ1, ..., λn). For examples,X+ is a scalar matrix function
with f(λ) = max(0, λ) = (λ)+ and|X| is defined as a scalar
function with f(λ) = |λ|. However, it is obvious that not all
matrix functions fromSn to Sn are scalar matrix functions.

II. T HE SEMISMOOTHNEWTON’ S METHOD

Most of the following results can be found in [7].
Newton’s Method

xk+1 = xk − [F ′(xk)]−1F (xk) (6)

is a classic method for solving the nonlinear equation

F (x) = 0, (7)

whereF is a continuously differentiable function, i.e., asmooth
function. Many other methods for solving (7) are related to this
method.

Suppose now thatF is not a smooth function, but a locally
Lipschitzian function. Then the formula (6) cannot be used.
Let ∂F (xk) be thegeneralized Jacobianof F atxk, defined by
Clarke [3]. In this case, in stead of (6), one may use

xk+1 = xk − V −1
k F (xk) (8)

whereVk ∈ ∂F (xk), to solve (7).
What is the generalized Jacobian? SupposeF is a locally

Lipschitzian function. According to Rademacher’s Theorem,F
is Frech́et differentiable almost everywhere. Denote the set of
points at whichF is differentiable byDF . We writeJF (x) for
the usual Frech́et derivative (the usual Jacobian) atx whenever

x is a point at which the Frechét derivatives exist. Then the
generalized Jacobian is the set

∂F (x) = co{ lim
xi→x

xi∈DF

JF (xi)},

where “co” is the convex hull [8].
We say thatF is semismoothatx if F is locally Lipschitzian

atx and
lim

V∈∂F (x+th′)
h′→h,t↓0

{V h′}

exists for anyh.
Theorem II.1:Suppose thatF is a locally Lipschitzian func-

tion. The following statements are equivalent.
• F is semismooth atx;
• F is directionally differentiable and forx + h ∈ DF one

has

F (x + h)− F (x)−∇F (x + h)h = o(‖h‖) ∀h → 0;

• F is directionally differentiable and

F ′(x + h, h)− F ′(x, h) = o(‖h‖) ∀h → 0;

• for anyV ∈ ∂F (x + h), h → 0,

V h− F ′(x;h) = o(‖h‖).

Semismoothness was originally introduced by Mifflin [5]
for functionals. Convex functions, smooth functions and sub-
smooth functions are examples of semismooth functions. Lin-
ear combinations of semismooth functions are still semismooth
functions.

If any of theo(‖h‖) terms above is replaced byO(‖h‖1+p),
where0 < p ≤ 1, then we say thatF is p-order semismooth
at x. Note thatp-order semismoothness (0 < p ≤ 1) im-
plies semismoothness. In particular, 1-order semismoothness
is calledstrong semismoothness.

Theorem II.2: (Global and Local Convergence) Suppose that
F is locally Lipschitzian and semismooth onS = {x : ‖x −
x0‖ ≤ r}. Also suppose that for anyV ∈ ∂F (x), x, y ∈ S, V
is nonsingular,

‖V −1‖ ≤ β, ‖V (y − x)− F ′(x; y − x)‖ ≤ γ‖y − x‖,

‖F (y)− F (x)− F ′(x; y − x)‖ ≤ δ‖y − x‖,
whereα = β(γ + δ) < 1 andβ‖F (x0)‖ ≤ r(1 − α). Then
the iterates (8) remain inS and converge to the unique solution
x∗ of (7) in S. Moreover, (forp-order semismoothF , resp.) the
error estimate

‖xk−x∗‖ = o(‖xk−xk−1‖)
(
= O(‖xk − xk−1‖)1+p resp.

)
holds for largek. Thus, the semismooth Newton method is
superlinearly (quadratically) convergent.

In the above theorem, the conclusion remains to be true if the
set∂F (x) is substituted by the set

∂BF (x) =

{
lim

xi→x
xi∈DF

JF (xi)

}
.



This allows to extend Newton’s method to solving problems
like |x| = 0.

III. M ATRIX VALUED FUNCTIONS

The following results can be found in [2], [9], [6], [10]. Let
A,B ∈ Sn. Define a linear operatorLA : Sn 7→ Sn as

LA(B) = AB + BA.

Lemma III.1: Let F : Sn 7→ Sn be a scalar matrix func-
tion with respect tof. ThenF is (continuously) differentiable
(semismooth, strongly semismooth) atX if and only if f
is (continuously) differentiable (semismooth, strongly semis-
mooth) atλ1, ..., λn.

Lemma III.2: The matrix function(X)+ is strongly semis-
mooth and is in fact smooth atX if X is nonsingular with

∇(X)+ = L−1
|X| ◦ LX+ ,

whereL−1
|X| is the inverse operator ofL|X| and◦ stands for the

composition of operators.

Theorem III.1: We may apply the semismooth Newton’s
method to the normal equation to solve VI and CP. The method
will have a local quadratic convergence rate if all∂BFnor

K (z) are
nonsingular atz∗.

Associated with the projection problem (4) is the critical
cone ofSn

+ atA ∈ Sn defined as:

C(A;Sn
+) ≡ T (A+;Sn

+) ∩ (A+ −A )⊥,

whereT (A+;Sn
+) is the tangent cone ofSn

+ atA+ and(A+ −
A)⊥ is the subset of matrices inSn that are orthogonal to
(A+−A) under the matrix inner product. The importance of the
critical cone in the local analysis of constrained optimization is
well known. In the present context, this cone can be completely
described [1]:

C(A;Sn
+) = {C ∈ Sn : WT

γ CWγ = 0, WT
γ CZ = 0,

ZT CZ � 0 }.

The affine hull [8] ofC(A;Sn
+), which we denoteL(A;Sn

+), is
easily seen to be the linear subspace:

{C ∈ Sn : WT
γ CWγ = 0, WT

γ CZ = 0 }.

Theorem III.3: Consider CP(Sn
+, F ). Suppose that forX ∈

S(Sn
+, F ) the JacobianJF (X) of F at X is positive define on

the linear subspaceL(X − F (X);S+). Then the conditions of
Theorem II.2 are satisfied.

Theorems III.1 and III.3 provide a basis for a quadratically con-
vergent Newton’s method for VI and CP(Sn

+, F ), particularly
for nonlinear cases.

IV. STABILITY OF SEMIDEFINITE COMPLEMENTARITY

PROBLEMS

Most of the following results can be found in [6].
How does the solution of a semidefinite variational inequality

problem change if the given data has a small perturbation? By
reducing the semidefinite complementarity problem to a nons-
mooth equation, we can study the stability of the semidefinite
complementarity problem.

Definition IV.1: A solutionx∗ of the VI (K, F ) is said to be
strongly stable if for every open neighborhoodN of x∗ satisfy-
ing

SOL(K, F ) ∩ clN = {x∗ }, (9)

there exist two positive scalarsc andε such that for every con-
tinuous functionG satisfying

sup
x∈K∩clN

‖G(x)− F (x) ‖ ≤ ε,

the setSOL(K, G) ∩ N is a singleton; moreover, for another
continuous functionG̃ satisfying the same condition asG, it
holds that

‖x− x ′ ‖ ≤ c ‖ [F (x)−G(x) ]− [F (x ′)− G̃(x ′) ] ‖,

where x and x ′ are the unique elements in the sets
SOL(K, G) ∩N andSOL(K, G̃) ∩N , respectively.

In essence, strong stability pertains to unique, continuous so-
lution under small, continuous perturbations ofF . Let us con-
sider another concept.

Definition IV.2: A function H : <n → <n is said to be a
locally Lipschitz homeomorphism near a vectorx if there ex-
ists an open neighborhoodN of x such that the restricted map
H|N : N → H(N ) is Lipchitz continuous and bijective, and
its inverse is also Lipschitz continuous.

We can now state the following result. The significance of
this result is that the strong stability of a solution to a VI can be
deduced from an inverse function theorem for the normal map.

Theorem IV.3:Let F : K ⊆ <n → <n be locally Lipschitz
continuous on the closed convex setK. Let x∗ ∈ SOL(K, F )
be given. Letz∗ ≡ x∗ − F (x∗). The following statements are
equivalent:

(a) x∗ is a strongly stable solution of the VI(K, F );
(b) z∗ is a strongly stable zero ofFnor

K ;
(c) Fnor

K is a locally Lipschitz homeomorphism nearz∗

(d) There exist an open neighborhoodZ of z∗ and a con-
stantc > 0 such that

‖Fnor
K (z)−Fnor

K (z′) ‖ ≥ c ‖ z−z ′ ‖, ∀ z, z ′ ∈ Z.

The equivalence of statements in the above theorem remains
valid for all locally Lipschitz continuous functions, of which
the normal mapFnor

K is a special instance.
Theorem IV.4:Let Φ : <n → <n be Lipschitz continuous in

an open neighborhoodD of a vectorx∗ ∈ Φ−1(0). Consider
the following three statements:



(a) every matrix in∂Φ(x∗) is nonsingular;
(b) Φ is a locally Lipschitz homeomorphism nearx∗;
(c) for everyV ∈ ∂BΦ(x∗), sgn detV = ±1.

It holds that (a)⇒ (b) ⇒ (c). Assume in addition thatΦ is
directionally differentiable atx∗. Consider the following two
additional statements:

(d) Ψ ≡ Φ ′(x∗; ·) is a globally Lipschitz homeomor-
phism;

(e) for everyV ∈ ∂BΨ(0), sgn detV = ±1.
It holds that (b)⇒ (d) ⇒ (e). Moreover, if (b) holds andΦ
is directionally differentiable atx∗, then the local inverse of
Φ nearx∗, denotedΦ−1, is directionally differentiable at the
origin; and

(Φ−1) ′(0;h) = Ψ−1(h), ∀h ∈ <n. (10)

If Φ is semismooth onD then (b)⇔ (c); in this case, the local
inverse ofΦ nearx∗ is semismooth near the origin. Finally, if
Φ is semismooth onD and

∂BΦ(x∗) ⊆ ∂BΨ(0), (11)

then the four statements (b), (c), (d), and (e) are equivalent.

The inclusion (11) plays an essential role for the statements
(b) and (c) in Theorem IV.4, which pertain to the original func-
tion Φ, to be equivalent to the corresponding statements (d) and
(e), which pertain to the directional derivativeΨ.

The next technical result establishes the equality (11) that
paves the way for the application of Proposition IV.4 to SDO
problems.

Lemma IV.1:Let A ∈ Sn be arbitrary. LetΨ ≡ Π′
Sn

+
(A; ·).

It holds that
∂BΠSn

+
(A) = ∂BΨ(0). (12)

The following extends the semismooth inverse function the-
orem to an semismooth implicit function theorem.

Theorem IV.5:Assume that∂BΦ(x∗) ⊆ ∂BΦ ′(x∗; ·)(0) and
thatJwG(Φ(x∗), p∗)◦Φ ′(x∗; ·) is a globally Lipschitz homeo-
morphism. There exist a neighborhoodU of p∗, a neighborhood
V of x∗, and a Lipschitz continuous functionx : U → V that is
semismooth atp∗ such that for everyp ∈ U , x(p) is the unique
vector inV satisfyingG(Φ(x(p)), p) = 0. Moreover, for every
vectordp ∈ <m, x ′(p∗, dp) is the unique solutiondx of the
following equation:

JwG(Φ(x∗), p∗)Φ ′(x∗; dx) + JpG(Φ(x∗), p∗)dp = 0. (13)

Applying this theorem to the normal map of CP(Sn
+, F ),

the condition ofJwG(Φ(x∗), p∗) ◦ Φ ′(x∗; ·) being a globally
Lipschitz homeomorphism can be interpreted as the uniqueness
of the solution to the following linear complementarity problem
(details omitted)

C 3 S∗ ⊥ −Q + ( JF (X∗) +AZ∗ )(S∗) ∈ C∗, (14)

whereAZ∗ is a certain computable operator atZ∗. We may
conclude that

Theorem IV.6:Let F : Sn → Sn be continuously differ-
entiable in a neighborhood of a solutionX∗ of the problem
CP(Sn

+, F ). The following three statements are equivalent.
(a) X∗ is strongly stable for CP(Sn

+, F );
(b) for everyQ ∈ Sn, the problem (14) has a unique so-

lution that is Lipschitz continuous inQ;
(c) for every V ∈ ∂BΠSn

+
(Z∗), sgn det((JF (X∗) +

AZ∗) ◦ V + I − V ) = ±1.

We may apply Theorem IV.5 to a parametric CP in SDO:

Sn
+ 3 X ⊥ F (X, p) ∈ Sn

+, (15)

whereF : Sn × <m → Sn is a given mapping. In what fol-
lows, we show how to calculate the directional derivative of an
implicit solution function of the above problem at a base param-
eter vectorp∗ ∈ <m. For this purpose, letX∗ be a strongly sta-
ble solution of the above problem atp∗. Assume thatF is con-
tinuously differentiable in a neighborhood of the pair(X∗, p∗).
It follows that there exist open neighborhoodsV ⊆ Sn

+ of X∗

andP ⊆ <m of p∗ and a locally Lipschitz continuous function
X : P → V such that for everyp ∈ P, X(p) is the unique ma-
trix in V that solves (15); moreover, the implicit solution func-
tion X is semismooth atp∗. We wish to computeX ′(p∗; dp)
for dp ∈ <m. For eachp ∈ P, letZ(p) ≡ X(p)−F (X(p), p).
We haveX(p) = ΠSn

+
(Z(p)) and

F (ΠSn
+
(Z(p)), p) + Z(p)−−ΠSn

+
(Z(p)) = 0.

Taking the directional derivative of the above normal equation
at p∗ along the directiondp and writingdZ ≡ Z ′(p∗; dp), we
obtain

JxF (X∗, p∗)Π ′
Sn

+
(Z∗; dZ) + JpF (X∗, p∗)dp

+dZ −Π ′
Sn

+
(Z∗; dZ) = 0.

Note thatX ′(p∗; dp) = Π ′
Sn

+
(Z∗; dZ). By the previous deriva-

tion, we deduce thatX ′(p∗; dp) is the unique solutionS∗ of the
linear complementarity problem:

C 3 S∗ ⊥ JpF (X∗, p∗)dp+( JxF (X∗, p∗)+AZ∗ )(S∗) ∈ C∗,

whereC ≡ T (X∗;Sn
+)∩F (X∗, p∗)⊥ is the critical cone of the

CP(Sn
+, F (·, p∗)) at the solutionX∗.
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