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Abstract—We introduce basic ideas of a nonsmooth Newton's where K * is the dual cone of’; i.e., K* = {y € R : yT2 >
method and its application in solving semidefinite optimization 0, Vo € K}.

(SDO) problems. In particular, the method can be used to solve \ya pote two points. 1. Problem (1) is a special case of CP
both linear and nonlinear semidefinite complementarity problems. K F here K — ®". 2. The functi in (2 d(3
We also survey recent theoretical results in matrix functions and (/<; £), where K = ;. 2. The functions in (2) and (3) are

stability of SDO that are stemed from the research on the matrix Compositions of smooth functions and the projection function,
form of the nonsmooth Newton’s method. hence are nonsmooth but Lipschitz continuous.

Index Terms—semismooth functions, semidefinite optimiza- B. Semidefinite optimization problems
tion, Newton’s method, complementarity problems, stability, vari-

n 5 H . n
ational inequality. LetS™ denote the space afx n symmetric matrices; lef”

andS? , denote the cone of x n symmetric positive semidef-
inite and positive definite matrices, respectively. We could con-
I. MOTIVATION sider problem VI(K, F') and CP(S%, F), respectively, where

A. Reduction of optimization problems to nonsmooth equatiofis C ™ andF' : S* — S". These are, in a sense, the most

The Karush-Kuhn-Tucker system of a nonlinear optimizatio%eneral SDO problems. To fully understand them, more discus-

problem is often written athe complementarity problem sion ought to be made. . . .
We write A > 0 to mean thatd is a symmetric positive

Findz > 0, such thatF'(z) > 0 andz e F(z) =0, (1) semidefinite matrix. For any two matricesand B in S™, we

write
wherex € R, F : " — R", F is continuously differentiable L
(smooth), ane stands for the inner product. AeB = Z a;jbi; = tr(AB)
Let R be the nonnegative orthant &' and let(-),. be the =1

projection ontdRt™. It is easy to show that the complementarityor the Frobenius inner producbetweenA and B, where “tr”
problem is equivalent to the following nonsmooth equation denotes the trace of a matrix. TR®benius normon S™ is the
. norm induced by the above inner product:

Find aroot of G(z) =  — (z — F(z))s =0.  (2) y P
Thus, solving (1) is equivalent to solving (2).

Now we generalize the above idea. Given a closed convex set
K C R", amappingF' : " — R”, the variational inequality
problem denoted by VI(K, F), is to find a vector: € K such
that

| Al = VAeA =

Under the Frobenius norm, the projectifig, (A) of a matrix
A € 8" onto the coneS” is the unique minimizer of the fol-
_ )T +
(y—2) Flz) 20, Vy e K lowing convex program in the matrix variabie:
The solution set of this problem is denot8OL(K, F). Of o
fundamental importance to the VI is its normal map: minimize || A - B||

FIor(z) = F(llg(2)) + 2 — g(z), ¥z e R, () subjectto B € S%.

wherelIl; denotes the Euclidean projector orfta It is well ~Throughout the following discussion, we let, denote the
known that ifz € SOL(K, F), thenz = « — F(x) is a zero of (Frobenius) projection off € S™ onto S’. This projection
Fuor: conversely, ifz is a zero ofF 2", thenz = Il (z) solves satisfies the following complementarity condition:

the VI (K, F'). WhenK is in addition a cone, the MIK, F) is

n n
equivalent to the CPK, F): Sy > Ay LA —Ac Sk, (4)

K>zl F(z) e K* where the L notation means “perpendicular under the above
matrix inner product”; i.e.C' 1 D < C e D = 0 for any two

S_Manuscri'p\)/h;_ezﬁi'ved OCtC()jbgr 31{ Zggg.l Ig(i)% V(V)%%k, (\)/gs ffzpp?f,hecz,in plaLrJt hvatricesC' and D in S™. The projectionA. has an explicit
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whereA is the diagonal matrix of eigenvalues dfandP isa =z is a point at which the Freéh derivatives exist. Then the
corresponding orthogonal matrix of orthonormal eigenvectoigeneralized Jacobian is the set
then )

A, = PA,PT, OF (x) = co{ 116%1 JF(x;)},
where A is the diagonal matrix whose diagonal entries are o «co” is the convex hull 8.

the nonnegative parts of the respective diagonal entries. of e say tha is semismoothatz if F is locally Lipschitzian
Define three fundamental index sets associated with the malgpx. 5ng

A . , lim  {VA')
a={i: N >0}, p={i: =0} vah(?i(}::.f(;;)
y=Hi: N <0} exists for anyh.

. .. . : Theorem 11.1: Suppose thak’ is a locally Lipschitzian func-
these are the index sets of positive, zero, and negative e|gen¥al- . .
. . ion. The following statements are equivalent.
ues ofA, respectively. Write . :
o F'is semismooth at;
P=[W, W, Z] o [is directionally differentiable and for + 2 € Dr one
has
H nX|a n nx|8
with Wo, € o], W, € R0, andz € RV Thusthe — py ) p(a) — VP + h)h = of[4]) ¥h — 0;
columns ofW,,, W,,, andZ are the orthonormal eigenvectors
corresponding to the positive, negative, and zero eigenvalues o F'is directionally differentiable and
A, respectively. / o . )
Any function from a topological vector spacg€ to S™ is Fi@+h,h) = (2, h) = o([[Al]) ¥h = 0;
called a matrix function. In particular,sxalar matrix function  « foranyV € 9F(z + h),h — 0,
is a functionF' : S™ — S™ defined through a scalar function ,
and eigenvalues Vh = F'(z; h) = o(||1]))-

F(X) = Pdiag(f (M (X)), ..., f(A (X)) PT,
&) 9 (X)) FOa(X)) Semismoothness was originally introduced by Mifflin [5]

where f : ® — R is a scalar function and®”’ X P = for functionals. Convex functions, smooth functions and sub-
diag(A1, ..., A, ). For examplesX , is a scalar matrix function smooth functions are examples of semismooth functions. Lin-
with f(A) = max(0,\) = (\); and|X| is defined as a scalarear combinations of semismooth functions are still semismooth
function with f(\) = |\|. However, it is obvious that not all functions.
matrix functions fromS™ to S™ are scalar matrix functions. If any of theo(||||) terms above is replaced l6y(|| ' *7),
where0 < p < 1, then we say that’ is p-order semismooth
at . Note thatp-order semismoothnes$ (< p < 1) im-
plies semismoothness. In particular, 1-order semismoothness
is calledstrong semismoothness

Theorem 11.2: (Global and Local Convergence) Suppose that
F is locally Lipschitzian and semismooth ¢h= {z : ||z —
2°|| < r}. Also suppose that for arly € OF (z),z,y € S,V

is a classic method for solving the nonlinear equation is nonsingular,
WV <8, (IV(y —2) = F'(asy — 2)|| <]y -],

hereF | i v differentiable function. i " 1F(y) — F(z) = F'(z;y — 2)|| < dlly — |,
whereris a continuously differentiable function, i.esmooth oo\ 5\ 5 - 1 andg|F(=") < r(1 — a). Then

function Many other methods for solving (7) are related to thiﬁ1e iterates (8) remain il and converge to the unique solution

method. . : .
Suppose now thaf' is not a smooth function, but a Iocallym of (7) n S. Moreover, (fop-order semismooti#’, resp.) the
8rror estimate

Lipschitzian function. Then the formula (6) cannot be use
Let OF (2*) be thegeneralized Jacobiaaf F' atz*, defined by ||z*—a*|| = o(|jz*—2*71||) (= O(||=* — 2*1|))* 7 resp)
Clarke [3]. In this case, in stead of (6), one may use

II. THE SEMISMOOTHNEWTON'S METHOD

Most of the following results can be found in [7].
Newton’s Method

P = b [P (M) () (6)

F(.I‘) =0, (7)

holds for largek. Thus, the semismooth Newton method is
ol = ok Vk—lp(xk) (8) superlinearly (quadratically) convergent.

whereV,, € F (z*), to solve (7).

What is the generalized Jacobian? Suppbsis a locally In the above theorem, the conclusion remains to be true if the
Lipschitzian function. According to Rademacher’s Theorém, setoF'(z) is substituted by the set
is Freclet differentiable almost everywhere. Denote the set of
points at which# is differentiable byD . We write J F'(x) for OpF(z) = { lim JF(%_)} )
the usual Fredt derivative (the usual Jacobian)atvhenever N

ziéDF



This allows to extend Newton's method to solving problems V. STABILITY OF SEMIDEFINITE COMPLEMENTARITY

like |z| = 0. PROBLEMS
Most of the following results can be found in [6].
I1l. M ATRIX VALUED FUNCTIONS How does the solution of a semidefinite variational inequality
The following results can be found in [2], [9], [6], [10]. LetProblem change if the given data has a small perturbation? By
A, B € 8™. Define a linear operatdr 4 : S™ — S" as reducing the semidefinite complementarity problem to a nons-
mooth equation, we can study the stability of the semidefinite
LA(B)=AB+ BA. complementarity problem.

Definition IV.1: A solutionz* of the VI (K, F) is said to be

_LemmalllliLet F' : 8" > S™ be a scalar matrix func- ... saple if for every open neighborhoal of 2* satisfy-
tion with respect tof. Then F' is (continuously) differentiable in

(semisn_wooth, strongly sgmismooth) at if and only if f _ SOL(K,F) N N = {a*}, @)
is (continuously) differentiable (semismooth, strongly semis- ) N
mooth) athy, ..., \n. there exist two positive scalarsaande such that for every con-

tinuous functionG satisfying
. . . . G(z)—F < g,
Lemma l11.2: The matrix function(X). is strongly semis- xef}%ew IG) @)l < e

mooth and is in fact smooth & if X is nonsingular with . .
g the setSOL(K, G) N NV is a singleton; moreover, for another

V(X)) = Ll_Xll oLx,, continuous functiorG satisfying the same condition &, it
holds that

whereL, z—2'|| < c||[F(z) - Gz)] - [F(z') — Gz")]],

x| is the inverse operator df| x| ando stands for the
composition of operators. I

where z and z’ are the unique elements in the sets
SOL(K,G) NN andSOL(K, G) N N, respectively.
Theorem I1l.1: We may apply the semismooth Newton's
method to the normal equation to solve VI and CP. The method
will have a local quadratic convergence rate if&diFi" (z) are  |n essence, strong stability pertains to unique, continuous so-
nonsingular at*. lution under small, continuous perturbationsfaf Let us con-
sider another concept.
Definition IV.2: A function H : " — R™ is said to be a
Associated with the projection problem (4) is the criticalpcally Lipschitz homeomorphism near a vector: if there ex-
cone ofS} at A € S™ defined as: ists an open neighborhood of = such that the restricted map
H|y : N — H(N) is Lipchitz continuous and bijective, and
C(A;8}) = T(An;SY) N (Ap = A), its|inverse is als(o L)ipschitz continuous.
where7 (A;SY) is the tangent cone & at A and(A, —
A)t is the subset of matrices i8™ that are orthogonal to . —
(A, —A) under the matrix inner product. The importance of tr§ We can now state the following result. The significance of

critical cone in the local analysis of constrained optimization is result is that the strong stability of a solution to a Vi can be

. duced from an inverse function theorem for the normal map.
well known. In the present context, this cone can be complet . X
described [1]: P P §Theorem IV.3:Let F : K C ®" — R" be locally Lipschitz

continuous on the closed convex $ét Letz* € SOL(K, F)
C(A;8Y) = {Cesm: WVTCWV =0, chz — 0, begiven. Let* =z* — F(x*). The following statements are

ivalent:
T ., equival _ _
270z = 0} (&) z*is astrongly stable solution of the VK, F');

The affine hull [8] ofC(A; %), which we denote£(A; S7),is (b)) =" is astrongly stable zero &f";

easily seen to be the linear subspace: () % is alocally Lipschitz homeomorphism nezr
(d)  There exist an open neighborhoBf z* and a con-
{C eS8 :W/CW, =0,W]CZ =0} stante > 0 such that
Theorem 111.3: Consider CRS?, F'). Suppose that foX e |FEM(2)—F G || > cllz—="|, Vzz2 € Z.

S(St, F) the Jacobiaw F(X) of F at X is positive define on

the linear subspacé(X — F(X); Sy ). Then the conditions of

Theorem I1.2 are satisfied. The equivalence of statements in the above theorem remains
valid for all locally Lipschitz continuous functions, of which
the normal magF;’" is a special instance.

Theorems IIl.1 and I11.3 provide a basis for a quadratically con- Theorem IV.4:Let ® : R — R™ be Lipschitz continuous in

vergent Newton’s method for VI and G}, F), particularly an open neighborhoo of a vectorz* € ®~!(0). Consider

for nonlinear cases. the following three statements:



(@  every matrix iD®(z*) is nonsingular; where Az~ is a certain computable operator Zt. We may

(b) @ isalocally Lipschitz homeomorphism nesi; conclude that

(c) foreveryV € 0p®(z*),sgndet V = £1. Theorem IV.6:Let F' : S — S™ be continuously differ-
It holds that (a)= (b) = (c). Assume in addition thap is €ntiable in a neighborhood of a solutiot* of the problem
directionally differentiable at:*. Consider the following two CP(S%, F). The following three statements are equivalent.

additional statements: (@) X isstrongly stable for C&7, F);
(d) ¥ = &'(z*-) is a globally Lipschitz homeomor- (b)  foreveryQ € §", the problem (14) has a unique so-
phism:; lution that is Lipschitz continuous i;
(e) foreveryV € dpW(0), sgndet V = +1. (c) foreveryV € Opllsy(Z*), sgndet((JF(X*) +
It holds that (b)= (d) = (e). Moreover, if (b) holds ané Az+)o V4+1-V)==%L

is directionally differentiable at*, then the local inverse of

® nearz*, denotedd !, is directionally differentiable at the ) _
origin; and We may apply Theorem IV.5 to a parametric CP in SDO:

(@ 1'(0;h) = ¥Y(h), Vh e R (10) St > X L F(X,p) € S, (15)

. n m n i i i .
If & is semismooth o then (b)< (c); in this case, the local wheref” . &% x R — &"is a given mapping. In_whgt fol
. v . s . . lows, we show how to calculate the directional derivative of an
inverse of® nearx* is semismooth near the origin. Finally, if.~ "7 . . )
. . implicit solution function of the above problem at a base param-
® is semismooth o® and . . .
eter vectop* € R™. For this purpose, leX* be a strongly sta-
X ble solution of the above problem gt. Assume tha#" is con-
Op® C 9p¥(0), 11) . . . :
p®(@") S 95%(0) (11) tinuously differentiable in a neighborhood of the p@if*, p*).
then the four statements (b), (c), (d), and (e) are equivalent. It follows that there exist open neighborhoodsC S’ of X
andP C R™ of p* and a locally Lipschitz continuous function
X : P — V such that for every € P, X(p) is the unique ma-

The inclusion (11) plays an essential role for the statemen& in V that solves (15);*moreovgr, the implicit SOJUU*O” func-
(b) and (c) in Theorem IV.4, which pertain to the original function X 1S ssmlsmooth ap™. We wish E’ computeX ' (p*; dp)
tion @, to be equivalent to the corresponding statements (d) 2R 4» € %™ For eactp € P, let Z(p) = X (p) — F'(X(p), ).
(e), which pertain to the directional derivative We haveX (p) = Ils» (Z(p)) and

The next technical result establishes the equality (11) that -
paves the way for the application of Proposition V.4 to SDO F(HSQ(Z(p))’p) +2(p) - 7H51(Z(p)) = 0.

problems. _ ) Taking the directional derivative of the above normal equation
Lemma IV.1:Let A € S™ be arbitrary. LeW = II5. (4;-).  atp* along the directionip and writingdZ = Z'(p*; dp), we
It holds that obtain
Opllsy (A) = 9 (0). (12)

JoF(X*p* )Ly (Z°:dZ) + J,F (X", p")dp

+dZ — Mg (Z*;dZ) = 0.
The following extends the semismooth inverse function the- +

orem to an semismooth implicit function theorem. Note thatX ' (p*; dp) = 114, (Z*;dZ). By the previous deriva-
i

Theorem I\i.S:issum/e ﬂjaﬁf?q’(z*) C 0p®’'(z";-)(0)and ion we deduce thaX / (p*; dp) is the unique solutios™* of the
that.J,,G(®(z*),p*) o ®'(2; ) is a globally Lipschitz homeo- |inaar complementarity problem:
morphism. There exist a neighborhddaf p*, a neighborhood

V of 2, and a Lipschitz continuous functian: i/ — Vthatis ¢ > S§* 1 J,F(X*,p")dp+( J,F(X*,p*)+Az- )(5*) € C*,
semismooth gp* such that for every € U, x(p) is the unique
vector in) satisfyingG(®(z(p)), p) = 0. Moreover, for every WhereC = T(X*;S?)NF(X*,p*)" is the critical cone of the
vectordp € R™, z'(p*,dp) is the unique solutiomz: of the CP (S}, F(-,p*)) at the solutionX™*.
following equation:
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