
Reduction of Friction in Polymeric Composites

for Artificial Joint Prostheses

by

Jorge Francisco Arinez

B.A.Sc., Mechanical Engineering
University of Toronto, 1993

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts

-- May 1995

Institute-of Technology 1P95. All rights reserved.

Signature of Author ............. ..............Enin ng
Depa of c al Engineering

cya May 1995

C ertified by ........ .. ...........................................
Professor Nam P. Suh

Ralph E. and Eloise F. Cross Professor of Mechanical Engineering
Head of the Department

Thesis Supervisor

A ccepted by .......................................................

M.iASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Professor Ain A. Sonin
Chairman, Committee on Graduate Studies

LIBRARIES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 6 2000

LIBRARIES



Reduction of Friction in Polymeric Composites for

Artificial Joint Prostheses

by

Jorge Francisco Arinez

B.A.Sc., Mechanical Engineering

University of Toronto, 1993

Submitted to the Department of Mechanical Engineering
on May 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Ultra-high molecular weight polyethylene has been used as a bearing material in ar-
tificial joints for more than thirty years. Despite this long period of use and the
success which artificial implants have had, material failure and ultimately prosthetic
failure still occurs as the result of mechanical wear of the bearing surface. Several
wear mechanisms have been proposed as the main causes for failure; however, none
is as dominant as the delamination wear of artificial knee prostheses. Delamination
wear occurs mainly as the result of cyclic plastic deformation of the surface and sub-
surface layer which causes cracks to nucleate and propagate in the subsurface leading
to the production of wear sheets. This research seeks a new alternative material to
prevent the occurrence of delamination wear by the use of a fiber reinforced com-
posite. The use of a fiber-reinforced composite having fibers oriented normal to the
sliding direction is known to offer reduced plastic deformation resulting from the high
stiffness of fibers and furthermore can inhibit crack nucleation and more importantly
propagation since fibers are able to arrest the growth of cracks normal to the fiber
axis. This new material has been called homocomposite based on the fact that fiber
and matrix are made from the same material, namely UHMWPE. This material has
shown promising results in friction tests yielding coefficients of 0.05 in bovine lubri-
cated sliding conditions. The optimization of material processing parameters with
respect to friction and wear of the homocomposite is also presented.

Thesis Supervisor: Professor Nam P. Suh
Title: Ralph E. and Eloise F. Cross Professor of Mechanical Engineering Head of the
Department
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Chapter 1

Introduction

1.1 Tribology

The importance of tribology to mankind cannot be emphasized enough. Since early

civilizations, the unavoidable fact of life has always existed that people and objects

must move, and when they do, they undoubtedly move at less than full efficiency.

In the majority of cases this inefficient movement can be traced back to friction and

wear. Indeed, some estimates have stated that as much as one third of the world's

energy resources in present use is needed to overcome friction.

Tribology is the study of friction, wear and lubrication of surfaces in relative

motion. Wear is often the object of most study because it causes many undesirable

effects. In general, wear due to sliding or rolling is the net loss of material in a

component. This loss of material causes many events to occur. If material is removed

from a sliding interface, subsurface material becomes exposed to the environment and

consequently the surface is open to chemical attack by the operating environment.

Furthermore, once a surface develops defects arising from the wear process, the process

is self perpetuating; wear leads to more wear. Wear in different sliding systems causes

different consequences. In engineering systems for example, wear leads to the loss of

tolerance of the system components. In biomedical applications such as wear in

artificial joints, wear produces particles which cause adverse biological effects. The

human body with all of its moving parts is a place where much wear can take place.



In such a biological system, wear is also not desirable. Before the advent of modern

medicine, people whose 'moving parts' wore out were forced to live in pain because at

the time no solution existed to their personal 'wear problem'. The key moving parts

in the human body where wear can have painful and even devastating effects are in

all the joints. With this in mind, the tribological system which will be the focus of

this thesis is the human articulating joint.

1.2 Artificial Joint Prostheses

The natural human articulating joint is a miracle of bearing design. It is capable

of withstanding high loads as well as large impact loads. It accomplishes this while

yielding a coefficient of friction in the range of 0.005 to 0.025. However, it is a very

complex biomechanical system whose function is still not completely understood by

both the medical and engineering community alike. Even without such a complete

understanding, total joint replacement is one of the most important advances which

has been made in the history of orthopedic surgery. This is a very beneficial form

of surgery because not only is pain almost completely eliminated but in addition a

significant amount of function is restored. Worldwide estimates are that half a million

joint prostheses are implanted in humans each year. Figure 1-1 shows the components

of an artificial knee prosthesis. However, despite the success enjoyed by artificial joint

implants in society today, there are still failures which occur and must be solved.

The more critical joints in the human body are the ones that bear the weight of

the person namely the hip and knee joints. There are different reasons which may

lead to a person suffering pain in these joints. The most common reason is caused by

degenerative disease (osteoarthritis). For people with this disease, joint arthroplasty

is not performed until a person reaches a stage where pain becomes intolerable and

prevents normal daily activities such as walking. Once a person receives an artificial

joint they can normally expect it to be free of problems. However, failure can and

does occur.

Artificial joints can fail for a number of reasons. The goodness of fit between



metallic components inserted into bone often affects whether loosening of the implant

will occur. In many cases, this loosening of the bone/implant interface is the chief

cause of long term failure1 . However, more importantly loosening is caused by wear.

The effect of wear is twofold. First, dimensional changes in the components as

a result of wear leads to improper mating of surfaces which in turns leads to non-

uniform load distribution throughout the implant during its operating life. Secondly,

perhaps more importantly is the generation of large wear particles through the pro-

cess of delamination wear. In addition to these large particles is the generation of

small micron to submicron wear by "plowing". These wear particles illicit a human

biological response. This biological response more commonly referred to as osteol-

ysis can have several negative effects. These include local tissue inflammation and

bone resorption which can eventually lead to fracture of the bone which supports the

metallic stem in the case of the hip and knee joint.

1.3 Problem Definition

Given the above background into artificial joint prostheses, the problem which this

thesis sets out to solve is therefore the wear problem - specifically the delamination

wear problem, which can lead to the eventual failure of the artificial joint. A clear

understanding of the mechanics of the sliding interface is critical to the solution of

any tribological problem. The approach then taken, is to understand and identify

the factors leading to delamination wear and then based on this knowledge, develop

and test a material capable of eliminating or minimizing the destructive effects of this

form of wear. The solution of this problem is subject to the constraints imposed by

the function of biomaterials in the human body. A potential material must be bio-

compatible meaning it must be non-toxic and must possess the necessary mechanical

properties to meet the daily demands of the human subject. Also, the biomaterial

must be able to withstand and endure over a long period of time (greater than ten

'Incompatibility in stiffness between the bone and implant otherwise known as stress shielding
is known to cause bone remodeling and potentially bone fracture.



Figure 1-1: Artificial knee prosthesis

years) the corrosive effects of body fluids while fulfilling the mechanical function of

the load bearing joint without mechanical failure.

1.4 Overview of Thesis

This thesis details the development of an alternative bearing material for artificial

joints with potential implications in other bearing applications. Chapter 2 covers

Delamination Wear theory and the role which it plays in the wear of UHMWPE.

Also covered is the idea of using fiber-reinforced polymeric composites to prevent

crack nucleation and propagation leading to delamination failure. First, attempts to

develop this material are based on work by Suh [75] who had previously developed

a fiber reinforced ultra-tough high density polyethylene. Preliminary friction and

wear data pointed to potential benefits by using a UHMWPE fibers along with an

Femoral component
/

Tibial fixation plate

front view
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UHMWPE matrix. This led to the development of the 'homocomposite'. Its process-

ing and fabrication methods are detailed in the third chapter. The development of

the homocomposite was immediately followed by friction and wear testing and further

structural characterization using techniques such as scanning electron microscopy and

differential scanning calorimetry. These results are detailed in the fourth chapter. In

the fifth chapter, to help explain friction and wear results, the mechanical behavior

of the bearing material is studied with respect to the applied loading and the re-

sulting contact stresses. In addition, a model based on classical lamination theory

is presented for homocomposites consisting textile laminates. In the closing chapter,

conclusions along with recommendations for future research are given.



Chapter 2

Reduction of Friction and Wear in

Artificial Prostheses

2.1 Introduction

This chapter deals with the wear problem existing today in artificial articulating

components, and then based on an understanding of delamination wear theory pro-

poses the means to reduce the effects of this problem. It is known that the contact

stresses in artificial knee prostheses are much greater than those existing in artificial

hip prostheses. As a result, the failure modes of wear in each case tend to be differ-

ent. Abrasive wear tends to occur in the hip leading to the production of micron and

submicron-sized wear particles. On the other hand, though abrasive wear occurs in

artificial knees as well, the wear mechanism which dominates and which can lead to

catastrophic failure is delamination wear.

Retrieval studies of knee prostheses conducted by Landy and Walker [40] found

that delamination initiated by intergranular defects led to complete breakup of the

material into flakes and particles. Furthermore, this study found that delamination

wear can produce wear debris several millimeters in diameter having a thickness of

1-2 mm. Clearly to increase the life of an artificial joint, the goal is to reduce and

ultimately prevent the factors which lead up to delamination wear.

First, the background on the Friction Space Concept [74] will be reviewed as it



pertains to the friction mechanisms responsible for delamination wear. The events

leading up to and causing the generation of delaminated wear sheets will be reviewed.

The role of plastic deformation of the subsurface and the critical importance which

this plays leading to the onset of delamination wear will be described. The intro-

duction of fiber-reinforced composites will be presented as the means to prevent the

crack propagation occurring during delamination wear.

2.2 Friction Space Concept

The Friction Space Concept [74] is presented here to give background into the two

important components of friction that participate in the delamination wear process,

namely friction due to asperity deformation and friction due to plowing by hard as-

perities or by wear particles. Three fundamental aspects which govern tribology [74]:

environmental effects on surface characteristics through physiochemical interactions,

force generation and transmission between surfaces in contact, and material behavior

near the surface in response to external forces at the contact points of the surface.

Figure 2-1 shows the contribution of these three main mechanisms of friction: ,a

friction due to adhesion, Id friction due to asperity deformation, and [Lp friction due

to plowing.

Ia Friction due to adhesion: The adhesion component of friction occurs due to

the asperities which come in contact with asperities on the opposite surface forming

welded junctions and must be sheared to permit sliding. Pia is not significant early in

sliding due to the existence of surface contaminants. In cases were surface contami-

nation is high (as with human body fluids) the role of Ia may not be significant.

pd Friction due to asperity deformation: This friction mechanism plays an

early role in the wear process since at the onset of sliding, asperities are deformed

and then removed; once deformation has occurred this mechanism is no longer sig-

nificant. However, if wear is occurring at a high rate and new surfaces with new

undeformed asperities are being exposed the A will contribute to the steady state

friction coefficient. In general, the relative contribution of Ad is small.



p Friction due to plowing: This is due to one of two possibilities: the friction

force is generated by the penetration of hard asperities or by the penetration of wear

particles. In the wear of cobalt chrome articulating on UHMWPE the former is the

larger contributor to friction.

With these components now defined, we turn to Figure 2-1 depicting friction as a

function of the three above mechanisms Aa, Ud, and pp. In the friction space concept

[La is given by the axis labelled f, the interfacial shear strength, A, is given by the

axis labelled w/2r (ratio of width of wear particle generation to the diameter of the

particle). The third component discussed, Ad is given by the friction surface 0. When

0 = 0 this corresponds to values of friction A for a surface with no asperities. Oi

represents the case of initial roughness prior to sliding, and 0* is for the steady state

case. It is important to note that 0* also represents the roughness of delaminated

surfaces. The importance of the Friction Space Concept is that it depicts the effect of

increasing surface roughness due to for example the onset of the delamination wear

process. A typical sliding event begins with a pi for a given surface roughness Oi and

increases along a path that follows the dark heavy line in Figure 2-1 until 0* for which

A- Ass .

Having established the fundamental friction processes at work between the surfaces

of interacting materials, we can deduce that for articulating joints the dominant

component will be plowing. This reasoning is based on the fact that the counterface

is much harder than the bearing surface and therefore counterface asperities will be

responsible for the bulk of surface damage. Thus, in the friction space the curve will

be projected onto the p and w/2r plane since adhesion does not play an appreciable

role.

2.3 Delamination Wear

As was stated in the introduction to this chapter, the delamination wear process has

been found to occur in artificial knee prostheses. The Delamination Theory of Wear

was first proposed by Suh [73] to explain the wear of metals. However, the series of



Figure 2-1: Concept of Friction Space [74]



events leading to the production of delaminated sheets of UHMWPE can be explained

based on this theory of wear. The sequence of events leading to formation of a wear

sheet has been adapted from the delamination wear process for metals [74] and will

be explained in terms of a hard slider (cobalt chrome) sliding against a softer material

(UHMWPE):

1. The surfaces of these two materials come into contact and initially asperities on

the softer UHMWPE are easily deformed and fractured by the hard asperities

of the cobalt chrome (recall Ad from friction space concept). This leads to the

generation of a smoother surface on the UHMWPE (assuming the counterface is

smoother than the UHMWPE; this is usually the case since high surface finishes

are attainable more for the metal than for the UHMWPE)

2. The hard asperities on the CoCr slider exert a surface traction thus inducing

incremental plastic deformation per cycle of loading. This effect is cumulative

as it fatigues the surface layer of the UHMWPE.

3. As sliding progresses deformation of the UHMWPE subsurface continues. Note

that as a result of the hydrostatic state of stress directly beneath the contact

region cracks cannot nucleate very near the surface until the slider has passed

by.

4. Cracks may exist as a result of two conditions. There may be pre-existing voids

and defects in the material. With UHMWPE, the presence of fusion defects

(intergranular defects) have been known to be crack nucleation sites. Alterna-

tively, repeated loading and deformation cycles can cause cracks to nucleate in

the subsurface. Once cracks exist, they extend, propagate and eventually join

nearby cracks.

5. Eventually enough cracks join together and shear to the surface allowing for a

long thin wear sheet to delaminate. This exposes a fresh, rough surface and the

process begins once again with Step 1.



Once this process has begun, there is nothing which can be done to halt the de-

structive wear which takes place. The development of a potential wear resistant

material must address this issue. The hypothesis for stopping or minimizing

this effect with the use of a composite material is discussed in the next section.

2.4 Polymeric Fiber-Reinforced Composites

According to the delamination wear theory, the growth of cracks parallel to

the sliding surface occurs at a depth favorable for crack propagation. Given

this fact, the development of an alternative bearing material must prevent or at

least significantly reduce such crack propagation. This hypothesis had led to the

development of fibre-reinforced UHMWPE. The use of fibre reinforcement in the

field of composites has long been established as a means to tailor the mechanical

properties of a material. The same principle may be applied to reinforcing a

material with fibers for tribological applications, Suh [76]. In Figure 2-2 a fiber

is shown perpendicular to a crack propagating in the subsurface illustrating how

a fiber can effectively block the path of a crack and in so doing reduce one of

the main causes of delamination wear.

2.5 Effect of fiber orientation on friction and

wear

Suh [76] showed that in tests with Kevlar fiber-epoxy composites the lowest

wear was obtained with a normal fiber orientation; however, it was also ob-

served that in this case the friction coefficient was the highest relative to the

other two possible orientations. Suh [76] attributed this lack of correlation

to the competing effects of friction being controlled by surface properties and

wear being controlled by bulk mechanical properties. Polytetrafluoroethylene

(PTFE) is a good example of a material which exhibits contradictory behavior.



Sliding

Figure 2-2: Use of fibre reinforcement to impede crack growth

PTFE yields low friction; however, it has a very high wear coefficient. The low

coefficient of friction can be attributed to its surface properties. PTFE has a

surface layer which is easily sheared, this layer behaves similar to a solid lu-

bricant in that it has a very low shear strength. Unfortunately, this low shear

strength of the surface is also present in the bulk causing wear to occur at a

high rate despite a low friction coefficient.

For composites with brittle fibers and a brittle matrix (i.e., graphite fibers

and epoxy resin matrix), debonding of fibers from the matrix can occur when

cracks nucleate at the fiber-matrix interface. To understand the nucleation of

cracks at the fiber-matrix interface, the state of stress under sliding conditions

must be known. Knowledge of the mechanical behavior of the sliding interface

is required to understand the wear behavior of composites as it is affected by

fiber-matrix interactions.

Under a sliding asperity contact which exerts both a normal and tangen-

tial load on the surface of a material, specific stress fields are developed in the

immediate region below the surface. Directly underneath the slider the mate-

rial is in a state of hydrostatic compressive stress. As the slider moves, the

Id
pi



region of hydrostatic stress follows the slider and always remains underneath

it. As a consequence of the movement of the slider, areas which were once

under compressive stresses become loaded in tension. In particular, there is a

region directly behind the contact location where the tensile stress parallel to

the surface is at a maximum at the surface. This tensile stress decreases both

as the distance down into the material and the distance horizontally away from

the slider increases. From the knowledge of these resulting stress fields, the

location of potential fiber-matrix debonding sites can be anticipated. Since the

horizontal tensile stress is greatest at the surface (in locations not directly un-

derneath the moving slider), it would be expected that fiber-matrix debonding

would occur at the surface as cracks nucleate here and propagate down into the

bulk along the fibers (for composites with normal orientations) if the applied

stress at the fiber/matrix interface exceeds the bond strength. The debonding

will occur only down to a finite distance because the tensile stresses decreases

with increasing depth.

For cases of longitudinal or transverse orientations, crack nucleation may

take place at a specific depth where the tensile stress component is maximum

(the component perpendicular to the sliding direction) or at the surface, right

at the fiber-matrix interface. For all three fiber-sliding direction orientations,

once cracks are nucleated the wear rate will increase as cracks propagate along

the fiber-matrix interface and through the matrix itself.



Chapter 3

Development of

Homocomposites

3.1 Introduction

This chapter introduces the development of homocomposites. The development

of the homocomposite began with work on the manufacture of Ultra-Tough

Polyethylene developed by Suh [75, 2]. This ultra-tough polyethylene when it

was originally developed was never friction tested as a potentially wear resistant

material. This missing piece of experimental work became the starting point

for the development of homocomposites. Production of ultra-tough high density

polyethylene (UTHDPE) enabled wear testing to be carried out for the first time

and provided data to begin development of the homocomposite.

Early data demonstrated the feasibility of using high strength HDPE fibers

to increase the wear resistance of HDPE. However, since the performance of

UTHDPE was limited by the performance of the properties of HDPE, a new

material, preferably a polyolefin was required which could yield improved fric-

tion and wear. This led to investigation of the possibility of UHMWPE as the

basis for a new wear resistant material since UHMWPE is known for its superior



friction and wear properties compared to HDPE. This in turn led to the combi-

nation of ultra-drawn UHMWPE fibers Spectra with UHMWPE resin yielding

the first homocomposite. However, the concept of reinforcing the polyethy-

lene with high strength fibers remained unchanged. This chapter traces this

development and provides details of its manufacture.

3.2 Polyethylene

One of the most common industrially produced polymer, polyethylene was first

produced on a commercial scale in 1939. Some of its features which have made

it so popular in industry are its relatively low cost, good electrical insulative

properties, good chemical resistance, ease of processing, toughness, flexibility,

and transparency. As will be discussed in Section 3.3.2 the high strength which

can be obtained from polyethylene molecules can be traced to the very strong

covalent carbon-carbon bonds which are the backbone of the molecular chains

in the -(CH 2)n- structure of polyethylene.

Polyethylene is a long chain aliphatic hydrocarbon and as such has no strong

intermolecular forces. It also has a low cohesive energy density and is non-polar.

However, the overall bulk strength of polyethylene is limited by the weaker Van

der Waals forces caused by hydrogen bonding between the molecular chains.

The ability of polyethylene to resist deformation and fracture is a function of the

relative configuration of the individual molecular chains. Polyethylene begins to

soften at temperatures of about 110OC and as the temperature increases becomes

molten (eg., 137'C for HDPE) and is therefore considered a thermoplastic.

Molecular weight is another property which strongly determines how melt-

processable polyethylene is. For example, HDPE with a melt-index of 2.8

dg/min (ASTM D-1238) and with an average molecular weight of 50,000 can

be injection molded. However, UHMWPE with an intrinsic viscosity of 27.0

(ASTM D-4020) and with an average molecular weight of 3,000,000 cannot be



extruded in a conventional-type screw extruder. Conversely, at low tempera-

tures, polyethylene chains assume a higher degree of order and closer packing

and can be considered partially crystalline. The bulk polyethylene is in fact

considered polycrystalline.

3.3 Ultra-Drawn Polyethylene

3.3.1 Introduction

The early basis for homocomposites began with adaptation of earlier work done

by Suh and Alei [75, 2] to improve the mechanical properties of polymers by

molecular orientation. Suh and Alei [75, 2] showed the benefits that could

be obtained by using highly oriented fibers. However, the intention here is

to produce a polyethylene-based material with not only improved mechanical

properties, but also improved wear properties. Many different methods can

be used to achieve molecular orientation in polymers. Some of these include

solid state drawing, solid state extrusion, push-pull extrusion, biaxial stretching,

and more recently with ultra-high molecular weight polyethylene, solution gel-

spinning.

In general, the mechanics of solid state drawing of fibers involves the follow-

ing components. As with ductile metals, polymers exhibit similar necking and

drawing phenomena that can be observed in tensile experiments. In addition,

due to the ease by which molecular chains can move in polymers, polymers

are capable of undergoing large strains in comparison to metals. Andrews and

Ward [3] demonstrated that the Young's modulus is to a good approximation,

dependent only on the draw ratio. This is shown in Figure 3-1. It has been

shown [18] that the solid state drawing of polymers is affected mainly by average

molecular weight M., and most importantly the drawing conditions, specifically

the strain rate and the temperature. The strain rate in a spool driven drawing



Modulus as function of draw ratio

Figure 3-1: Modulus as function of draw ratio [3]

system is governed by motor rotational speeds. The temperature is regulated

by controlling the temperature of the ambient medium where the drawing takes

place. The temperature plays an important role in the magnitude of the draw

ratio achieved. Capaccio and Ward [18] have examined this effect in detail.

They found that the maximum draw ratio attainable increased monotonically

with draw temperature Td until the specimen failed as the melting point was

approached. Figure 3-2 shows experimental results of measuring draw ratio and

modulus as a function of draw temperature Td.
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Modulus as function of draw temperature
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3.3.2 Theoretical Ultimate Young's Modulus for organic

fibers

It is important to consider how strong a fiber can be made from polyethylene.

Bunsell [16] derives and calculates the theoretical maximum Young's Modulus

for an organic polymer such as polyethylene. The assumption that is made

is that the tensile force is applied exactly in the direction of alignment for a

molecule with a C-C backbone. Figure 3-3 shows just such a molecular ideal-

ization. A force F is applied in the direction shown causing the valence angles

C1-C2 and C2-C3 to increase. Bunsell derives two parameters Ka, and K0 based

on the applied force F and the deformation which results because the valence

angles are increased:

Ka f sin (/2) and Ko= F (3.1)

Direct measurements with Raman or infrared spectrotrometry show that for an

olefine molecule:

Ka _ 460 N/m and Ko - 82 x 10- 20 Nm (3.2)

Using geometry, the length lo is:

lo = 2a sin (0/2) (3.3)

the applied force F causes a differential change in length:

dl = 2(a cos (0/2)dO + sin (0/2)da) (3.4)

Dividing equation 3.4 by equation 3.3 yields the strain:

dl _ cos (9/2)d± + sin (0/2)da (35)
- (asin3(5)/2)10 a sin (0/2)



The moment Fh causes a dO, and combining with 3.3:

dO _ cos (9/2)T =  g
F Ko

da sin (0/2)
F 2Ka

similarly:

Combining equations 3.4, 3.5, 3.6, and 3.7

a2 (co (0/2))2
2Ko

(sin (o/2))2
Ka

F l0E AdA dl

Using Equation 3.3 and inverting Equation 3.8 and using experimentally avail-

able constants: A = 18x10 - 20 M 2 , a = 1.53x10 - 10 m, and 0 = 1120, the

theoretical value of the Young's modulus for polyethylene is E = 236.6 GPa.

Figure 3-3: Organic macromolecule with carbon backbone [16]
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3.3.3 Ultra-Tough High Density Polyethylene

The invention of ultra-tough high density polyethylene by Suh and Alei [75, 2]

is based upon taking advantage of the improved mechanical strength which high

molecular orientation imparts to the bulk structure of polymers. Tensile tests

performed on HDPE Alathon 7030 which had been stretched to a draw ratio of

A = 8.2 show a dramatic improvement in strength by a factor of 10 as well as

toughness as shown in Figure 3-4.

However, since this orientation has only involved a physical reorganization

of molecular chains, heat processing of the oriented fibers will immediately

eradicate all gains made in strength and toughness. In the background given

on polyethylene in Section 3.2, polyethylene was described as having primary

bonds at the carbon backbone of its molecular chains and with only weaker

secondary Van der Waals forces linking neighboring chains together. Clearly a

stronger link is required to retain the highly oriented state of the polyethylene

molecular chains once the desired draw ratio has been achieved. In other words,

permanent crosslinks are needed between these molecular chains.

Suh and Alei [75, 2] found that by exposing oriented polyethylene fibers to

electron beam radiation, crosslinking could be promoted and hence retain the

stronger polyethylene structure for later melt processing. Electron beam irradi-

ation provides energy to break the C-H bonds thereby permitting carbon atoms

on neighboring chains to form primary covalent bonds with one another. The

application of this method to produce solid samples from drawn polyethylene

fibers is discussed in the next section.

3.3.4 Processing of Ultra-Tough HDPE

The following process was used to produce ultra-tough high density polyethylene

following the work by Suh and Alei [75, 2] in order to manufacture samples

for wear testing. First, Alathon 7030 HDPE pellets were extruded using a
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small benchtop laboratory extruder through a conical die to produce fibers

having an initial diameter prior to drawing of approximately di = 350 Am.

The rotational velocity of the motor with the takeup spool had to be varied

continuously to ensure minimal variation in the fiber diameter as the linear

fiber velocity increased. This task was performed manually and introduced

some variation in the diameter of the final drawn fiber.

Once enough fiber had been collected on the spool, the next step was to

orient the fibers to increase the strength of the fibers. To perform this orienta-

tion, a special bath was constructed and is schematically shown in Figure 3-5.

The bath is watertight and a 750 W immersion heater with a PID controller

maintains the water at a constant temperature of Tbath = 500 C. A spool con-

taining the fiber produced in the extrusion step is mounted on bearing blocks

in the container with the shaft belt driven by Motor A. Similarly, a take up

spool is also supported on bearings and is connected by a drive belt to Motor

B. A difference in the speed of the two motors causes the fiber to neck at the

point indicated in the figure. Once the speed of Motor A has been set, the

operator need only vary the speed of Motor B to ensure a constant linear speed

as oriented fiber accumulates on the takeup spool. The speed of the motors was

approximately 50 rpm for motor A and 5 rpm for motor B.

Varying the speed of Motor B also has the effect of moving the fiber necking

point to the left or right as shown in Figure 3-5 (forward and back). If the fiber

necking point is not kept relatively stationary in space, the likelihood of fiber

fracture increases. Fracture of the fiber decreases the production rate because

the take-up spool and the feed spool must be restarted in unison.

Once a full spool of oriented fiber has been collected, it must be unwound

onto a flat plate for irradiation. The oriented fibers on a flat plate are then ex-

posed to electron beam irradiation as shown in Figure 3-6. Different samples of

oriented HDPE received different dosages ranging from 2.5 MRad to 30 MRad.

The implications of irradiation in addition to the function of crosslinking are



discussed in Section 3.5.3.

Once the plates of oriented fibers have received the required dosage of

radiation, the test sample must be produced. Samples were produced using

compression molding. This six-step process is shown in Figure 3-7. First, fibers

are cut to the length of the cavity of the mold (approx. 3") and filled inside

the cavity1 . The mold is then assembled and taken to a hydraulic press. The

press used was a 30 ton Wabash hydraulic press with temperature controlled

upper and lower heating platens. The mold is pressurized (to 1500 psi, 10.34

MPa) and heat applied for approximately 60 minutes until the desired steady

state temperature of the mold is reached. After 15 minutes at steady state to

ensure full diffusion, the platens and mold walls are rapidly cooled with water.

However, during this cooling process, pressure is continually maintained. This

is done to maintain molecular orientation of the fibers, as the mold cools and

the sample solidifies. Once the temperature drops below 30 0 C, the pressure is

released and the sample removed from the mold.

3.3.5 UTHDPE Wear Results

The compression molding process which was described above permits the pro-

duction of specimens for wear testing. Friction and wear testing will be discussed

in much greater detail in Section 4.3. The wear data shown in Figure 3-8 is of

tests conducted on samples of HDPE, ultra-tough HDPE, and UHMWPE. The

sample size used to determine the standard deviation was three. The sliding

counterfaces were made from SS304 and the lubricant was saline solution. The

sliding duration of the test was 4260 m with a load of 760 N.

The column on the far left of the HDPE is the wear test result of samples

which had been produced simply by compression molding of virgin Alathon

7030 HDPE pellets. Clearly, these samples exhibited much higher wear than

'The compression mold used was made from steel and had a rectangular cavity 2" x 3" x 1"



Figure 3-5: Water bath used to orient HDPE fibers.

Figure 3-6: Irradiation of oriented fibers by electron beam irradiation [2].
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Figure 3-7: Compression molding of crosslinked, oriented HDPE [2].

did the other two cases. Though ultra-tough high density polyethylene of-

fered much improvement over HDPE pellets, it still had higher wear than the

UHMWPE samples. These results led to the reasoning that if fibers which had

been strengthened offered improvement over unprocessed HDPE, then possibly

the same strengthening process could also improve UHMWPE over untreated

UHMWPE. This improvement in UHMWPE forms the basis for the develop-

ment of the Homocomposite material.

3.4 Homocomposites

3.4.1 Introduction

The idea and actual development of homocomposites arose on the basis of the

work done with ultra-tough HDPE. There are various aspects of the homocom-

posite material which make it unique.

First, the homocomposite as the name implies consists of a composite in
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which the matrix and fiber are made from the same material. The immediate

advantage of this is that since UHMWPE is already in clinical use in artificial

joints, reinforcing fibers also made from UHMWPE do not pose any additional

risk to the patient than is already present in existing UHMWPE bearing joints.

Secondly, crosslinking of the UHMWPE fibers serves a dual purpose. Crosslink-

ing by 'y radiation retains molecular orientation during processing without the

use of chemical crosslinking agents. Also, crosslinking creates a processing win-

dow through a difference in melting point developed between fibers and matrix.

This is discussed in greater detail in Section 4.6 which concerns differential scan-

ning calorimetry. Also, the homocomposite fibers have a normal orientation

relative to sliding direction. As was discussed in Section 2.4 such an orientation

yields optimum friction and wear performance. The next two sections give the

background on the specific properties of the fiber and matrix components of

homocomposites.

3.4.2 UHMWPE Matrix

Polyethylene has been in existence since the 1930's, however UHMWPE is a

more recent development. UHMWPE was first used in the early 1960's as the

bearing material for artificial joints. UHMWPE is produced by stereospecific

polymerization with Ziegler-Natta catalysts (a low pressure process) [15, 13, 14].

Also it is a semi-crystalline, linear homopolymer of ethylene.

The medical grade of UHMWPE has smaller quantities of trace elements

and impurities than industrial grades. EDA analysis has shown the presence

of traces of silicon, calcium, iron, chlorine, aluminum, titanium, molybdenum

and of nickel, potassium and sulfur. Furthermore, no antioxidants or stabilizers

are added. UHMWPE resin exists in what is generally termed 'flake'. This

is essentially a fine powder with a mean particle size of approximately 30 Am.

UHMWPE used in the fabrication of the homocomposite was obtained from

Hoeschst Celanese with the resin number GUR4150. Table 3.1 shows the trace



Trace Element Requirements Tested Value
Aluminum 100 ppm max. 2
Titanium 300 ppm max. 23
Calcium 100 ppm max. 35
Chlorine 120 ppm max. 46

Table 3.1: Trace elements in a sample of UHMWPE, from Westlake Plastics

Property Method Specification Tested
I Requirement Value

Density ASTM D1505 0.93-0.94 g/cm3  0.932
UTS ASTM D638 4000 psi 6540
Yield Strength ASTM D638 2800 psi 3050
Elongation ASTM D638 200 % min 350
Impact Strength ASTM D256 20 ft - lbs no break
Hardness ASTM D2240 60 67
Viscosity ASTM D4020 27

Table 3.2: Mechanical Properties of UHMWPE, from Westlake Plastics

elements from a sample of medical grade UHMWPE obtained from the medical

division of Westlake plastics.

In general, UHMWPE has much better tribological properties than does

HDPE, this is in great part a direct result of its higher molecular weight

(M.HDPE = 50,000 versus MUHMWPE = 3-5 million) which gives it its higher

toughness and strength. Shown in Table 3.2 are various other mechanical prop-

erties of UHMWPE supplied by the manufacturer Westlake Plastics.

3.4.3 UHMWPE Spectra Fibers

High strength fibers require high to ultra high molecular weights along with high

degrees of molecular orientation. Various methods have been used to obtain the

necessarily high degree of molecular orientation in polymers such as polyethy-

lene. These include solid state extrusion, solid state fiber drawing, gel/solution

spinning, and liquid crystal spinning. According to Tam [77] , no other high

strength fiber responds as favorably to molecular orientation as polyethylene.



In general three requirements are specified for high strength fibers [77]: (a)

high degree of polymer chain orientation (b) very high to ultra-high molecular

weight, and (c) moderate to high degree of crystallinity.

The reasons for using polyethylene fibers have been clearly outlined in

Sections 2.4 and 3.3 in describing the initial work with the use of ultra-drawn

high density polyethylene. However, these attempts yielded fibers with draw

ratios of approximately ten. The need for greater orientation of fibers than

could be achieved with the experimental setup in Figure 3-5 led to the use of

commercially available fibers.

Spectra fibers were developed and introduced by Allied-Signal Corporation

in 1985. Spectra fibers are known as extended chain polyethylene fibers and

are made from ultra-high molecular weight polyethylene. These fibers have a

crystallinity of about 60% - 85% and also a high degree of crystalline orientation.

It is this high degree of molecular orientation that provides the Spectra fibers

with their high strength. The Spectra fibers are manufactured using a process

known as solution spinning with the added claim that solution spinning can

be modified to produce a higher strength and more thermally stable fiber [23].

The process involves dissolving ultra-high molecular weight polyethylene (1-5

million molecular weight) in an appropriate solvent. The purpose of the solvent

is to ensure that the polyethylene chains disentangle before spinning. This

dilute solution of UHMWPE is then melt spun and the cooling extrudate forms

the fiber which is dried to remove solvent. Finally, the fibers are drawn before

packaging. Properties of various types of Spectra fibers are listed in Table 3.4.3.

Also a comparison of Spectra 900 series fibers to other common composite fibers

is shown in Table 3.4.

3.4.4 UHMWPE Spectra Fabrics

Homocomposites were produced in two different ways. The first method con-

sisted of hand layup of fibers, whereas the second method made use of commer-



SPROPERTY -- Spectra 900 Fibers Spectra 1000 Fibers Units
Weight/Unit Length 1600 1200 650 650 375 215 denier

177.8 133.3 72.2 72.2 41.7 23.9 tex
Ultimate Tensile 27 28 28 33 33 35 g/den
Strength 2.31 2.40 2.40 2.83 2.83 3.00 GPa
(min) 335 348 348 410 410 435 106 psi

236 244 244 288 288 306 103 kgf/mm 2

Modulus 718 850 920 1175 1200 1320 g/den
(nominal) 61 73 79 101 103 113 GPa

8.9 10.6 11.4 14.6 14.9 16.4 106 psi
6.3 7.4 8.0 10.3 10.5 11.5 103 kg f/mm 2

Elongation 4.4 3.9 3.6 3.3 3.1 2.9 %
Density 0.97 0.97 0.97 0.97 0.97 0.97 g/ml

0.035 0.035 0.035 0.035 0.035 0.035 lb/in3

Filament 39 38 38 28 30 23 pm
Diameter 1.54 1.50 1.50 1.10 1.18 0.91 lb/in3

Filaments/Tow 150 120 60 120 60 60
Denier/Fil 10.7 10.0 10.8 5.4 6.3 3.6
Yield 5.62 7.50 13.84 13.84 23.98 41.84 mg

2788 3720 6869 6869 11905 20765 yd/lb
2551 3402 6281 6281 10886 18988 m/lb

Table 3.3: Properties of Allied-Signal Spectra Fibers

Property Fiber
Spectra 900 Aramid S-Glass E-glass

density p g/cc 0.97 1.44 2.49 1.86
Filament Diameter (t/m) 38 12 9 7
Elongation 3.5 2.5 5.4 0.6
Tensile Strength 103, psi 375 400 665 340
Specific Strength 106, in 10.7 7.7 7.4 5.0
Tensile Modulus 106, psi 17 19 13 50
Specific Modulus 106, in 495 365 140 750

Table 3.4: Comparison of Mechanical Properties of Spectra fibers to other fibers

Fiber Total Energy Specific Energy
Absorbed (ft - lb.) Absorbed (ft - lb/lb/ft2 )

Spectra 900 33.4 58.6
E-glass 34.5 31.9
Aramid 16.1 22.4
Graphite 16.0 19.3

Table 3.5: Comparison of Spectra fibers energy absorption to other fibers



Property Value
Style 955
Weave Plain
Count Ends/in. 56x56
Yarn Denier
Warp 215
Fill 215
Weight oz/yd2  3.2
Thickness, Am 175
Breaking Strength
lbs/in 580x560

Table 3.6: Material properties of Spectra 1000 fabric, from Clark-Schwebel

cially available woven fabric. Though there are potentially other more sophis-

ticated weaves and knits available, the plain weave was selected for its simple

structure which could be subjected to analysis. The fabric selected was obtained

from Clark-Schwebel and has the properties listed in Table 3.6

Figures 3-9 and 3-10 are scanning electron microscope micrographs of a

sample of Spectra 1000 fabric prior to any processing.

3.5 Production of Homocomposites

3.5.1 Manufacturing Process

This section describes the process required to produce a sample of homocom-

posite for wear testing. The main steps are virtually identical whether the

homocomposite is made from fibers or fabric. The first step in the process

begins with gamma irradiation of fibers and/or fabrics (the effect of irradia-

tion will be discussed in greater detail in Section 3.5.3). Once fibers have been

irradiated they must be cut to length. In the case of fiber-based homocompos-

ites, the fibers were grouped into bundles approximately 0.5 inches in diameter

and cut to a length equal to the width of the opening of the mold (0.630").

See Figure 3-11 for a drawing of the mold used. The fiber bundles were then



Figure 3-9: Plain woven Spectra 1000 fabric, style 955, magnification 125X

deposited inside the mold cavity and resin (powder form) was mixed into the

bundles manually. The desired Vf was achieved by mixing enough resin to give

the correct weight proportion of fiber to resin. Mixing of the two phases was

performed manually.

One important issue in the manufacture of homocomoposites is the need to

obtain a uniform fiber network within the matrix. The hand layup of Spectra

fibers discussed above is both labor and time intensive. For this reason another

means to achieve consistent uniform fiber orientation was sought. This need led

to the use of commercially woven Spectra fabric. Instead of cutting individual

bundles of fibers and manually spreading them into a thin layer; one sheet of

plain woven fibers could readily be inserted into a mold cavity to instantly give

a uniform layer of fibers. This increase in uniformity comes at the expense

of a reduction in the density of normally oriented fibers, since with a plain

weave, half of the available fibers are vertically oriented and the other half is



Figure 3-10: Plain woven Spectra 1000 fabric, style 955, magnification 1600X

horizontally oriented.

In this case of the fabric-based homocomposite, the cutting of fabric was

done with a specially made 'fabric-cutter' (see Figure 3-12) such that cut sheets

of fabric could be placed inside the mold cavity . This fabric cutter was needed

because of the difficulty in cutting Spectra fibers. The cutter is designed to

hold fabric in tension while it is being cut to the size of the mold cavity open-

ing. The Vf. is achieved in the same manner as with the fiber method. The

placement of cut fabrics into the mold involved placing each small sheet of

fabric (4.0"x0.630") into the mold and then lightly sprinkling UHMWPE pow-

der on top of each fabric after it had been placed. This manual deposition of

UHMWPE powder is a source of variation in the distribution of the thicknesses

of the fiber-matrix phases.
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Figure 3-11: Aluminum mold used to produce homocomposites

3.5.2 Material and Processing Parameters

Several parameters all serve to influence the consistency and uniformity of the

manufactured homocomposite. These parameters can be grouped into two main

groups. The two broad classifications are material parameters and processing

parameters. Under the first classification are the material parameters of vol-

ume fraction, level of irradiation, and uniformity of fiber-matrix phases. The

second classification deals with the actual manufacture of the homocomposite

and includes variables such as molding temperature, temperature distribution

of the mold, molding time, and molding pressure. These variables were identi-

fied as manufacturing and wear testing data accumulated during the course of

the development of the homocomposite.

Various temperature conditions were tried in order to find an optimum op-

Mal

-3.75"

4

0.75"

~f
B~.~B

I!g'•.:+., A 11 411111f~v



traonc tea mtn

Figure 3-12: Device used to hold and cut Spectra fabrics

erating processing range. For this purpose, samples were made at 1300 C, 140 0C,

150 0C and 160 0C . It was found that 130 0C yielded poor samples with the GUR

4150 resin not fully melted. At 1400C, samples were better consolidated how-

ever problems persisted with delamination failure of the fiber matrix bond. At

150 0C samples showed much better bonding. At 1600 C, consolidation between

fiber matrix is excellent; however, thermal degradation issues begin to arise as

samples exhibited signs of discoloration.

A molding time of a minimum of one hour was chosen to ensure adequate

diffusion through the thickness of the sample. This is an important parameter

which affects the strength of the fiber-matrix bond. The mold schematically

shown earlier in Figure 3-11 has an unsymmetrical geometry leading to uneven



thermal distribution. The piston has a gradient along its length because its

narrower cross-sectional area is exposed to convective cooling by air currents.

This effect is somewhat reduced when insulation is used around the mold.

Pressure application is maintained throughout the molding cycle. The same

principle used in the molding of the HDPE samples is also used in the molding

of the homocomposite. Upon placement of the mold into the press, pressure is

immediately applied and maintained throughout the heating and cooling phases

of the mold cycle. Once again this ensures that by maintaining pressure on the

fibers they will not lose their high degree of molecular orientation.

The molding pressure used was approximately 1500 psi (10.34 MPa). During

molding there are some pressure drops which occur but these are corrected for

by the pressure controller. It was found that steady application of pressure is

necessary to ensure good fiber-matrix consolidation. The key is that a minimum

pressure must be applied to achieve consolidation. A pressure greater than this

minimum amount does not necessarily contribute to better material properties.

In fact, excessive pressure will squeeze out the resin and extrude it through

the clearance between the male and female walls of the mold. This results in

fiber-rich and matrix-poor areas. Furthermore, when this minimum pressure is

not achieved, the risk of voids in the bulk of the material also increases. Such

voids become crack propagation sites for delamination of the fiber layers.

3.5.3 Irradiation

Irradiation of polymers is an effective means of achieving certain desirable me-

chanical properties not originally present in the material. The crosslinking

benefits of irradiation were discussed in Section 3.3. In the various forms of

polyethylene, crosslinking leads to formation of primary bonds between the car-

bon molecules in adjoining molecular chains. Such bonds between neighboring

molecular chains can impart greater mechanical strength to the bulk material

along with an increase in toughness. These are macroscopic phenomena which



can be observed when a polymer is crosslinked.

The potential benefits of radiation exposure can readily be lost and even

lead to material degradation if the radiation dosages and rates are not admin-

istered in the correct quantities or at the appropriate rates. There is a limit to

how much irradiation the polymer may be exposed to before degradation in me-

chanical properties occurs. Excessive dosages of radiation leads to an increase

in the brittleness of the material. In extreme cases, a thermoplastic can attain

properties similar to those of thermosets should the material in question receive

a large dosage of radiation.

With artificial implants, the motivation behind irradiation of polyethylene

implants is not to attain better mechanical properties, rather it is to achieve an

acceptable level of sterilization for biological use. With this type of sterilization

method utilizing irradiation, it is important to know the extent to which (in

the case of UHMWPE) damage to the molecular structure occurs. There are

many important issues which must be considered when subjecting polymers,

especially polyethylene, to irradiation. The dosage, dosage rate, radiation type

and irradiation atmosphere are all important parameters which can ultimately

affect the resulting molecular structure present after the treatment has been

carried out. These parameters have been investigated by various researchers

[58, 42, 63, 66, 68, 67]. The dosage parameter and how it affects friction and

wear of UHMWPE and homocomposites is discussed in the next chapter.

Chemical Effects of Irradiation in Polyethylene

Many of the observed changes in mechanical properties can be traced to the

changes which occur at the chemical level as a result of irradiation. For this

reason it is important to examine the chemical events which occur simultane-

ously. There are several events which occur at the chemical level as a result of

irradiation in a polymer such as polyethylene. These events include breakage

of C-C and C-H bonds leading to production of unsaturated groups, liberation



of H 2 gas, chain scission, crosslinking between molecular chains, and oxida-

tion. Streicher [67] proposes these mechanisms (see Figure 3-13) as occurring

in polyethylene as a result of exposure to radiation.

Also, it is suspected that after irradiation has occurred that postcrosslinking

and postoxidation can occur in UHMWPE as latent free radicals trapped in

crystalline regions migrate to amorphous regions [67]. The effect of irradiation

on melting point is discussed in Section 4.6 in the DSC analysis of melting

points of Spectra fabric.

Evidence of oxidation in polyethylene can be correlated to the increased

presence of carbonyl groups C=O in the material. In general, oxidation has been

shown to cause chain cleavage and to increase the brittleness of the UHMWPE.

Associated with this decrease in the elasticity of UHMWPE are increases in

density, yield strength, ultimate tensile strength and hardness. Increased water

absorption has also been attributed to the effect of irradiation.

Radiation Sources

Two types of irradiation have been investigated in this work: gamma irradia-

tion from a Co60 source and electron beam irradiation. There are advantages

and disadvantages associated with each of these types of irradiation. In the

early work with the ultra-drawn HDPE fibers, electron beam irradiation was

used because of size restrictions on the amount of material that could be ex-

posed. Irradiation was performed in the High Voltage Research Laboratory at

M.I.T. using a source operating at an energy of 2.0 MeV. Typically, batches

of fibers wound on aluminum plates were subjected to 0.25 MRads per pass.

Although electron beam irradiation offers such benefits as shorter irradiation

times and variable intensity, disadvantages such as low penetration and mate-

rial heating require multiple exposures of thinly layered specimens to achieve

the desired dosages. Gamma irradiation was used in the irradiation with fabric-

based homocomposite samples because of the uniformity of penetration which



these gamma rays offer. It is important to note that the gamma irradiation is

used by the medical community at levels of 2.5 MRad to achieve sterilization.

In the production of the homocomposite, the levels of irradiation have been

much lower, typically 0.15 MRad and 0.5 MRad.
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Chapter 4

Experimental Results

4.1 Introduction

Chapter 2 considered the theoretical requirements necessary for the improved

friction and wear performance offered by homocomposites in counteracting the

delamination wear process occurring in artificial knee prostheses. This chapter

presents the experimental results of tested homocomposites and UHMWPE.

The processing and manufacturing of homocomposites and their subsequent

performance in testing has been evaluated using various experimental tech-

niques. Though early work on homocomposites began with the use of HDPE,

the performance of the homocomposite has been measured against the ortho-

pedic industry standard of UHMWPE.

Although the bulk of experimental work on the homocomposite has focused

on friction and wear experiments, additional experimental techniques were em-

ployed to compare the physical behavior of the homocomposite with respect to

UHMWPE. These other techniques include the use of Environmental Scanning

Electron Microscopy (ESEM), profilometry, and Differential Scanning Calorime-

try (DSC). ESEM was used extensively to examine the internal structure of the

homocomposite as well as to examine the surfaces of the sliding pairs before and



after testing. ESEM is a valuable tool in detecting changes which signal the

onset of delamination wear, namely detection of subsurface cracks which when

they join and propagate, eventually reach the surface and cause a delaminated

wear sheet to come off. The use of a Dektak 8000 (contact type) profilometer

provided topographical data about changes occurring during this process as a

function of distance slid.

This chapter is organized based upon the experimental approach discussed

above. Initially, a discussion into the specifics of friction and wear testing leads

into the results of these experiments. To provide greater understanding into

these results, the work done on ESEM examination, profilometry, and DSC is

also presented.

4.2 Experimental Method

4.2.1 Sample Preparation

Prior to all wear tests a series of steps were followed to prepare the UHMWPE

samples for testing. For the UHMWPE and homocomposites, the samples were

flycut to give a surface with an average surface roughness of Ra = 0.5 im.

Various trials were made at different feedrates and spindle rotational speeds

to optimize the surface finish using flycutting. It was determined that a spin-

dle speed of 1600 rpm along with a feedrate of 0.75 in/min yielded a surface

roughness of 0.5 pm. The radius of the tool tip was approximately 1/32 in'.

Samples were cleaned with distilled water, isopropyl alcohol, and then ultra-

sonically cleaned 2 for one half hour in a bath of distilled water. Samples were

then left 24 hours to dry at room temperature prior to weighing before the test

was performed. A soak sample was subjected to the same steps as the samples

'It is interesting to note that in the case of the homocomposite, unless the tool was frequently
sharpened a satisfactory surface finish could not be obtained.

24.6 qt. AmericanBrand Ultrasonic Cleaner



that were actually tested. A similar cleaning procedure was followed for the

metallic counterfaces. All counterfaces were ultrasonically cleaned in a bath of

isopropyl alcohol for thirty minutes and then left to air dry for thirty minutes

and finally were rinsed with distilled water and left to air dry for an additional

thirty minutes. Care was taken during handling to minimize contamination so

as to not transfer any hand oil to the counterface.

After each test, counterfaces were removed from their holders and placed un-

der running hot water to remove excess residue from the bovine serum. Samples

were weighed on a Mettler H51AR balance capable of measuring to a resolution

of 0.00001 g. The bath holders into which the UHMWPE and homocomposite

samples are fixed were also cleaned under running hot water following all ex-

periments. Prior to all tests, the baths were cleaned with isopropyl alcohol and

then rinsed with distilled water before the samples were secured.

At the conclusion of each test, samples were removed from their respective

baths and rinsed under running water. Each sample was then wiped dry and

allowed to air dry at room temperature for 24 hours. After 24 hours the samples

were weighed to obtain the final mass. The soak sample was subject to this

same procedure at the conclusion of the test. Once weighing of the samples had

been completed, samples were stored in sealed polyethylene bags until further

profilometry or ESEM analysis was performed.

4.2.2 Wear Tester

In tribological testing of materials, the requirements to observe certain friction

and wear phenomena necessitate that an appropriate tester be used. By an

appropriate test apparatus it is meant one which has the correct geometrical

configuration and which has the capability to vary, control, and measure critical

parameters such as load, sliding velocity, lubricant, test duration, and possibly

even sample orientation.



Figure 4-1: Three dimensional geometry of cylinder-on-flat

In tribological testing of artificial joint prostheses there has been much

debate over the suitability and applicability of correlating in vivo wear tests

with observed in vitro wear. Not withstanding these arguments, the use of a

basic friction and wear test can still provide extremely valuable information

with respect to wear processes.

One such process which has been observed and been experimentally verified

is delamination wear[73]. Delamination wear as was discussed in Section 2.3

occurs in a sequence of steps in which the rate of subsurface nucleation of cracks

due to repeated loading strongly influences the formation of delaminated wear

sheets. It is this aspect of the delamination wear process occurring in artificial

knee prostheses which can be simulated with the geometry of a cylinder on flat

as shown in Figure 4-1.* The contact mechanics of such a loading geometry is

discussed in Section 5.1 along with the corresponding stress distribution which

occurs in the subsurface of the bearing material.

3Other wear testing geometries such as sphere on flat (pin-on-disk tester) are also capable of
providing cyclic loading required to initiate and propagate cracks. Cyclic loading does not necessarily
require oscillatory linear motion, rather it is the cyclic passage of asperities of one surface over
another which is important.



Figure 4-2: Four station cylinder-on-flat wear testing apparatus

The actual wear test apparatus used to generate the basic requirements of

the sliding component in an artificial knee prosthesis is shown in Figure 4-2. It

comprises four pneumatic cylinders connected to a high pressure N2 tank (one

supply line) so that constant pressure is applied to all four pistons. Two of

the four stations have loadcells capable of measuring the applied normal force

and the tangential force. The four stations each are bolted down to a common

base which oscillates with a linear velocity of 3.4 "/sec over a distance of 1.12".

The base moves on linear bearings and is driven by a 1/4 hp motor with a

ball reverser coupling to convert rotational motion to oscillatory linear motion.

Figure 4-3 shows the ball reverser mechanism.

Wear Tester Loadcells

The two loadcells shown in Figure 4-2 have the capability of measuring friction

force and normal load simultaneously. The actual loadcell is shown in Figure 4-4

and is known as an extended double octagonal ring. The locations of the strain

gauges are also shown along with the wheatstone circuit diagrams necessary to

Computer
based data
acquisition 4 data channels to measure friction force
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measure these forces. Using such an arrangement ideally provides decoupling

of the N and Ff forces. However, due to the unavoidable constraint that the

loadcell must be attached on both the top and bottom to a piston rod and

counterface holder respectively, a moment of magnitude Ff x d exists.

To determine the sensitivity of the coupling of the N and Ff forces with

respect to this moment, a series of calibration experiments were performed by

applying known normal and tangential loads simultaneously and measuring the

voltage output (see Appendix C for the actual calibration curves). An upper

bound of p = 0.2 was assumed, and for an applied normal load of 170 lbs. (760

N), this corresponds to Ff = 34 lbs. In Figure C-2 in Appendix C, it can be

seen that a F1 of 30 lbs. introduces a shift in the line of about 0.2 mV from the

nominal 4.4 mV. This represents approximately 4.5 % error when p = 0.2 due

to coupling effects. However, for a commonly encountered p of 0.1 the error is

about 2 %.

Wear Tester Data Acquisition System

The block diagram of the connection between the computer-based software and

the actual loadcells appears in Figure 4-2. The data acquisition software is

written in C-language and reads data from a Metrabyte data acquisition board

connected to an external breadboard to which the loadcells are hardwired. The

software data acquisition routines were written in order to compensate for the

variation in p which occurs with changes in sliding direction as is the case with

this wear tester. In all tests, voltage is continuously read from the board at its

maximum sampling rate. The maximum coefficient of friction is measured over

a cycle and stored in memory. To find the average maximum friction coefficient,

the average is taken of all of these values every 900 cycles. This corresponds to

a sampling rate of 5 cycles/second. When a change in sliding direction occurs

there is a point at which the sliding velocity is zero - at this point the friction

coefficient is zero. Also, as sliding begins in the opposite direction there is a peak
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in the friction coefficient as it changes from lstatic to Pdynamic. By performing

continous averaging, the short peak does not affect measurements because a

small delay is programmed to ensure that these peak readings do not affect the

friction data.

4.3 Friction and Wear Experiments

4.3.1 Friction Experiments

Bovine calf serum was used as the lubricant in tests having sliding distances

of approximately 7373.7 m, 14747.4 m, and 29494.9 m which correspond to

259200, 518400, and 1036800 cycle tests, respectively. Figure 4-5, Figure 4-6,

and Figure 4-7 show the results of three different types of samples tested: 2.5

MRad 7y-irradiated (in air) UHMWPE, unirradiated UHMWPE, and homocom-

posites. The friction coefficient plotted of each material is for only one sample.

When measurements were made on the same loadcell, good repeatability was

observed.

In these figures several trends are noticeable in the plots of the friction

coefficient. First, the irradiated specimens exhibit the highest levels of friction

among all the samples for both durations of tests. For the irradiated specimen in

Figure 4-7 the friction coefficient drops slightly below 0.08 early in the test, but

by the conclusion of the test it returns to 0.08. By comparison, the unirradiated

UHMWPE in both test durations exhibits a steady state friction coefficient of

0.06, about 20% lower than the irradiated samples. With the unirradiated

sample, it is important to note that the initial coefficient of friction was about

0.05, and in both tests within the first 3700 m slid or so increases to 0.07 and only

drops to the steady state value of 0.06 after about 8500 m slid . This indicates

that plowing of the surface by the hard asperities present on the counterface is

occurring.
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Finally, the third specimen was that of the homocomposite. At the outset

it should be noted that the samples of homocomposite in Figure 4-6, Figure 4-

5 and Figure 4-7 are different because each was made with a slightly different

processing method. The homocomposite in Figure 4-6 and Figure 4-5 was made

with an aluminum mold and had a volume fraction of 60% and was made by

hand layup. In Figure 4-7 the sample also had a volume fraction of 60%;

however, it was made using an automated method. Both samples had the

same molding conditions of approximately 1600 C cavity temperature and 1500

psi (10.34 MPa). The sample in Figure 4-6 displays transitions suggesting the

material may be changing as sliding progresses. From an initial value of about

0.05, it decreases to 0.045 before finally reaching the steady state value of 0.04

after 11400 m slid.

Since this sample, as all previous samples, was made by hand layup, the

decreasing trend may be explained by the hypothesis that the fiber and matrix

phases of the composite may be wearing at different rates. This is also an

additional explanation for the "noisier" signal observed. Figure 4-7 on the other

hand shows the friction coefficient of the sample made with the more automated

method. Here the friction begins at a lower initial value and climbs to 0.05

by the conclusion of the test. This sample showed much steadier frictional

force throughout the sliding distance. Furthermore, the occasional sharp peak

observed in the homocomposite sample of Figure 4-6 was not present in the

plot in Figure 4-7. This offers further support that the sample uniformity is

reflected in a more well behaved friction plot. The homocomposite sample in

Figure 4-7 was examined under ESEM in Section 4.4.



4.3.2 Wear

Measurement of Wear

In tribology, wear may be measured in different ways. Some of the methods

which are commonly used are based on measurement of quantities such as mass,

volume, and height (depth of wear track). In this work two methods were

employed to check the validity of one method versus the other. The first method

used is based on measuring the weight of a sample before and after testing.

There are some advantages and disadvantages to this approach. The weight

loss method is relatively straight forward to perform as only an accurate reliable

balance is required. However, in the case of polymers, this method is greatly

affected by moisture absorption. For this reason, great care must be taken to

ensure that moisture absorbed is corrected for through the use of soak samples.

The second method employed in this work was that of a volumetric mea-

surement of wear. To perform these measurements, a profilometer was used to

measure the cross-section of the wear track. Figure 4-8 depicts how this was

done. Using the profilometer described in Section 4.7.2 the wear track of a

tested sample is scanned such that the scan is performed across the width of

the wear track. Then, the area of the material worn away is calculated using

a built-in software function that determines the area above the surface profile

and below the zero line. By performing these scans every 0.112", a profile of

the depth of the wear track as function of the length of the wear track can be

obtained. With this information, the volume of wear can be calculated based

on the following equation:4

10

AV= Lweartrack A (4.1)
10 i=1

Once the volume of wear is known, the mass of wear can be calculated

4 The summation equation is not as accurate as a fitting a curve to the data points; however, for
the purpose of this calculation, the values are within the standard deviations.



Figure 4-8: Use of profilometry to determine volume of wear

by multiplying AV by the nominal density of UHMWPE of 0.932 g/cm3 . The

advantage that this method offers over weight measurement is that it is not

affected by moisture absorption of the samples. However, a disadvantage of

this method is that it is sensitive to creep in the material. Since polyethylene

is a viscoelastic material this effect must be compensated for. This is done

with the use of a control which is placed under a normal load for the same

length of time as the test. Another approach to compensating for the effects of

creep is to run a test of much shorter duration (eg., 50,000 cycles) and measure

the deformed wear track. Since this wear is negligible compared to wear at

1,000,000 cycles, the deformation can then be attributed to creep. Subtracting

the quantity of wear measured at 50,000 cycles from the wear at 1,000,000 cycles

gives a value of wear which compensates for creep.

Wear Results

Figures 4-9 and Figures 4-10 show measurement of wear using the two methods

described in the preceding section. As with friction testing, wear was measured

at 7373.7 m, 14747.4 m, and 29494.9 m sliding cycles for bovine lubricated tests.

Similar trends in the measurement of the friction coefficient, are also exhibited in

the measurement of wear. First, samples of irradiated (2.5 MRad) UHMWPE



show the greatest amount of wear. In Figure 4-9 irradiated UHMWPE was

approximately 33% greater than the unirradiated sample of UHMWPE, and

52% greater than the wear of the homocomposite for a sliding distance of 29494.9

m. For shorter tests of 7373.7 m slid, these differences in wear among the

three types of samples are not manifested until approximately 11400 m slid.

This in part can be attributed to the effect of moisture absorption on weight

measurements.

Although a soak sample was used at all levels of testing, at a low num-

ber of test cycles, the weight of moisture absorption is of the same order as

the amount of wear. As wear increases, the relative contribution of moisture

absorption decreases and the actual mass of wear begins to strongly dominate

weight measurements such that the effect of moisture absorption is reduced.

This is the reason why the data points and their associated standard deviations

are closely grouped at a distance slid of 7373.7 m in Figure 4-9. In all cases

in Figures 4-9 and Figure 4-10, a minimum sample size of three was used to

calculate the standard deviation.

As wear increases, the standard deviation slightly increases, however the

spread between data points becomes more pronounced. In these wear measure-

ments based on weight loss, the standard deviation is in general larger than

the standard deviations where profilometry is used to measure wear (Figure 4-

10). The reason for this is twofold. First, the affects of moisture gain though

they can be corrected for, are still a source of variability. Secondly, there exists

variation among the four wear test stations themselves. This is a result of the

construction of the wear tester itself.

Though new sample holders were successfully introduced to minimize vari-

ation in counterface positioning and alignment, structural inaccuracies in the

machine design of the tester cannot be completely eradicated. As an example of

this variability, the alignment of counterface holder with respect to the sliding

direction was checked with an indicator to an accuracy of +/-0.005". However,



Figure 4-9: Wear results based on mass of wear for 7373.7 m, 14747.4 m, 29494.9 m
slid

this tolerance is magnified and readily detected when the wear track is scanned

with a profilometer. This is discussed in greater detail in Section 4.7.3.

In addition to the observation that the standard deviation is lower in

profilometry-based wear measurements, Figure 4-10 shows two other main points

of comparison. First, the relative wear of the three materials remained un-

changed with irradiated UHMWPE exhibiting the highest wear followed by

unirradiated UHMWPE and finally the homocomposite material. Secondly,

wear overall was higher compared to the wear measured by weight loss. The

reason for this is the difficulty in accurately measuring the effect of creep with

the profilometer. The same approximation that was used to calculate the vol-

ume of wear based on ten scans of the wear track is more prone to variance

as a function of the locations of scans within the area where the creep test is
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Figure 4-10: Wear results based on use of a profilometer to measure wear for 7373.7
m, 14747.4 m, 29494.9 m slid

performed.

4.3.3 Fiber-Matrix Debonding in Homocomposites

The two previous sections presented the friction and wear data for homocom-

posites which had not exhibited any anomaly during testing. This section treats

the phenomena known as fiber-matrix debonding which can occur in homocom-

posites if either the pressure or temperature conditions vary significantly from

the target values which are used to prevent this problem. The temperature and

pressure molding conditions have a great impact on consolidation of the fiber-

matrix phases of the homocomposite. If the pressure is low, i.e. less than 1000

psi (6.9 MPa) then voids will be present in the final sample and will be sites
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for crack initiation at the fiber-matrix interface. Similarly, if the temperature

is not sufficiently high enough, then the matrix will not fully melt and form

a good bond with the fiber phase of the homocomposite (155 0 C to 1600 C has

shown good bonding).

The results when these conditions are not satisfied are shown in Figure 4-11.

These are the coefficients of friction for homocomposites tested in bovine serum.

For the reasons indicated on the plot, the homocomposites showed sharp tran-

sitions to higher friction coefficients at varying distances slid. The magnitude

of these transitions depended on how much deviation from the optimal condi-

tion occurred. The sample which exhibited the greatest deviation was the one

molded at a pressure of 500 psi (3.45 MPa) and at Tmold = 150 0C. Furthermore,

this sample exhibited debonding readily visible on the surface of the wear track.

The three samples made at Pmold = 1500 psi (10.34 MPa) and at Tmold = 140'C,

150'C, and 155°C by comparison did not show as high a friction coefficient.

To see the actual debonding sites, an ESEM (discussed in greater detail in

following sections) micrograph was taken of the worn surface after 29494 m of

sliding. These two micrographs of the same image at different magnifications are

shown in Figure 4-12 and Figure 4-13. The voids where debonding has occurred

are clearly visible in the bright charged areas which is where the matrix no longer

is bonded to the fibers. This particular example illustrates the sensitivity of

the homocomposite molding process to temperature and pressure as describe in

Chapter 3. Clearly, if tight control over these two parameters is not maintained,

the result is an inferior sample which does not yield the performance that it is

otherwise capable of yielding.
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Figure 4-12: ESEM of debonded worn surface

Figure 4-13: ESEM of debonded worn surface of homocomposite, 29494 m slid, 200X
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4.4 Examination of Structure of Homocom-

posite: Freeze Fracture Study

A knowledge of the structure of the homocomposite is vital to understanding

its friction and wear behavior. In addition, such knowledge can provide insight

into the effect of processing parameters on the fiber and matrix regions of the

homocomposite. As was stated in Section 2.3, the homocomposite is highly

sensitive to the molding temperature. Specifically, there exists the danger of

seriously degrading the resin and more importantly, losing the highly oriented

state of the UHMWPE Spectra fibers.

To visually verify the state of the fiber fraction in a particular homocom-

posite sample, a freeze fracture study was carried out on a sample molded at a

temperature of 1590 C and which had received a dosage of 0.15 MRad gamma

irradiation in vacuum. Since homocomposites are anisotropic it was necessary

to select specific viewing orientations of the fractured surface. The two types of

fracture samples are illustrated in Figure 4-14. They consist of a sample with

the fracture through the fiber axis and of a sample with fracture parallel to the

fabric/fiber layers. Small samples having the desired orientation were cut from

a larger molded block and then were notched with a band saw. The crack tip

was sharpened with a razor blade. Each sample was then dropped into a dewar

containing liquid nitrogen and allowed to cool down (until boiling of the N2 (1)

had stopped). Using a pair of forceps, the samples were taken out of the dewar

and quickly placed into a vise. With a hammer and a chisel, a sharp blow was

applied and the specimen fractured.

Figure 4-15 shows the fractured surface parallel to the layers of fabric. At

a magnification of 125x, the existence of fibers is unmistakable. Furthermore,

Figure 4-16 at an even higher magnification of 1600x shows the surface of in-

dividual filaments. Both of these figures exhibit blurred boundaries/edges at

the resin-fiber/filament interfaces where resin has infiltrated during the molding
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Figure 4-14: Fracture of homocomposite sample

process and where potentially partial melting of the fibers has occurred.

In contrast to these two figures is Figure 4-17 showing the same sample

with fracture perpendicular to the fiber/fabrics. The fabric layers, along with

the corresponding filaments are less clearly visible than the preceding photomi-

crographs. At the 125x magnification, the orderly pattern of the plain weave is

not visible. Various broken fibers can be seen, and in general the fracture has

not left a well cleaved surface for viewing.

From a basic qualitative measure, the fracture of the parallel orientation

occurred much more easily than did the normal orientation. This indicates the

both higher strength and higher toughness of the homocomposite in the normal

orientation. Recall, Figures 3-9 and 3-10 shown earlier of a sample of Spectra

1000 fabric which had not been molded nor irradiated offer a sharp contrast

to Figures 4-15 and 4-16 which are of a sample that has been both molded

and irradiated. This comparison highlights the changes which the fabric/fibers

undergo during molding, namely that under high pressure and high temperature

the filaments and resin diffuse into one another.

A



Figure 4-15: Specimen fractured parallel to layers of fabric, Tmod = 159 0 C, 125X.

4.5 Examination of Worn Surfaces

4.5.1 ESEM Examination of Polyethylene Wear Tracks

An ESEM study of worn surfaces of UHMWPE was undertaken to examine

the polyethylene wear surface as a function of sliding distance. Also the wear

surfaces were examined for indications of the wear mechanism present. All tests

were performed with bovine serum as the lubricant and with a cobalt chrome

counterface. Three types of samples were studied: unirradiated UHMWPE,

air-irradiated UHMWPE, and homocomposites. Surfaces were examined after

wear testing using an environmental scanning electron microscope (ESEM) and

were respectively compared to an untested control (flycut machined surface).

Figure 4-18 is of a flycut surfaces of unirradiated UHMWPE prior to test-

5Flycutting was done at a spindle speed of 1600 rpm with a feedrate of approximately 0.75 in/min.

i~l(lj



Figure 4-16: Specimen fractured parallel to layers of fabric, Tmold = 159 0C, 1600X.

Figure 4-17: Specimen fractured normal to layers of fabric, Tmold = 1590 C, 125X.
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ing. No difference was observed between the flycut surfaces of irradiated and

unirradiated UHMWPE. Figure 4-19 and Figure 4-20 are of unirradiated sam-

ples of UHMWPE corresponding to sliding distances of 14747.4 m, and 29494.9

m respectively. Clearly much more damage has occurred to the surface in the

latter of the two cases. In Figure 4-19 some of the machining marks are still

visible. The important feature of these two figures is the distinct pattern of

cracks which are visible. These dark areas appear to be tears at the surface

which have occurred as a result of the high traction force exerted on the surface

of the polyethylene by the CoCr slider. Furthermore, these cracks appear to be

about 20 pm in length by about 3-6 pm in width.

Figure 4-22 shows that the 2.5 MRad irradiated specimen also exhibits

these surface features at a sliding distance of 29494.9 m. However, if we directly

compare Figure 4-20 of the unirradiated sample to Figure 4-22 of the irradiated

sample we can see that the quantity of these cracks is higher (greater density)

and in addition the cracks have lengths in excess of 40 p/m and in many cases

have joined to form cracks with lengths up to 100 pm. This evidence of greater

surface damage may point to some of the effects of irradiation treatment, namely

increased brittleness which would make the material more susceptible to crack

formation and propagation as a result of a decrease in ductility.

Another focus of the ESEM examination of the wear tracks concerns the

high tensile stresses developed at the surface which cause cracks to form behind

the slider as it moves over the surface. Section 5.4 on the contact mechanics of

the sliding cylinder discussed the high stresses present at the edges of the slider.

It would be expected that in these areas where the stress exceeds the yield stress

of UHMWPE that increased surface damage would be visible, and examining

Figure 4-24 this is indeed what is observed. This ESEM micrograph is of the

same sample in Figure 4-19 however the difference being that it is taken at the

edge. There is a large amount of damage in this localized region spanning about

200 pm in width. It should be pointed out that this micrograph was taken at



Figure 4-18: Flycut surface of UHMWPE

a magnification of 150x whereas all of the previous micrographs were at 500x.

Furthermore, this extensive localized damage has occurred within just the first

14200 m slid alone.

4.5.2 ESEM Examination of Worn Counterfaces

In addition to the examination of worn polyethylene surface, the corresponding

metallic counterfaces were also examined for signs of change. Throughout test-

ing, metallic counterfaces of SS304 and CoCr were used. All counterfaces were

polished to a finish of Ra e 0.1 tm as measured by the technique discussed in

Section 4.7.1. It should be noted that a comparison between the wear of SS304

sliders and CoCr is not intended here. Such a comparison requires systematic

examination of surfaces after all tests. Instead the purpose of these observations

was to simply learn and observe the changes if any that occur on the surface of

the metallic counterface.

_ __ _____



Figure 4-19: Unirradiated UHMWPE at 14747.4 m slid

Figure 4-20: Unirradiated UHMWPE at 29494.9 m slid

~



Figure 4-21: Irradiated UHMWPE at 14747.4 m slid

Figure 4-22: Irradiated UHMWPE at 29494.9 m slid
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Figure 4-23: Homocomposite at 29494.9 m slid

Figure 4-24: Edge of a wear track of worn UHMWPE

--------------- ~-^



Figure 4-25 shows the polished surface of a CoCr sample prior to wear

testing. The fine lines (< 1 /um) visible at regular intervals are the result

of the polishing process. The counterfaces of two different sliders of SS304

and CoCr were examined after 29494.9 m slid and are shown in Figure 4-26

and Figure 4-27. Figure 4-26 is of a CoCr slider which had been worn for

29494.9 m slid against a sample of 2.5 MRad irradiated UHMWPE that had

been used with bovine serum as the lubricant. The micrograph has been taken

at a magnification of 83x to show the full area that has been worn. Since, the

full length of the worn area cannot be shown a split image was taken. The area

of wear shown is approximately 2000 pm in length by 600 p/m in width. This

micrograph shows polyethylene which has been transferred to the counterface

as evidenced by the aligned charged areas in the direction of sliding. From this

image the contact area can be determined to be approximately 2000 pm x 1.6

cm (thickness of the cylindrical slider).

Figure 4-27 of a SS304 slider is also for 29494.9 m slid. At a higher mag-

nification of 900x, the area in the center is of a very thin layer of polyethylene

since areas showing the polishing process are still visible running through the

polyethylene areas. This particular SS304 slider was also tested for 29494.9 m

cycles against unirradiated UHMWPE under bovine lubricated conditions.

In summary, there was no significant difference in the wear behavior of

the metallic counterfaces with respect to the irradiation or unirradiated cases,

suggesting that structural changes in the UHMWPE cannot be detected by

observing the worn surface of the metallic counterface alone.

4.6 Differential Scanning Calorimetry

Section 3.5.3 dealt with the effects of irradiation on UHMWPE. One of the

ways to characterize these effects is to perform Differential Scanning Calorime-

try (DSC) on a specimen which has been exposed to irradiation. DSC is an



Figure 4-25: Polished surface of a CoCr slider
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Figure 4-26: Worn surface of a CoCr slider after 29494.9 m slid
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Figure 4-27: Worn surface of a SS304 slider after 29494.9 m slid

effective tool for measuring changes which occur in the melting point of materi-

als which have been irradiated. In this work, DSC was used to provide insight

into melt processing of the homocomposite. Knowledge of the melting point

of the reinforcing fibers in the homocomposite permits tighter control on the

temperature molding conditions.

Background on DSC

When a material goes through a phase change, there is either a release or ab-

sorption of energy. A differential scanning calorimeter is able to measure the

enthalpy of such a transition by measuring the differential heat flow required to

maintain a sample of the material and an inert reference at the same tempera-

ture as the two are heated. By scanning over a specific temperature range and

thus producing a thermogram, the DSC produces a curve of the heat input as

a function of temperature. On this curve there is a peak, or maximum at the



point at which a phase change occurs. This peak is the melting point of the

material6 .

4.6.1 DSC of Irradiated Spectra Fabric

As was stated above, knowledge of the melting point of the reinforcing fibers

used in the manufacture of homocomposites is necessary in order to select a

molding temperature to ensure the matrix resin UHMWPE GUR 4150 melts

and the fibers do not. To determine these melting points, Spectra fabrics used

in the manufacture of the homocomposites were irradiated in air and in vacuum

at different levels and their melting points subsequently measured. In addition,

samples of UHMWPE were also measured.

Figure 4-28 shows a compilation of the melting point data obtained from

these measurements. Three actual DSC plots were selected and plotted as

obtained directly from the instrument 7, these curves are shown in Figure 4-29.

The first feature noticed in both of these figures is the existence of two melting

peaks of the fabrics for all of the irradiated levels. Similar phenomena has been

observed by other researchers. Song and Ehrenstein [61] attribute the second

higher melting peak as an increase in the number of thermally stable crystalline

structures. According to Song and Ehrenstein [61], the formation of thermally

stable crystalline structures in the fibers is not uniformly distributed over the

cross section of the fibers. In other words, there is a variation in the crystallinity

of the fibers as a function of the radius as a result of processing of the fibers.

In Figure 4-29 as the irradiation level increases, the two peaks become

less distinct. This indicates the effect which irradiation may be having on the

crystallinity of the fibers. Furthermore, Figure 4-28 shows a slight decrease in

the melting point of both peaks as a function of increasing irradiation level.

6 DSC analysis performed in this work was calibrated with a sample of Indium prior to all
measurements

7 Perkin-Elmer DSC-2



Effect of Irradiation on Melting Point of Spectra Fabric

Figure 4-28: DSC analysis of melting points of irradiated fabrics

The more important observation here is that the melting point of the fabric

is above that of the UHMWPE which has a melting point of approximately

1370C. This indicates that there is about an 8 to 10 degree process window for

the homocomposite where the fiber phase will not melt and the matrix phase

will.

4.6.2 DSC of Air and Vacuum Irradiated Spectra Fab-

ric

A study was undertaken to determine the potential benefits of vacuum irradia-

tion in order to improve the process window for molding of the homocomposite.

Samples of fabric received dosages of 2.5 and 5.0 MRads in an air environment

as well as in high vacuum. The melting point data is summarized in Figure 4-30

with the corresponding DSC curves plotted for the 2.5 MRad level in Figure 4-

31. The melting point data in Figure 4-30 shows that as the irradiation level is

increased for vacuum-specimens the melting points hold constant whereas the
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DSC of Air-Irradiated Spectra Fabric
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Figure 4-29: DSC analysis of melting points from selected irradiated fabrics
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Figure 4-30: DSC melting points of fabric irradiated in air and vacuum

melting points of the air-specimens decrease. Furthermore, in Figure 4-31 at

an irradiation level of 2.5 MRad, the vacuum-specimens retained the distinct

double peak whereas melting peak(s) for the air-specimens became less distinct

compared to the unirradiated specimens. No measurements were performed at

intermediate irradiation levels other than 2.5 and 5 MRad, so it is difficult to

identify a trend. However, it appears that vacuum-irradiated specimens do not

undergo the same changes which specimens that are irradiated in air undergo.
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DSC of Air & Vacuum Irradiated Spectra Fabric

Figure 4-31: DSC melting curves of fabric irradiated in air and vacuum

4.7 Profilometry of Wear Tested Surfaces

4.7.1 Introduction

In general sliding situations, surfaces change as the distance slid increases. In

some cases, the changes that occur in surface topography is a good indication

of the wear process occurring between the sliding pairs. For example, in Sec-

tion 2.3 concerning delamination wear theory, the earliest event which occurs is

the deformation and fracture of asperities of the softer surface leaving behind

a relatively smooth surface. Such changes in surface topography can be ana-

lyzed qualitatively using visual techniques such as optical and scanning electron

microscopy. However, to quantitatively assess the wear occurring in a sliding

system by examination of surface topography, a device such as a profilome-

ter must be used. A profilometer is an electromechanical system capable of

measuring surface features characteristic of engineering surfaces.

To understand the wear process occurring between UHMWPE/homocomposites
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and CoCr (and SS304) the polyethylene surfaces and counterfaces were charac-

terized using profilometry as a function of distance slid. In addition, profilom-

etry was used to measure the volume of wear at specific intervals of 7373.7 m,

14747.4 m, and 29494.9 m slid by the method described in Section 4.3.2.

4.7.2 Contact Profilometry

All profilometry was performed using a Dektak 8000 profilometer. The Dektak

8000 measures surface features by moving the sample material underneath a

diamond-tipped stylus having a radius of 2.5 pm. This is a contact method of

profilometry since the stylus which makes physical contact with the surface is

mechanically coupled to the core of an LVDT. As the stylus moves over sur-

face features, the LVDT produces analog signals which are conditioned and

converted to digital signals by electronic circuitry and processed by the host

computer. As described previously in Section 4.3.2, the Dektak 8000 can be

programed to automatically scan specified areas of a surface and calculate de-

sired quantities. Other features of the Dektak 8000 that were made use of are

the large vertical range of 2620 kA and the programmable stylus tracking force

(1-100mg).

4.7.3 Profilometry of Worn UHMWPE and Homocom-

posite Surfaces

The profilometry scans of UHMWPE and homocomposite wear surfaces are

shown in Figure 4-32, Figures A to D. To establish a reference, an untested,

flycut sample of UHMWPE shown in Figure A was scanned yielding an Ra

= 0.356 pm. The scan of this untested sample serves as a control to ensure

that Figures B to D are indeed of wear tracks. Some relative comparisons may

be immediately made. First, the irradiated sample of UHMWPE showed the

highest roughness of the three with Ra = 0.908 pm, compared to Ra = 0.716 im



for the homocomposite and Ra = 0.605 Mm for the unirradiated UHMWPE. The

fact that the irradiated UHMWPE had the highest roughness may be explained

by the removal of asperities which occurs in a brittle fashion leading to a rougher

surface instead of a smoother one. This difference is best seen by comparing

Figure B and Figure C. The homocomposite in Figure D gave an intermediate

value of Ra = 0.716 pm and its roughness can be attributed to the different

surface properties of the fiber and matrix phases.

A final point which merits discussion is the raised edge followed by a 'deep

valley' in the wear track present in all three figures B,C, and D. Two possible

reasons explain these features. First, the surface profile is greatly enhanced in

the z- direction with respect to the horizontal scan length, so these apparently

sharp peaks in reality are not so sharp. In Section 4.3.2 it was briefly men-

tioned that the alignment of the axis of the counterface with respect to the

sliding direction has a tolerance of approximately +/- 0.005" or +/- 125 /m.

Examining all three figures, this value of +/- 125 ,m is a good approximation to

the 'width' of the valley at different depths. Furthermore, the valley at the edge

of the wear track coincides with the location of the high stress concentration

that was discussed in the analysis of subsurface stresses in Section 5.1.

4.7.4 Profilometry of Worn CoCr Surfaces

For every UHMWPE and homocomposite surface which was scanned, the corre-

sponding CoCr counterface was also scanned. The scanning of the polyethylene

surfaces is relatively straight forward and only involves scans across the wear

track. However, the scanning of the counterfaces is not trivial and deserves

discussion. Scanning of the surface of CoCr cylindrical counterfaces was done

parallel to the longitudinal axis of the cylinder. The problem which exists in

scanning this surface is the difficulty in being able to scan along the centerline

of this axis. Being too far away from this line leads to inaccurate scans. To

ensure that scans were being taken as close as possible to this optimum scan
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path, trial scans were taken in the perpendicular direction to find the "high

point" of the cylinder. This led to good repeatability in scanning as exhibited

in the standard deviations in Figure 4-33.

Figure 4-33 summarizes the profilometry performed on CoCr counterfaces

of which some of these scans are shown in Figure 4-34, Figures A to C. Fig-

ure 4-33 shows that over the first 30,000 m slid, the roughness of the counterface

increases linearly. Then over the next 60,000 m slid, the roughness reaches a

constant value. The first question which must be answered when interpreting

this data is: How and Why does the roughness of the hard counterface increase?

The answer to this question may be found by considering the mechanical effects

of the plowing of the soft polyethylene by the hard asperities of the counterface.

In other words, the roughness of the counterfaces seemingly increases not be-

cause the metal is worn away but rather because polyethylene wear particles are

entrapped in the asperities of the counterface. Hence, the roughness appears

to increase because the 2 pm stylus scans over polyethylene which has agglom-

erated in the asperities of the counterface. This is supported by the ESEM

evidence of polyethylene seen in the micrograph of the tested CoCr surface in

Figure 4-26.
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Figure 4-33: Surface roughness of cobalt chrome counterfaces
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Chapter 5

Mechanical Behavior of the

Sliding Interface

Chapter 2 discussed the importance of the plastic deformation of the surface and

subsurface which precedes the wear failure of UHMWPE. This chapter reviews

the contact stresses which arise in the wear tests conducted in this work and

how they can lead to plastic deformation of the surface and subsurface.

5.1 Nonconformal contacting surfaces

Hertzian contact theory is limited to frictionless surfaces and perfectly elastic

solids, and as a result certain assumptions have to be made about the bodies in

contact. First, the contact area is small relative to the bodies themselves. For

this reason the stresses are localized and can be considered stress concentrations.

If the two bodies are conformal, the contacting surfaces are comparable to the

bodies themselves; hence, the contact stresses become part of the overall stress

distribution throughout the bodies. Johnson [34] defines conformal contact as

two bodies whose surfaces 'fit' exactly or closely together without deformation

and nonconformal contact as bodies having dissimilar profiles. Such nonconfor-



mal surfaces when initially brought into contact make contact either at a point

or along a line. A sphere-on-flat or sphere-on-sphere make point contacts. A

cylinder-on-flat as is the case with the geometry of the wear tester used in this

work makes line contact. This line contact results because the cylinders have

profiles which conform in one direction and do not conform in the perpendicular

direction.

5.2 Stress distribution - uniform pressure

This section concerns the development of the relationships for the stress distri-

bution which arise from the application of a uniform pressure. The cylindrical

slider may be thought of as applying such a constant distributed load when

viewed normal to the sliding direction. This orientation is best illustrated in

the end view shown in Figure 5-4. The following derivation uses the concept of

the elastic half-space to obtain this stress field.

To apply elasticity (linear small strain theory) it must be assumed that

the two bodies contact each other over an area whose dimensions are small

compared with the radii of curvature of the undeformed surfaces [34]. If it is

assumed also that the size of the bodies is large in comparison to the size of the

contact area, then the stresses in the contact region are not strongly influenced

by the shape of the bodies far from the contact region. Johnson [34] defines

an elastic half-space by considering each body as a semi-infinite elastic solid

bounded by a plane surface. This simplifies boundary conditions greatly (see

Figure 5-1). This model is used commonly in elastic contact stress theory to

find the stress field a., az, and -rz and the displacements us, uz in the body

from its initial undeformed state. To solve for these quantities the following

series of equations must be used.
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A(x,z)

Figure 5-1: Elastic half space used in analysis [34]

Two-dimensional equilibrium must be satisfied:

+ &9,Z
ax Oz

O' + X
Oz Ox

=0
=0

Compatibility requirements must also be fulfilled:

a2E. a2 z a2'z
+ ax = - 9xz0z 2  0X2  Ox0z

The corresponding strain-displacement relations are:

Ex _.ax - --L Yxz =au + a (Ox ' Oz )Ox Oz

In assuming plane strain conditions, it is assumed that the thickness of the body

is large compared with the width of the load region:
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y= 0

=r v(Orx + ary)
(5.4)

Thus Hooke's Law becomes:

Cz = [(1 - v2)U v(1 + ,V)Uo]

ez = -[(1 - v2) -z x(1 ± v)a]

= [2(1+v)
,YXZ - E r x z

(5.5)

A stress function q(x, z) can be defined such that:

(5.6)= O= 2  ,!-"20 T - O_ 2
09 2 z ) 9X

2' TXZ - xaz

Equations 5.1,5.2, and 5.5 will be satisfied if q(x, z) satisfies the biharmonic

equation:

( + ) i( 2 + -

2 = 0 (5.7)

with B.C.'s:

x(x, z = 0)
Txz (x, z =0)

x (x, z = 0)

Txz( X, z = 0)

ax (x, z)
os(x, z)

Tz (x, z)

= 0 for x<-borx>+a

= 0

= -p(x) for -b< x < a

= -q(x)

= 0 for x -+± and z -+ +oo

= 0

= 0

To find the solution two of the following four quantities must be known: p(x), q(x), ux (x, z =
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0), or uz(x, z = 0). By specifying p(x) to be constant and q(x) = 0, the stress

distribution due to a uniform normal pressure[34] is obtained:

a (x, z) = - [2(0 1 -02)- (sin 201 - sin 202)]

oz (x,z) = - [2(01 - 02) + (sin201 - sin202 )] (5.11)

Tz(x, z) = - (cos 201 - cos 202)

where
z

tan 01,2 = (5.12)x T-:a

and

a = 01 -02 (5.13)

so that the principal stresses can be calculated according to:

0l,2 =- O F sin a)
(5.14)

T, = E sina
7r

Note that a maximum shearing stress of r1 Imax= P occurs at a = .

5.3 Stress distribution - cylinder-on-flat con-

tact

This section treats the two types of two-dimensional stress distributions for a

cylinder-on-flat contact. The first section considers only the effect of the normal

load, while the following section the considers both the effects of a normal as

well as a frictional force. Furthermore, both sections contain plots of data for

the loading conditions found in the wear tests described in Chapter 4.
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5.3.1 Hertzian Contact Stresses

Stachowiak and Batchelor [62] consider the cylinder-on-flat geometry and derive

the following equations to determine the maximum Hertzian pressure as well as

the formula for the maximum shear stress.

The contact area of the cylinder-on-flat is rectangular in shape and has

dimensions 21 by 2b. The thickness of the cylinder is the dimension 21, and the

contact width 2b is given by:

/4PR'
b = (5.15)

R' and E' are the reduced radius and reduced stiffness respectively and may be

calculated using the following relations:

1 1 1S=+ 
(5.16)

R'i Rcylinder Rflat

where Rftat -+ 00

1 1 1 2_1__S~ tid 1 v at] (5.17)
E' 2[ Ecylinder Eitat

The maximum Hertzian pressure which is based on an elliptical pressure distri-

bution is:

P
Pmax = (5.18)7rbl

and the average pressure is simply the applied load acting on the apparent

contact area b x 1:

P

Paverage = 4bl (5.19)

The maximum shear stress 7max:
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Tax = 0.30 4 Pmax

occurs at depth given by:

z = 0.786b (5.21)

Equations 5.18, 5.19, and 5.20 were used to generate the curves in Figure 5-

2. All three curves were obtained for the case of a CoCr cylinder applying a

load to a flat surface of UHMWPE. This is the geometry used in the friction

and wear tests discussed in Chapter 4. Values of Pmax, Pav,9, and Tmax were

calculated for loads ranging from 100 N to 1000 N. Furthermore, a vertical line

is drawn at an applied load of approximately 760 N which is the load that was

used in all friction and wear experiments. At this load of 760 N the Pmax and

the Payg exceed the yield strength ay of UHMWPE (horizontal line in Figure 5-

2). Also at this load, the maximum shear stress calculated is greater than that

of 5.20 for UHMWPE (lower horizontal line in Figure 5-2).

5.3.2 Hertzian Contact Stresses with friction

This section considers the effect of friction on the stress field below the slider.

The following expressions for ax, az, and Txz can be found in Suh [74] and are

derived using the elastic half-space in Figure 5-1:

The surface tractions are assumed to be distributed elliptically in accordance

with Hertzian contact stress theory such that:

S0 for x I> a

-Po 1 - (x/a)2 for I x I_ a (5.22)

0 for IxI>a
qq(x)1-(x/a)2 for Ix<a(5.23)qo 1 - (x/a)2 fOr IZ I<
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Hertzian Contact Stress
as function of applied load
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Figure 5-2: Maximum and average Hertz contact pressures, and maximum shear
stress at a (depth of z = 0.786Pmax) as functions of applied load
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Integration of the general expressions for distributed loads yields:

m(x, z) = (7[(2X2 - 2a•• - 3z2)
+27r + 2(a2 - - z2) 2 -

7T" L a a

S()[(a) +20- 2z V•- - 3x]
oz (x, z) - z

Tz(x, z) = -I[(a2 + 22 +2Z2z)

-2x E - 3xzz ]- Z2

where

(5.24)

2 +( kl+k 2-4a2\
lc L k kj ) I

and

= (a + )2 + 2

= (a- x)2 + z 2

If P, and Q are the applied forces per unit length:

po = P qo = 29 (5.

such that the coefficient of friction is:

qo (5.
Po

the contact width a required in the above relations can be calculated from:
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_2PA~

a =- (5.27)

where:

{2 1 - E2  
(5.28)

Ri R2

let R1 -+ oo for a semi-infinite solid.

The formulas for a•, az, and -r in Equation 5.24 were used to generate nine

curves of the maximum shear stress distribution in Figure 5-3. The maximum

shear stress distribution was calculated for loads of 100 N, 760 N (load used

in all friction and wear experiments), and 1000 N. Essentially this plot depicts

how the maximum shear stress varies beneath a cylindrical slider as a function

of the contact width (given by the ordinate axis). Also, as with Figure 5-2, the

curves in Figure 5-3 were obtained for the friction and wear testing geometry

of a CoCr cylinder applying a load to a flat surface of UHMWPE.

The general trend which is evident in Figure 5-3 is that as the load is

increased, the contact width increases. Another trend evident in Figure 5-3 is

the effect of friction. As the friction coefficient is increased from 0.05 to 0.2, the

curves lose their symmetry about the centerline at x = 0. The friction force in

this case causes the curves to stretch towards the left.

At a load of 760 N, the maximum shear stress Tmax of UHMWPE of 10 MPa

(see horizontal line in Figure 5-3) is exceeded at a point 275 /m to the left and

right of the centerline of the cylindrical slider. The maximum shear stress is

not exceeded closer to the centerline because of the hydrostatic state of stress

which exists directly beneath the slider.
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Maximum Shear Stress Distribution
as function of friction and applied load
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x - coordinate under contact zone (m)

Figure 5-3: Maximum shear stress for varying friction coefficients and normal loads
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Figure 5-4: Edge effects occurring in the cylindrical slider

5.4 Edge effects in finite length cylinders

The linear theory of elasticity is only valid for small strains. Since the cylindrical

indenter with square edges has a discontinuous profile a high stress concentra-

tion occurs at the edge. Linear elasticity theory yields infinite stress at this

edge; since materials yield at a finite stress, elasticity theory only holds true for

small strains.

Based on linear elasticity theory, the pressure distribution under a square

indenter is:

P
p(x) = (5.29)7r Va-2 -- x 2

These edge effects cannot be ignored because it is at these points that localized

yielding occurs. This was observed in the ESEM micrographs and profilometry

scans which showed large amounts of plowing and deformation at the edge of

the wear tracks. This occurred despite the presence of a chamfer on the slider.

Figure 5-4 shows two views of the slider and the location where the stress is

concentrated at the edge of the slider.
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This is a complex problem and cannot be solved using the previous relations

for a 2D Hertzian contact cylinder-on-flat case. A three dimensional analysis of

the edge effects is required to obtain the correct stress field beneath the slider.

This problem has been examined by Ahamadi [1] and Lundberg [46]. Lundberg

derived an expression for the pressure distribution acting over the rectangular

area 1 x a on which the short cylinder sits, such that 1 > a.

Pp(x, y) = ( )J1 - (x/a)2 (5.30)
wal

where
4PR

a2 = 4PR (5.31)
irE*

At the very center he found that depth of the indentation is:

P
6(0, 0) = l* {1.886 + ln(1/a)} (5.32)

P6(0,0) = lE*
A(y) 2E* n{1 - (y/l) 2 } (5.33)

However, at the ends this equation is not accurate and another equation valid

at y = +1 should be used:

P
A(y = l±1) 2lE* {1.193 + ln(l/a)} (5.34)

27r1E*

These equations give the profile necessary to achieve a uniform pressure distri-

bution given by p(x,y) so that at the very least, the stress singularity would not

occur.
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5.5 Modelling of Mechanical Behavior of Com-

posites in Sliding Applications

5.5.1 Introduction

In many tribological applications of composites, the deformation of the surface

under the action of the force of friction determines how well a composite material

will perform with respect to wear and friction. The preceding section dealt

with stresses due to a cylinder on flat. This Hertzian contact stress analysis is

applicable to general isotropic materials; however, for viscoelastic and composite

materials, such an analysis is not accurate.

To understand how a composite material will behave under frictional load-

ing, it is important to know what the mechanical behavior of the composite

surface will be. In cases which the composite consists of aligned fibers, the ten-

sile and bending theories of fibers and laminates are suitable for yielding insight

into the stresses and deformations which they undergo during sliding. However,

the equations for bending and shearing of aligned fibers in a laminate are not

the same as those for woven structures due to the more complicated geometry

of fibers as found even in the common plain weave structure.

Although a great deal of experimental work has been done in the above

areas of aligned fibers, relatively little work has been done in the modelling

of textile composites in friction and wear applications. Researchers studying

textile composites have focused on the behavior of single fabric laminates in

attempting to characterize their mechanical properties [38, 72]. Tsukizoe, and

Ohmae [81] have studied the frictional behavior of carbon, glass, stainless steel,

and aramid fiber composites in many different sliding conditions. Friedrich

[30] has proposed various models for the wear of composite materials and has

specifically reviewed the use of the Rule of Mixtures approach in predicting the

frictional behavior of a composite material.
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The first section discusses a model for the friction coefficient A in aligned-fiber

composites proposed by Suh and Burgess [17]. The section which follows uses

a similar approach; however, composite lamination theory is used to estimate /

for a woven textile composite [4].

5.5.2 Single Fiber Deformation Model

The following model for the calculation of the friction coefficient of a single

carbon fiber was developed by Burgess [17]. By considering the work done on a

single fiber, (i.e., the strain developed in the fiber due to the force of friction),

the coefficient of friction may be determined. This is shown in equation 5.35.

Figure 5-5 shows an idealized fiber subject to a normal and friction force. This

model also considers the strain energy stored in the matrix of the composite

UM, and a the fraction of energy lost due to internal damping.

Wis, = FS and Wdis, = aUM (5.35)

Combining these two relations gives:

a•UMaUM (5.36)
NJ

Introducing the matrix volume VM between two adjoining fibres shown in Fig-

ure 5-6 and integrating equation 5.37 yields equation 5.38:

1

U M = •GM 7 2 dVM (5.37)
2 Jv3

UM - GMlrOd (5.38)

2cFrom the geometry in Figure 5-5, the following series of relations are obtained:

From the geometry in Figure 5-5, the following series of relations are obtained:
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6 = R(1- cos 9d)
l = R sin Od+RsindA (5.39)

1 = ROd

Od = sin GOd +

Substituting equations 5.39 into equations 5.38 yields the friction coefficient:

p = ( 2c0• (5.40)
NJ 2c

The importance of this result is that it shows that a relation for the coefficient of

friction may be derived beginning from the basic unit of a single fiber embedded

in a matrix of known volume. This formula is quite adequate for a composite

having aligned fibers. If the fibers are in a woven structure as is the case with

the fabric-based homocomposite, then this relation does not hold true because

of the effects of fibers in the perpendicular weave direction. However, using

a similar approach based on the bending of a single fiber, the next section

uses classical lamination theory to provide the necessary relations to calculate

a friction coefficient for a woven structure.

5.5.3 Development of Cross-ply Model

This section presents the use of a [0/90], layup as an approximation to a plain

woven structure, and with Classical Lamination Theory (CLT) [35], a relation

for the coefficient of friction is derived [4]. A numerical estimate of the coefficient

of friction is calculated using CLT and compared to an estimate obtained by

using the Rule of Mixtures [30].

The effect of friction on a single fiber in a ply oriented perpendicular to

the frictional force is shown in Figure 5-7. By modelling the deformation of a

fiber 6 as a cantilever, the frictional force F can be determined if M and 1fiber

are known. The length of the fiber can be experimentally determined; however,
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Figure 5-5: Model of deflected fiber used to determine p [17]

1

2c

Figure 5-6: Matrix volume between two fibers undergoes deformation [17]
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Figure 5-7: Model of single fiber bending as a cantilever

further analysis is necessary to find M. To find M, CLT is introduced. Since

CLT considers only laminates comprising aligned fibers in a matrix, it was

assumed that a [0/90]n layup could approximate a layup of plain woven fibers.

This simplifying assumption is shown in Figure 5-8.

Such a layup is known as an antisymmetric layup because there are an

even number of plies (n plies). Equations 5.41 and 5.42 are the resultant force

and moment relations for this layup. The presence of Bij terms in both of

these equations means that there is coupling between the extensional stiffnesses

Aij and bending stiffnesses Dij. To apply these equations a physical model is

required. Such a model is shown in Figure 5-9 with a cylindrical indenter shown

moving over a surface of normally oriented woven laminae. This is essentially

the physical representation of a typical friction test discussed in Chapter 4.

Nx All A12 0 0 B11 0 0 KO{} +Ny = A12 A22 0 0 + 0 -Bl 0 4
Nxy 0 0 A66 0y 0 0 0 K 0

(5.41)
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PLAIN WOVEN LAMINATES FIBER LAMINATE AT
0/90

Figure 5-8: Approximation of a plain woven laminate by a fiber laminate

MX Bil 0 0 0 Dil D12 0 K
My = 0 -Bu 0 E + D12 D22  0 0

M J Y 0 0 0 E 0 0 D66 K 0

(5.42)

In this physical situation, N, = Ny = 0 and similarly Mxy = My = 0. With

equations 5.41 and 5.42, the force resultant is the applied normal force Nx and

the only moment resultant is Mx which is unknown.

Equations 5.41 and 5.42 must be inverted in order to calculate the strains

which are necessary for this analysis. The set of equations resulting from this

inversion is given by equation 5.43. The first equation from 5.43 is the only one

of interest because it is the one that contains the unknown Mx.

EX Nx IMX
eY = [A'] NY + [B'] M } (5.43)
exly Ny Mey

Solving for Mx yields equation 5.44. In this equation Nx is the known applied
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Nx= applied normal load

xy y = 0

laminae

Mx= unknown

Mxy = My =0

Figure 5-9: Physical modelling of forces applied by a cylindrical slider moving on top
of vertically oriented laminae
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normal load, and ex can be calculated from equation 5.45, where A is obtained

by measuring the deformation in the x direction and Lfiber is the length of the

fiber which is deformed. The deformation in the x direction can be experimen-

tally determined using surface measurement techniques such as profilometry.

Hertzian contact stress theory (Section 5.3.1) can be used to calculate the depth

of deformation beneath a cylindrical contact load. For this analysis Lfiber was

calculated to be approximately 500 p m.

M - x - A'Ijx (5.44)

= (5.45)
Lfiber

The only two values which remain to be found are A'i and B11 , these are

numerically determined using the summation relations for N-layered laminates

[35]. With all of the above quantities known, it is then possible to calculate the

coefficient of friction as shown in equation 5.46.

B1

F F ,to, (P L.be. ) Lfiber (5.46)
N - N N

Finally a method to predict the coefficient of friction which has received

much attention in the literature [30, 81] uses the Rule of Mixtures approach

frequently used in micromechanical analysis of laminae [35]. Equation 5.47

assumes that the friction and normal forces are carried by the fiber and matrix

phases of the composite in proportion to the respective volume fraction of each

phase. This assumption yields equation 5.48. To apply equation 5.48, the

volume fraction must be known, and in addition, values of the friction coefficient

of the fibers and matrix must be known independently.

- FF Fm (5.47)S N -• N1+Nm(
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1 = V +VmI (5.48)

Results

Friction coefficients were compared based on calculations using the Cross-ply

Model, the Rule of Mixtures Model, and experimental data. This comparison

is shown in Figure 5-10. The data obtained from the numerical simulation of

the Cross-ply model was based on a plain woven textile composite (having the

layup used in the homocomposite). The specific textile properties were those

of UHMWPE Spectra 1000 with the properties listed in Table 3.4.3. This was

compared to experimental p values obtained from friction tests of a cylinder-on-

flat (see Section 4.3). The sliding tests had an applied load of 760 N, a sliding

distance of 14747.4 m, and bovine serum as the lubricant. The Rule of Mixtures

Model was applied for values of pf = 0.05 to pf = 0.15 and ,m = 0.15.

The experimental data points curve exhibits a stronger dependence on the

volume fraction than does the Rule of Mixtures three curves. The Cross-ply

data was generated using a ply thickness of 250 pm and a laminate consisting

of 20 plies. The single data point for the Cross-ply model friction coefficient

is 0.11 which is lower than the experimentally obtained p at a similar volume

fraction. The reason for this may be due to the fact that the Cross-ply model

doesn't account for distance slid nor the lubrication condition and as such may

underestimate the coefficient of friction.

5.5.4 Discussion

In determining the accuracy and limitations of this Cross-ply model, the theory

on which it is based should be considered. CLT assumes that a laminate consists

of perfectly bonded laminae. Also, these bonds are assumed to be infinitesimally

thin as well as non-shear- deformable. In the case of the woven fabric, bonds
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Figure 5-10: Comparison of theoretical results for various materials using the cross
ply model to experimental data.
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cannot be assumed to be perfect between the fabric and the matrix due to

the voids caused by the woven structure. Also, the approximation of a woven

laminate by a [0/90], layup ignores the fiber interactions in the weave. The

crimping effect which is known to occur in textiles under loading, affects the

mechanical behavior of the weave and its ability to carry applied loads.

Another assumption made in the numerical simulation is the number of

layers in the laminate. At any given moment, the slider only causes deformation

in a localized area beneath it. This localized area is the contact area given

by Hertzian contact stress theory. The width of this region was used as the

thickness of the laminate in the calculations. In other words, as the distance

from the centerline of the cylindrical slider increases, the effect of the friction

force decreases asymptoically (as in the case of the stress field below a point

load). Therefore, the number of layers considered should only equal the number

which are present in the deformed zone beneath the slider. If N increases by

more than 25 % of this value, the results begin to deviate significantly.

In summary, the Rule of Mixtures model for the friction coefficient was

effective in giving a quick estimate of the p; however, this method may only be

used if the fiber and the matrix frictional properties are known independently.

This method has limited use because of the added need to determine these

properties experimentally.
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Chapter 6

Conclusions and Future

Recommendations

6.1 Summary

From the beginning, the goal of this research was to develop a material which

could improve on existing commercially available UHMWPE used in artificial

joints. Work began with ultra-tough high density polyethylene which exhibited

improvement over unmodified high density polyethylene; however, when com-

pared to UHMWPE still greater improvement was necessary. Nonetheless, the

idea of reinforcing polyethylene with fibers was still valid and maintaining this

concept led to experimentation with combinations of fiber/matrix UHMWPE

and subsequently to the development of homocomposites. Once the idea had

been transferred to UHMWPE, the benefits of the fiber reinforcement became

immediately clear. One significant advantage is a low friction coefficient of 0.04

in bovine serum lubricated conditions, about one half of that of UHMWPE

under the same conditions. Results were similar in tests with fiber-reinforced

homocomposites and fabric-reinforced homocomposites.
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6.2 Homocomposite Process Sensitivities

Despite progress with homocomposites, the manufacturing process of homo-

composites is still to a certain extent influenced by manual processing. For

example, the cutting of either fibers or fabrics is done manually; hence, there

exists variability in fiber lengths and alignment. In addition, the process of

fiber and matrix deposition has variability with respect to the uniformity of the

fiber/matrix phases. This variability has manifested itself as debonding of the

fiber matrix interface which has led to premature delamination and consequently

higher friction and wear rates. This occurrence was discussed in Section 4.3.3.

This variability can be minimized through careful control of the resin deposition

rate and of the temperature during the molding cycle.

The final temperature in molding has been shown to be an extremely critical

parameter in determining the overall strength of the fiber matrix bond. If

the temperature is less than 1500C, then poor bonding occurs and as a result

the homocomposite can fail earlier than expected. Above the 16000 threshold

bonding is improved; however, the risk of degradation of the material increases.

To minimize these effects of temperature fluctuations on quality, precise control

of the temperature over the duration of the molding cycle is required. When

this is achieved, the result is a reliable material which yields excellent friction

and wear properties.

6.3 Friction and Wear Results

The data generated by friction and wear testing is ultimately the best indicator

of the performance of the homocomposite and of UHMWPE. However, friction

and wear data must be well analyzed in order to obtain insight into the per-

formance of the material particularly with respect to the sliding history. The

sliding history of all three materials tested showed some common trends. The

most important of these is the need to test for a sufficient sliding distance in
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order to achieve steady state conditions. In the case of the unirradiated sam-

ples of UHMWPE, it was not until a sliding distance of about 5000 m that the

steady state friction coefficient was reached. Similar phenomena was observed

for the irradiated UHMWPE. In some cases, debonding of the homocompos-

ite occurred only after a specific number of cycles had elapsed. This varied

according to molding conditions used and was discussed in Section 4.3.3.

In terms of wear data, similar precautions must be taken when analyzing

data. With wear measurements performed using the weight loss method, the

effect of water absorption can lead to significant errors. Without the use of the

soak sample, some measurements actually give results indicating weight gain

instead of loss. In particular, if fibers become exposed during wear testing as

a result of debonding, then water absorption is significant. For this reason,

tests should be of sufficiently long duration to ensure that weight loss clearly

dominates over inaccuracy originating from water absorption. Sliding distances

greater than 20000 m tends to give data which is relatively insensitive to this

effect.

6.3.1 Recommendations for Friction and Wear Testing

Some important issues should be addressed in future friction and wear testing

of homocomposites and UHMWPE. The first involves improving the nature

of the debonding problem which can occur with homocomposites. In cases

where processing conditions are correct, the resulting homocomposite can yield

excellent friction and wear data. However, if fiber-matrix debonding occurs,

then it would be useful to know the specific moment at which this occurs and

correlate it with process parameters. This would be invaluable in improving the

quality and performance of homocomposites.

The crack nucleation and growth problem should be investigated more

closely. The ESEM results on worn UHMWPE surfaces showed evidence of

surface cracks and tearing as a result of the high tensile stress behind the slider.
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A study of the subsurface of both UHMWPE and homocomposites as a function

of sliding distance could detect the nucleation and growth of these cracks. Such

a study would require careful sectioning of the material beneath the wear track.

Furthermore, prolonged tests (beyond 30000 m sliding distance) would be ex-

pected to generate the most information since greater cyclic plastic deformation

would accumulate in the subsurface.

With regards to friction force measurement, the installation of two more

friction measurement loadcells would be beneficial to increasing the confidence

level of friction data. Currently only two loadcells of the four possible stations

are instrumented. It has been observed that there is variance among the results

between the four test stations. Care should be taken when making comparisons

between test stations and calculating the standard deviation of experiments.

6.4 Overall Recommendations

The key to improving the performance of homocomposites is to improve the reli-

ability of their manufacture. Automatic deposition of the fibers and matrix in a

controlled manner would reduce variance in the fiber volume fraction. Also, the

strength of the critical fiber-matrix bond which was emphasized in the previous

section must be improved to eliminate debonding. This can be accomplished

with better wetting of the fibers by the resin. Since polyethylene is non-polar,

the wetting difficulty of Spectra fibers appears during molding. Allied Signal

has found that plasma coating of fibers can increase their wettability. This is

certainly an avenue that should be pursued in future research.

Throughout this research, compression molding has been the method used

to manufacture homocomposites. However, the production of homocomposites

using other composite manufacturing processes should be investigated. For

example, pultrusion is a process which can give high production rates while

still yielding high quality material. Furthermore this process can be varied
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to give different volume fractions depending on the application in which the

homocomposite is being used.

In more general terms, the applications of the homocomposite to biomed-

ical applications has great societal benefits; however, its use should not be

restricted solely to these applications. The use of UHMWPE as a bearing ma-

terial is widespread in engineering applications, so other applications should be

investigated. Finally, the concept of the homocomposite -a composite which is

reinforced by fibers made of the same material as the matrix - has the potential

to make a large impact in applications where there are tight constraints on the

material combinations which can be used.
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Appendix A

Measurement of Surface

Topography

The American National Standards Institute clearly defines many surface fea-

tures in a Standard called Surface Texture (Surface Roughness, Waviness, and

Lay) [6]. This standard [6] sets out some basic definitions:

* Surface: The surface of an object is the boundary that separates that

object from another object, substance, or space.

* Surface Texture: is the repetitive or random deviation from the nominal

surface that forms the three-dimensional topography of the surface.

* Roughness: Roughness consists of the finer irregularities of the surface

texture, usually including those irregularities that result from the inherent

actions of the production process.

* Waviness: Waviness is the more widely spaced component of surface tex-

ture. Waviness includes all irregularities whose spacing is greater than the

roughness sampling length and less than the waviness sampling length.
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A.1 Surface Parameters

According to the Standard [6], the average surface roughness Ra is:

1 •= L

Ra - IL y I dx (A.1)
L I=o

where:

Ra = arithmetic average deviation from center line

L = sampling length

y = ordinate of the curve of the profile

This integration can be approximated in the following manner:

SY1 + Y2 + Y3 + + YN (A.2)
Ra "2N N

The Standard [6] also defines the root-mean-square surface roughness Rq as:

1---Rq = , J y2dx (A.3)

Rq = root-mean-square deviation from the centerline

Similar to the Ra, the above integration can be approximated with the following

relation:

Rq N+ + ±+ (A.4)

See Figure A-1 for a typical surface profile trace used to calculate the above

expressions.
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A.2 Effect of Cutoff Wavelength

With all surface profiling and measuring systems signal cutoff-filter frequencies

must be selected and used to obtain meaningful roughness measurements. The

ANSI standard [6] defines the cutoff as the electrical response characteristic of

the roughness measuring instrument which is selected to limit the spacing of

the surface irregularities to be included in the assessment of roughness average.

Related to this is the Roughness Sampling Length [6] which is the sampling

length within which the roughness average is determined and helps to distin-

guish roughness profile irregularities from waviness profile irregularities. The

ANSI standard recommends that the roughness sampling length or cutoff should

be about 5-40 times the maximum irregularity spacing. Depending on the spac-

ing of roughness irregularities, choosing a low cutoff can yield a low calculation

of the Ra value. For this reason care must be taken in specification of the cutoff

wavelength. The manufacturer of the Dektak 8000 recommends that a cutoff

wavelength be selected on the basis of the following range:

ScanLength
(8xScanResolution) < Cutoff Wavelength < ScanLength (A.5)

5

With the Dektak 8000, two types of filters may be enabled. A short (high)

pass filter filters out low frequency waviness signals, allowing high frequency

roughness data to be analyzed. The second filter, a long (low) pass filter filters

out high frequency roughness signals, thus permitting low frequency waviness

data to be processed. Since in this work waviness data was not considered, only

the short pass filter was activated. The short pass filter of 0.25 mm (traversing

length 5-15 mm) and 0.8 mm (for traversing lengths of 15-50 mm) were selected

in accordance with the ANSI/ASME B46.1-1985 standard [6].
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Figure A-1: A surface profile for calculation of the roughness values Ra and Rq [6]
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Appendix B

Gamma Irradiation

B.1 Irradiation Source

Wear test samples were exposed to gamma irradiation using the M.I.T. Gammacell-

220 [48] which uses 6"Cobalt as a source. 60Cobalt has a half-life of 5.271 years

with a decay process shown in Figure B-1. The process involves 60Cobalt emit-

ting gamma rays and decaying to stable 60Nickel. Two gamma rays are emitted

releasing energies of 1.1732 MeV and 1.3325 MeV which yields a total of 2.5057

MeV.

B.2 Dosage Rates

The dosage rate at any specific moment in time may be calculated using the

following exponential decay formula:

D(t) = D(o) (e- t) (B.1)

where:
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60 Co (5.27

Figure B-1: Decay of 6 0Cobalt [48]

D(t) = Dose rate at desired time t

D(o) = Initial dose rate

A = Decay constant = 0.1315yr 1

t = time interval (in years)

The dose rate in the chamber on 2/1/93 was 640 Rads/min.

B.3 Shielding

Some irradiation was done in vacuum using a stainless steel chamber. For this

reason it was necessary to correct the equations used to calculate the dosage

levels for the shielding effects of the stainless steel chamber. The formula used

to calculate the shielding effectiveness of any material is:

D(s) = D(p)(e-lX)B (B.2)

where:
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D(s) = Shielded dose rate at desired point

D(t) = Initial dose rate

= Linear attenuation coefficient for 2.5 MeV gamma ray

in stainless steel 304

X = Shield thickness = 0.033 cm

B = Buildup factor, accounts for secondary scattered radiation

produced in the shield = 10.5
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Appendix C

Loadcell Calibration

This appendix contains the data used to calibrate the wear tester loadcells. In

Section 4.2.2 and in Figure 4-4 the principle of the operation of the loadcell was

discussed. In this section the coupling of the friction and normal loads was ad-

dressed. This appendix contains the specific calibration data which determines

the extent of coupling which occurs. Calibration was performed on each of the

two loadcells. The data presented here is for loadcell #1; however, the results

for loadcell #2 are very similar. Two calibration tests were performed. One

test consisted of determining the voltage-force relationship for the normal load

strain guages. The second test performed determined the voltage-force relation-

ship for the friction force strain guages. To test the sensitivity of both channels

to variations in the other applied force, various loads were applied. Increasing

normal loads of 10 to 230 lbs. and tangential loads of 10, 20, and 30 lbs. were

applied to the loadcell in the manner depicted in Figure C-1.

Figure C-2 is of the calibration of the normal load strain guages. This figure

shows output voltage as a function of increasing normal load while simultaneous

friction loads of 0, 10, 20, and 30 lbs. are applied. The calibration of the friction

force strain guage is shown in Figure C-3. It shows the output voltage as a

function of increasing tangential load from 0 to 115 lbs. while simultaneous
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Figure C-1: Use of weights to calibrate loadcell strain guages by simultaneously
applying a normal and frictional force.

normal loads of 175, 180, 185, and 190 lbs are applied.

In both Figure C-2 and Figure C-3 the relation between voltage and ap-

plied load is essentially linear; therefore, a linear fit of the data was performed.

Table C.2 and Table C.1 show the linearized slopes of the voltage-force rela-

tionships (and the corresponding standard deviations) which were programmed

into the data acquistion system used to collect the coefficient of friction.
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Output voltage as function of
applied normal load

50 100 150 200

Applied Normal Load (lbs.)

Figure C-2: Output voltage plotted as a function of applied normal load with a
simultaneously applied frictional load.
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Output voltage as function of
applied frictional load
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Figure C-3: Output voltage plotted as a function of applied frictional load with a
simultaneously applied normal load.
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Normal Load Slope J Intercept
175 lbs. 4.08x10 - 5 0.000207
180 lbs. 4.10x10 -5 0.000222
185 lbs. 4.08x10 - s 0.000217
190 lbs. 4.15x10 - I 0.000212 1

Average 4.10x10-5 1 0.000215 jI
Standard Deviation 3.15x10 - 7 1 6.40x10- II

Table C.1: Linearization of voltage as a function of applied normal load

Frictional load Slope Intercept
0 lbs. 2.22x10- 5  0.000197
10 lbs. 2.21x10 - 5  0.000191

20 lbs. 2.21x10- 5  0.000138
30 lbs. 2.24x10 - 5  0.000005

Average 2.22x10 - 5  0.000133
Standard Deviation 1.67x10 - 7  8.93x10 - 5

Table C.2: Linearization of voltage as a function of applied frictional force
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