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Abstract

The advantages of elliptic (or sheet) beams have been known for many years, but their
inherent three-dimensional nature presents significant theoretical, design, and
experimental challenges in the development of elliptic beam systems. The present work
provides a framework for the design of elliptic cross-section charged-particle beam
formation and transport systems.

An effective mathematical formalism for describing accelerating elliptic cross-
section beams is developed in which the particle distribution function for an elliptic
beam is associated with a hyperellipsoid in phase space, and the evolution equations for
the particle distribution hyperellipsoid are obtained.

A novel methodology is presented for the design of elliptic beam-forming diodes
utilizing an analytic prescription for the sufaces of three-dimensional electrodes which
generate, accelerate, and confine a highly laminar elliptic beam. Three-dimensional
simulations and tolerance studies are performed, confirming the theoretical predictions
that a near-ideal beam can be produced.

Focusing systems are described for elliptic beams in coasting, accelerating, and
compressing regions with analytic prescriptions for the applied electric and magnetic
fields required to maintain a laminar flow profile for particles within the beam.
Numerical phase-space evolution and 3D simulations confirm that self-consistent laminar
flow profiles are maintained by the theoretically-designed applied fields.

The traditional approach to charged-particle dynamics problems involves extensive
numerical optimization over the space of initial and boundary conditions in order to
obtain desired charged-particle trajectories. The approach taken in the present work is
to obtain analytic inverses wherever possible in order to minimize any necessary
numerical optimization. Desired trajectories are assumed, and the applied fields and
electrode geometries are then determined in a manner consistent with the assumed
trajectories.

Thesis Supervisors: Richard Temkin Chiping Chen

Senior Scientist Principal Research Scientist
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1 Introduction

The formation and control of charged-particle beams has been a topic of intense and

fruitful study for a century and a half, ever since Plticker [1] reported on the deflection

of cathode rays in 1858. In the span of those 150 years, we have seen the development of

thousands of commercial, medical, military, industrial and research applications for

charged-particle beams, from the microwave ovens and television sets in each of our

homes to the largest accelerators probing the fundamental structure of matter. Most of

these systems have, by the virtues of necessity, simplicity, and symmetry, utilized

charged-particle beams of circular cross-section. With recent advances in numerical

simulation tools, however, there has been a renewed interest in the design of 3D

charged-particle beam systems.

Electron beams of elongated elliptic cross-sections (or "sheet" beams), in

particular, have long generated great interest in vacuum electronics [2]. In vacuum

electron devices, a resonant interaction between an electron beam and a comoving

electromagnetic wave simultaneously induces bunching of the beam and amplification of

the wave, thereby converting dc beam energy into rf wave energy. It is well-known that

high space-charge forces inhibit beam bunching, which reduces the energy conversion

efficiency in microwave tubes. Because elliptic beam distributions have a lower self-

energy of assembly than circular beam distributions, their space-charge forces are

reduced, and, consequently, higher energy conversion efficiencies can be attained.

Moreover, high-aspect ratio elliptic beams can transport a great deal of beam current

through narrow waveguides in which the beams can interact with short-wavelength

(high-frequency) modes. This allows the design of rf devices with higher power and

frequency than can be attained using conventional circular beam technology.

There is also interest in elliptical beams for direct injection into high-intensity ion

and electron accelerators. In these systems, beams often exhibit mismatched envelope

oscillations [3] and non-laminar flows such as large-amplitude density fluctuations [4],
emittance growth, and chaotic particle orbits which can lead to beam interception and

pose difficulty in beam focusing and compression. Many of these effects are due to beam

mismatch and subsequent non-equilibrium behavior. Beams in these systems are

generally formed with a circular cross-section and then must be "matched" into an

alternating-gradient magnetic quadrupole lattice in which the beam is (periodically)

elliptical. This process can be simplified if the beam originates with an elliptic cross-

section, allowing more natural matching [5] between beam injectors and commonly used



magnetic focusing lattices and reducing the emittance growth associated with beam

mismatch.

Presently, there are vigorous activities in the development of elliptic-beam sources

[6] [7] [8] [9] [10], traveling wave amplifiers [9] [11], klystrons [12] [13], and focusing

systems [14] [15] [16]. Over 600 high-power, high-efficiency klystrons, for example, may

be needed to provide rf power for the acceleration cavities of the proposed TeV

International Linear Collider (ILC). The Stanford Linear Accelerator Laboratory

(SLAC) has proposed [17] a 10 MW sheet-beam klystron to meet this need, as shown in

Figure 1.1. Other groups, such as Los Alamos National Laboratory (LANL), are also

interested in sheet-beam technology for microwave amplifier applications. The LANL

sheet-beam traveling-wave tube design [18] incorporates a solenoid/quadrupole magnet

combination (shown in Figure 1.2) in order to transform an incident circular beam into

an emergent elliptical beam. The Massachusetts Institute of Technology has also

initiated a ribbon beam amplifier project [19] for communications and accelerator

applications.

Figure 1.1: SLAC design of a 10 MW sheet-beam klystron for
International Linear Collider application (Figure reproduced

from Ref. [17].)



Figure 1.2: LANL design of solenoid/quadrupole magnet

combination used to transform an incident circular beam into

an emergent elliptical beam (Figure reproduced from Ref.

[18].)

The advantages of elliptic (or sheet) beams have been known for many years, but

their inherent three-dimensional nature presents significant theoretical, design, and

experimental challenges in the development of elliptic beam systems. The present work

provides a framework for the design of elliptic cross-section charged-particle beam

formation and transport systems.

In Chapter 2, an effective mathematical formalism for describing elliptic cross-

section beams is developed. The particle distribution function for an elliptic beam is

associated with a hyperellipsoid in phase space, and the evolution equations for the

particle distribution hyperellipsoid are obtained.

In Chapter 3, ordering arguments are presented to identify the dominant terms for

single particle dynamics within elliptic beams. Criteria are established which must be

met in order to maintain certain desired single-particle trajectories, and several regimes

are identified which correspond to different components of a beam system: the beam-

forming diode, the transitional matching section, and the coasting beam transport

lattice.

In Chapter 4, a novel methodology is presented for the design of elliptic beam-

forming diodes. Unlike conventional design methods utilizing extensive numerical



optimization tools, the methodology presented here provides an analytic prescription for

the construction of three-dimensional electrodes which generate, accelerate, and confine

a high-quality elliptic beam. Three-dimensional simulations and tolerance studies are

performed, confirming the theoretical predictions that a near-ideal beam can be

produced.

In Chapter 5, a focusing system for a coasting, space-charge-dominated, high

aspect-ratio elliptic beam is described. Given a desired beam envelope trajectory, the

equilibrium applied electrostatic and magnetic fields and beam initial conditions are

analytically determined. Equilibria are constructed for example cases, and numerical

integration of the beam distribution ellipsoid confirms the existence of a well-behaved

beam, as do the corresponding 3D simulations.

In Chapter 6, a focusing system for space-charge-dominated, high-aspect ratio

elliptical beams in transition regions is described. A semi-analytic methodology is

developed to construct a laminar flow profile in the transition region between a beam-

forming diode and a beam transport tunnel. Similarly, a methodology is developed to

construct a laminar flow profile for an elliptic beam which is expanding or contracting.

Self-consistent flow profiles are constructed for example cases, and numerical integration

of the beam distribution ellipsoid confirms the existence of a well-behaved beam, as do

the corresponding 3D simulations.

As we shall see in later chapters, the underlying theme of the present thesis is an

inverse approach to beam system design. The traditional, or "direct", approach to

charged-particle dynamics problems involves fully specifying initial and boundary

conditions (i.e., entrance conditions for an elliptic beam, electrode geometries, and

applied magnetic fields are fully specified) and then integrating the particles forward to

determine their trajectories. The constraints of applications, however, are usually

imposed the other way: certain particle trajectories are desired and the initial and

boundary conditions must be determined. This defines the inverse problem.

Without a strong analytical understanding of the system at hand, inverse problems

can be quite challenging. They are usually solved by numerical optimization over some

set of initial and boundary conditions. One guesses a set of initial and boundary
conditions, integrates the trajectories forward, evaluates the resulting trajectories by

comparing them to the desired trajectories using some merit function, and then makes

adjustments to one's initial guess and iterates. As one might imagine, for a 3D elliptic

beam system, the sheer number of potential initial and boundary conditions can make

brute-force numerical optimization impractical. The approach taken in the present work

is to obtain analytic inverses wherever possible in order to minimize any necessary
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numerical optimization. Desired trajectories are assumed, and the applied fields and

electrode geometries are then determined in a manner consistent with the assumed

trajectories.





2 Elliptic Beam Phase-Space Evolution

2.1 Overview

The general problem of mathematically describing a charged-particle beam evolution is
quite challenging. It is easy to be overwhelmed by free parameters and functions relating

to the positions and energies of the constituent beam particles and three-dimensional

applied electric and magnetic fields. A common approach is to take the continuum limit

and describe the beam via a particle distribution function describing the density of

particles in phase (position and velocity) space. If one further imposes certain

requirements on beam behavior (e.g. that the beam flows axially, is time independent,
and remains confined), one can obtain constraints on the applied electric and magnetic
fields. In addition, by employing the paraxial approximation under the assumptions

that motion is largely along a central beam axis and that the fields and particle

distribution vary only linearly in directions transverse to that axis, the problem can be

made tractable.

This chapter develops a theory to describe the phase space evolution of a steady-

state accelerating elliptic charged-particle beam such as that shown in Figure 2.. This

type of theory can be applicable to coasting beams in magnetic and electrostatic

focusing lattices as well as electrostatically accelerated beams in diode injectors and

depressed collectors. The effects of self-electric and self-magnetic fields are included as

well as those of applied magnetic and electric fields. The theory will be developed in the

paraxial approximation, assuming forces linear in the transverse coordinates (relative to

a central beam axis) and velocities largely in the longitudinal direction, compared to

those in the transverse directions.

In the paraxial approximation, the transverse accelerations induced by the total

electric and magnetic fields must vary linearly with the transverse coordinates. This

condition is most easily satisfied if both the beam self-fields and system applied fields

are independently linear in the transverse coordinates. One might also consider cases in

which nonlinear forces in the self-fields are precisely canceled by nonlinear forces in the

applied fields in such a way as to produce linear accelerations. The latter case is more
difficult to analyze, but may be relevant to certain beam-matching situations where self-

field linearity is difficult to maintain. We reserve the study of this case for future work,
and address, in this chapter, the simpler case of linear self-fields and linear applied

fields.



In Section 2.2 the expressions for the self-electric and magnetic fields of a coasting

elliptic beam are obtained. In Section 2.3 expressions for the self-electric and magnetic

fields of an accelerating elliptic beam are obtained. In Section 2.4 the single-particle

equations of motion are expressed in a matrix form. In Section 2.5, the particle

distribution matrix and its evolution equations are introduced. Finally, in Section 2.6,

the components of the particle distribution matrix are specified and related to

measurable parameters such as beam size and emittance.

2.2 Self Fields of a Uniform Density Coasting Elliptic Beam in
Vacuum

2.2.1 Overview

For a beam of elliptic cross-section, linear self-fields are obtained if the beam has a

uniform charge density in any transverse cross-section with a sharp elliptic boundary

beyond which the charge density vanishes, as shown in Figure 2.1. This elliptic

boundary of the beam is commonly referred to as the beam envelope and is

characterized by its semi-major and semi-minor axes a and b, respectively. Although

we assume in this section that the beam has a uniform, longitudinally constant envelope,

this analysis may be also applied to elliptic beams with slowly varying envelopes [i.e.,

a = a(z) and b = b(z)], provided the local values of the envelope quantities are used. We

restrict our attention in this section to coasting (non-accelerating) beams.

In Section 2.2.2, an expression is obtained for the self-electric field in the region

within the elliptic beam boundary. Outside the beam boundary, the self-electric field

takes a different form, as shown in Section 2.2.3. The self-magnetic field is easily related

to the self-electric fields, as shown in Section 2.2.4.



Figure 2.1: An accelerating elliptic charged-particle beam

with semi-major radius a, semi-minor radius b, and axial

beam velocity v = vze 2

2.2.2 Internal Self-Electric Field

For a uniform density elliptic beam with the beam axis aligned along the ez direction,

semi-major axis a aligned along the e direction, and semi-minor axis b aligned along

the e^ direction, the internal self electrostatic potential is given by [19] and references

therein as

-21 (Y2
(DPO = b + (2.1)

Vz(a + b) ( b '

where the beam velocity and current are both uniform and represented by v = vzz , and

I = Iz, respectively. The superscript "p0" is used to denote that this is a self-field

potential for the coasting beam.

The coordinate system (1, g) in which the beam ellipse semi-axes are aligned with

the coordinate axes will, in general, be rotated with respect to the laboratory coordinate

system (x, y) by an angle 0 , as shown in Figure 2.2. The two coordinate systems are

related by

x = x cos 60+ y sin0, (2.2)

9 = -x sin 0 + y cos 0.

z



y

Figure 2.2: The beam-aligned coordinate system (2, g) is
rotated with respect to the laboratory coordinate system
(x, y) by an angle 0 . The z -axis (out of the page) is also the

beam axis.

In the laboratory coordinate system then, 0 p1 becomes

(ipo p0 p 2 0+ O2lxy + (IP02, (2.3)

20 ' 11X ±0(.3

where we have defined

SI a + b - (a - b)cos20
20 vz ab(a + b) (2.4)

oP _ 2I (a - b)sin 20
vz  ab(a + b) (2.5)

- I a + b + (a - b)cos20
02 -(2.6)02 v ab(a + b)

Note that

( + 2(a + b) bP (2.7)
--2• = - 1 + I of , (2.7)

0 a + b -(a- b)cos20)2(

DO0 2(b - a)sin 20 pO
Sa + b- (a- b)cos20 20 (2.8)



The results of this section are valid within the elliptic beam boundary, i.e., the shaded

region in Figure 2.2.

2.2.3 External Self-Electric Field

Outside the elliptic beam boundary (i.e., in the unshaded region of Figure 2.2), the
external self-electrostatic potential of the uniform elliptic beam is given in Ref. [20] by

-Vz Opt = ln(4  + • bT+ )- ln(a + b)+ a 2 + 2 , (2.9)
21 ext(17i + 4b77 a2 + T

where 5 is defined by

= 2 2 - 2 - b2 + 2 a2 - b2 +4(b22 +a 2 b2 a2). (2.10)(210

Note that the space outside the elliptic beam corresponds to 0 < 4 < oo, and the
S= 0 surface corresponds to the ellipse boundary. In the laboratory coordinates, D°t

and 5 are given by

2 = x2 2  -a2 - b2

+ [x2 +y2 2 -b2 +2 [(a2 + b2X + y2)- 2a2b2-(a 2 - b2 xy sin 20 (2.11)

- (a 2 - b 2x2 y2)cos20]} •2

and

-Vz bp° -=ln(iL7a-i 5+]b+1-n(a~ b)+1 (x2'cos20+y 2 sin 29+ xysinO)
" = In + -In+b)+ (2 COa2  2 S+b2 + 2 S1 a2

+ (yi cos2+x2sin2 xysin) i (2.12)21~~ ~ + 2 201 +X - , b 2 (45 i K T+ ( .2yCos2 2sin2 0 - xy sin 0)
+ (Y+

The results in Eqs. (2.11) and (2.12) are consistent with Eq. (2.1); that is, the

potential is continuous across the beam boundary as shown in Figure 2.3 for the
example of a uniform density, uniform velocity elliptic beam with a/b = 10.
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'*N0

-5

-10

-15
-15 -10 -5 0 5 10 15

x/b

Figure 2.3: Relative equipotentials are shown both inside and

outside a constant z cross-section of a 10:1 uniform density,

uniform velocity elliptic beam. The solid line indicates the

10:1 elliptic beam boundary, while the dotted lines are

equipotentials.

2.2.4 Self-Magnetic Field

Again following Ref. [19], the beam's self-magnetic field can be represented using a one-

component vector potential Apo = APe z which differs from the scalar potential by a

factor of fl = v 1/c, i.e., APO = P/OD" . The self-magnetic field components can then be

determined through

Bpo = V x ApO, (2.13)

which yields

- aAPO

x ay (2.14)

= 2yO ++



Yo aAPO

ax (2.15)
-=-/3 o +(2xp

These expressions are valid within the elliptic beam boundary. Similar reasoning

can be used to obtain the external self-magnetic field, but since this field does not affect

the beam dynamics, we need not compute it.

2.3 Total Electric and Magnetic Fields for an Accelerating Beam

2.3.1 Overview

In this section we incorporate applied electric and magnetic fields into our paraxial field

expressions. We will often refer back to the results of Section 2.2 for the self-fields, but

this section is developed more generally. Since we now allow for acceleration, the axial

beam velocity will no longer be axially uniform. Moreover, because of the potential

gradient across the transverse dimension of the beam, the velocity will also vary

transversely.

The variable-velocity beam is a natural consequence if we are dealing with the

common scenario of a beam that is generated from a uniform-potential surface such as a

single electrode (see Chapter 4). It has a uniform-energy, variable-velocity beam profile.

We could consider the opposite case of a variable-energy, uniform-velocity beam

profile. The latter would correspond to a beam originating along a variable-potential

surface such as a series of electrodes or a single electrode with a small resistance and an

accompanying voltage drop from its center to its perimeter. The variable-energy

configuration is difficult to construct and is not commonly applied to practical devices,

and thus we will not consider it further in this study, but leave it as an avenue for future

research.

The uniform-energy, variable-velocity beam profile implies that transversely

uniform charge-density is not compatible with transversely uniform current-density for

an accelerating beam. Again, because it is more representative of the actual devices we

wish to understand (see Chapter 4), we will adopt the uniform-current-density model.

This uniform-energy, uniform-current-density, variable-velocity beam profile model

places a limit on the validity of the paraxial approximation, since the non-uniform

charge-density implies nonlinear corrections to the self-electric field. Nonetheless, this is

the most relevant model for describing common beam devices. We shall show how the



nonlinear corrections can be quantified, and find that they are quite negligible for most

cases of interest. For extreme cases of very high current or very wide beams, we may be

forced to resort to more complicated variable-energy configurations in order to assure

linear self-fields across the beam width.

In Section 2.3.2, we develop a paraxial expansion of the electrostatic potential

employing the assumptions of a uniform-energy, uniform-current-density, variable-

velocity beam profile. In Section 2.3.3, we determine specific coefficients of the paraxial

expansion for an accelerating elliptic beam. In Section 2.3.4, we develop an analogous

paraxial expansion for the applied magnetic fields. Finally, in Section 2.3.5, we derive

the total electric and magnetic fields in the paraxial approximation.

2.3.2 Paraxial Expansion of the Electrostatic Potential

In the paraxial approximation, we assume the longitudinal (ez-directed) particle

velocities are much greater than the transverse velocities, so conservation of energy

implies

(Y - Y 0)mc 2 = -qF, (2.16)

where y - v(z2/C2) - 1/2 is the usual relativistic factor in terms of the longitudinal

particle velocity vz = dz/dt, m and q are the particle mass and charge, respectively, c

is the speed of light in vacuum, D is the electrostatic potential, and y0 - y(-0 is the

value taken by the relativistic factor where the electrostatic potential vanishes. For

example, y0 = 1 for an electron which is emitted with vz = 0 from a cathode at an

electrostatic potential 1 = 0.

We express the velocity using energy conservation, Eq. (2.16), as

Vz(XYZ)cll/ ?°  (I)-2

v (x, y, z) = C 1 -70 2 (2.17)nc 2

The total potential can be expressed as the sum of the on-axis and transversely

dependent parts as = 0 0o(z) + D1 (x, y, z), where Dj << o00 under the paraxial

approximation. We can Taylor expand the velocity to obtain



v = c l- 7 0 q 21° q 2

( 0mc22 mc2 2(2.18)

V j1 qOI~j~zoo ( -lo 2 YO3 2 2
Poo 7oo mc

where the subscript "00" denotes on-axis values,

2' qO° (2.19)
mc

2

o = .1 -Yo-2, (2.20)

and

vzoo = 1#0c . (2.21)

Now we express the total electrostatic potential of the accelerating elliptic beam, quite
generally, as

00

D(x, y, Yz) = I XyOnm (Z), (2.22)
n,m=O

where we can see the oo(z) term represents the on-axis part of the potential, and the

rest of the sum is 0-1.Poisson's equation yields

V20 = -4xp, (2.23)

or

E ym Dm + n(n - 1)x ny Mnm + m(m 1)Xnym-2 -nm 4I (2.24)
n,mm =0 abvz

or

0 x"y m +[(n +(+ 2Xn +1)n+2,.m +(m + 2Xm + 1)n,m+2] - 4I 1+ q 2 , (2.25)E mabv~o flO02YO 3M C2 ,
n,m=0 mc

where the primes denote differentiation with respect to z.

We solve Eq. (2.25) by equating the coefficients of each term in the sum. The

important terms are those in which the sum n + m is even. The odd-sum terms



represent electric field components which produce centroid motion of the beam. If we

demand that the beam axis remains fixed, we must require these centroid-motion-

inducing terms to vanish. In these circumstances, the form of Eq. (2.25) ensures that

these odd-sum terms are decoupled from the even-sum terms. As a result, we may freely

set all the odd-sum terms to zero. The first few even-sum terms are

-4I = "+ 2(D20 + 02), (2.26)
abvzoo 0

- 4I q
-41 2 D11  + 6(QO31 + (13), (2.27)

abvzoO Poo 200Y03 mc

-4I q m 20 = 0) + 2022 + 12040 (2.28)
abvzoo 2 o3 20 20 22 40

-41 q 02 O2 + 2 2 2 + 120 04  (2.29)
abvz00 oo 2 00 3mc

We shall make use of Eq. (2.26) to describe the accelerating beam in Section 2.3.3.

Equations (2.27), (2.28), and (2.29) are useful because they place limits on the validity

of the paraxial approximation to the electric fields. In particular, Eqs. (2.28) and (2.29)

can be examined in the limit of no z -dependence to assess the effect of the voltage

depression across the beam insofar as it generates departures from uniform density.

Similarly, Eq. (2.27) can be examined in the low current limit to examine the effect of

beam twisting insofar as it generates nonlinear self-fields. Recall from Section 2.2.2 that

the term O01 in the electrostatic potential is generated by a rotated beam.

We should note that the expressions for the potential in this section do not

distinguish between self-electric fields, applied electric fields, or image charge fields

induced by the beam by a conducting pipe. In fact, the expressions presented here

include all of these fields. We shall illustrate in Section 2.3.3 how the electrostatic

potential components are associated with each of these fields.

2.3.3 Electrostatic Potential Coefficients for the Accelerating Elliptic
Beam

The total electrostatic potential consists of the axial potential, a self-field term for the

accelerating beam, and another term due to all external (source-free) fields, which, to

paraxial order, can be represented as an electrostatic quadrupole, i.e.,



( = ±00 () , 0-,2 2 y2 0 1+ xy)+ (Qx2 _ 4Qy2 + Qxy tan 20Q). (2.30)

In Eq. (2.30), the first term in parentheses represents the accelerating beam self-

field contribution, denoted by the superscript "p", whereas the second term in

parentheses represents the applied electrostatic quadrupole, denoted by the subscript

"Q ". The applied electrostatic quadrupole field is rotated with respect to the laboratory

coordinates by an angle 0Q relative to the x -axis.

Rearranging terms in Eq. (2.30) and organizing them in the form of Eq. (2.22), we

find

() = (=) -o (()P + (I) Q+ 2  Q I 
2 

+ ((I)Pl + ()Q tan 2OQ)y0 (2.31)

= 0oo + 20 2 02 2 +11XY

and the relations

20 2P0 + , (2.32)

02 02 - Q, (2.33)

11 = D + OQ tan 20Q. (2.34)

Note that the chosen decomposition of the total electrostatic potential in terms of

a self-field and an applied contribution is not unique, i.e. there are more free parameters

on the right sides of Eqs. (2.32), (2.33), and (2.34) than those on the left. This is not the

case in the non-accelerating beam case. There, the self-field solution can be obtained by

applying the infinitely-far boundary (no applied electric field) condition, and thus the

self-field and external field components of the total potential are uncoupled. An

accelerating beam, however, cannot exist without some externally applied field. In this

case, the self-field and external fields are inherently coupled. While this presents some

subtlety, it does not present difficulty, since we can define what we mean when we refer

to the "self-field of an accelerating beam" as opposed to its "applied field." By defining

the "zero" of the applied electrostatic quadrupole field appropriately, we can obtain a

simple result for the accelerating beam self-field. The most natural approach is to

employ this process in reverse by defining an accelerating beam self-field which mimics

many properties of the non-accelerating beam self-field and smoothly approaches the

non-accelerating beam results in the appropriate limits. These requirements on the



accelerating beam self-field will then fix a certain definition for the applied electrostatic

quadrupole field.

Let us substitute Eqs. (2.32) and (2.33) into Eq. (2.26). We find

_^-4I
2(DI 1 + (02) = -4. (2.35)

20o bzoo

The ratio I•2 0 between the self-field components of the accelerating beam is thus

far undetermined in this decomposition of the total field; however, we can require that

Eq. (2.35) recovers the result of Eq. (2.4) in the limit of a non-accelerating beam. This

limit is recovered if we ensure that Vo 2 /I 0 = 20 p/  ,for in that case, Eq. (2.35)

becomes

Op) -4120IP 1+ = - - (I, (2.36)

20 abvzoo

or, equivalently,

4(a + b)@0 - 4I4(a + b)D20 •1 • 0. (2.37)
a + b - (a - b)cos20 abvZOO

Rearranging Eq. (2.37), we find the most natural generalization of the electrostatic

potential terms from a non-accelerating to an accelerating beam:

DPo = + 0Do , (2.38)

and

2= 1 + -)2(a+b +o (2.39)a + b - (a - b)cos 20

which are readily compared to Eqs. (2.4) and (2.7) in the limit of (D" -+ 0. Similarly,
we can require the relative magnitude of the cross term V 1 of the accelerating beam to

take the same value as it does for the non-accelerating beam by fixing [in analog to Eq.

(2.8)]



(P = - 2(a - b)sin 20

a+b-(a-b)cos20 (2.40)

The natural generalization obtained by requiring that the accelerating beam

transverse potential ratios remain the same as those for the non-accelerating beam fully

specifies the decomposition of Eqs. (2.32), (2.33), and (2.34), fixing DQ and OQ. In

particular, we express

200 (I)20 (2.41)
(02+ DQ

020 - Q

which implies

IoP0(D - (DPOqo
02 20 20 02 (2.42)

02 20

Similarly, the cross term ratio

Op0 Op
11 - 11

~p0 ~p
20 12 - Q tan2OQ (2.43)

o11 - Q tD
O20 Q

implies

tan 20Q = J11 20 1. (2.44)

The above successful separation of the applied electrostatic quadrupole terms and

the self field terms of the accelerating beam will facilitate discussion in later chapters of

beam focusing and equilibrium. We simply remind the reader that the DQ terms

represent a quadrupole electric field (rotated by an angle OQ relative to the x -axis of

the laboratory coordinates) which is imposed by external conducting walls and applied

potentials. In order to enforce a particular DQ in the beam interior, electrodes at the

specified potentials must be placed along one or more external equipotential surfaces

given by the equation



ext = 0oo + Vxt + 0Q (x2 y2 + xytan 209). (2.45)

In the non-accelerating beam limit, Pxt = POt, and the external equipotentials can

be determined analytically using Eq. (2.12). This allows the design of conformal coasting

beam tunnels which can aid in beam focusing (setting DQ = 0 defines the external

equipotentials which negate all image-charge effects), or, alternatively, the design of

beam tunnels which enforce a desired quadrupole focusing field on the beam. Note also

that perturbations of external electrodes from the specified equipotentials will have a

diminishing effect with distance from the beam. This last fact ensures that a beam

tunnel of almost arbitrary shape, if sufficiently large, will have negligible image-charge

effects. The more general solution of Vext is left as a topic for future research in this

area.

2.3.4 Applied Magnetic Fields

The most general applied magnetic field can be written as Bapp = -VT, where the

magnetic potential T satisfies V2T = 0. By analogy with the electric potential, we

employ a paraxial expansion

T(x,y,z)= XnymPnm(Z). (2.46)
n,m=0

As with the electric potential, the terms in which the sum n + m is odd will result

in centroid motion of the beam. While centroid motion takes place in certain types of

magnetic focusing systems (e.g. wiggler fields [21] [22]), for the highly elliptic, high

space-charge beams of interest to us, wiggler focusing produces excessive transverse

motion of the beam [14] [23] [24]. Moreover, the paraxial approximations used

throughout in the present work are most accurate when the beam axis is fixed. For this

reason, we will proceed as we did with the electrostatic potential, consider only the

even-sum n + m terms and set all the odd-sum terms to zero in Eq. (2.46). For the first

few even-sum terms, Laplace's equation for the magnetic potential then yields,

0 =TP + 2(20 + 02), (2.47)

0 11+ 6(031 + i13), (2.48)

0=T'o + 2' 2 2 +12T 40 , (2.49)



0 = W 2 + 2 22 + 124. (2.50)

To first order in the transverse coordinates, the applied magnetic field can be

written as

Bapp = -V( 2o + x2T 20 + xY 11 " + y2 02 ). (2.51)

Combining Eqs. (2.47) and (2.51) yields

Bapp =B (z dBz) x + (1- ry ]+ BQ(z)(yx + x6, (2.52)
dz 2

where we have defined an aspect ratio parameter for the axial magnetic field

rm(z) =- 1 + J02 , (2.53)

an axial field magnitude

Bz(z) -T' (z), (2.54)

and a quadrupole field magnitude

BQ (z) -WA T (z). (2.55)

We have also introduced a reference length 2 which will be useful for normalization

purposes in Section 2.4.

Equations (2.48), (2.49), and (2.50) can be examined to determine the magnitude

of the non-paraxial magnetic field components. In Chapter 5, we return to these

equations in order to derive constraints on Woo imposed by the paraxial approximation.

The application of quadrupole magnetic fields is well understood. Electromagnets

with hyperbolically machined iron pole-pieces are often used when strong fields are

desired. For weaker fields, permanent magnets of a variety of simple configurations can

be used by noting that a quadrupole field is naturally achieved in the region between

two oppositely oriented dipole magnets located some distance apart. One might use a

single contiguous magnet on either side of the beam or a plurality of magnets chosen to

produce the desired field in the beam area.

The longitudinal magnetic field (the components generated by the B, term) can

also be achieved through well understood means. Electromagnet and permanent magnet



solenoids and non-axisymmetric periodic cusped fields using permanent or electromagnet

configurations have been described elsewhere [23] [25]. Most simply, a set of axially-

magnetized planar magnets with irises would be used to construct the desired field. The

iris shapes and magnet thicknesses, positions, and magnetizations will determine the

axially-varying field strength and aspect ratio r, /(1- rm). As the configuration becomes

more planar, rm approaches zero. As the configuration becomes more circular, r.

approaches 1/2.

2.3.5 Total Electric and Magnetic Fields in the Paraxial Approximation

The total electric and magnetic fields for an accelerating elliptic beam in the paraxial

approximation are

E = -VO, (2.56)

and

B = Bapp + B POBapp (2.57)

=-VT + Vx ApO,

where

Ap = APO z = floo00D z . (2.58)

Note that the self-magnetic field BO° for the accelerating beam is identical to that for

the coasting beam, since it depends only on the local beam size, the rotation angle, and

the current I, which is conserved.

Substituting the electrostatic potential 0 defined in Eq. (2.30) into Eq. (2.56), we

can write the Cartesian components of the total electric field as

Ex = -2x 020 - Y11(

= -2x(DF0 + o Q)- y((Il + (1) tan20o), (2.59)

E = -2y D0 2  xF 11  (
-2y x(P + tan 20Q), (2.60)

Ez = -'oo, ((2.61)



where we have used Eqs. (2.32), (2.33), and (2.34), the prime denotes a derivative with

respect to z, and the accelerating beam self-field coefficients (superscript "p") are

related to the axial potential (oo through Eqs. (2.38), (2.39), and (2.40).

Similarly, substituting the applied magnetic field defined in Eq. (2.52) and the self-

magnetic fields from Eqs. (2.14) and (2.15) into Eq. (2.57), we find for the Cartesian

coordinates of the total magnetic field

Bx = x (Oa -rm z) + y C- + 2fliPO (2.62)

B= x( - 2fPfl() + y(- (1- rm) - f•( , (2.63)

B2 = B_(z), (2.64)

where the coasting beam self-field coefficients (superscript "pO ") are determined by Eqs.

(2.4), (2.5), and (2.6).

2.4 Matrix Formulation of Transverse Equations of Motion

While the longitudinal equations of motion, more precisely the longitudinal velocity v z,

is described by Eq. (2.18), the transverse single-particle equations of motion are given by

dx1p±L = my A,
dt (2.65)

= mvy Adz

and

F = dp_
dt (2.66)
dp1

z dz '

where we have used the relativistic particle momentum p = ym v and the Lorentz force

on a charged particle F = q(E + - v x B). Referring back to Section 2.3.5, we can express

the Cartesian components of the transverse Lorentz force in the paraxial approximation

as



qovF.~ ~ L- = q 'z B B,

= q -2x(20 911 + Bz (2.67)
YO0mc

- Kr@- x - 2)00 + d z (1 - rm) flOO

and

F, = q E -V-B +-- B

Sq- 2y(o2 - 11 Px Bz (2.68)
S7 00mc

+ X dB r +,oo° + + 2 /OO1}
c (- dz 11j(

Note that in the paraxial approximation above, we retain only those terms linear

in the transverse coordinates and momenta. We henceforth suppress the subscript "00"

on the velocity functions v,, 6 , and y with the understanding that we will always refer

to their axial values.

We are now able to write the equation of motions (2.65) and (2.66) in a matrix

form as

d= F -X, (2.69)
dz

where

(fl
Pz) (2.70)
\IPI

(0 F 0 0'

fIF O F F.,
0 0 0 FP' (2.71)

F FPF FP 0



and the elements of F are

27)~ yp y/mc

F =-q -2 2-- - 2#0` ,

F = q - + (( + dz( - r
Fý q1~-jLic (D11 C 11 dz m4

F=( •_ 11 dB -F~v = [/3 C01 1 c+~ C dz m,1
Fp = [q -o 2 +-f + 2(I)P

F = -F =q qBz
PYf PP mc 2

It is useful to work in dimensionless quantities and express Eqs. (2.65) and (2.66)

(2.78)aI±P, =fly-1,dz-

and

(2.79)

where

PS- p ,p -,mc

x
x -_

(2.80)

(2.81)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

and

(2.77)

dp-j



F M 2 (2.82)- Fmc 2

and 2 is the arbitrary scale length introduced in the discussion of the quadrupole

magnetic field in Section 2.3.4. We also introduce the dimensionless constant

2

a, -.mc 2, (2.83)

the dimensionless electrostatic potential

S n+m+1

Dnm =,nm (2.84)q

the dimensionless magnetic fields

A2
BQ -- BQ, (2.85)

q

A2
Bz - -- B , (2.86)

q

and the dimensionless current

I - - (2.87)
qc

We can express Eqs. (2.78) and (2.79) in the dimensionless matrix form

_= (2.88)d =

where

1Z() T (2.89)
ly



0 F 0 0£ = 0 oF Fo " ,
0 0 0 F--

F F' Fj 0

and the elements of F here are

1fl

F = -- 2020 -BQ + 2fl2

p

-+
fl 2 TpO + - 1(

dz - rm )jJ7
+i 2 pO _ dB11 2d!

F ,= - - 2,, + 9 + 2/20P0

p

aAB

Yfl

2.5 Particle Distribution Matrix

There exists a transfer matrix T that transforms an initial condition Zo into a final

vector X, i.e.,

(2.97)X = T- 0.

The relationship between the transfer matrix and the force matrix is explored by

differentiating both sides of Eq. (2.97) to yield

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

and

(2.96)



38

dX d LT- 1
dz dz

dT
F.X= =*' 0  (2.98)

Sdz

dT
F T " = - 0--.
= = dz

Since this is true for any initial condition Zo, we have

dT
F.T- = (2.99)

dz

Following Sacherer [26], let us introduce the symmetric matrix M which defines

the hyperellipsoid of the phase-space distribution of the particle beam through the

equation

"__ .= 1 (2.100)

where the superscript " T " denotes the transpose operation of a matrix, and

M Mz MX M• Mp
MM M

M MpX M PMP= MPY MP' (2.101)MyXMY MYYMY

A uniform distribution of particles along this ellipsoidal hypersurface ensures a

uniform charge density in position space, and thus the assumption of linear self fields is

satisfied [26]. Familiar phase space plots can be obtained by taking projections of the 4D

hyperellipsoid into a 2D subspace, yielding an ellipse, as shown in Figure 2.4.



PX

Figure 2.4: The projection of the 4D particle distribution

hyperellipsoid onto the subspace (x, px) yields a filled 2D

ellipse.

Since Eq. (2.100) holds for all z, we can write

T -_Zo Mo *Zo = 1
T W 1

(2.102)

T . T M  -1-

Since this holds for arbitrary X0, we find Mo-1 = T m -1 T and therefore

l=ir. 1 lv r . (zL1u6)-I =T

The evolution of the beam distribution is fully characterized by the distribution

matrix M, which evolves according to

dM d

dz dz =- O
TT)

dT T= .~M -T +T.M
dz =0) = = =(

dTT

(2.104)

=FM+MF.

__
11

L

as



2.6 Elements of the Distribution Matrix

The elements of the force matrix F have been expressed in terms of the beam envelope

quantities such as the semi-major axis a, the semi-minor axis b, and the rotation angle
0 . In order to close the matrix equation of motion (2.104), we must relate the elements

of the distribution matrix M to the envelope quantities. These physical envelope

quantities are directly related to the semi-axis lengths, inclination angles, and areas of
2D ellipses - projections of the 4D particle distribution hyperellipsoid as shown in
Figure 2.4.

In Subsection 2.6.1, we describe the matrix equation for a 2D ellipse projected
from the 4D particle distribution hyperellipsoid. In Subsection 2.6.2, we describe a
geometric representation for a general 2D ellipse, the so-called standard form. In
Subsection 2.6.3, the relationship between the matrix representation and standard form
is obtained, which enables us to relate geometric quantities such as semi-axis lengths to
matrix elements. In Subsection 2.6.4, we use the results of Subsection 2.6.3 to relate
physical beam envelope parameters to elements of the 4D particle distribution

hyperellipsoid.

For ease of notation we will suppress the overbars, but we will use dimensionless
quantities for the remainder of this section.

2.6.1 Projection of the 4D Hyperellipsoid

As shown in Figure 2.4, the 4D hyperellipsoid represented by Eq. (2.100) forms a 2D
ellipse when projected into any 2D subspace (x1,X2) where x1, x 2 E (xypxpY). The

equation for the projected ellipse is simply

1 = 1 2 m12-1 112, (2.105)

where

112 j ,- (2.106)
X2

and

M12 M 12 (2.107)
M1212 M22)



The elements of M are selected from the elements of M in Eq. (2.101), i.e., M12 is aý12 M-12
submatrix of M. Proof of Eq. (2.105) is relegated to Appendix A, however, we can

expand Eq. (2.105) as

M 11M 22 - M 122 = 22m 1
2X 2 + M1 x 2

2 - 2M 12X1X2 . (2.108)

As an alternative to writing the equation for the ellipse in the matrix form as in

Eq. (2.108), we can use the geometric (or standard) parameterization.

2.6.2 Standard Parameterization of the Ellipse

The standard form of the equation for an ellipse is given by

-2 ~2

1 Xl 2 , (2.109)
A2  2

which describes an ellipse with semi axes A and B aligned along the e, and e^, axes,

respectively. We can express Eq. (2.109) in a rotated set of coordinates through the

transformation

Yx = x cos 012 + 2 sin 012 (2.110)
S= -x 1 sin 012 + X2 COS 012 ,

which yields for the ellipse

1= x12 A2 2 + 2 + x 2  2 co 2 + 2  + x1 2  2 sin(2012).(2.111)

The relationship between the ellipse-aligned and rotated coordinate system is shown in

Figure 2.5.



Figure 2.5: The ellipse-aligned coordinate system (11, Y2) is

rotated with respect to the rotated coordinate system (X, x2)

by an angle 012 , as shown.

2.6.3 Relations Between Standard and Matrix Form

Equating the coefficients between the matrix form of Eq. (2.108) and the standard form

of Eq. (2.111) allows us to write

Ml, = A2 c 1O2 12 2 sin 2 12,

M12 = A2 - B2)sin 012 cos 012,

M 22 B 2cos 2
12 + A2 Sin 2 012 ,

(2.112)

(2.113)

(2.114)

and the inverse relations

A = Mll

B = Mll

B= 'M1
v-l1

+ M 22 + M112 + M222 + 4M122 - 2M 11M 22 ,

+ M22 - M 112 + 222 + 4M 12
2 - 2M11M 22 ,

1 l
2 Ml - M22

Note that the area of the ellipse can be expressed using Eqs. (2.115) and (2.116) as

(2.115)

(2.116)

(2.117)

x1



7AB = TM 11M 22 - M 12
2 . (2.118)

The results of this section are derived in Appendix B.

2.6.4 Relations Between Envelope Quantities and Matrix Elements

Making use of the results of Section 2.6.3 and setting x = x I and y = x 2 , we express the

envelope quantities in terms of the matrix elements as

a(z) = VM (z) + M (z)+ Mxxi2(z)+ M, 2 (z)+ 4Mix 2 (z) - 2Mi1 (z)MYY (z) , (2.119)

b(z) ~= M=(z) + M• (z) - Mxx2() + MY 2(z) + 4M 2 (z) - 2Mxx(z)My (z) ,(2.120)

1 (2M 1  '

0 = - arctan " . (2.121)
2 yM~~-M~~2 ýMxx - Myy

By taking a projection of the 4D particle distribution ellipsoid into the subspace

(x,y), we obtained Eqs. (2.119), (2.120), (2.121), which relate the three independent

matrix quantities Mx , M,I and MYY to three physically meaningful quantities, namely,

semi-major axis a, semi-minor axis b, and inclination angle 0 . For the 4 x 4 symmetric

matrix M, there are 10 independent elements, overall, which can be related to 10

independent physically meaningful quantities by taking projections of the 4D ellipsoid

into various 2D subspaces. The projection into the subspace (x, y) yielded the envelope

semi-axes and inclination angle; projections into other subspaces will yield fluid

velocities related to beam expansion and rotation as well as beam emittances. For our

purposes, we define an emittance as the phase space area of a given 2D subspace divided

by 7.

In order to obtain simple relations between the physical parameters and the matrix

elements, we will find it useful to introduce a beam-aligned symmetric matrix M with

the elements in the rotated phase space

K M H Mypi MY MYP

MI = ". M (2.122)

M pM M pjMMgi MPýP M.ý MgU
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This matrix describes an ellipsoid via the equation

~T -M-1xZ "M .j=1,

where

L " ' cosO
P1 0

=g - sin 0

p#,/ O0

0

cos 0

0

- sin 0

sin 0
0

cos 0

0

0 X
sin0 P1

0 y
cos O0 pY

From this it is clear that M = R - 1 M• R and 1 = R.M. l - 1 . In terms of the

beam-aligned distribution matrix elements, the envelope quantities take on simple forms

since M, = 0. As a reminder, we make explicit the dimensionlessness of the envelope

quantities by replacing the overbars. The 10 independent physical parameters are

determined by analogy to the results of Section 2.6.3, yielding

aa•-= AJ=- = a -

-b

1 (2M~2

1 2M~2 0 =M - MYarctanO 'Pi I arctan - Mp '

0•Pýý = 1 arctan( 2MýN•

2 ( 2 M• - MPPP)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.123)

(2.124)

(2.125)



pi = AMAMppjM - MgP 2 (2.132)

1 2M-
6-p = arctan M P (2.133)

p 2 Mi - Mi (.

1 ( 2Mp
2p = arcta -- (2.134)2 ý 2 M-- Mpp

1 ( 2M
I 1arctan -I . (2.135)

IPf 2 M - MAip)

The dimensionless normalized emittance eP. or eP, appearing in Eq. (2.130) or

(2.132) is defined as 1/r times the phase-space area of the projected ellipse in the

associated subspace (;, p.) or (g, p). Further discussion on emittance is deferred until

Section 4.4.1.

The tangents of the angles 06P. and O, defined in Eqs. (2.129) and (2.131)

characterize beam expansion. In the cold-fluid limit, the emittances vanish, the

distribution ellipse collapses to an inclined line segment in the subspaces (i, pj) and

(9,p,), and we find tan0., = pi•/ and tan0P, = pv /I. In this case, it is easy to relate

6.p. and 0p, to the normalized variables py = a-' da/dz and p,= b-1 db/dz in the

terminology of Ref. [19], i.e.,

tan0 
fl- d
Y d (2.136)

tan - dt d (2.137)

Similarly, the tangents of the angles 0,, and p, defined in Eqs. (2.133) and

(2.134) characterize beam rotation. In the cold-fluid limit, the emittances vanish, the

distribution ellipse collapses to an inclined line segment in the subspaces (, p,) and

(, p,), and we find tan 6, = pý/5 and tan P,, = pi/9. In this case, it is easy to relate

O, and 6, to the normalized variables ax and a, in the terminology of Ref. [19], i.e.,



fly dýtan6 -, /3d5 dr
=fl y)La,

tan - fly d=
•j dz
-P~

(2.138)

(2.139)

The angle OP. defined in Eq. (2.135) is not an independent quantity in the cold-

fluid limit, and thus there is no standard notation to relate it to. Nonetheless, it is clear

that it represents a correlation between the two transverse velocities.

Equations (2.126) - (2.135) define physical distribution quantities in terms of the

matrix elements, but for purposes of computation we require the inverse relations, i.e.,

-2
M = a2

M = 2,

E-M =csc2(2Op M2 - cot(20P )

Mpcpc = M4u - 2MP, cot(208,),

-2

MW.ý' = Mýý - 2M , cot(20, ,,

M = 1 (M, - Mp, )tan(20p•

M (M# - MP )tan(20,

M = - M tan 2

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)
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This set of equations fully specifies all 10 independent components of the beam-

aligned distribution matrix M in terms of projection quantities in the various 2-

dimensional subspaces. With these in hand, as well as the relationship M = R -1 .M R

the matrix equation of motion (2.104) can be integrated to determine the evolution of

the particle distribution function. Numerical examples of such integrations are discussed

later in Sections 5.7, 6.2.4, and 6.3.3.





3 Single Particle Dynamics

3.1 Overview

With the elements of the force matrix F and the distribution matrix M specified, we

can proceed to solve Eq. (2.104) for the evolution of the particle phase-space

distribution, given a set of initial and boundary conditions. This is a set of 10 coupled,
nonlinear, first-order differential equations, and thus cannot be solved in full generality.

Fortunately, we do not require general solutions. We are only interested in solutions

which satisfy some desired beam envelope evolution.

New devices are increasingly sought for high-power, high-frequency operation [13]

[18]. In this regime, since high voltage is often limited by engineering considerations,
high-current (and thus space-charge-dominated) beams are desirable. Moreover, since

high-frequency applications require small-scale-length structures, high aspect-ratio

elliptic beams are sought because they serve the dual purpose of allowing coupling to

higher frequencies (by minimizing their minor axis) and carrying large current (by

maximizing their area). Since most elliptic beam device concepts involve coupling to

planar structures (comparatively easy to fabricate), it is generally required that the

beam be confined without bending, expanding, or rotating. For these reasons, we focus

on finding solutions for paraxial, space-charge-dominated, non-twisting elliptic beams

with << 1.
The task of finding a desired beam solution to Eq. (2.104) can be quite

challenging due to the large number of free parameters and functions embedded in the

initial and boundary conditions, e.g., the beam current, the axial potential, the applied

fields, the starting values for the beam envelope quantities, etc. If the initial and

boundary conditions are not fixed properly, Eq. (2.104) will not yield a confined beam

solution. The beam may immediately expand to impact upon its containing vessel, fail

to maintain laminar flow, change direction, or otherwise frustrate expectations. Clearly,

certain constraints on the initial and boundary conditions are required in order to

ensure a desired beam outcome.

Let us define a desired beam as one in which the trajectory of each particle (, Y)
very nearly satisfies a desired trajectory (yd•, Yd,) as it propagates longitudinally such

that

= (Y, )+ (AM7 (3.1)



where the perturbations satisfy

Y << Z (3.2)

I << F. (3.3)

Moreover, let us assume that the trajectories and axial potential are slowly-varying

over a dimensionless longitudinal length scale Sdes such that

1 dY 1Sd << (3.4)
{ dr Sdes

b d{ des

1 Cd oa 1{<< 1 (3.6)GDoo d! Sdes

Notice the overbar notation; we employ the dimensionless forms in this chapter.

Since we are interested in space-charge-dominated beams, we ignore the effect of

emittance in the beam dynamics [16] [27] [28] and concentrate, for the moment, on the

equations of motion for single particles in a self-similar cold-fluid. By a self-similar cold-

fluid, we mean that the transverse flow velocity of a fluid element is proportional to the

transverse displacement of that fluid element.

In this chapter, we return to the dimensionless single particle equation of motion

(2.88) in order to derive some of the constraints on the boundary and initial conditions

in several limiting cases. In Section 3.2, we examine particle dynamics in the wide (X)
dimension of the beam and apply the conditions of Eqs. (3.2) and (3.4), yielding certain

constraints on the applied fields. Similarly, in Section 3.3, we examine particle dynamics

in the narrow (W) dimension of the beam and apply the conditions of Eqs. (3.3) and

(3.5), yielding other constraints on the applied fields. In Section 3.4, these constraints on

the applied fields are combined and analyzed in numerous cases, several of which result

in practical, realizable equilibrium configurations which will be the subject of later

chapters.



3.2 Wide-Dimension Dynamics

3.2.1 Axial and Quadrupole Magnetic Field Contributions to the
Momentum

Let us examine Eq. (2.88). We begin by considering evolution in (y, 7), involving the

terms FP-, F;, F7i, and Fu. Since I1 << 1, by assumption, the O--tl term in the

electrostatic potential in Eq. (2.93) can be made small [see Eqs. (2.5)]. In addition, if we

set the applied quadrupole electrostatic field angle small such that tan 290Q << 1, the 11
term in Eq. (2.93) also becomes small [see Eqs. (2.34) and (2.40)], and the following

ordering is suggested

T,+f26[O1< d•z (1-r (3.7)1 dB

This implies

- dBFjý. dzq 1- ) (3.8)

and that the momentum T evolves according to

F=_ -Y + Fjjxj + FYF

d=- _- 1  (3.9)fi 2ý6pO z-r -1gfl[\-~-OJ- ~)+ P + 2 y.l

It is useful to split Eq. (3.9) (and f) into two parts as

j- - F + j7, (3.10)

where dz- )
d- = d Bp (1 -•)+ gy1i,_- (3.11)

dz p
= -a'(- 2I2 flBQ + 20). (3.12)

dT 8



It is evident that ( is generated by the axial magnetic field B., while T is

generated by the quadrupole magnetic field BQ. We consider the evolution of these two

parts of the momentum, separately, in Sections 3.2.2 and 3.2.3.

3.2.2 Momentum Evolution due to the Axial Magnetic Field

Combining Eqs. (3.11) and (2.78), we find

d a; (B
dT dT rm) +ly fz

[ (d r-[ 1 r)j Id.)] Rdr
(3.13)

drmd!T

We shall take Irm << 1 which allows us to obtain approximately

fx (Y)_-= aAVRB(1 - r) + {: (z-) -4 O)B((0) Fo 0 - m(!o)]},

where io denotes an initial value of the axial coordinate T.

3.2.3 Momentum Evolution due to the Quadrupole Magnetic Field

Combining Eqs. (3.12) and (2.32), we find

=- (- 22o - 205 -/pBQ +2 fJ2 0)

(3.14)

(3.15)

Let us define a "residual" quadrupole field 5BQ through the equation

pBQ H- (/BQ + 2TQ)+ 2~20 - 2fl2 0 ,

or, equivalently, using Eqs. (2.4) and (2.38) to replace the self-field terms,

(3.16)

BQ- - (-B,
2I+ 20D9)- (i 2 8 1+- + b- - b)cos20

00 +2 aT + b

Rewriting Eq. (3.15) in terms of the residual quadrupole field defined in Eq. (3.16),
we find

(3.17)



=- B. (3.18)
dT

Notice that the magnetic quadrupole term BQ and electric quadrupole term Q enter

Eq. (3.17) in essentially the same manner; both quadrupole fields have the same effect

on beam dynamics. As long as the sum /BQ + 2DQ is held constant, we can trade off

between an applied electric quadrupole and an applied magnetic quadrupole as

convenient.

3.2.4 Displacement Evolution and Ordering Conditions

The evolution of the displacement Y is determined by the first component of Eq. (2.88),

i.e.,

dz
d- = .j p-F . (3.19)

Making use of Eqs. (3.1), (3.10), and (2.91), we can express Eq. (3.19) as

d(d +•)_ + (3.20)

We make the ansatz that the terms in Eq. (3.20) can be equated piecewise to yield

d(dC + = , (3.21)

d = ,p (3.22)
dT yfl'

where we've defined

by = 6e + byz. (3.23)

Note that this association of the desired trajectory Xdes with the quadrupole field

is the most natural choice. We can see that Eq. (3.14) couples the y and V motion

through the axial magnetic field B, leading to a rotation of the beam. By associating

this rotational momentum T with only a perturbed displacement 6yz in Eq. (3.22), we

hope to ensure that the rotation remains small, i.e., II << 1.
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The constraints on the trajectories described in Section 3.1 imply certain

restrictions on the allowed forms and magnitude of the applied fields. For example, we

can obtain a condition on 6BQ by combining Eqs. (3.21) and (3.4) to find

-Q 1
x<< 1 1(3.24)

gd es

which we can rewrite using Eqs. (3.18) as

Jx4 B z 1aAIJ- Bd d << (3.25)fl3,Sd B'Rdesde

where the limit on the integral denotes any length of order Sdes or smaller. We can make

use of Y• Yds [see Eq. (3.2)] and the fact that ides is nearly constant over a length scale

of Sdes [see Eq. (3.4)] in order to take it outside of the integral appearing in Eq. (3.25).

With these simplifications, Eq. (3.25) becomes
-__ 1

•2 Xdes J-BHd-• < 'e

- Bd << (3.26)
Sdes Sdes

Because Eq. (3.26) must hold for all trajectories Ydes in the beam, we can look at

the extremal case, i.e., Ides -+ Z, which gives the more stringent condition

yI 1 IBJa l f d-2 << de- , (3.27)Yfl 01,o Sdes'Sdes

implying either 1BQ, ,/8 << Sdes-2 or else 6BQ is oscillatory with a negligible integral as
defined by Eq. (3.27). The residual quadrupole field 6BQ must satisfy Eq. (3.27) in

order to ensure that particle trajectories do not vary too rapidly in the wide dimension

of the beam, which would invalidate the expressions for the self-fields, such as those

given in Section 2.2.2.

Similarly, we can obtain a condition on Bz by combining Eqs. (3.2) and (3.22) to

yield

1 zf d- << 1. (3.28)
a des



Using Eq. (3.14) to substitute for p in Eq. (3.28), we find

1 - • ayB (1 - rm)+ ( z )- .) 1  ( ) d  << .  (3.29)

We can choose the initial values at T = To such that the term in braces vanishes in

Eq. (3.29). We can also use of - =Yd [see Eq. (3.3)] and the fact that Ydes is nearly

constant over a length scale of Sdcs [see Eq. (3.5)] in order to take it outside of the

integral appearing in Eq. (3.29). Similarly, Eq. (3.6) implies that we can take the

product y8/ outside of the integral, as well. With these simplifications, and noting that

rm << 1, Eq. (3.29) becomes

__ a RBdT << 1. (3.30)

Once again, looking at the extremal case, i.e., des ->e b, Eq. (3.30) becomes more

stringent, yielding

a<<1. (3.31)
flde

which implies either Bz 6a /(a-3y << Sds-1 or else B_ is oscillatory with a negligible

integral as defined by Eq. (3.31). The axial magnetic field Bz must satisfy Eq. (3.31) to

ensure that particle trajectory perturbations in the wide dimension of the beam are not

large compared to the beam size.

3.3 Narrow-Dimension Dynamics

3.3.1 Momentum Evolution

Let us examine Eq. (2.88) and consider evolution in (ry, P), involving the terms F- ,

FT, F,, and F,. The momentum p, evolves according to

d =- F_ýy + Fp P• + F, (3.32)dT

and we shall examine each term in Eq. (3.32) in turn.



Combining Eqs. (2.95) and (2.33), we can express the first term F, Y in Eq. (3.32)

F =- 5L V(- 2 I + 2 + fB• + 2flB o),I8jyv P 2IP

which can be further simplified using Eq. (3.16) to yield

FY- = a V[- 2( bo + T 2)+pJBQ + (2o + 60P2)

Making use of Eqs. (2.4), (2.6), and (2.35), we can express Eq. (3.34) as

Fi = 3 +-" kB.Q}

The second term F ,~P1 in Eq. (3.32) can be expressed using Eqs. (2.96),
and (3.14) as

Fp - a B (1- )+[ + P

(3.33)

(3.34)

(3.35)

(3.10),

(3.36)

where we have once again chosen the initial conditions such that the term in braces in

Eq. (3.14) vanishes.

The final term F,, in Eq. (3.32) can be written using Eq. (2.94) as

a•( --
dB (3.37)

By paralleling the argument given at the beginning of Section 3.2.1, we can see that for

I << 1, Itan20QI << 1, and rm << 1, the F , term can be made negligibly small. This

allows us to rewrite Eq. (3.32) as

d-y .a,( 41
dý py 7 2 +0" +P0B+ (3.38)a , ,z (1- r)+ ].

3.3.2 Displacement Evolution and Ordering Conditions

The evolution of the displacement V is determined by the third component of Eq.

(2.88), i.e.,
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dy
-•z= YPF . (3.39)

We can obtain a condition on 5, by combining Eqs. (3.39) and (3.5) to yield

1<< (3.40)
by-/ Sdes

If we now make the substitution

T = J d-, (3.41)
Sdes

into Eq. (3.40), we find

1 r dd << - (3.42)
by/ i Sdes

which implies either -2(fb << des or else p is oscillatory with a negligible integral

as defined by Eq. (3.42). The derivative of the narrow-dimension momentum X must

satisfy Eq. (3.42) in order to ensure that particle trajectories do not vary too rapidly in

the narrow dimension of the beam, which would invalidate the expressions for the self-

fields, such as those given in Section 2.2.2.

3.4 Survey of Ordering Regimes for Applied Fields

3.4.1 Summary of Ordering Regimes

In Section 3.2.4 we obtained conditions on the applied longitudinal magnetic field BR

and the residual quadrupole field 5BQ which must be satisfied in order to maintain

desired trajectories of the form given in Eq. (3.1). A similar condition was obtained on

the derivative of the momentum T. in Section 3.3.2. We summarize these conditions

here, for convenience.

We may choose either a small 5 BQ satisfying

__ 1-aIT<< « 2 (3.43)
y/I Tdes



or an oscillatory 6BQ satisfying

a,1
f B~dT << fdes (3.44)
flSdes de

we may choose either a small B, satisfying

__ 1
B<< (3.45)

2 Zfa Sdes

or an oscillatory B satisfying

- i BY d << 1; (3.46)

and we may choose either a small T, satisfying

1& << (3.47)
1by/8 d Sdes2

or an oscillatory T' satisfying

1f d! << (3.48)<<f d s- des

We also reproduce Eq. (3.24) here,

P << (3.49)
'0f Sdes

which must hold independent of any of the choices above.

In the next several subsections, we apply various combinations of these alternative

ordering conditions [Eqs. (3.43) or (3.44), (3.45) or (3.46), (3.47) or (3.48), and (3.49)]

and deduce the implications for the elliptic beam equilibrium.



3.4.2 Small Fields, Non-Oscillatory Regime

The simplest possible ordering is in the small fields, non-oscillatory regime, i.e., Eqs.

(3.43), (3.45), and (3.47). In this regime, Eq. (3.38) can be rearranged as

ay 41 dP- - B-z2 4 a- a BQ + [a, (1 - r + ,
fl a~bfy + dz- Y(3.50)

0 '" 0 es 21yy fl + 2 fly

which implies

f' 4 + 0oO 2[7Y + 2 fly] (3.51)

where we have used Eqs. (3.43), (3.45), (3.47), and (3.49) to rewrite the right-hand side

of Eq. (3.51) to show that it becomes negligible for large Sdes .

If the beam is coasting (i.e., not accelerating, therefore 0 -= 0), the small fields,
non-oscillatory regime will require either a small length scale Sdes (implying that the

right side is not negligible) or low current (low self-fields) such that this situation

essentially corresponds to an unfocused beam expanding under its own space charge. On

the other hand, the current and axial potential terms can negate one another to satisfy

Eq. (3.51) in regions where the beam is accelerating. This corresponds to the Child-

Langmuir [29] space-charge flow solution, which is applied to the beam formation

problem in Chapter 4. For a coasting beam, however, the small fields, non-oscillatory

regime does not provide a satisfactory equilibrium.

3.4.3 Small Fields, Momentum Oscillation Regime

Suppose we relax the above constraints somewhat and allow T-' to be oscillatory while

we maintain small fields, i.e., Eqs. (3.43), (3.45), and (3.48). In this small fields,

momentum oscillation regime, Eq. (3.38) can be rearranged as

a--+ a 4 . - = B- - (aYBZ + 0), (3.52)d& flýj ,i 6 f

which implies



d fl-fp2 +  O - O [ f + 2 fly (3.53)

Integrating Eq. (3.53) produces

fdP d- - + 0 Seys + 2-P- ,= (3.54)

d.J d fl a y 2 J Sdes f ly

which can be simplified, using Eq. (3.48), to

a~y 4IS 1 (
+ 0 -  2b-fl + 2 -fly . (3.55)

,f Lb1y2 Sdes b

By conservation of charge, the current is held fixed, and so cannot be oscillatory.

The axial potential term can be oscillatory (as in the case of certain types of

electrostatic focusing), but it is clear from Eq. (3.55) that a net accelerating electric

field (proportional to ('D~) is required to counterbalance the current term. Thus we

conclude that the small fields, momentum oscillation regime can only produce solutions

for accelerating beams of the same type that are produced more simply by the small

fields, non-oscillatory regime discussed in Section 3.4.2. Moreover, we are led to the

conclusion that a useful non-accelerating beam solution will require at least Bz or 5BQ
to be oscillatory.

3.4.4 Oscillatory Residual Quadrupole Field Regime

Suppose we allow an oscillatory residual quadrupole field -BQ while we maintain B,

and T, small, i.e., Eqs. (3.44), (3.45), and (3.47). In this regime, Eq. (3.38) can be

rearranged as

SW + 4 aQ) + 6ay, + (3.56)
f icy impsdz

which implies

4r- -2aAy 41 1 a-~ 1
j2 0 +If - 0( 1 2 ly + 2 fy). (3.57)

+16cBQJ dOes b

Integrating Eq. (3.57) produces



d+ io +
fl bf 27 0 (3.58)

+ .-2

deg d. (bde

which can be simplified, using Eq. (3.44), to

74I

fl (bfly 2
+~oiJ r 2

Sdes b
(3.59)

This is the same result as Eq. (3.55), and thus we conclude that simply allowing an

oscillatory 5BQ, while maintaining a small T and Bz does not permit any qualitatively

new solutions.

3.4.5 Small Axial Field Regime

We try maintaining a small axial field Bz, while allowing p and 5BQ to be oscillatory,

i.e., Eqs. (3.44), (3.45), and (3.48). In this regime, Eq. (3.38) can be rearranged as

d a, 41
_ f Dy"2 +OOBJQ)d! fl (~ --f 2+0

which implies

d0 gaV ( 4 + 1
dyi 6 bTfly +flB,) - des 2

-2
2 -fly

b
(3.61)

After integrating Eq. (3.61) and making use of Eqs. (3.44) and (3.48), we again find

which is the same result as Eqs.

+ Io - O 2b2ýfl + 2T- ,

(3.55) and (3.59). Therefore,

(3.62)

we conclude that

qualitatively new solutions cannot be constructed if we require a small Bz, i.e., Eq.

(3.45).

3.4.6 Oscillatory Axial Field Regime

We consider an oscillatory axial field B7, while maintaining a small p and 5BQ, i.e.,

Eqs. (3.43), (3.46), and (3.47). In this regime, Eq. (3.38) can be rearranged as

uvB)=Rz (y,Y + ,yfl (3.60)

(Tby 2IS



a__ 41 +I -5- H-2I d-y a, aB_
0- + 2° ' 2Bz2 = - aYWBQ + -y 'z , (3.63)

which implies

__ 4I___ 1 [ a-S( -2 +  00 ---B 2 0 2 + -a 2y .8 (3.64)P Zfffy 2 z Z des 2b

Notice that in the coasting beam limit (Doo -+ 0), Eq. (3.64) requires the current
term on its left-hand side to be negated by the axial-field-squared term Bz2 , which is

not possible. The axial field Bz must have a zero-crossing, by Eq. (3.46), and therefore

so must its square Bz2 , however the current term is nowhere vanishing. Therefore we

conclude that 0"O cannot be vanishing in this oscillatory axial field regime.

A novel solution is possible, however, if the axial potential 0"o term is fixed to be

oscillatory in such a way as to negate the oscillatory component of Bz2 , while the

average value of Bz2 is chosen to negate the current term. This type of hybrid

longitudinal magnetic-electrostatic focusing permits very precise control of beam

evolution, however oscillatory electrostatic focusing introduces significant complexity for

device geometry modeling and construction. For this reason, it is not discussed further

in the present work, but remains as a subject for further exploration.

3.4.7 Small Residual Quadrupole Field Regime

The final simple ordering we will consider maintains a small residual quadrupole field

6Be, while allowing p' and Bz to oscillate, i.e., Eqs. (3.43), (3.46), and (3.48). In this

regime, Eq. (3.38) can be rearranged as

dp`,• aY 41 - g _- aBzd- --f 4 + -oo -B =2 aflB a - - (3.65)
fi Yafj Yfl

which implies

/. a2 47 -- 2 O21 F 2

a 4T ' +00 - Bz ( 2bI + -fy]). (3.66)
dz 8 abfl des  b

From Eq. (3.66), we find that a novel solution is possible even in the coasting

beam limit ( 00 --> 0). The oscillating momentum T- can play the same role that the

oscillating axial potential Do" did in Section 3.4.6, namely, the momentum p5 is
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determined to be oscillatory in such a way as to negate the oscillatory component of

Bz, while the average value of B~2 is chosen to negate the current term. This type of

oscillatory magnetic focusing will be further discussed in Chapter 5 as a solution for

coasting elliptic beam transport. In Chapter 6, we also discuss the beam matching

problem which occurs when the axial potential term in Eq. (3.66) is of the same order as

the other terms on the left-hand side.





4 Elliptic Beam Formation

4.1 Overview

Although elliptic beams present numerous advantages, their inherent three-dimensional

nature has made the design of elliptic beam-forming diodes a challenging process, both

analytically and numerically. For the types of applications discussed in Chapter 1, and

consistent with the assumptions introduced in Chapter 2, desirable beam diode

characteristics include uniform current density and parallel, paraxial, laminar flow.

These properties are consistent with the one-dimensional Child-Langmuir [29] solution,

in which the electrostatic potential varies as I oc z 4/ 3 , where z is the beam propagation

distance.

In general, these Child-Langmuir flows are difficult to produce [30]. Recent studies

of 2D and 3D [31] [32] [33] [34] [35] extensions of the Child-Langmuir law in an infinite

applied magnetic field have shown that the beam exhibits significant current density

enhancements near the beam-vacuum boundary. In the absence of an infinite confining

magnetic field, the beam will tend to spread in phase-space, resulting in a degradation

of beam quality. As shown by Pierce [36], it is possible to avoid these effects and to

induce the space-charge flow in a higher-dimensional system to take the 1D Child-

Langmuir flow form by calculating an equipotential geometry that is consistent with the

1D Child-Langmuir electric field within the beam and by constructing external

electrodes lying along the equipotentials as prescribed that focus the beam. Such a beam

can, in theory, exhibit extremely low emittance and laminar flow.

Pierce's approach [36] was to view diode design as an inverse problem - the beam

plasma properties and electric field solution were known (they followed the Child-

Langmuir form), but the boundary conditions (electrode geometry) were to be

determined. His techniques, while valid for an infinite sheet (2D) beam, proved difficult

to generalize to 3D. Advances in numerical computation since then have greatly aided

the forward problem, but not the inverse problem. As a result, for the construction of

physical beam diodes today, designers, guided by rough analytic results, make extensive

use of ray-tracing software such as the 2D EGUN [37], the 3D OMNITRAK [38], and

MICHELLE [39], and particle-in-cell software WARP [40]. In these codes, the boundary

conditions are prescribed first, and then the solver computes the resulting beam profile.

Since these powerful new tools are not directly applicable to the inverse problem, they

must be used as part of a time-consuming iterative optimization process (i.e., guessing a



geometry, computing the beam, adjusting the geometry, and repeating the process) in

order to arrive at an approximate set of external electrodes which support the desired

beam profile. While such optimization problems may be tractable for 2D circular beams,

with the added dimensionality of elliptical beams, they easily exceed computational

limits.

In this chapter, a generalization of Pierce's technique is presented which permits

direct analytic solution of the inverse diode design problem for elliptical Child-Langmuir

beams. In addition to being useful for diode design in their own right, these analytic

results can also be used in conjunction with numerical tools in order to speed the

optimization process or to provide benchmarking comparisons. In order to clarify the

treatment of the elliptic beam diode problem, we briefly discuss some important space-

charge flow results in Section 4.2. We then present the elliptic diode design methodology

in Section 4.3, followed by OMNITRAK [38] simulation results and tolerance studies in

Section 4.4.

4.2 Review of Previous Space-Charge Flow Results

4.2.1 Relativistic Child-Langmuir Flow

We can quickly derive the relativistic formulation for elliptic beam Child-Langmuir flow

by adopting the formalism of Chapter 3 and the ordering of Eq. (3.51). In this regime,
we require

d2•0 4Id = 41 (4.1)

In order to connect our results most directly with the literature, we shall

henceforth use the fully dimensional forms in this chapter. Using Eqs. (2.81), (2.84), and

(2.87) to restore the full dimensionality of Eq. (4.1), and making use of y- 2 = 1 2 , we

find

(Z) 4I (4.2)
-•oz): abcyV7_ l

where, in Eq. (4.2) and henceforth in this chapter, primes shall denote differentiation

with respect to z. If we now make use of the paraxial approximation to write y =0oo
and employ Eq. (2.19), we find



[l -]-141 (Y _ q_00_
abc o mc 2  mc2

Equation (4.3) is a nonlinear ordinary differential equation for the electrostatic

potential that can be integrated numerically with appropriate boundary conditions, e.g.,

space-charge limited boundary conditions with 00(0) = 0 = 'D'00(0). Once the potential is

determined, the other beam properties in the paraxial approximation follow

straightforwardly. Equation (4.3) is accurate within the paraxial approximation and

relativistically correct, including the self-magnetic term neglected by Jory and

Trivelpiece [41]. Nonetheless, it is unwieldy to work with because of the lack of an

analytic solution.

Fortunately, Eq. (4.3) permits a closed-form solution in the nonrelativistic limit

which is applicable to a wide variety of electron diodes and virtually all ion diodes. For

the remainder of this work, we will focus on the nonrelativistic beam formation problem

and defer solution of the fully relativistic elliptic beam Child-Langmuir flow equation

(4.3) for future work. Moreover, since our concern is largely with space-charge limited

diodes, we assume the initial beam velocity is vanishing, i.e. yo = 1.

In the space-charge-limited (,0 = 1), nonrelativistic qb00ooI/mc2 << 1) limit, we can

Taylor expand Eq. (4.3), obtaining

000 - _c -2 2 + -q (4.4)S abc mc2 4mc

Multiplying both sides of Eq. (4.4) by 'oo, we obtain

1 d 2 8I c2 d 5 1 d1 )32 (4.5)
___ ((j :)I- /20(45

2dz abcq 2 dz 12 2mc dz(

which can be integrated to yield

1 D0012 [10 + 5 q1 (4.6)_s1 m(_ Wc)2F1+5 ,~2 abcq 2 12mc

assuming the space-charge-limited boundary conditions

(4.7)



(D'o(0) = 0. (4.8)

To lowest order, we may express Eq. (4.6) as

1 ((' 81 m (O ~Y 2 (49
2 (0' abq (4.9)

which is solved by

-OO = -1 2/3 z 3  (4.10)q(, ab 2

or

GOo =1- 97Jq- 2/3 z43 ,  (4.11)q(, 2)

where the current density is J = I/(zab). Equation (4.11) is simply the nonrelativistic

Child-Langmuir law, which will be derived in a more standard manner in Section 4.2.2.

The second term in the brackets in Eq. (4.6) allows us to estimate the significance of

any relativistic corrections to the nonrelativistic Child-Langmuir law, i.e., if

5qDoo/12mc 2 << 1, the nonrelativistic Child-Langmuir law is a good approximation.

4.2.2 Nonrelativistic Child-Langmuir Flow

We consider two infinite, parallel plates located at z = 0 and z = d and held at fixed

potentials D = 0 and D = (d, respectively. If the z = 0 plate is a charge emitter and

the z = d plate a charge absorber, a 1D laminar, space-charge-limited flow solution of

the nonrelativistic Child-Langmuir [29] form is established by applying the

nonrelativistic cold fluid equations:

S+ V -(nv) = 0, (4.12)
at

-+ (v V)v =- VO, (4.13)
at m

V20 = -4Aaqn, (4.14)



where m is the particle mass, q, the particle charge, n, the number density, and v, the

fluid velocity. By requiring a 1D steady-state solution, all quantities become functions of

z alone. The continuity equation (4.12) implies constant current densityJ^, , while the

equation of motion (4.13) yields conservation of energy. Combining these with Poisson's

equation (4.14) yields a differential equation for the electrostatic potential (D:

2( -4 nJ 2q 0 (4.15)

Equation (4.15) is integrable, yielding the electrostatic potential

( = d zI, (4.16)d

the fluid velocity

v(z) = (2 d ez, (4.17)

the current density

J(= -,2 mc3 Ld 3/2 (4.18)

9nqd'M2

and the number density

n(z) Zd -2 /3  (4.19)
9nqd2  d

While this is a powerful and simple solution for a laminar flow, its infinite

transverse extent makes it unphysical. Nonetheless, if the emitting and absorbing

electrodes are sufficiently large, the central flow profile far (from the edges) will

resemble the Child-Langmuir flow.

4.2.3 Pierce Sheet-Beam Diode

Pierce [72] noted that, while such an infinitely wide flow is not realizable, a portion of

such a flow is, provided one used "electrodes outside of the beam shaped so that they

would fool the electrons in the beam into thinking that they were part of a larger



planar, or cylindrical, or spherical flow." Mathematically, this is achieved by postulating

a beam boundary and specifying boundary conditions there which are consistent with

the Child-Langmuir (C-L) [29] solution. Since the particles in the beam interior are

influenced only by local fields, the C-L boundary conditions on the beam edge are

sufficient to enforce the C-L flow in the beam interior.

For example, the infinite beam solution becomes a semi-infinite one if a beam

boundary exists along the x = 0 plane. Along this boundary, according to the C-L

solution, the electric potential and its derivative are both specified, giving the following

set of Cauchy boundary conditions:

( = 0) = ,d - , (4.20)d43
= 0. (4.21)

x=O

In the vacuum region outside the beam, the potential satisfies Laplace's equation,

V20 = 0. While the interior beam problem is solved by C-L, Pierce's exterior problem

requires solving Laplace's equation in the region outside the beam, subject to the

boundary conditions (4.20) and (4.21) on the beam edge. Solutions to elliptic-equation

Cauchy problems are difficult or impossible to obtain, and standard numerical methods

fail due to the exponential growth of errors which is characteristic of such problems [42].

Pierce [36] saw a solution by inspection, however, writing

1(z, x) = (d Re[z +ixf4/3
L ) (4.22)

= (Dd cost 4,d 3

where z = r cos0 and x = rsin0 . Equation (4.22) for the potential is valid in the

region x _ 0 outside the beam, and electrodes placed along equipotentials of Eq. (4.22)

will enforce the C-L flow on a semi-infinite charged particle stream. In Figure 4.1, we

plot several equipotentials of Eq. (4.22) in the plane (z - x) outside the beam. (The
x = 0 surface corresponds to the beam edge.) Notice that the surface corresponding to
S= 0 is a straight line inclined at the Pierce angle of O, = 3 3/8 with respect to the

beam edge.
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Figure 4.1: Several equipotentials of Eq. (4.22) are plotted in

the plane (z - x) outside the beam. The x = 0 surface

corresponds to the beam edge. Notice that the surface

corresponding to ( = 0 is a straight line inclined at the

Pierce angle of Op = 3 n/8 with respect to the beam edge.

A similar operation can be performed to create another beam boundary (and

corresponding set of electrodes) at some x = Xb <0, which results in an infinitely wide

sheet beam confined in the space xb <x <0. This 2D sheet beam, however, is

unbounded in the y direction.

4.2.4 Radley Cylindrical Beam Diode

Radley [43] resolved the unboundedness problem by finding a solution for a circular

beam of radius a. In the cylindrical coordinates (r,0), one can express the C-L

boundary conditions for the circular beam as

Olr=a = dfz ,3 (4.23)



=0 (4.24)
r=a

for r > a. Note that M/a r=_ = 0 is also a boundary condition, but it is implied by Eq.

(4.23).

A simple solution of the Pierce planar form does not hold in the cylindrical

geometry, since the analog between Laplace's equation and the Cauchy-Riemann

conditions for analytic functions only exists in the 2D Cartesian coordinates. Radley's

method [43] employs a separation of variables technique and an expression of the

potential as a complex contour integral of a sum of Bessel functions chosen to satisfy the

boundary conditions at the beam edge. Rather than review this method in detail, we

present the 3D generalization to the elliptic geometry in the following section and note

where reductions to Radley's form can be made. Nakai [44], attempted to generalize

Radley's technique to the 3D elliptic beam problem, but neglected the full functional

dependence of the angular Mathieu functions, and as a result, arrived at a simple, but

incorrect expression for the exterior potential.

4.3 Elliptical Diode Theory

4.3.1 Overview

We consider a nonrelativistic charged-particle beam of length d and elliptic cross-

section with semi-major axis a and semi-minor axis b, as shown in Figure 4.2. The

charged particles are emitted from a flat elliptic plate, held at potential ( = 0, in the

z = 0 plane and collected by another flat elliptic plate, held at potential ( = DId, in the

z = d plane.

It is useful to introduce the elliptic cylindrical coordinate system (V, , z), i.e.,

x = f cosh(4)cos(+), (4.25)

y = f sinh(ý)sin(i/), (4.26)

where 0 <5 < o is a radial coordinate, 0 < 5 < 2a is an angular coordinate, and
f = ia- is the distance from the center of the ellipse to either of its foci, as

illustrated in Figure 4.2. The elliptic beam boundary is specified by the surface

= o0 = coth-l(a/b).
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Figure 4.2: A beam of elliptic cross-section with semi-major

axis a and semi-minor axis b is shown in the Cartesian and

elliptic cylindrical coordinates. The beam is emitted from an

elliptic plate at D = 0 in the z = 0 plane and collected by an

elliptic plate at 4 = Dd in the z = d plane. The beam fills

the area enclosed by the surface ý = 40. In any z-plane,

lines of constant ý are ellipses, and lines of constant i are

semi-hyperbolas.

To determine the potential distribution in the beam exterior, we solve Laplace's

equation while matching the interior and exterior electric fields on the elliptic beam

boundary. From the C-L solution, the matching conditions on the elliptic beam

boundary imply [45], for 0 • z _ d,

(|=, = (d (4.27)

= 0, (4.28)

where the condition o/I/8|=jo = 0 is implied by Eq. (4.27).

We aim to find exterior equipotential surfaces corresponding to the emitter and

collector potentials D = 0 and D = Od , respectively. If electrodes at the given potentials

are made to lie along these surfaces, they will enforce the conditions in Eqs. (4.27) and

(4.28) on the interval 0 • z • d.

_ " O -- --- .....



4.3.2 Mathieu Series Solution

In the elliptic cylindrical coordinates, Laplace's equation is expressed as

2 (a2 + a2D a2= 0. (4.29)f2(cosh2ý- cos217) C( 2- J 2V (.9

We can write a product solution of the form I(D, q, z) = "(7)O(q/)Z(z) and apply

separation of variables to Eq. (4.29) to yield [45]

d2Z
- k2Z = 0, (4.30)

+ - k k2I 2 cos 2• = 0, (4.31)
+22

d2E ( - - 1k 2f 2 cosh 2 = 0, (4.32)

where k and r are separation constants. Equation (4.30) leads simply to exponential

solutions Z = ekz

Equation (4.31) is the angular Mathieu equation, but we are only interested in

those angular Mathieu functions which have a periodicity of 2a and are even about

q = 0 and I = a/2, since the boundary conditions in Eqs. (4.27) and (4.28) possess these

same symmetries. Such solutions exist only for discrete eigenvalues of the separation

constant , and we adopt the convention of Morse and Feshbach [46] to denote these

angular Mathieu functions by 0 = Se 2n(kf,j) and the associated normalization constants
e - [Se 2 (kf, u)]2du, where n is a non-negative integer indexing the eigenvalues rt,M;n = -~ f

as detailed in Ref. [46].

The corresponding solutions of Eq. (4.32), E = Je2n(kf,7) and = Ne2n(kf, ) are

radial Mathieu functions of the first and second kind, respectively.

We note that, in the Radley circular beam solution [43], there is no angular

dependence. Consequently, Radley finds only two sets of relevant eigenfunctions: the

exponentials and Bessel functions.

Any superposition of product solutions of the separated equations must satisfy

Laplace's equation (4.29). Hence, we write [45]

(D, 1, z) = dkA(k)eýkG(kf, ,i), (4.33)
c



where the transverse dependence is carried in

G(h,4, ') - a,, (h)Se 2n(h,jjJe2 (h, )Ne'2(h,4o)- Ne2 n (he'2 (h, 0)], (4.34)
n=0

we have chosen a4(h) [M 1 2n h Se2 n(h,u)du, and the primes denote differentiation
with respect to 4. The integration contour C appearing in Eq. (4.33) is yet to be

defined (see Figure 4.3). Note that the corresponding expression in Nakai [44] does not

have Se2,(h,rI) and omits the normalization factor a, .

The expansion in Eq. (4.33) assures that (D satisfies Laplace's equation (4.29), and

it is readily seen that the particular linear combination of radial Mathieu functions in

Eq. (4.34) satisfies the boundary condition in Eq. (4.28). Moreover, using the Wronskian

for the radial Mathieu functions and the orthogonality of the angular Mathieu functions,
it can be shown that our definition of a2. assures G(h,7, r0)= 1, which assures that

r0I8,K=o = 0. Note that in the Radley circular beam solution [43], a superposition of
the form of Eq. (16) is still used, but G takes the simple form

G(k,p) = ka [J (ka)No(kr) - N, (ka)Jo(kr)]. (4.35)

2

Boundary condition (4.27) now implies

-Z4 = JA(k)ekzdk. (4.36)Id o

To invert this, we make use of the integral representation of the Gamma function F [47]

to obtain

z4/3 ekzk-7/3dk (4.37)
IF(- -) 2 sin(4) c

where the Hankel contour C is taken around the branch cut defined by the line
- o00 < Re(k) < 0 on the Re(k) axis, as shown in Figure 4.3.
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Figure 4.3: The Hankel contour C in the complex k plane is

taken around the branch cut on the Re(k) axis with

- oo < Re(k)< 0.

Equations (4.36) and (4.37) may be combined to yield

A(k) = dd -4/3 i k-/ (4.38)
F(-- ) 2 sin(AI )

which completes the specification of the potential (D in Eq. (4.33) with the Hankel

contour of Figure 4.3 used for integration.

4.4 Numerical Results

4.4.1 Overview

Having derived an expression for the electrostatic potential external to the beam (the

exterior problem), we proceed to compute the potential outside a 1D Child-Langmuir

flow beam of arbitrary elliptic-cylindrical geometry. Generally, diode construction

requires knowledge of the equipotentials corresponding to QD = 0 and QD = Dd electrodes,
for which we apply a numeric root-finding scheme to the potential defined in Eq. (4.33).

The Hankel contour integral is numerically evaluated employing standard techniques for
the evaluation of the Mathieu functions [42] [48].

In order to verify the theory, the equipotential surfaces computed using this
method are used as electrode boundaries in a 3D cold-beam space-charge-limited
emission simulation using the commercially-available ray-tracing code OMNITRAK [38]. It
is found that beams produced by such simulations exhibit essentially the parallel,
laminar, uniform density Child-Langmuir flow.

Beam laminarity is often characterized by the 4 times rms emittances [49]



ex 4 2X2 (xx) 2  (4.39)

S= 4 y2)2 - ( 2 , (4.40)

where the averages of transverse particle position (x, y) and divergence

(x', y')- (dx/dz, dy/dz) are taken over a slice of the beam at z = d.

For a uniform density elliptic beam, the 4 times rms emittances can be related to

the effective beam temperatures [50] by the relations

e= a f 2 kTeffx'  (4.41)
q go

e Y Ad" (4.42)Od'

While thermal effects are generally not included in the simulations discussed in the

present work, we point out that, in a physical system, the effective beam temperature

cannot be reduced below the intrinsic temperature of the beam emitter which is about

1500 K. The effective temperature is an approximate measure of the beam temperature

growth (beyond intrinsic) associated with non-ideal diode optics. In simulations,

however, the effective temperature can also have a significant component generated by

numerical noise. Uncorrelated emittances add quadratically, thus we expect the intrinsic

emitter temperature to add linearly to the effective temperature predicted by a cold-

beam simulation. Therefore, if a cold-beam simulation predicts an effective temperature

well below the intrinsic value of 1500 K, we conclude that a physical beam will

experience very little temperature growth as it is extracted from the emitter and

accelerated through the diode, i.e., we have an ideal or near-ideal diode geometry.

Note that we use the effective beam temperature (rather than emittance) as a

measure of beam quality in our discussion because it allows for a uniform comparison

with the intrinsic limit imposed by the hot emitter across a wide range of beam

parameters. The intrinsic (emitter-temperature-limited) emittance, on the other hand, is

a function both of emitter size and diode voltage, and thus not as useful for comparisons

between simulations of different beams.

In the following subsections, we consider a few specific diode geometries as

examples.



4.4.2 10:1 Elliptic Electron Beam

In Figure 4.4, we depict the level curves of electrodes (a) D = 0 and (b) D = Dd for a

10:1 space-charge-limited elliptical electron diode with semi-major axis a= 6.0 mm,

semi-minor axis b = 0.6 mm, and diode gap d = 5.2 mm, diode voltage Dd = 2.9kV, and

current density J = 1 A/cm2 . Such a beam may have applications in high-efficiency

microwave tubes, however for high-power or high-frequency applications where greater

current density is desired, further beam compression will be required.

The level contours are roughly elliptical in shape, and the D = Dd surface is more

steeply inclined to the beam than the 1 = 0 surface, as expected from the 2D Pierce

theory [36]. It should be noted that these results differ significantly from those obtained

using the method of Nakai [44]. For example, the z/b = 3.3 equipotential of Figure 4.4a

intersects the x-axis at x/b = 33.2 and the y-axis at y/b = 9.2. The same z/b = 3.3

equipotential, computed using Nakai's expression, incorrectly gives an ellipse which

intersects the axes at x/b = 15.7 and y/b = 12.1, respectively.

OMNITRAK [38] simulation results are shown in for Figure 4.5 for the same

geometry as in Figure 4.4, using a variable-resolution computational mesh with x-

spacing of 0.1 mm for 0 • x • 8mm and 0.5 mm for 8 < x 5 15 mm, y-spacing of 0.05

mm for 0y<l5mm, 0.1 mm for 15y_5mm, and 0.4mmfor 5<y512mm, and z-

spacing of 0.05 mm for 05 z 50.8mm, 0.02 mm for 0.8 5 z 51.2mm, 0.05 mm for

1.2 < z 5 2mm, 0.1 mm for 2 < z 5 5.7mm, 0.05 mm for 5.7 5 z < 7mm, and 0.1 mm for

7 5 z 5 10mm. The mesh resolution is higher in x and y across the cross-section of the

beam, and in z where the beam intersects the emitter and collector. The 3D electrode

structure was linearly interpolated between the equipotentials in Figure 4.4, each

sampled at 46 points evenly distributed in r, for 0 5 < • r/2. Nearby computational

nodes are shifted to conform to the electrode surfaces using the OMNITRAK surface flag.

Neumann boundaries were used for the symmetry planes of the beam as well as for the

outer boundaries of the simulation region, which is shown in Figure 4.5 along with

computed equipotentials and particle trajectories projected to the planes x = 0 and

y = 0. The entire simulation runs in approximately 30 minutes on a 3 GHz personal

computer.

The beam produced by the simulation is essentially the parallel, laminar, uniform

density Child-Langmuir flow, as verified by beam temperature measurements of

Teo. = 6 K and TeI. = 27 K. Since the simulated temperatures are small compared to the

intrinsic limit of 1500 K, we can infer that the emittance of an elliptical diode



constructed using the above prescription will approach the theoretical limits imposed by

finite emitter temperature.
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Figure 4.4: Level curves shown at various values of z for

equipotential surfaces (a) I = 0 and (b) ( = (d of a 10:1

space-charge-limited elliptical electron diode with semi-major

axis a = 6.0 mm, semi-minor axis b = 0.6 mm, and diode gap

d = 5.2 mm.
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Figure 4.5: A 3D OMNITRAK simulation of a 10:1 space-

charge-limited elliptical electron diode with semi-major axis

a = 6.0 mm, semi-minor axis b = 0.6 mm, and diode gap

d = 5.2 mm. Particle trajectories and equipotentials are

shown in the planes corresponding to (a) x = 0 and (b)

y= 0.



4.4.3 3:2 Elliptic Heavy Ion Beam

In Figure 4.6, we depict the level curves of electrodes (a) D = 0 and (b) D = 0d for a

3:2 space-charge-limited elliptical Na' diode with semi-major axis a = 6 cm, semi-minor

axis b = 4cm, diode gap d = 33.5 cm, diode voltage 1 d = 1.0 MV, and current density

J = 10mA/cm 2 . Such a beam could find application in ion beam accelerators for high-

energy density physics research.

C.

x (cm)

Figure 4.6: Level curves shown at various values of z for

equipotential surfaces (a) D = 0 and (b) D = •d of a 3:2

space-charge-limited elliptical Na' diode with semi-major

axis a = 6 cm, semi-minor axis b = 6cm, and diode gap

d = 33.5 cm.



4.4.4 6:1 Electron Beam with Tolerance Studies

4.4.4.1 Simulation Overview

In Figure 4.7, we depict the level curves of electrodes (a) 0 = 0 and (b) D = Dd for a

6:1 space-charge-limited elliptical electron diode with semi-major axis a = 3.73mm,

semi-minor axis b = 0.62 mm, diode gap d = 4.11mm, diode voltage Dd = 2290V, and

current density J = 1.5 A/cm2 . Such a beam may have applications in high-efficiency

microwave tubes. However, for high-power or high-frequency applications where greater

current density is desired, further beam compression will be required.

As with the earlier example, the surfaces computed in Figure 4.7 are used as

electrode boundaries in a 3D cold-beam space-charge-limited emission simulation using

the commercially-available ray-tracing code OMNITRAK [38]. As shown in Figure 4.8, the

beam produced by the simulation is essentially the parallel, laminar, uniform density

Child-Langmuir flow. The OMNITRAK simulation predicts the effective beam

temperatures Tef,, = 17 K and Teff,, = 100 K, which are well below the intrinsic thermal

limit (1500 K), thus further reduction of the beam temperature in the simulation is not

physically significant.

Whether a diode can approach the intrinsic thermal limit depends on its geometric

design as well as its tolerance to perturbations and limitations of the sort likely to be

encountered in a realistic device: finite extent, part misalignment, and allowances for

thermal isolation. In the next several subsections, we examine each of these issues and

also estimate the effect of a finite emitter temperature on the beam transport.



Figure 4.7: Level curves shown at various values of z for

equipotential surfaces (a) D = 0 and (b) D = 0d of a 6:1

space-charge-limited elliptical electron diode with semi-major

axis a= 3.73 mm, semi-minor axis b = 0.62 mm, and diode

gap d = 4.11 mm.



Figure 4.8: Results of an OM

elliptic electron beam dio

a = 3.73 mm, semi-minor axi

d=4.11mm, and diode vol

trajectories are projected to the

and x = 0 (below) in the figure.

NITRAK simulation for a 6:1

le with semi-major axis

s b = 0.62 mm, diode gap

tage <D = 2290V. Particle

center planes y = 0 (above)

4.4.4.2 Sensitivity to Finite Extent of Electrodes

The theory of Ref. [45] computes equipotentials extending infinitely far from the beam.
In practice, electrodes lying along these equipotentials will have a finite length, and it is

important to assess the impact of the edge effects thus admitted on the beam. Since the

potential satisfies Laplace's equation in the free-space region outside the beam, we
expect that electrostatic potential variations caused by localized perturbations of the
electrode geometry will be exponentially decaying with distance from the perturbation

point.

We test this hypothesis by performing several cold-beam OMNITRAK simulations for
the 6:1 electron diode example where the radial extent of the electrodes is varied and

~_
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the Neumann boundaries at the edge of the simulation region are kept fixed. The

effective temperatures at the anode are shown as a function of electrode radius in Figure

4.9. The dashed line in Figure 4.9 indicates the intrinsic temperature 1500 K, and the

figure clearly shows that the beam temperatures do not exceed intrinsic thermal levels

unless the focusing electrodes are curtailed below a 6 mm radius.

We also notice that, because the effective temperatures do not reduce as the

electrode radii are increased from 8 mm to 13 mm, these temperatures (Teff = 17 K and

Tew,y = 100K) effectively represent a noise floor for our simulation. Further reduction is

not possible, given the limits imposed on particle number and mesh resolution by the

finite computational memory.

d
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Electrode Radius (mm)

Figure 4.9: The effective beam temperature Ten is plotted as

the termination radius of the beam-focusing electrodes is

varied. The circles indicate Te,,, while the squares indicate

Tek, . The dashed line indicates the intrinsic temperature

1500 K.
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4.4.4.3 Sensitivity to Part Misalignment

While the electrode extent study establishes the insensitivity of the beam quality to

geometry perturbations far from the beam, we must allow for machining tolerances in

the cutting and alignment of parts close to the beam as well. Several cold-beam

OMNITRAK simulations were performed with small shifts in the emitter stalk position.

Results for beam temperature variation with respect to transverse emitter stalk

misalignments are shown in Figure 4.10, while results for beam temperature variation

with respect to longitudinal emitter stalk misalignments are shown in Figure 4.11. The

dashed lines in both figures indicate the intrinsic temperature 1500 K.

Particular sensitivity is observed with respect to transverse misalignments in

Figure 4.10, however we believe that this effect is largely a numerical artifact resulting

from the broken symmetry between the computation grid and model geometry when

subject to transverse perturbations. Nonetheless, transverse emitter shifts of less than

0.04 mm can still be assured to yield a high-quality beam with an effective temperature

near the intrinsic value of 1500 K.
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Figure 4.10: The effective beam temperature, Ten is plotted
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The effective temperature is much less sensitive to symmetry-preserving

longitudinal emitter shifts in the negative z-direction as seen in Figure 4.11. The

positive z shifts lead to a greater effective temperature, largely because of enhanced

edge emission. A slight depression of the emitter to a position near z _-0.1 mm ensures

effective temperatures near the intrinsic limit for an alignment tolerance of

Az = +0.1mm.
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Figure 4.11: The effective beam temperature, Ten is plotted

as the emitter is shifted along the longitudinal coordinate z.

The circles indicate Teff,, while the squares indicate Tff,y.

The dashed line indicates the intrinsic temperature 1500 K.
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4.4.4.4 Sensitivity to Thermally-Insulating Gap

A hot thermionic emitter is often thermally isolated from the focus electrode by a

vacuum gap. Several cold-beam OMNITRAK simulations were performed as we varied the

elliptical gap width by a single parameter, 6, which represents the difference between

the semi-major/minor radii of the inner edge of the focus electrode and the semi-

major/minor radii of the emitter. The results, shown in Figure 4.12, generally indicate

an effective temperature increasing with gap width, as expected. We note, however, that

all the measure temperatures are below the intrinsic limit of 1500 K denoted by the

dashed line in Figure 4.12. We conclude that the beam quality is insensitive to thermal

gap widths of less than 0.25 mm.
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Figure 4.12: The effective beam temperature, Teff is plotted

as the vacuum gap thickness 3 q around the emitter is varied.

The circles indicate TeffX,, while the squares indicate Teff,.

The dashed line indicates the intrinsic temperature 1500 K.
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4.4.4.5 Warm Beam Simulations

While all the previous simulations have been performed using cold beams (zero initial

thermal spread), we are able to assess the effect of a finite emitter temperature on the

diode by artificially imposing an angular spread on the initial particle velocities using

the OMNITRAK flag dtheta. Since the particles are emitted uniformly per unit solid angle

up to an angle AO with respect to the surface normal, this yields a mean square

divergence given by

AO 2r

d0 sin0 jdV(cos (psin 0)2

(x12 0 o0
/AO 2•r

PdOsin Ofdp (4.43)
0 0

1 A
=-(2 + cos AO)sin2 A).

3 (2

Using Eq. (4.43) along with the defining relation of the rms emittance, Eq. (4.39),

and its relation to temperature, Eq. (4.41), we are able to translate the initial angular

spread to an effective emitter temperature To, finding

TO =2qd (2 + cos A0) sin2 -•.• (4.44)
3k 32

We perform several OMNITRAK simulations and measure the effective temperature

of the beam at the collector Tff as a function of the effective emitter temperature TO.

Results for several cases are shown in Figure 4.13. The dashed lines indicate the intrinsic

temperature 1500 K. An ideal diode geometry simulation would have negligible

temperature growth associated with beam optics or numerical noise, and thus it should

produce effective temperatures that lie along the Teff = To line, indicated by the diagonal

dotted line in Figure 4.13. We see that the noise floor of the simulation prevents the

results from adhering to the Tef =T o line for very low values of To, but as To

approaches and exceeds the intrinsic temperature of 1500 K, temperature growth

associated with diode geometry is negligible.
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4.5 Summary

We have obtained a novel relativistic generalization of paraxial, elliptic beam Child-

Langmuir flow. In the nonrelativistic limit, we are able to define and analytically solve

an inverse problem to determine the electrode geometries that support high-quality

elliptic beam formation for use in vacuum electron devices and particle accelerators. 3D

simulations have been performed which support the theory, and the sensitivity of the

electrode specification theory to finite emitter temperature and to physical geometry

and machining limitations such as finite extent, part misalignment, and allowances for

mechanical and thermal stresses is studied. An achievable tolerance range is established

for low-emittance, low effective-temperature beam generation.
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5 Elliptic Beam Transport

5.1 Overview

Cost-effective, laminar transport (parallel focusing) of space-charge-dominated, large-

aspect-ratio, elliptic beams is a long-standing problem that has stymied efforts to build

devices that can make use of the geometric advantages of these beams. The conventional

approaches to magnetic focusing for circular beams are not easily transferable to elliptic

beams. Alternating-gradient quadrupole magnets have been used since the 1950s to

focus charged-particle beams in particle accelerators (see Ref. [51] and references

therein). In such focusing lattices, the beam semi-axes undergo large-amplitude

oscillations, and as a result the beam envelope is, on average, circular - not elliptical,

when the beam is space-charge-dominated. Uniform solenoidal magnets are often used to

provide beam focusing in conventional microwave tubes [52], but their size and weight

can be prohibitive. Moreover, for elliptical beams, the diocotron instability [23] [53] can

cause the beam to disrupt in a solenoidal field. Circularly symmetric periodic solenoidal

fields can be generated with permanent magnets that are smaller and more light-weight

than uniformly solenoidal magnets and can provide comparable beam focusing for

circular beams [52], however their azimuthally symmetric fields cannot balance the

asymmetric space-charge forces of an elliptic beam, and the consequent beam twisting

[16] and deformation is often not tolerable.

Alternative focusing methods have been developed for asymmetric beams. Periodic

transverse (wiggler) magnetic focusing [21] [22] has been used for free-electron laser

applications, but it can lead to excessive centroid motion for space-charge-dominated

beams [14] [23] [24]. Promising results have been obtained through recent studies of

period-averaged two-plane focusing in periodic permanent magnet (PPM) and

quadrupole magnet configurations for space-charge-dominated [14] [15] [23] [53] [54] and

emittance-dominated [14] [55] elliptic beams. Significant envelope oscillations and

emittance growth are sometimes seen and may be rectified by a more thorough

treatment which does not employ period-averaging and self-consistently includes the

effect of beam twisting and evolving self-fields which are neglected in the two-plane

approximation. Recent efforts in this vein [19] have led to a deeper understanding of

space-charge-dominated elliptic beam propagation in a non-axisymmetric PPM field.

Pure non-axisymmetric PPM focusing, however, is unsuited for sheet-like elliptic beams
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with very large aspect-ratios as magnetic field nonlinearities in the wide tails of the

beam become appreciable.

In this chapter, we develop a self-consistent solution for the focusing of coasting,

sheet-like, space-charge-dominated elliptic beams using the most general formulation of

centroid-preserving linear fields - a hybrid of non-axisymmetric PPM and quadrupole

magnets and/or electrostatic quadrupoles suggested by the ordering in Eq. (3.66) when

the axial potential 'Oo is uniform. The desired elliptic beam profile has very nearly

constant semi-axes, i.e.,

a= ades +5 , (5.1)

b = bdes + b, (5.2)

where ades and bdes are the desired semi-major and semi-minor axes,

5a << Zdes, (5.3)

b << bde. (5.4)

It also has a large aspect-ratio, i.e.,

des << des, (5.5)

a small twist angle, i.e.,

0 << 1, (5.6)

and negligible velocity spread (emittance).

Note that we have set up the problem in a manner similar to Chapter 3, including

use of the overbar notations to denote dimensionless variables and parameters. In this

chapter, however, we concentrate on laminar beam dynamics rather than single particle

dynamics. Because we address only parallel coasting beam transport in this chapter,

unlike the more general approach of Chapter 3, the desired beam envelopes are assumed

not just slowly-varying, but constant, i.e.,

des = 0 = dbde= s (5.7)
dT dý'

and the axial potential is constant, implying



dD = 0 d = = 0 = d (5.8)
dY dT d!

We adopt the small residual quadrupole field regime of Section 3.4.7, which implies

that the axial field B (generated by the non-axisymmetric PPM magnets) should be

oscillatory while satisfying Eq. (3.46). This condition can be satisfied by taking an

oscillatory form for B. such as

B () = Bo sin(k ), (5.9)

where

- 2xk 2r (5.10)
S'

and provided that

a~b 1
-- 7 << -=. (5.11)

Equation (5.11) is implied when the parameter S is regarded as an arbitrary

dimensionless wavelength that allows the axial magnetic field profile to satisfy the

constraint equation (3.46) for the small residual quadrupole field regime. Later, in

Section 5.6, we will derive additional constraints on S.

We also assume (pursuant to the discussion in Section 3.2.2) that the aspect ratio

parameter of the magnetic field is constant and small, i.e.,

IrmI << 1. (5.12)

Equation (2.104) for the particle distribution evolution can be integrated if the

starting values for the elements of the distribution matrix M and the applied fields are

known. We have shown, in Section 2.6.4, how knowledge of the envelope quantities

implies knowledge of the distribution matrix elements, and so in this chapter we

concentrate on finding a self-consistent set of envelope quantities and applied fields that

support the desired elliptic beam. We begin in Section 5.2 by relating particle trajectory

perturbations to beam envelope perturbations. In Section 5.3, the trajectory

perturbations and envelope twist angle 0 are determined in terms of the desired elliptic

beam envelope parameters. A similar procedure yields the residual quadrupole magnetic

field 6BQ in Section 5.4, the longitudinal magnetic field strength B0 in Section 5.4.3,



and the envelope semi-axis perturbations &T and eb in Section 5.5. A number of

ordering constraints which arise in the analysis are discussed in Section 5.6. With these

results, we have sufficient information to integrate Equation (2.104) for the evolution of

the particle distribution, and some numerical examples are explored in Section 5.7.

5.2 Envelope Perturbations

Particle trajectories in the desired elliptic beam can be written using Eq. (3.1) as

(Ty) = (des,, des)+(65,5yV), (5.13)

where we assume the desired trajectories are constant, i.e.,

dr dzd- _s- 0, (5.14)

and the perturbations are small

5x << -des, (5.15)

6Y << Yds. (5.16)

Since we are neglecting velocity spread, all beam quantities are functions of

position only, thus the particle trajectory perturbations can be further expanded as

6 = Y + V6 (5.17)

6 = Y + V . (5.18)

These particle trajectory perturbations can be related to the envelope perturbations 6-,
Ab, 0 by considering the equation for the bounding ellipse of the desired particle

distribution in the phase space (Y, y),i.e., by analogy to Eq. (2.109),
-2 -2

1= 2de + .d (5.19)
32 b

des des

Note that the desired twist angle is 0 = 0, hence the simple form for Eq. (5.19).

Substituting Eqs. (5.13), (5.17), and (5.18) into Eq. (5.19) and collecting terms, we

find



2 26, +6Y-2 + 6-,
1=z +-2 b2

Zdes Fdes

V Y

-2
ades

YX - -•W•• W
des

(5.20)

+2 1- 26Y, + .5YY + -T-

des des)

which can be compared with the matrix form of the equation for the ellipse (2.108) to

yield

bdes 2y +ades Y
M7 = - Y- y + xy(5.21)

(6- _,2 - - a 6es2 -

6YX~c - 6TY6WX - 6VY + '5X- 6- Y
My =

-des 2 +de2(1 2 )2

ad., yX des•(1 5
- -( i - TY - 6 + 66y,)2.

We use Eqs. (5.21), (5.22), and (5.23) to find the envelope parameters i,

0 through Eqs. (2.119), (2.120), and (2.121). After some simplification, this allows us to

express the envelope perturbations, to lowest order in each

perturbations, as

6a = ades xX
+

S= bdases y -

of the trajectory

1 bde + des8Yx + 2 s

2-2 22 ades - bdes

1 bdes 2 + do 2+ 2 • d+
2

(5.24)

(5.25)-2 2s
'de s des

0 = ad1Yx ±
-2 2

des d- es

(5.22)

(5.23)

b, and

(5.26)

.M 99
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5.3 Trajectory Perturbations and Envelope Twist Angle

5.3.1 Wide-Dimension Trajectory Perturbations

An easy path to determining the wide-dimension trajectory perturbations b. and 6Y
is suggested by the results of Section 3.2, in particular, Eqs. (3.14), (3.18), (3.21), and

(3.22). We make the identifications

6YQ = Y6x , (5.27)

~YZ = Oy . (5.28)

Substituting Eq. (5.27) into Eq. (3.21) and making use of Eq. (3.18), we find

d2 _ A 6 BQ, (5.29)
dz2 - 7fl

where we used the fact that 7yf and Y- =_e are nearly constant. Because the residual

quadrupole field 3BQ has not been determined, we will return to solve Eq. (5.29) in

Section 5.5.

Substituting Eq. (5.28) into Eq. (3.22) and using Eq. (3.14), we find

Axa (1 -rm)+ 1 z(.o)(-aH_)(1. - (.o)]}. (5.30)

We substitute Eq. (5.9) into Eq. (5.30), set Yo = 0, and specify the initial condition

pz(O)= 0 to obtain

d4 % (1 - rm)sin(k ), (5.31)dz rp

and the solution

YX, = - (1 -rm)cos(k), (5.32)

where the additive constant X, appears due to the integration that resulted in Eq.
(5.32) and is determined by the initial conditions. Since we seek solutions which

minimize trajectory and envelope perturbations, we require XY = 0, yielding



,~ - (1-r )cos(z).

Equation (5.33) will be used in Sections 5.3.2 and 5.3.3.

5.3.2 Narrow-Dimension Trajectory Perturbations

We find the narrow-dimension trajectory perturbations in a process analogous to that

for the wide-dimension perturbations in Section 5.3.1. Let us consider the equation of

motion in the short dimension (3.32), which can be expressed as

=- aIy 41

-y fl ( fl7,2

(5.34)
dB_

- J

Rearranging terms in Eq. (5.34) and using Eqs. (3.21) and (5.27) to rewrite TQ, we find

dp-,l aVY( 41Y = _ -- -
+ aYafl ( l d! d!

4BY e-~,~sBx

+8'~:P·~8~ ZdPB )
which we simplify using Eqs. (2.5), (2.34) for the electrostatic terms, and the small angle

approximation 0 << 1, to yield

a, R2(1
dz_ aA 41dT JJ wibfly 2

DQ tan 20Q
dB
diz

(5.36)
- &Bd

dT

where use has been made of ID- = TI, since the beam is not accelerating.

By analogy to the procedure of Section 3.2.1, Eq. (5.36) motivates us to write

d!Th .d2

=•yf I dx
+Y d22

+ y , (5.37)

(5.35)

where

(5.33)

•.•_x _ ¢ + n2•fo
4- 1 -. l

agr 4 a S-b ~v+ a _ 1Z -ý _fi iff(i + b 72

+P6Bq aB,-kBs, ·ia+MRB a y,9z[If(1 -r) +

- ~)M )+B



_ p a (Z + b 22

d2 yy = aY (
d52 'fl

+ Qtan 20,
flIl

41
iff'q2y 2

d+r

-rm)+ sQ .

To first order in the perturbed envelope quantities, Eqs. (5.38) and (5.39) become

a,-[ 40(ades
Yfi Ladesbdes (ades

- des)

+ 2•s}, 2
+6Q tan 20o+ + krmBo cos(k )+ AB d1 ' (5.40)

a, d 41
yf l adesbdesy 2

1 de - bde•des-
2 (1-- o- (i-

2py
m)[ - cos(2ý)]+ a,

where we have made use of Eq. (5.9) for the axial magnetic field B z.

Because the residual quadrupole field 6BQ is still unknown, we will return to solve

Eq. (5.41) in Section 5.5. Proceeding with Eq. (5.40), we make use of Eq. (5.26) for 0,

obtaining

a, 4I(Zdes2 x des2

f adesbdes (des + bdes 2y2

+ , tan 20Q+

(5.42)

+Bo [kr cos(# )+ dd sin(kz .
dz

After some simplification, we can express Eq. (5.42) using Eq. (5.33) as

, tan2 0, a, a I
+ +-

)(y! cos(kJ
ky/3

0 k dt5Y sin(kz)
Sko2 d-

r 2
1-rm Io2

m ý0

where we have defined

and

+ B, (5.38)

d 2-

(5.39)

and

d2 2V.

dX2
(5.41)

d26
dT2

d26 W _
dr2

des
2 '

(5.43)

B-z (1aAR

I

_k02 V



2 4 ajiades (5.44)

70 '•(es(des + bdes•

We can proceed to solve Eq. (5.43) for 6b7, if we assume that the dsId/dT term

appearing on the right-hand side of Eq. (5.43) is negligible. This is verified for cases of

interest in Appendix C, but relies on a result for bJ derived in Section 5.5. Neglecting

this term, we can integrate Eq. (5.43) to find the solution

k2 0 d l2 ýcos(

S 2 _ k2 )a'- COS )
Ux -2_m) - Gm 0 des

k des (5.45)
+ x cos(•0 +)- t 2

where the constants YX and % are determined by initial conditions. Notice that a

destabilizing resonance is implied by Eq. (5.45) when E2  2 . However, we will show in

Section 5.6 that this resonance is avoided by the condition

k2 << T2, (5.46)

which is implied by Eq. (5.4), i.e., the requirement that envelope oscillations in the

narrow dimension of the beam remain small.

In order to minimize the long-wavelength trajectory oscillations with wavenumber

k0, we require Y, = 0. Moreover, we see that the electrostatic quadrupole rotation angle

OQ should be such that tan O = 0 in order to eliminate the constant part of the

trajectory displacement in Eq. (5.45). With these simplifications, we find

6 YX (1- - 2 cosPkF). (5.47)- desk 2 ) kyf

If we retain only the lowest order terms in the small quantities r, bes 2/ades2 , and

k2/2 , Eq. (5.47) becomes

aABO r' -m , cos(QF). (5.48)
-2

Note that while we know each of the parameters r., des /ades 2 , and k02/k 2 to be small
compared to unity, we make no assumptions regarding their relative ordering. Therefore,

as we proceed, we shall retain the lowest order terms in each of the small parameters.
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5.3.3 Envelope Twist Angle

The envelope angle can now be computed using Eqs. (5.26), (5.33), and (5.48) as

2 2 -2
0 aB  ad des 1m  2 + cos(ki), (5.49)

which becomes, to lowest order in the small quantities r,, bdes2 / , and k2 /ý2

-2 2

0 ao ades des Cs . (5.50)
= "fl -j 2 - rrn - 2

des  des  ades

If we now introduce the notation

_ 2
es - - (5.51)

- r2m,
ades

then Eq. (5.50) becomes

-2

0 --2d ad B cos(kz). (5.52)
Tes - bd2es kEY

Note that with the proper choice of the aspect ratio parameter of the magnetic

field, i.e.,

bd2 (5.53)
rm = rcrit -- 2 - 2 , (5.53)

we force er = 0, making the envelope twist vanish. We make this observation

parenthetically, however; we shall continue to treat the aspect ratio parameter of the

magnetic field rm as an independent small parameter.

5.4 Applied Fields

5.4.1 Relations for Envelope Perturbations

With the results of Section 5.3 in hand, we derive some intermediate relations for the

envelope perturbations, which we will need in order to determine the residual



101

quadrupole field 3BQ in Section 5.4.2. For the semi-major axis, we use Eqs. (5.24),
(5.33), and (5.48) to find

ades

1 aBo

2 des 2 - bdes2) k~fl )
cos2(k)

(2d 2 2

x des - + -ddes d m - 22 2T
S ades i

(5.54)
-- 2des (1-r m bde 2

ades k

T ransforming the cosine term and retaining only the lowest order terms in the small

quantities rm, des ades, and k 2/k2 in Eq. (5.54), we find

-y -ades 2 _ d
ds - 2 4 2 1 e2-- - 4-des- _ -k7) des

- 2rm)[1 + cos(2 )] (5.55)

Similarly, for the semi-minor axis, we use Eqs. (5.25), (5.33), and (5.48) to find

-1

' 2des2)
% cos2 ( )

ýYf k,)
2d 0 d

- 2 2 d 2~
ades ades2k

(5.56)

Transforming the cosine term and retaining only the lowest order terms in the small

quantities rm, es2/des 2 , and k 2/k2 in Eq. (5.56), we find

-bdsybdes Y -

-2 2 -g 2
ades 2 I1 + cos(2k)].

4 ades des 2 k( / )(des

(5.57)

Note that for r,= =rrit _bd e/ades , we have

-as
kdes z

- --

-- -_F-• ( 1)21 + cos(2 )].
bdes 4 ~2 d )

(5.58)

We are now ready to compute the residual quadrupole field 6Bq, which we will need in

order to solve Eqs. (5.29) and (5.41). Let us recall that 6 BQ is defined in Eq. (3.17), i.e.,

6b

bdes

5.4.2 Applied Quadrupole Fields

x ( 1 r-  d e 2  + es 2
- de, des ( r
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2P R- + -21 -7 -cos 20
bpy a +b

(5.59)

for a non-acclerating beam with 4o = 0. Expanding Eq. (5.59) to first order in the

perturbed envelope quantities, we find

-- 4 2 a-
-ad+6b +02 ades - bde,
des +bdes bdes

which can be expressed using Eqs. (5.50), (5.55), and (5.57) as

6BQ es (- I -
ades des + des2 2

2ades des 6X - des

ades + bdes 'des + bdes

2des + des d es2 1 + cos(2k)]( No - 2

- 2 2 - 2
des +des 4des des des

des ades2 1 + COS 2k B d0  s 2
+ des ades 2des -+bds2 ) B des2

4 - -des

+ des - bdes d[1 + cos(2~i)]B 2

des 2 ades O •des •2 •k ' •

+rm2

M2
bdes 2

d 2
ades

After some simplification where we retain only the lowest order terms in the small

quantities rm and bde2 /des2 , we separate out the constant and oscillatory terms in Eq.
(5.61), i.e.,

2 - 41 2

P des des + des 22

-
)2C o

1 - )

3
ad s a

(ades + bdes Xa"des

~1

-des2)
+ 4I Bo

ds, des +d s •des2 , kyfl
S3

ades U

ades + des aZ1des
(5.62)

des

+ 2des +desb + des
ades + bdes ades + bdes

where we have defined the shorthand

(5.60)

- 2rmj

(5.61)

BQ B +

+(BR

I
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-2 2

r bdes  rm adesTr  (5.63)
2des2  m 2bde

We can use Eq. (5.62) to determine the applied quadrupole fields, (BQ + 2Q/fl).
The simplest solution (corresponding to a single, uniform physical magnet and/or

electrodes) is obtained when the applied quadrupole fields are constant. One may also

make use of a plurality of similarly-aligned magnets, in which case BQ will be largely

constant with some slight longitudinal variation, or a beam tunnel with some axial

variation, e.g., a rippled waveguide, in which DQ will also be largely constant with some

slight longitudinal variation. For calculation purposes here, we shall assume the

quadrupole fields are constant, but the slightly-varying case can also be treated without
significant added complexity. If the applied quadrupole fields are constant, all the terms

appearing on the first line of the right-hand side of Eq. (5.62) are constant in , and we

can minimize the residual quadrupole field (i.e., the perturbation) 5BQ by choosing the

applied fields to satisfy

2 -41 B0  adA 22 (5.64)BQ +4 1- 2
es(des des 2 des +bdes .es2  des

which leaves

4I •go 2  a.d 3
6B1 + ad F 2 cos(2ký)

desy , des yes d des des
e +ds Ld(5.65)

2 des + bds des+ _ 6X. + _ T
ades + b des + bdes

We have now determined the magnitude of the applied quadrupole fields (including

lowest-order corrections) in Eq. (5.64) which supports our desired elliptic beam. By

minimizing the residual quadrupole field 5BQ, we have minimized the magnitudes of the

trajectory perturbations 6cY and 6y, which appear in Eq. (5.65). Moreover, we have

obtained an expression for the residual quadrupole field 5BQ in terms of the trajectory

perturbations 6Y and 6W which couples Eqs. (5.29) and (5.41).
For a focusing channel with only an applied quadrupole magnetic field (i.e.,

without an applied quadrupole electrostatic field), Eq. (5.64) yields
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B es (ieidesdes 2Y 2
2 -• 3

1 aABO +Fades
h k/)des des e2des2

which will be utilized in the numerical examples presented in Section 5.7.

5.4.3 Applied Longitudinal Magnetic Field

Before we can solve Eqs. (5.29) and (5.41) for the trajectory perturbations 6T and 6b,,
we must determine the amplitude of the axial magnetic field. We use a method similar

to that used to obtain the quadrupole field in Section 5.4.2. Substituting Eq. (5.65) into

Eq. (5.29), and Eq. (5.29) into Eq. (5.41), we arrive at

- aZ 41

3dies (3des +tdes J3y

2

-( qYBo1

- 3ad., a

des des des
_ 2 COs(2z)

des2

2+ des +_bde
ades + bdes

+ _bdes 6 ,
-des +bdes.

rm 1 - cos(2ik)].

We now substitute Eqs. (5.55) and (5.57) into Eq. (5.68) to obtain

d•2, 4 - by a es- ••0 0 - ,,, -cos(2T2 &2 'Tdes bdesi3 3 ( x 2fiy 2
4Ir% aZdes 12+ COs 2kOABo bdes

desdef 3 4-des2
des 2 (ad.2

- 2 r

(5.68)

(5.69)

4 ~ n (5 2 - \ 2 m2
des 1+ cos 2 k ,B0  bdes 2

4des -2 des 1k 2

which, retaining the lowest order terms in the small quantities rm
simplifies to

and des ad 2es

104

(5.66)

d26E _

d12

and

(5.67)

+ - 2 4ad,
adesbdey 

3

es 6be
des des 2fl2y2

41~4

adedefsid 3

I
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41a,
idesbdet 3

2R2
0202(1 -rm)2fl2 2

(5.70)4 ra, r aB g cos(2KT)
aEf-dfiy 2 kfly

_ _ 7:
aesdefi3 3( + ).

The first line of the right-hand side of Eq. (5.70) is constant, and by requiring it to

vanish, i.e.,

+ m(a- •A
2 kIy

(5.71)a,2 (1- ),2fly2

we can minimize the trajectory perturbations. This gives the optimal amplitude of the

axial magnetic field,

8I 1 - r
desbdesflYal

81 r( a -
adesbdefya 2 kfy -

We have now determined the applied axial field magnitude (including lowest order

corrections) in Eq. (5.72) required to maintain our desired elliptic beam profile.

5.5 Envelope Perturbations

5.5.1 Normal Modes

Employing Eq. (5.72) to negate the constant term, Eq. (5.70) becomes

rHi+ )21
(kfiy )

cos(2iJ-)- (6c + 69,

Before we can determine the detailed form of the envelope perturbations, we must solve

Eqs. (5.67) and (5.73) - a pair of coupled, driven, second-order equations in the

trajectory perturbations 6, and 6gV.

In order to find the normal modes of oscillation, we first examine the homogeneous

versions of Eqs. (5.67) and (5.73),

d26~ _
d12 -

(5.72)

+ ) I 4a,
adesbdefY

(5.73)

-0 = 4ral 1jLes~des~ 3

d2(

l + q a, krBo1+ LN2
2 ( fy )

2R27(1
_VY



-~s7bs+ds33a,41 M,,, + ý,e., be 6TZ- ( + (2"es + desdeades + es bd 3y3 Kde bdes +
+ bdes 15r
ades + bdes

+ WdC =- 4d, C
3des ( + 6gy .

Notice that the form of Eq. (5.75) immediately provides the wavenumber of one normal

mode,

_2 41a.
+ adesbdefsf

-(des + es) 2
2 0d

Zdes
(5.76)

and the eigenvector for the other mode

(5.77)

which has some corresponding wavenumber k .

We determine the wavenumber _ by examining Eq. (5.74) in the eigenmode

corresponding to the eigenvector (6x , c)j. In this

d2.' x/d2 = 4 26Y and 6& = -5Y into Eq. (5.74) to find

eigenmode, we substitute

2• -a,41 d +- 2 - 4  i 2a(des + es

des des + kbes Y 3 ades + bdes

which simplifies to

(d2 +_ 8es)2 y

Similarly, we determine the eigenvector (S6y , 6W) corresponding
wavenumber k+ by substituting d2 /d 2 = 2 into Eq. (5.74), i.e.,

- 2 = -da2ade + bdes+ by-des],"des, des( +des + fl2~ 3

to the

(5.80)

which simplifies to

+ yx 2 2 es 2 des

L 2 des 2ades
(5.81)

106

(5.74)

(5.75)

ades+ bdes
(5.78)

2bde
ades 2 (5.79)

d2( -
d2

d 2
2j (6 Y

(by , a ýoc (1, - 1),)
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The corresponding eigenvector is

bde ,26 c2 2 21+ des (5.82)
S2ds L 2 des )

5.5.2 Trajectory Perturbations

With the normal modes in hand, we can find the driven part of the general solutions of

Eqs. (5.67) and (5.73). Because Eqs. (5.67) and (5.73) are a pair of coupled, driven

harmonic oscillator equations with no damping, the trajectory perturbations 6Y. and

6y, oscillate in phase with the driving term, i.e.,

6Y = X, cos(2kT), (5.83)

6y = Y, cos(2krz), (5.84)

where we will solve for the unknown coefficients, X, and Y,.

Substituting Eqs. (5.83) and (5.84) into Eqs. (5.67) and (5.73) and making use of

Eqs. (5.76) and (5.79), we find

-2 E ar o2 2es
-4k 2X•- - 2 + 1+ Xd, + iY (5.85)

S -2 kyf ad_ d d2es 2es

-4)2(X +2X+ )1+rC aA 2 (5.86)

After some algebra, Eqs. (5.85) and (5.86) imply

X 1-+ 4 , (5.87)z 24E 22 dm2 '82) ad. E2 _ E2

a 2+ 2 No 0S-X 2 k2 1 + J •2 (5.88)
The general solutions of Eqs. (5.67) and (5.73) can now be written concisely as

The general solutions of Eqs. (5.67) and (5.73) can now be written concisely as



d__ 7 2 es cos(k+ý + +4)+ X cos(ký + o_)+ X, cos(2k),
2 -des

-y, 2 A-[i  12 + 2~des
8 V Y _= A k + I + 2 iides

cos(kT + q+)- X cos(k• + q-)+ Y cosi(2),

where the constants A+, A, 0, and ( are determined by initial conditions. As

expected, destabilizing resonances are implied by Eqs. (5.87) and (5.88) near 4k 2 + 2

and 4k2  •2 These can be avoided, because Eqs. (5.5),
together imply the ordering

(5.46), (5.76), and (5.79)

S2 << 2 2 << (5.91)

With an appropriate choice of initial conditions, A+ = A_ = 0 , we minimize the

long-wavelength oscillations and simplify the trajectory perturbations to the form

1 2 a.g2

x 8 2 kyfl

iy a -1 I)y 1

8{2 (ky

- 2
ades

2es2 des- 2
ades a

'des 2
des

2
)

bd•es 1

'des

+2 -k 2

2BaA gokfly k2 cos(2k ),4k2

+ rm cos(2@),
kfly )

where we have made use of Eq. (5.91) and retained the largest terms.

A further simplification is possible if we note that, to zeroth order, the axial

magnetic field is given by Eq. (5.72) as

N-2 81
desbdeYa
'Tdesbdesflya).

(5.94)

Combining this with Eq. (5.76), we have approximately

ky/
_2 kk-2 (5.95)

which allows us to express the trajectory perturbations,

2 k2 2

S4 k 2 2
s1 s cos(2ýk),

8 ades
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(5.89)

(5.90)

(5.92)

(5.93)

(5.96)
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(5.97)

while keeping the lowest-order terms.

5.5.3 Envelope Perturbations

Finally, we have all the ingredients to express the envelope perturbations by substituting

Eqs. (5.96) and (5.97) into Eqs. (5.55) and (5.57), yielding, to lowest order

t if 1 22 r2
- a---I rm

2 2 des

Lb 1k 2+( -- + r des +
bdes 2 E2 ades

where the wavenumbers are defined in Eqs. (5.44), (5.76), and (5.79) as

2 = 4Ialdes

= (Wikes +bTde +2,

ads 2
E2 e bdes 2

ades

Recall from Eq. (5.52) that the twist angle 0 is given, to lowest order, by

- - a rm2 cos(r),
k ades

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

where we have used Eq. (5.95). Because 2/k2 << 1, the amplitudes of these envelope

and twist angle perturbations are small.

We can also simplify the applied fields from Eqs. (5.64) and (5.72) using Eqs.

(5.44), (5.79), (5.95), and (5.91) to obtain

0-2des des + •des
2a~a'de

lk2
6 4 E 2 _ cos(2kT),

- 2+B+- Q (5.104)

)1[+ cos(2 )],

1 cos(2k) ,2

k2 ,
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B0 2(y1k_ (5.105)

5.5.4 Summary

Knowing now the envelope and particle trajectory perturbations, it is straightforward to

determine the distribution matrix elements using the results of Section 2.6.4. Moreover,
since the applied fields are known, the equation of motion for the distribution matrix

(2.104) can now be integrated and compared with the analytic results (see Section 5.7).

This comparison is simplified by noting that, because the envelope perturbations are

linear combinations of a constant, cos(2nT//), or cos(4x•i/) to lowest order, all

transverse velocities vanish at the points = jnS, where n is an integer. In any of

these planes at - = nS all of the distribution matrix elements vanish, except M.,

M , and MY = M-.

5.6 Ordering Constraints

5.6.1 Overview

Our analysis has assumed that the applied magnetic fields are well-represented by the

paraxial approximation. Using the results of Section 2.3.4, we will estimate the

magnitude of the non-paraxial terms and derive conditions that must be satisfied in

order to ensure that these non-paraxial terms are negligible. In Section 5.6.2, we will

derive a condition for the negligibility of non-paraxial terms in the applied quadrupole

magnetic field. We will apply a similar procedure in Section 5.6.3 to obtain a condition

on the axial field wavenumber k for the negligibility of non-paraxial terms in the

applied axial magnetic field. In Section 5.6.4, we will enforce the requirement that the

envelope oscillations be small in order to obtain another constraint on the wavenumber

k. Together, these constraints define an allowed range of axial field wavenumbers for

the validity of the paraxial approximations and perturbation expansions used

throughout this chapter.

5.6.2 Applied Quadrupole Magnetic Field

The applied quadrupole magnetic field BQ is generated by the T,, term of the magnetic

potential [see Eqs. (2.51) and (2.52)]. If this term is axially-varying, it can generate the
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non-paraxial terms I13 and P 3 1 through Eq. (2.48). Without loss of generality, we are

free to define

g(z)- ,13  
(5.106)•IT31

and substitute it into Eq. (2.48) to obtain

0 = +i 6 + 6(1+ g) 31 . (5.107)

If we require the higher-order terms to have a negligible contribution to the

applied magnetic field compared to the paraxial term (recall Bapp = -VY ), this implies

I3x2y 31I << IyT11 , (5.108)

I3xy2 Ii13 << JI,111, (5.109)

which simplify using Eqs. (5.106) and (5.107) to

Ix2 T;1I << 12(1 + g)y 11 , (5.110)

19y2 l 1 << 12(1 + g)•,11 . (5.111)

These conditions must hold for all particles in the beam, but are strictest at the beam

edge, i.e.,

1a2 T11I << 12(1 + g)~,1 , (5.112)

{gb2 l1 << 12(1 + g)yIll. (5.113)

For the beam solution derived in this chapter, the magnetic quadrupole field

magnitude can be made axially invariant if the electric quadrupole is, as well [see Eq.

(5.64)]. In this case, conditions (5.112) and (5.113) are trivially satisfied, since I", = 0.

More generally, for beam-matching solutions, the quadrupole field will not be

constant, in which case Eqs. (5.112) and (5.113) must be verified. Notice that the largest

value of ",n/'Tl is given by
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1 << maxm 2(1+ g) 2(1 + g) (5.114)
Sil 9 a2 gb2

which implies

" 2 211 << + (5.115)
y a2 b2

when

g --_ gcrit = (31 = a
2 (5.116)

This suggests that, while non-paraxial magnetic fields cannot be eliminated, their

effect can be minimized by a proper choice of aspect ratio. When designing physical

magnets to generate a magnetic field for a beam system, it is important to remember

that they must be shaped not only to obtain an optimal paraxial field, but also to

minimize non-paraxial field errors in the beam envelope. By requiring the aspect ratio of

the higher-order magnetic quadrupole field components to take the critical value g9rit,
we minimize these non-paraxial magnetic field errors.

5.6.3 Axial Magnetic Field

The axial field B, is generated by Yoo through the equation B, = - doo/dz. An

oscillatory B., such as that in Eq. (5.9), implies an oscillatory TOO, which, through Eq.

(2.47), implies oscillatory T20 and T02. These can contribute, through Eqs. (2.49) and

(2.50), to the non-paraxial terms 22, ,~P40, and 04. Without loss of generality, we are

free to define

f(z)= 22 (5.117)
T40

and substitute into Eqs. (2.49) and (2.50) to find

0 = YIP + (2f + 12)Ti40, (5.118)

and

0 = y"P, - Yo2 + 12(0P40 - Po4), (5.119)
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where the primes denote differentiation with respect to z. Combining Eqs. (5.118) and

(5.119), we find

magnetic field, this implies

or, making use of Eqs. (5.117), (5.120), and (5.121) to simplify, we find
2y2f4 0 20 (5.12)

2(6 26 + f

and
S 2- (6 + 120 (5.125)

6+f 3(6 + f)

Equations (5.124) and (5.125) provide the conditions that must be satisfied if the non-
paraxial magnetic field is to be negligible in the -direction and tribu-direction,

respectively.
When the axial magnetic field varies sinusoidally with a dimensionless wavenumber

k2y, Eq. (5.124) can be expressed as

2(6 + f 2Y+ I << 2y1. (5.126)

This condition holds for all particles in the beam, but the particular coordinate position

where it is strictest depends critically on the value of f. In fact, if we maximize the
absolute value appearing in Eq. (5.126) for all values of simplify, we find
absolute value appearing in Eq. (5.126) for all values of f , we find
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ý 2 f + 2Z2 ,O f
2 2 , - 22 < f < << 1, (5.127)216 + fl, f -22/127)
If 2 , f ! -2i2 2

which gives us an overall condition the beam must satisfy if the non-paraxial magnetic

field is to be negligible in the x-direction.

Similarly, for the y-direction, when the axial field varies with a dimensionless

wavenumber k , Eq. (5.125) can be expressed as

- + E f 7 m (6+f) << 1, (5.128)
216+ fl 1-r1- 3 1-r

which simplifies, for Ir, << 1, to

21m +6 + f << 1. (5.129)

Maximizing the absolute value that appears in Eq. (5.129) for all values of f and rm ,
we find



Ifrm 2 + -(6 + fI)

- (6-Ifl)

S+ 3 -6)

,o0f

S3r2 2 + b2

,f - -6

,0 f

2

-(6-

IfrM 2

f2 (3(6 + If )
/jT 2+ 3(6-

,-6<f<0

- 6b2

-_ 3iri I 2 f< 6

- 6b 2

,f<
6b2

60 < f

6b2
,3O< I5 2 -31rm JjT2 - ý2

If)
Ifrmij 2

,-6<f_0

f _ -6

which gives us an overall condition which must be satisfied if the non-paraxial magnetic

field is to be negligible in the y -direction.

We need only to show Eqs. (5.127) and (5.130) can be satisfied for some chosen f

and Irml << 1, but a na'ive choice can be overly restrictive. For example, if we consider

f = 0, then Eq. (5.127) implies

<< 2
<< 1. (5.131)

On the other hand, if we consider the case where rm > 0 and f >> 6, Eqs. (5.127)

and (5.130) imply

115

,O<r

216
216 + fl ' 3a2 m <0 <<1,

(5.130)-

!

[Iv
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E2 Y + << 1, (5.132)

E2 + - <<1. (5.133)

If we now specify a sufficiently large f satisfying

62

S , (5.134)

and sufficiently small r. such that

rm • erit = 2 F(5.135)

then Eqs. (5.132) and (5.133) reduce to

2-z2 2b 2 <<1, (5.136)
3

or, equivalently,

2 (2•b << S2. (5.137)
3

Equation (5.137) provides a constraint on the minimum allowed wavelength of the

axial magnetic field that is consistent with the paraxial approximation. As we saw in

Section 5.6.2, the non-paraxial magnetic field geometry is critical in maintaining the

validity of the paraxial approximation across the beam envelope. In this case, for the

axial magnetic field, we see that the parameter f- 'I22 /T40 will generally need to be

rather large (of the order of 2/b 2 ) if we wish to work with axial magnetic field

wavelengths which approach the order of the narrow beam dimension.

5.6.4 Small Envelope Oscillation Constraint and Summary of Ordering

An additional constraint on the wavenumber k is obtained by applying Eq. (5.5) (small
envelope oscillations in the short dimension) to Eq. (5.99), which yields
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4 <<1, (5.138)

or

« -2 <<1, (5.139)
4 T 2

which proves Eq. (5.46).

We can now summarize the ordering constraints on the wavenumber k using Eqs.

(5.91), (5.136), and (5.139) as

1 12 <<1 ds 2 -12 1 2 312 <<__<__ << 2 2 << (5.140)
4 8 8 bde 4 4 2bdes2

In terms of the corresponding wavelengths, the ordering relation is

8•7 << g2 42 42 - bds 2 • << 2 (5.141)
3 ade

5.7 Numerical Results

5.7.1 6:1 Nonrelativistic Beam

Let us consider a 6:1 elliptic electron beam with desired envelopes semi-axes

ade, = 0.373cm and bdes = 0.062cm propagating with current I = 0.11 A along a beam

tunnel with a constant axial potential of 0oo = 2290V. For this beam, then, we have

f8 = 0.094 and y = 1.0045. Let us choose a reference length of A = bdes, which sets the

dimensionless parameters

A = 4.53 x 10-12  (5.142)
A mc 2 3x ,

2 4 ilades = 0.00372, (5.143)
Yfds(ades + des

k2 ( bdes2  2 =0.0 0 5 0 6  (5.144)
ades
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and

_ = 2bo = 0.00124. (5.145)
ades

First, let us determine which values of the dimensionless longitudinal magnetic

period S are allowed by the constraints of Eq. (5.137). We find

8 ,2 2 << 2 << 42 , (5.146)
3

or

(5.13)2 <<2 << (177), (5.147)

which leaves a reasonable range within which S can be chosen to satisfy both

constraints. For illustrative purposes, we choose S = 30.84, i.e., S = ,S = 1.912 cm.

Let us find a solution with the magnetic field aspect ratio r. = 0. The applied

quadrupole field is determined by Eq. (5.104),

BQ + = B + J = -1.873 G, (5.148)

which corresponds to an on-axis transverse field gradient of

B = =30.21 G/cm, (5.149)

when OQ = 0. The longitudinal field can be obtained from Eq. (5.105), yielding

Bo = - Bo = -261.32 G. (5.150)

The envelope values are computed from Eqs. (5.98), (5.99), and (5.103) to yield

a = A2• = [0.37363 + 0.00063 cos(2kz)] cm, (5.151)

b = ,b = [0.0621 - 0.0019 cos(2kz)] cm, (5.152)

0 = -0.014 cos(kz) rad. (5.153)
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With these analytic forms for the envelope quantities and the zero emittance

assumption, we can specify initial conditions for the distribution matrix M using the

results of Section 2.6.4, while the values for the applied magnetic fields determine the

force matrix F through Eq. (2.71). We can now utilize standard numeric techniques to

integrate Eq. (2.104) in order to evolve the distribution matrix forward in the axial

coordinate z. With knowledge of M(z), we can again use the results of Section 2.6.4 to

determine the envelope quantities. The envelope semi-axes a(z) and b(z) are shown in

Figure 5.1, and the twist angle 9(z) is shown in Figure 5.2. Clearly, the beam envelope

is well-confined and follows the desired trajectory to a good approximation.

As a separate verification of the theory and envelope code, a 3D OMNITRAK [38]

simulation is performed for the 6:1 elliptic beam. Since 3D trajectory simulations are

time-intensive, only a 2-period interval is used for this test, as shown in Figure 5.3. The

beam is sent through a conducting rectangular beam tunnel (not shown) of width 10.74

mm and height 7.0 mm. The beam's entrance conditions are specified by Eqs. (5.151),

(5.152), and (5.153), while the confining fields are given by Eqs. (5.148) and (5.150).

Substantially parallel, non-twisting transport is achieved.
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'O 0.2

0.1

0 5 10 15

z (cm)

Figure 5.1: Beam envelope semi-major axis a(z) 0.373cm

(dotted line) and semi-minor axis b(z) 0.062cm (solid line)

of the 6:1 elliptic beam over 10 longitudinal magnetic

periods, 10S = 19.12 cm.
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Figure 5.2: Beam envelope twist angle 0(z) of the 6:1 elliptic

beam over 10 longitudinal magnetic periods, 10S = 19.12 cm.
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Figure 5.3: Particle trajectories for a

Surface quantity: IEI
XAxis: -1.001+01 1.00E+01
YAxis: -8.00#.00 8.00e+00
ZAxis: 0.000E00 3.82E+01
Plane position: E 0.00= E00

S0.000E+00
S2.300E+03

i 4.601E+03
6.901E+03
9.201E+03

S 1.150E+04
i 1.380E+04

il i 1.610E+04
i 1.840E+04
i 2.070E+04

i 2.300E+04
2.530E+04
2.760E+04

i i 2.990E+04
S3.221E+04
S 3.451E+04

3D Omnitrak

simulation of the 6:1 elliptic beam over 2 longitudinal

magnetic periods, 2S = 3.824 cm.
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5.7.2 10:1 Relativistic Beam

Let us consider a 10:1 relativistic elliptic electron beam with desired envelope semi-axes

ades = 0.4cm and bdes = 0.04cm and axial kinetic energy of 500 kV (i.e., (Do = 500kV)

propagating with current I = 150 A along a beam tunnel. For this elliptic beam, we have

fi = 0.863 and y = 1.978. Let us choose a reference length of A = bdes, which sets the

dimensionless parameters

a 7.04 x 10-12 (5.154)
Amc 2c

- 2  4 Iaad = 0.000586, (5.155)
Y-fl kes(ades +b e 005

2 _= (es = 20.000709, (5.156)
ades

and

_2 = 2d = 0.000117. (5.157)
ades

First, let us determine which values of the longitudinal magnetic period S = 2

are allowed by the constraints of Eq. (5.137). We find

2 << 2 << 432, (5.158)
3

or

(5.13)2 << Y2 << (519)2, (5.159)

which leaves a reasonable range within which S can be chosen to satisfy both

constraints. For illustrative purposes, we choose S = 50, i.e., S = A S = 2 cm.

Let us find a solution with the magnetic field aspect ratio rm = 0. The applied

quadrupole field is determined by Eq. (5.104),

BQ + 2= QB + =-4.685 G, (5.160)
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which corresponds to an on-axis transverse field gradient of

( = Q = 117.13 G/cm, (5.161)

when (DQ = 0. The longitudinal field can be obtained from Eq. (5.105), yielding

B0 = q g = -2738.14 G. (5.162)

The envelope values are computed from Eqs. (5.98), (5.99), and (5.103) to yield

a = A i = [0.40009 + 0.00009 cos(2kz)] cm, (5.163)

b = A- = [0.039991 - 0.00045 cos(2kz)] cm, (5.164)

9 = -0.0030 cos(kz) rad. (5.165)

Integrating Eq. (2.104) to determine the beam evolution, we plot the beam

envelope semi-axes a(z) and b(z) in Figure 5.3, and the twist angle 9(z) in Figure 5.4.

Once again, we find that the beam is well-confined and follows the desired trajectory to

a good approximation.
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Figure 5.4: Beam envelope semi-major axis a(z) _ 0.4cm
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6 Elliptic Beams in Transition

6.1 Overview

In Chapter 4, we solved the inverse problem of obtaining the external electrode

structure required to accelerate an elliptic beam of a constant cross-section, and in

Chapter 5, we solved the inverse problem of confining a coasting elliptic beam of a

nearly constant cross-section. More complex situations involve transitions; for example,

an elliptic beam may flow between an accelerating region and a coasting region or the

cross-section of the elliptic beam may vary. For these cases, the results of Chapter 4 or

Chapter 5 can be applied to obtain solutions before or after the transition, but we must

use the approximate techniques of Chapter 3 (particularly, the small residual quadrupole

regime in Section 3.4.7) in order to match the beam solutions through the transition

region. Because of the approximations used, the matched solutions presented in this

chapter will generally be less accurate than those derived in Chapter 4 and Chapter 5,

however, they still provide a very good first-pass matched-beam solution which can be

refined through numerical optimization, as will be demonstrated in numerical examples.

We will present two examples of the application of techniques of Chapter 3 to

transitional problems. In Section 6.2, we consider a constant-envelope beam

transitioning from an accelerating region to a coasting region, i.e., the beam injection

matching problem. We prescribe a semi-analytic technique which can be used to design

the electrode geometry and applied fields that will produce a high-quality, laminar

elliptic beam. We extract it from a diode and propagate it through a beam tunnel while

maintaining a constant beam cross-section. In Section 6.3, we consider a parallel-flow,

coasting beam whose cross-section undergoes compression before resuming parallel flow,

i.e., the beam compression problem. We analytically prescribe a set of applied fields that

achieves this flow profile.

6.2 Beam Injection Matching

6.2.1 Overview

In Chapter 4 and Chapter 5, we considered the problems of beam formation and beam

transport in isolation, but any practical device must solve both these problems. A beam

cannot be transported unless it is first formed, and a beam which is formed is useless if
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not transported. Modeling the dynamics of a charged-particle beam that is injected from

a diode into a transport tube is one of the more challenging problems in beam physics.

Conventional approaches rely on extensive simulation, multi-parameter, multi-

dimensional optimization, and a great deal of trial and error. For 3D elliptic beams, in

particular, these approaches can be prohibitively time-consuming, if they produce a

reasonable solution at all. We present, in this section, an alternative approach. In

Section 6.2.2, we use the methods of Chapter 3 to relate the electrostatic potential of

the beam system to the required confining magnetic fields. In Section 6.2.3, we outline a

semi-analytic solution technique that quickly converges to an acceptable solution of the

beam injection matching problem. In Section 6.2.4, we present an example calculation of

beam injection matching for a 6:1 nonrelativistic elliptic electron beam.

6.2.2 Applied Magnetic Fields in the Transition Region

We consider a space-charge-dominated, large-aspect-ratio elliptic beam which is created

and accelerated in a space-charge-limited diode (see Chapter 4), passes through a

transitional region near the anode hole, and then enters a drift tube through which it

coasts with constant velocity (see Chapter 5), all the while with a constant beam cross-

section. The dimensionless axial electrostatic potential Idi for such a beam will follow

the Child-Langmuir [29] form in the diode region and smoothly transition to a constant

in the coasting beam region. Outside the transition region, we have already inverted the

problem to determine the appropriate applied fields and electrode geometries (see

Chapter 4 and Chapter 5), therefore we know both the form of the axial potential and

the form of the applied fields and electrode geometry outside the transition region.

Because we assume a space-charge-dominated beam, emittance effects are negligible [16]

[27] [28] and the beam takes a cold-fluid form in which fluid elements follow single

particle trajectories in the transition region. If the transition occurs over a characteristic

scale length Sdes (see Section 3.1), we can use the methods in Chapter 3 to model the

beam behavior in the transition region.

The Child-Langmuir solution, which derives from the small fields, no-oscillation

regime in Section 3.4.2, and the coasting beam solution, which derives from the small

residual quadrupole field regime in Section 3.4.7, both require the condition in Eq.
(3.43), i.e.,

IB<< Y (6.1)
%Sdes
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Assuming a smooth transition, we require that the condition in Eq. (6.1) also holds

in the transition region. Under such circumstances, using Eq. (3.17) and taking the limit

0 -> 0 , we find that in the transition region we have

Q -+ 4 1 T << b (6.2)
+Q Jbfl2y2 P +)). ades2

which is satisfied by choosing

BQ =- --D Q  (6.3)(41 1- b 2Q

Equation (6.3) specifies the form of the matched applied quadrupole magnetic field

in the transition region in terms of the unknown axial electrostatic potential T00(T) and

the unknown electrostatic quadrupole potential TQ(T). Note that y and 8 are related

to di. by y = 1+ a0-- and 1f2 = 1-7-2 [see Eqs. (2.19) and (2.20)].

Similarly, we obtain a matched axial field B9 by assuming the desired solution

exists in the small residual quadrupole field regime in the transition region. Therefore,

Eq. (3.66) holds, i.e.,

d? a ( 41 - a - [- (6.4)
- - - ----- + 0" B 2 b O bfl + •- p • (6.4)

dr f bp2 00 z 1ydes +b )

We take an axial magnetic field of the form

B(i) = B(i) sin - + (•()), (6.5)

where ( is a parameter that represents a slowly-varying phase shift of the axial

magnetic field, and the amplitude B0 varies slowly on the length scale Sdes with

S<< des. If we now perform a local average of Eq. (6.4) over the magnetic oscillation

wavelength S, the momentum term vanishes by the assumption of a constant beam

envelope, and we find

a(41 a 0h2> 1 -2 ))7+ O- F BO b0/+-f (6.6)
where the angle brackets denote the local average. b

where the angle brackets denote the local average. Equation (6.6) is satisfied by choosing
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B--2 _27/ 4I 1-
a0R2 2- - +2 00 (6.7)

which specifies the form of the matched axial magnetic field in the transition region in

terms of the unknown axial electrostatic potential o00(j). Again, note that y and # are

related to o00 by y = 1 + a6o00 and [s2 = 1-- 2 [see Eqs. (2.19) and (2.20)].

6.2.3 Semi-Analytic Solution Technique

Equations (6.3) and (6.7) specify the applied fields in the transition region in terms of

the unknown axial electrostatic potential o0o(T) and the unknown quadrupole potential

$Q(Z). In principle, we have the freedom to choose arbitrary functional forms for these

potentials. Once the potentials o00(y) and DQ(z) are given (and the desired beam

envelope semi-axes Z and b are chosen), the beam velocity profile is determined

through Eq. (2.18), and the transverse electrostatic potentials in the beam interior are

determined through Eqs. (2.38), (2.39), and (2.40) with 0 = 0. Laplace's equation

V25 = 0, together with the electrostatic potential and its derivatives on the beam

boundary, fully defines an inverse problem for determining the potential outside the

beam similar to the Pierce diode problem discussed in Section 4.2.3.

Unfortunately, this inverse problem has not been solved for arbitrary forms of the

axial potential and remains as a challenge for future work. The precise electrode

structure in the transition region is therefore unknown. Nevertheless, we will make use

of a semi-analytic technique to obtain approximate beam injection matching solutions.

We outline it as follows:

1. Construct a trial electrode geometry Gtl that joins an accelerating-beam Child-

Langmuir region (as in Chapter 4) to a coasting beam region (Chapter 5).

Construct the associated trial functions for the electrostatic potentials I0(z) and

nDQ(ý) that adhere to the limiting forms [i.e., the Child-Langmuir form on one
side of the transitioonregion and a constant on the other for 00(ý), and zero on

one side of the transition region and a constant on the other for i(D)] and

transition between them smoothly. The superscript "tl" indicates that these are
"first-guess" trial functions.

2. Using the trial functions o() and (z) in Eqs. (6.3) and (6.7), compute the

applied quadrupole and non-axisymmetric PPM magnetic fields BH (ý) and
Botl(ý) required for beam matching.
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3. (Optional) Given the electrostatic potentials u(I ) and T"1(!), the magnetic

fields B t() and BRol(), and the initial conditions for the beam at the emitter

(parallel flow, negligible emittance, zero twist angle, beam semi-axes given by the

elliptic cathode size), we integrate the envelope quantities forward through the

diode and beam tunnel using Eq. (2.104) to verify that they adhere to the desired

beam behavior. Numerical optimization may be performed at this stage through

the introduction of additional parameters in the representation of the applied

magnetic fields. For simplicity in the present discussion, we have introduced only

a single parameter; namely, the axial magnetic field phase shift P(z) = 0 = const.

4. The applied magnetic fields B 1(T) and Btl'() (or their optimized versions from

Step 3) are applied to the trial electrode geometry Gtl in a numerical simulation

routine such as the 3D OMNITRAK code. Both the particle trajectories and the

electrostatic potentials are computed self-consistently with the specified electrode

geometry Gt l , including the effects of the anode hole and the applied magnetic

fields Bý1() and Bot'(). We use the results of the simulation to obtain an

improved estimate of the electrostatic potentials on the beam axis and denote

them as t2() and (Dt2).

5. If the "t2" potentials 2(y) and 6. 2() are sufficiently similar to the "tl"

potentials t(T) and i (V), we conclude that we have obtained a self-consistent

solution to the matched beam through the transition region. If the potentials are

significantly different (the specific criterion depends on the application at hand

and the beam quality desired), we may proceed iteratively in order to approach a

solution by returning to Step 2 and using I(() and Q2() to computed an

improved version of the applied magnetic fields Bý2(T) and B0t2().

The semi-analytic technique outlined above should be contrasted with the

conventional approach to the beam matching problem which requires iterative

modifications and optimizations of a 3D electrode geometry, i.e.,

(GUtl Gt2 __+ Gt3 _- ... Gtn). The conventional approach amounts to a high-dimensional

optimization process which relies on a computationally-intensive simulation routine to

evaluate the merit of each modification. Such a process quickly approaches the limits of

what can be achieved in a reasonable computation time.

The conventional approach does have occasional utility, since it is the only way a

particularly desired electrostatic potential can be achieved. Moreover, if large

nonparaxial effects are observed in a simulation, electrode geometry modifications may
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be necessary in order to eliminate them, which may require one or two simulation runs.

However, once it has been established that a particular electrode geometry supports a

paraxial field distribution, no geometry modifications are necessary in the semi-analytic

solution method outlined above. Because the geometry is held fixed in the iterative

scheme, and because the numerical optimization occurs over a directly integrable

equation (not a computationally intensive 3D simulation), the semi-analytic process

converges extremely quickly. Indeed, in the next section, we apply this technique to

obtain a satisfactory solution after only two iterations.

6.2.4 6:1 Elliptic Beam Matching Example

Let us consider the matching of a 6:1 elliptic electron beam of constant envelope semi-

axes ades = 0.373cm and bdes = 0.062cm propagating with current I = 0.11A. The beam

is emitted from a space-charge-limited, parallel-flow, elliptic electron diode with diode

length d = 0.411cm and cathode potential (DO(0) = -2290 V (see discussions in Section

4.4.4). It is injected into a grounded, rectangular beam tunnel of width 10.74 mm and

height 7.0 mm. We choose a longitudinal magnetic period of length S = 1.0 cm and a

reference length of 2 = bdes. In the following, we apply the semi-analytic beam matching

technique discussed in Section 6.2.3.

The diode electrode geometry is that discussed in Section 4.4.4.1 while the beam

tunnel geometry is that discussed in Section 5.7.1. The two regions are connected by

adding a quasi-elliptical aperture to the anode in order to extract the beam (see later in

Figure 6.5). The axial electrostatic potential I00(z) then smoothly varies from the

Child-Langmuir form near the cathode to a constant value of I00 = -70 V in the beam

tunnel, which is obtained from the OMNITRAK simulation results presented in Section

5.7.1. Here, (00 = -70 is the voltage depression at the beam axis due to space charge.

We construct a trial function Dt for the axial potential which varies smoothly

between the Child-Langmuir and constant behavior. Because this process converges so

rapidly, the results which follow are largely independent of the trial function chosen. In

fact, one simple way of obtaining a trial function is simply to perform an OMNITRAK

simulation without any applied magnetic fields in the transition region. The beam will
likely lose confinement or undergo large envelope oscillations, but we can extract the

axial potential information from the OMNITRAK simulation, regardless.

The electrostatic quadrupole potential (oQ(z) is zero in both the Child-Langmuir
limit of Section 4.4.4.1 and the coasting beam limit of Section 5.7.1, therefore we choose

a vanishing trial function IQu = 0.
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Adopting the trial functions It and bcfD and making use of Eqs. (6.3) and (6.7),

we obtain the applied magnetic fields B tl and B 1.

Employing the applied magnetic fields B t' and Bt' [with <p(z) = 0, by default] in

an OMNITRAK simulation of the beam system, we obtain a refined measurement of the

on-axis electrostatic potential cI(z), as shown in Figure 6.1. The refined measurement

of the quadrupole electrostatic potential CD5(z) is zero, to within the numerical error of

the simulation.

Adopting the trial functions Dt and (Dt and making use of Eqs. (6.3) and (6.7),
we obtain the updated applied magnetic fields BO2 and B 2 .

OU 12, t2 Q2

Given the electrostatic potentials OI and DQ, the magnetic fields Bt2 and B",
and the initial conditions for the beam at the emitter (parallel flow, negligible

emittance, zero twist angle, beam envelope semi-axes given by the elliptic cathode size),
we integrate the envelope quantities forward through the diode and beam tunnel using

Eq. (2.104). Performing a simple 1D optimization, we choose a value for the phase shift

of <p(z) = g = -0.16 rad in order to minimize envelope oscillations.

In Figure 6.2, we show a plot of the beam envelope semi-axes a and b of the 6:1

elliptic beam over four longitudinal magnetic periods (4S = 4.0 cm), though the diode

and beam tunnel. Note that the envelopes are not exactly constant, which is largely

attributable to the fact that the condition S << Sd is not strictly satisfied, as both

lengths are of the same order (1 cm). This limitation can be overcome by the inclusion

of additional parameters in the applied field description. Naturally, this complicates the

optimization process, but is still vastly simpler (and more computationally tractable)

than optimizing a 3D geometry. For the present didactic purposes, we utilize only the

single parameter optimization over the phase shift p(z)= ( of the axial magnetic field.

The optimized applied magnetic fields B,2 and Bf2 [with (p(z)= = -0.16 rad], are

plotted in Figure 6.3 and Figure 6.4, respectively. Note that the magnetic fields achieve

their largest values in the vicinity of the anode hole at z = 0.411 cm, where they must

counteract the defocusing electrostatic forces near the anode hole.

We employ the applied magnetic fields B02 and BF2 [with (p(z) = = -0.16 rad] in

the second-iteration OMNITRAK simulation of the beam system. Particles are emitted

from a space-charge-limited diode and tracked over four axial magnetic periods

(4S = 4.0 cm). The resulting particle trajectories and electrostatic equipotentials are

shown in the plane (y - z) in Figure 6.5 and in the plane (x - z) in Figure 6.6. A 3D

perspective view of the simulation region and trajectories (with the anode and beam

tunnel not shown, for illustrative purposes) is shown in Figure 6.7. It is apparent from
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the simulation results that the beam is well confined and the beam envelope semi-axes

are nearly constant.

The beam behavior shown in Figure 6.7 is quite remarkable considering that

extensive 3D optimization has not been performed. Only two iterations and a simple

one-parameter optimization of a directly integrable equation are necessary in order to

produce this result.

We also note that this beam injection matching technique may be used with the

positions of the coasting region and accelerating regions reversed in order to design a

high-efficiency, single-stage depressed collector. The collector electrode (essentially, a

mirror image diode) is held at a potential negative with respect to the beam tunnel (for

electrons), thereby a high-quality, laminar charged-particle beam is focused while it is

decelerated such that it impinges on the collection electrode with nearly zero velocity.

Much of the beam kinetic energy can thereby be recovered in the form of a current that

can be used to drive a load, including, perhaps the current used to drive the beam

formation diode, itself. Such a depressed collector reduces the input energy required to

operate a beam device, increasing its efficiency.

o

.2 0

_ -1000

o -2000

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.1: Plots of the on-axis electrostatic potential 0(0z)

(solid curve), the Child-Langmuir potential ( oc z4/3 (dashed
curve), and the depressed potential limit 0I0 - -70 V (dotted

line) versus the axial coordinate z in the second iteration of

the 6:1 elliptic beam matching calculations.
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Figure 6.2: Beam envelope semi-major axis a and semi-

minor axis b of the 6:1 elliptic beam over four longitudinal

magnetic periods, 4S = 4.0cm.
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Figure 6.3: Plot of the axial magnetic field

B,(z) = B2 (z)sin(- 0.16 + 2nz/S) versus the axial coordinate
z over four periods, 4S = 4.0 cm.
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Figure 6.4: Plot of the quadrupole

BQ(z) = B~ (z) versus the axial coordinate
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z over four axial

magnetic periods, 4S = 4.0 cm.
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Figure 6.5: Projection onto the plane (y - z) of particle

trajectories over four axial magnetic periods (4S = 4.0 cm) in

the 3D OMNITRAK simulation.
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6.3 Beam Compression

6.3.1 Overview

Beam tunnels in microwave devices are often limited in size in order to prevent the

propagation of undesired electromagnetic modes. At the same time, high current

charged-particle beams must propagate in these tunnels in order to produce significant

power levels of microwave radiation. This requires the use of beams with high current

densities, however cathode emission current densities are limited. Beam systems for

microwave devices therefore often make use of some form of beam compression.

The conventional approach to beam compression relies on the construction of a set

of diode electrodes which supports a converging-flow (rather than a parallel-flow) beam.

While we have solved the inverse problem for the design of electrodes which self-

consistently support a parallel-flow elliptic beam in Chapter 4, no such solution is

known for a converging-flow elliptic beam. This remains a topic for future work in this

area.

An alternative to electrostatic compression in the diode is magnetic compression of

a coasting beam, which we present here. In Section 6.3.2, we use the methods of

Chapter 3 to relate the desired envelope of the beam system to the required confining

magnetic fields. In Section 6.3.3, we present an example of beam compression

calculations for a 6:1 elliptic electron beam.

6.3.2 Applied Magnetic Fields in the Transition Region

We consider a space-charge-dominated, large-aspect-ratio elliptic beam which propagates

with a constant cross-section in one region, passes through a transitional region in

which its cross-section changes, and then once again propagates with a constant cross-

section in a third region. In most cases of interest, compression or expansion of a beam

through the transition region will not result in a significant change in its axial

electrostatic potential o00. To first order, we assume o00 is constant (i.e., the coasting

beam approximation).

Outside the transition region, we have already inverted the problem to determine

the appropriate applied fields and electrode geometries (see Chapter 5). Because we

assume a space-charge-dominated beam, emittance effects are negligible [16] [27] [28]

and the beam takes a cold-fluid form in which fluid elements follow single particle

trajectories in the transition region. If the transition occurs over a characteristic scale
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length Syd (see Section 3.1), we can use the methods in Chapter 3 to model the beam

behavior in the transition region. Moreover, if we assume the beam is non-twisting with

It << 1 and specify the desired beam envelope semi-axes des(z) and bdes(ý), the fluid

element trajectories will be self-similar, i.e.,

"ds- (Z) (6.8)

= e) (6.9)

Since the beam propagation solutions obtained on either side of the transition

region are obtained in the small residual quadrupole field regime in Section 3.4.7, we

search for a solution in the transition region which is also in this regime. Under such

circumstances, Eq. (3.66) implies

d-y a 4i ay B 2 J O 1 2 byf + - Pfl . (6.10)

We take an axial magnetic field of the form

B(i) = Bo () sin - + (#) (6.11)

where <(#) is a parameter that represents a slowly-varying phase shift of the axial

magnetic field, and the amplitude B, varies slowly on the length scale Sdes with

Y << Sde. If we now perform a local average of Eq. (6.10) over the magnetic oscillation

wavelength S, we find

__ 41 aAB J 1 2) -

( -i - (Of -1 _ + I. (6.12)
dr/ Afby 2  y( 2 Sdes 2  b

where the angle brackets denote the local average. Equation (6.12) is satisfied by

choosing

-B = 8 2?/d-fl.) (6.13)
a baqy 2\ daA

which can be expressed using Eqs. (3.39) and (6.9) as
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2 81 2y22 2b
o - y 2  dbes (6.14)

b - afly a 2bs d~2

Equation (6.14) specifies the form of the matched axial magnetic field Bz in the

transition region in terms of the desired beam envelope semi-minor axis des(~).

Similarly, we obtain the quadrupole magnetic field BQ using Eqs. (3.17) and (3.18)

in the limit 0 -- 0, which yields

dp 2- 4I
-lzd -pa B + 0- 4 4. (6.15)

Performing a local average of Eq. (6.15) over the magnetic oscillation wavelength S, we

find

d2- - /ds _2 641dx 2 4I
ypf d-2 - Q •B+ - oJ - - , (6.16)

which implies, through Eq. (6.8),

4 2 yfl d2 ades (6.17)Bo= -T(- + ýp2 2 f oaa- d- 2

Equation (6.17) specifies the form of the matched quadrupole magnetic field BQ in the

transition region in terms of the desired beam envelope semi-major axis ades() and the

electrostatic quadrupole potential DQ.

6.3.3 6:1 Elliptic Beam Compression Example

Let us consider an elliptic electron beam with current I = 0.11 A and axial velocity

v, = 0.094c propagating through a grounded, rectangular beam tunnel of width 10.74

mm and height 7.0 mm. In this example, the external quadrupole electrostatic potential

vanishes, i.e., oD = 0. Choosing a reference length 2 = 0.062 cm, we ask the beam

envelope semi-axes to take the forms

'des,,(0) af 31tanh -T 3 (6.18)

des 0) = 2tanh vS 3,] (6.19)
•do(2) 2 v-
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where the final beam envelope semi-axes are af = i•f = 0.187 cm and

bf= A = 0.031 cm, and we choose a longitudinal magnetic period of length

S = = 1 cm and a steepness parameter v = 1.5.

Making use of Eqs. (6.18) and (6.19), the desired beam envelope semi-axes ades(z)
and bd~(z) are plotted in Figure 6.8 as solid curves and correspond to beam compression

by a factor of two in each transverse dimension through the transition region, i.e., an

area compression ratio of 4:1. Note that we could equally well choose different

compression factors in each dimension simply by choosing different parameters in Eqs.

(6.18) and (6.19).

We can obtain expressions for the applied magnetic fields in the transition region

by using Eqs. (6.18) and (6.19) in Eqs. (6.14) and (6.17), yielding

2 tanh - 3 sech2
-- 8 81 22 2 v vS
O2() - (6.20)B bafiy a,8v2 2  !22 3 1 (6.20)

2 2 v2

tanh - 3 sech2Z- 3

2  2 tanh(-_ 3)

We make use of Eqs. (6.20) and (6.21) to plot the applied magnetic fields B, and

BQ over 10 axial magnetic periods (10 cm) in Figure 6.9 and Figure 6.10, respectively.

Note that in determining the axial magnetic field in Figure 6.9, we have not performed

any optimization over the phase shift parameter (; we have simply used its default

value of p = 0.

Given the applied magnetic fields of Figure 6.9 and Figure 6.10 and the entrance

conditions for the beam [parallel flow, negligible emittance, zero twist angle, semi-axes

given by Eqs. (6.18) and (6.19)], we can integrate the envelope trajectories forward

through the beam tunnel using Eq. (2.104). In Figure 6.8, overlaid with the desired

semi-axes ades(z) and bde,(Z) (solid curves), we have plotted the integrated semi-axes a(z)

and b(z) (dashed curves) of the 6:1 electron beam over ten longitudinal magnetic

periods (10 cm). Note that while we see some mismatch oscillation, the overall behavior
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is as expected. Further numerical optimization can certainly be performed to decrease

the oscillation amplitude.

We employ the applied magnetic fields Figure 6.9 and Figure 6.10 in an OMNITRAK

simulation of the beam system. Particles enter the simulation region with the prescribed

initial conditions [parallel flow, negligible emittance, zero twist angle, semi-axes given by

Eqs. (6.18) and (6.19)] and are tracked over 10 axial magnetic periods (10 cm). The

resulting particle trajectories and electrostatic equipotentials are shown in the plane

(y - z) in Figure 6.11 and in the plane (x - z) in Figure 6.12. A 3D perspective view of

the simulation region and trajectories (with the beam tunnel suppressed, for illustrative

purposes) is shown in Figure 6.13. It is apparent from the simulation results that the

beam behavior is consistent with the envelope code results, showing beam compression

in both transverse dimensions and the residual mismatch oscillations.

We note that this beam compression technique can also be reversed to accomplish

beam expansion, such as may be needed in a collector in order to reduce the beam

power density deposited on a collection surface.

0.4

0.3

" 0.2

0

S0.1

00

0 2 4 6 8 10
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Figure 6.8: Shown in solid curves are the desired beam

envelope semi-major and semi-minor axes ades(z) and bdes(Z)
of the 6:1 electron beam plotted as the beam undergoes

compression by a factor of two in each dimension over 10

longitudinal magnetic periods. The dashed curves correspond

to the beam envelope semi-major and semi-minor axes a(z)
and b(z) computed using the applied magnetic fields in

Figure 6.9 and Figure 6.10.
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Figure 6.9: Plot of the axial magnetic field

B,(z) = Bo(z)sin(2nz/S) versus the axial coordinate z over

ten periods (10 cm). The magnetic envelope function Bo(z) is

obtained from Eq. (6.20).
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Figure 6.10: Plot of the quadrupole magnetic field BQ(z)

versus the axial coordinate z over ten axial magnetic periods

(10 cm). The quadrupole magnetic field BQ(z) is obtained

from Eq. (6.21).
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Figure 6.11: Particle trajectories are tracked over 10 axial

magnetic periods (10 cm) using the 3D trajectory code

OMNITRAK and projected onto the plane (y - z).
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Figure 6.12: Particle trajectories are tracked over 10 axial

magnetic periods (10 cm) using the 3D trajectory code

OMNITRAK and projected onto the plane (X - z).
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Figure 6.13: Perspective view of particle trajectories tracked

over 10 axial magnetic periods (10 cm) using the 3D

trajectory code OMNITRAK. The beam tunnel, though present

in the simulation, is suppressed so that the beam can be

viewed clearly.





7 Conclusion

In this thesis, we have attempted to provide a new perspective on elliptic charged-

particle beam problems. We presented, in Chapter 2, a unified paraxial model of steady-

state elliptic charged-particle beams, bridging the existing gap between the accelerating-

beam Child-Langmuir [29] theory and numerous models of coasting beam dynamics. We

describe the evolution of the elliptic beam particle distribution function through the

matrix differential equation (2.104). In later chapters, as we integrate Eq. (2.104) to

determine the evolution of the elliptic beam for several examples, we find results

consistent with those produced by the much more numerically intensive 3D simulation

code OMNITRAK [38].

We have also emphasized the analytic inverse approach to charged-particle beam

problems in this thesis. In Chapter 3, we were able to use this approach to analyze

single-particle behavior in elliptic beams, obtaining constraints on the applied fields in

various regimes (as identified in Section 3.4), each corresponding to different
components of a beam system: the beam-forming diode, the transitional matching

section, and the coasting beam transport lattice.

Similarly, in Chapter 4, we obtained a novel relativistic generalization of paraxial,

elliptic beam Child-Langmuir [29] flow in Eq. (4.3). Taking the nonrelativistic limit, we

were able to solve the inverse problem analytically, obtaining Eq. (4.33) for the external

equipotentials (i.e., electrode surfaces) consistent with Child-Langmuir [29] beams of

elliptic cross-section. In Section 4.4, we showed that 3D OMNITRAK [38] simulations

incorporating the analytically-specified electrode surfaces robustly produce near-ideal

beams, providing independent confirmation of the theory.

In Chapter 5, we used a perturbative approach to solve an inverse problem

determining the applied fields and entrance conditions that self-consistently support a

parallel-flow, coasting, space-charge-dominated, large aspect-ratio elliptic beam.

Numerical integrations of the beam distribution using Eq. (2.104) and OMNITRAK [38]

simulations both confirm the analytic solution.

Finally, in Chapter 6, we presented semi-analytic inverse techniques to obtain the

applied fields necessary in order to confine elliptic beams in transition regions. Examples

were worked for a beam-matching situation between an elliptic beam diode and

transport channel and for a compressing beam scenario. In each example, numerical

integration of the beam distribution using Eq. (2.104) and OMNITRAK [38] simulations

produced consistent results.



146

These results, taken together, suggest means of improving the quality and

increasing our control of high-intensity elliptic charged-particle beams. We have

discussed a few applications of these techniques for particle accelerators and microwave

tubes, but there are a plethora of other potential applications, such as industrial

processing and radiation therapy, which could stand to benefit from such improvements

in beam systems. In general, we believe that the analytic inverse approach is a more

rational approach to charged-particle beam problems than the traditional brute-force

numeric techniques, particularly for 3D problems. While we harbor no pretensions that

numeric techniques can be fully supplanted by analytic ones, we are confident that

future work in this area will produce powerful new analytic-numeric hybrid algorithms

that will enable finer control of higher-quality beams while providing new insights and

opening new applications for their use.



Appendix

A Elliptic Projections

A.1 Overview

Equation (2.105) describes the 2D ellipse obtained when the 4D hyperellipsoid defined in

Eq. (2.100) is projected into a 2D subspace (x1,x2) where xl,X2  (x,y,pp~y ). In order to

prove that Eq. (2.105) properly represents the projected ellipse, we begin with a

geometric description of projection for a low-dimensional case in Appendix A.2. In

Appendix A.3, we perform an analogous projection operation to obtain a 3D ellipsoid

from a 4D hyperellipsoid, and in Appendix A.4, we perform another projection to reduce

the 3D ellipsoid to a 2D ellipse.

A.2 1D Projection of the 2D Ellipse

We write the matrix equation for an ellipse in a 2D space (Xi, X2) as

1 = 2T 'X (A.1)

where

112 (A.2)X2)7

and

W(C e d q12 (A.3)
C12 C22

We expand Eq. (A. 1) as

1 = C11 +12 + 2C 12X1 X2 + C2
2 22 . (A.4)
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Figure A.1: The solid line corresponds to the 2D ellipse

defined by Eq. (A.1) with C11 = 1, C22 = 6, and C12 = -2.

The projection of this 2D ellipse onto the xi-axis is bounded

by a 1D ellipse - the two points indicated by the filled circles

at (xlX2)= ( ,0).

Let us illustrate the fact that Eq. (A.4) represents an ellipse by graphing it for the

specific case of C11 = 1, C22 = 6, and C12 = -2 in Figure A.1. In Figure A.1, the solid

curve describes the shape of the 2D ellipse defined by Eq. (A.4), while the dashed lines

graphically project this 2D ellipse into the 1D subspace of x1 . The 1D projection is

bounded by a perpendicular projection of the extremal points of the 2D ellipse onto the

x1 -axis.

Just as a 2D ellipse is a curve which bounds a 2D area, a 1D ellipse is a pair of

points which bounds a 1D line. The projection of the 2D ellipse defined by Eq. (A.4)

into the subspace of x1 is bounded by a 1D ellipse. In order to derive the equation for

the 1D ellipse, we note that the extremal values of x, on the 2D ellipse are obtained

where dx /dx 2 = 0, with the derivative being taken along the elliptic curve. Therefore,
implicitly differentiating Eq. (A.4) to obtain

0 = 2Clxldx1 + 2C 12 (Xl d 2 + x2dxl)+ 2C 22x 2dx2, (A.5)

and setting dx1 = 0 in Eq. (A.5), we obtain the equation for the extremal points on the

2D ellipse,
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C12X2  C12 1.
C22

(A.6)

Substituting Eq. (A.6) into Eq. (A.4), we find the equation for the 1D ellipse that

bounds the projection of the 2D ellipse defined by Eq. (A.4) into in the x1 subspace,

i.e.,

xl-

X12 1 12 2

=(C11 C22
(A.7)

With the example parameters of Cl, =1, C22 = 6, and C 2 = -2, Eq. (A.7) implies that

the points l12 = 3 bound the 1D ellipse, as shown in Figure A.1.

A.3 3D Projection of the 4D Hyperellipsoid

By analogy to the 2D to 1D projection of Appendix A.1, we

projection of a hyperellipsoid by looking for extrema in the

coordinates on the hyperellisoidal surface. Let us first define

through the equation

1=_T L' ,

can make a 4D to 3D
values of three of the

the 4D hyperellipsoid

(A.8)

where

x1
SX2 ,

X4

(11
L=

L L12
L13

\L14

(A.9)

(A.10)

L13

L23
L33

L34

L14

L24

L34
L44

We expand Eq. (A.8) as

1= 211 1
2 + Lx22 + L3 3 3

2 + L 44X4
2

+ 2L1 2X1 X2 + 2L13X1 3 + 2L 14X1;4 + 2L23X2X3 + 2L24X2X4 + 2L34x3x 4,
(A.11)



150

which we then implicitly differentiate to yield

0 = 2Lllxdx1 + 2L22x 2dx 2 + 2L 33x 3dx 3 + 2L44x4 dx 4

+ 2L 12 (Xld 2 + x2d 1) + 2L,3(XldX3 + x3dX1) + 2L 14 ( l dX4 + x4dX1) (A.12)

+ 2L 23(x2dx 3 + x3dx2)+ 2L 24 (x 2dx 4 + x4dx2 )+ 2L 34 ( 3dx 4 + x4dx 3).

To project the 4D hyperellipsoid defined by Eq. (A.11) into the subspace

(xl, x2,3), we find the extremal points in these coordinates by setting

dx1 = dx2 = dx3 = 0 in Eq. (A.12). In this case, we find

24 (L144 1 + L24 2 + L34 3), (A.13)
L44

which we substitute into Eq. (A.11) to obtain the equation for the 3D ellipsoid that

bounds the projection of the 4D hyperellipsoid defined by Eq. (A.11) into the subspace

(x1,x2,x3), i.e.,

L 44 = (L11L44 - L142 12 + (L22L44 - L242 )22 + (L33L4 4 - L342 (A.14)
+ 2(L12L44 - L14L24)Xl 2 + 2(L13L44 - L4L 34)XlX3 + 2(L 23L 44 - L24L34)x 2x 3

A.4 2D Projection of the 3D Ellipsoid

The 3D ellipsoid of Eq. (A.14) can be further projected into the 2D subspace (x, X2).

We first implicitly differentiate Eq. (A.14) to obtain

0 = 2(LllL44 - L 14 2 ±ldX1 + 2(L22L44 - L 242) 2dx 2 + 2(L33L44 - L 34
2 ) 3dx 3

+ 2(L12L44 - L14L24Xxld 2 + x 2dX1)-+ 2(L 13L44 - L14L34XXldX 3 + x3dx1) (A.15)

+ 2(L 23L44 - L24L34 X2dx 3 + x3dx 2).

Setting dx, = dx2 = 0, Eq. (A.15) implies

X3 (L14L34 - L13L44)1 + (L24L3 4 - L23L44 )X2
L33L4 4 - L34

2

which we substitute into Eq. (A.14) to obtain
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1 L14
2L33 - 2 1 3L14L34 

+ L1 L342 + L1 3
2L44 - L11L3 3L44 2

L342 - L33L44

+2 L4L24L33 - L14L23L34 - LL24L34 + L12L342 + L13L23L44 - L1233L 44 
1 2  (A.17)

L342 - L33L44

+ L24
2L33 - 2L 23L24L3 4 + L22L34

2 + L23
2L44 - L22L33 L4 4  2

L34
2 - L33 L44

Equation (A.17) is the 2D ellipse boundary of the projection of the 4D hyperellipsoid

defined by Eq. (A.11) into the subspace (X1 , 7 2).
Recalling Eq. (2.100) and comparing it to Eq. (A.8), we make the identification

L = M-1, (A.18)

which allows us to relate the elements Li, to the elements MY . Making use of Eq.

(A.18) to rewrite Eq. (A.17) in terms of the elements of M, we find, after considerable

simplification,

1 M22 2 M2 M1 2 M l 22 , (A.19)
M11M22 1 M122 11 M122 M11 22 122

which is identical to Eq. (2.108), or, equivalently, Eq. (2.105).

B Envelope Quantities

The matrix equation (A.1) describes an ellipse in the 2D space (xl,x 2). If this ellipse is

also described by Eq. (2.111), we can equate the coefficients to obtain

cos 2 8o sin2 112  12  (B.20)C11 A2  2 B- ,

012 = 12 1 in(2012 ), (B.21)

sin2 A cos2 1

C2 2  2 012 (B.22)If Athis Bsame ellipse is also described by Eq. (2.105), then we know that

If this same ellipse is also described by Eq. (2.105), then we know that

(B.23)
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and we can relate the elements of matrix M to the elements of matrix C through
=12

M 22 2 (B.24)
11CC22 - C122

M12  12 2 (B.25)
C11C22 - C12

M22 = C (B.26)
C11 22 - 122

Combining Eqs. (B.20), (B.21), and (B.22) with Eqs. (B.24), (B.25), and (B.26), we

obtain, after some simplification, Eqs. (2.112), (2.113), and (2.114).

The inverse relations for the envelope quantities are obtained with the quadratic

form methods presented in Korn and Korn [56]. Equation (A.1) is a quadratic form

representing an ellipse whose semi-axes A and B (B < A), and twist angle 012 are given

by

A2 = , (B.27)
12

B2 = , (B.28)
A2 2

tan 2012 = 2 12 (B.29)
11 - C22

where 2, and 22 (22 < 1) are the eigenvalues of the matrix C.

From Eq. (B.23), we have

C11= 22 (B.30)
M11M 22 - M12

C12= M12  (B.31)
M11M22 - M12

C22 22 , (B.32)
MlIM 22 -M 12
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which, combined with Eqs. (B.27), (B.28), and (B.29), yield Eqs. (2.115), (2.116), and

(2.117).

C Negligibility of Perturbed Trajectory Term

We neglect a term proportional to d1sl/dz in Eq. (5.43) in order to integrate the

equation and solve for 6y,, and here we demonstrate the validity of that approximation.

For this term to be negligible compared to the other driving term, we require [referring

to Eq. (5.43)]

S22 2SB k d5 (1-r r (C.33)
ky kk2 r 2 -d2

Using Eq. (5.96) to specify d6/dYS , this implies

Si- << (1 - rm - _2des (C.34)

0 2 4 drm T0 ades

which simplifies, using Eqs. (5.63), (5.76), and (5.79) to

des ý 4 4 1 4 2 k42 ý2
bdes ko 1 2 O 1 bdes

2 
j
4

1 bdes2

S+ 1 r +2 k+ de - r.es << (C.35)-m 2 m• k 8 s'r <<• •es2

where we have retained the lowest-order terms.

Each term on the left-hand side of Eq. (C.35) is dominated by a term on the right-

hand side if we make use of Eqs. (5.5), (5.12), and (5.46). The inequality only fails when

the term on the right vanishes, i.e., conservatively, when

2 2  2 E2

des 2 3 des

If the magnetic field aspect ratio rm is outside the range given in Eq. (C.36), the term

proportional to d6&l/d- in Eq. (5.43) is negligible.
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