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Abstract

In this thesis, an inertial measurement unit (IMU) consisting of 3 accelerometers and

3 rate gyros is created using off-the-shelf sensors from STMicro and Analog Devices.

A novel technique for calibrating the orientation, position, scaling and offset of each

of the sensors on the IMU is developed. A gimbal consisting of three concentric

rings, with rotary encoders measuring the rotation between rings is designed. The

IMU is fixed to the inner ring of the gimbal and rotated in space. By sweeping

appropriate orientations of the IMU at appropriate rates, filtered sensor values can

be mapped to "true" angular velocities and linear accelerations computed from the

gimbal rotations. The sensor parameters are estimated via. MMSE, and a Kalman

filter is implemented to estimate the IMU's attitude (roll and pitch angles) from the

raw sensor values. The calibrated sensors are found to track the pitch angle with a

mean-square-error of 1.7427 degrees, and the roll angle with a mean-square-error of

3.1387 degrees. The novel outcome of this thesis is that it defines a technique for
calibrating IMUs with component sensors that need not be orthogonal in placement.

Thesis Supervisor: Hugh Herr
Title: Professor
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Chapter 1

Introduction

1.1 History of Inertial Measurement Units

Inertial Measurements Units are devices that can measure the orientation and posi-

tion of an object in space. They are generally used to track how an object rotates

and translates as it moves through the world. IMUs were popularized in the 1960's

as components of inertial navigation systems (INS), which were used by inertial guid-

ance systems (IGS) in missiles and onboard ships, submarines, and space shuttles

[1], [13]. They are currently used for mobile robot navigation, user interfaces, and

human motion tracking. In the field of mobile robots, IMUs are used in the control

of autonomous cars, submarines and unmanned aerial vehicles, [21] They are often

augmented with sonar and differential GPS sensors to "retrue" the object's location

in space. While general algorithms exist for predicting IMU orientation down to a

few degrees resolution, they are prone to error accumulation in the difficult problem

of accurate translation tracking. IMUs have also become popular in user interface

devices, such as mice, remotes, joysticks, as well as intelligent golf clubs. In these

scenarios, the IMU is used more for a coarse measurement of movement, or of actual

velocity and acceleration, but not for true orientation and position. Similarly, IMUs

are being used in video games interfaces and for gesture recognition, [1].
Of particular interest to the author and his laboratory is the application of IMUs

toward human-machine interfaces. A miniature IMU is being developed as a vestibu-
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lar implant for disabled subjects with balance problems, [25]. A few companies, such

as Animazoo and Xsens sell IMU based motion capture systems that outfit the hu-

man body and take measurements of human motion and natural and artificial limb

trajectories, [35], [17]. Much previous work has been done in using IMUs to sense

lower-limb angles as a method for timing biological stimulation (FES), [24]. The au-

thor believes that IMUs will continue to play a greater roll in the burgeoning field of

intelligent prostheses and orthoses.

1.2 History of Gimbals

A gimbal is a mechanical device that allows for all 3 degrees of rotational freedom.

Historically, gimbals have been used for inertial navigation for space shuttles, Figure

(1-1), as well as stabilization of missile platforms and boats. In traditional scenarios,

an IMU is located in the center of the gimbal, and the gimbal axes are spun by a

measured amount to keep the orientation of the IMU with respect to the world the

same, [8]. From these rotations at the axes, the Euler angles of the gimbal can be

measured.

Figure 1-1: 4-axis Gimbal Used on Apollo Space Shuttle [12]

16



Unfortunately, using Euler angles leads to a problem called Gimbal Lock, in which

an axis rotates past 90 degrees, and it looks as though the IMU has flipped inside the

gimbal, [13]. The Apollo Space Shuttle missions skirted around the problem of gimbal

lock by using a 4-axis gimbal, Figure (1-1). The problem can also be avoided by using

a different representation for 3-D rotations such as quaternions, rotation matrices, or

axis-angle pairs, [19]. This thesis uses 3-by-3 rotation matrices to transform vectors

from one coordinate frame to another, as well as axis-angle (vector) representations

of angular rates and accelerations.

1.3 Composition of IMUs

IMUs are traditionally composed of some combination of inclinometers, accelerome-

ters, magnetometers, and rate gyroscopes. Inclinometers measure the inclination of

an object with respect to ground (i.e. pitch angle). Accelerometers measure linear

acceleration along an axis. Magnetometers measure the magnetic field along an axis.

Rate gyroscopes measure the angular velocity about an axis of rotation.

The components come in various packages based on various technologies that

have a wide range of associated costs, [1]. Initial technology for rate gyros consisted

of a gimballed rotating mass, in which the precession of the object was measured by

measuring rotation at gimbal axes. Now, most sensors come in the form factor of an

integrated circuit. For example, Analog Devices sells 3 kinds of single-axis MEMS rate

gyros for between $22 to $30 a gyro in bulk. Gyration sells a 2-axis rate gyro, while no

manufacturer to this point has developed a commercially available 3-axis MEMS rate

gyroscope, [28]. Accelerometers come in varieties of piezo, capacitive, and MEMS

devices. Analog Devices sells 2-axis 2g accelerometers for $7 a piece. STMicro sells

a 3-axis accelerometer with for $22 a chip. Currently, the trend in new technology

has been toward developing low cost, low profile MEMS devices. Xsens, Intersense,

Xbow, MicroStrain, Silicon Designs are all companies that sell a prepackaged IMU,

[34] [30] [31] [33] [29] [32]. While most applications use or assume an IMU created

out of orthogonal sensor components, within these multi-axis sensors, there exists an

17



X-Y skew error of typically up to 2 degrees, [10].

1.4 Previous Work on IMU Calibration

Previous calibration techniques have focused on determining normalizing factors for

each of the individual sensors. These factors are usually comprised of a scaling and an

offset value for each of the sensors. The orientation and position of the sensors with

respect to one another are also estimated in some techniques. These parameters are

measured as offsets from 90 degrees because most applications assume an orthogonal,

or near-orthogonal layout of sensors, [15].

General calibration techniques involve orienting an accelerometer by hand until

a maximum and a minimum is "eye-balled", averaging the two values to achieve an

offset, and scaling the range between the max and min to be 2g. Similarly, rate gyros

offsets are calibrated by averaging the gyro signal over a period of no motion. Gyro

scaling is estimated by rotating the IMU by a certain angle along the "eye-balled"

gyro axis in a certain amount of time, and dividing by the integrated gyro signal. Such

techniques require apriori information as to the placement of sensors on the IMU, a

careful monitoring of an induced motion and timing, and are subject to qualitative

approximation, [26].

While previous calibration techniques yield acceptable results for applications that

do not rely on precise angular measurement, such as gesture recognition, [1], they are

NOT adequate for accurate estimation of yaw, pitch, and roll (YPR) angles. This

thesis attempts to fill the gap in available technology for calibrating inertial mea-

surement units which can be assembled by hand, and which can have non-orthogonal

sensor alignment.

In particular, at the time of this thesis, commercially available IMUs consisting

of 3 accelerometers and 3 rate gyros take on form factors which may not be suited

for certain applications. An IMU can be created by combining 1 and 2-axis compo-

nents, but the orthogonality of the sensors on such a "hand-built" IMU cannot be

guaranteed. Furthermore, in the application of a slim-line IMU which conforms to a

18



non-orthogonal shape, an IMU purposefully composed of non-orthogonal sensors may

be created. In both these situations, the procedure described in this thesis allows for

the IMU to be calibrated.

1.5 Chapter Overview

Chapter 2 defines the problem of IMU calibration and covers, in mathematical detail,

the algorithm used to calibrate accelerometer and rate gyro readings from known

gimbal rotations. Chapter 3 focuses on the Kalman filter algorithm used to estimate

roll, pitch, and yaw from the calibrated IMU. Chapter 4 details the physical hard-

ware implementation of the IMU and the gimbal, as well as the data acquisition and

processing hardware used to calibrate the IMU. Chapter 5 characterizes the electri-

cal noise profile of the IMU sensors, and exposes the problem of discretization by

rotary encoders in the gimbal. Chapter 6 discusses the filters used to compensate for

the noise and discretization. Chapter 7 contains plots of convergence and analysis

of error of the calibrated IMU sensors, as well as quantifies the predictive success of

the Kalman filter. Chapter 8 outlines improvements in the calibration algorithm and

IMU and gimbal construction. Chapter 9 ends with a summary of the results.

19



20



Chapter 2

Calibration Mathematics

IMU Rigid Body

k
S

Figure 2-1: An IMU Containing Sensors i,j,k in Sensor Reference Frame, S

2.1 Problem Statement

Given an Inertial Measurement Unit (IMU) comprised of accelerometers and rate

gyros placed in arbitrary orientations and locations, (Figure 2-1), calibrate the sensors

individually, and with respect to one another. Calibration means finding the scaling,

offset and orientation of each of the sensors on the IMU, as well as the positions of

the accelerometers on the IMU.
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2.2 IMU Equations

An IMU is composed of multiple sensors fixed in a sensor reference frame S. The IMU

rotates and translates in the world reference frame W. The accelerometers and rate

gyros are fixed in the IMU's sensor reference frame, S. Each of the sensors is located

at a fixed position and orientation in S. Each sensor outputs a voltage between OV

and 5V with some offset voltage corresponding to "zero" for that sensor, and some

scaling which converts the voltage to a measurement (e.g. m/sec2 or rad/sec).

2.2.1 Accelerometer Equations

IMU Rigid Body

S

Figure 2-2: Accelerometer i Situated on the IMU in S

Accelerometer i is situated in S, (Figure 2-2), with

* position vector Dis = (dr, d, d)

" orientation vector Sis = (sx, sy, sz)

" scale factor S$s|

" offset voltage yj

* output voltage Ai

22



Also note that the scalings which convert voltages to measurements of linear ac-

celeration can be represented as the magnitudes of the orientation vectors for each of

the sensors.

An accelerometer i measures a component of the IMU's linear acceleration in the

world reference frame, 1w. In particular, an accelerometer outputs a voltage equal

to the projection of 1w onto S w, multiplied by some scaling, ISW , plus some offset

voltage, put.

Ai= Siw Proj -(lw) + pi (2.1)

Equation (2.1) can be further simplified to

Ai = Sw o lw + Ai (2.2)

Because S and W are non-inertial reference frames (i.e. the IMU can accelerate and

rotate in W), lw is derived from translational and rotational components. The trans-

lational acceleration is composed of a static gravity component, C = (0, 0, - 9 .8 1)T,

and a dynamic component h which represents the IMU's linear acceleration due to

translational motion. The rotational acceleration stems from the angular accelera-

tion, cAz, and the centripetal acceleration, Cow, and acts along the sensor's position

vector rotated into the world frame, D w.

lw = G + h + (a' x Diw) + Cw (2.3)

The centripetal acceleration can be described in terms of the angular velocity of the

IMU in the world reference frame, cWW.

1w = G+ + (a'v x Dw) + (iv x (Lv x Diw)) (2.4)

ASSUMPTION: The IMU is only rotating in the gimbal, which is theoretically true

if all the gimbal ring axes are aligned to be concentric. If the IMU is not translating,

but just rotating in space, then S and W remain concentric, h = 0, Swl = Ss,
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jVw = jVs and Rs--w represents the 3-by-3 rotation matrix which transforms

vectors from S to W. Equation (2.2) can be expanded to

Ai = Sw o (G+ (a-w x Diw) + (w-v x (jw- x Diw)))+ pi (2.5)

Vectors in S can be rotated to W by multiplying by Rs-w.

Ai - (Rs-w S s)o (G+(a-w x (Rsw Dis)) +(Lw x (w-w x (Rs-w Dis))))+pi (2.6)

The dot product can be turned into a matrix transpose product.

Ai -= (Rs-w-S s)-(G+(aw x (Rs-w-Ds))+(w x (w- x (Rs-w*D-s))))+pzj (2.7)

Because of the orthonormality of rotation matrices, the transpose of the rotation

matrix is the same as the inverse of the rotation matrix. RSw = Rw-+s

Ai = S[s - Rw--s (G+ (a-w x (Rs-w -Dis)) + (L-w x (wow x (Rs-w -Dis)))) +ij (2.8)

The rotational components of the linear acceleration can be represented in matrix

form, and separated from Rs-w Dis. In particular, if acw = (r, s, t)T, and w =

(u, v, w)T, then the matrix f(a- ww o) can be defined such that

(aw x (Rs-w Dis)) + (wr x (ww x (Rs-w -Dis))) f(a', w) Rs-w - is (2.9)

f(Oww-w) =

0 -t

t 0 +

-s r 0

-V - W 2
V -ULW 2

-W 2 _ U 2 W - V

W V -U2 _2

(2.10)

The cross products in Equation (2.8) can be replaced by matrix multiplications.

Ai = Sfs -Rw--s - (G + f(a, Rs-w - is) + pi (2.11)

So, the problem of calibrating an accelerometer comes down to estimating pi, Sis,
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and Dis in Equation (2.11) given a set of discrete datapoints, Ai[k], Rw-s[k], aow[k],

and ww[k].

2.2.2 Rate Gyro Equations

IMU Rigid Body

Vi

S

Figure 2-3: Rate Gyro i Situated on the IMU in S

Rate gyro i is situated in S, (Figure 2-3), with

* orientation vector s (7or, vy, vz)T

" scale factor vs

* offset voltage Xi

" output voltage Y

Because the rate gyros measure angular velocity, they can be translated to an arbi-

trary position on the rigid body IMU and will still measure the same value. Thus,

the position vector cannot be measured for the rate gyros, as it does not affect the

output Yi.

A rate gyro measures a component of the angular velocity of the IMU in the world

reference frame, ww, and outputs a voltage equal to the projection of wLw onto the
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rate gyro orientation vector Vw, multiplied by some scaling, 1V7 W , plus some offset

voltage Xi.

Yi= 1V7 w -Projya (L-'w) + xi (2.12)

Equation (2.12) can be simplified to

Y = V' -Rs-w-w + xi (2.13)

So, the problem of calibrating a rate gyro comes down to estimating Xi and Vis in

Equation (2.13) given a set of discrete datapoints, Y[k], Rw-s[k], and ww[k].

2.3 Gimbal Equations

The gimbal is composed of 3 concentric rings, which allow the central ring to be

spun in any orientation, as seen in (Figure 2-4). The gimbal has a rotation sensor

at each of the axes of the rings, which measures the angle between rings. From this

information, the rotation matrices and the angular velocity and acceleration vectors

can be determined.

2.3.1 Determining Rs-w

A right-hand coordinate system is chosen such that the inner ring spins about the

y-axis of the middle ring by some Oj, as seen in (Figure 2-4). Recall that the IMU is

rigidly fixed in the inner ring, such that the coordinate frame of the inner ring is S.

Then, the rotation matrix that transforms a vector from the inner ring to the middle

ring, Rs-mid, is a y-axis rotation by 0rn.

Rs-mid(Oin) = Ry (Oin) (2.14)

Similarly, the middle ring spins about the z-axis of the outer ring by some Omid.

Rmid-out = Rz(Omid) (2.15)
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Figure 2-4: Solidworks Model of Gimbal, Right-Hand Coordinate System Defined

The outer ring spins about the y-axis of the world reference frame, W by some 0out.

Rout-w = Ry(out) (2.16)

The total rotation matrix from S to W is the product of the intermediate rotations.

Rs-w = Rot_.w - Rmid-_out - Rs-.mi (2.17)

The rotation matrix Rs.w and its transpose, Rw-s, can be represented in terms of

gimbal measurements of rotations at each of the axes of the rings.

Rs-w = Ry(Oout) -Rz(Omid) - Ry(Oin) (2.18)

Note that the calibration algorithm does not constrain the initial state of how S is

oriented in W. For the sake of simplicity, the orientation of the sensor reference frame
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is initially assumed to be the same as the world reference frame.

1 0 0

Rs-w[0] = 0 1 0 (2.19)

0 0 1

The calibration procedure can start with the gimbal axes "zeroed" at arbitrarily

angles, and the estimated parameters Sis, Dis, and7s will actually estimate the initial

orientation of the IMU in W.

2.3.2 Determining av and w'W

a' represents the angular acceleration of the IMU in the world reference frame. The

magnitude of an is equal to the magnitude of the angular acceleration in (rad/sec2 ).

The normalized vector of a' represents the axis about which the angular acceleration

is acting. The magnitude of the angular acceleration of the IMU about the middle

ring is Oij, and this acceleration occurs about the y-axis, (0, 1, O)T.

/0

amid Oin (2.20)

The angular acceleration of the IMU about the outer ring, aoiutis equal to the angular

acceleration of the middle ring about the z-axis of the outer ring, mid* - (0, 0, I)T, plus

the angular acceleration of the inner ring about the middle ring, amid rotated into

the outer ring coordinate frame by Rmid-out.

/0

out= Omid 0 + Rmid-out - amid (2.21)
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The angular acceleration of the IMU about W can be calculated in a similar manner.

/0

w= Out 1 + Rout-w * aout

Equations (2.20), (2.21), and (2.22) can be combined.

+ ROUt-w - 0 mid -

0 0

0 + Rout-.w * Rmid-out. in-

1)

Equations (2.14), (2.15), and (2.16) can be substituted into Equation (2.23) to yield

the total equation for the angular acceleration of the IMU in W in terms of 0's and

Is.

/0 0 0

a~w = OOnt - 1 + Ry (Oout ) - Omida 0 + Ry (Oout) -Rz (Omid) -Oin - 1

\0 \ / \ /

(2.24)

The angular velocity of the IMU about W can be calculated in a similar way to

the angular acceleration, yielding a total equation for the angular acceleration of the

IMU in W in terms of 0's and 0's.

WW = out-

0 0 0

1 + Ry(Oo0 u) - 0 mid ( 0 + Ry(0out) -Rz(Omid) - Oin - (2.25)

0 ) \ 1) \ )

2.4 LMMSE Estimation of IMU Parameters

As the IMU is rotated in space, the gimbal rotation sensor and the accelerometer

and rate gyro output voltages are recorded. Calibration involves using the discrete

datapoints 0,,[k], Omid[k], 0out[k], Ai[k] and Yi[k] to estimate the unknown IMU pa-
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W = 0out -

/0

1

\0/

(2.23)



rameters, pi, Ss and Dis for each accelerometer i, and xj and V7s for each rate gyro

j. The [k]'s and O[k]'s are approximated from the O[k]'s and the sampletime, 6t.

([k] -O[k -1])
0 [k] = (t

(O[k] - 6[k - 1])
0 [k] = R

(2.26)

(2.27)

Note that the calibration algorithm assumes the system is time-invariant.

2.4.1 Batch Estimator

Batch estimators use all the datapoints in a set to estimate unknown parameters. As

more and more datapoints are added to the set, multiplications and inversions need

to be calculated on matrices of increasing size. The batch estimator is useful in a

calibration scheme where a lot of datapoints are taken, and then post-processed.

Accelerometer Estimator

Equation (2.11) can be rewritten with reference to a datapoint at time index k.

Ai[k] = S.s -Rw-s[k] - (G + f(a-L[k], wI[k]) - Rs-w[k] . 1)s) + pu (2.28)

The offset voltage, pi can be pulled into a vector with the unknown orientation.

Ak = (Ssi) [Rw-s[k] (G+ f((aY[k],w v[k]) - Rs->w[k] -Dis)
Ai [k - (TS) j) -R W 1 (2.29)

Note that for a single datapoint, Equation (2.29) has a matrix structure as follows.

[1 x 1] = [1 x 4] - [4 x 1] (2.30)
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Equation (2.29) can be written to include multiple datapoints.

[Ai[1] . . . Ain]] = (S7s, f)[ Rw-.s[] (C + f('va-[1], wiv[1]) Rs-w [1] Dis) ... ]

0L1
K

(2.31)

For a set of n datapoints, Equation (2.31) has a matrix structure as follows.

[I x n] = [1 x 4] - [4 x n] (2.32)

Because the system is non-linear in (Ss, yi) and Dis, there is no simple analytic

way to simultaneously solve for (STS, pi) and Dis. Various optimization techniques

such as gradient descent or Newton-Rhapson iteration could be applied to solve for

(STS, pi) and Dis simultaneously. Instead, an iterative approach is chosen in which

Dis is assumed to be 0 and (Sis, pi) is solved for directly. Next, (STS, pi) is fed

back into Equation (2.31), and Dis is solved for directly. The updated estimate of

Dis is used to update the estimate of (Ss, pi) and so on until a sufficient level of

convergence (i.e. minimum error threshold) is achieved. Equation (2.31) can now be

represented as 0 = (Ss, pi) - K, where 0 and K are known values and (SS, i) is

a vector of unknowns in the first step of the iteration. The Linear Minimum Mean

Squared Estimate (LMMSE) can be achieved for a linear system by projecting the set

of datapoints onto a lower-dimensional space spanned by the unknown components

to be estimated. In this manner, the LMMSE takes the form of a simple matrix

inversion using the pseudoinverse.

O. KT = (ST, pi) -K . KT (2.33)

Note that K.KT is invertible only if n is greater than or equal to 4. This mathematical

constraint is another manifestation of the fact that it takes at least 4 sets of datapoints

to solve for the 4 unknowns in (Ss, p). The LMMSE estimate of (Sis, ,ui) then
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becomes

(2.34)

To solve for Dis in the second step of the iteration, Equation (2.28) is rewritten.

Ai [k]t-ST f sRws[k]- - Pi Ss-Rwis [k].f( a [k], ai[k])- Rsuw[k])- s (2.35)

Note that for a single datapoint, Equation (2.35) has a matrix structure as follows.

[1 x 1] = [1 x 3]. [3 x 1] (2.36)

Equation (2.29) can be written to include multiple datapoints.

Ai[1] - Ss . Rw-s[1] G - Pi

LHS

(ST s. Rw-s [1] -f (oz-v[1], w'wv[1]) -Rs-w [1])

(Ss - Rw-s[n] f(a'v[n], w'v[n]) -Rs-w n])

RHS
(2.37)

For a set of n datapoints, Equation (2.37) has a matrix structure as follows.

In x 1] = [n x 3] - [3 x 1] (2.38)

Equation (2.37) can now be represented as LHS = RHS - Ds, where LHS and RHS

are known values. The LMMSE again takes the form of a simple matrix inversion

using the pseudoinverse.

RHST - LHS = RHST. RHS . Ds (2.39)

Note that RH ST -RHS is invertible only if n is greater than or equal to 3 because it

takes at least 3 sets of datapoints to solve for the 3 unknowns in Dis. The LMMSE
e T

estimate of Dis then becomes

T
Dis = (RHS. RHS)-' - RHS - LHS (2.40)
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Rate Gyro Estimator

The equation for estimating the rate gyro parameters, ls and Xi, is very similar to

the first step of the iteration in estimating the accelerometer parameters. Equation

(2.13) can be rewritten for a particular datapoint at time index k.

Y [k] (VX [[k] ] (2.41)

Equation (2.41) can be written to include multiple datapoints.

[Yi1]. . i~]]= (),xi -Rw-s[1] u'v[1] ... Rw-s [n] -w [n] (.2
1 ... 1 is (242)

When written in the 0= (VT, Xi) -K structure, Equation (2.42) can be solved using

the pseudoinverse using at least 4 datapoints. The LMMSE estimate of ( is, Xi) then

becomes
_T

(Vis ,) = O KT . - KT 1  (2.43)

2.4.2 Recursive Estimator

It should be noted that as the number of datapoints increases, the complexity and

time of using the batch estimator will also increase. A recursive estimator which

carries a constant amount of state information from one timestep to the next can

be implemented to calibrate the sensor values. The recursive estimator follows the

Predictor-Corrector structure, in which the angular velocity and linear acceleration

vectors are predicted using the current estimated sensor parameters. The error be-

tween the predicted and actual angular velocity, and linear acceleration, is used to

correct the estimate of the sensor parameters, [11]. Such an online technique will be

useful later for a real-time, interactive calibration scheme, as noted in Chapter 8.
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Chapter 3

Yaw, Pitch, Roll Estimation

Once an IMU has been calibrated, the forward problem remains of estimating the

orientation and position of the IMU in space, based on the sensor data. Because

the IMU discussed in this project is fixed inside a gimbal, the assumption of pure

rotation still holds when attempting to predict the orientation, Rw-s . Because

most mechanical engineers prefer to think in terms of YPR angles, as opposed to

rotation matrices, these parameters will be estimated and analyzed.

3.1 Estimating Linear Acceleration

Given an IMU with calibrated sensors, each of the accelerometers measures a differ-

ent linear acceleration based on its position on the IMU. This is the result of Dis

in Equation (2.11). ASSUMPTION: The basic assumption behind all estimates of

orientation from accelerometers is that the sensors act as inclinometers; i.e. gravity is

the only component of the linear acceleration vector. According to this gross assump-

tion, the linear acceleration felt by all the accelerometers is in fact the same, and is

just G. Note that this assumption is strictly only true if the IMU is not rotating or

accelerating in space. The Hybrid Estimation approach discussed later in this chapter

deals with ameliorating the errors induced by this assumption. Equation (2.11) can

be written to incorporate m accelerometers, assuming the same linear acceleration,
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is [k] = Rw-s [k] - 1w [k] for each sensor.

A1 [k] - p1STs

ls[k] (3.1)

Am[k] - pm Ss

ATOT STOT

For m accelerometers, Equation (3.1) has the following matrix structure.

[m x 1] = [m x 3].[3 x 1] (3.2)

Again, using the pseudoinverse, the linear acceleration of the IMU, as seen in the

sensor reference frame, can be estimated. Note the mathematical constraint that

there must be at least 3 accelerometers, measuring 3 independent axes, in order to

take the pseudoinverse of STOT.

ls [k] = (SfTOT - STOT)-1 . STOT . ATOT (3.3)

3.2 Estimating Angular Velocity

Because the rate gyros measure angular velocity, all the rate gyros measure com-

ponents of the same angular velocity vector in the sensor reference frame W's[k]

Rw-s[k . w'v[k]. (2.13) can be written to incorporate o rate gyros.

Y1[k] - X, VT

-ws[k] (3.4)

Yo[k - xo V T

YTOT VTOT

Again, the IMU must have at least 3 independently oriented rate gyros in order to

estimate the angular velocity. For o rate gyros, the angular velocity of the IMU, as
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seen in the sensor reference frame can be estimated.

L s[k] O(V T -VTOT)- VTQT -YTOT (3.5)

3.3 Kalman Filter Estimation

Most of the literature involving IMUs describes methods of estimating orientation of

an object using a Kalman filter. The basic idea behind the Kalman filter is that there

is a process, with some associated process noise, and a measurement of the process

with some associated measurement noise. The Kalman filter follows the Predictor-

Corrector structure of estimation. The rate gyro outputs are used to estimate the

angular velocity. The angular velocity is used to create an incremental rotation matrix

which updates the predicted orientation of the gravity vector from one timestep to the

next. The accelerometer outputs are measured, and used to correct the estimation of

the orientation gravity vector. In this manner, the process noise corresponds to the

noise induced by the rate gyros in creating a incremental rotation matrix, whereas the

measurement noise corresponds to the noise in the accelerometers when estimating

the gravity vector.

3.3.1 Hybrid Estimation

Generally, accelerometers on an IMU are used as inclinometers. Assuming low dy-

namic linear acceleration, the accelerometer readings are interpreted as pure projec-

tions of gravity. In this manner, the state of the accelerometers at a particular instant

in time can predict the orientation of an object except for the yaw axis (rotation about

gravity). Rate gyros, on the other hand, are subject to accumulated error because

they must be integrated to estimate final orientation from angular velocities over time.

Rate gyros are beneficial during periods of high dynamic linear acceleration, because

the accelerometer readings are no longer accurate predictors of the gravity vector.

In order to switch between using both the accelerometer and rate gyro information

during periods of low acceleration and just using the rate gyro data during periods
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of high acceleration, a threshold E and a factor p[k] are defined.

1 1 Is[k] - GI < c 36p[k] = (3.6)
0 : 1s[k - GI> c

3.3.2 Kalman Filter Implementation

ASSUMPTIONS: The noise between sensors is assumed to be uncorrelated (e.g. so

that the noise signal on accelerometer i is independent of the noise signal on ac-

celerometer j). Also, the noise profile itself is assumed to be zero-mean and Gaussian,

which, as will be seen later in Chapter 5, will prove to be roughly true. These assump-

tions simplify the Kalman filter update eqations, [23]. The matrix S(W[k]) is defined

using components from an angular velocity vector 0 [k] = (w [k], wy [k], w [k])T.

0 wz[k] -wy[k]

S(a[k]) -w2[k] 0 wx[k] (3.7)

wy[k] -wx[k] 0

The incremental rotation matrix, Ric[k], transforms a vector through 1 timestep 6t

based on the estimated angular velocity vector wJs[k] and S(LJ-S[k]).

Rw-s[k + 1] = Rinc[k] - Rws [k] (3.8)

S(cs [k]) SPs[k])2[
Rinc[k] = I - - sin(Ws[k]6t) + _ (1 - cos(Ws-k]8t)) (3.9)

| Ws [k]| | I s [k]\12

Assuming the rate gyros exhibit zero-mean Gaussian noise that is independent be-

tween sensors (i.e. zero covariance), the process noise can be modeled as q, the

variance of the noise in &s[k]. Similarly, assuming the accelerometers exhibit zero-

mean, independent Gaussian noise, the measurement noise can be modeled as r, the

variance of the noise in Is[k].

Kalman function update equations can be written to estimate g' [k], the estimated
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gravity vector in the sensor reference frame.

p[k + 1] = p[k] + q - p[k] P k]2
p[k]+ r

p[k] 'f -
gs [k + 1] = Ric[k] - g[k] + p (k) - (Is[k] - g[k])

(9S ~ p[k] +'r

(3.10)

(3.11)

p[k] represents the updated noise correction term, and can be initialized to p[O] = 0.

Because of the assumption that S and W are initially the same orientation in Equation

(2.19), gI[0] = . The Kalman estimate of gj[k] can be used to estimate the third

column of the rotation matrix which transforms the gravity vector from the world

reference frame to the sensor reference frame.

r11[k] r 12 [k] r13 [k]

gs[k] = Rw-s[k] -C = T21 [k] r2 2 [k] r23 [k]

r 31 [k] r32 [k] r 33 [k]

0

0

-9.81

r 13 [k]

-981. r23[k]

r 33 [k]

(3.12)

Rw-s can be represented in terms of yaw(a)-pitch(0)-roll(-) rotations:

cos(a) cos(3)

- sin(a) cos(3) + cos(a) sin(#3) sin(y)

sin(a) sin(-/) + cos(a) sin(O) cos(7)

sin(a) cos(3)

cos(a) cos(7) + sin(a) sin(O) sin(-y)

sin(a) sin(#) cos(-) - cos(a) sin(y)

- sin(3)

cos(3) sin(7)

cos() cos(-)

(3.13)

Note that the third column of Rw-s only contains 3 and -y terms.

r13 [k]

r23 [k]

r 3 3 [k]

- sin(03[k])

cos(#[k]) sin(-y[k])

cosQ3[k]) cos(-yk])

(3.14)

The pitch term can be estimated from the first term in Equation (3.14). Using the

estimated pitch term, the roll term can be estimated using second term in Equation

(3.14). While 3 and - are back-solved using the Kalman equations, a must be solved

for in another way. Intuitively, accelerometers, when used to measure projections
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of gravity, do not and cannot measure any yaw component (i.e. a component per-

pendicular to the gravity vector). There may be a way to re-estimate the angular

velocity vector from the Kalman estimated gravity vector, and use this re-estimated

angular velocity vector to estimate the yaw angle. Some thoughts on this method are

described in Chapter 8.

Current techniques for estimating yaw utilize only the rate gyro sensor data. Note

that while the initial yaw component can be arbitrarily assigned, it is assumed to be 0

degrees. The vector M is defined as a static reference vector in the world coordinate

frame, (0,1, o)T The rotated counter-part of A in the sensor reference frame is r's.

r11 [k] r12[k] r13 [k] 0 r 12 [k]

M s[k] = Rw-s[k] - A = r21[k] r22[k] r23 [k] 1 = r22[k] (3.15)

r31[k] r32[k] r33 [k] 0 r32 [k]

Again, because S and W are initially the same orientation, m[O] = (0,1, 0 )T. An

update equation can be defined for mn's[k] based solely on the information provided

by the rate gyro sensors.

r1s[k + 1] = Ric[k] . nris[k] (3.16)

Note that mr-[k] will be subject to increasing accumulated errors, because there is no

corrector term to retrue the prediction after each timestep. The vectors, M and M's

are defined so as to extract the second column of the rotation matrix.

r12 [k] sin(a) cos(f)

r22 [k] cos(a) cos(y) + sin(a) sin(3) sin(y) (3.17)

r32 [k] sin(a) sin(#) cos(y) - cos(a) sin(-y)

Now, the yaw angle, a, can be estimated from any one of the terms in Equation

(3.17), using the estimated roll and pitch angles form Equation (3.14).
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Chapter 4

Hardware

The physical hardware used to calibrate the IMU includes the IMU, the gimbal, and

data acquisition hardware, (Figure 4-1).

Figure 4-1: Picture of Complete Hardware Assembly
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4.1 IMU Hardware

The IMU used in this thesis is composed of 3-axes of rate gyros and 3-axes of ac-

celerometers. Both the sensors output analog voltages with an associated sensitivity

and noise. Below is a picture of the completed IMU, (Figure 4-2). The rectangular

green board is an evaluation board which contains the accelerometer hardware. The

tubular looking structure made out of yellow fiberglass boards contains the rate gyro

hardware.

Figure 4-2: Picture of IMU

4.1.1 Accelerometer Hardware

The 3-axes of accelerometers used in the IMU come onboard a single chip, the

LIS3LO2AS4, made by STMicroelectronics. The evaluation board downconverts the

5V input to run the chip off of 3.3V, and can measure accelerations up to 6g's. The

output signal for the accelerometers is roughly around 333mV per 1g and the zero-

acceleration (offset voltage) for each axis is roughly 1.6V. The accelerometer axes

have a misalignment of up to 4 degrees, [14]. As of August 2005, the cost of each of

these 3-axis accelerometer chips is $20.
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4.1.2 Rate Gyro Hardware

There are 3 separate Analog Devices ADXRS300 rate gyros. Each gyro runs off of

5V, and can measure up to 300 degrees of rotation per second. The sensitivity of the

output signal for the gyros is typically 5mv per 1 deg/sec per V and the zero-voltage

(offset voltage) is typically around 2.5V, [10]. As of August 2005, the cost of each of

these rate gyro chips is $30. Note that the rate gyros are placed roughly orthogonal

to one another via. design choice, though nowhere in the calibration algorithm is

orthogonality of sensors specified or assumed.

4.2 Gimbal Hardware

The gimbal, designed in Solidworks, consists of 3 concentric rings and a base, (Figure

4-3). Each of the rings is connected to an outer piece along one axis. The gimbal is

machined out of Delrin, as opposed to steel or aluminum, to reduce the potential of

electromagnetic noise. One end of the connecting axis is created out of a male/female

Figure 4-3: Picture of Gimbal

pair of 6-conductor audio stereo jack connections, made by CUI Inc. The other end

of the connecting axis is created out of an aluminum dowel pin shaft, on which end a

US Digital E4P press-fit-shaft rotary encoder is attached. The rotary encoders count

300 pulses per revolution (PPR) using quadrature encoding, so there are really 1200
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discrete steps which can be measured along a 360 degree revolution, leading to a

resolution of 0.3 degrees.

4.3 Data Acquisition Hardware

All of the data acquisition hardware, as well as the gimbal and IMU hardware is run

off of a 5 volt regulated power supply. A PC104 stack is used to record measurements

from the gimbal and the IMU. The processor card for the PC104 stack is a Digital

Logic MSMP3SEV board with an Intel Pentium III 700Mhz processor onboard. The

A/D card used is a Diamond Systems MM32-AT board. It is used to record the 6

analog IMU signals. The quadrature encoder card used is a Sensoray 526 board. It

is used to record the 3 rotary encoder signals from the gimbal. The PC104 processor

card is running the Mathworks Matlab kernel, and the software to record the sensor

outputs is written in Matlab and dowloaded to the PC104 using XPC. All the sensors

are sampled at 1 Khz.
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Chapter 5

Noise Estimation

The accelerometers and rate gyroscopes are subject to electrical and mechanical noise.

Potential electrical noise sources include the "regulated" power supply, the PC104

stack, the analog to digital conversion, the board layout of the IMU, and switch-

ing induced by the quadrature encoders. Mechanical noise elements include human

factors such as slight hand tremors when manipulating the IMU in the gimbal, and

environmental factors such as gimbal axes misalignment.

5.1 Accelerometer Noise

In order to quantify the electrical noise of the accelerometers, 10 trials of experiments

are run in which the IMU is left in a particular orientation in the gimbal. The trials are

run for 60 seconds, which at the 1Khz sample rate corresponds to 60,000 datapoints

per trial. A sample plot of an accelerometer output over the course of a minute shows

a noise range of roughly 0.05V, which corresponds to roughly .05g, (Figure 5-1).

The means of the accelerometer signals change from trial to trial based on the

IMU orientation. The noise profile, however, consistently looks like a Gaussian curve

with a longer right tail and a smaller bimodal hump for all accelerometers, (Figure

5-2). For a specific accelerometer, the variance of the noise stays the same between

trials.

While the histogram is a useful qualitative tool for determining the shape of the
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Accelerometer 1 No Movement Noise Characterization: 60 sec @ 1 KHz Sampling Rate
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Figure 5-1: Accelerometer Noise Trial (60 sec)
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Figure 5-2: Accelerometer Histogram

electrical noise, it does not lend itself to comparisons between trials with varying

sample sizes and bin sizes. Instead, a cumulative distribution function (CDF) can

be generated to compare the noise profile between trials. The CDF is a probabilistic

tool for representing a distribution and is effectively the integral of the PDF for a

signal with analog distribution. By centering the means of all the trials at zero, the
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noise profile of the accelerometer can be seen to take on the same shape for all trials,

(Figure 5-3).

Cumulative Distribution Function Accel Index 1
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Figure 5-3: Accelerometer CDFs (10 Trials)

The accelerometer noise is modeled as a zero-mean Gaussian function to fit the

noise model required by the Kalman filter, as described in Chapter 3. The power

spectral density (PSD) for Additive White Gaussian Noise (AWGN) is a flat line in

the frequency domain. The PSD of the accelerometer output has a peak at 0Hz cor-

responding to the DC value, and several higher-frequency peaks above 70Hz, (Figure

5-4). The region between 0Hz and 70Hz looks roughly like AWGN, and will be used

to design a noise filter in Chapter 6.

5.1.1 Estimating the Kalman Measurement Noise, r

As described in Chapter 3, the measurement noise of the Kalman filter corresponds to

the noise of the prediction of the gravity vector from the accelerometers. The simpli-

fied Kalman estimation function assumes that the measurement noise is AWGN, and

that the covariance between accelerometers is zero. These assumptions are justified by

the roughly Gaussian shape of the accelerometer noise profile, and by the covariance

matrix of the accelerometer signals, (Table 5.1). In particular, the noise covariance
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Figure 5-4: Accelerometer Signal PSD

0.3343 0.0011 -0.0126

noisecovariance(A1, A2, A3) = 0.0011 0.3318 0.0027 -0-
-0.0126 0.0027 0.3329

Table 5.1: Accelerometer Covariance Matrix

between accelerometers is minimal (at worst 1/30th) in comparison to the variance

of the individual accelerometers (the diagonal elements). Also note that all the ac-

celerometers have roughly the same noise variance. For this reason, the accelerometer

noise variance is chosen as 3.3e-5V, and will be divided by the accelerometer scaling

factor to determine r.

5.2 Rate Gyro Noise

The rate gyro signals are recorded during the same 10 trials as the accelerometers.

A sample plot of a rate gyro output over the course of a minute shows a noise range

of roughly 0.035V, which corresponds to roughly 7 deg/sec, (Figure 5-5). The means

of the gyro signals during no movement are independent of the IMU orientation, and

correspond to the offset voltage (i.e. the rate gyro output voltage at 0 deg/sec). The
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Rate Gyro 1 No Movement Noise Characterization: 60 sec @ 1KHz Sampling Rate
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Figure 5-5: 60 sec of rate gyro noise trial

noise profile also looks like a Gaussian curve with a longer right tail and a smaller,

yet closer, bimodal hump for all rate gyros, (Figure 5-6). For a specific rate gyro, the

variance of the noise stays the same between trials.

0

60,000 sample histogram with 60000 bins
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Figure 5-6: Rate Gyro Histogram

The CDFs of the rate gyroscopes are not zero-meaned, because they ought to

have the same offset voltage from trial to trial. The noise profile of the rate gyros can

be seen to take on the same, yet slightly mean shifted, shape for all trials, (Figure
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5-7). The mean shifting corresponds to fluctuations in the rate gyro offset voltage.

Moving means for gyros are attributed to temperature drift and electrical noise for

rate gyros, and can lead to a large accumulated error when integrated over time to

determine orientation. Over the course of a few hours, the offset voltages shift by a

range of 3mV, or roughly 0.6 deg/sec. The current linear model does not account for

the variation in rate gyro offset voltages.
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Figure 5-7: Rate Gyro CDFs (10 Trials)

The rate gyro noise is modeled as AWGN to fit the process model required by the

Kalman filter. Again, the PSD of the rate gyro output has a peak at 0Hz correspond-

ing to the DC value, and several higher-frequency peaks above 70Hz, (Figure 5-8).

Again, the region between 0Hz and 70Hz looks roughly like AWGN, and will be used

to design a noise filter in Chapter 6.

5.2.1 Estimating the Kalman Process Noise, q

The process noise of the Kalman filter corresponds to the noise of updating the

estimate of the gravity vector due to the rate gyros. Again, the simplified Kalman

estimation function assumes that the process noise is AWGN, and that the covariance

between rate gyros is zero. These assumptions are justified by the roughly Gaussian

50



120

100

80

40

S20

-20

-40

- -4o -30

PSD of Rate Gyro

DC SIGNAL

FIRST NOISE PEAK

X: 0
Y: 103.2

X: 73.27
Y: 25.17

I 1. I k-

7'r TVi ni,- "'In , r T r1

-200 -100 0 100 200 300
frequency (Hz)

400 500

Figure 5-8: Rate Gyro Signal PSD

( 0.9988 -0.0781 -0.0811 1-

noisecovariance(Yi, Y2 , Y) = -0.0781 0.9949 -0.0806 -0-
-0.0811 -0.0806 0.9964

Table 5.2: Rate Gyro Covariance Matrix

shape of the rate gyro noise profile, and by the covariance matrix of the rate gyro

signals, (Table 5.2). In particular, the noise covariance between rate gyros is minimal

(at worst 1/12th) in comparison to the variance of the individual rate gyros (the

diagonal elements). Also note that all the rate gyros have roughly the same noise

variance. For this reason, the rate gyro noise variance is chosen as 1.0e-4V, and will

be divided by the rate gyro scaling factor to determine q.

5.3 Gimbal Discretization

While the IMU sensors output analog voltages with associated noise, the rotary en-

coders on the gimbal output digital quadrature encoder bits, which have no associated

analog noise. The gimbal measurements are, however, subject to discretization, in

which the continuous angular rotation of the gimbal is measured in discrete steps
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(Figure 5-9). The effects of discretization are amplified when higher order derivatives

of the angle measurements are taken. A filter to smooth out these "choppy" signals

to something more continuous is described in Chapter 6.
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Chapter 6

Filter Determination

Filters must be designed to compensate for the electrical noise in the IMU and the

discretization in the rotary encoders. In general, the filter used will be a low-pass filter

to average out noise or to smooth a discrete signal, and its higher order derivatives,

into a continuous one.

6.1 Zero-Phase-Lag Filters

The calibration process described so far is a batch process; i.e. all the data is first

collected, and then the parameters are estimated. Therefore, the set of available

filters can include non-causal filters, which can "look ahead" and use future data to

compute a present value. The filtJfilt command in Matlab is used to implement the

low-pass filter. It ensures zero-phase-lag by running the data through the filter once,

and then running the filtered data through the same filter, but backwards. Given a

filter with a particular magnitude and phase plot, filtfilt generates an overall filter

with twice the bode magnitude, and 0 phase for all frequencies.

6.1.1 IMU Low-Pass-Filters

Recall that both the accelerometer and rate gyro PSDs, (Figures 5-4 and 5-8), express

noise peaks above 70Hz. The low-pass filters need to be designed to remove noise
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higher than 70Hz, yet still maintain a reasonable bandwidth. In the current design,

the user must manually rotate the rings of the gimbal, which can happen with a

frequency of at most 5Hz. So, the low-pass cutoff frequency must lie between 5Hz

and 70Hz.

The filters to consider include the Moving Average Window (MAW) filter, and

the Butterworth filter. As described in Chapter 8, the calibration algorithm will

eventually be implemented on a stand-alone microcontroller or FPGA. Toward that

end, the Butterworth filter is easier to implement using analog circuitry, whereas

the MAW filter is easier to implement using digital operations. While both filters

have qualitatively the same effect on the data, the MAW filter is chosen for ease of

computation and increased performance.

Moving Average Window Filter (window size = 60)

M 20
X: 5
Y: -0.9117

- 0X: 70
X: 6.37 Y 2075

Y1.5

0 10 20 30 40 60 60 70 80
Frequency (Hz)

0,

CO: -100

-150 - - - - - -- --

10 20 30 40 50 60 70 80
Frequency (Hz)

Figure 6-1: Bode Magnitude, Phase Plot of MAW Filter

The MAW window size of 50 is chosen to produce a low-pass filter with a -1.5dB
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point at 6.37Hz, and thus, an overall filter with a -3dB point at 6.37Hz when used

with filtfilt, (Figure 6-1). The overall filter has a near-unity magnitude of more

than .8, (-1.824dB), at 5Hz, and a minimizing magnitude of 0.01, (-41.5dB), at 70Hz.

Qualitatively, a window size of 50 ensures that the noise is smoothed in a continuous,

monotonic fashion while still preserving important features in the data, (Figure 6-2).
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Figure 6-2: Effects of Filtering Noisy IMU Data

6.1.2 Rotary Encoder Smoothing Filters

The filter size and type of filter used for smoothing out the discretized rotary encoder

signals is chosen to be the same as the one used for canceling the noise in the IMU,

because the encoders are subject to the same miminum 5Hz bandwidth as the IMU

sensors. Using the same filter eases the complexity of the computations as well.
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Qualitatively, the angular velocities and angular accelerations look smooth, and have

reasonable values of 5 rad/sec and 50 rad/sec2, (Figure 6-3).

0'

Raw and Filtered, Discretized Gimbal Angular Rotation Data
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Figure 6-3: Effects of Filtering Discretized Gimbal Data
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6.2 Real-Time Filters

When signals need to be processed in real-time, the filters used must be causal-filters,

which only use data from the past. The inherent problem with real-time filters is that

they induce a definite phase lag in the output signal from the input signal. In the

case of using the MAW filter on its own (i.e. without using filtfilt), the phase-lag

is approximately 25ms (roughly half the window size). Alternatively, the MAW filter

can be used with filtfiit as described above, with a known input to output delay (i.e

phase delay) of at least 50ms.
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Chapter 7

Results

The IMU is spun inside the gimbal for 5 minutes and the IMU and gimbal sensors are

sampled at 1Khz. 300,000 data points are recorded. The accelerometer, rate gyro,

and rotary encoder signals are zero-phase-lag, low-pass filtered using a MAW filter

with a window length of 50. The filtered rotary encoder signals are linearly converted

into angles, differentiated to determine the angular velocity about each of the gimbal

axes, and differentiated again to obtain the angular acceleration about the gimbal

axes, (Figure 7-1).

Note that the amount of time and number of data points used is not enough to

specify a "good" calibration routine. For example, the orientation could be left the

same for the entire period of data collection. Recall from Chapter 2 that in order to

solve the calibration equations, at least 4 unique data points need to be evaluated.

While the model used to map the sensor parameters to the sensor outputs is a linear

model, the system itself may contain some nonlinearities. When rotating the IMU

inside the gimbal, care is taken to sweep through as many orientations as possible,

in order to grab a rich enough data set. Ideally, the data set would contain an equal

number of data points from a equally distributed range of angular velocity and angular

acceleration vectors. The notion of quantifying the spatial representation of a "good"

input is covered in the Chapter 8. The first 3 minutes of data (180,000 data points)

are used to calibrate the IMU parameters. The later 2 minutes of data (120,000 data

points) are used when estimating the YPR values.
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Figure 7-1: Accelerometer, Rate Gyro, Gimbal Angular Data (5 Minute Trial)
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7.1 Accelerometer Parameters

Using the calibration algorithm described in Chapter 2, the accelerometer parameters

are estimated, (Table 7.1).

Estimated Accelerometer Parameters From 180,000 Data Points

Sensor Orientation Sis Scaling Position Dis Distance Offset

i s_ sy s, |__ _| dx d dz |___| _ _ _

1 0.0008 -0.0396 -0.0001 0.0396 0.0050 -0.0201 -0.0004 0.0207 1.3973
2 0.0034 -0.0021 -0.0413 0.0415 0.0101 -0.0111 0.0010 0.0150 1.4148
3 0.0404 -0.0010 0.0007 0.0405 -0.0018 -0.0096 -0.0005 0.0097 1.4121

Table 7.1: Estimated Accelerometer Parameters (Sfs, ISis, Dis, IDi s, Z)

The scaling for each of the accelerometers is around 0.04, which corresponds to

40mV per 1 m/sec2 , or 392mV per ig, which is close to the 333mV per ig listed

in the STMicro specification sheet, [14] The offset voltage, which corresponds to 0

linear acceleration, is between 1.353V and 1.947V for all of the accelerometers in

accordance with the specification sheet. IDisI, the distance from the center of each

of the accelerometer sensor frames to the center of rotation, is roughly 2cm, 1.5cm,

and 1cm. These distances appear reasonable with reference to the positioning of the

3-axis accelerometer chip on the IMU, the physical dimensions of the chip, and the

positioning of the IMU inside the inner ring of the gimbal. Furthermore, the angular

difference between each of the orientation axes of the accelerometers is close to 90

degrees, (Table 7.2), and within the 4 degree skew error referenced by the specification

sheet.

Estimated Angle Between Accelerometers
Z(1, 2) Z(1, 3) Z(2, 3)
86.88' 87.35' 86.20

Table 7.2: Estimated Angle Between Accelerometer Orientation Vectors, Sis
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7.1.1 Convergence of Sis, )'', and Dis
-T

Recall from Chapter 2 that the (Sis , /4) and Dis vectors are solved for iteratively,

one after the other. After 3 iterations of the algorithm, the vector elements converge

to within le-4. In particular, the position vectors, Dis, converge to within 1/10 of a

millimeter of their final values, (Table 7.3).

Convergence of Sis, /4 and Dis
iteration 1 2 3

Djs x 0.0000 0.0050 0.0050
y 0.0000 -0.0200 -0.0201
z 0.0000 -0.0004 -0.0004

Sis x 0.0008 0.0050 0.0050
y -0.0396 -0.0200 -0.0201
z -0.0001 -0.0004 -0.0004

Y'1 1.3972 1.3973 1.3973

D2s x 0.0000 0.0100 0.0101
y 0.0000 -0.0110 -0.0111
z 0.0000 0.0012 0.0010

S2s X 0.0034 0.0034 0.0034
y -0.0020 -0.0021 -0.0021
z -0.0414 -0.0413 -0.0413

'^ 1.4147 1.4148 1.4148

D3s x 0.0000 -0.0018 -0.0018
y 0.0000 -0.0096 -0.0096

z 0.0000 -0.0005 -0.0005

_ s_ x 0.0404 0.0404 0.0404
y -0.0010 -0.0010 -0.0010
z 0.0007 0.0007 0.0007

p^3/4 1.4121 1.4121 1.4121

Table 7.3: Convergence of Accelerometer Offset, Orientation, Position Vectors

7.2 Rate Gyro Parameters

The scaling for each of the rate gyros is around 0.29, which corresponds to 290mV

per 1 rad/sec, or 5.06mV per 1 deg/sec. The magnitudes of the estimated scalings
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Estimated Rate Gyro Parameters From 180,000 Data Points

Rate Gyro Orientation Vis Scaling Offset

1 _ __z _sI Xi
1 -0.0239 -0.2891 -0.0004 0.2901 2.4550
2 -0.2920 0.0357 -0.0179 0.2947 2.4313
3 0.0164 0.0155 -0.2973 0.2982 2.4417

Table 7.4: Estimated Rate Gyro Parameters (Vis, Vis, )

match with the typical rate gyro scaling of 5mV per 1 deg/sec as listed on the Analog

Devices specification sheet [10]. The offset voltage, which corresponds to 0 angular

velocity, falls within the typical range of 2.3V and 2.7V for each of the sensors. The

angular difference between each of the orientation axes of the rate gyros is close to

90 degrees, (Table 7.5), and represents the skew angle between the sensors when

mounted "orthogonally" by hand.

Estimated Angle Between Rate Gyros

Z(1,.2) Z(1, 3) Z(2,13)
92.24 93.15' 89.30-

Table 7.5: Estimated Angle Between Rate Gyro Orientation Vectors, 1/j

7.3 Accelerometer, Rate Gyro Output Predictions

The estimated accelerometer parameters and the angular acceleration and velocity

measurements from the gimbal are used to estimate the accelerometer outputs.

Rw-s [k] - (G + f (oz- [k], w' [k] ) - Rs-w [k ] . DisAi[k] = (S7s,-P). [ (7-1)
1

At all levels of resolution, the sensor output estimates very closely track the filtered

sensor output voltages, (Figure 7-2), both of which track the raw accelerometer sig-

nals. The mean squared error (MSE) of the accelerometers is 0.0107V, 0.0144V, and

0.0104V respectively, which correspond to average errors of roughly 27mg, 35mg,
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and 26mg respectively. These errors are greater than the 1.6mg predicted from the

specification sheet for a sampling rate of 1000Hz. The errors qualitatively appear to

increase during periods of IMU movement, which corroborates the Kalman filter's use

of relying more on the rate gyros during periods of rotation.

The estimated rate gyro parameters and the angular velocity measurements from

the gimbal are used to estimate the rate gyro outputs.

Yik] = (V, i) [ Rw-s[k] wiy[k ] (7.2)

Again, at all levels of resolution, the sensor output estimates very closely track the

filtered sensor output voltages, both of which track the raw rate gyro signals, (Figure

7-3). The mean squared error (MSE) of the rate gyros is 0.0152V, 0.011OV, and

0.0131V respectively, which correspond to average errors of roughly 3.00 deg/sec,

2.14 deg/sec, and 2.52 deg/sec, respectively. These errors are within the 3.16 deg/sec

predicted from the specification sheet for a sampling rate of 1000Hz.

7.4 Gravity, Angular Velocity Vector Predictions

The linear acceleration vector in the sensor reference frame, Is[k], differs for each of

the accelerometers, because each sensor is positioned differently on the IMU, with a

different Dis. The projection of the gravity vector into the sensor reference frame,

however, is the same for each of the sensors. Recall that the Kalman filter assumes the

rotational and dynamic accelerations measured by the accelerometers are insignificant

compared to the gravity vector. The estimated gravity vector in the sensor reference

frame is approximated as the estimated linear acceleration in the sensor reference

frame.

g 5[k] = Is[k] (7.3)

The estimated accelerometer parameters and the measured accelerometer output data

are used to estimate the gravity vector in Equation (3.3). The estimated gravity
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Accelerometer 1 Raw (blue), Filtered (red), and Predicted (green) Versions
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Figure 7-2: Raw(b), Filtered(r), Predicted(g) Accelerometer Values at Different Scales
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Rate Gyro 1 Raw (blue), Filtered (red), and Predicted (green) Versions
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Actual (blue) and Predicted (red) Linear Acceleration Vector in Sensor Reference Frame
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Figure 7-4: 3D Plot of Actual(b), Estimated(r) Gravity Vectors

vector qualitatively appears to track the actual gravity vector, (Figure 7-4). The

MSE between the estimated and actual gravity vectors for the calibration data set is

0.4337 m/sec2 , which is roughly 4.5% of g. This large error in estimation is due to

the assumption that gravity is the sole factor of acceleration, and is mitigated by the

Hybrid Estimation in the Kalman filter.

The angular velocity vector in the sensor reference frame, ws, is the same for each

of the rate gyros, and is estimated from the estimated rate gyro parameters, and the

measured rate gyro output data in Equation (3.5). The estimated angular velocity

vector qualitatively appears to track the actual angular velocity vector, (Figure 7-5).

The MSE between the estimated and actual angular velocity vectors for the calibra-

tion data set is 0.4337 rad/sec (24.85 deg/sec). This amount of error is large enough

to accumulate resulting in a highly innaccurate orientation estimation, and requires

the frequent periodic "reset" from the accelerometer information in the Kalman filter.
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Actual (blue) and Predicted (red) Angular Velocity Vector in Sensor Reference Frame
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Figure 7-5: 3D Plot of Actual(b), Estimated(r) Angular Velocity Vectors

7.5 Kalman Estimate of YPR angles

The variance of the measurement noise, r, is calculated by dividing the average vari-

ance of the accelerometer noise, 3.3e-5V, by the average scaling factor of 0.0405 V per

m/sec2 , resulting in r = 8.15e-4 m/sec2 . Similarly, the variance of the process noise,

q, is calculated by dividing the average variance of the rate gyro noise, le-4V, by the

average scaling factor of 0.294 V per rad/sec, resulting in q = 3.40e-4 rad/sec. The

r and q values are used in the Kalman filter estimation of the YPR angles, (Figure

7-6). The estimated roll MSE is 1.7427 degrees and the variance is 2.4129 (standard

deviation is 1.5534 degrees). The estimated pitch MSE is 3.1387 degrees and the vari-

ance is 15.7592 (standard deviation is 3.9698 degrees). The yaw estimate, which does

not use the accelerometer information, and thus does not benefit from the Kalman

filter, is so far from the actual angle that it often results in a non-sense, complex

value. It should be noted that the roll angle measurement is larger than the pitch

angle measurement because of the asymmetrical nature of the YPR representation.
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In particular, the error used to estimate the pitch is carried over to the roll angle.

Qualitatively, the majority of the errors occur during periods of little movement,

which corresponds to not factoring in the accelerometer information enough against

the rate gyro information.

7.6 Summary of Results

Overall, the calibration and YPR estimation algorithms are successful. The estimated

offsets and scalings lie within the typical ranges documented in the specification sheets

of the sensors. The position of the accelerometers on the IMU appear to match the

placement of the accelerometer chip in the gimbal inner ring. The orientation of the

sensors with respect to themselves is estimated as roughly orthogonal, as it should

be, and the accelerometer skew is within the guidelines of the specification sheet.

The estimated sensor output voltages track the actual sensor output voltages. The

gravity vectors and angular acceleration vectors estimated from the IMU track the

actual vectors derived from the gimbal. Using the calibrated parameters, and a raw

dataset, the estimated YPR angles from the IMU sensor values tracks the angles (par

yaw) derived from the gimbal rotation. The calibration technique works and can be

refined to attain higher accuracy as noted in Chapter 8.
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Chapter 8

Future Work

Many avenues can be taken to improve the method of calibrating an IMU using a

gimbal. Some improvements involve a better user-interface, an improved calibration

algorithm, and hardware upgrades/improvements. Eventually, the author hopes to

apply the technology of calibrated IMUs with non-orthogonal components to the field

of prosthetics and orthotics.

8.1 Calibration Improvements

The current state of the calibration algorithm is relatively rudimentary. The Matlab

code is optimized to use as few for loops as possible, and to represent as much of the

math in the form of direct matrix operations. The code could run faster if optimized

and compiled in a different language, such as C.

8.1.1 Online Estimation

Currently, the batch estimator that is implemented for the calibration routine takes 2

minutes to estimate the IMU parameters given a 5 minute dataset. The estimator can

be implemented efficiently in terms of a recursive estimator with a predictor-corrector

structure as mentioned in Chapter 2. This will allow for continuous feedback to the

user as to how the calibration parameters are converging over time.
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Plot of Orientation Up Vector over Time (Gimbal Rotations)
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Figure 8-1: PCA of Orientation Up Vector Swept Through Time

8.1.2 Improved User Interface

A display of the orientations of the IMU swept through thus far would give feedback

to prompt the user to sweep through unexplored orientations. The display would

indicate which faces of the IMU have been swept through which orientations, (Figures

8-1, 8-2, 8-3). Furthermore, Principle Component Analysis (PCA) would identify

which axis has been swept through most, and which axis needs to be swept through

more. By selecting the eigenvectors of the covariance matrix of the orientation vectors,

PCA can indicate how much variance exists along each principle component. This

variance be used to scale the amount of information used from each swept region, so

as not to overfit a particular region of data.

8.1.3 Goodness of Fit

Alternatively, instead of visualizing the orientation vectors sweeping through space,

a metric should be devised with a score corresponding to the "goodness" of the
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Plot of Orientation Front Vector over Time (Gimbal Rotations)
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Figure 8-2: PCA of Orientation Front Vector Swept Through Time

Plot of Orientation Right Vector over Time (Gimbal Rotations)
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Figure 8-3: PCA of Orientation Right Vector Swept Through Time
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input space. The covariance matrix of the elements of the rotation matrix, R can

be compared to the profile of equally distributed rotation matrices which transform

a vector equally about a sphere, to mathematically determine which Rs need to be

focused on. An analog metric can be conceived by applying Radial Basis Functions

to the surface of the sphere swept out by orientation vectors, [22].

More than checking to see that the IMU sweeps through all regions of space

equally, the quality of good input data should be measured as how much of the space

of angular velocity and linear acceleration the IMU sweeps through. The quality of

the input data can be determined by categorizing the vectors of interest into spa-

tially spherical histograms, with bins of equal steradian measure. Planar spherical

histograms can be expanded to volumetric spherical histograms. One such instantia-

tion would have k levels corresponding to radii and n, equally spaced points on each

of the k spheres corresponding to bin centers of voxels in the spatial histogram. The

n, equally spaced points can be iteratively determined, or an arbitrary spherically

symmetric shape, such as a Buckyball, with n = 60, can be used.

8.2 Kalman Filter Improvement

The Kalman filter measurement and process noise gains, p and r, can be optimized, as

well as the e threshold for the hybrid estimation. In addition to tuning the gains, the

implementation of the Kalman filter can be also be improved. As noted in Chapter

7, the majority of the errors appear to occur during periods of little to no movement.

During these periods, the accelerometer information ought to be weighed more than

it currently is. Instead of using a binary hybrid component, p, an analog p could act

as a scaling factor that uses the accelerometer information inversely proportional to

the period and magnitude of non-gravitational acceleration. Also, as noted in [23],

the hybrid component ought to include a time-delay so as not to include accelerom-

eter information during periods of acceleration fluctuation, in which the acceleration

transitions through a state of having magnitudes equal to gravity. The time-delay

will ensure that the accelerometer information is only used during periods of truly
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low" acceleration.

A method of using the Kalman filter to estimate the yaw component (using only

accelerometers and rate gyros) is considered. In particular, the estimated angular

velocity vector, Ws [k] is used to generate S(Ws[k]), which is used to generate the

incremental rotation matrix, Ric[k], which is in turn used to estimate the gravity

vector 9 [k]. Depending on the value of c, the accelerometer information may affect

the output of gS[k]. It may be possible to re-estimate Ws[k] such that a new Ric[k]

is responsible for transforming g [k] to j [k + 1]. The new WiS [k] could be used to

increment the yaw angle.

8.3 IMU Improvements

Because the only sensors used in this implementation of an IMU are rate gyros and

accelerometers, the yaw component has no static-field feedback. Magnetometers could

be added to the IMU package to measure the magnetic field, which, while it changes

based on latitude and is subject to EM interference from electronic equipment and

rebar inside buildings, is roughly static. The magnetometer information can be tied

into the Kalman filter equations to get a much better estimate of yaw angle, [18].

The magnetometers can be calibrated in exactly the same way as the accelerometers,

hopefully with minimal EM interference from the gimbal and wiring.

A thermistor could be also be included in the IMU package to account for changes

in the rate gyro's temperature-dependent offset voltage. The offset voltage could

be implemented as a function of the temperature and solved for non-linearly (or

estimated as a linear function), while still using the same equations laid out in Chapter

2.

8.4 Gimbal Improvements

The current version of the gimbal uses audio stereo connectors as axes of rotation.

The stereo connectors should be replaced with sliprings which are meant to take the
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load of the gimbal rings and continuous rotation. The axes are pressfit and glued in

place which may account for errors due to non-colinear axes of rotation. A precision

machined endstop would allow for the correct depth setting on the dowel pins, and

would lead to a more precise alignment of the rotation axes.

8.4.1 AutoCalibration

Eventually, the human can be eliminated from the calibration loop. Given appropriate

feedback about which orientations and which angular velocities and accelerations need

to be swept, stepper motors can actuate each of the gimbal axes. In this manner,

higher angular velocities and accelerations may be used to calibrate the sensors. Also,

the fully automated calibration routine would calibrate IMU sensors in an optimal

amount of time.

8.4.2 Translation

Currently, the calibration procedure only accounts for orientation in space. It may be

possible to induce linear accelerations by mounting the gimbal in an assembly that

can translate in space. One manifestation of this assembly would include 3 linear

actuators attached to platforms, nested one inside the other. The gimbal would sit

inside the inner platform. In this manner, 3-axes of translation and 3-axes of rotation

can be applied simultaneously.

8.5 Data Processing Improvements

Currently, the calibration process occurs offboard of the PC104 and on a host com-

puter. The first step toward a standalone calibration setup would be to implement

the real-time calibration algorithm on the PC104 itself in a stand-alone mode. The

end goal would be to implement the calibration algorithm as well as filtering and

Kalman estimation on an FPGA or microcontroller attached to the IMU, so each

IMU can store its own calibration information, and directly output YPR angles.
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Chapter 9

Conclusion

In this thesis, a novel method for calibrating IMUs using a gimbal is developed. The

IMU is comprised of 3-axes of accelerometers and 3-axes of rate gyros. A calibration

algorithm is developed for estimating the sensor parameters from known world quan-

tities taken from the gimbal. A Kalman filter is implemented to estimate the roll and

pitch of the IMU. The physical hardware for designing and assembling an IMU and

the gimbal is performed with incremental revisions. The electrical noise profile of the

IMU sensors is modeled as AWGN noise, with the variance of the accelerometer noise

estimated at 3.3e-5V and the the variance of the rate gyro noise estimated at le-4V.

An appropriate zero-phase-lag MAW filter with window length of 50, is chosen to

compensate for IMU noise and smooth gimbal discretization. The sensor parameters

are calibrated, and then used to estimate YPR angles using the Kalnan filter. The

estimated pitch MSE is 1.7427 degrees. The estimated roll MSE is 3.1387 degrees.

The estimated yaw MSE, which does not benefit from the accelerometer data, nor

the Kalman filter, is too large to measure. A series of improvements in the hardware

design, the calibration algorithm, and the user interface are sought in the future.

These improvements will lead to more accurate estimations of YPR angles, as well as

a faster calibration process. The appendices contain schematics and printed circuit

board (PCB) layouts of the IMU, engineering drawings of the gimbal, and Matlab

code used to calibrate the sensors and estimate RPY from the IMU.
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