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Abstract

The operational amplifier is a fundamental building block for electronic devices and
systems. The advancement of modern electronic technology has been setting more
performance demand on the underlying integrated circuits including the operational
amplifier. Reduction in power consumption and improvement in speed are some of the
most important requirements. To address these concerns, this thesis presents a design of
micropower Class AB operational amplifiers which has the ratio of gain bandwidth
product to supply current higher than that of an existing IC. The design is in a 0.6pm
CMOS process. The input stage of the design has the folded-cascode architecture that
allows the input common-mode range down to negative supply voltage. The Class AB
output stage swings rail-to-rail and has the ratio of maximum current to quiescent current
greater than 100. The bias cell of the operational amplifier is designed to consume only
6% of the total supply current. The thesis concludes the operational amplifier design
with two frequency compensation options. The one with simple Miller compensation has
a unity gain frequency of 360kHz with 61.5 degrees of phase margin at 100pF load while
consuming 20uA supply current. The other with the hybrid of simple Miller
compensation and cascode compensation offers an improved unity gain frequency of
590kHz at the same loading and power condition.
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Chapter 1 Introduction

The operational amplifier is a fundamental building block in electronics. Itis

employed in a wide range of applications including monitoring circuitry, cellular phones,

portable devices, medical instrumentation, and solar-powered systems [1], [2]. Linear

Technology Corporation launched LTC1541 Micropower Op Amp/Comparator/Reference

in February 1998. The IC has been incorporated in many consumer products such as

smoke detectors, infrared receivers, battery-powered systems, and portable phones [1].

1.1 Overview of Micropower Op Amp in LTC1541

The micropower op amp, which is part of LTC1541, was fabricated in a 4.0pm

CMOS process. It has a unity-gain frequency of 12kHz while consuming a typical

supply current of 1.5uA. Electrical characteristics of LTC1541 with 3V supply voltage at

25 °C from [1] are summarized in Table 1-1.

Specifications are at 25°C. Vpp =3.0V and Vg =0V,

Primary Characteristics

Value
Symbol | Parameter Condition Unit
Min | Typical | Max
1 CL = OpF
GBW Gain Bandwidth Product - 12 - kHz
RL =100kQ
Large-Signal Voltage Gain C.=0pF
AvoL 93 114 - dB
(DC Open-Loop Gain) Rp =100kQ
Is Supply Current No load - 1.5 - pA
Vpp -
Vinem Input Common-Mode Range - Vss - L3V v
Vos Input Offset Voltage Vinem = 1.5V - - 0.7 mV
i Vbb -
VOUT VOUTH Output ngh Voltage RL = 100k to Vss 0.07V - - \%

! Implying the gain bandwidth product per supply current GBW/ Is= 8 MHz/mA @ CL=0pF
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Vst
Vour. | Output Low Voltage | Ry = 100kQ to Vpp - . S8 v
0.05V
Isource Output Source Current - 0.6 0.95 - mA
Ismk Output Sink Current - 1.2 1.8 - mA
Secondary Characteristics
Value
Symbol Parameter Condition Unit
Min | Typical | Max
SR Slew Rate Ay=1V/V 1V Step - 0.008 - V/ps
" lenc
CMRR Common Mode Rejection Ratio 63 - - dB
VINCM = Vss to VDD -1.3
PSRR Power Supply Rejection Ratio @ DC 74 - - dB
€n Input Noise Voltage f=0.1to0 10Hz - 3 - uVpp

Table 1-1: Electrical Characteristics of LTC1541 [1]

1.2 LTC1541 Limitations and Problem Definition

The standard of electronic equipment and systems has been constantly developing
for the past years. This condition has imposed more demanding performance
requirements on the supporting semiconductor products, particularly lower power
consumption and higher speed. As a result, these foundational integrated circuits
including op amps have to continually improve to meet the need.

Currently, there are a few general-purpose low-power op amp ICs in the market.
One of them is MAX9914 IMHz, 20uA, Rail-to-Rail I/O Op Amps with Shutdown by
Maxim Integrated Products. It has a IMHz gain-bandwidth product at 15pF load with 45
degrees of phase margin [3]. Another well-known one is MIC861 Teeny™ Ultra Low
Power Op Amp by Micrel, Inc. With static supply current of 4.6uA, MIC861 offers a
225kHz gain-bandwidth product at 50pF load with approximately 45 degrees of phase
margin® [4].

Although the Micropower Op Amp in LTC1541 consumes an extremely low
supply current, its speed is far too low to accommodate the need of modern technologies

such as medical instrumentation [5] and portable devices. This thesis seeks to identify

2 The phase margin is not given in [4]. It is estimated from the datasheet that the IC has 2-3 periods of
decayed oscillation in the small-signal pulse response at 50pF load.
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the fundamental limit of speed versus power consumption and propose an improved
general-purpose micropower op amp whose speed to supply current ratio is higher than
that of LTC1541. Other crucial performance specifications are large DC gain and wide
input common-mode range that includes the negative supply voltage. In addition, op amp
characteristics such as stability, input offset voltage, output swing, and output drive
capability have to be considered as well. Some target applications of the new general-
purpose low-power op amp include battery-powered systems, portable electronic devices,

and safety sensors.

1.3 Thesis Goal

This thesis aims to design a two-stage operational amplifier that satisfies the
performance specifications in Table 1-2 and can operate between supply voltages of 2.5V
up to 6.0V. The specifications are defined at supply voltage of 2.5V, and they are
ordered by their relative importance in the descending order. The first three parameters:
unity gain frequency, DC open-loop gain, and supply current, are central in the design
process. The other requirements on the primary list must be met, unless their sacrifice
exceptionally enhances one of the first three characteristics. The design should also

satisfy all the secondary specifications.

Specifications are at 25°C. Vpp=2.5V and V55 =0V.

Primary Specifications

Symbol Parameter Condition Value Unit
s CL = 100pF
GBW Gain Bandwidth Product >0.3 MHz
Ry = 100kQ
Large-Signal Voltage Gain C. = 100pF
AvoL > 100 dB
(DC Open-Loop Gain) Ry = 100kQ
Is Supply Current No Load <21 pA
> VDD -1.25V
Vinem Input Common-Mode Range - And must include \%
negative supply voltage

3 Implying the gain bandwidth product per supply current GBW/ Ig> 14.3 MHz/mA @ C_= 100pF. Note
that GBW/ Is @ Cp = OpF is going to be higher than that @ C; = 100pF.
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Vos (Untrimmed) Input Offset Voltage Vmnem = 0.65V <5 mV

Vour VourH High Output Voltage Isource = 1.0mA >Vpp - 0.3V \Y%
Vourt Low Output Voltage Isng = 1.0mA <Vg+03V Vv

Isource Output Source Current G = 100pF >1.0 mA
Ry = 100kQ

Isink Output Sink Current C1.= 100pF >1.0 mA
R = 100kQ

Secondary Specifications

Symbol Parameter Condition Value Unit

SR Slew Rate Av=1V/V, 1V Step | >0.15 V/ps

CMRR Common Mode Rejection Ratio @ DC > 60 dB

PSRR Power Supply Rejection Ratio @ DC > 60 dB

ts 0.1% Settling Time Ay=1V/V, 1V Step | <10 us

Table 1-2: Design Specifications of Micropower Op Amp

With these specifications, the new design is expected to be a more versatile low-
power general-purpose op amp than the Micropower Op Amp in LTC1541. The unity-
gain frequency is specified to be greater than 300kHz so that the op amp can
accommodate a broader range of applications. At this frequency, the op amp has to be
properly compensated and well stable with 100pF load.

For supply current, the new op amp must take less than 21pA in order to be
power-friendly to portable equipment and battery-powered systems. This power
restriction implies that the ratio of gain-bandwidth product to supply current has to be
greater than 14.3 MHz/mA at 100pF load, which is higher than that of the Micropower
Op Amp in LTC1541 or 8 MHz/mA at OpF load.

Another main specification of the new design is a large DC open-loop gain of
more than 100dB. The large DC open-loop gain is important for low-frequency detecting
applications such as gas sensors because it minimizes the gain error. Moreover, in these
applications, the input voltage is small and a large gain is needed to get a measurable
output [6].

The input common-mode range of the new micropower op amp is specified to be
wider than half of the supply voltage and must include the negative supply voltage. This
specification is imposed because a number of single-supply applications, such as the

photodiode amplifier in Figure 1-1, have to take the input at the ground level. In

18




addition, many dual-supply applications such as the inverting amplifier in Figure 1-2 are

often biased at its mid supply voltage or ground [6].
2.5V

Ay _ B

L3

Figure 1-1: Photodiode Amplifier with Single-supply

N\

+1.25V
<& *
VIN o
- 4vAY; -
-1.25V

M\

Figure 1-2: Inverting Amplifier with Dual Supplies

1.4 Thesis Organization

Chapter 1 gives an overview of low-power operational amplifiers and their
applications, defines the problem of interest, and sets the goal that this thesis seeks to
achieve.

The rest of the thesis is organized as follows. Chapter 2 discusses how the target
specifications constrain the design of input stage of the micropower op amp, and

demonstrates the input stage details resulted from the restrictions. Chapter 3 extensively
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describes the output stage. The design of bias cell is presented in Chapter 4. Chapter 5
looks into the limitation on the gain bandwidth product in the context of frequency
compensation of two-stage op amps. It then presents the complete micropower op amps,
and selected simulation results. Lastly, Chapter 6 discusses the results and concludes the
thesis work. In addition, the appendices provide a complete collection of simulation
results of the proposed micropower op amp with different frequency compensation

schemes.
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Chapter 2 Input Stage

This chapter examines a number of common input stages and explains how the
input stage design is shaped by the constraints from specification. It first reasons why the
PMOS input pair is chosen over the NMOS one. The related constraints, namely input
common-mode range, DC open-loop gain, and input offset voltage, are then discussed in
the design context. The input common-mode range requirement sketches the preliminary
topology of the input stage. The final architecture is the result of the open-loop gain
restriction. Lastly, the input offset voltage constraint instructs how the transistors have to

be sized.

Consideration of Transistor Type in Input Stage

One of the primary reasons that PMOS transistors are chosen for the input stage is
the fact that its input common-mode range includes ground for single-supply operation
[6]. There are a number of other benefits for having PMOS transistors as the input stage
rather than NMOS transistors [7]. First, PMOS transistors have less 1/f noise. Second, a
PMOS input stage results in a higher slew rate than an NMOS one.

The following sections explain the design details of input stage based on the
consideration of the related constraints: input common-mode range, DC open-loop gain,

and input offset voltage.

2.1 Constraint 1: Input Common-Mode Range

One of the primary specifications of the op amp in design is to have the input
common-mode range that includes ground for single-supply operation as well as mid-
supply voltage for dual-supply operation. This section discusses different input stage
architectures and reasons why the single-ended folded-cascode configuration is used as
the input stage in the proposed micropower op amp.

Most op amps employ one of the following common topologies or their variants

as the input stage: single-ended or fully differential basic input stage, or single-ended or
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fully differential folded-cascode input stage. The four common topologies are shown in
Figure 2-1, Figure 2-2, Figure 2-3, and Figure 2-4 respectively [8]-[10].

The basic input stage in Figure 2-1 has the maximum common-mode input of Vpp
- (Vsep + Vbps,sar), which is high enough to accommodate mid-supply inputs for dual-
supply applications. However, its common-mode range cannot go down to ground for
single-supply operation, and therefore does not meet the requirement. The lowest of the
input range is only Vgsy - Vsgp + Vps,sar, Which amounts to be approximately 1Vpgs4r to
2Vpssar above the ground (In general, Vesv> Vsgpbecause the input pair is usually
weakly inverted due to its large width, but the current mirror transistors are strongly

inverted).

. [ DU

A0
<

Figure 2-1: Basic Input Stage

The basic input stage may also be implemented as a fully differential architecture
shown in Figure 2-2, simplified from [8]. Its common-mode input level can go up to Vpp
- Vsgp - Vps,sar (same as that of Figure 2-1) and can go down beyond the ground to as low
as 2Vpssar - Vsgp. Although it satisfies the input common-mode range specification, it
requires a common-mode control circuit, which in turn increases power dissipation in the
op amp. The second stage must also have differential inputs, which increases the power
dissipation even more. These extra implementation costs are its disadvantages, especially

for the op amp in design in which the total supply current has to be minimized.
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VINP D—l t | I:’ |—<:| ViNm

VouT! <—F —L——> VouTt:

Vpeias = 3 Il { l:

<

Figure 2-2: Fully Differential Basic Input Stage [8]

The folded-cascode topology in Figure 2-3, adapted from [9] to have the PMOS
input pair, has the same input common-mode range as the fully differential basic input
stage in Figure 2-2. Therefore, it satisfies the requirement. In addition, its input
common-mode range remains the same if a cascode current mirror or a wide-swing
current mirror is used instead of the simple current mirror shown in the schematic. The
only drawback is it consumes more current than the basic input stage for the same tail
current to implement the folded section. However, a wider input common-mode range
that includes ground for single-supply operation is more important. The input stage of

the proposed micropower op amp is based on this topology.
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M15 jl_____|E Mle6

VINP D—I I—G vinMml
—{—> VouTr

Figure 2-3: Folded-Cascode Input Stage (adapted from [9] to have the PMOS input pair)

The differential form of the folded-cascode input stage is shown in Figure 2-4 [9].
This topology has the same additional implementation need as the differential basic input
stage, and therefore is not appropriate for the author’s design. Other input stage
topologies explored include the complementary input stage in [21]. It allows rail-to-rail
inputs. However, it needs a transductance control circuit to ensure that the input stage
has a constant transconductance across all the input range. This additional requirement
increases design complexity and results in more power consumption. Therefore, the

complementary input stage is not selected for the proposed micropower op amp.
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Figure 2-4: Fully Differential Folded-Cascode Input Stage [9]

2.2 Constraint 2: Large DC Open-Loop Gain

The specified DC open-loop gain is at least 100dB. This high DC open-loop gain
is one of the design goals because the op amp has to support many applications that
require very large gains at low frequencies. These applications include gas sensors and
other transducers such as thermocouples, bridges, hall-effect sensors and photodiodes
[10]. This high gain characteristic is not easy to achieve in a two-stage op amp.

The simple current mirror in the chosen folded-cascode input stage in Figure 2-3
has low output resistance, compared to Wilson current mirrors and cascode current
mirrors, and thus making it more difficult to meet the required DC open-loop gain. In
addition, Vps of M16 in the simple current mirror changes with the operating supply
voltage and the bias of the output stage, and thus undesirably causing the bias current in

M16 to slightly vary upon those condition changes.
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Figure 2-5: Input Stage of the Proposed Micropower Op Amp

The wide-swing current mirror [9] is chosen for the input stage of the proposed op
amp as shown in Figure 2-5. It has high output resistance and has the highest bandwidth
per drain current ratio after the basic Wilson mirror and the improved Wilson mirror [11].
In addition, the wide-swing current mirror can operate with voltage down to 2Vsp sar
across its output side, unlike both forms of Wilson current mirrors and the cascode
current mirror that require at least Vg + Vsp s4r across the output side to operate
properly, i.e. the transistors stay in the saturation region. With the increased output
impedance of the current mirror, the op amp not only has a higher DC gain, but also

higher CMRR and PSRR [10].

2.3 Constraint 3: Input Offset Voltage

The input offset voltage comes from two sources. They are systematic offset
voltage and random offset voltage [12], [13]. The systematic offset voltage is caused by
asymmetry in the op amp architecture. The random offset voltage is the consequence of

mismatches in transistor pairs such as the differential input pair. The contribution of the
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random offset voltage on the total offset voltage is more significant than that of the
systematic offset voltage when the first stage gain is large. This condition is particularly
true in the author’s design in which most of the op amp gain is from the input stage.
(Simulation results show the input stage gain is on the order of 10* in the proposed op
amp). As a result, only the random offset voltage will be considered in this section.
Transistor pair mismatch comes from the difference in their threshold voltage Vr
and current factor £ [14]. In general, the variation in the threshold voltage and current
factor becomes less as the transistor area increases. The following calculation of input
offset voltage for transistor sizing is based on the model in [14] and [15]. The standard
deviation of the threshold voltage difference AV is described by
A
WL

where 4,, is a constant depending on the process technology (usually less for smaller processes)

O'(A Ve ) =

2-1)
_ ) . Ap . .
The standard deviation of the relative current factor difference —— is described by
o8B 4
B VWL
where 4, 1s a constant depending on the process technology
(2-2)

According to [14], the variance of the gate-source voltage difference in a

transistor pair with the same drain current can be described as

1 V..-V.
GZ(VOS) = ﬁl:AVTZ +(GL4L)A/?2:|

where V; is the offset voltage (or gate - source voltage difference of a transistor pair)

(2-3)

Equation (2-3) implies the effect of the current factor mismatch reduces as the overdrive
voltage decreases. In almost all circumstances, the threshold mismatch dominates the
offset voltage. For a 0.7um CMOS technology, the effect of the threshold mismatch is

more significant than the current factor mismatch for overdrive less than 1.4V [14]. In
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the author’s design where the total supply current is under 20pA, most transistor pairs are
weakly or moderately inverted. Therefore, the offset voltage can be estimated by only
considering the component due to threshold mismatch as

AVTZ

WL

o’ (Vos ) ~

(2-4)

This following section explains transistor sizing and input offset voltage consideration.

MI5 M16
1015_JF——4[" 1015
2 2
M17 99 | MI8
82 =07 1 1L 402
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MI3 9, [ — Mi4
Ve 25573 I |E 20/2
MB19 ™} 1 MB20
Vamirrors == 3/40 | ||:1 3/40
15 15

Figure 2-6: Input Stage with Transistor Sizes

The input stage with transistor sizes is depicted in Figure 2-6. The input referred
offset voltage is the result of the mismatch in the following 3 transistor pairs: M11-M12,
M15-M16, and MB19-MB20. Transistor pairs M17-M18 and M13-M14 do not affect the
input offset voltage. It is also not necessary to consider the offset voltage due to any
mismatch in the output stage because that offset voltage is divided by the gain of the
input stage when referred to the input [10], [14].

The micropower op amp is specified to have an untrimmed input offset voltage of

less than SmV. In order to achieve good yields in IC production, the transistors are sized
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such that three standard deviations of input offset voltage is less than SmV. This
condition corresponds to yielding 99.7% of fabricated ICs having untrimmed input offset
voltage within +/- 5SmV [16]. The transistor sizes in the final input stage design in Figure
2-6 evolve from preliminary hand calculation and simulation. The differential input pair
is sized to be very wide for two main reasons. The first goal is to make the input pair
having the highest transconductance g,,, compared to other transistor pairs in the input
stage, so that the offset voltage due to the other pairs is attenuated as implied by (2-6).
The other intention is to keep its gate-source voltage small so that the input common-
mode range is increased. For the wide-swing current mirror, transistor pair M15-M16 is
sized to be long to get high output impedance. The cascode transistor pair M17-M18 of
the mirror is sized to be wide to have high transconductance [10]. The following
calculation shows the course of preliminary hand calculation of input offset voltage using
the final transistor sizes.

Require 3a(V, )< 5SmV

o(V,s) < ng

(2-5)

From the input stage in Figure 2 - 6,

O'(VOS)=\/'O'“2+(gMI5]O'152+(gm819)0'3192
gm]] gml]

(2-6)

From (2-6), the transconductance ratio (&'—‘ij and (Ezﬂi} will be made to be one to
gmll gmll

simplify the calculation. Hence, the calculated offset voltage will be an overestimate.

2 2 2
O'(Vos): \/0'11 t 0,5 + 05y

(2-7)
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For 0.7um CMOS technology [14]*,
A,y =22mV -pm

Ay =13mV-pm

o, (AV) = Avrr = (22mV - pm)’ =0.242mV?
11 GS (WL)“ [4 . (SOum) > (l Ol.lm)]
01 (AVgs) = Agp” _ _Q2mVopm] o
s Ve )= Ty = - (10pm) - (150m)]
2 2
0'3192 (A Vis ) = Ay (1 3mV - pm) =0.094mV’>

WL)y,  [15-(3um) - (40pm)]

o(V,s) = +/0.242 +1.61+0.094mV

o(V,s)=1.39mV < %mV

If the input offset voltage were not a concern, the author could size input stage
transistors to be extremely small. This sizing would make the parasitic capacitances
minimal, so the unity-gain frequency would be higher without any other changes.
However, in practice, it is desirable for the op amp to have low input offset voltage, and
the input offset voltage specification must be met. Therefore, some transistors in the
input stage need to be sized to have large areas as shown in the calculation and Figure

2-6.

* The constant 4,7 for 0.6um CMOS technology was not found in literature, so the one for 0.7um CMOS
technology is used instead. This choice will result in a conservative estimate of offset voltage because this
constant decreases as the process becomes smaller.
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Chapter 3 Output Stage

In this chapter, the background on output stages and desired characteristics of the
proposed op amp are first explored. Then, the design of the output stage employed in the

proposed op amp is explained.

3.1 Output Stage Background

The output stage is needed for op amps that have to drive resistive loads or heavy
capacitive loads [17]. This section presents a brief introduction on the configuration of

output transistors and the classification of output stage biasing.

Configuration of Output Transistors

The arrangement of the output transistors in an output stage can be classified into
two basic configurations. They are complementary source-follower and complementary
common-source as shown in Figure 3-1 and Figure 3-2, respectively [18]. Since the
proposed micropower op amp needs to have a rail-to-rail output stage, the

complementary common-source configuration is used in the design.

Vb

vina E—] I__, M2P

Vour

VINB D——'l 57M2N

Figure 3-1: Complementary Source Follower Configuration [18]
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Figure 3-2: Complementary Common-Source Configuration [18]
Output Stage Biasing

The three common biasing schemes for the output stage are Class A, Class B, and
Class AB. Class A output stage is easy to implement, but it dissipates power all the time
and cannot source or sink current from the load more than its quiescent current value.
Class B output stage saves power because 1t is inactive when there is no signal, but it has
crossover distortion when transitioning between the active input ranges of the two
devices. Class AB output stage keeps both of the output transistors on with a small
amount of biasing current so it does not have the distortion problem [19]. Moreover, it

can source or sink current when required by the load.

Desired Characteristics of Output Stage

The output stage of the proposed micropower op amp has to be able to swing rail-
to-rail. For the biasing, the output stage should maintain relatively constant quiescent
current across the operating supply voltage of 2.5V to 6.0V. Moreover, because of the
output source/sink current specification, it needs to have a large ratio of the maximum
sourcing/sinking current to the quiescent current. As a result, the output stage of the
proposed micropower op amp is in the complementary common-source configuration and

is biased by a Class AB scheme described in the next sections.

32



3.2 Translinear-Loop-Biased Output Stage

The biasing scheme of the proposed op amp output stage evolves from the
translinear-loop-biased configuration shown in Figure 3-3. This translinear-loop-biased
topology was presented in [20] and extensively investigated in [21]-[22]. It is also called
the Yin-Yang output stage due to the symmetry of biasing [23]. This output stage
exhibits Class AB characteristics. It can operate down to a supply voltage of 2Vgs +
2Vps if cascode current sources are used, and down to 2Vgs + Vpsif simple current
sources are used. In addition, this output stage topology does not add noise and offset to
the op amp, provided that the two current sources biasing the bridging transistors, M23
and M26, are implemented by the existing bias currents in the input stage [21]. The
signals from the input stage, v;.4 and vins, feed directly to the gate of their respective
output transistor and also feed to the other transistor through the bridging transistors,
M23 and M26. While M23 and M26 actively bias the output transistors, nodes vy, and

vivg are always of high impedance regardless of supply voltage.
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Figure 3-3: Translinear-Loop-Biased Class AB Output Stage
In the NMOS translinear loop, M23 is sized to be @ times as wide as M21 and

M22 to accommodate I, which is 2a times as large as I;. The output device M2N is sized
to be b times as wide as M21 and M22 so that the output pair can sink and source large
currents and have high g,’s. The same geometry guideline applies to the PMOS
translinear loop. In addition, PMOS transistors are sized to be 3 times as wide as their
NMOS counterparts because the hole mobility is approximately one third of the electron
mobility. This decision is made so that PMOS transistors have the same
transconductance and the same gate-source voltage as NMOS transistors under the same

condition, i.e. equal bias currents [18].

Quiescent Current

When the output stage is at rest, the quiescent current can be calculated from
either of the translinear loop. Consider the NMOS translinear loop M21-M22-M23-

M2N, the quiescent current is determined as follows, similar to an example in [18].
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From the translinear loop,

Vasa +Vaszn =Vasn +Vosan
(-1)
21,

w
C | —
H, ox(L)

channel length modulation is negligible.

Since Vg, =V, + for NMOS transistors in saturation assuming the effect of

(3-2)

(3-3)
Since Viyy = Viyow and Vi, = Viyos
(3-4)
(Note that V., >V;y,,. The body effect causes Vo, > V7, because V,,, > 0V).
P P e
w w /4 w
(), AL,
(3-5)
|
ST = \/(K)M Ins | don _ | Ion
L 4 w w
(2, (2 AT,
(3-6)
2
ID2N=(K) , s + ’ Ipm I Ly
L)t (W 4 w
(AL
(3-7)
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(_9 — . i~ [La|
IDZNz[W ZN{ ID21+ 11)22_ msil

(3-8)
In the quiescent state, half of I, flows through M23 and the other half goes through M26.

2

IQ:IDZN =b 2\/Z_ -

(3-9)

Since 1, = 2al,
(3-10)

1, =1,y =bl,
(3-11)

The conclusion is the same for the PMOS translinear loop because of the
symmetry. The actual quiescent current may slightly differ from (3-11) from two causes.
The first one is all the transistors do not have the same Vps’s, but the effect of channel
length modulation is ignored in the derivation. The other error source contributes to the
deviation from calculation if the transistors are not well in strong inversion. This
deviation is particularly true in the author’s design because the currents of the translinear
transistors (except the output pair) are only in the range of 0.2 — 2.0pnA. Although the
transistors have Vgs > Vry, their overdrive voltages are less than 50mV, and thus operate
in moderate inversion. From the simulation of one of the proposed op amps in Figure
3-6, the quiescent current is found to be within 11% of the calculated value, i.e. the
simulated quiescent current is 8.33pA at Vpp = 2.5V while the calculated value is
9.85pA.

As far as the current allocation is concerned, the total supply current should be
invested in the output pair transistors as much as possible so that the output stage
transconductance, g2, is high. This design choice is made in order to put the op amp’s
second pole location as high as possible. However, the remaining current has to be

enough for the first stage for two reasons. One is the tail current of the differential pair
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input cannot be too small, otherwise the slew rate is too low. The other need is the
summing current mirror in the input stage has to be high enough so that the mirror pole
does not affect the op amp frequency response near the crossover point. In the proposed
op amps, the author distributes approximately half of the total current in the output pair
transistors, and verifies by simulation that the current left for the first stage after the bias

cell and the biasing of the output stage is sufficient.

Minimum Current in Output Transistors

When the load requires the op amp to source or sink current, one of the output
pair transistors is driven hard while the other is retained active with a small bias current.
For example, if the load draws current from the output stage, Vsg2p increases to allow
more drain current in M2P. As a result, Vg6 reduces, following the translinear relation

Vioas T Vscas = Vigas + Vsarr» DeCause Vg and Vse:s are fixed by bias current /;.

Therefore, more of bias current I, flows through M23. When all of I; goes through M23,
M2N is biased with the minimum current rather than turns off as in the Class B output
stage.

The following calculation for the minimum current is done for M2N, but the same
result also applies to M2P in the opposite scenario [18].

Consider NMOS translinear loop M21-M22-M23-M2N.

(o — —
From (3-8), IDZNz(ﬁV—ZNl: Tom + T o - 1223i|

),

The minimum current in M2N occurs when all /> goes through M23.

Ly = Ipy =b(2\/}:—v2]1)2

(3-12)
Ly = ]DZN = (z_ﬁ)zblx

(3-13)
Since [, = bl

Ly = 1Ipy =(2_ﬁ)2[Q
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(3-14)
Iy =15,y =0.3431,
In this proposed micropower op amp, the minimum current in the output
transistors is close to 0.461p according to the simulation result in Figure 3-7. This
difference from the calculation is caused by the fact that the transistors in the translinear

loops are in moderate inversion because of very low bias currents.

Maximum Current in Qutput Transistors

The maximum current is defined to be the maximum current that one of the output
transistors is capable of sourcing/sinking current while the other output transistor is
biased with the minimum current (rather than being turned off). To continue the analysis
from the minimum current section, the following absolute maximum current calculation
is performed for M2P [18], [23]. Again, the same result applies to M2N as well.

When M2N is biased at the minimum current, all of 7, flows through M23. Vgap
is pulled down to V¢2y by M23, and it can be pulled down to be as low as Vgon +
Vps,sat23 at most (to allow M23 to remain in saturation). The lowest gate voltage of M2P

is described by the following equation.

VGS21 + VGSZZ - VGS23 + VDS,SAT23 = VGZP

(3-15)
Under this condition, Vsgp is the largest and M2P conducts the maximum current. The
source-gate voltage of M2P can be expressed as.
Vsoar =Vop — (Vcsm +Vosn —Vesn + VDS,SAT23)

(3-16)

Rewrite Vsg and Vs in terms of Vrp, V7w, and Ip.
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2ID23

——F o~ 1 VDS,SAT23
ﬂncox (K)
23

L
(3-17)
Since Viyy = Viyas
- VTPZP =
21 21 21
VDD - VTNZ] + e + I = - D22 + VDS,SATZB
|74 |14 |74
#IICDX - ILlnCOX - ﬂnCOX W
L 21 Ly L 23
(3-18)
21 21 21
VDD + VTPZP - VTNZ] - VDS,SAT23 - D;;, + D;;, - D;;,
#,Co (—) #,C, (—j H,Co [~]
L 21 L 2 L 23
(3-19)
Use the approximation,
1
:upCox = —3-uuncox
f W 2b1
Vz(—lpzp) = /‘pcox (Tj (VDD + VTPZP - VTN21 - VDS,SAT23)_ (\/2171[)21 + \/2b1022 - —aQE—J
2P
(3-20)
f W 2b(2al,)
\/2(“11)2P) = IupCox(T] (VDD + VTPZP - VTNZI _VDS,SAT23)_(2 2b11 - ——‘—1_]
2p a
(3-21)
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1 W
IMAX =—Ipp = ’2‘ :U,;Cax (—I—:) (VDD + VTPZP - VTNZI - VDS,SATZB)— (2 2b11 -2 bIl )J
2P
(3-22)
1 W ’
IMAX = "IDZP = ’5 /‘pcox (‘[j (VDD + VTPZP - VTN21 - VDS,SAT23)— 2 bIl (\/5 - 1):i
L 2P
(3-23)

For the following parameter values,

Vop = 2.5V

Vipap = -0.9V (typical value from [24])

Vinzr = 0.8V (typical value from [24])

I, = 0.2pA

a=5and b =50

and Vpssar23 1s approximated to be 0.1V (because it is moderately inverted).
The maximum current, Jy4x, calculated from (3-23) is found to be 0.98mA while the
simulated /y4x is approximately 1.1mA as shown in Figure 3-7. At this point, the
minimum bias current in M2N is down to approximately 3pA. This result indicates that
the ratio of the maximum current to the quiescent current is 133.

As (3-23) implies, the maximum current increases as the supply voltage goes up.
The derivation also applies to the case when M2N conducts /4y and M2P is biased with

IMIN-

Variation of Quiescent Current over Supply Voltage Range

The translinear-loop-biased topology in Figure 3-3 is a robust Class AB output
stage, but it has a minor problem. The output pair quiescent current increases as the
supply voltage increases. This variation is due to the effect of the channel-length
modulation. Consider the NMOS transiinear loop, M21-M22-M23-M2N, M21 and M22
have the same Vps regardiess of the supply voltages because their gate and drain are
connected together. However, Vps;; and Vpsay become larger as the supply voltage
increases. For M23, as Vps23 goes up with supply voltage but the bias current is the same,

Vis23 becomes slightly smaller. As a result, Vgsnis slightly larger at a higher supply
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voltage because the available voltage for M23 and M2N, which is set up by M21 and
M22 is the same. Together with the increase in ¥ps, M2N conducts more quiescent
current at higher supply voltages. The same observation is also true for the PMOS
translinear loop. The simulation in Figure 3-4 shows as much as 47% increase in Ip

when Vpp goes up from 2.5V to 6.0V.

20uR

~1Buf o=

somipd—i—i i e : .
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of Qutput Pair of Output Pair Biasing Transistor MB17

Figure 3-4: Quiescent Current I vs. Supply Voltage Vpp in Translinear-Loop-Biased Output Stage

3.3 Modified Translinear-Loop-Biased Output Stage

The modified configuration shown in Figure 3-5 mitigates the variation in the
quiescent current over the supply voltage change. It is the topology used in the proposed
micropower op amp. This modified biasing scheme alleviates the change in /o at a small
cost of extra bias currents.

The variation in Ip is reduced by allowing Vpsz; and Vspzs to increase with the
supply voltage [23]. Vgs22 and Vsgzs then become slightly lower as the supply voltage
increases, thereby leaving less voltage available for M23 and M2N, and M25 and M2P,
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respectively. This effect counters the increase in Vpg;; and Vgpys, and thus keeps Veson
and Vsg2p more constant over the supply voltage change. The simulation result in Figure

3-6 shows the variation in Iy is down to only 20% with the supply voltage change from
2.5V t0 6.0V.
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Figure 3-5: Modified Translinear-Loop-Biased Class AB Output Stage
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Chapter 4 Bias Cell

This chapter demonstrates the design of the bias cell used in the proposed op amp.
It explains how the reference current and reference voltages are generated and passed on
to the op amp. The need and the implementation of the start-up circuit in the bias cell are

also explained.

4.1 Reference Current in Bias Core

The bias cell core is implemented by the bipolar Widlar current source in Figure
4-1[25], [26]. Transistor QB2’s emitter area is N times as large as that of transistor QB1.
In this design, N is chosen to be 5, which is the minimum of emitter area ratio normally
used. The reference current is generated by the base emitter voltage difference between
QB1 and QB2 across resistor Rg. Note that transistors QB1 is in the forward active
region because QB is diode-connected. At the minimum supply voltage of 2.5V, QB2 is
also in the forward active region because Vegs, = Vpp — Vsoms: - IrerRp, which is greater

than Vg sar if the Vseusz and the drop across Rp are not too high.
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Figure 4-1: Bias Core Generating Reference Current [25], [26]

The reference current, Irzr, can be determined by starting from the KVL equation

of the QB1-QB2-Rg loop, as presented in [26].

B +1
Vaer = Viga — :‘T L e R, =0

F

(4-1)
Find Vg in terms of I
v 473
Since /. = IS[I +%Je " ,and assumeV, >> V. [27]
A
(4-2)
()
I.=1ge" "/, where V, =26mV at 300K
(4-3)
I
Therefore, V. =V, In =
S
(4-4)

I B
V-7, nlee _Betl; g o

Sl 52 F
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(4-5)

Since £, >>1, P +1 ~1
F
(4-6)
v, 1n% -V, 1n1—;§£ —TeR, =0
N 52
(4-7)
voinMa ;R =0
REF
(4-8)
V.
Il =—LInN
REF RB
(4-9)

This result implies the bias cell’s ability to provide a constant reference current
under process variation. From (4-9), the mismatch in the emitter area ratio 4N from
process shifts is reduced to In(4N). Hence, the remaining source for error is the resistor
Rpvalue (+ 25% maximum) which can be reduced by adding a trimming resistor [25].
The current mirror transistors are sized to have the width of 10pum and the length of 40pm

so that they have a reasonable area and the mismatch is minimal.
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4.2 Start-Up Circuit

Start-up Circuit

MS2 MS3 MS6 | MBI
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mooj 2/10 :”_"“: 2/10

Ly L
1

A

v

Figure 4-2: Bias Core with Start-up Circuit

The bias core has two stable points: one with Ic; = Ic; = 0, the other with I¢; =
Ic> = Irgr. Without the start-up circuit, Vof transistors QB1 and QB2 could be at GND,
and thus not generating the reference current. For the bias core to generate a reference
current, the base voltage of QB1 and QB2 must be initially pulled up from the ground by
a start-up circuit. A compact start-up circuit used in this op amp is shown in Figure 4-2
[25]. MS1 and MS2 are sized to be narrow and long to minimize the start-up current, [sy.

The first two devices in the start-up circuit becoming active upon the power up
are MS1 and MS2. The supply voltage across their gate-source voltages forces them to
turn on, and thereby, MS1 and MS2 start to conduct start-up current Is;. The start-up
current is then mirrored to MS3-MS4, and MSS5 respectively. At this moment, MSS5 tries
to sink current from MS6, but MS6 cannot source any current because the bias core has
not been turned on. Therefore, the gate of MS7 is pulled to ground, causing MS7 to pull
the bases of QB1 and QB2 up from ground and the bias core is in operation. Now, MS6
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can source enough current to MS5 and turn MS7 off by pulling its gate up. Note that
MS6 is sized to be 10 times as wide as MB1 and MB2 so that MS7 can be easily turned
off as soon as the bias core starts to supply /ggr. The final current in MS6 is limited by
MSS.

The start-up current, Iy, can be estimated by the following. Upon the power up,
MS1 and MS2 see the supply voltage across their gate-source voltages according to the

relation.

Vsorsi +Vsoms: = Voo

(4-10)
To simplify the calculation, the body effect on Vzp increase of MSI is ignored, and the

following approximation is made.

Viomsi = Vseusa

(4-11)
And thus,
14
Voms2 = %
(4-12)
MS?2 is in saturation because it is diode-connected. The start-up current can be
approximated by
HpCoi (W
Iy =-1p = 'Lz" ('Z)(VSGMM +Vipys )2
(4-13)
H,Cor (W
Iy =~I, =~ (_)(VSGMSZ +Vipo )2
2 L
(4-14)
H,Coi (WYY, ’
Iy ==Ip = p2 (f)( SD +VTP0)
(4-15)

This approximation is an overestimate of /sy because in reality Vsgus: > Vscus:z due to the
body effect.
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4.3 Reference Voltages Bias Circuit

Besides the reference current generated by the bias cell, the op amp needs two
reference voltages: one is the reference voltage for PMOS cascode transistors, the other is

that for NMOS cascode transistors.

The circuit in Figure 4-3 shows how to set up the two reference voltages.

Reference Voltages Bias

Circuit Voo

MB6 ; MB1 I"u L[ MB2 JI‘—J MB9

10/40 I 10/40 1 L 1040 | 10/40
VP('AS(‘()[)I:B

MB7 j' MB5 =11 MB3 ™11 I MB4 ¢ MB]OD

10/1 | _J1 10/1 1 i 101 TS 10/1

VNCASCODEB
MB8
J Lo
Start-up QB3 Y QBlI |~ QB2
. . ._
Circuit Ix o Ix 35X Ullkm-‘
Ry

.

<

Figure 4-3: Reference Voltages Set Up in Bias Cell

MBS sets up the reference voltage for PMOS cascode transistors, and MB8 sets up the
reference voltage for NMOS cascade transistors. The voltage at the gate of MBS,
Vncascopess can be determined as follows.

Transistor MB6 mirrors the reference current, Irgr, to MB8. Since MBS is diode-

connected, it operates in the saturation region and

+Vino

Vcascopes = Vosmss

(4-16)
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Similarly,

27
Vecascooes =Vop —Vsomss =Vop — —DW ~Vipo
G

L
(4-17)

In the design, Vwcuscopes and Vpcuscopes are set up such that all the inner
transistors of current mirrors (e.g. transistors MB1 and MB2 of current mirror MB1-
MB2-MB3-MB4, for example) operate in the saturation region by having Vps > 0.4V.
Together with Irer, Vpcascopes, and Vacascopes, are passed on to the op amp.

In an IC, especially large ones, the supply voltage line and common ground line
vary slightly from one comer to another. Therefore, reference current Jzgr1s fed to the op
amp as a current instead of the gate voltage of MB2 to ensure the accuracy of bias
currents in the op amp. In contrast, the cascode transistors’ voltages, Vpcuscopes and
Vncascopes, are supplied to the op amp as voltages because their deviation from the
intended value has little effect on the biasing in the op amp.

The complete bias cell is shown in Figure 4-4. The value of reference current
varies as little as 3.1nA when changing from the supply voltage of 2.5V to 6.0V. Figure
4-5 show the values of Izgr, Isu, Vicascopes, and Vpcuscopep as a function of supply

voltage Vpp.
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Chapter 5 Frequency Compensation

i it

The previous chapters have explained the design process of the op amp and the
bias cell. The remaining part to complete the micropower op amp design is the frequency
compensation. This chapter briefly discusses two frequency compensation schemes. The
most popular compensation scheme, simple Miller compensation, is considered first.
Next, cascode compensation is explored as a potential scheme in extending the gain
bandwidth product but with a defect of causing peaking in the frequency response. The
combination of the previous two compensation schemes is then presented as the solution
which offers moderate improvement in gain bandwidth and eliminates the peaking

problem in the frequency response of the op amp.

5.1 Proposed Micropower Op Amp with Simple Miller
Compensation (SMC)

The most common scheme to compensate two-stage op amps is Simple Miller
Compensation (SMC) [28], [29]. The implementation is achieved by feeding the output
signal back to the input of the output pair transistors through capacitors C¢; and Cc; as
shown in Figure 5-1. A disadvantage of SMC is that the right half plane zero severely
compromises the phase margin. This problem can be alleviated by inserting nulling
resistors R¢; and Re; in series with the existing compensation capacitors to reduce the
feedforward signal. However, there is limitation on the values of the nulling resistors.
As their values increase, the left half plane zero moves toward lower frequencies.
Although this movement of the left half plane zero helps increase the phase margin of the
op amp, it also reduces the gain margin at the same time. In the proposed op amp with
simple Miller compensation, the gain margin is designed to be at least 10dB and this
requirement is the limit on the nulling resistors size. The complete micropower op amp

with Simple Miller Compensation (SMC) is illustrated in
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Figure 5-2. Figure 5-3 and Figure 5-4 show its frequency response and transient
response respectively. With supply current of 20pA, the proposed op amp with SMC has
a unity gain frequency of 360kHz with 61.5° phase margin at 100pF load.
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Figure 5-1: Simplified Schematic of Proposed Micropower Op Amp with Simple Miller Compensation (SMC)
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Figure 5-2: Schematic of Proposed Micropower Op Amp with Simple Miller Compensation (SMC)
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5.2 Cascode Compensation

The cascode compensation eliminates the feedforward signal by putting a current
buffer in the compensation path as shown in Figure 5-5 [30]. This technique was first
presented by Ahuja in [30]. It was also analyzed for Class A folded-cascode op amps by
Ribner and Copeland in [31], and for fully differential op amps by Hurst et al. in [32].

In the proposed micropower op amp, two current buffers already exist in the
design. One is the cascode transistor pair of the input pair. The other is the cascode
transistor pair in the wide-swing current mirror. Therefore, there is no need to establish
separate current buffers, and the compensation capacitors Cc; and Cc4 can be directly
connected to the embedded cascode transistors at node E and D respectively as depicted
in Figure 5-6. The results show a significant improvement in the speed. The unity gain
frequency extends to 991kHz as shown in Figure 5-7 when the output stage is at rest with
the same supply current and loading condition. However, when the transconductance of
the output stage transistors changes, there is peaking in the frequency response as shown
in Figure 5-8. This defect in the frequency response greatly reduces the gain margin and
causes oscillatory behavior in the small-signal transient response such as the one in
Figure 5-9. In [33] and [34], Langen, Hogervorst, and Huijsing describe this problem of
using only cascode compensation in Class AB op amps and suggest the need of keeping

simple Miller compensation capacitors C¢; and Ce; to prevent the peaking.
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Figure 5-5: Class A Op Amp with Cascode Compensation (Adapted from [30])
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5.3 Proposed Micropower Op Amp with Hybrid
Asymmetric Embedded Cascode Compensation

(HAECC)

In order to exploit the benefit of the cascode compensation, the proposed op amp
employs the hybrid of the simple Miller compensation and the cascode compensation
[33], [34]. The hybrid compensation maintains the simple Miller compensation path to
tame the frequency response when the current in the output stage change as shown in
Figure 5-10. The detailed schematic of the proposed op amp with this compensation
scheme is in Figure 5-11. The simulation results show an improved unity gain frequency
of 589kHz with the same supply current of 20pA and load condition of 100pF as depicted
in Figure 5-12. The op amp now exhibits neither the peaking behavior in its frequency
response nor the oscillatory transient response when the current in the output pair change

as shown in Figure 5-13 and Figure 5-14 respectively
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Chapter 6 Final Results and Conclusion

Final Results

Two micropower op amp designs have proved to satisfy the project specifications
set forth in Chapter 1. They essentially have the same architecture, but employ different
frequency compensation schemes. The first one (Figure A-1 in Appendix A) uses Simple
Miller Compensation (SMC). The other one (Figure D-1 in Appendix D) is compensated
by a combination of simple Miller compensation and cascode compensation, or called
Hybrid Asymmetric Embedded Cascode Compensation (HAECC) in this thesis. The
detailed simulation results of all op amp designs are in the appendices. Table 6-1
summarizes the characteristics of the proposed micropower op amp with simple Miller
Compensation (SMC). It has a unity gain frequency of 360kHz with 61.5° phase margin
when loaded with 100pF. The proposed micropower op amp with Hybrid Asymmetric
Embedded Cascode Compensation (HAECC) has a higher unity gain frequency of
589kHz at the same loading and power dissipation condition. Table 6-2 includes the

detailed simulated characteristics of the design with HAECC.
Table 6-1: Characteristics of 20pA Micropower Op Amp with Simple Miller Compensation (SMC)

Simulation results are at 25°C. Vpp=2.5V and Vg5 =0V.

Primary Characteristics

Value
Symbol Parameter Condition Unit
Specified Simulated
C. = 100pF 0.360
GBW® | Gain Bandwidth Product - >0.3 MHz
Ry = 100kQ (D =61.5%)
Large-Signal Voltage Gain Cp = 100pF
AvoL el X g~ > 100 122 dB
(DC Open-Loop Gain) Ry = 100k
Is Supply Current No Load <21 19.95 pA
Vinicii® Input Common-Mode Range - > Vpp - 1.25V 1.3 %

% Gain bandwidth product per supply current GBW/ Is= 18MHz/mA @ C_= 100pF.
¢ Verified by CMRR simulation in Figure A-4.
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and must include and includes
negative supply negative supply
voltage voltage
Vs (Untrimmed) Input Offset Voltage | Vinew = 0.65V <5 4.18 mV
v Vouth High Output Voltage | Isource = 1.0mA | > Vpp - 0.3V 2.34 v
ot Voo, | Low Output Voltage | lsnk = 1.0mA | < Vss + 0.3V 0.19 v
Isource® | Output Source C Co= 100pE 1.0 155 A
utput Source Current > 1. . m
SOURCE p R, = 100kQ
C. = 100pF
Isink Output Sink Current >1.0 1.04 mA
R, = 100kQ
Secondary Characteristics
Value
Symbol Parameter Condition Unit
Specified Simulated
Av=1V/V, 1V
SR Positive Going Slew Rate >0.15 0.223 V/us
Step
Av=1V/V, IV
SR- Negative Going Slew Rate g <-0.15 -0.236 Vips
tep
CMRR Common Mode Rejection Ratio @ DC > 60 144 dB
Positive Power Supply Rejection
PSRR+ ] @ DC > 60 84.5 dB
Ratio
Negative Power Supply Rejection
PSRR- g PR @ DC > 60 99.4 dB
Ratio
Ay=1V/V, 1V
t 0.1% Settling Time <10 5.29 us
Step

Table 6-2: Characteristics of 20pA Micropower Op Amp with Hybrid Asymmetric Embedded

Cascode Compensation (HAECC)

Simulation results are at 25°C. Vpp =2.5V and Vs =0V.

Primary Characteristics

Value
Symbol Parameter Condition Unit
Specified Simulated
Cy = 100pF 589
GBW® | Gain Bandwidth Product Lo >03 s MHz
R, = 100k (D =61.8°)

’ Conservative estimate from calculation.
® Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as 1pA.

° Gain bandwidth product per supply current GBW/ Is= 29.5SMHz/mA @ C, = 100pF.
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Large-Signal Voltage Gain C. = 100pF
Avor > 100 122 dB
(DC Open-Loop Gain) Ry = 100kQ2
Is Supply Current No Load <21 19.95 pA
> Vpp - 1.25V 1.3
Vinem'® | Input Common-Mode Range = il iriclikle S v
negative supply negative supply
voltage voltage
Vg (Untrimmed) Input Offset Voltage | Vinem = 0.65V &l 4.17 mV
v VOUTH ngh Output Voltage lSOURCE =1.0mA > VDD -0.3V 2.34 A"
ot VOUTL Low Ol.ltpl.lt VOltagC ISINK = 1.0mA < VSS +0.3V 0.19 \"
- C. = 100pF
Isource Output Source Current >1.0 1.55 mA
Ry = 100kQ
) C, = 100pF
Isnk Output Sink Current > 1.0 1.03 mA
Ry = 100kQ
Secondary Characteristics
Value
Symbol Parameter Condition Unit
Specified Simulated
Av=1V/V, 1V
SR+ Positive Going Slew Rate " >0.15 0.315 V/us
tep
Av=1V/V, 1V
SR- Negative Going Slew Rate g <-0.15 -0.342 V/us
tep
CMRR Common Mode Rejection Ratio @ DC > 60 144 dB
Positive Power Supply Rejection
PSRR+ . @ DC > 60 84.6 dB
Ratio
Negative Power Supply Rejection
PSRR- ] @ DC > 60 99.5 dB
Ratio
Ay=1V/V, 1V
t 0.1% Settling Time <10 3.70 Ms
Step

1 yerified by CMRR simulation in Figure D-4.

"' Conservative estimate from calculation.
12 Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as 1pA.
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Discussion

The two proposed micropower op amp designs have a higher unity gain frequency
than the two commercial low-power op amp ICs previously mentioned, MAX9914 and
MIC861, when compared at approximately the same supply current and loading
condition. The design with HAECC offers a gain bandwidth product of 1.87MHz when
compensated to have phase margin of 45° at 15pF load as shown in Figure 6-1. Table
6-3 summarizes the frequency domain performances of the proposed design and
MAX9914.

In addition, when the proposed design is biased at 5uA, the one with HAECC
compensation gives a gain bandwidth product of 375kHz with the phase margin of 45° at
50pF as depicted in Figure 6-2, which is higher than that of MIC861. Table 6-4 presents

the overview of the comparison between the proposed designs and MIC861.
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Figure 6-1: Frequency Response of 20pA Micropower Op Amp with HAECC Compensated Down to
Have @y, = 45° at 15pF Load to Compare with MAX9914
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Frequency Response
20pA Op Amp [Py=45 @ CL=15pF, vs B - -
MAX9914] CL = OpF, Ry = 100kQ C]_ - lSpF, Ry = 100kQ
GBW (MHz) Du(°) | GBW (MHz) Dy (°)
Simple Miller Compensation SMC 1.79 72 1.65 47
Hybrid Explicit Cascode Compensation | HECC 1.63 68 [ S 46
Hybrid Asymmetric Embedded g e
Cascode Compensation HAECC 1.91 63 ) 45
MAX9914/3] - - o = et 45
Table 6-3: Comparison of Unity Gain Frequency between the Proposed 20pA Micropower Op Amps
and MAX9914
Bd- & 200 =
i
-45d+ ® 5
(90 ;
? 100 =
-135d4
r
: -180d- 58
)
-225d _
~-278d+
-sp—
-315d 5
» e
-3606d- -100 T T 1 T ¥ T U = Y
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1] PUCOUT)/(U(INP)-U(INM))) [Z] +« DB(U(OUT)/(VU(INP)-U(INM)))
Frequency
Measurement Results -
| Evaluate Measur ement Value I 3
[ |ZeroCross(DB(V(OUTIVINP)-V(NM. s = I
v |PhaseMargin(DBCV(OUT)CV(INP)- V(I 45 46588 |
~a GainMar V(OUT Vi - 11.14989 )
-} ——
Phase Gain

Figure 6-2: Frequency Response of SpA Micropower Op Amp with HAECC Compensated Down to

Have @y, = 45° at 50pF Load to Compare with MIC861
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5pA Op Amp [PM=45 @ CL=50pF, vs

Frequency Response

C, = OpF, Ry = 100kQ

CL = SOpF, R

= 100k

MIC861]
GBW (kHz) ®yu(°) | GBW (kHz) Dy (°)
Simple Miller Compensation SMC 329 81 267 45
Hybrid Explicit Cascode Compensation | HECC 369 79 327 46
Hybrid Asymmetric Embedded
Cascode Compensation HAECC 403 72 375 45
MIC861/4] 350 N/A 225 = 459

Table 6-4: Comparison of Unity Gain Frequency between the Proposed SpA Micropower Op Amps
and MIC861

Future Work

For the same op amp architecture, different frequency compensation schemes

result in different performance characteristics, especially the speed. One potential

direction to further this project is to improve the biasing scheme of the output stage. A

more power-saving biasing scheme for the output stage can help increase the speed of op

amps because more current can be allocated to the output pair and the differential pair.

Another potential improvement is to research on novel compensation techniques. This

work includes the optimization scheme in compensating an op amp such as how to

minimize the capacitors in the simple Miller path in the hybrid compensation while

guaranteeing op amp stability.

'’ The phase margin is not given in [4]. It is estimated from the datasheet that the IC has 2-3 periods of
decayed oscillation in the small-signal pulse response at 50pF load.
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Table A: Characteristics of 20pA Micropower Op Amp with Simple

Miller Compensation (SMC) from Simulation

Simulation results are at 25°C. Vpp =2.5V and Vgs =0V.

Primary Characteristics

Value
Symbol Parameter Condition Unit
Specified Simulated
C. = 100pF 0.360
GBW" | Gain Bandwidth Product il >0.3 MHz
R, = 100kQ (D =615
Large-Signal Voltage Gain C. = 100pF
AvoL ; - . > 100 122 dB
(DC Open-Loop Gain) R, = 100kQ
Is Supply Current No Load <21 19.95 pA
> VDD - 1.25V 1.3
Vinem'> | Input Common-Mode Range - arl mdsst ncle ncoi ottt BV
negative supply negative supply
voltage voltage
Vos'® (Untrimmed) Input Offset Voltage | Vinem = 0.65V <5 4.18 mV
v VOUTH ngh Output Voitage lSOURCE = 1.0mA = VDD -0.3V 2.34 \%
ou
' VoutL Low Output Voltage Isivk = 1.0mA < Vg +0.3V 0.19 A
7 CL = 100pF
ISOURCE Output Source Current >1.0 1.55 mA
Ry = 100kQ
) C. = 100pF
Ismnk Output Sink Current >1.0 1.04 mA
Ry = 100kQ
Secondary Characteristics
‘ Value
Symbol Parameter Condition Unit
Specified Simulated
Av=1V/V 1V
SR+ Positive Going Slew Rate >0.15 0.223 V/ps
Step
_ Av=1V/V, 1V
SR- Negative Going Slew Rate g <-0.15 -0.236 Vips
tep

4 Gain bandwidth product per supply current GBW/ Is= 18MHz/mA @ C, = 100pF.
'’ Verified by CMRR simulation in Figure A-4.

'® Conservative estimate from calculation.
'7 Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as 1pA.
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CMRR Common Mode Rejection Ratio @ DC > 60 144 dB
Positive Power Supply Rejection
PSRR+ ) @ DC > 60 84.5 dB
Ratio
Negative Power Supply Rejection
PSRR- g PP @ DC > 60 99.4 dB
Ratio
Ay=1V/V, 1V
ts 0.1% Settling Time <10 5.29 us
Step
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Figure A-20: Schematic of Bias Cell for 20pA Op Amp with Simple Miller Compensation (SMC)
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Appendix B Schematics and Characteristics of
20nA Micropower Op Amp with Hybrid Explicit
Cascode Compensation (HECC)

LIST OF FIGURES IN APPENDIX B

Table B: Characteristics of 20uA Micropower Op Amp with Hybrid Explicit Cascode

Compensation (HECC) from Simulation............ocoooiiiiiiiiiii i, 97
Figure B-1: Schematic of 20pA Micropower Op Amp with Hybrid Explicit Cascode
Compensation (HECC) ..ottt 99
Figure B-2: Frequency Response with C =100pF and R =100kQ..........ccceevinniinnne. 100
Figure B-3: Frequency Response with C =0, 10, 100, 200, 500pF and R =100kQ....... 101
Figure B-4: CMRR vs Frequency with Vin=0, 0.65, 1.3V .....oooiriiiiiirccenecce 102
Figure B-5: PSRR+ vs Frequency with ViN=0, 0.65, 1.3V ... 103
Figure B-6: PSRR- vs Frequency with Vin=0, 0.65, 1.3V ..., 103
Figure B-7: Small-Signal Transient Response with C;=100pF and R =100kQ ............ 104
Figure B-8: Small-Signal Transient Response with C; =0, 10, 100pF and Ry =100kS2 .. 104
Figure B-9: Large-Signal Transient Response with C;=100pF and R =100k ............ 105
Figure B-10: Large-Signal Transient Response with C =0, 10, 100pF and R¢=100kQ 105
Figure B-11: Output Transistors Current vs ILoAD - eeeeveereererrrrrercreereee e 106
Figure B-12: Rail-to-Rail Output Voltage (vin and vour With Ay=5) ...ccccevinvniiiinenenns 106
Figure B-13: Positive Output Voltage SWINg VS ISOURCE . -««+errveerrrererrrereriuerierersreeraeeens 107
Figure B-14: Negative Output Voltage Swing vs ISINK «.coovvevreenimrienicineniieniiiniceenne 107
Figure B-15: Short-Circuit Source Current vs Supply Voltage.............cccovvinininii 108
Figure B-16: Short-Circuit Sink Current vs Supply Voltage..........ccoovevvivinincecvnnnneens 108
Figure B-17: Frequency Response with C;=0pF and R;=100kQ @ I;=-1.0, -0.5, 0.0, 0.5,
LLOMNA .ttt ettt h e ettt b et nn e 109

95



Figure B-18: Frequency Response with C.=10pF and R;=100kQ @ I;=-1.0, -0.5, 0.0,

0.5, TOMA ..ottt ettt e st et et e e e r s e e eatensennen 109
Figure B-19: Frequency Response with C;=100pF and R{=100kQ @ I;=-1.0, -0.5, 0.0,

0.5, TLOMA .ottt et te et b e e st e s s e beeseene e rresessnbessesaas 109
Figure B-20: Schematic of Bias Cell for 20pA Micropower Op Amp with Hybrid Explicit

Cascode Compensation (HECC).......ccccooiiiniiniieeerce e 110
Figure B-21: Reference Current and Reference Voltages vs Supply Voltage................ 111

Figure B-22: Quiescent Current in Output Pair and Tail Current in Differential Input Pair
VS SUPPLY VOIAZE ..o s 112

96



Table B: Characteristics of 20pA Micropower Op Amp with Hybrid

Explicit Cascode Compensation (HECC) from Simulation

Simulation results are at 25°C. Vpp=2.5V and Vs =0V.

Primary Characteristics

Value
Symbol | Parameter Condition Unit
Specified Simulated
C. = 100pF
GBW'™ | Gain Bandwidth Product S >0.3 1 Mu:
Ry = 100kQ (D =612°)
Large-Signal Voltage Gain C. = 100pF
AvoL L > 100 120 dB
(DC Open-Loop Gain) Ry = 100kQ
Is Supply Current No Load <21 19.88 pA
> Vpp - 1.25V 1.3
Vinem'© | Input Common-Mode Range - ki e s Y
negative supply negative supply
voltage voltage
Vos (Untrimmed) Input Offset Voltage | Vinem = 0.65V <5 4.83 mV
v VOUTH High 0utput Voltage ISOURCE =1.0mA > Vpp - 0.3V 2.34 A%
ou
! Vour. | Low Output Voltage | Ismk = 1.0mA | < Vss + 0.3V 0.19 v
21 CL = IOOpF
Isource Output Source Current > 1.0 1.55 mA
Ry = 100kQ
. C. = 100pF
Isink Output Sink Current > 1.0 1.04 mA
R. = 100kQ
Secondary Characteristics
Value
Symbol Parameter Condition Unit
Specified Simulated
Ayv=1V/V, 1V
SR+ Positive Going Slew Rate >0.15 0.271 Vips
Step
Ay=1V/V, 1V
SR- Negative Going Slew Rate 5 <-0.15 -0.298 Vips
tep

'¥ Gain bandwidth product per supply current GBW/ Is= 25.5MHz/mA @ C,= 100pF.
% Verified by CMRR simulation in Figure B-4.

2 Conservative estimate from calculation.
21 Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as IpA.
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CMRR Common Mode Rejection Ratio @ DC > 60 126 dB
Positive Power Supply Rejection

PSRR+ . @ DC > 60 72.4 dB
Ratio
Negative Power Supply Rejection

PSRR- @ DC > 60 62.7 dB
Ratio

. Ay=1V/V, 1V
t 0.1% Settling Time <10 4.40 us
Step
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Figure B-6: PSRR- vs Frequency with Vix=0, 0.65, 1.3V
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Table C: Characteristics of 20pA Micropower Op Amp with Hybrid

Symmetric Embedded Compensation (HSECC) from Simulation

Simulation results are at 25°C. Vpp =2.5V and Vgs =0V.

Primary Characteristics

Value
Symbol | Parameter Condition Unit
Specified Simulated
C, = 100pF ki
GBW?* Gain Bandwidth Product - >03 . MHz
R, = 100kQ (v =160.6°)
Large-Signal Voltage Gain C. = 100pF
AvoL & - > 100 123 dB
(DC Open-Loop Gain) Ry = 100kQ
Is Supply Current No Load <21 19.43 pA
> Vpp - 1.25V 1.3
VINCMzs Input Common-Mode Range _ and must include and includes v
negative supply negative supply
voltage voltage
VOSZ“ (Untrimmed) Input Offset Voltage | Vinem = 0.65V <5 4.17 mV
Vv VourH ngh Output Vo]tage Isource = 1.0mA >Vpp-0.3V 2.34 v
ouT
VourL Low Output Voltage Ising = 1.0mA < Vg +0.3V 0.19 \Y%
2 C. = 100pF
Isource Output Source Current R, = 100kQ >1.0 1.55 mA
) C_ = 100pF
Isivk Output Sink Current > 1.0 1.04 mA
Ry = 100k
Secondary Characteristics
Value
Symbol Parameter Condition Unit
Specified Simulated
Av=1V/V, 1V
SR+ Positive Going Slew Rate >0.15 0.254 Vipus
Step
) Ay=1V/V, IV
SR- Negative Going Slew Rate S <-0.15 -0.269 Vips
tep

22 Gain bandwidth product per supply current GBW/ Is= 31.8MHz/mA @ C, = 100pF.
2 Verified by CMRR simulation in Figure C-4.

2% Conservative estimate from calculation.
25 Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as 1uA.

B




CMRR Common Mode Rejection Ratio @ DC > 60 147 dB
Positive Power Supply Rejection
PSRR+ ) @ DC > 60 88.4 dB
Ratio
Negative Power Supply Rejection
PSRR- g RPYSe @ DC > 60 103 dB
Ratio
Av=1V/V, IV
t 0.1% Settling Time <10 12<t,<20 | ps
Step
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Figure C-8: Small-Signal Transient Response with C,=0, 10, 100pF and R, =100kQ
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Table D: Characteristics of 20pA Micropower Op Amp with Hybrid

Asymmetric Embedded Cascode Compensation (HAECC) from

Simulation

Simulation results are at 25°C. Vpp =2.5V and Vg5 =0V.

Primary Characteristics

Value
Symbol Parameter Condition Unit
Specified Simulated
C. = 100pF
GBW* | Gain Bandwidth Product LS >03 v
Ry = 100kQ (Dy=61.8°)
Large-Signal Voltage Gain C. = 100pF
AvoL e ¢ LR > 100 122 dB
(DC Open-Loop Gain) Ry = 100kQ
Is Supply Current No Load <21 19.95 pA
> Vpp - 1.25V 1.3
VINCMﬂ Input Common-Mode Range ) and must include and includes v
negative supply negative supply
voltage voltage
V™ (Untrimmed) Input Offset Voltage | Vinem = 0.65V <5 4.17 mV
v VOUTH High Output Voltage ISOURCE =1.0mA > VDD -0.3V 2.34 A%
ot Vourr | Low Output Voltage | lsmx = 1.0mA | < Vss + 0.3V 0.19 v
lsource® | Output Source C b~ 10 1.0 1.55 A
utput Source Current > 1 . m
SOURCE P R, = 100kQ
) C. = 100pF
Isink Output Sink Current > 1.0 1.03 mA
Ry = 100kQ
Secondary Characteristics
Value
Symbeol Parameter Condition Unit
Specified Simulated
Ay=1V/V, IV
SR+ Positive Going Slew Rate >0.15 0.315 V/us
Step
SR- Negative Going Slew Rate Ay=1V/V, IV <-0.15 -0.342 V/us

26 Gain bandwidth product per supply current GBW/ Is= 29.5MHz/mA @ C.= 100pF.
27 Verified by CMRR simulation in Figure D-4.

% Conservative estimate from calculation.
2 Maximum output source current is measured when the other transistor in the output pair starts to turn off,

i.e. its current goes down to as low as 1pA.
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Step

CMRR Common Mode Rejection Ratio @ DC > 60 144 dB
Positive Power Supply Rejection
PSRR+ ] @ DC > 60 84.6 dB
Ratio
Negative Power Supply Rejection
PSRR- ] @ DC > 60 99.5 dB
Ratio
Av=1V/V, 1V
ts 0.1% Settling Time <10 3.70 us
Step
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