
 
 

  
Abstract—This paper descr ibes an intuitive way of defining 

geometry design var iables for  solving structural topology 
optimization problems using a genetic algor ithm (GA). The 
geometry representation scheme works by defining a skeleton that 
represents the under lying topology/connectivity of the continuum 
structure. As the effectiveness of any GA is highly dependent on 
the chromosome encoding of the design var iables, the encoding 
used here is a directed graph which reflects this under lying 
topology so that the genetic crossover and mutation operators of 
the GA can recombine and preserve any desirable geometr ic 
character istics through succeeding generations of the evolutionary 
process. The overall optimization procedure is tested by solving a 
simulated topology optimization problem in which a ' target' 
geometry is pre-defined with the aim of having the design solutions 
converge towards this target shape. The procedure is also applied 
to design a straight-line compliant mechanism : a large 
displacement flexural structure that generates a ver tical straight 
line path at some point when given a hor izontal straight line input 
displacement at another point. 
 

Keywords—chromosome code, genetic algor ithm, morphological 
geometr ic representation, topology optimization. 
 

I. INTRODUCTION 

TRUCTURAL design optimization is an area that has seen 
active research over the last three decades due to the natural 

desire of engineers to build artifacts and structures that not just 
satisfy their functional requirements, but also perform those 
functions in an optimal way. Solving optimization problems 
where the performance of a structure or component is optimized 
through a variation of its topology is known as topology design 
optimization. While shape optimization can usually be 
performed by varying some typical shape parameters (for 
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example, nodal coordinates, arc radii, control points of spline 
curves or NURBS, etc.), there are no obvious or simple 
topological parameters suitable for manipulation within an 
optimization process. Some of the variables that can be used to 
define topology are the number of holes in a structure and the 
(yes or no) existence of material at any particular point in the 
design space. Therefore, unlike the continuous variables treated 
in shape problems, the design variables in topology 
optimization are intrinsically discrete in nature and the problem 
is essentially a discrete optimization problem of material 
distribution/arrangement. Such discrete problems are hard 
because they require the enumeration of large portions of the 
solution space, and computational order can grow enormously 
with the number of discrete variables to be resolved. Hence the 
greater reliance on non-exact algorithms based on heuristics and 
intuition, compared with shape optimization problems which 
are routinely solved by mathematical programming techniques. 

Among methods found in the topology optimization 
literature, a popular strategy is to initially discretize the 
allowable design space into finite elements (FE) and define the 
required loading/boundary conditions. The optimization 
procedure will then be concerned with determining which 
elements should contain material (and so form the structure) and 
which elements are void (and thus represent the surrounding 
empty space). Based on this strategy, Bendsoe and Kikuchi [1] 
defined the problem with a composite material represented by 
each element having material plus a void (hole) inside. The 
material properties of each element is then dependent on the size 
and orientation of the void within the element according to a 
homogenization relationship. A sizing optimization is then 
performed to optimize the sizes/orientations of the voids of all 
the elements for a given objective function. Elements with 
relatively large voids (and hence low material density) will 
represent empty space while those with smaller voids (and 
higher material density) denote that material exists and hence 
form the structure. An alternative but conceptually similar 
approach is to directly use the material density of each element 
(instead of voids) as the design variable. An empirical formula 
is then applied to relate this density with the elastic modulus, 
without the need for a homogenization formulation. The 
topology designs produced by this material density approach [2] 
are similar to those obtained with the homogenization method.  

Both the homogenization and material density approaches 
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circumvent the difficulty of discrete optimization by using 
continuous design variables (void sizes/orientations or material 
density), turning the problem into a continuous optimization 
problem. However, since the resulting elements can be of 
intermediate densities ranging from complete voids to 
completely filled with material, some interpretation by the 
designer is still needed to determine the final topology and 
shape of the structure. It is uncertain if the final useful design 
interpreted from the results is close to the actual optimum point 
since the criteria for including/excluding any particular element 
from the structure tends to be arbitrary (for example, based on 
an arbitrary threshold density value).  

A basically different approach illustrated by Chapman et al. 
[3] directly addresses the discrete nature of the problem by 
treating it with a discrete optimization method, namely the 
genetic algorithm (GA). The strategy of discretizing the design 
space is used, with all the finite elements forming a 
one-dimensional binary-coded bit-array chromosome~: 0 if the 
element is to be empty space and 1 if it is part of the structure. 
The GA is applied over many generations, and each generation 
is a population of many individual designs, to attain the 
optimum chromosome string and hence structure. However, the 
resulting chromosome string may represent structures with 
checkerboard patterns (alternating elements of material and 
void) and `floating' elements (elements `floating' in space and 
not connected to the main structural body).  Such designs may 
be invalid or impractical, but the chromosome representation 
allows for them. Consequently the overall procedure may not be 
efficient because expensive computing resources have to be 
spent analyzing these undesirable designs. Alternatively a 
`repair' scheme is needed to detect and alter those checkerboard 
and `floating' patterns as and when they arise out of the 
crossover and mutation operations. This may, however, corrupt 
the transmission of genetic characteristics across the 
generations.  

In this present work, the topological optimization problem is 
also treated as a discrete problem using the GA. However, a 
recently developed and more effective geometry representation 
scheme [4] is used together with a graph-theoretic chromosome 
encoding scheme to improve the formulation of topology 
problems for GA. It is believed that the coding scheme can 
better represent the topological/shape characteristics of a 
structure (and does not create invalid designs), and also helps 
preserve any desirable characteristics through the evolutionary 
process. 

In this paper, the effectiveness of the techniques developed 
here are evaluated and compared with that of the binary-coded 
bit-array chromosome representation. This is done through 
solving a simulated topology design optimization problem (by 
way of a 'target' geometry matching problem). The overall 
optimization procedure is then tested in the design of a 
compliant (flexural) mechanism. Compliant mechanisms are 
flexible structures which achieve some desired motion by way 
of elastic deformation instead of through rigid linkages/joints as 
in rigid-body mechanisms. To achieve any specific 

displacement or path, the required structural geometry can best 
be discovered through a process of design optimization [5].  

II. OPTIMIZATION BY A GENETIC ALGORITHM 

The optimization method used is a genetic algorithm which 
has a basic working procedure that starts with an initial 
randomly-generated population of design solutions, and this 
population evolves over many generations through selection of 
parent solutions and then reproduction (crossover and mutation) 
processes with the aim of improving individual designs 
according to some measure of fitness. This fitness measure 
corresponds directly to the objective function of the 
optimization problem, and the algorithm ranks designs 
according to this fitness [6]. Each individual in the population is 
actually the representation of a candidate design solution, and 
the GA operates on this representation rather than on the 
solution itself. Hence the representation and the operations that 
go with it (the crossover and mutation operation) are crucial to 
the effectiveness and success of the algorithm. In the following 
sections, the representation is described by how the design 
geometry is encoded in a chromosome code which is subject to 
the reproduction operations of crossover/mutation. 

III. MORPHOLOGICAL REPRESENTATION OF DESIGN 

GEOMETRY 

In this representation scheme, a design problem is 
characterized by a set of input/output regions which denote 
regions of the structure where support, loading and 
functional/response conditions are applied or required. A 
representative illustration with three input/output regions is 
shown in Fig. 1. The design space (as denoted by the dashed 
lines) is the assigned space within which the structure must lie 
and cannot exceed. While it is still unknown how the rest of the 
design space will be occupied by the structure, the input/output 
regions are pre-defined by the designer to exist because any 
structure must have parts which interact with its surroundings by 
way of support conditions, loading and/or some other functional 
interactions. 

The design space is next discretized into a mesh of 
quadrilateral finite elements as shown in a representative 
illustration in Fig. 2, with the three elements in black 
corresponding to the input/output regions. For a valid structural 
design, all input/output regions must be connected to one 
another (either directly or indirectly) in order to form one single 
connected structure. A total of three curves have been used in 
this example, connecting all three regions to one another (i.e. 
there is a direct connection between any two regions). Hence 
this scheme is based on specifying connecting curves joining 
one region to another. Each curve is a Bezier curve defined by 
its start and end points plus a number of control points in 
between (Bezier curves have been chosen for use because of 
their simplicity). The start and end points are the elements of the 
respective start and end input/output regions. The set of 
elements through which each curve passes form the `skeleton' 
connecting the two regions (Fig. 3). Some of the elements 



 
 

surrounding the skeleton are then included to fill up the 
structure to its final form (Fig. 4). These additional elements 
represent the `flesh' around the skeleton, and the union of all 
skeleton, flesh and input/output elements constitute the structure 
while all other elements remain as the surrounding empty space. 
The amount of flesh elements to be added is determined by a 
thickness value. This is done by considering each skeleton 
element in turn and adding an all-round layer of elements to it 
[7], with the layer thickness according to the thickness value 
which can range from zero to some prescribed (integer) 
maximum. 

 

 
Fig. 1. Design space with input/output regions shaded 

 

 
Fig. 2. Connecting input/output elements with curves 

 

 
Fig. 3. Skeleton made up of elements along curves 

 

 
Fig. 4. 'Flesh' elements added to skeleton to form final structure 

IV. CHROMOSOME ENCODING OF DESIGN GEOMETRY 

Using a GA for the optimization, the topological/shape 
representation has to be cast into a chromosome code. Hence the 
structural geometry illustrated in the preceding section can be 
encoded as a chromosome in the form of a directed graph [8] as 
shown in Fig. 5. There is a number in each vertex of the graph, 
and the vertices are connected by arcs depicted by the arrows in 
Fig. 5. The vertices and arcs here are the terminology as used in 
graph theory [9] and not the terms commonly understood in 
geometric modeling. The numbers in Fig. 5 are only illustrative 
and may not exactly correspond to the design shown in Fig. 4, 
and they denote the information shown in Table I. 

 

 
Fig. 5. Chromosome code 

 
TABLE I 

 TYPE OF INFORMATION IN CHROMOSOME CODE 

 curve 1 curve 2 curve 3 
start input/output point 761 1 1 
1st thickness value 2 1 2 
1st control point 440 51 326 
2nd thickness value 1 1 1 
2nd control point 230 588 - 
3rd thickness value 1 1 - 
3rd control point - 758 - 
4th thickness value - 0 - 
end input/output point 40 40 761 

 
Each start, control or end point of a Bezier curve is taken to 

be at the centre of the element containing it, so its location is 
actually referenced by the number of the element. This 
necessitates a numbering scheme for uniquely labeling each 
element in the mesh, and in this work, the elements are simply 
numbered consecutively from left to right along each row, and 
row by row from bottom to top (any numbering scheme can be 
used as long as a systematic one-to-one mapping is maintained 
between every element and its position in the design space).  It 
can be seen from the code that each curve is defined by control 
points alternating with thickness values. For example, if a curve 



 
 

is defined by two control points, there will be three thickness 
values (as in curve 1 of this example). With three thickness 
values, the curve will correspondingly be divided 
parametrically [7] into three segments with each segment having 
its thickness determined by the respective thickness value. 

It is evident that the topology and shape of a structure defined 
using this scheme is determined by the arrangement of the 
skeleton and the flesh. In other words, the topology/shape 
emerges from the interaction among the curves and their 
respective thicknesses, and so is not obvious from the 
chromosome code itself. Slight changes in some thickness 
values or small shifts in control point positions can lead to 
topological changes with entire openings (holes) created or 
destroyed. It is a rich geometric representation that can define a 
wide variety of topological and shape configurations, using only 
a fairly compact chromosome code. In fact, the geometric 
complexity achievable in the design can be controlled by the 
designer by choosing the number of curves to be used for 
defining the geometry (subject to a minimum limit to ensure 
connectivity of the structure) and the number of control points 
to be used for each curve (the larger the number of points the 
higher the order of the curve). However, it is clear that the 
greater the complexity, the larger the number of design 
variables and so the larger the optimization problem. In addition, 
the topology/shape of any structure is more intrinsically 
captured/embodied in this scheme than in a simple material 
point representation or boundary representation, thus assisting 
in the transmission of topology/shape characteristics through 
the evolutionary process. This is achieved by the fact that the 
chromosome (encoded as a graph) is in a form that reflects the 
topology/connectivity of the structural geometry. Furthermore, 
the representation will not render any invalid designs with 
disconnected `floating' elements/segments or undesirable 
designs with `checkerboard' patterns. All these advantages with 
respect to structural validity, disconnected elements and 
checkerboard patterns are preserved in any child generated from 
the crossover and mutation operations. Here, the crossover 
operator devised to work with this chromosome representation 
is based on randomly selecting an input/output point and 
sectioning off a random length of each and every curve starting 
or ending at that input/output point. This is illustrated in Fig. 6 
through three example graphs (chromosomes) with different 
topologies. The dashed line cutting across portions of the 
chromosome represents the sectioning line or the crossover line, 
which is the equivalent of the crossover point in a basic 
crossover operation for a one-dimensional chromosome string  
[10]. Applying the same crossover line to any given pair of 
parent chromosomes and swapping the information will 
produce two children. This crossover operator facilitates the 
exchange (between two parents) of portions of the skeleton 
radiating from some input/output point, together with the 
accompanying thickness values. Intuitively, it can better 
combine the topological/shape characteristics from the two 
parents into each child (without destroying these characteristics 
in the process), thereby helping to transmit any desirable 

geometry characteristics through the generations. In other 
words, each resulting child inherits geometric characteristics 
from both parents. 

 

 

 
 

Fig. 6. Crossover line 

V. EVALUATION AND COMPARISON OF EFFECTIVENESS OF 

CHROMOSOME ENCODING 

A. Target matching problem 

A target geometry matching problem is proposed to evaluate 
and compare the performance of the bit-array method and the 
aforementioned morphological representation method for 
representing geometry within a GA optimization procedure.  A 
predefined structural geometry is assumed as the target 
geometry.  This target should be finally reached (the error is 
minimized) by any effective chromosome representation 
method with the appropriate evolutionary optimization and the 
performance of the chromosome representation methods can be 
evaluated by their efficiency in solving this problem.  
Mathematically, the objective function to be minimized in this 
optimal target matching problem can be expressed as 

 ( ) ( )
1

x
n

i i O
i

f x x
=

= −�  (1) 

where the design variable vector x  is composed of the material 

density of each element, ix  , with a value of either 0 or 1 to 

represent that the element is either void or material, respectively.  
In other words, the objective function is defined as the 
summation of the absolute error in the material density of each 
element in the current geometry with respect to the target one, 

where ( )i O
x   is the material density of the i-th element of the 

target geometry.  

B.  Implementation of the bit-array method 

The bit-array representation method uses one dimensional 
binary string as the chromosome to represent the distribution of 
material and void within a geometry. To convert such a bit-array 
genotype into a phenotype, the chromosome is first mapped into 



 
 

the design domain which is discretized into elements. The 
elements with allele values of 1 become material while those 
with allele values of 0 become void [11], as shown in Fig. 7. 
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Fig. 7.  Bit-array chromosome and the resulting topology 

 
The bit-array representation method, which is based on a 

given mesh, is a straightforward and natural representation 
method.  Furthermore, the variable decoding step is nearly 
eliminated compared with that of other topological 
representation methods.  However, this method does not prevent 
the formation of unanalyzable structures and checkerboard 
patterns. Additional steps must be taken to bias the formation of 
connected structures during the GA operations to allow the 
structural analysis based on the finite element method.  In this 
present study, connectivity analysis is not introduced because 
this target matching optimization problem is a simulation of the 
structural topology optimization problem to evaluate the 
performance of the GA operations, and finite element analysis 
of the resulting structural geometry is not performed. 

C. Results and Discussion 

The target structural geometry shown in Fig. 8 is adopted as 
the target to evaluate the performance of each representation 
method.  The population size is 400 and maximum number of 
generations 100.  A generation gap of 0.1 and an elitist strategy 
are used.  

Because the GA is a stochastic search method, the evaluation 
and comparison based on results from one single execution of 
the GA would become meaningless.  In the present study, all the 
results are obtained by averaging the results from 10 
independent runs.  

The bit-array representation method with the uniform 
crossover and a randomly initialized population is tested first.   
Table II displays the effect of the mutation rate on the GA’s 
performance based on the minimum error achieved by 100 
generations, in which the relative error is the lowest error value 
(from Eq. (1)) divided by the total number of elements in the 
design domain.  It can be seen that the best performance can be 
achieved when the mutation operator is vanished because the 
uniform crossover itself can create enough diversity of the 
chromosomes.  The corresponding best topology and the 
convergence speed achieved without the mutation operation 
during these 10 runs are shown in Figs. 9 and 10.  It can be seen 
from Fig. 9 that the best topology is very similar to the target one, 

but there are many elements isolated from the main body of the 
structure (which cannot be included if any structural analysis is 
performed) and also many instances of small voids alternating 
with material within the main body.  It can also be noted that the 
relative error will converge with the increase of the number of 
generations. 

 
 

TABLE II 
  MUTATION RATE EFFECT ON THE  PERFORMANCE OF THE BIT-ARRAY GA 

Mutation 
Rate 

0 0.01% 0.1% 1% 10% 

Relative 
Error 

5.3% 6.7% 8.1% 21.6% 40.8% 

 
The morphological representation method is next tested.  

Four Bezier curves are used, each of which has two control 
points only.  The effects of the mutation rate on the GA’s 
performance are shown in Table III. 

 
 

TABLE III 
 MUTATION RATE EFFECT ON THE PERFORMANCE OF THE GA WITH 

MORPHOLOGICAL REPRESENTATION  

Mutation 
Rate 

10% 20% 30% 40% 50% 

Relative 
Error 

5.6% 4.4% 3.1% 3.2% 4.8% 

 
It can be observed that only the higher mutation rates (10%-50%) 
are listed in Table III because they are more effective than the 
lower ones.  The real-coded GA may take advantage of higher 
mutation rates which allow a greater diversity of the real-coded 
chromosomes, since the proposed crossover just allows limited 
diversity.  This is consistent with Janikow and Michalewicz’s 
finding [12], based on the comparison of binary and floating 
point representations in GAs.  Comparing the results in Table III 
achieved by the GA using the morphological representation 
method with those in Table II achieved by the GA using the 
bit-array method and considering the fact that the bit-array 
method does not prevent the occurrence of isolated elements 
and alternating patterns of small voids (holes), it can be 
concluded that the morphological representation can 
outperform the bit-array representation and this encoding 
scheme is thus more effective to converge in a given  number of 
generations.  The corresponding best topology and the 
convergence speed achieved with a mutation rate of 30% during 
these 10 runs are shown in Figs. 11 and 12.  It can be seen from 
Fig. 11 that the best topology is very similar to the target one 
and, different from the best topology achieved by the bit-array 
representation, there are no elements isolated or patterns of 
small voids, which means that the topology can be used directly 
for the structural analysis.  It can also be noted that the relative 
error will converge with the increase of the number of 
generations, but the convergence speed is quite slow after the 
first 50 generations. 



 
 

 
Fig. 8.  Morphological representation of a structural geometry 

 
Fig. 9.  Best Topology achieved by the GA with the bit-array representation 
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Fig. 10.  Convergence speed of the GA with the bit-array representation 

 

 
Fig. 11.  Best Topology achieved by the GA with the morphological  

representation 
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Fig. 12.  Convergence speed of the GA with the morphological  representation 

VI. RESULTS FOR DESIGN OF A COMPLIANT MECHANISM 

The problem is to design a structure which deforms, when 
some part of it is given a prescribed displacement, such that 
another part is displaced along some desired path.  This path 
generating mechanism problem to be solved is defined by a 100 
by 100mm design space with the output point positioned as 
shown in Fig. 13. There is one support and one loading point 
making up a total of two input points, and the positions of these 
are variable but confined to the boundary (the support point is 
positioned anywhere along the bottom boundary while the 
loading point is positioned anywhere along the left boundary). 
The position of the output point is fixed (non-variable). Three 
connecting curves are used such that there is one connecting 
curve between any two points (i.e. every input/output point is 
directly connected to the other two), with each curve defined by 
three control points. All thickness values are not allowed to vary 
but are fixed at zero because the structures are expected to be 
thin and therefore flexible in order to achieve the large 



 
 

displacement and, furthermore, this helps to reduce the number 
of design variables and hence the solution space of the 
optimization problem. Wherever the input point is located 
(somewhere along the left boundary), a horizontal straight line 
input displacement of magnitude 30mm is to be applied in the 
direction shown in Fig. 13 (with displacement in the vertical 
direction restrained), while the desired path of the output point 
is a 30mm vertical straight line. This is partly similar to the path 
generating characteristics of the four-bar double-slider 
mechanism shown in Fig. 14. 
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Fig. 13. Definition of design space 

 

 
 

Fig. 14. Four-bar double-slider 
 

For any given structural design, a geometrical non-linear 
(large displacement) FE analysis is performed to compute the 
incremental displacement steps at the output point which trace 
out the actual path. To evaluate how closely this actual path 
follows the desired path, the average deviation (error) between 
the two is evaluated. This is done by first dividing the desired 
path into N number of segments (where N is the total number of 
analysis steps resulting from the FE procedure) and in the same 
length proportions as that of the actual path (Fig. 15). 

The distances di between corresponding points of the desired 
and actual paths are summed up and averaged and this average 
distance dave represents the deviation : 

 

 
1

1
ave

N

i
i

d d
N =

= �  (2) 

This dave value is taken directly as the objective function that 
is to be minimized in the optimization problem. The problem is 
thus solved with little pre-conceived notion of the geometric 
shape or topology, except for the position of the output point 
which is fixed relative to the design space, and the relative 
positions of the input and support points (which are variable but 
restricted to be along the boundary). The material assumed for 
the structure is polypropylene because of its ductility and high 
strength-to-modulus ratio, properties which are advantageous to 
applications in compliant mechanisms [13]. The Young's 
modulus assumed is 1140MPa with Poisson's ratio of 0.4 (and 
the yield strength of polypropylene is about 34MPa). The 
design space is discretized into a 50 by 50 mesh of 4-noded 
quadrilateral elements, and any chromosome-encoded design 
generated by the evolutionary process can be translated into an 
FE model of the structure according to the morphological 
representation. The large displacement FE analysis is performed 
using the ABAQUS/Standard software. 
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Fig. 15. Deviation between desired and actual paths 

 
 
The evolutionary optimization was run for 500 generations 

(with a population size of 200 per generation), by the end of 
which 10935 objective function evaluations have been 
performed. The average CPU time consumed for each function 
evaluation (FE analysis) is between 15 to 20 seconds. The 
optimum design was attained at the 493rd generation, with an 
objective function value of 0.000074. The force needed to exert 
the input displacement is 3.35N, and the peak von Mises stress 
is 45.3MPa which occurs at the support point. A glimpse of the 
evolution history is illustrated in Fig. 16 by a sampling of the 
designs obtained at their respectively indicated generation, with 
their corresponding objective function (deviation) values. Fig. 
16(a) shows a sample design from the initial (1st) generation, (b) 
to (d) are the best designs achieved up to the respectively 
indicated generations, and (e) is the final optimum at generation 
493. Fig. 17 shows that the actual path achieved by the optimum 
design is very close to the required straight line desired path. Fig. 
18 shows the deformed and undeformed geometries of the 
optimum design. The resulting designs obtained here are clearly 
defined due to the discrete nature of the geometry representation, 



 
 

unlike in the homogenization or material density methods of 
topology optimization which require the prescription of some 
threshold point to interpret whether the resulting material 
density values in the elements indicate solid material or void. 
However, the resulting designs obtained are jagged-edge 
structures due to the finite element discretization/grid. 
Therefore future work that needs to be done include the 
implementation of some form of curve-fitting or smoothing 
techniques to parameterize the structural boundaries. A 
secondary shape optimization may then be performed (starting 
from the optimum design) to fine-tune the shape. This may be 
necessary as the peak von Mises stress of 45.3MPa (at the 
support point) exceeds the yield strength (34MPa) of the 
assumed material. The high stresses may be reduced by 
fine-tuning the shape and thickness near the support region. 
Another alternative is to solve the more complex constrained 
optimization problem (with constraints on stresses) by 
incorporating constraint handling capability into the GA 
procedure. 

   
(a) gen 1 , obj=0.031731           (b) gen 30 , obj=0.000487 

 

   
(c) gen 100 , obj=0.000309        (d) gen 250 , obj=0.000137 

 

 
(e) gen 493 , obj=0.000074 

 
Fig. 16. Evolution of designs 

 
Fig. 17. Plot of actual path 

 

 
 

Fig. 18. Deformed and undeformed geometry of optimum design 

VII. CONCLUDING REMARKS 

An effective topology/shape design optimization 
methodology has been evaluated via a simulated topology 
optimization problem and then applied to an actual structural 
problem of automatically synthesizing a path generating 
compliant mechanism which produces a vertical straight line 
output path when given a horizontal straight line input. The 
success of the method hinges on the use of an efficient 
morphological representation scheme which defines practical 
and valid structural geometries, a compatible chromosome 
encoding system together with genetic operators of crossover 
and mutation that capture the topology/connectivity of the 
structures, and a genetic algorithm to treat the problem as a 
discrete optimization problem.  
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