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Abstract

Network coding is a viable alterative to traditional routing methods that are be-
ing used in current data networks as it offers many advantages, including higher
throughput rates and lower network costs. Although research has been conducted
with regards to the cost and security issues of network coding, a joint investigation of
these two parameters has not been done yet, thus providing the motivation for this
thesis.

For this thesis, we consider the situation where a set of messages is to be mul-
ticasted across the network, of which a known subset is of interest to a wiretapping
adversary. The problem that we attempt to solve is to find a network coding scheme
that has both a low network cost and a low probability of the wiretapper being able
to retrieve all the messages of interest.

We make use of random linear codes in anticipation for decentralized implementa-
tion of the scheme, and focus on the problem of finding the multicast subgraph. As an
exact algorithmic solution is difficult, we propose two heuristic solutions, and compare
their performances to traditional routing through a simulation study on Rocketfuel
networks. Our results suggest that network coding can be more effective than routing
for this low cost and secure data multicast problem, especially when the links are not
easily tapped.
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Chapter 1

Introduction

1.1 Network coding

In current communication networks, information is usually transmitted using a rout-

ing scheme, where data packets are sent from their places of origin to their destina-

tions without being modified intentionally at their intermediate locations. As routing

schemes are unable to always achieve the maximum information throughput of a

network, Ahlswede et. al. [1] suggested a different data transfer scheme, now com-

monly known as "network coding," that can always achieve the maximum throughput

through intentional modifications to the data packets within the network.

Consider the famous network coding example shown in Figure 1.1(a), where each

directed edge has unit capacity. Suppose we need to transmit two bits of information,

bl and b2 , from the source node s to each of the two sink nodes tl and t 2. Ahlswede

et. al. showed that routing is unable to send these two data bits to their destinations

in one single time step. Figure 1.1(b) shows an example of a routing scheme that is

unable to send b2 to ti, primarily because the edge 3 - 4 has already been used to

transmit bl. However, network coding can be used to accomplish this data transfer

as illustrated in Figure 1.1(c), where '+' denotes a modulo 2 addition. At tl, b2 can



(a) (b) (c)

Figure 1.1: (a) A sample network. (b) A routing scheme where b2 is unable to reach
tl. (c) A network coding scheme where both sink nodes can receive both messages.

be recovered from bl and bl + b2 by taking their difference (modulo 2), and a similar

argument follows at t2.

The paper by Ahlswede et. al. triggered much research interest, and many papers

have since been published for the better understanding of network coding. For in-

stance, Li et. al. [2] proved that linear network codes over a large enough finite field

is sufficient for multicast connections, while Ho et. al. [3] demonstrated that random

linear network codes are able to support a data multicast with decreasing failure rates

as the size of the finite field increases. In addition, Koetter and Medard [4] presented

an algebraic framework to analyze network codes, and used it both to recapture past

results and to show some new ones. For instance, they applied their framework to

non-multicast situations and they also showed that the use of a single network code

is sufficient even in a network with delays.



1.2 Cost concerns in network coding

Although network coding can achieve higher data throughput rates than routing,

there are other aspects of communication that are important to network users.

One important performance parameter is the network cost incurred for a given

set of connections. While the minimum cost multicast problem in routed networks

requires the finding of a directed Steiner tree, which is NP-hard, the same problem

in coded networks can be solved by a linear program in polynomial time [5], and also

be implemented in a decentralized manner [6]. In addition, simulation results have

shown that network coding can provide the multicast connections at a lower cost than

traditional routing [6], [7].

1.3 Security concerns in network coding

Another important performance parameter is the security of the network. In this area,

Cai and Yeung [8] considered the problem of using network coding to achieve perfect

information security against wiretappers. In a separate paper, Feldman et. al. [9]

showed that the finding of a matrix for the construction of an optimal secure network

code is equivalent to the finding of a linear code with certain generalized distance

properties. In a different setting, Ho et. al. [10] showed that randomized network

coding is useful in detecting Byzantine modification of data packets, thus providing

data security against Byzantine attackers who arbitrarily modify data packets in the

network.

The remaining part of this section details the research work done by Cai and

Yeung [8] and Feldman et. al. [9], as the notion of network security for this thesis is

based primarily on their work.

In both papers, the researchers considered the problem of sending a single data



stream X from its origin to its destinations, while ensuring perfect information se-

curity [16] against a wiretapping adversary. Mathematically, we say that perfect

information security is achieved if, for any set of messages atpped that is retrieved by

the adversary, the conditional entropy of X given Ytapped, is the same as the entropy

of X : (A short summary about information theory and entropy is given in section

2.4.)

H(X I apped) = H(X).

In [8], it was assumed that a collection of sets of edges, W = {Aj,...,AIdl} is

known, and that the wiretapper can only tap the edges in one of its elements, Aj.

Feldman et. al. [9] removed this assumption and generalized the problem to one where

the wiretapper can tap at most 0 edges in the network.

In both papers, the authors achieved perfect information security by first encoding

the data stream X with a random, independent data stream at the source node before

transmission. Figure 1.2 shows an example of such a secure network code on the

network discussed earlier, assuming that the wiretapper can tap at most one link in

the network (i.e. i = 1). In the figure, b is a single bit message that is to be sent

securely from s to tl and t 2 , while w is the single bit encrypting message.

From the figure, it is easy to verify that the wiretapper can only retrieve one of

the three types of messages sent in the network, namely w, b + w and b - w. Since b

and w are independent, it follows that:

H(b I w) = H(b).

In addition, similar to the situation where the one-time pad is able to provide perfect



Figure 1.2: An example of a secure network code on the previous sample network,
assuming that the wiretapper can access at most one link in the network. b denotes
the secure message to be transmitted, while w denotes the encrypting message.

information security, we have:

H(bl b + w) = H(b) and

H(b b- w) = H(b).

Thus, it follows that the network coding scheme shown in Figure 1.2 can achieve

perfect information security against the wiretapper who can tap at most one network

link.

1.4 Limitations to previous secure network coding

scheme

Although the secure network coding scheme developed in [8] and [9] can provide

perfect information security against the wiretapper, there are some limitations that

we would like to point out and resolve in this thesis.

First, as it may be difficult to know the maximum number of links that are ac-

b-1 +w



Figure 1.3: An example of a network where a secure network code does not exist.
Suppose the message b is to be securely sent from s, to both tl and t2 , and that the
wiretapper is capable of tapping any one link in the network. In this situation, no
secure network code exists according to the previous schemes.

cessible to the wiretapper, we will instead assume that the wiretapper can tap each

network link (i, j) with some probability pij, and that this set of probabilities is known

for the whole network. This assumption is more realistic in application as it is usually

easier to estimate or know this set of probabilities than the maximum number of links

accessible to the wiretapper.

Second, although it is always desirable to have perfect information security, such

a requirement may not always be necessary, or even possible. In some applications,

it may be permissible to allow the wiretapper to receive some parts of the secure

message. In other situations, such perfectly secure network codes may simply not

exist.

Consider the network shown in Figure 1.3, where some message b is to be securely

sent from sl to both tl and t2 , and that the wiretapper is capable of tapping any one

link in the network. Since there is only one data path from si to t2 , in order for t2

to receive the message, the message b must be sent along the path sl -- 1 -- 2 -+ t2

in an uncoded manner. In such a situation, the wiretapper will always be able to

retrieve the message b, as long as the tapped link lies on this critical data path.

With these considerations, instead of requiring that the wiretapper receive no



information about the set of secure messages, we shall seek to achieve partial network

security by trying to reduce the probability that the wiretapper is able to retrieve the

full set of secure messages.

With this definition of network security, although the wiretapper can potentially

receive a significant amount of information about the secure message, this does not

mean that the security of the message is in serious jeopardy. This is because the

purpose of' this thesis is not to come up with a secure network coding scheme to

replace the current standards of ensuring message security, but to come up with one

that can further enhance message security. Thus, even if the wiretapper manages to

retrieve all the necessary parts of the secure message, he will still need to overcome

the other message security measures, such as cryptography and steganography. As a

result, the aim of achieving partial network security is not a meaningless one.

Finally, as there are usually cost and throughput concerns associated with the

issue of data transmission, it is desirable to address these concerns as well. For the

previous secure network coding scheme, some random stream of encrypting data (e.g.

bit w in Figure 1.2) must be transmitted across the network as well, which inevitably

lowers the overall useful throughput of the network. In general, as the value of b

increases, more encrypting data must be sent across the network, which inevitably

lowers the throughput rate of useful information. This transmission of the encrypting

data also increases the overall network cost, and is usually undesirable in situations

where network resources are precious or scarce. Hence, while it is important to ensure

a high level of security, there is also a need to maintain a low overall network cost.



1.5 Combining cost and security concerns in net-

work coding

Having identified the limitations of the previous secure network coding scheme, we

intend to come up with a partially secure network coding scheme that also tries to

keep the network cost low. Thus, for this problem, two network parameters will be

of primary interest, namely network cost and network vulnerability.

For this thesis, we shall consider the situation where a set of messages is to be

multicasted across the network, of which a known subset is of interest to a wiretapper.

The problem that we attempt to solve is to multicast the messages at a low cost, while

keeping the network vulnerability - defined as the probability that the wiretapper

is able to retrieve all the messages of interest - low. While network security is

not limited to the resilience of the network against wiretapping, the other notions of

security are beyond the scope of this work.

In general, we expect the existence of a tradeoff between network cost and network

vulnerability, and thus, a joint minimization of both parameters is usually impossible.

For instance, in routed networks, a cheapest cost approach to a unicast connection

usually selects a single path. However, when the connection is to be resilient against

wiretapping, multiple disjoint paths may be needed, which may increase the network

cost [11], [12], [13], [14].

To illustrate further this trade-off and to show that network coding has the po-

tential of achieving a lower network vulnerability than traditional routing, consider

the network shown in Figure 1.5(a) where each network link has unit capacity and

unit cost. Two random processes (denoted X 1 and X2) are to be multicasted from

the source nodes s1 and s2 to the sink nodes t, and t2 , against a wiretapper who is

interested in obtaining the random process X 1. The probability that any one partic-



(a) A simple network

(b) Single path routing (c) Single path network coding

(d) Multipath routing (e) Multipath network coding

Figure 1.4: A simple network to illustrate the tradeoff between network cost and
vulnerability.

ular link is tapped is 0.01, and edges are assumed to be tapped independently of one

another.

Figures 1.5(b) to 1.5(e) show four different methods of achieving the multicast,

and Table 1.1 shows the corresponding network costs and vulnerabilities. In Figures

1.5(b) and 1.5(c), each process is transmitted at unit rate, while in Figures 1.5(d)

and 1.5(e), each process Xi is transmitted at a rate of two by splitting it into two

processes Xil and Xi2.

Figure 1.5(b) shows the single path routing solution that minimizes the network

cost, while Figure 1.5(c) shows the non-trivial single path network coding solution



Table 1.1: Network costs and vulnerabilities for the simple network of Figure 1.5.

Average cost Network
(per bit) Vulnerability

Single path routing 2 0.020
Single path coding 3.5 0.010
Multipath routing 2.75 5.9 x 10- 4

Multipath coding 2.75 2.1 x 10- 5

(note that the trivial solution is identical to the routing solution). Figure 1.5(d) shows

the multipath routing solution and Figure 1.5(e) shows the multipath network coding

solution.

From this simple example, we see that, while the single path routing solution

offers the lowest network cost, it also results in the highest network vulnerability.

While the network vulnerability can be reduced by employing network coding or

multipath routing, the network cost inevitably increases. It should also be noted that

the multipath network coding solution returns the lowest network vulnerability, at a

cost equal to that of multipath routing.

1.6 Thesis outline

The organization for the rest of this thesis is as follows. Chapter 2 establishes the

mathematical models to be used in this thesis, while Chapter 3 defines the problem

to be solved in a mathematical framework and discusses the general solution to the

problem. As the general solution is difficult, two heuristic approaches to the problem

are presented in this chapter as well. Chapter 4 describes the setup used for the

simulations and details the results obtained from them. Finally, a conclusion is given

in Chapter 5, together with possible avenues for future work.



Chapter 2

Model

This chapter describes the various mathematical models used in this thesis. The first

section expands on the network model presented in [5] for the finding of the coding

subgraph. The second section describes the network model presented in [4] for the

establishment of a linear network code.

As linear network codes are sufficient for multicast [2], and random linear network

codes have the advantage of being implementable in a decentralized manner, we

chose to make use of random linear codes. The random linear network coding model

described in the original paper by Ho et. al. [3] is reproduced in the third section of

this chapter.

The last section of this chapter describes information security under an informa-

tion theoretic framework, and establishes the security criterion to be used henceforth.

2.1 Network model for finding the coding subgraph

A communication network is represented by a directed graph G = (V, E), where V

is the set of vertices (or nodes) and E is the set of directed edges (or links). With

each edge (i,j) E E, we associate two non-negative numbers cij and dij, which are



the cost per unit flow and the link capacity, respectively. For simplicity, each edge is

assumed to have infinite capacity (dij -+ 00 V (i, j) E E). We say that edge (i, j) is

an outgoing link of node i and an incoming link of node j. In addition, we say that

for the edge (i, j), node i is its tail and node j is its head.

In this network, a set of r discrete independent random processes Y = {W1, ... , W,}

is to be transmitted to a fixed set of sink nodes, T = {tl,... , tJTl } C V. Each random

process Wi is generated at the source node sw,, and is assumed to have a constant

integer entropy rate of p. Thus, it can be arbitrarily well approximated by p inde-

pendent random processes, each with unit entropy rate. We denote the j-th such

component of Wi as the random process Xp(i_l)+j, and we denote the source node of

process Xi as sx,. We let X = {X1,... ,Xr,} be the set of mutually independent

source processes with unit entropy rates.

In the network, there exists an adversary who is interested in obtaining all the

messages in a given subset of #W. We denote this subset of messages as #,nterest and

assume without loss of generality that it contains the first k random processes (i.e.

0,,nterest = {W 1 ,..., Wk}, k <_ r). In terms of the unit entropy rate source processes,

we say that the adversary is interested in the processes in ,interest = {X 1,... , XkpP}.

This adversary is able to tap network links and retrieve all the messages that are

being transmitted along them. To model this wiretapping behavior, we associate with

each edge (i, j), a number pij E [0, 1] to denote the probability that the wiretapper will

be able to retrieve the message(s) sent along it. For simplicity, the tapping events of

different network links are assumed to be independent (but the outputs of all tapped

links are considered jointly when we consider the vulnerability of the network).



2.2 Network model for linear network codes

To aid in the description of the random linear network coding model in the following

section, a different graph representation of the network is required. Specifically, we

represent the coding subgraph as the graph G' = (V, E'), where each edge 1' E E' has

unit capacity, and links with greater capacities are modeled as parallel edges in E'.

In the network, edge 1' carries the random process Y(l'), and each sink t E T re-

ceives a set of output random processes {Z(t, i)}. We denote the set of all transmitted

random processes as 3 = Ul',E,{Y(l')}, and we denote the random set of all tapped

messages as YRtapped = UEIE'app {Y(l')} C Y, where Etapped C E' is the random set of

edges that are successfully tapped by the wiretapper. It is assumed that information

is transmitted as vectors of bits of length u, represented as elements in the finite field

F 2 u .

For a delay-free network, we can represent each of the random processes Xi, Y(l')

and Z(t, i) as a sequence of symbols from F2u. Specifically, we can represent Xi as the

sequence Xi == {X(o),Xi),...}, Y(l') as the sequence Y(l') = {Y(0)(l'), Y( 1)(l'),...}

and Z(t, i) as the sequence Z(t, i) = {Z()(t, i), Z( 1)(t, i),.. .}.

For a network with delays, we represent it as the graph G' where every edge has

unit time delay, using an appropriately chosen time unit. Links with greater delays

are modeled as a series of edges in the graph (e.g. a link with a delay of t time units

is represented as a series of t edges in the graph). Similar to the delay-free case, each

of the random processes Xj, Y(l') and Z(t, i), can be represented by a sequence of

symbols from F2 u.



2.3 Random linear network coding model

In anticipation of a completely distributed implementation of the secure network

coding scheme, we make use of random linear network codes [3], which are not only

sufficient for multicast [2], but are also easily implementable in a decentralized manner

[6].
For a link 1' with node v as its tail, we say that the signal Y(l') is a random linear

combination of the processes generated at v and the signals carried by the incoming

links of v. In the case where all the links are delay-free, we can express Y(l') as:

Y(1') = E ai,,Xi + f,, ,Y(j'),
{iE[1,rpl: sxi=v} {j'EE': head(j')=v}

where aij, and fj,,i, are uniformly and randomly chosen from the finite field F2U.

Similarly, the output process Z(t, i) at sink node t is a random linear combination

of the signals carried by its incoming links, and can be expressed as follows in the

delay-free case:

Z(t, i) =, Y (1
{l'EE': head(l')=t}

where byt,, is uniformly and randomly chosen from the finite field F2U.

For networks with link delays, memory is needed at the receiver nodes, but mem-

oryless operations at all other nodes will suffice [4]. The symbol of Y(l') at time

7 + 1, denoted as Y('+1)(I'), is a random linear combination of the symbols that are

accessible at node v = tail(l') one time step earlier at time 7. Mathematically, we

can express Y(7+')(l') as:

Y(+l)(I+') = a,
x • -) + Ef,,'Y,()(J').

{iE [1,rpj: sx i =v} {j'eE ': head(j')=v}



At the sink nodes, if a memory of m is made available for each output process at

the sink nodes, we can then express the symbol of Z(t, i) at time 7 + 1 as:

m

=Ebj'(uZ(-r-) (t,i) +
Oti,,

u=O

m

{l'EE'E: head(1')=t} u=0

where b~i, and b") are uniformly and randomly chosen from the finite field F2u.

These equations can be represented algebraically in terms of a delay variable D

as follows:

= S aj,'Xj(D) +
{iE[1,rp]: sxi=v}

E
{j'EE': head(j')=v}

: headl
{l'EE': head(l')=t}

where:

Da ,,
m

E Du+lb"(u)
u=O

1 - E Du+lb'(u)

u= 
ti,l

v=O

and

00

= X r)DT,
r=0

00oo

=7
r=0

y('r) (l')DT ,

00

= 5z(r)(t,i)Dr,

Y() (l') = 0,

Z(0)(t, i) = 0.

The coding coefficients {a,y,, fjy,'l, bti., E F2u } can be consolidated into rp x IE'I

z(r") (t, i)

Y(l')(D)

Z(t, i)(D)

X,(D)

Y(l')(D)

Z(t, i)(D)

Dfj,.vY(j')(D),

btc ,Y(l')(D),



matrices A = (ai,l,) and Bt = (bt,,,,), and the IE'I x IE'I matrix F = (fjy,l,). The

matrix A can be thought of as the transfer matrix from the source processes Xi to

the link processes Y(l'). Similarly, the matrix B can be thought of as the transfer

matrix from the link processes Y(l') to the output processes Z(t, i).

The triple (A, F, B) where:

BtITI

uniquely defines the linear network code used for the network. From the results in

[4], the connection problem is said to be feasible with the triple (A, F, B) if and only

if the matrix AMB T has full rank for each receiver t, where:

(I - F)- 1 = I + F + F 2 + ...

(I -DF)-1 = I+ DF + D2F2 +...

in the case without delays,

in the case with delays.

2.4 Information security model

For a random variable X(t), its entropy H(X(T)), can be computed as follows:

H(X(')) = - p log2Px,

where p, denotes the probability that the random variable X (') takes on the value x.

For each random process Xi = {Xo ) ,  , ... , x(Ixi)}, we can approximate it

arbitrarily well by a sequence of independent and identically distributed (i.i.d.) sym-

M =



bols, because compression can be done at the source nodes to reduce redundancy in

the transmitted sequence. As a result, the entropy of the random process Xi can be

expressed as:

H(Xi) = ZH(X ()).

Since it was assumed that the random processes in = {X1,..., Xrp} are mutu-

ally independent, we can express the conditional entropy of Xi, given Xj, as follows:

H(Xi I Xj) {H(X) if i j,

0 ifi=j.

Then, for the set of messages of interest to the wiretapper, its entropy is defined

as:

H(Xinterest) = H(Xi)
{XiE&interest}

kp

= ZH(Xi).
i=1

Now, suppose the wiretapper obtains some of the messages that are sent in the

network. Denoting this set of tapped messages as /apped, we say that the conditional

entropy of finterest given iapped is H( ~nterest I apped).

In effect, this conditional entropy provides us the answer to the question: "Given

that the wiretapper has retrieved all the messages in tapped, how much information

about the messages in •interest is he still missing?" In order for the wiretapper to

retrieve the full identities of all the messages in Xnteret, he will need to make a guess

out of 2 H(• • nterest I tapped) possibilities.

The next thing to note about the conditional entropy H( ,interest I apped) is



that it is always a non-negative value, and it can never exceed the entropy value of

Knterest. Thus, the following inequality holds:

0 < H(interest I ýrapped) < H(•interest)-

From the interpretation of the conditional entropy, it follows that as the value of

H(•interest tapped) increases, the level of network security increases, as the wire-

tapper needs to make a guess out of an increasing number of possibilities. However,

from the above inequality, it follows that the conditional entropy is at most equal to

H(Xinterest). As the set of tapped messages is random, we say that perfect informa-

tion security is achieved when the following equation holds for any realization of the

set gtapped:

H( Xnterest I tapped) = H( xinterest)-

This notion of perfect information security is the aim of the papers [8] and [9],

and as explained earlier, it may be too strict in application, and thus, a weaker

security criterion is used for this thesis. Specifically, we consider the worst case

scenario, whereby the conditional entropy H(iinterest I apped) is equal to zero,

which is equivalent to saying that the wiretapper is able to retrieve all the messages

in the set Xnterest without having to make any arbitrary guesses. Since tapped is

a random set, we define the network vulnerability as the probability that the worst

case scenario happens:

v := Pr[H(fiznterest I 3(apped) = 0]. (2.1)

With this weaker notion of network security, there are times when the adversary is



able to obtain some, or even all, of the messages of interest.

Given a network code (A, F, B), and a fixed realization of the random set E'apped,

we say that the wiretapper is able to fully retrieve all the k messages of interest if

and only if there exists a rp x IE'I matrix Btapped = (bi,l,) where:

1. bil, EF2- ViE[1, rp], I' EE'.

2. bi,l, = 0 V l' Etapped.

3. The rp x rp matrix Q = AMB Iped = (wij) can be represented in the block

form:

= 1,1 Q1,2

[2,1 2,2

where the submatrices have the following properties:

(a) Q1,1 has dimensions kp x kp, and is invertible.

(b) Q1,2 has dimensions kp x (r - k)p, and is a null matrix.

(c) Q 2,1 has dimensions (r - k)p x kp, and is a null matrix.

(d) Q2,2 has dimensions (r - k)p x (r - k)p, and is a null matrix.

Although the notion of network security can be strengthened by defining the net-

work vulnerability as the probability that the conditional entropy H(Xinterest I tapped)

exceeds a certain threshold amount, such a definition will inevitably complicate the

computation of the network vulnerability.

Since there are kp processes of interest in interest, if we were to say that network

security is compromised when m or more of these kp processes are fully retrieved,

then it follows that the total number of scenarios that will need to be considered is

k•m (kp), which generally scales exponentially with kp. Thus, for simplicity, we only



concern ourselves with the single scenario where all the messages are compromised

(i.e. H(Xinterest I tapped) = 0).



Chapter 3

Problem Formulation and Solution

This chapter first defines the problem to be solved in this thesis, before making a

remark about the previous secure coding scheme described in section 1.3. Following

this, the third section of this chapter describes the general solution to the problem,

and discusses some of the difficulties associated with it. As the general solution is

difficult, heuristics are needed for the solving of the problem and two heuristics to

the problem are discussed in the last two sections.

3.1 Problem formulation

As mentioned earlier, this thesis is concerned with the problem of coming up with a

secure network coding scheme that takes into account both network cost and network

vulnerability.

For the network cost, we consider the graph G = (V, E) where each edge (i, j) E E

has a cost per unit flow of cij. Thus, if zij denotes the amount of information flow on

the edge (i, j) E E, it then follows that the total network cost is given by:

S :=-- Cij iij
{(i,j)EE}



For the network vulnerability, as mentioned in section 2.4, we define the network

vulnerability as the probability that the wiretapper is able to retrieve all the messages

in the set Yfinterest (or equivalently, in terms of the unit entropy rate source processes:

9 interest). Mathematically, the network vulnerability is given by Equation 2.1.

With the network cost and vulnerability defined as such, the problem to be solved

is to minimize some function F(y, v), which is assumed to be an increasing function

of both y and v. Once again, as we expect a trade-off between network cost and

network vulnerability, it is often inadequate to minimize only p or v.

3.2 Using other messages in the network to pro-

vide security

From the previous secure coding scheme described in section 1.3, we observe that

information security is achieved through two main steps. First, the secure message

has to be encrypted by a random, independent message at the source. Second, the

messages to be transmitted on the network links themselves must be such that the

wiretapper does not obtain any information about the secure message from the net-

work links that he can tap.

On closer examination, one will notice that this source encryption is very similar

to the concept of network coding. Returning to Figure 1.2, we see that the secure

message b is encrypted with a random, independent message w that is generated at

the source node s. Now, suppose that the network shown in Figure 1.2 is just a

section of a larger network, and let us further suppose that w is not a random data

stream generated at s, but is, instead, another message that is to be transmitted in

the network via the network node s. With these assumptions, the network code shown

in Figure 1.2 will still apply, and perfect information security against the wiretapper



is achieved in this section of the network.

This similarity between source encryption and the mixing of messages in network

coding shows that data security can also be achieved by using other messages in the

network as encrypting messages. The main advantage of using other messages for

encryption is that there is no longer a need to transmit random streams of encrypting

data that lower useful network throughput and increase the total network cost.

For this thesis, as network cost is of significant importance, we ignore the pos-

sibility of increasing network security at the expense of increased network cost by

introducing random data streams into the network. Thus, we restrict ourselves to the

minimization of the function F(p, v) without introducing additional messages into

the network.

Here, it should be noted that despite restricting ourselves to the minimization of

.F(1u, v) without introducing additional messages, one can still investigate the effect

of introducing random data streams into the network by keeping the set of messages

of interest Xinterest fixed, while increasing the size of the set of source processes X.

3.3 General solution

We separate our secure coding problem into two parts. The first part deals with

the finding of the coding subgraph, including the amount of information flow to be

put onto each network link. The second part involves the actual network code to be

implemented in the coding subgraph. The network code describes how data packets

interact with one another, and is important to ensure that the original messages can

be decoded at the sink nodes.

In anticipation of a distributed implementation of the solution, we make use of

random linear network codes, which are sufficient for multicast [2]. (The random

coding model is described in section 2.3.) With this decision, we turn our attention



to the problem of finding the coding subgraph in G = (V, E).

Since every sink node in T needs to receive all the random processes in Y', we can

translate this multiple multicast problem into a single multicast one by introducing

a pseudo-source node a, and r pseudoedges (a, swi) into the graph G. The pseudo-

source node generates all the processes in Yf and transmits them to the actual source

nodes sw 1,..., swr via the pseudoedges (a, sw,) that have zero cost per unit flow (i.e.

cij = 0, Vi = a).

Noting that the problem of finding the minimum cost subgraph for a single mul-

ticast connection can be cast as a linear programming problem [5], we structure the

subgraph finding problem in a similar manner as the following constrained optimiza-

tion, where zij denotes the actual amount of information flow on edge (i, j) and xý )

denotes the underlying amount of information flow on edge (i, j) that is useful to sink

node t:

minimize F (Iu, v)

subject to zij = p, Vi = a,

zij x ) ,  V (i,j) E E, t E T, (3.1)4)- (t) (t) viE, t T,
{(i,j)EE} {(j,i)EE}

di2 > x ) >0, V(i,j) EE, tET,

where:

II = cijzij,
{(i,j)EE}

v = Pr [H (nterest I apped) = 0] ,

rp if i = a,

a•) -rp if i = t,

0 otherwise.



(a) (b) (c)

(1,1,1

Figure 3.1:: Example showing that network vulnerability depends on the network
code. (a) Values of (zij,x•) ,x( 2)). (b) Network code I. (c) Network code II.

One difficulty of this optimization is that, while it is easy to compute p given x• )

and zij, the same is not true for v, as it depends on the actual processes sent along

the links (i.e. the network code).

As an example, consider the network shown in Figure 3.1, with p = 1, 1 =-

{W1, W2 } = {Xi,X 2},interest = {W 1 } = {X 1}. Figure 3.1(a) shows the values of

x) and zij, while Figures 3.1(b) and 3.1(c) show two possible network codes utilizing

the values of x ) and zij shown in Figure 3.1(a).

Consider the network code used in Figure 3.1(b). Here, we see that the tapping

of any one edge in the set {(s, 1), (1, 3), (1, ti)} will allow the retrieval of the message

in Zinterest. However, for the network code in Figure 3.1(c), this message can only

be fully retrieved when the wiretapper taps two or more edges carrying different

messages.

For the sake of illustration, let us calculate the network vulnerabilities for the two

networks shown in Figures 3.1(b) and (c), assuming that pij = p = 0.01 V (i,j) E E.

Then, we let Xi denote the event that message Xi is not tapped from the network,

and Xi denote the event that it is successfully tapped. Denoting the vulnerabilities



of the two networks in Figures 3.1(b) and (c) as v(b) and v(c) respectively, it follows

that:

(b) =1 - Pr (Xi 1 - Pr( 2 ) Pr (X+X 2 )]

= 1 - (1 - p)3 . [1 - (1 - (1 - p)3).(1 p) 3)]

= 0.0306.

v() = 1 - IPr X, + X2 Pr XX - X2) Pr(X2)
= 1-Pr (X1 + X2).Pr (Xi- X 2).Pr (X2)

+ Pr Xi -+X 2) Pr (Xi - X 2) Pr(X 2 )

+ Pr (X + X 2) Pr (X - X2 Pr X 2 )]

=1 - [(1 - p)9 + 3 x (1 - p)x x (1 - (1 -p)3)]

= 0.0026 # vi.

Thus, we see that the network vulnerability depends not only on the values of x 2)

and zij, but also on the actual network code.

Another difficulty is that v and F (p, v) may not be convex functions of xý) and

zij. For instance, let us return to the network shown in Figure 3.1(b), where we

now assume that every edge has a capacity of two. In addition, for each edge in the

set {(s, 1), (1, tj), (s, 2), (2, t2)}, we now transmit a new message X3 in an uncoded

fashion, in addition to the original message that it has been transmitting. As the

knowledge of X3 does not help the wiretapper in knowing the identity of X 1, the

increases in zij for these edges do not affect v.

As a result of these difficulties with the general solution, we turn towards heuristic

methods to solve the problem.



3.4 First heuristic

Our first heuristic is motivated by the special scenario where all the input processes

are generated at a single source node. In this scenario, there is a high probability

that all the processes in Y will be a linear combination of all rp input processes of

X. Thus, in order for the wiretapper to retrieve the processes in Xinterest, there is

a high probability that he will need to retrieve all rp degrees of freedom in order to

invert the coding matrix.

In this light, we formulate our first heuristic, which is an exact solution to the

problem when the following statements are true.

1. Every transmitted process in the network is a linear combination of all rp pro-

cesses in X. Mathematically, we have:

rp

Y(l') = ,,,ix, V l' e E',
i=1

where:

(1,,j E F2\{0}, V l' E E', 1 < i < rp.

2. The tapping of any n links in E' by the wiretapper will provide him with a set

of min(rp, n) linearly independent equations in terms of the processes in X.

While these two statements are not true in general, they can be reasonable approx-

imations to the actual network code when the processes are well-mixed throughout

the network, and when the finite field used for coding is very big.

As mentioned in the previous section, one of the difficulties associated with the

general solution is that the network vulnerability is not a function of only zx ) and

zij, but is dependent on the actual network code as well. However, when the above



two conditions hold, the network vulnerability is equal to the probability that the

wiretapper manages to tap at least rp links in E', which is a function of the zij values

only (and is independent of the actual network code). This probability, denoted as

v', can be obtained in the following manner.

Consider a link (i, j) E E that is carrying a flow amount zij E Ro. Since each link

in E' has unit capacity, the number of unit capacity links in E' that correspond to

the link (i, j) is approximately [zij] - the nearest integer to zij. With this, we let Lij

be the discrete random variable denoting the amount of information flow successfully

tapped on link (i, j). As pij is the probability of tapping link (i, j), we have:

Pr(Lij = k) = Pij if k = [zi~],

1 - pij if k= 0.

To avoid confusion in the z-transform domain, we replace the transform variable z

by w, and we write:

n4j(w) = E[wLij]

= pijwlzij] + (1 - pj).

Now, we let Ltotal be the random variable denoting the total amount of information

flow successfully tapped in the whole network. Since edges are assumed to be tapped

independently of one another, we have:

Ltota() = I Lj(w)
(i,j)EE

= Pr(Ltotal = k)wk,
k



and the expression for v' is:

V' = Pr(Ltotal > rp)
rp-1

= 1 - E Pr(Ltotal = k),
k=O

which is an increasing function with respect to each zij, but may not be convex in

nature.

Algorithm 1 below summarizes how to obtain v' from the vector z = (zij). In

the algorithm, kij is the vector of polynomial coefficients of Lij(w) and ktotal is the

vector of polynomial coefficients of Ltotal(w), which is obtained by convolving all the

kij vectors. Note that the symbol * is used to denote the convolution operation.

Algorithm 1: Given z, calculate v'.

With this, we replace the objective function in (3.1) by the function .F(p, v'),

which is a function in terms of zij only. For our simulations, we consider a specific

z• +- [zUi] V (i, j) E E;
for each (i, j) E E do

kij -" zero vector of length (z'j + 1);
if z4 = 0 then

kij[1] ~ 1;
else

kij[1] -pij;
kij[zij + 1] ~ 1 - pij;

end
end
ktotal +- * kij;

{(i,j)EE}

h -- length(ktotal);
h1- ktota ;

j=h-rp+l



form of 'F(I, v'), given by:

'(1ý, v') = V + wi', (3.2)

where w is a non-negative weighting variable that represents the relative importance

of the network vulnerability with respect to the overall network cost.

3.5 Second heuristic

One major drawback of the first heuristic is that the calculation of v' can be com-

putationally intensive, as it requires the calculation of the polynomial coefficients of

Ltotal(w). Because of this complexity, a simpler heuristic is proposed here.

We begin by drawing some insights from the way routed networks provide re-

silience against wiretapping. In traditional routing schemes, when a message needs

to be securely transmitted to its destinations, a dispersive routing scheme is often

used. Aside from providing better information security, other advantages of such a

dispersive routing scheme have also been well investigated in a number of papers [11],

[12], [13], [14].

In such a routing scheme, the secure message will be broken into smaller parts and

all these parts will be sent to the destinations of the original message through several

disjoint paths. Security against wiretapping is increased through the use of these

disjoint paths because, in order for the wiretapper to retrieve the entire message, the

wiretapper will need to tap a link on each path used for data transmission. Thus, as

the number of disjoint paths used increases, the wiretapper will need to tap more links

in order to retrieve the original message, and he will have a decreasing probability of

being able to do so.

As the spreading of information flow across disjoint paths was shown to provide



increased data security against wiretapping in traditional routed networks, it is be-

lieved that is will also provide increased data security in network coding by similar

principles.

For instance, if all the flows are concentrated along a single multicast tree in a

coded network, then Pr(Ltoattl rp) can be quite high, as each used link in the network

is carrying a large amount of flow, and one only needs to tap a few of them to have

LtotaIt rp. However, if the flows are spread out across network links instead, one will

need to tap more network links to have Ltota _ rp. Hence, we expect the network

vulnerability to decrease as information flow is spread across the entire network.

A straightforward method to spread information flow across network links is to

introduce, for each link (i, j) E E, a strictly convex and increasing cost function in

terms of zij. For our simulations, we consider the addition of a quadratic cost function

to each link. Specifically, the objective function in (1) is replaced by the following

function:

11 + WlLquad, (3.3)

where:

=1quad = pij (zij/p)2
{(i,j)EE}

and w' is a non-negative weighting variable that represents the relative importance

of the network vulnerability with respect to the overall network cost. Here, it is

important to note that w : w' in general, because v' < 1, while pLquad • r 2. As it is

much easier to compute iquad than v', this heuristic is easier to implement than the

previous one. Another advantage that this heuristic has is that it can be implemented

in a fully distributed manner as each edge has a strictly convex cost function [6].





Chapter 4

Simulation Results

This chapter details the results obtained from our simulations. The simulation setup

is explained in the first section, before the results and discussions are presented in

the remaining ones. The second section details the general results obtained across

different networks, while the third section discusses the tradeoff relationship between

network cost and network vulnerability. The remaining sections of this chapter discuss

the effects of the different network parameters on the performances of the proposed

heuristics.

4.1 Simulation setup

Our simulations are done using the network topologies made available by the Rock-

etfuel project [15]. For our simulations, we make the simplifying assumption that all

network links have the same probability of being tapped (pij = p, V (i, j) E E).

For each scenario, we first decide on the network parameters, including the number

of input processes to be transmitted (r), the throughput rate for each process (p), the

number of processes of interest to the wiretapper (k) and the number of sink nodes

(ITI). We also decide on the network to be used, which gives us the set of cij values.



We then proceed to run 100 simulations with the above network parameters, and

calculate the mean network cost and network vulnerability. For each simulation, each

source node sw1 is randomly and uniformly chosen from V with replacement, before

each sink node in T is randomly and uniformly chosen from V - S without replace-

ment. During this process, we also ensure that the multicast problem is feasible, by

requiring the presence of at least one path from each source node to each sink node.

Following this, we let p vary from 0 to 0.1, and for each value of p, we proceed to

solve for five different multicast subgraphs. We first consider the single path routing

and the multipath routing solutions, before considering the single path network coding

solution by having the objective function in (3.1) as M. Finally, we consider the two

heuristics proposed in the previous chapter.

The objective function to be minimized for each simulation is a weighted sum of

network cost and network vulnerability. In particular, the form of F(y, v) that we

consider is as follows:

where w is a non-negative weighting variable. As for the two proposed heuristics, the

corresponding objective functions have already been given in the previous chapter in

Equations 3.2 and 3.3.

For each subgraph, we estimate the network vulnerability in the following way.

We randomly generate 2000 sets of tapped links based on p, and decide for each set,

if it enables the wiretapper to retrieve all the processes in Ol4nterest. The sample mean

is then taken to be the network vulnerability v.



4.2 General results for various networks

We first consider the applicability of our heuristics across different networks. Specif-

ically, we fix the values for the network parameters r, k, p and ITI, and obtain

the simulation results for four different networks. The four networks used in the

simulations are the Ebone (Europe), Exodus (USA), Telstra (Australia) and Tiscali

(Europe) networks. Although two other network topologies were available from the

Rocketfuel project, they were not used in the simulations. The Sprint network (USA)

was too large for the simulations to be completed in a reasonable time frame, while

the Aboveinet network (USA) did not offer sufficient connectivity between the nodes

for the connection problem to be feasible. Table 4.1 below details the size parameters

of all the six networks whose topologies were available through the Rocketfuel project.

For each of the four networks used in the simulations, we consider the specific

scenario wIhere r = 4, k = 1, p = 10, ITI = 4, w = 3 x 105 and w' = 3 x 103, and

show the results in the rest of this section.

We first, consider the mean network costs for the different methods of information

dissemination. Figures 4.1(a) to 4.1(d) show the plots of the mean network costs (f)

against p.

Table 4.1: Sizes of the six network topologies.

Number of nodes Number of directed
Network (IV|) edges (IEI) El : IVI ratio |Ej : IV12 ratio
Abovenet 141 748 5.30 3.76 x 10-2
Ebone 87 322 3.70 4.25 x 10-2
Exodus 79 294 3.72 4.71 x 10-2
Sprint 315 1944 6.17 1.96 x 10-2
Telstra 108 306 2.83 2.62 x 10-2
Tiscali 161 656 4.07 2.53 x 10- 2
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From Figures 4.1(a) to 4.1(d), we see that the cost of single path coding is always

the lowest, while the cost of multipath routing is always the highest. This is true for

all four networks and for all values of p between 0 and 0.1.

For the two proposed heuristics, we first note that the mean network cost for the

second heuristic is an increasing function in terms of p. This behavior is expected

because as p increases, the heuristic will spread more information flow across the

network from links of lower cost to links of higher cost, resulting in an increase in the

network cost.

However, for the first heuristic, although the network cost first increases with

increasing p when p is small, it starts to decrease or remain the same with increasing

p when p is large. This seemingly odd behavior can be explained as follows.

When p is small, v' can be lowered through the spreading of information flows.

Thus, when p increases, the first heuristic attempts to spread more information flow

across the network to lower v', resulting in an increase in network cost. However,

when p is large, the spreading of information flow no longer offers much benefit in

the lowering of v', and sometimes, may even result in an increase in v' (see below for

a clearer explanation of this phenomenon). Thus, as p increases, the first heuristic

starts to reduce the spreading of information flow to lower network cost and to prevent

a possible increase in v', resulting in a decrease in network cost.

To further explain this queer observation, we shall provide a simple example to

illustrate that the spreading of flows may not always lead to a lowering of v'. Consider

a simple unicast connection problem where five unit entropy rate input messages are

to be transmitted from a source node s to a sink node t. Suppose there are five edge-

disjoint paths between s and t, and each of these disjoint paths is composed of twenty

unit cost edges. We employ network coding and consider two methods of information

dissemination: (1) send all five messages along one of these disjoint paths, and (2)



Table 4.2: Values of v' for the simple example to show that the spreading of flows
does not always decrease v'.

Method v' (p = 0.01) v' (p = 0.1)
(1) Single path coding 0.18 0.88
(2) Multipath coding 0.0034 0.98

send information at unit rate on each of the five disjoint paths (i.e. spread information

flow across the network). For each of the above methods, we consider the value of v',

which is the probability that the wiretapper obtains at least five units of flow from

the network. Table 4.2 shows the values of v' for two different values of p.

From the table, we see that when p = 0.01, the spreading of flows decreases v'

from 0.18 to 0.0034, but when p increases to 0.1, the spreading of flows across the five

disjoint paths increases v' from 0.88 to 0.98 instead. This shows that the spreading

of information flow across the network does not always decrease v'.

Next, we consider the mean network vulnerabilities for the different methods of in-

formation dissemination. Figures 4.2(a) to 4.2(d) show the plots of the mean network

vulnerabilities (v) against p.

From the figures, we first note that the strategy that yields the highest network

vulnerability is always the single path routing strategy, followed by the single path

coding one. In addition, when p is small, the two proposed heuristics have very similar

network vulnerabilities and yield lower network vulnerabilities than the multipath

routing strategy. However, when p is large, the multipath routing strategy always

yields the lowest network vulnerability.

When p is small, both proposed heuristics attempt to reduce their network vulner-

abilities through the spreading of information flow. Thus, the similarity in the net-

work vulnerabilities of the two heuristics is not entirely surprising. However, when p

is large, the second heuristic continues to spread information flow across the network,
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while the first heuristic starts to limit the spread of information flow. This results in

the greater deviation in their vulnerability performances as p gets larger.

To understand why the two heuristics have lower network vulnerabilities than

multipath routing when p is small, but higher vulnerabilities when p is large, we return

to the coded network shown in Figure 3.1(b), where the wiretapper is interested in

X1.

When p is very small, we can approximate the situation as one where the wiretap-

per has negligible probability of tapping two or more network links. Thus, the only

way for him to retrieve X1 is by tapping one of the three links that are carrying X 1

in an uncoded fashion. For a similar routing strategy on the network, at least four

network links must be used for the multicast of X1, and the tapping of any one of

these links will enable the retrieval of X 1. Thus, routing results in a higher network

vulnerability than network coding. In general, when p is small, better security is

achieved by network coding as zapped is often small, and the wiretapper is unable to

retrieve enough degrees of freedom to decode Ynterest entirely.

When p is large, the higher network vulnerability of the coding solutions can be

attributed to the fact that there are potentially more ways to retrieve the messages of

interest in a coded network than in a routed one. In routed networks, we first note that

the tapping of links carrying messages outside Xnterest does not help the wiretapper

in the retrieval of the messages in lnterest. However, in coded networks, the tapping

of such links can potentially aid the wiretapper. Consider the network in Figure

3.1(b). Although H(XI I X1 + X 2 ) = H(X 1) > 0 and H(Xi I X 2) = H(X 1) > 0, we

note that H(X1 I {X 1 + X2 ,X 2}) = 0. In general, for coded networks, there are more

ways for the wiretapper to decode the messages in ,nee,,t from 9. This reduces the

security advantage of transmitting encoded messages, and results in the higher values

of v seen in the two heuristics when p is large.
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Next, we consider the objective function F(p, v) = p + wv. Figures 4.3(a) to

4.3(d) show the plots of F(p, v) against p for the four different networks.

From the figures, we note that the shapes of the graphs of Figure 4.3 are very

similar to those of Figure 4.2. This is because w > > p in each case, causing the

influence of v on F(p, v) to predominate over the influence of p on the objective

function.

Finally, we look at the difference between v and v' for the first heuristic for the

four different networks. Figure 4.4 shows the percentage difference between v and v'

(- x 100%) against p.

From the figure, we note that v' is often greater than v, and that the absolute

percentage difference between v and v' is usually less than 30% (with the exception

of the Tiscali network).
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Figure 4.4: Plot of the percentage difference between v and v' against p for four
different networks. (r = 4, p = 10, k = 1, ITI = 4)

Across the networks, we see that the Tiscali network returns the greatest percent-

age difference across the four networks, while the Telstra network usually returns the

lowest. One possible explanation is that the percentage difference is highly dependent

on the network size and density.

From Table 4.1, one can see that the Tiscali network has the highest number of

nodes and edges, but the lowest (EI : IVI2 ratio out of the four tested networks. The

large size and low density of the network may have resulted in a lower probability of

coding across the rp input processes, and a lower probability that every newly tapped

process will give the wiretapper an extra degree of freedom to decode the messages

of interest. Thus, when compared to the other networks, the actual situation for

the Tiscali network deviates more from the scenario where the first heuristic is an

exact solution, resulting in the larger percentage differences observed for the Tiscali

network.

On the other hand, although the Telstra network is similar to the Tiscali network

in terms of density, the Telstra network is much smaller in size. This results in a

lower average number of edges on the shortest path between two nodes, and a higher



probability that every newly tapped process will give the wiretapper an extra degree

of freedom to decode the messages of interest. Thus, when compared to the Tiscali

network, the situation in the Telstra network is more similar to the scenario where

the first heuristic is an exact solution, resulting in the smaller percentage differences

observed for the Telstra network.

4.3 Tradeoff relationship between [ and v

This section discusses the tradeoff relationship between network cost and network

vulnerability. To investigate this relationship, we consider several scenarios and make

use of the first heuristic to minimize v' subject to a cap on the network cost I. For

each scenario, there is a minimum network cost plmin for which the connection is

feasible, and a maximum network cost Imax for which the value of v' is minimized.

As such, when we impose the caps on the network cost, we only need to concern

ourselves with cap values between Imin and Imax~

Figure 4.5 shows the plot of the network vulnerability v against the network cost

p for three different values of p, with p between PImin and /max-

From the figures, we see that the graphs are all decreasing and convex, showing

that the greatest decrease in vulnerability comes from the initial spreading of flows

(that results in the increase in t). In addition, when p is small, a significant decrease

in v can be obtained at the expense of having a higher network cost. In Figures

4.5(a) and (b), we see that a 90% decrease in v can be obtained at the expense of a

30% increase in p. However, at higher values of p, a less significant decrease in v can

be obtained. For instance, from Figure 4.5(c), we see that a 12% decrease in v will

require a 8% increase in p.

As mentioned in the previous section, the plots of F(1I, v) against p are greatly

influenced by the vulnerability v, because of the high value of w used in the sim-
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ulations. As such, to investigate better the relationship between network cost and

network vulnerability as p changes, we make use of the cost-vulnerability product

(Lv). We choose this particular function because it captures the percentage changes

in both IL and v similarly well. Although the use of this function implies the existence

of a linear tradeoff relationship between p and v, we note that the graphs in Figure

4.5 can be reasonably well approximated by piece-wise linear functions (over two

intervals of 1), and thus, the choice of this cost-vulnerability product is reasonable.

Figures 4.6(a) to 4.6(d) show the plots of the cost-vulnerability products against p

for the four networks. From the figures, we first see smaller performance gaps between

the single path strategies and the multipath ones, as compared to the plots of F(y, v)

against p. This observation can be attributed to the higher network costs incurred

by the multipath strategies. This observation is especially evident when p is large,

where we see the proposed heuristics occasionally yielding higher values of yv than

the single path coding strategy. In addition, when p is large, the first heuristic tends

to yield lower values of iv than the second heuristic, because of the lower network

cost incurred by the first heuristic, and the similar network vulnerabilities of the two

heuristics.

Despite these differences between Figure 4.3 and Figure 4.6, we continue to witness

better performances from the proposed heuristics than the multipath routing strategy

for low values of p.

4.4 Effects of varying w on the first heuristic

We first investigate the effects of varying the non-negative weighting variable (w) in

the objective function FY(1 , v). We note that out of the five different methods of data

transmission, only the first heuristic makes use of w to allocate flows in the network.

Thus, we consider only the effects of varying values of w on the performance of the
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Figure 4.7: Plot of the percentage cost and vulnerability differences between the
first heuristic and the single path coding strategy against p for varying values of w.
(Exodus network, with r = 4, p = 10, k = 1, ITI = 4)

first heuristic.

We look at the effect of w on the network cost (IL) and the network vulnerability

(u) yielded by the first heuristic through a comparison with the corresponding values

yielded by the single path coding (SPC) strategy. Figure 4.7(a) shows the plot of the

percentage cost difference between the two strategies against p for different values of

w between 3 x 103 and 3 x 106, while Figure 4.7(b) shows the corresponding plot of

the percentage vulnerability difference between the two strategies.

From Figure 4.7, we observe that as w increases, the percentage cost difference

increases, while the percentage vulnerability difference decreases. This observation is

expected because as w increases, more emphasis is placed on the network vulnerability

than on the network cost in the objective function to be minimized. As a result, in

order to minimize the function p + wv', the first heuristic will reduce v' at the expense

of increasing p.

Another observation is that greater changes are observed in the cost and vulnera-

bility differences when w increases from a small value, than when it increases from a

large one. Greater changes in the two differences are also observed when p is small,
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than when p is large. The main reason for these observations is that when w or p is

large, wv' becomes much greater than [, and the objective function P + wv' starts

to approximate wv'. Thus, any further increase in the value of w will not have much

effect on the way flows are allocated across the network, and the network cost does

not change much.

4.5 Effects of varying w' on the second heuristic

We go on to investigate the effects of w' on the second heuristic. Figure 4.8(a)

shows the plot of the percentage cost difference between the second heuristic and

the single path coding strategy against p for different values of w' between 3 x 102

and 3 x 104, while Figure 4.8(b) shows the corresponding plot of the percentage

vulnerability difference between the two strategies.

From Figure 4.8(a), we observe that as w' increases, the cost of the second heuristic

increases. This is expected because with increasing values of w', an increasing amount

of information flow is spread across the network in order to reduce /quad at the expense



of increasing p.

Another observation is that when w' is equal to 3 x 104, the percentage cost

difference starts to taper off at 37% for increasing values of p. This is also expected

because there is a fundamental limit to the amount of information flow that can be

diverted from low cost paths to high cost ones.

From Figure 4.8(b), we observe that an increase in w' does not usually lead to

a decrease in the vulnerability difference (unlike what we have observed for the first

heuristic in the previous section, where an increase in w tends to decrease the vulner-

ability difference). In addition, from the figure, we observe that when w' is equal to

3 x 104, the vulnerability difference actually becomes positive for values of p larger

than 0.09, indicating that the second heuristic starts to yield a higher network vul-

nerability than the single path coding strategy.

The explanation for this observation is that when p is small, the spreading of flows

reduces the probability that the adversary is able to tap a large number of messages

from the network. Thus, as w' increases, the size of the set tapped generally decreases,

making it harder for the wiretapper to decode the messages in /4nterest. This causes

the vulnerability difference to become increasingly negative as w' increases.

However, when p is large, an increase in the spreading of information flow no

longer significantly decreases the probability that the adversary is able to tap a large

number of messages from the network. (Recall in Section 4.2, when p is large, the

spreading of flows no longer decreases v' significantly, resulting in the decreasing

network cost of the first heuristic as p increases.) Instead, a second consequence of

the spreading of flows starts to take effect, whereby more opportunities for coding

across the messages are created. This results in an increase in the probability that

every newly tapped process will give the wiretapper an additional degree of freedom

to decode the messages in ,nterest. Thus, the greater spreading of flows, resulting
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from the increase in w', starts to increase the network vulnerability when p is large.

4.6 Effects of varying r

As mentioned earlier, although we do not explicitly consider the possibility of in-

creasing network security at the expense of increased network cost by introducing

additional messages into the network, we can still investigate the effects of the intro-

duction of these additional messages by keeping k constant while increasing the value

of r.

Figure 4.9 shows the plot of the percentage change in v for the first heuristic (as

compared to the reference case where r = 2, w = 1.5 x 105), as the value of r varies.

The values of w were appropriately scaled to compensate for the higher values of Y

with increasing r.

From the figure, we observe that, when r increases from 2 to 6, v decreases,

but when r increases further to 12, v does not decrease anymore. On the contrary,

v increases for small values of p when r = 12. This interesting behavior may be

explained as follows.



When r increases, it affects the network vulnerability in several ways. First, the

mean number of encoded processes Xi in the transmitted processes Y(l') grows as

O(r). This decreases v as the wiretapper will, on average, need to retrieve more

degrees of freedom from the network in order to decode all the messages in Ynterest-

Second, the size of 9 grows as O( 2r), increasing the number of ways Ynterest can be

decoded from the messages in 9, thus increasing v. Finally, the average amount of

flow on the network links grows as O(r). Thus, for any fixed p, the expected size of

tapped increases, and v increases.

As the increase in r can affect the network vulnerability in these different ways,

the net effect of an increase in r on v is ambiguous. However, the simulation results

suggest that when r is small, an increase in r decreases v, while for larger values of

r, an increase in r increases v. This is probably due to the different growths of the

network parameters mentioned in the previous paragraph. As the size of Y grows as

O( 2r), when r is small, the growth of 9 is small, and the net effect of an increase

in r is a decrease in v. However, when r gets large, the growth of V becomes much

larger, resulting in a net increase in v.

4.7 Concluding remarks

From the results obtained through the simulations, we see that when the network

links are not too susceptible to being tapped (i.e. p is small), our proposed heuristics

can provide lower values of network cost and network vulnerability than multipath

routing. However, when p is large, our heuristics yield lower costs, but higher vul-

nerabilities than multipath routing. Despite the poorer vulnerability performance, it

is important to note that the primary aim of this research work is to keep both the

network cost and the network vulnerability low. Thus, there may be times where the

poorer vulnerability performance by the heuristics may be more than outweighed by



their better cost performance.

Our results have also shown that the heuristics are rather robust to changes in

network parameters such as the network sizes, the number of input messages, and

the non-negative weighting variables w and w'. In particular, we note that the first

heuristic is often more robust than the second heuristic to changes in the network

parameters.

Finally, we will like to point out several ways in which the performances of the

heuristics can be improved or be made more robust. First, the vulnerability perfor-

mance of the heuristics can be improved through changes that decrease the number

of ways the messages in interest can be decoded from 'Y. These changes include

the reduction of the size of the finite field over which the coding is to be done, and

the use of deterministic codes, although these changes often bring with them other

undesirable consequences. For instance, a reduction in the finite field size inevitably

reduces the probability that the messages in i can be successfully decoded at the

sink nodes.

Second, as both our proposed heuristics are currently unaffected by changes in

the values of k, IVI and EJl, improvements can be made to them to improve their

performances in different situations. Taking the first heuristic for instance, instead of

defining v' to be the probability that at least rp network processes are tapped, it can

be defined as the probability that at least rpf(k) processes are tapped, where f(k) is

an increasing and possibly concave function of k.



Chapter 5

Conclusion and future work

In this thesis, we have considered the problem of providing a set of connections at

both a low cost and a high level of security against wiretapping. As an exact solution

is difficult, we have presented two heuristic methods of finding the coding subgraphs

that can achieve this. Through our simulation results, we observe that a trade-

off between network cost and network vulnerability also exists in coded networks.

In addition, we observe that network coding can be more effective than traditional

routing for low cost and secure data multicast, especially when the links are not too

easily tapped.

In this study, we have focused on the problem of finding the coding subgraph, and

conducted our simulations in a centralized manner. However, it should be noted that

the finding of the coding subgraph can done in a decentralized manner for the second

heuristic that we have proposed, since it has a strictly convex cost function for each

network link [6]. As we have assumed the use of a random linear network code, which

itself is implementable in a distributed manner, we conclude that our second heuristic

solution to the problem can be implemented in an entirely decentralized manner.

As we have only considered the issue of resilience against wiretapping in this

work, future research can be done to investigate the other security issues of network



coding. Furthermore, as we have only suggested two simple heuristic approaches

to the problem, alternate algorithmic approaches remain as clear avenues for future

work.
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