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Abstract

Metamaterials, materials that are constructed with arrays of small elements have sig-
nificant potential to provide material properties that are useful for electromagnetic
applications but are not found in nature. Slight changes to a repeated unit cell can
be used to tune the effective bulk material properties of a metamaterial, replacing
the need to discover suitable materials for an application with the ability to design a
structure for the desired effect. However, most current metamaterial realizations are
plagued by high loss, large size, awkward structure, or difficult construction. The use
of Micro-Electro-Mechanical Systems (MEMS) to create a new metamaterial could
improve upon some of these shortcomings due to their small size, high Q, and ease
of integration into standard applications and circuit fabrication techniques. In this
thesis, I analyze the prospects of a MEMS-based metamaterial. First, I determine the
best type of MEMS resonator to use in a metamaterial. Then, I build models that
can accurately describe a metamaterial constructed of MEMS unit cells. Analysis of
these models provides information about the potential behavior of a MEMS metama-
terial. It is discovered that it is possible to create a left-handed metamaterial using
MEMS resonators. Finally, phase-shifting and antenna miniturization applications
are suggested as potential areas that can leverage the benefits of this new MEMS
metamaterial.

Charles Stark Draper Laboratory Thesis Supervisor: Amy Duwel

M.I.T. Thesis Supervisor: Jin-Au Kong
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Chapter 1

Introduction

The term "metamaterial" refers to any material that is artificially constructed for

the purpose of achieving desired properties. In electromagnetics, a metamaterial can

be created by constructing a periodic structure with elements of size less than the

wavelength of the incoming electromagnetic wave. Because the bulk properties of

this material no longer depend on the materials used, but depend on the geometry

of the structure, the resulting material can be engineered for any purpose, and can

even achieve behaviors that are not found in nature.

The material values of particular interest to the electromagnetics community are

the values of permittivity, c, and permeability, p. These values are a characterization

of the ability of electric and magnetic fields, respectively, to polarize the medium.

Taken together, e and p determine the speed of electromagnetic propagation through

a medium, as well as many other important values. Through the use of metamaterials,

we can create materials with chosen values for 6 and p, giving designers great control

over the many material parameters that depend on those values.

While metamaterials may offer many exciting opportunities in electromagnetics,

they also have several drawbacks. Depending on the type of metamaterial, there are

problems with large physical size, significant loss, difficult system integration, and

low bandwidth. Micro-Electro-Mechanical Systems (MEMS) devices boast small size

and easy integration into current circuit fabrication techniques and may therefore

provide a solution to some of these problems. In this thesis, I explore the use of

17



MEMS resonators to create a metamaterial. Also, I explore some potential uses for

this metamaterial.

1.1 Overview of Chapters

The remainder of this chapter serves as an overview of the relevant work in the field

of electromagnetic met amaterials. Additionally, existing met amaterial applications

are discussed. An introduction to MEMS technology follows.

Chapter 2 performs an analysis of two types of MEMS resonator: the paddle

and the piezoelectric resonators. Models of each resonator are built and optimized

according to specific criteria. The integrity of a signal that is passed through each

resonator is determined and compared. The preferred resonator is determined through

these criteria, and will become the basic component for the metamaterials designed

throughout the remainder of the thesis.

The following chapter, Chapter 3, is dedicated to the evaluation of the disper-

sion behavior of a MEMS metamaterial. First, a circuit model is constructed that

recreates the behavior of the resonator. Using this model, a method for determin-

ing the dispersion relation through an arbitrary structure containing the resonator is

constructed. Various structures are simulated and their results are compared. The

simulation results are also compared to data obtained from a fabricated structure.

Finally, one application for the use of the MEMS metamaterial as a phase shifting

element is considered.

After the dispersion analysis, Chapter 4 explores the bulk material parameters

that are potentially achievable through the use of a MEMS metamaterial. To de-

termine these parameters, a model of the material must be created, and a method

for extracting the material values is selected and refined. In order to determine the

range of potential material parameters that can be achieved, the dimensions of the

resonators used in the model are varied and the results are considered. A method is

then introduced by which a designer can create a material with a chosen permittivity

and permeability at a specific frequency. Finally, several applications of this new
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material and the new design process are considered.

The final chapter is the conclusion. The conclusion reviews what was accomplished

in the thesis. Also, the conclusion analyzes the potential of the applications presented

and proposes directions for future work.

Following the conclusion is the Appendix. The Appendix contains two mathe-

matical operations that were too large to be included in the main body of the thesis,

but provided necessary results for my work. Specifically, the Appendix includes the

conformal mapping of a microstrip line to a coplanar waveguide and the calculation

of the torque acting on an electrostatically-actuated MEMS cantilever.

1.2 Left-Handed Metamaterials

The idea of a material with simultaneously negative values of permittivity, 6, and

permeability, ft was initially presented by Veselago in 1968 [38]. When he was consid-

ering the definitions of the dispersion relation and index of refraction in an isotropic

medium, which depend on the product and the quotient of p and 6, Veselago conjec-

tured that a simultaneous change of the signs of both c and / in a medium would

have no effect on those relations. Furthermore, in a monochromatic wave, the Maxwell

equations and the constitutive equations reduce to Equations 1.1 and 1.2.

[kE] H (1.1)
C
W

[kH] = EE (1.2)
C

From Equations 1.1 and 1.2, we see that the wavevector is real. Recall that the

wavevector describes the propagation of the wave in a medium. A real wavevector

indicates a propagating wave, while an imaginary wavevector indicates attenuation

(an evanescent wave). Therefore because the wavevector in Equations 1.1 and 1.2 is

real, electromagnetic radiation is able to move through a material with these values.

However, because the wavevector in those equations is negative, the material exhibits
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interesting properties. The index of refraction, defined as Ciii will take the negative

root. The phase velocity, defined as is also negative while the group velocity, d

is still positive. This difference in signs is one of the most interesting properties of

left-handed materials. Because the group and phase velocities have opposite signs

they are antiparallel, indicating that wave fronts move towards a source in this ma-

terial creating a "backwards wave". However, because the Poynting vector, which is

defined E x H', is still positive, power travels away from the source and causality is

maintained.

Due to the negative index of refraction, these materials are often referred to as

NIMs (Negative Index of Refraction Materials). However, in this project, I will re-

fer to them as "left-handed metamaterials" (LHMs), emphasizing the left-handed

relationship between the electric field, the magnetic field, and the wavevector.

Until recently the study of left-handed materials was merely a thought exercise.

However, recent advances in manufacturing technologies make it possible to construct

metamaterials that can achieve this behavior. The first work in this direction was

by Pendry. He created a medium consisting of thin wires arranged in a periodic

array [32]. These wires acted as a plasma medium, whereby 6 varies with frequency,

following the relation of Equation 1.3, where wp is the plasma frequency and 'y is a

damping term, both of which are material properties. The value of c was observed to

and became negative at some frequencies.

e(w) = 1 - W (1.3)

Pendry next achieved a negative p with a periodic array of metallic loops called

Split Ring Resonators[31]. In a medium composed of these rings the permeability, P,

varied with frequency, and could become negative. In 1999, Smith combined the rod

and ring materials to finally produce a material with simultaneously negative C and

p, a left-handed material [35]. The left-handed behavior (specifically, the negative

index of refraction) of this structure was experimentally verified by Shelby, Smith and

'With complex E and H, it should be E cross the complex conjugate of H, but that designation

is omitted here for simplicity

20



Schultz [34].

The rod and ring material creates a negative index of refraction because the pe-

riodic elements are resonant structures. At specific frequencies, the resonators may

fall at integral points along an incoming wavelength. The rod and ring element then

stores and radiates energy at its own characteristic frequency, modifying the wave-

form. In the proper configuration, the energy storage and radiation of each element

will interfere to produce the observed left handed effect.

Due to the complex nature of the rod and ring metamaterial, adjustment and

further analysis proved difficult. The complicated geometry and behavior required

sophisticated modeling techniques and was difficult to adjust for desired parameters.

A more intuitive interpretation of the material was required. Because the rod and ring

element behaved as a simple resonating element, the material was therefore modeled

as an array of lumped circuit elements. The split-ring resonator was abstraced to a

model as a circuit consisting of resistors, capacitors, and inductors [18]. This enabled

the materials to be analyzed as a circuit, which was a familiar problem with simple

solutions. Also, this abstraction made it easier to discern how changes in individual

elements would change the global behavior of the medium.

The circuit model of the metamaterial, however, does not necessarily produce in-

tuitive results for guided wave applications. Also, the modeling of an entire periodic

array was redundant. A further abstraction was needed. It was recognized that dif-

ferent geometries of transmission line can reproduce the behavior of circuit elements

and that wave propagation through a transmission line is an intuitive analog to wave

propagation through a material. As a result, metamaterials have recently been ana-

lyzed using a transmission line model. Additionally, a left-handed metamaterial was

constructed using transmission lines [8].

When creating transmission lines, the permittivity and permeability of the sub-

strate material are important, as they determine the velocity of propagation, v =

(6)-.5 and the impedance, z = J. These two material parameters are also very

important in antenna design because it is important to match the impedance of the

feed to the antenna to that of its source. Also, a well-matched substrate impedance
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Figure 1-1: 2D rod and split ring resonator metamaterial. Taken from [34]

will couple well to the air, and radiate efficiently. For these reasons, models of meta-

material structure parameters are also further abstracted to produce effective values

of E and p.

1.2.1 Existing Left-Handed Metamaterials

The rod and split ring medium built first by Smith is constructed from copper patterns

on standard printed circuit board material. To make the two dimensional array that

was used for verification, these units were arranged in a grid. A picture of this medium

is shown in Figure 1-1. A prism-like shape was built with this grid to verify the left-

handed behavior. Radiation was directed at the prism such that the wavevector of

the incident waves was perpendicular to a face of the prism. After the radiation

traveled through the prism and reached the angled interface with air, the nature of

the medium would be revealed. By snell's law, ni sin 01 = n2 sin 02. If the medium is

right-handed, the angle that the wavevector of the emerging radiation makes with the

normal vector of the face is positive, but, if the medium is left-handed, the angle is

negative. The experiment was performed with radiation at a frequency of 10.5 GHz,

and an index of refraction of -2.7 was observed [34].

The metamaterial constructed for the experiment by Shelby et. al. had some

limitations due to the frequency range of the elements that they were using. When

the index of refraction neared zero, the wavelength in the material became much larger
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than the size of the entire sample, and the left-handed effects were hard to discern.

Also, the frequency meant that the structure had to be very large [34]. It was for

these reasons, and a desire to expand the possible application areas of metamaterials

that Moser et. al. created a microfabricated rod and split-ring structure [29]. This

structure operates at frequencies between 1-2.7 THz, extending the frequency range of

left-handed metamaterials by three orders of magnitude, and almost into the infrared.

One possible application of the split-ring and rod metamaterial is the production

of a "perfect lens," which was predicted by Pendry in 2000 [30]. In the near field of a

radiating element, perfect information exists in the radiated waves. However, waves

from sub-wavelength features attenuate quickly as the distance from the element

increases, and are therefore called "evanescent waves." A left-handed material would

amplify these evanescent waves, and therefore be able to reconstruct a perfect image of

the source. This potential behavior would create sub-wavelength imaging possibilities.

However, the possibility of actually achieving such behavior is under much debate.

It is argued that the perfect lens relies on a lossless medium, which is impossible in

reality [39]. The resolution of this debate is yet to be discovered.

Another implementation of a left-handed medium is the transmission line meta-

material. A transmission line metamaterial was created as a method to more easily

interpret left-handed behavior. Also, it had significantly lower loss than the split-

ring medium [12]. The transmission line metamaterial was made by building a grid

of transmission line elements, each of which recreated the resonant behavior of the

split-ring resonator. This structure was constructed using standard printed circuit

fabrication techniques and was analyzed in two ways. One method of analysis uti-

lized the average phase shift of a signal traveling across a unit cell to determine the

bulk behavior of the material[8]. The second method for analyzing the metamaterial

verified the bulk material behavior through modeling of wavefronts and S-parameters

of guided wave structures with the metamaterial placed inside [3]. From these two

methods, the transmission line metamaterial was determined to exhibit left-handed

behavior from 1-2 GHz[8].

The transmission line metamaterial has high bandwidth over which the refractive
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index is negative. Also, it is easily scalable for different frequencies, and tunable

by inserting different elements into the structure. These metamaterials have already

been used to make several useful advances in microwave circuits, including smaller

antennas, steerable antennas, and improved branch-line couplers[26]. This thesis

investigates the hypothesis that a MEMS metamaterial can utilize the advantages

already achieved through metamaterials, as well as achieving these behaviors at a

smaller size.

1.2.2 Antenna Applications

One application area that I will focus on in this thesis is size reduction of antennas.

Specifically, I will look at patch antennas. A patch antenna is a radiating element that

is constructed of two parallel conductors separated by a dielectric. The lower plate

is used as the ground and is usually larger than the upper, signal plate. A directive

antenna is created when the fields between the plates escape through the sides of the

patch and the resulting radiation interferes. There are several methods with which

one can analyze a patch antenna. One useful method is to model the patch as a thin

TM-mode cavity with magnetic walls. The modes of this cavity can be determined

and the effect of radiation and other losses are introduced via impedance boundary

condition at the walls [5]. The fields radiated by an antenna comes from the modes

of the resonator that propagate beyond the resonator.

One important parameter that is used to characterize antennas is the quality

factor, Q, which can be defined as [6]:

2w times the mean electric energy stored beyond the input terminals
the power dissipated in radiation

A high value of Q can be interpreted as the inverse of the portion of the frequency

band through which the antenna radiates effectively. Therefore a low Q is preferable,

as it indicates that the antenna has a broad band, because the impedance varies

slowly with frequency.
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Figure 1-2: Plot of the Chu limit for various efficiencies and antennas.

As the size of an antenna is reduced if we continue to think of the structure as a

resonant cavity, we see that fewer resonant modes exist. Therefore, fewer propagating

modes exist for a smaller antenna and less power can be radiated. From this argument,

when an antenna is made to be smaller, the Q of this antenna becomes very large.

This intuitive derivation has been proven to be defined by a hard limit, called the

Chu Limit:

1 + 2(kr)2  kr<1 1
Q =(1.5)(kr)3 [1 + (kr)2 ] (kr)3

Equation 1.5 represents the lowest achievable Q for any antenna that can fit within

a sphere of radius r. In this equation, k is the wavevector. Figure 1-2 shows the Chu

limit for various efficiency antennas. Also, data points from existing antennas are

plotted. The light blue data points are standard antennas, while the dark blue are

metamaterial antennas. Analysis of this plot reveals the value of efficiency in an

antenna as well as the capability for metamaterial antennas to approach the optimal

Chu limit.
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Figure 1-3: a) Textured Dielectric Metamaterial, b)Peano Curve, c)Reactive Im-
pedance Substrate.

Metamaterial Antennas

There have been several antenna designs that have utilized metamaterials. Three of

these designs are included in Figure 1-2, and indicated by the dark blue circles.

The first antenna design is the textured dielectric metamaterial antenna. In this

method, the volume between the two plates of the patch antenna is broken into small

cubes. The material to be placed in each cube is determined by an optimization

algorithm. The resulting dielectric is therefore composed of small pieces of different

dielectrics such that the effective permittivity varies with the position on the dielec-

tric. The data shown in [23] and [24] indicate that an impressive improvement in

bandwidth can be accomplished by constructing an antenna in this fashion.

A second antenna that fits under the broad topic of metamaterial antennas is an

antenna produced via space-filling curves. In this design, a dipole antenna is folded in

a geometric pattern in order to decrease the physical footprint of the antenna without

decreasing the electrical length. However, due to this folding the antenna exhibits

self-coupling and multiple resonances. One antenna, based on the Peano curve is

included in Figure 1-2. The data for the point in Figure 1-2 was taken from [16].

While this design is not constructed of small unit cells, it uses a novel structure to

achieve beneficial results, and therefore, I include it as a metainaterial application.

One further use of metamaterials to improve antenna performance is through the

construction of a high-impedance ground plane. Also known as a perfect magnetic

conductor (PMC), a high impedance surface has a reflection coefficient of F = +1.

Therefore, if a dipole antenna were placed directly on this surface, its image current

would be in phase, and the radiation performance on that side of the surface would be
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greatly improved. Several types of high-impedance ground planes have been studied,

including the use of space-filling curves [16].

The Reactive Impedance Substrate (RIS) is an application that is similar to the

construction of a PMC, but aims to alleviate the coupling that occurs between the

antenna and the ground plane in that situation. The RIS is composed of a two-

dimensional metal grid pattern on top of a metal-backed, high dielectric material.

Data from an antenna constructed in this manner is reported in [28] and included in

Figure 1-2.

The benefits of using metamaterials in the design of antennas is clear from these

examples. However, the field is still quite new, and there are many other designs to

be considered, including the potential of MEMS-based designs.

1.3 MEMS

Micro-Electro-Mechanical Systems (MEMS) refers to "the integration of mechanical

elements, sensors, actuators, and electronics on a common silicon substrate through

microfabrication technology." [1]. The fabrication techniques for MEMS are compat-

ible with those for integrated circuits, enabling the use of these two types of structure

on a single chip. The ability to have sensors and actuators, as well as logic elements

on a single chip opens exciting possibilities for completely integrated microscopic

systems that can sense and control their environment.

For this research, I plan to utilize MEMS resonators to construct a metamaterial.

The MEMS resonators exhibit a behavior similar to that of the rod and ring element

that was used to create te first left-handed metamaterial. The difference between the

MEMS and the rod and ring resonant structures is that the rod and ring element stores

electromagnetic energy, while the MEMS resonator stores energy mechanically (in a

physical vibration). However, by putting electrostatically-actuated MEMS resonators

in a periodic array similar to the one used for the rod and ring structure, they may

exhibit a similarly beneficial electromagnetic behavior. The MEMS resonators are

explored more thoroughly in Chapter 2.
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MEMS resonators are good candidates for the creation of a metamaterial for many

reasons. One powerful reason is a great amount of flexibility in resonant frequency.

The dimensions of the resonator, which are easily adjustable, dictate its behavior in a

predictable manner. This should make a medium created with the MEMS resonators

very versatile. Typical measured resonant frequencies of the MEMS resonators range

from 100 MHz to 2 GHz. The small size of the resonator is another benefit. Many

of the resonators can be combined in an area smaller than a wavelength, creating the

possibility for complex metamaterial behaviors and smaller devices. Finally, the ease

of integration with existing circuit fabrication processes and circuit structures will

make a MEMS-based metamaterial more practical to include in most applications.

With all these potential benefits, a metamaterial constructed with MEMS resonators

is a worthy purpose.
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Chapter 2

MEMS Resonators

A Micro-Electro-Mechanical System (MEMS) device that exhibits some sort of me-

chanically resonant behavior is called a MEMS resonator. The most common type of

MEMS resonator is the cantilever, which is simply a bar that is secured at one end

and has a natural frequency of oscillation that is determined by its dimensions and

material parameters. The cantilever can be driven electrostatically with a conducting

pad that creates a potential between itself and the cantilever, creating a force. MEMS

resonators are already an important part of devices including microgyroscopes, mi-

crovibrators, microengines, and RF systems [27].

I plan to use MEMS to create a metamaterial because the small size, high Q, and

ease of integration with circuit fabrication processes that they offer. In this chapter,

we will compare two types of electrostatically-driven MEMS resonators and find the

resonator that is most fitting for potential use in a metamaterial. The two types are

the paddle resonator and the piezoelectric resonator.

2.1 Paddle Resonator

A paddle resonator consists of a rectangular solid (the paddle) suspended over an

open trench by two thin supporting rods that bisect opposite sides of the paddle.

Figure 2-1 is a picture of a paddle resonator. When driven by a potential from a

conducting pad underneath one side of the paddle, the structure will vibrate. There
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Figure 2-1: A MEMS paddle resonator with the dimensions labeled. From [9]

are several modes of vibration for the paddle, including shifting up and down, left

and right, and twisting in a "see-saw" motion. This last mode is the torsional mode,

and it is the one that we will focus on, as it occurs at the highest frequencies. We are

analyzing the paddle resonator because it is a popular, well-documented design and

its torsional mode operates at frequencies nearing the band in which we are interested.

To analyze this resonator, we place it in series with a coplanar transmission line

(CPW) such that the middle, signal, line runs below the paddle, exciting the resonance

electrostatically. The signal line is broken under the resonator, forcing the signal

through the resonator. Figure 2-2 shows this structure. We are then able to model

this structure as a circuit, using standard electromagnetic techniques to determine

the capacitance and inductance of pieces of the system, based on their geometry and

material parameters. This analysis is similar to that performed on other types of

metamaterial [18] [8].

The first step in our analysis of the paddle resonator is to analyze the circuit

without any resonant behavior. The goal of this step is to determine if the off-

resonance behavior of the resonator is desirable for our applications. The next stem

in the analysis is to determine how the mechanical resonance changes the behavior of

the system. Finally, we determine the performance of the system by calculating the

attenuation of a signal that is passed through the resonator.
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Figure 2-2: Three-dimensional model of the paddle resonator with lumped circuit
elements labeled.

2.1.1 Broadband Analysis

To analyze the resonator we need to be able to describe its behavior numerically.

First, we determine the natural frequency of oscillation and signal attenuation (loss)

as a function of geometry. The circuit elements that are produced by the geometry

are labeled in Figure 2-2 and the equivalent circuit is shown in Figure 2-3. Using this

model, we determine the optimal dimensions of the resonator that will oscillate at a

desired frequency with minimum loss.

Natural Frequency

To utilize the resonator, we must be working at and around its natural frequency.

Therefore, in my analysis of these paddle resonators, I needed to be able to deter-

mine the natural frequency of a resonator from its dimensions and other material

parameters.

The natural frequency of the torsional mode of the paddle resonator is given by

Equation 2.1, taken from [9]:

1 = (2.1)
27 I

Where rK is a torsional constant and I is the moment of inertia about the center

axis of the paddle along the line of its tethers. The torsional constant can be predicted

with the equation from [10]:
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=23 () ab3 G (2.2)
b L

In this equation, / is a slowly varying dimensionless function of the ratio b/a, and

Gaj = 6.7 x 10 10Nm- 2 is the shear modulus of silicon. The dimensions a, b, and L,

are the thickness, bar width and bar length, as labeled in Figure 2-1.

The moment of inertia can be calculated by summing the inertia of pieces of the

resonator about the same axis. I chose to break the paddle resonator into three pieces:

the paddle, and the two tethers. Then I calculated the moment of inertia.

'resonator 'paddle + 2 1 tether

S flpaddle( 2 + d2) + 2 mtether (a2 + b2)
12 12

= ap (a 2 dw + dw + 2a2 bL + 2b3 L) (2.3)
12

The mass of each piece was calculated by multiplying the volume of that piece

by p, the density. In silicon, p = 2330 kg m- 3 . Inserting the value for the inertia

from Equation 2.3 into Equation 2.1, the natural frequency of the torsional mode of

a paddle resonator is:

fo (2.4)
V7 2 pa(wd3 +wd 2a + 2a 2bL + 2b 3L)

In [9] the denominator in the equation for the natural frequency only contains

the first term (pawd3). The other terms did not make a difference in their measured

results. Therefore, I also dropped these terms to simplify my calculations, and to

adhere to physically realized models.

Analysis of Loss Through Resonator Structure

Creating a circuit from the elements labeled in Figure 2-2, I created the circuit model

shown in Figure 2-3. This circuit is the equivalent circuit for a broadband analysis of

the paddle resonator. In this context, broadband refers to the off-resonance response.
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Figure 2-3: Broadband equivalent circuit model of the paddle resonator

In this condition, the system behaves like the circuit in Figure 2-3 across all frequencies

of excitation from V. This broadband analysis was performed to provide a baseline

measure of the signal through the paddle.

R8 = Rout = 50Q

h
pLh

b
ELb

C3 =h (2.5)

LO, CO, and C2 are determined by the coplanar waveguide

3.7 of this thesis.

equations from Section

The signal attenuation through this system is determined by comparing the ratio

of the voltage across the input resistor, Rs, to the voltage across the output resistor,

Rout. These voltages are obtained through straightforward circuit analysis.

When performing the circuit analysis, I assumed the metal was a perfect conductor

and ignored losses through fringing fields. Additionally, I ignored the capacitor C2, as

its effects are almost purely due to fringing fields, and its size and effects are negligible

when compared to the other circuit elements. With these assumptions, the ratio of

the output voltage to the input voltage is:
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Vout __ Rout (2.6)
Vs Zin

Where Zin is the impedance of the system from the source node. This impedance

is calculated using the following equations;

Zin =jwLO- + Z 2  (2.7)

Z2=
jwCO + 1

1
Z 3 (

TjwL3 ) +

And finally:
1

Z4 = CjwCOF +(jwLO±Rou,)

Substituting the equations for the circuit parameters as a function of physical

dimensions (Equations 2.5) into Equation 2.6 and its subsequent definitions of im-

pedances, we obtain a mathematical formula for the signal that is passed through the

system as a function of the physical size. Additionally, from Equation 2.4, we know

the frequency of operation at which we should operate. Therefore, we have an entire

mathematical description of the interesting parts of the system (ignoring the physical

resonance) as a function of physical dimensions.

Using these equations that describe the electrical behavior as a function of phys-

ical size, we can determine the optimal size of a paddle resonator to achieve the

desired electrical behavior. In order to find the optimal values for each dimension, I

used a random-restart hill climbing algorithm [19], [17]. The algorithm adjusts the

dimensions of the resonator model and calculates the loss and natural frequency for

that size. From these results, a change is made to the dimensions to step towards an

optimum point where the signal loss is at a minimum and the natural frequency is

near the desired frequency of operation. When the algorithm converges, it saves the

data, and then begins again with random starting values. This is done to increase the
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chances that we will reach a global optimum, instead of becoming trapped at local

optima. In this manner, I find the dimensions of a resonator that would function with

the least loss near a desired frequency.

Looking at Equations 2.5, some conclusions about the optimal dimensions can be

drawn before running any optimization. First, the maximum value for a is desirable

because a large a leads to a higher natural frequency (which we need because we want

to work in a frequency range that is higher than usually used for these resonators),

also the large value of a has no adverse effects to the electrical behavior of the circuit.

Another preliminary optimization choice is realized by noticing that a small h will

increase C1, and result in less loss. So h should be at the minimum value possible.

However, while it is obvious that increasing d and w will increase C1, and result

in less loss, these changes will also decrease the (already low) natural frequency of

the oscillator (via an increased paddle mass and an increased moment of inertia).

Similarly, while decreasing b will decrease the loss capacitance C3, it will increase the

inductance L3, so without the values of L3 and C3 the overall effect on the system is

unclear. These ambiguities are the reason for using the optimization algorithm. The

maximum and minimum constraints for each dimension are shown in Table 2.1.

Note that a is fixed at 100pm. This value is the maximum that a can reasonably

obtain with conventional fabrication methods. Conversely, although h should be at

a minimum, it was included in the optimization because a very small h could cause

trouble with the oscillatory motion of the resonator. While we were not considering

this motion in the current electrical analysis, it is an important factor to consider and

therefore was included to determine if there were any near optimal configurations

that did not include the minimum value of h.

An additional constraint in the optimization, denoted by the stars (*) in Table 2.1,

is that the values of W and L are related such that 2L + W > 150pm. This constraint

is used so the resonator structure is sure to span the transmission line which has a

minimum total width of 150pm.

The optimization analysis was carried out for frequencies of 100MHz, 500MHz,

and 1GHz. The resulting optima are shown in Table 2.2.
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Table 2.1: Constraints used for paddle

Dimension Minimum Maximum
a 100pm 100pm
b mnm 250pm
d mnm 250pm
h Inm 100Pm
L 1pm* 250pm

W lpm* 250pm
Frequency fo - 10MHz fo + 10MHz

Table 2.2: Optimum dimensions of paddle resonators for three target frequencies.

Target Freq fo a b d h L W 7(dB)
100MHz 91.3MHz 100pm 1.31pm 2.56pm inm 27pm 96pm -74
500MHz 491 MHz 100pm 110nm 116nm Inm 27pm 96pm -102

1GHz .995 GHz 100pm 30nm 40 nm mnm 27pm 96pm -131

Judging from the results in Table 2.2, without the mechanical resonance, a paddle

structure does not perform well. The best signal strength, at 100MHz, is -74 dB. This

means that when 1 Volt is across the input terminals, 0.2 mV can be detected at the

output. While this behavior is not terrible, it is also not easy to achieve; obtaining

a thickness of 100pm as well as a gap size of Inm would be incredibly expensive, if

possible at all. Additionally, when we work in higher frequency ranges, the paddles

with dimensions in the tens of nano-meters would be incredibly difficult to fabricate

while maintaining the large aspect ratio of 100pm. Because the goal of introducing

MEMS in this thesis is to create an effective, easy, cheap solution, paddle structures

do not appear to fulfill the requirements. The money required could be spent on

much more effective systems.

However, in the next section, we add the mechanical resonance to the model of the

paddle. This resonance could potentially decrease the impedance enough such that

the paddle resonator becomes a viable option for the construction of a metamaterial.
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2.1.2 Resonance analysis

In the previous section, I modeled the gap between the paddle of a paddle resonator

and a transmission line that was driving it as a constant-valued capacitor. The

equation that determined the current flowing through the capacitor was IC = C .

If we want to consider the mechanical resonance of the device, this equation no longer

captures the entire behavior of this structure.

To build the more complete model, we must consider how the motion of the paddle

changes the electrical characteristics of the system. To do this, we first consider

the current passing through the gap from the transmission line to the paddle. The

definition of current is the flow of charge. The charge on a capacitor is defined as the

voltage across the capacitor times its capacitor. Taking the derivative of this definition

of charge to find the complete equation for the current through the capacitor we get:

dQ = dC dV (2.8)
I -V +C .8

dt dt dt

This equation can be thought of as a mechanical device in parallel with an elec-

trical one. The currents through the two elements add to produce the total current.

The second term of the rightmost portion of Equation 2.8 is the standard electrical

definition of current through a capacitor. This represents the electrical component

of our parallel system. The other term in Equation 2.8 indicates that the current is

also related to the change of capacitance with respect to time. This value changes

in our paddle resonator; as the paddle oscillates, the paddle moves closer and further

from the driving transmission line, increasing and decreasing the capacitance, and

changing the impedance by more than the change in capacitance alone. Therefore,

if this component of Equation 2.8 is large, the paddle resonator may pass enough

current at resonance to act as desired.

The change in capacitance of the gap between the transmission line and the paddle

is related directly to the velocity of the resonator. To find this velocity, we use the

standard equation for the harmonic motion of a resonator:
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F F

Figure 2-4: A force diagram for one side of the paddle resonator. (Restoring force is
not included)

1±+ IO± +KO - T(Wt, 0) (2.9)
Q

In this equation 0 is the angular displacement of the resonator, as shown in Figure

2.1.2. Its first and second derivatives are indicated by 0 and 0. The variables I and

, are the moment of inertia and torsional constant, respectively. Equations for these

parameters were defined in Equations 2.3 and 2.2 earlier in this chapter. The natural

(angular) frequency, wo, can be obtained easily from the natural frequency obtained

from Equation 2.4. The quality factor of the resonator, Q, is a product of material

properties and resonator construction. The parameter g is the distance between the

cantilever and the transmission line when 0 is zero. Finally, T indicates the driving

torque on the resonator from the transmission line. Note that this is a function of

the voltage on the transmission line (which is a function of wt as well as the angular

displacement, 0).

Before continuing, one note must be made; the rest of the analysis in this section

focuses on only one half of the paddle resonator. The other half is assumed to be

directly connected to the output and does not contribute to the resonant or electri-

cal behavior. This simplification is justified because the goal of this analysis is to

determine if the mechanical resonance is large enough to produce any measurable

difference in the impedance of our system. In the analysis of one side of the paddle

resonator, the resonant behavior is similar to that of the double-sided paddle and the
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electrical behavior is much improved. The resonant behavior is similar because the

resonator obeys the same resonance equation, with just a changed moment of iner-

tia. The electrical behavior is much improved because the capacitance between the

resonator and the driving and sensing transmission lines was the source of the most

loss in the previous section. By bypassing the second half of the paddle resonator, we

are removing half of that loss. Therefore, the resulting analysis using only one half

of the paddle resonator is a viable option to determine if the mechanical resonance of

this type of resonator produces enough change in the impedance to make the device a

candidate for the use in a metamaterial. With that stated, we continue our analysis

by finding the torque on the bar.

To find an expression for the torque, one first calculates the torque due to one

small piece of the bar as a function of theta and its length along the bar. Then the

force is summed for all the pieces along the bar to get the total torque. This process

is shown in Appendix A.2. The torque that is obtained from the analysis is:

V 2EoW COS 0 L sin _ - 9
T - In (2.10)

2 sinV2o (g - Lsin g - LsinO

To simplify the analysis we can take the Taylor expansion of T to obtain:

1 w60 V 2 L 2  1 wE0 V 2 L 3  1 w60V 2 L 2  3L2
1 ) 2

T - + - 0+ 2 + (2.11)
4 g 3 g 8 g2  ( 2

Where the ... indicate the higher order terms that we can ignore. Note that

for the Taylor expansion to be valid, the ratio A > sin0. Because this ratio of the
g

length of the paddle to the gap is much greater than one for all time in our optimal

configurations (shown in Table 2.2), this requirement is always satisfied, and it is

therefore safe to use the Taylor expansion result in the following analysis.

Note that the torque is proportional to the square of the electrostatic driving

voltage. If we define our input voltage as a DC bias and an AC signal driving voltage:

V = Vc + V, sinw
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Then the torque is proportional to the square of this voltage and has second-order

harmonics:

T OC V 2 = V2 + 2VcVac sin w + (Vac sin w) 2

= v + 2VdcVa7 sin w + V2 - cos2w
d2~c \ ac(-22 2

Vi " + 2VcVa sin w - ac cos 2w (2.12)2 2

The second order harmonic brought about by the sin W2 term is undesirable. This

value can be neglected if Vc > V, which linearizes Equation 2.12. We now can sub-

stitute the equation for torque into the equation of motion of the resonator (Equation

2.9) and solve for 0, the velocity of the cantilever. The velocity of the cantilever can

then be used to determine the velocity of the change in capacitance, which in turn

will be used to determine the current flowing through our system.

Another important feature of Equation 2.11 is that it includes a term that is

independent of the angle 0. This indicates a constant torque that acts on the bar

1. This torque is important in our analysis because it creates a constant angle of

displacement, Odc, that we must consider to ensure that the total angle of displacement

of the bar is not so large that the bar ever contacts the driving line.

To solve for 0 we calculate the transfer function for the resonant behavior of the

bar. We get the transfer from Equations 2.9 and 2.11. In this equation s = 1W:

Iw0  1 wE0 V 2 L2  1w,0V 2 L3
Is2 0+ s+ =- -21 0+--. (2.13)

Q 4 g2 3 g3

For the frequency-independent component of the displacment angle, Odc, the trans-

fer function consists of all the frequency independent parts of Equation 2.13 (the

parts without an s). Also, we only consider the constant torque and the frequency-

independent terms of the voltage. Solving for Odc, we obtain:

'This constant torque is from the force of gravity on the one-sided paddle. In the case of the
two-sided paddle, this term is caused by asymmetries in the sides of the paddle[4].
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dc=(VC+ 
2wv6oL2

4Kg2

Using the optimal values for a resonator at 100MHz as shown in Table 2.2, we

obtain 0 dc =1.174- 10-6 degrees.

To calculate the frequency-dependent portion of the angular displacement, 0ac,

we consider the all terms of Equation 2.13. However, when substituting in for V 2

from Equation 2.12, we utilize the frequency-independent term of V in the angle-

independent portion of T and the frequency-dependent term in the rest. This is

because, in this frequency analysis, the the constant portion of the torque cannot be

dependent on frequency. After solving for 0 ac, we obtain:

wEoL 2 (2VcVac) (2.14)
wcod3 2 -

4 2 182 + S + K - 2gQ g

The velocity of the bar is 0 = sO. Now, to find the change in capacitance that

will cause the current that we are interested in, calculate the change in capacitance

due to the change in 0 of a small piece of the bar of length dl and integrate along the

length of the bar.

dC = L COwlCos0 dl (2.15)
dO J (g - lsino) 2

As mentioned earlier, the current due to the mechanical resonance can be thought

of as an independent device in parallel with the electrical device that we analyzed in

Section 2.1.1. The impedance of this device is defined as the voltage across it divided

as the current through it. Looking at Equation 2.8, we see that the mechanical

impedance is therefore:

V 1

'mechZmech (_d
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Figure 2-5: Impedance of the paddle resonator. Values are from Table 2.2 and Q =

5000.

If we combine this impedance in parallel with the impedance of the electrical

component of the system from Equation 2.7, we find the impedance of the entire

system. The results from this combination are shown in Figures 2-5 and 2-6. Note in

these graphs, the dimensions used are those discovered to be optimum for the 100MHz

resonator in Table 2.2 and Q = 5000. Figure 2-6 is an enlarged view of the resonant

portion of 2-5.

2.1.3 Evaluation

Using the impedance of the system that includes the mechanical resonant behavior

obtained in the previous section, we are able to perform the loss analysis from Section

2.1.1 again, but this time including the mechanical behavior with the hopes that it

will cause a large change in the signal that is passed through the system. We use

Equation 2.6, but in this case Ze is the parallel combination of the electrical and

mechanical impedances that was shown in Figures 2-5 and 2-6.

The resulting ratio of output to input voltages (in dB) is shown in Figures 2-7

and 2-8. Figure 2-8 is an enlarged view of the resonant portion of 2-7.

These graphs show that, while the mechanical resonance does change the mag-

nitude of the signal that is passed through the system, the change is not enough to
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Figure 2-6: Closer view of resonance of impedance of the paddle resonator.
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Figure 2-8: Closer view of resonance of signal passed through paddle resonator.
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bring the signal into any usable region.

Next we will evaluate the Draper piezoelectric resonator in the same manner, to

compare its performance to that of the paddle resonator.

2.2 Draper Resonator

The piezoelectric MEMS resonator developed by the Charles Stark Draper Laboratory

boasts the characteristics that are desired in a resonator to be used in a metamaterial.

It has a simple coplanar design, operates in the desired frequency region, and has a

very small footprint. The resonator consists of a piezoelectric substrate (Aluminum

Nitride) sandwiched between two electrodes, suspended above a well to allow for

vibration. An electric potential across the electrodes of the resonator will induce a

mechanical strain in the piezoelectric AlN. An AC voltage can be chosen to match

the mechanical resonance of the device. At this frequency the MEMS device exhibits

large amplitude vibration and passes current with low impedance.

The piezoelectric equations of state relate the electric field and charge polarization

to the mechanical parameters of the resonator. Analysis of these equations can pro-

duce a relationship between the voltage across the resonator to the current through

it [21]. The existence of this relation indicates that the MEMS resonator can be

represented as a collection of circuit elements, as was the split-ring-resonator.

2.2.1 Fabrication and Measurement

The resonator consists of a piezoelectric substrate sandwiched between two conducting

bars. In the measured device, the metal bars were constructed of 300 A of Chromium

over 1500 A of Platinum. The bar was 4 um wide by 41 um long. The device was

fabricated by James Hsiao at the Charles Stark Draper Laboratory. Figure 2-9 shows

the S21 parameters that were obtained from measurements of this device.
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Figure 2-9: Measured S21 values of the piezoelectric resonator.

2.2.2 Parameter Extraction

The Butterworth Van-Dyke (BVD) model is a common way to simplify the tran-

scendental functions that completely characterize resonators. The circuit used for

the BVD model is shown in Figure 2-10. This circuit accurately models a single

resonance and models regions not near this resonance as a capacitance.

Through analysis of the constitutive equations of the resonator, values for the

BVD circuit elements can be produced. This equivalent circuit can then be used for

R C L

CO

Figure 2-10: BVD model of a resonant structure.
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Table 2.3: Values of BVD model of measured piezoelectric resonator data.

Dimension CO C L R
Value 24.1627 fF 0.308356 fF 121.572 ptH 1967.64 Q

1111111111110 LOZ res L
Rs L L

Vs 1O

I I

Figure 2-11: Equivalent circuit model of the piezoelectric resonator in series with the
transmission line.

analysis, modeling, and design of structures using the resonator.

A curve-fitting algorithm was used on the data from the measured devices, de-

termining the extracted circuit parameters for the piezoelectric resonator. The curve

fitting was performed by James Kang at the Charles Stark Draper Laboratory. The

parameters that were obtained are shown in Table 2.3.

2.2.3 Resonance Analysis

With the equivalent circuit parameters obtained from fitting the BVD model to the

measured data, I was able to perform the same loss analysis on the piezoelectric

resonator as I did on the paddle resonator. The circuit obtained by placing the

resonator in series with the transmission line is shown in Figure 2-11.

By performing a standard circuit analysis, I obtained the impedance shown in

Figure 2-12 and the signal attenuation shown in Figure 2-13.
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Figure 2-13: The signal passed through the piezoelectric resonator.
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2.3 Comparison

To compare the two resonators for use in a metamaterial, we simply compare Fig-

ures 2-7 and 2-13. These graphs demonstrate the portion of a signal that will pass

through a single element of the resonators when driven and loaded with matched 50

Ohm impedances. The paddle resonator, shown in Figure 2-7 has a huge amount

of loss throughout the entire frequency sweep. Also, the resonant behavior is barely

noticeable. The diminutive magnitude of the resonant peak is undesirable for two

reasons: First, the small magnitude means that the signal strength never rises to a

usable level. Therefore, any system using even one of these resonators in the manner

that we are planning cannot possibly get a usable signal at its output. The second

drawback of the small resonant peak is that the behavior of the metamaterial is based

on that resonance. If the peak is small, the left-handed behavior that we are looking

for may be difficult to discern.

The piezoelectric resonator, shown in Figure 2-13, not only has a much better

signal strength throughout the entire frequency sweep, it also has a much larger

resonance. Therefore, a useful signal could be passed through this system, and if left-

handed behavior occurs, it should be noticeable. Additionally, the large resonance

may be able to provide us with a greater range of resulting metamaterial values that

we can potentially access through the use of these resonators.

Therefore, if we were to construct a MEMS-based metamaterial, the Draper piezo-

electric resonator would be the preferred resonator to use.
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Chapter 3

Dispersion Analysis

One valuable characteristic of left-handed metamaterials, as mentioned in the intro-

ductory chapter, is that the phase velocity of a wave traveling through the material

has a sign opposite of the group velocity for that wave. If the phase velocity, which is

normally positive, can be negative, then it conceivably can reach many of the values

in between. Therefore, some exciting applications for left-handed metamaterials as

well as metamaterials in general would involve utilizing this unusual phase-shifting

behavior. Two example metamaterial applications explore this idea in phase shifters

and antennas.

Phase-shifting circuit elements are an important aspect of many RF circuits,

specifically in antenna feed networks. A phase shift is usually accomplished by sim-

ply having the signal run through the appropriate length of transmission line. This

method of phase shifting uses a lot of space and can create spurious fields that can

interfere with other parts of the circuit. A metamaterial could potentially be used to

shift the phase of a signal in a much more compact component.

The dimensions of an antenna are usually determined by the frequency at which

the antenna is designed to function. An ideal antenna would be some multiple (or

half multiple) of a wavelength so the structure can support a standing wave. Anten-

nas usually do not satisfy this constraint because the designers either needed to the

antenna to be smaller than a wavelength, or the antenna was simply not allotted the

required volume. When an antenna is not at its ideal dimensions, reflections from
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the edges of the antenna interfere with the standing wave, and the antenna loses

efficiency. If it were possible to use a metamaterial to produce the correct phase shift

(a multiple or half multiple of w) across the antenna, it would be possible to fit more

efficient antennas in smaller spaces as well as tune the antenna to operate efficiently

in the size that is allotted for it.

Because the phase shift through a metamaterial can produce such interesting

and useful applications, we must look into the dispersion relation of the potential

metamaterial. The dispersion relation is an analysis of the association between the

frequency of a wave and the phase shift through a given size of a media. By looking at

this relationship, we can determine if a given metamaterial demonstrates the behavior

that will be beneficial for phase-shifting applications.

3.1 Equivalent Circuit Model

As with the loss analysis in Chapter 2, in order to explore the behavior of this system,

we must first make a model. The model of the resonator used in this chapter is the

same as the BVD model used for the piezoelectric resonator in Chapter 2. This

resonator is then placed in various architectures to be analyzed. In most of the

analyses in this section, the resonators are assumed to be in an infinite periodic

array. The system shown is one unit cell that is repeated ad infinitum. In this way,

there are no reflections between unit cells.

3.2 Dispersion Analysis Methods

Another important step in the study of a metamaterial is validating the accuracy of

the chosen analysis methods. There are several methods for finding the phase shift

through a unit cell of the material. While all these methods should be equivalent,

there are slight differences in the assumptions that they make about the material.

Because we are not dealing with a "normal" material, these assumptions may not

be valid in our work. It is therefore important to discover these assumptions and
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determine if the method is still a useful way to analyze our metamaterial.

In order to evaluate these models, I performed the dispersion analysis on several

structures. The structures started out as a single transmission line and slowly ap-

proached the proposed metamaterial by adding circuit elements to the unit cell. Each

of the intermediate steps are simple enough, and it should therefore be possible to

determine if any of the analysis methods produce incorrect results at any step. If,

after going through all of the steps, I am confident in the accuracy of the method, I

can use it to analyze other, unknown structures.

3.2.1 ABCD Matrix

The transmission, or ABCD matrix, is a useful method for characterizing a microwave

network. For a network with two ports (1 and 2) where the voltage and current at

port n are V, and I, the transmission matrix elements are defined as:

V = AV 2 + BI 2

1= CV2 + D12

(3.1)

or in matrix form:

LI, C D I 2

The ABCD matrix is useful because in this form, the matrix representing the cas-

cade of multiple networks is simply the product of their matrices. Further information

about the ABCD matrix can be found in [33]. Also in [33], there is a definition for

the phase shift across a unit cell in a periodic array of elements defined by an ABCD

matrix. That relation is:
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Figure 3-1: Unit cell of general lumped element line.

cosh yd = A D (3.2)
2

Where A and D are the parameters from the ABCD matrix and gamma is the

complex propagation factor, y = a + jj such that:

V(z) V(O)e-7z

I(z) I(O)e-Yz

Note that 3, the imaginary part of -y, is the phase shift and the real part, a, is

the loss tangent.

3.2.2 Impedance and Admittance

The dispersion relation for an infinite, periodic line of general lumped elements is

given in [25]. A single element of this line is shown in Figure 3-1.

If ZO and Y are functions of frequency, the dispersion relation of this structure will

indicate the relationship between the frequency and wavelength of a signal traveling

across it. The dispersion relation of a repeating structure made from these unit cells

can be represented by Equation 3.3. In this equation, 0 is the phase shift across the

unit cell. In other words, 0 = ki, where k is the wavenumber and 1 is the length of
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the unit cell.

Therefore, if we were to compare this method to the previous method (using the

ABCD matrix), we see that 0 = -j1y, where I is the length of a unit cell.

S1sin - = ZOYO (3.3)
2 4

3.2.3 Full-Wave Simulation

Additionally, two full-wave simulation software tools were used. Full-wave simulators

are computer programs that use Maxwell's equations to simulate electromagnetic wave

propagation subject to boundary conditions imposed by physical structures. These

tools allow the user to construct a model of the physical structure, including sources

and detectors of EM phenomena. Then the simulation can be used to determine the

behavior of EM waves in an around this structure. The two tools used were Sonnet

Lite and Ansoft High Frequency Structure Simulator (HFSS).

3.3 Dispersion Analysis of Simple Structures

I performed the dispersion analysis on two simple structures to build confidence in

the accuracy of the two methods. The two simple structures were a transmission line

and a transmission line with a capacitor in series.

3.3.1 Transmission Line

The first structure is a simple transmission line. This consists of two parallel conduct-

ing plates separated by a dielectric material. The transmission line can be modeled

by its characteristic values of line inductance and shunt capacitance, LO and Co.

In the impedance analysis method, the line inductance and shunt capacitance map

directly to the impedance and admittance.

Zo = Lo
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Figure 3-2: Simulated value for the phase shift across a transmission line using nu-

merical and full-wave simulations.

Yo = Co

The ABCD matrix has a standard form for a transmission line:

A B cos 0l jZo sin31 1(3.4)
C D jYO sin 31 cos/3 J

Here /31 is the imaginary part of the propagation factor times the unit length of a

cell. Because we are assuming a lossless transmission line, the propagation factor is

purely imaginary and the product 31 = wVLOCO. The simulation results are plotted

in Figure 3-2.

The simulations behave exactly as expected. As the frequency increases, the phase

shift across a unit cell increases. The slope of this line is the speed of light in the

transmission line. Furthermore, the impedance and the ABCD matrix methods return

the exact same values. The full-wave simulation was slightly different, but that is to

be expected, as this simulation included fringing fields and other spurious fields and

losses that are not inherently important to this work. However, it is important to note

that the full-wave simulation sill exhibited the same behavior - a constant, positive

slope.
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3.3.2 Transmission Line and Capacitor

For the next step in my analysis I added a capacitor in series with the line inductance

of the transmission line. The dimensions of the capacitor are the same as those of

the piezoelectric resonator, so we can explicitly observe the change in behavior when

the resonant behavior is added later.

With the capacitor, C1 in series with the line inductance, the impedance and

admittance become:

Zo = wLO -
WC 1

Yo = wCO

The ABCD matrix of cascaded networks is simply the product of the ABCD ma-

trices of those networks. Therefore, we model the transmission line with the capacitor

in series as a transmission line (of half the length of the previous transmission line), in

series with the capacitor, in series with an identical transmission line. The resulting

ABCD matrix is:

A B Cos 0 2 ZO si n  1 1 cos 0 jZ0 Sil 0
C D jY sin Cos 0 0 1 jYo sin Cos 2

cos 0 + YOsin 0 jZO Sin 0 + ICOS20

cw- s jWCi 2 (3.5)
jYo sin 0 + sin 2 0 cos 0 + sin 0LWCi 2 2wCj

In Equation 3.5, 0 is the phase shift across one unit cell of the transmission line.

Therefore, the phase shift across each half piece of transmission line is given by 0.

The dispersion across the composite unit cell, -y is determined via Equation 3.2. The

simulation results are shown in Figure 3-3. Note that this plot is of the real component

of 7; the imaginary part is zero. This indicates that there is no propagation through

the system; the signal is evanescent. This behavior is to be expected because the

frequency is low, and the signal is being passed through a capacitor. As we can see in

Figure 3-3, the real part of -y decreases as frequency increases. This is consistent with
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Figure 3-3: Loss through a transmission line with a capacitor in series.

the behavior of a capacitor, where the attenuation decreases as frequency increases,

until a natural frequency, above which propagation will occur.

3.4 Proposed Metamaterial Structures

Now that we have methods for determining the dispersion through an arbitrary meta-

material circuit, we are able to analyze potential metamaterial architectures. First,

we will place the resonator either in series with or across (shunting) a transmission

line. We will observe the dispersion relations for these two structures to look for

left-handed behavior. If one of these designs exhibits left-handded behavior, we will

then be able to improve upon it to further analyze its potential.

3.4.1 Parallel

The Draper resonator is modeled as a Butterworth-VanDyke resonant circuit. Figure

3-4 shows the resulting circuit model when the resonator is placed across a trans-

mission line of characteristic values CO and LO. The resulting values of ZO and Y

are:

ZO =jwLO (3.6)
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Figure 3-4: Equivalent circuit of a Draper resonator placed across a transmission line.

yo 1
YO = JCo+JWC1+ 1R + jwtL +ujwC

= jwCo + JwC 1 + C(37)
1 + jwRC -w 2 LC

If this structure is repeated periodically the dispersion relation will be described

by Equation 3.3. Substituting the values of ZO and Y produces:

S1 __ __ '

sinl2 0 = -jw LO x jw CO + C1 + C WL2 4 1 + jwRC-w 2 LC
W2L CO + C + (3.8)

4 1 + jwRC-2L

Therefore, if many of the Draper resonators were to be periodically placed along

a transmission line, the dispersion relation of the material described would follow the

relation described by Equation 3.8.

To determine if the material produced by this method exhibits left-handed or

otherwise interesting behavior, a graph of the dispersion relation (Equation 3.8) is

created and analyzed. The graph of the dispersion relation was created using values

gathered from analysis of the Draper resonators for C, L, R, and C1. The values of

Co and LO were then chosen to optimize the behavior of the material.

The dispersion relation of a left-handed material is characterized by phase and

group velocities of different sign. Specifically:
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Figure 3-5: Dispersion relation of parallel architecture material.

Vphase

(8k
VgroUp = w

Vphasevgroup < 0 (3.9)

On the graph of a dispersion relation, this requirement can be easily spotted when

the slope of the plotted line at a point is of opposite sign than a line from the origin

to that point. Looking at Figure 3-5, this happens near w = 5. 10'. However, this

is over a very small frequency range and a small change in frequency will result in a

large change in phase shift. This behavior may not be ideal, so next we will explore

a series architecture.

3.4.2 Series

To possibly achieve improved left-handed behavior, a series architecture was also

modeled. An architecture of this type is realized by placing the Draper resonator in
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Figure 3-6: Equivalent circuit of a Draper resonator placed in series with a transmis-
sion line.

series with a transmission line of characteristic values CO and LO. A circuit diagram

of the resulting unit cell is shown in Figure 3-6.

Placing this unit cell in the lumped element model of a general line, we calculate

the associated impedance, Zo, and shunt admittance, Yo.

Zo = jwLo + 1
jwC1 + R+jwL+

Yo = IwCo

(3.10)

(3.11)

These values are used in Equation 3.3 to produce the dispersion relation for a

material produced with the series architecture.

= JWCO x
4

w 2 CO
= x

4 (Lo -

(jw Lo +

1
jwC1 + R+jw L+- 1 /

RwC +3L2LC -i
w2 (C1RwC +3(CIw 2LC - C1 + C))

Using the same values of C, L, R, and C1 gathered from analysis of the Draper

resonators, and adjusting LO and CO to achieve preferred behavior the dispersion

relation of this material is analyzed.

Figure 3-7 represents the dispersion relation of a material constructed by period-
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Figure 3-7: Dispersion relation of series architecture material.

ically placing the Draper resonator in series with a transmission line. In this graph,

a left-handed behavior is evident above w = 0.75 - 109.

Also, in Figure 3-7 there is another interesting behavior. As the frequency in-

creases above w = 1 - 10', theta approaches zero. As a result, the phase velocity

approaches infinity. This shows that the phase shift across a unit cell approaches

zero at high frequencies. Additionally, this behavior is present over a large range of

frequencies. This behavior is beneficial because a wave consisting of many different

frequencies will be able to propagate through the material without the different fre-

quencies experiencing different delays. This effect, however, is due to the small size

of the unit cell. If the phase shift per meter were plotted, (and scaled to ignore the

huge phase shift at resonance), the material would most likely be dispersive. This

effect is investigated in further detail in Section 3.8.
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3.5 Boundary Condition Considerations

Due to the behavior of the resonators, the impedance presented at the end of the

transmission line will also exhibit complex behavior that changes with frequency.

It is important to note that all of these simulations assume an infinite array and

therefore ignore boundary conditions. This is possible because we are merely assessing

the ability to create the material, while the boundary condition considerations will

become important when engineering a material for a specific application.

3.6 Microstrip Simulations

The initial designs that were considered placed the resonator in microstrip trans-

mission line. This line is simply two parallel plates with a dielectric between them.

This structure was used because it is the standard transmission line model, and was

thought to be easy to fabricate. Figures 3-5 and 3-7 are from simulations of a mi-

crostrip architecture. However, in this design, it would have been difficult to access

the ground plane with the network analyzer probes that I had access to, so a coplanar

waveguide was used instead.

3.7 Coplanar Simulations

A coplanar waveguide (CPW) consists of three flat, coplanar, conducting lines. The

inner line is the signal line, while the outer two are ground. The CPW is very popular

due to the ease of access to the ground line and the ease of integration with surface-

mount devices. Although it is not the standard line used in most equations that

are used for modeling, it can be converted to the standard values via a conformal

mapping, which is shown in Appendix A. 1.

With the values for the transmission line parameters from Appendix A. 1 and the

equivalent circuit parameters for the resonator extracted in Chapter 2, we are able

to produce a model of the resonator in series with a CPW. Therefore, we used the
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values from the equations in Appendix A.1 in Equations 3.10 and 3.11 to determine

the dispersion relation of the resonator in a CPW architecture.

After creating the model, we noticed that the resonator that was measured was

actually fabricated in a CPW structure similar to the one that was modeled. So,

while the dimensions of the fabricated CPW were not ideal for our model, it provided

a great way to further ensure that our model was accurate.

First, I compared the measured S-parameters (which were directly output from

the network analyzer used to test the resonators) to those from our model. The S-

parameters for our model were obtained from the ABCD parameters through standard

conversion equations from [33]. The ABCD matrix was obtained via a process similar

to the one used for the transmission line and capacitor combination in Equation 3.5,

but with the impedance of the resonator in place of the capacitor. The resulting S-

parameters are shown in Figure 3-8. The model matches quite well with the measured

values. The only disparity is that the measured values of SiI and S22 are less than

the simulated ones. This could be due to some loss from impedance mismatch of the

transmission line to the network analyzer that is not included in the BVD model.

With the model well-formed and its inaccuracies understood, we are finally able

to plot the dispersion of the resonator and compare it to that of the measured values.

Figure 3-9 shows the resulting plot, including results from the full-wave simulator,

HFSS. Remember that gamma is the complex propagation constant, such that:

V(z) = V(0)eZ

Therefore, the real part of gamma is the attenuation, and the imaginary part of

gamma indicates the phase shift. So, when looking at Figure 3-9, the top plot is the

percent of the signal transmitted, and the bottom is the phase shift. Note that less

signal is transmitted through the measured devices than through the simulated ones.

This is due to the loss that was seen in Figure 3-8. The large negative phase shift

shown to be measured in the bottom of Figure 3-9 may be due to reflections from

boundary conditions that are also riot included in our models. While our model does
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Figure 3-9: Percent transmitted and phase shift per meter of the designed metama-
terial.

report a negative phase shift, it is of a much smaller magnitude.

3.8 Metamaterial Phase Shifter Simulation

With the results from our simulation, indicating that the designed metamaterial, a

piezoelectric resonator in series with a coplanar waveguide, produces interesting phase

shifting behavior, we can now design useful applications for this material. The first

application considered is that of a phase shifter. Because our resonator can produce

a phase shift much greater than its physical length, it may be a valuable system

element.
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3.8.1 Length

The first simulation for this application is to find the length that would be required to

effect a 90-degree phase shift. It is quite simple to determine this length. We already

solved for gamma, which is the phase shift per meter of the metamaterial. We simply

divide 90 degrees by this value to obtain the length for a 90 degree phase shift. Note

that to obtain an exact 90 degrees of phase shift may not be this easy. Because the

unit cells each contribute a discrete amount of phase shift at a certain frequency, it

is not possible to get fractional values of this discrete amount. However, it would be

possible to get the phase shift as close to 90 degrees as possible and then add a length

of transmission line to tune the phase shift to exactly the desired amount. In Figure

3-10, the length required for a 90 degree phase shift through a transmission line is

plotted, as well.

3.8.2 Efficiency

While the metamaterial may be able to produce a phase shift in a small physical

length, it is important to consider the efficiency of this device, as well. The percent

of the signal that is transmitted is obtained from the real part of the propagation

parameter, gamma, and the minimum length that was found from the top part of

Figure 3-10. We used the minimum length to simulate the operation of an actual

device.

The percent of a signal that is transmitted through the designed 90 degree phase

shifter to a 50 Ohm load is plotted in the bottom part of Figure 3-10. The metamate-

rials (measured and simulated) both pass more than 1/10th of the input signal. Also,

note that the largest percent transmitted occurs at the frequency where the smallest

physical length is required, making this operation point very beneficial. However, at

slightly higher frequencies, the amount of signal that is passes reaches a minimum.

However, this minimum is only approximately one order of magnitude less than the

base value, and the signal is therefore still quite useful.

Because we are modeling a lossless transmission line, the percent transmitted
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should theoretically be 100 percent for all frequencies (the 50 Ohm load is matched

to the impedance of the transmission line). However, in Figure 3-10, when trans-

mission lines become small with respect to a wavelength their complex impedance is

dependant on their length and the frequency at which they operate. So, to evaluate

the loss that would occur in a transmission line, I considered the complex impedance

that would be created by a transmission line that was the same length as the phase

shifting structure. The resulting impedance mismatch created by the transmission

line creates the loss that is shown by the blue line in Figure 3-10.

3.9 Conclusion

In this chapter, we built a model of the piezoelectric resonator that can be used in

larger systems. We tested this model on known systems to ensure its accuracy. Then,

we designed several structures and utilized our model to simulate their behavior. This

behavior was analyzed to determine if it would create the effects that we were looking

for. The design consisting of a transmission line broken by the resonator in series

showed a promising dispersion behavior.

Next we used this knowledge to analyze the dispersion characteristics of a meta-

material designed around the idea of the resonator in series with the transmission

line. While most equations are based on the assumption of using microstrip trans-

mission lines, a conformal mapping technique was used to be able to utilize a coplanar

waveguide structure. Because the resonators that were fabricated and measured were

in a coplanar architecture, we could then compare our modeled data to actual mea-

sured results.

After obtaining the dispersion relation for the designed metamaterial, we evaluated

its effectivness as a phase shifting circuit element. The material seems to be very

beneficial, producing a 90 degree phase shift in a size much smaller than would be

required for a standard transmission line, while maintaining a useful efficiency.
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Chapter 4

Characteristic Parameter Analysis

Another important method of evaluating metamaterials is to consider the effective

material parameters. As opposed to the dispersion analysis in Chapter 3, which

modeled the periodic array of resonators and transmission lines as a periodic array of

circuit units, the material analysis considers the material as a whole and determines

the bulk material properties that it will produce. The material properties can then be

used to determine many important things, including the impedance of the material,

the velocity of wave propagation, and the resulting size of a quarter-wave patch

antenna.

In this chapter we will extract the values for permeability and permittivity that

will result from the structure that was designed in Chapter 3. Then we will examine

how we can tune these values by changing the dimensions of the resonators used to

construct the material. Finally, we will examine the usefulness of the metamaterial

when considering its material properties and the resulting possible applications. 1

'While reading this chapter, it is important to understand that MEMS devices may not exactly
follow the rigid formulae that are generated. Changes due to altered anchor points, electrodes,
fabrication tolerances, and numerous other minutiae are not included in this analysis and would
require much work to fully characterize. This chapter does, however, provide a useful overview of
the potential behavior of a MEMS metamaterial as well as a general design process that will produce
metamaterial structures that can approach desired effective values.
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Figure 4-1: Example of e versus p space, with behavior and uses labeled for each

quadrant.

4.1 Thinking About Material Properties

As described earlier, the parameters p and c determine much about the behavior of

a wave in a material. Besides the impedance and wave velocity, which depend on

the relations between p and E, the relative signs of these values specify what type

of wave will exist in the material. Figure 4-1 displays the four possibilities of the

sign combinations for y and 6, encapsulated in the four quadrants of a plot with

c on the x-axis and p on the y-axis. When p and E are of the same sign, the wave

propagates (because the wavevector, which is k = eij-, will therefore be real. When

both p and 6 are positive, this is the standard, right-handed, propagation method

that exists in most materials. When p and c are negative, as mentioned before,

this is the left-handed propagation region. When p and c have opposite signs, the

wavevector is imaginary, and the fields in that material decay very rapidly and are

called "evanescent". This behavior is found in metals and plasmas when the frequency

of the wave is less than the plasma frequency. Also, this behavior occurs for some

frequencies in photonic bandgap materials.

Figure 4-1 also enumerates some applications where the material values in each

quadrant can be useful. In the first quadrant, work is being done to adjust the values

of y and c to improve impedance matching as well as reducing the wavelength (by
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Figure 4-2: Real part of impedance in c versus p space.

increasing the wave velocity). The second and fourth quadrant create evanescent

waves. This behavior can be used in antennas to suppress surface waves, which are

a large source of loss in patch antennas. The third quadrant is the area that I am

researching, whereby we can have backwards-traveling waves. This area can have

useful applications in phase shifting and focusing of radiation.

Another material factor to consider is the impedance. Our materials can achieve

a real as well as an imaginary impedance. The real impedance indicates how the

magnitude of the current through a device is related to the voltage across it. The

imaginary part of the impedance indicates the phase shift that is involved. When

matching to a complex load, it is ideal for the impedance of the material to be the

complex conjugate of the load. Since free space has a purely real impedance, however,

we would ideally have a purely real impedance. Figure 4-2 shows the real part of the

impedance, Z = V, plotted for the relative values of permittivity and permeability.

Note that in quadrants two and four, the impedance is purely imaginary.
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Figure 4-3: Extracted measured and simulated material parameters via several dif-
ferent methods.

4.2 Extraction of Characteristic Parameters

The extraction of the permittivity and permeability of a metamaterial is an important

process, as these values can embody much of the behavior of the material. It is

important to verify that the extraction is done correctly. Therefore, I performed the

extraction via four different methods and used each of their behaviors to verify the

accuracy of the others. Then I choose the most robust method with which I can

perform further analysis of the metamaterial.

4.2.1 Methods of Extraction

There are several methods that have been used to extract the effective material pa-

rameters from scattering matrix (S-parameter) data. Because the extraction process

requires taking roots and inverse trigonometric functions, the person performing the

extraction must choose the proper roots for each method. Because in the analysis
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of left-handed materials, the accuracy of the signs is very important, I analyzed four

methods and used the similarities among their behaviors to verify their accuracy.

NRW Method

The lines in Figure 4-3 labeled "Design, Fab" indicate that they were obtained using

the Nicolson-Ross-Weir (NRW) approach, similar to that used in [40], and laid out

in [11] and [2].

In this method, we define the composite terms:

V1 = S21+S1

V2 = S21 - S1 (4.1)

From which we derive expressions for the impedance and admittance of the struc-

ture. The values of impedance and admittance can then be used to determine the

transmission and reflection coefficients, which can, in turn be used to determine the

index of refraction and the wavevector, which are used to produce expressions for the

permeability and permittivity. The resulting equations that I used were:

2 1-V 2
p~r~ jkodI+V 2

2 1- V
Er ~(4.2)

jkod±+V1

NRW Variant

A variant of the NRW approach, used in [36], is indicated by the light blue and black

lines in Figure 4-3 and the label "Determination of Effective." In this method, as

in the previous one, the transmission and reflection coefficients are used, but the

equations to extract the impedance and the index of refraction are different. The

values are obtained as follows:

First we calculate T and F, the transmission and reflection coefficients, the wavevec-

tor of the incident wave, k = w/c, and the normalized transmission coefficient,
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T' = Te-kd. Then, we use Equation 4.3 to find the imaginary part of the index

of refraction. In these equations, d is the length of the material.

cos- 1 (2 [1 - (F2 - T'2)]
Imn(n) = iIm ( d(4.3)

We solve the right-hand-side and take whatever root yields a positive solution for

Im(n). The requirements that Re(z) and Im(n) > 0 are for all passive materials.

The real part of n is determined from:

Cos- I (-[I - (F2 - T'2 27m
Re(n) = ±Re ( 2  [ F ] + kd (4.4)

The equation for the real part of n is complicated by branches of the arccosine

function. In Equation 4.4, m is an integer. The values for c and P are then determined

using the identities:

n
E = , and p= nz

z

Note that in this method of parameter extraction, the requirement that Im(n) > 0

uniquely identifies the sign of Re(n) [36]. This characteristic is very valuable in our

analysis, as it disambiguates the left-handed areas by specifying the sign of the index

of refraction. Because the index of refraction is negative in left-handed materials, this

explicit specification ensures that we are observing left-handed behavior, and not just

taking the desired root of the characteristic equations.

Because of this explicit stipulation that results in unambiguous handedness of the

resulting material (and signs of the permittivity and permeability) this method (the

adjusted NRW method used in [36] will be the primary method of analysis used in

the later portions of this chapter.

Polarization and Susceptibility

Permittivity and permeability describe the interaction of a material with electric and

magnetic fields. This behavior is dependent on the ability of the fields to polarize
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particles in that material. Therefore, another method to extract the effective material

parameters is to analyze the susceptibility of the material. This method is used in

[37].

The permeability of a material is p 1 +x, where the magnetic susceptibility, x,

can be obtained by modeling each unit cell of our material as an electrically small,

loaded dipole antenna [41]. Using the Thevenin equivalent circuit of this antenna, we

know that the current across the terminals of this component due to a VOC induced

by an incoming electric field is:

Iin(w) = I(z = 0) wVO C (4.5)
n Zin (W) + ZL (W)

The susceptibility is then described by:

Ke
Xe (W) = Ke (4.6)

-jw[Zin(w) + ZL(w)]

Where the positive constant factor Ke is defined as:

Ke = cos'oe sin O (4.7)
60V

In these equations, lo is half of the physical length of the antenna (in our case

the unit cell), V)e is the polarization angle between the dipole and the electric field,

which we assumed to be 0, as we are only considering a linear system, and V is the

effective volume in which the calculated composite permittivity is constant. After

substituting the load and input impedances of our device (the large expression for Z

used earlier and 25 Ohms, respectively) into the above equations, we can calculate

the permeability, p. With the permeability, we can use the index of refraction or the

impedance calculated via another method to determine the permittivity, c.

Circuit Analysis

The lines labeled as "Planar Neg" in Figure 4-3 refer to the method used in [8]. This

method utilizes the circuit model of the material and uses those values to extract the
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material parameters from electromagnetic field equations. These field equations are

mapped from the circuit telegrapher's equations via Ampere's law and the definition

of potential. The permittivity and permeability are therefore related directly to the

per-unit-length capacitance and inductance of a line.

The telegrapher's equations are the standard equations relating current and volt-

age in a transmission line with impedance and admittance, Z and Y, respectively.

dv _

-iZ
dx '

di
dx

The field equations are therefore:

dE -jywpsH,
dx

dH jwcsE
dx

Which yield expressions for the effective material parameters:

z
PS= - ,

Y
Es = _

4.2.2 Method Comparison

When plotting the values of pi and 6 obtained via each different method, I chose the

roots of the equations that I used so they all would agree. The method that I trusted

the most to have accurate signs was the adjusted NRW approach, as it had explicit

stipulations for the choice of the proper sign. Therefore, in most cases, I chose signs

in the other methods to match that of the NRW variant.

Therefore, the NRW Variant from [36] was the parameter extraction method that

I used primarily for the further analysis that follows.
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4.3 Values Accessible through MEMS Metamate-

rial

Given a robust method for extracting the permeability and permittivity of the de-

signed metamaterial, we can analyze what values are achieved via the proposed ma-

terial. Then, we can vary design parameters in our model to determine the ability of

a MEMS metamaterial achieve different ranges of p and E.

4.3.1 Material Parameter Extraction

The process for the extraction of the permittivity and permeability was described

earlier in this chapter. The real part of the extracted values for the material using

the measured resonators is shown in Figure 4-4. The top two pieces of this figure are

the relative permeability and permittivity, while the bottom graph shows these two

parameters plotted together. Note that while the scale is different for the two plots

in the bottom piece, their respective zero points are aligned. Figure 4-4 is similar

to Figure 4-3, except it only uses one method (the NRW variant). Additionally, in

Figure 4-4, the zero line is marked. When the value of permittivity drops below this

line, both values are negative and the material will behave as a left-handed material.

Figure 4-5 shows the same data, but in a different manner. The top two plots of

permittivity and permeability are the same as the previous figure, but the next two

pieces are shown differently. The middle plot shows the values of permittivity versus

permeability. The plot of p versus c is very valuable, as it captures the behavior of

the material as shown in Figure 4-1. Specifically, this plot contains the second and

third quadrants of Figure 4-1. Therefore, when looking at Figure 4-5, it is important

to remember the behavior of materials that will result from different positions in this

space. We will therefore be using this type of plot throughout the rest of this chapter.

An additional piece of data contained in Figure 4-5 is the frequency. It is important

to note that the values of y and 6 achieved by the material are valid for only a specific

frequency. The bottom piece of Figure 4-5 captures this behavior. We can see that
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Figure 4-4: The extracted permittivity and permeability of the resonator.
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Figure 4-6: Permittivity and Permeability of a resonator metamaterial and a capacitor
plotted against frequency.

there are values of p and c that we converge to at high and low frequencies, but when

we are near the resonant frequency of our resonators, we can achieve many different

material properties. However, this also shows that there is a very narow bandwidth

for these properties. A small change in frequency can result in a large change in p

and c.

Figure 4-6 plots the same data once again, but with one further variation. The

top two plots are once again the permittivity and permeability, but this time they are

plotted over a much wider frequency range. Also, the light blue line is the values of

p and E that would be produced by a material that was created using a capacitor in

place of the MEMS resonators. Therefore, the blue lines show how the material would

behave without the resonant behavior of the MEMS device. This line is a valuable

piece of data so we can compare the two results and explicitly see what aspects the

resonant behavior adds to the material.

The lower left plot is the same plot of permittivity versus permeability as in

Figure 4-5, but again with the capacitor material data added. Finally, the lower right
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portion of Figure 4-6 displays this data in three dimensions. This is equivalent to

the coloring from Figure 4-5, but the third dimension representing the frequency is

spatial, instead of color. This 3D representation also facilitates the comparison of

the resonant material to that of the capacitor material. We can see how the resonant

material follows the same path for most of the frequency range, but takes a range of

different values around the resonant frequency before re-aligning with the capacitor

at high frequencies.

4.3.2 Circuit Adjustment

Now that we can model, observe, and understand the material behaviors of a meta-

material, we can see how changes in the resonant elements might effect the behavior

of the bulk material. In this first section we will see how changes in the circuit el-

ements of the resonator BVD model will effect the behavior of the material. It is

important to remember that these changes are not physical, instead they are used to

build an intuition to how the behavior can change. This intuition will then be utilized

to understand the changes that will result from physical changes in the resonator.

The first circuit element that we chose to change is the parallel capacitor (CO).
Figure 4-7 shows the resulting material values across a frequency sweep for five dis-

crete capacitances. The top two pieces show the permeability and permittivity as

usual. It is good to see that the change in parallel capacitance does not shift the

resonant frequency much (as we would expect). It is interesting to see that increas-

ing the parallel capacitance decreases the magnitude of the resonant behavior in the

permeability, but increases the magnitude of the steady -state permittivity, with no

change in resonance magnitude.

The bottom piece of Figure 4-7 shows the values plotted as permittivity versus

permeability. While this plot may look confusing, recall that it is just the same as

in all the previous figures, except that there are lines for several materials in the one

plot.

The next circuit parameter that we swept was the series capacitance. The result

is shown in Figure 4-8. This change basically only shifts the resonant frequency of
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Figure 4-7: The extracted permittivity and permeability of several resonator meta-
materials with different parallel capacitances.

the material, as can be seen in the top two plots. Also, the bottom plot demonstrates

this behavior, as the lines for each different material are basically the same in two

dimensions. Remember, however, that each line will achieve a given y and c at

a different frequency. Also, because the inductor is in series with this capacitor,

changing the value of the inductor will have a similar effect on the response of the

material. The change, however, should be in a different direction due to the differences

in the definition of impedance for the different circuit elements. When changing the

value of the inductor, the resonant frequency should shift as with the capacitor, an

increase in inductance should result in a lower resonant frequency.

4.3.3 Dimension Adjustment

The previous section was written to provide an intuition into how changes in the

BVD circuit parameters can change the behavior of our metamaterial. However, as

we mentioned in that section, these changes are not physically possible. What we
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Figure 4-8: The extracted permittivity and permeability of several resonator meta-
materials with different series capacitances.

can change is the dimensions of our resonator. Changes in these dimensions do not

just effect one BVD circuit parameter, but several. So, in this section, we will show

how the adjustment of dimensions of the resonator will change the values in the

BVD model. Using this information along with the intuition that was built in the

previous section, we will see how we can achieve different values of permittivity and

permeability by changing the dimensions of our resonator.

We could first consider the resonator as two parallel conducting plates. From

standard electrostatic equations, we know that capacitance is proportional to the

width and length of the plates, and inversely proportional to the separation of the

plates. The inductance is proportional to the plate length and separation, but in-

versely proportional to the width. From [15], we know that these relations hold with

our resonator.

To find the BVD circuit parameters that would model a resonator built with

specific dimensions, we adjusted the parameters extracted from the measured devices.

Then we factored out the dimensions of the measured device and scaled by our new
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Figure 4-9: The extracted permittivity and permeability of several resonator meta-
materials with different resonator bar lengths.

dimensions. We were then left with circuit parameters that should describe the new

resonator. Placing these resonators in a periodic array creates a metamaterial that

we can now analyze.

Now we can plot the values of permittivity and permeability for several choices of

dimension, just as we did for the choices of circuit element value. The first dimension

that we changed was the length of the resonator bar. From electrostatics, we would

conjecture that an increase in the length of the resonator would result in both an

increased capacitance and an increased inductance. Therefore, we would assume

that the resulting permittivity and permeability would have shifted as well as scaled

resonances. More specifically, an increase in length should decrease the resonant

frequency and increase the magnitude of the resonance. Additionally, the permittivity

should be shifted more negative for increasing values of length. Our intuition is

correct, as this is the behavior that we see in Figure 4-9.

The bottom part of Figure 4-9 plots this data once again in the permittivity

versus permeability space. Note how you need the proper parameters to actually

achieve left-handed behavior. Figure 4-10 plots the same data as Figure 4-9, but in

three dimensions. The third dimension is frequency. In this plot, you can see more
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Figure 4-10: Three-dimensional view of the extracted permittivity and permeability
versus frequency of several resonator metamaterials with different bar lengths.

accurately what material parameters are accessible at certain frequencies. The 3D

representation also lets us see the bandwidth of the achieved material parameters. A

line that is very flat in the plane of permittivity and permeability indicates that small

changes in frequency will result in large changes in these values. The longer lengths

or resonator seem to fit this description. The shorter widths, however, appear more

stretched in the frequency dimension. This indicates that the change in permeability

and permittivity due to a change in frequency is not as large for these materials.

However, because we are working at a higher frequency, and the axis on Figure 4-10

is linear, the fractional bandwidth of the materials constructed with shorter resonators

is approximately the same as one built using longer resonators.

Our next analysis will involve holding the length of the resonator bar constant and

changing the values of the width. We would expect an increased width to increase

the capacitance but decrease the inductance. Depending on the relationship between

the changes of the series capacitor and inductor, it is unclear how this change will

affect the resonant frequency, but we know from the change in parallel capacitance
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Figure 4-11: The extracted permittivity and permeability of several resonator meta-
materials with different resonator bar widths.

that the magnitude of the resonance and the permittivity will decrease.

Figure 4-11 shows the values of p and c that are produced by a material constructed

out of unit elements using MEMS resonators with the indicated widths. The first

thing that we notice is that the resonant frequencies are all the same. This is very

interesting; the frequency shifts that would result from the changes in series inductor

and capacitor have canceled.

Figure 4-12 depicts the same data as Figure 4-11 , once again represented in three

dimensions. It is interesting to see how all the materials follow the same frequency

behavior, but the magnitude of their resonances and their starting positions are simply

changed.

One addition to Figures 4-11 and 4-12 is that of the capacitor material, indicated

once again by the light blue line. As in figures earlier in this chapter (like Figure

4-6) this line is the data that would be gathered from a material constructed from

a periodic array of unit cells with a capacitor in place of the MEMS resonator. It

follows the same path of our metamaterial, but with out the resonant behavior.
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Figure 4-12: Three-dimensional view of the extracted permittivity and permeability
versus frequency of several resonator metamaterials with different bar widths.

4.3.4 Accessible Values

Now, if we sweep both length and width, we can discover all the possible values of

permittivity and permeability that can be produced by a metamaterial of our designed

structure. We swept length and width exactly as before, but now plotted all possible

combinations on one plot. Figure 4-13 is the result.

In Figure 4-13, note that the different widths are each denoted with a different

color line. Therefore, the visible vertical groupings correspond to a single length, and

the contracting paths within those groups correspond to different widths.

4.4 Applications

There are several practical uses for the versatile permittivity and permeability of

this new MEMS metamaterial. In this section we will introduce a design process by

which a desired value for / and E can be achieved at a specific frequency. Following

the design process, applications where this ability could be useful are introduced.
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Figure 4-13: Three-dimensional view of the extracted permittivity and permeability
versus frequency of several resonator metamaterials with varying bar widths and
lengths.
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Figure 4-15: Selecting the length of the resonator by specifying the resonant frequency.

4.4.1 Design Process

We now have a method for determining the permittivity and permeability of a meta-

material constructed from a periodic array of piezoelectric MEMS resonators and

coplanar waveguides. In this section we strive to make that ability useful by present-

ing a method, by which one can construct a material that will have chosen values of

p and 6 at a specific frequency.

To design a metamaterial, you will first need to choose its frequency of operation.

This will be the frequency where it will achieve the left-handed behavior, and is

therefore the resonant frequency of the MEMS resonators that consist the material.

We showed earlier in this chapter that the resonant frequency of the material is

determined by the length of the resonator bars. Therefore, once you have chosen the

desired frequency of operation, using the models created earlier in this chapter, you

can determine the length of the resonator that should be used. This process is shown

in Figure 4-15. We have chosen to operate around 550 MHz, and by looking for a

plot that has a resonance there, we predict that the length of our resonators should

be approximately 6 pm.

After a length is chosen, the width can be adjusted to achieved the desired mate-

rial parameters. These parameters can be permittivity, permeability, or impedance.

These three material values are plotted for different widths through a narrow fre-

quency range around the operating frequency in Figure 4-16. The designer can then

select a width of the resonator by choosing the desired impedance or p and E.
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Figure 4-16: Selecting the width of the resonator by specifying the desired impedance
and material parameters.

4.4.2 Improved Patch Antenna

There are several manners in which the MEMS metamaterial may contribute to the

creation of an improved antenna. First, due to the increased phase shifting behavior

mentioned before, it may be possible to decrease the size of a patch antenna. Because

patch antennas should be resonant structures, their dimensions are dictated by the

length needed to achieve a specific phase shift. Because we can achieve a phase shift

through a smaller length, it may be possible to construct a smaller patch with similar

resonant behavior.

A second manner of antenna application that was considered was the suppression

of surface waves. Just as the size of a patch antenna is determined by the frequency,

its depth follows the same dependency. As a result, the separation between a patch

and its ground plane is increased to improve the efficiency of an antenna. However,

there are currently several problems with this process. First, many patch antenna

designers simply do not have the space to increase this dimension. Because the

patch antenna is commonly integrated on a circuit board, it is not convenient to

increase the thickness of this board. The improved phase shifting and the increased
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impedance of our materials may constitute a material that will improve the efficiency

of a patch antenna for a given thickness. However, the inherently planar structure

of the resonator makes it difficult to apply in this manner. Other materials are most

likely more cost-effective for this application.

The second problem faced when increasing the separation between a patch and

its ground plane is the loss of power through surface waves along the substrate.

Surface waves are actually the source of most of the loss associated with a patch

antenna. If we could suppress these waves (while maintaining proper impedance

matching between the feed, patch, and freespace), it would improve the efficiency of

patch antennas. Our MEMS material has the properties that it will suppress waves at

certain frequencies so it may be a good candidate for this application. However, there

are many other materials that also accomplish this task. Photonic band gap materials

can be constructed by having periodic metal inclusions or holes in a substrate in order

to suppress waves at a certain frequency. These materials seem to be easier and less

expensive to produce than the MEMS metamaterial, and may therefore be a better

solution for surface wave suppression in patch antenna substrates.

A final potential improvement in antennas that can be accomplished through the

utilization of a MEMS metamaterial would be at the ground plane. The separation

of the antenna and its ground plane is necessitated by the use of a conducting ground

plane. The reflections of the waves off of this plane are out of phase with the incoming

waves, requiring a spacing of a quarter of a wavelength in order for the reflected wave

to be in phase with the signal when it returns to the antenna. If a Perfect Magnetic

Conductor (PMC) were used as the ground plane, the reflection would be in phase,

and the separations between the antenna and the ground plane could be very small.

A PMC is an artificial construct that would suppress electric field waves across its

surface. Practical implementations nearing the behavior of a PMC have been called

High Impedance Surfaces. It is possible that our MEMS structure would be very

efficient at suppressing surface waves along a ground plane. The coplanar architecture

that characterizes the resonators lends itself well to the construction of such a surface.

It could therefore provide an effective manner of accomplishing a PMC, increasing
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the efficiency of antennas while decreasing their size.

91



THIS PAGE INTENTIONALLY LEFT BLANK

92



Chapter 5

Conclusion

In this thesis I have analyzed the potential of a metamaterial constructed with MEMS

resonators. My initial assumption was that the metamaterial would be constructed

of a periodic array of MEMS resonators. Due to the resonant characteristics of the

devices, many interesting behaviors can be produced. It was the goal of this thesis to

further explore these potential behaviors by modeling potential metamaterial struc-

tures, determining their behaviors, and then analyze these behaviors. The metamate-

rial behaviors were analyzed by comparing their performance in chosen applications

to that of existing technology.

To construct a metamaterial, I first had to choose the resonator to use. Through

rigorous electrical and mechanical resonance analysis, I compared two types of res-

onator: the paddle resonator and the piezoelectric resonator. The piezoelecrtic res-

onator displayed a much lower impedance than the paddle throughout the entire

frequency range. Also, the resonant peak of the piezoelectric resonator is much larger

than that of the paddle. Therefore, it was concluded that the piezoelectric resonator

would be the preferred MEMS resonator for the construction of a metamaterial.

After a resonator was chosen, various designs were considered. To model each

potential design, I constructed a circuit abstraction that was equivalent to the MEMS

resonator. This circuit was placed in various configurations within a transmission line.

In this manner I simulated the behavior of an infinite array of these unit cells. By

using many modeling techniques and refining the modeling process through several
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structures, a robust model was created. The dispersion relations for each modeled

structure were analyzed and compared with data collected from measured devices as

well as the various modeling techniques. It was found that a resonator placed in series

with a coplanar waveguide can produce left-handed behavior.

Using that structure, several applications were considered. Because the phase

shift across the material can become very large at a resonant frequency, the first

application that was considered was the use of the material in a phase shifting circuit

element. This element was shown to potentially achieve a ninety degree phase shift at

a size that is two orders of magnitude smaller than the required length of transmission

line. Additionally, this phase shift occurs at a frequency where the impedance of the

structure is at a minimum, making this result not purely academic, but viable for use

in a circuit element.

The second application that was considered was the use of this material as a

substrate for an antenna. The ability to choose the material parameters through

the design of the material would be valuable for phase matching, size reduction, or

efficiency improvement of small antennas. Analysis of this application required further

model refinement to extract the values for the permittivity and permeability of the

material. Several methods to achieve this were considered and refined to determine

the material values for a given set of resonator dimensions. A method was presented

by which an engineer can design a material for a given permittivity and permeability

at a specific frequency.

5.1 Future Work

It is my conclusion that a MEMS metamaterial could produce vast improvement over

existing technology in several areas. There are, however some problems that may need

to be addressed or designed for before an application using a MEMS metamaterial is

feasible.
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5.1.1 Problems to Address

There are two problems with the current MEMS metamaterial structure that was

considered; high impedance and narrow bandwidth. If this metamaterial is to be

used as a medium for electromagnetic propagation, it will attenuate the signal by a

large amount. This is an issue to consider when thinking about potential applications.

The second problem with the metamaterial is its narrow bandwidth. While many

desirable behaviors are achievable through the use of the MEMS metamaterial, they

usually only occur over a very narrow frequency range. This restricted region of oper-

ation can make it difficult to create a useful structure. There are two solutions to this

problem that should be explored. First, by combining several of the resonators, we

may be able to design our structure for improved bandwidth. This is a similar concept

to combining multiple resonators to create a multi-pole wideband MEMS filter. The

second solution to the bandwith problem is to take advantage of it. Some applica-

tions may actually desire a narrow bandwidth. For example, closely packed antennas

operating at slightly different frequencies would want a very narrow bandwidth to

prevent crosstalk between the antennas.

5.1.2 Applications to Consider

The main strengths of the MEMS resonator are its small size and ease of integration

into current circuit fabrication processes. Two application areas that capitalize on

these strengths are phase shifting and miniature integrated antennas.

Phase Shifting

The result of my simulation indicate that a MEMS resonator-based phase shifting

element can produce a given phase shift of a signal through a much smaller physical

size than is currently possible. However, the behavior of a chain of resonators has

not been measured. It is unclear if the fabrication process is uniform enough to

create several resonators that will behave the same way, which would be necessary

for an ideal phase shifter. Future work should explore the phase shifting behavior by
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actually constructing a chain of several MEMS resonators in the series configuration

and determining if the behavior is consistent with the model.

Filters

The MEMS resonators present a complex input-output relationship. If this relation-

ship could be optimized with the use of several other resonators or circuit elements,

interesting RF filters could be constructed. Additionally, due to the small size of the

resonators, this filter may be much smaller than other filters that are currently used.

Antennas

Sever potential methods through which the use of MEMS could create an improved

patch antenna were discussed. The most promising applications include the reduction

of the size of the patch and the conversion of the ground plane to a perfect magnetic

conductor or a high impedance material.

A patch antenna my be miniturized through the use of MEMS due to their im-

proved phase shifting behavior. Future work in this direction would require the fab-

rication of a patch antenna loaded by these resonators. Or, possibly equivalently, an

array of the resonators will be constructed. The resonant radiant behavior of this

structure must be analyzed further.

A Perfect Magnetic Conductor (PMC) is a material that suppresses the propaga-

tion of electric fields along its surface. The use of this material as a ground plane

could increase the efficiency of antennas while decreasing their size. Future work

towards this goal would require measurements of the behavior of the resonator and

the coplanar structure when excited by a propagating electric field from a direction

outside of the characteristic plane of the structure. Detailed measurements of the

interaction of several resonators in this situation would also be valuable.
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Appendix A

Mathematical Work

This Appendix contains mathematical work that is important for the work of this

thesis, but was not necessary to include in the main body.

A. 1 Calculating the Impedance of a Coplanar Trans-

mission Line

A coplanar waveguide (CPW) is a transmission line that consists of three lines of

conductors, that all lie on the same plane. The middle line is a signal line while the

outer two are used for the ground. The use of CPWs has become common, as their

geometry allows for easy connection of lumped components, no drilling is needed to

reach the ground plane, and the transition to other coplanar lines is simplified. Many

circuit elements, such as our resonators, are coplanar in nature, so the move to CPW

is natural. The performance of CPWs is comparable. and may sometimes exceed

that of parallel-plate transmission lines in terms of guide wavelength, dispersion, and

losses. However, CPWs have disadvantages of parasitic modes, lower power-handling

capability, and field nonconfinment. [13]

Because the geometry of the CPW does not produce the electromagentic fields

like those in parallel-plate transmission lines, it is not easily modeled as the lumped

circuit elements that are used for most analysis. This exercise would require the
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solution to Laplace's equation in two dimensions. Instead, we use conformal mapping

to convert the CPW to a parallel-plate transmission line in order to extract these

parameters. The following analysis is taken from [13] and [7].

Figure A-1 outlines the basic method that we will use. We first assume that all

dielectric boundaries can be replaced with magnetic walls. This assumption is valid

because most of our electric field lines run along these boundaries. After placing the

magnetic walls, each side of the wall can be analyzed separately for the distributed

capacitance. The resulting line capacitance will then be the parallel combination of

these two capacitances.

The conformal function to map the CPW to a parallel-plate capacitor is:

dz
1W =f

zo (Z - W/2)(z -WTV2 - s

In the above equation, w is the new characteristic axis and z was the old. The

area of the capicitor plate obtained by carrying out the integration. The result is:

12 K(ki)

23 K'(ki)

In this equation, ab indicates the distance between points a and b in the w-plane,

and the geometric component, k, = w+2I. K(ki) and K'(ki) are the complete elliptic

integral of the first kind and its compliment, respectively. These two are related by:
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with k' = V1 -k 2

Therefore the value of the ratio -# can be approximated by:

K(k1 )
K'(ki)

{ n21±\+'
in 2 +

7-

for 0 < k <

for '<k<1
(A.1)

The capacitance of the top half of the CPW structure (which becomes the air-filled

capacitor) is:

K2 60K(ki)
K' (ki)

The capacitance of the lower, dielectric-filled half is:

K(ki)2 EOErK(k)

(A.2)

(A.3)

The total capacitance of the line is Ca + Cd and the simplest form of the effective

permittivity, ignoring metallization thickness and dispersion is:

Er+1
Ere 2 (A.4)

If we wish to include dispersion, we obtain the frequency dependent formula for

Ere from [141:

(A.5)
r' - ere,(0)

re(f) = re (0) + _1 r(
1+ G (f

where:

u = 0.54-0.64p + 0.015p 2
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Figure A-2: A force diagram for a cantilever.

v = 0.43 - 0.86p + 0.54p2

p = ll(+) (A.6)
(h

And fTE is the cutoff frequency of the TEO mode:

C
fTE- 4h /T-1

From the conformal mapping, the impedance of the CPW is given by that of the

capacitor [22]:

Z Ere

cC

Where c is the speed of light in free space and C is the capacitance per unit length

of the line from the sum of Equations A.2 and A.3. This expression can be expanded

to obtain:

307 K'(K1 ) (A.7)
E/re K(ki)

A.2 Calculating the Torque on a Cantilever

In this section, I calculate the torque that is acting on an electrostatically actuated

MEMS cantilever. To find an expression for the torque, one first calculates the torque

due to one small piece of the bar as a function of theta and its length along the bar.
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Then the force is summed for all the pieces along the bar to get the total torque.

To begin this analysis, we start with the equation for the force on the plates of a

capacitor.

V 2 dC
F= V-C(A.8)

2 dx

In this equation, the dimension x is the distance between the plates of the capaci-

tor. Similarly, in our model shown in Figure A.2 x is the dimension that characterizes

the distance between the cantilever and the driving transmission line. This transmis-

sion line becomes the bottom plate of our capacitor, while the moving bar is the top

plate. The parameter g is the distance between the cantilever and the transmission

line when 0 is zero.

We can model each small section of the bar as a parallel-plate capacitor and neglect

the fringing fields. If we do this, the capacitance of a segment of the bar with width

w and length dl is:

eowdl Eowdl
g-x g-lsin0

Using this equaion, we determine the incremental change in capacitance due to a

change in 0:

dC ewl cos 0

dO (g - I sin )2

To find the force, we substitute into Equation A.8:

V 2 dC dO
F=

2 dO dx
V 2 cOwl cos 0 d-dl-
2 (g - 1 sin) 2 dx

Then, using trigonometry, we know that:

dx
x = Isin 0 and therefore, = I cos 0

dO
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And we can substitute to determine the force:

v 2  C0W
F = d

2 (g - I sino)2
(A.11)

The torque, however, is the force perpendicular to the bar, multiplied by the

distance from the pivot. This is obtained as follows:

Tdl = Fsl=F-I=FcosOl

V 2 eOw lcosO dl
2 (g - I sin0)

(A.12)

By integrating Equation A.12 along the length of the cantilever, we obtain the

total torque:

I L

V2COw cos 0
2 sin2 0

V 2 F 1, ' ls
dl

2 (g - I sin0)

Lsin0 -lng(g -L sin6 g -L sin 0
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