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Abstract

In order to optimize product designs it is necessary to quickly evaluate many candidate
materials in terms of performance and processing costs. Evaluation using physical prototypes
yields concrete results but is time intensive and costly when dealing with multiple optimization
objectives. As an alternative, computer aided simulation is a reliable means of material
evaluation and selection, is increasingly available to smaller companies due to the shrinking cost
of computation, and is essential for handling the dual optimization objectives of
manufacturability and performance in a timely and cost effective manner. To support this thesis,
the author first examines iRobot Corporation's current process of experimental trial and error for
evaluating and selecting a polymer material for use in the wheels of its robotic military vehicles.
The author then demonstrates that the experimental derived performance results can be
reasonably predicted using the viscoelastic properties of polymers, as captured in such models as
the standard linear solid model, and that this predictability can be used to quickly simulate wheel
performance with computer aided engineering (CAE) tools. Finally, the author performs a cost
analysis of the current material evaluation/selection process versus the CAE approach to show
the best path forward for incorporating CAE tools into the design process of smaller corporations
like iRobot.
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Chapter 1: Introduction and Overview

Companies that design product must develop a design process. Inherent in this

development is a decision on where to place the prototyping versus modeling boundary. This

decision is one of how to best utilize both experimentation through physical prototyping and that

of analytical modeling [1,2]; it has significant ramifications on a company's ability to rapidly

and cost effectively optimize designs and therefore impacts competitiveness in terms of price,

quality, and time to market. The degree of impact varies as a company progresses through

different stages of growth and maturation, so the boundary location itself must also be dynamic

and the decision on where to place it must be reassessed continually.

On one end of the spectrum is design through prototyping where all determination of

performance is made through physical mock-ups of the product. This approach is advantageous

in that it provides concrete performance results for a specified design concept and given set of

operating conditions, and can require low resource investment if the complexity of the design

optimization problem is low. For example, if designers are only optimizing for one objective, it

can be less costly in terms of engineering time and materials to optimize through iterative

prototyping. However, resource investment can grow rapidly as additional objectives are added

to the optimization problem, making it difficult to rigorously determine if a design is truly

optimal.

On the other end of the spectrum is design through modeling and simulation' where

determination of performance is predicted through computer aided engineering (CAE) tools.

Using CAE tools, engineering time remains low with increasing optimization complexity. This

allows for rapid optimization given multiple objectives and for a more rigorous determination of

global design optima. The disadvantages of design through modeling include the relatively large

capital investment required to purchase and operate the necessary software tools and the fact that

modeling can never fully eliminate the need to prototype. At a minimum, confirmation

prototyping is still required to establish concrete results for the final design.

iT'rhe literature sometimes refers to analytical models as "analytical prototypes" but the author will not do so in this
text. Rather, the author will reserve the term prototype to refer only to physical mock-ups of a product.



Small companies in the start-up phase often wind up on the prototyping end of the

spectrum. Such companies are often concerned about survival and as such are predominantly

worried about making a product that works in the face of an unstable customer base. In this

environment prototyping is viable as the optimization space contains only one objective

(performance) and modeling tools are an investment that can only be justified based on payoffs

from future products, designs, or orders that may never come.

As a company succeeds and grows out of the start-up phase, the prototyping vs. modeling

boundary must be pushed out to include more modeling if the company is to remain competitive.

This is because success brings with it a more stable customer base demanding more product with

increasing quality and lower costs. This increases the complexity of the optimization space.

Products must not only work but manufacturability becomes a larger concern. Modeling allows

for cost effective optimization given these multiple demands. Additionally, the stability of the

customer base ensures that investments in modeling tools can be recouped in future products and

designs.

iRobot, specifically the Small Unmanned Ground Vehicle (SUGV) group of the

Government and Industrial Robots (G&IR) division, is at such a crossroads where the boundary

between prototyping and modeling must be reevaluated.

1.1 iRobot Government and Industrial Robots Division Overview and Background

The flagship product of the G&IR division is the PackBot, shown in Figure 1. The

PackBot traces its roots back to 1997 when the then seven year old iRobot bid on the DARPA

"Point Man" Broad Agency Announcement (BAA). This BAA was looking for a robotic scout

vehicle for use primarily in an urban combat environment. iRobot won the contract and

developed a tracked vehicle platform. The original contract went through several iterations,

resulting in numerous versions of the vehicle ranging from what was called the Urbie to the

PackBot Scout.

Shortly after the issuing of the "Point Man" BAA, the British government issued a call

for proposals under a project named ICECAP. The purpose of this project was to develop a next

generation explosive ordinance disposal (EOD) robot for use in the British military. iRobot

responded, leveraging the work done for the "Point Man" BAA. The idea was to simply develop



EOD payloads for the tracked vehicle platform already in existence. iRobot won the contract but

was ultimately unsuccessful in satisfying the ICECAP requirements. However, the work done

resulted in what was to become the PackBot EOD variant.

Figure 1 - PackBot Explorer

Following the lead of the British, the U.S. government issued a call for proposals for a

next generation EOD robot of their own under the MTRS contract. iRobot responded to this call,

leveraging the PackBot EOD development. Near simultaneously, the U.S. government issued an

emergency needs contract to immediately supply EOD robots to the troops fighting the war on

terror in Afghanistan and Iraq. Again, iRobot responded by leveraging the PackBot EOD

development. iRobot won a substantial piece of both contracts and deployed several PackBot

EODs to combat theaters and is currently producing more.

Finally, feedback on the performance of the PackBot Scout, originally developed back as

part of the "Point Man" BAA, led to the design of the PackBot Explorer variant, which is not yet

in production.

Throughout the PackBot development the design process relied heavily on iterative

prototyping. The project was living contract to contract and lacked the stable customer base and

product demand that would require reliably repeatable production at low cost. Performance was

the dominant metric. The product did perform, rather successfully, and this success would

necessitate a change in the design process boundary between prototyping and modeling.



1.2 Project Motivation

The success of the PackBot was largely responsible for iRobot securing, in 2004, an

estimated $32 million contract to deliver a SUGV to the Army as part of its Future Combat

Systems (FCS) initiative [3]. The importance of this contract to iRobot cannot be understated. It

allowed iRobot to grow its G&IR engineering department by over 15% in 2004 alone; propelled

iRobot to a tier one defensive supplier with the likes of Honeywell, Lockheed Martin, General

Dynamics, and Raytheon; and will help fund the growth of infrastructure necessary to bid and

win large defense contracts in the future.

Success on the SUGV contract is critical to iRobot's future growth, and depends, in part,

on the ability to meet aggressive cost targets. SUGV, as what one could consider a next

generation PackBot, needs to be about half the price of the most comparable PackBot variant and

requires a paradigm shift away from a design process emphasizing functionality alone, to one

that balances functionality and manufacturability.

In general, the problem becomes one of pushing the design process boundary between

prototyping and modeling out to include more complex modeling and simulation so as to allow

designers to quickly and reliably optimize designs given the multiple optimization objectives of

performance and manufacturability. A subset of this problem is analyzing the applicability of

modeling and simulation processes for evaluating and selecting materials for use in various parts.

Computer aided simulation is a reliable means of material evaluation and selection, is

increasingly available to smaller companies transitioning out of the start-up stage of maturation

due to the shrinking cost of computation, and is essential for optimizing across multiple

objectives in a timely and cost effective manner

To support this thesis, the author begins in Chapter 2 by examining the current process of

iterative prototyping for evaluating and selecting a polymer material for use in the wheels of the

SUGV. The author then demonstrates that the experimental derived performance results can be

reasonably predicted using the viscoelastic properties of polymers, as captured in such models as

the standard linear solid model, and that this predictability can be used to quickly simulate wheel

performance with CAE tools. In Chapter 3, the author performs a cost analysis of the current

material evaluation/selection process versus the CAE approach to show the best path forward for

incorporating CAE tools into the design process of younger corporations, like iRobot. Finally,

the author concludes in Chapter 4 with potential areas of further research.



Chapter 2: Material Evaluation and Selection for Wheel Design - A Case

Study

2.1 Wheel Design Overview

The SUGV is a track driven vehicle with two drive wheels and two idler wheels. These

wheels support and propel the tracks, but also act as principal shock absorbers in the event of

shock loads. Shock absorption is important because of the sensitive electronic and optical

payloads and the rugged military operating environment. Installation of a dedicated shock

absorbing system is impractical because of weight and space constraints coupled with operating

conditions that could impose shock loads from any arbitrary direction. As a result, the bulk of

the shock absorption task is left to the wheels. This places the wheels in an interesting design

space. Ideally they should be stiff so as to support the driving load, efficiently transmit torque

from the axles to the tracks, and absorb large amounts of energy for a given deflection.

However, in order to reduce deceleration forces on the robot under impact, the wheels should be

ductile so as to allow relatively large deflections without fracture of permanent deformation.

These design conflicts place the wheel in a difficult middle ground of impact problems.

On one end there is the sacrificial cage problem. In this case the cage must absorb large amounts

of energy over a relatively large deflection distance in order to preserve the contents. If a driver

drives his car into a wall at 60 miles per hour and walks away, he accepts that he can't reuse his

car. On the other end is the problem of the indestructible water bottle. If someone drops their

water bottle, they want it to survive and be reusable but care not about "preserving" the water

inside. In the middle, the SUGV wheels must absorb significant amounts of energy over large

deflections in order to protect the SUGV payloads, but they must also survive without fracture or

significant permanent deformation so that the robot can drive away after impact.

This middle ground, combined with the stringent weight requirements of the SUGV,

restricts the wheels to the polymer class of materials, as shown in Figure 2. In this figure,

Young's modulus is plotted versus elongation (both normalized by density). Good materials, i.e.

those that are both stiff (high Young's modulus) and ductile (high elongation) for their weight,



are found in the upper right quadrant. Figure 2 reveals that it is the polymer class of materials

that resides in the upper right quadrant.

o
O

t-0
aO
>-

Elongation (%) / Density (p)

Figure 2 - Specific Stiffness vs. Specific Elongation

Part performance (P) in all applications, including impact, is a function of functional

requirements ( F ), geometry (G ) and material ( M ) [4]:

P= f(F,G,M).

If material is restricted to one class of materials, then only a certain subset of geometries is

available and that subset of geometries is typically available to all materials in the class. In this

case, the factors of the part performance equation become independent. An optimal geometry for

a particular application tends to be optimal regardless of the material used within the class. (i.e.

an I-beam has a larger bending stiffness to weight ratio than a comparable rectangular beam

regardless of whether the beams are made of nylon, polyethylene, etc.). Similarly, properties of



the materials within the class tend to affect performance independent of geometry. For example,

nylon has a larger specific stiffness than polyethylene regardless of its shape. This independence

that exists when the material class is restricted makes the complex middle ground of impact

problems in which the SUGV wheel lies a bit less inhospitable. Since the material class is

restricted to polymers, designers can optimize geometry and material selection separately. Thus,

if g represents the number of possible geometries and m represents the number of possible

materials within the polymer class, the number of combinations to search in seeking an optimal

design grows with g + m rather than g * m.

2.2 Legacy Design Approach - Experimental Trial and Error

The PackBot wheel served as a baseline design for the SUGV. Wheel design for the

PackBot relied heavily on iterative prototyping, or what the author terms experimental trial and

error. Wheels of varying geometries and materials were prototyped and underwent a drop test to

determine their performance. While the independence property of part performance greatly

reduces the number of combinations to be tested ( g + m << g * m if g and m are large),

practically speaking, g + m is prohibitively too large in its own right to systematically search for

an optimum through trial and error. As a result, designers were time constrained to simply tweak

whatever functional design combination they stumbled upon, potentially resulting in a local

optima. After months of effort, the resulting design is one that functions well but relies on the

machining of cast polymers, bringing the cost per wheel up to the order of $100.

Moving forward, SUGV designers believed $100 per wheel was likely to be a local

optima and therefore an opportunity to significantly reduce costs through redesign. Both

geometry and material were to be reinvestigated; however, due to the independent nature of these

two factors, as discussed in section 2.1, the author will focus solely on materials for now. In

terms of material selection, the design methodology remained unchanged from the PackBot. The

experimental hunt and peck search was simply reopened, focusing on previously untried polymer

materials with less expensive processing techniques (i.e. injection moldable). Ironically, this

methodology arose, in part, from a lack of time necessary to truly understand the physics behind

the dynamics of wheel impact. In the long run, though, the experimental trial and error approach

is so time consuming that the resources invested in an alternative material search could very



easily outweigh the return through production cost savings. An alternative process for material

evaluation and selection is necessary.

2.3 Desired Future Design Approach - Prediction Modeling

A better design approach involves performance prediction. It would be far more efficient

if given a set of easily obtainable inputs, designers could accurately predict wheel performance

without any prototyping. Intuition leads us to believe that this is possible as there ought to be a

constitutive relationship between some set of physical properties and performance. As a check

of this assertion, an easy first step is to attempt to experimentally determine a prediction model.

2.3.1 Building a Prediction Model through Experiments

The goal is to build a prediction model that uses a set of material properties to explain

impact performance. The best data collection strategy to do so would use designed experiments

to systematically vary the material property inputs and observe the resulting performance [5].

Such a strategy is not practical in this case as it assumes that the material property inputs to the

prediction model can be independently controlled. Rather, the only independent choice available

is material, which dictates a certain combination of strongly correlated properties. Therefore,

performance data is unplanned relative to material property input factors and any resulting

prediction model is thus subject to many potential pitfalls in terms of the usefulness of the results

[6,7]. Despite its shortcomings, a prediction model using material properties still provides some

understanding of which properties contribute significantly to impact performance and the manner

in which they do so. The first step in building such a prediction model is defining the material

data set, the response variable, and the input factors.

2.3.1.1 Defining Material Data Set, Response Variables, and Input Factors

Eight different materials were tested, as outlined in Table 1.



Manufacturing
Material Type Process
A Type 6 Nylon Casting
B Type 6/12 Nylon Casting

copolymer
C Thermoplastic Injection Molding

polyester elastomer
D Polycarbonate Injection Molding
E Polyetherimide Injection Molding
F TPU - Polyether Injection Molding

(Urethane)
G Toughened Type 6/6 Injection Molding

Nylon
H Thermoplastic Injection Molding

polyester elastomer

Table 1 - Material Data Set

Materials C through H were selected because they are representative of the full range of impact

performance seen in the new polymers tested. Additionally, materials A and B were included as

representative of a class of polymers that performed well in PackBot designs in order to provide

a performance baseline against which to compare new materials under consideration.

The response variable is taken as the failure height (in inches) of the prototype wheels in

a specified drop test. For this test the prototype wheels were affixed to a 14 lbs. slide hammer

which is mounted to a six foot rail. This setup allows the wheels to drop onto an anvil from

heights varying from zero to 70 inches. The test apparatus is show in Figure 3.

Figure 3 - Drop Test Fixture with Prototype Wheel



Two wheels of each material were dropped every two inches from six inches to 70 inches (or

until catastrophic failure) and the failure height was recorded for each sample. The wheels were

not rotated between drops, but rather were allowed to impact on the same spot each drop.

Failure is defined as either 1) at least one crack or tear all the way through the rim or any spoke,

2) permanent deformation of 5/32" or more as measured along the radius, or 3) bottoming out on

the urethane stop collar. These failure criteria are motivated by three failure modes for wheels

on an actual robot:

1. Material failure, either through fracture or plastic deformation.

2. Failing to absorb/dissipate enough energy prior to the robot chassis bottoming out.

3. Decelerating too quickly (i.e. material is too stiff), thereby transmitting too large a shock

load to the robot's payloads.

In practice, the last failure mode is not a concern because the material class is limited to

polymers. Extremely stiff polymers tend to shatter before exceeding a tolerable deceleration

level. Therefore, failure criteria one and two are designed to capture the first failure mode.

Failure criteria three partially addresses the second failure mode and eliminates artificially low

permanent deformation numbers at higher drop heights. It is important to note that at this stage

in the discussion the author is not attempting to correlate these failure criteria with any sort of

absolute measure of adequate performance on an actual robot. Rather, the criteria were chosen

to get an adequate measure of relative performance among the materials tested. Using the

specified testing procedure and failure criteria, the response variable values for each material

tested is given in Table 2.



Material Failure Height (in)
58
60
58
66
42C
48
24
26
10
12
52
54
30G 34
40
44

Table 2 - Response Variable Values

It would be ideal if the inputs factors were derived from published material data sheets.

However, manufactures vary greatly in the data they publish. A quick scan of material data

sheets for any property that one could reasonably believe to be linked to impact performance

reveals only two properties published across all eight materials tested; flexural modulus and

tensile elongation to failure. So, the input factors are taken to be flexural modulus and tensile

elongation to failure. This is perhaps not unreasonable since, as per the wheel design overview

discussion in section 2.1, one would expect stiffness (read flexural modulus) and ductility (read

tensile elongation to failure) to be critical to performance. The values for the input factors are

listed in Table 3.

Flexural
Modulus Elongation

Material (MPa) (%)
A 2930 50
B 2310 52.5
C 1116 400
D 2230 98
E 3510 60
F 483 350
G 1793 55
H 550 450

Table 3 - Input Factors



2.3.1.2 Model Fit Results

The prediction equation for a model investigating only the main effects of the input

factors takes the form below:

failureheight = bo + b1,FM + b2Elong,

where FM and Elong are the flexural modulus and tensile elongation to failure input factors,

respectively, and failureheight is the failure height response variable. Using least squares

regression to determine the coefficients b0 , b,, and b2 yields the results in Table 4.

Coeff Std Error t-stat P-value
Intercept 70.49325 24.15349 2.918553 1.20%
FM -0.011472 0.008099 -1.416422 18.02%
Elong -0.041995 0.050069 -0.838738 41.68%
R2 0.165358

Table 4 - Model Fit Results: Material Data Sheet Input Factors

To understand these results in fuller detail, the reader is encouraged to refer to Appendix A for a

brief least squares regression primer. Suffice to say, however, these results are not good. First

and foremost, they violate physical intuition. Negative coefficients for both flexural modulus

and elongation to failure indicate that drop performance should increase as the material becomes

less stiff and less ductile. This is exactly opposite to what was argued in section 2.1. Of course

this may not be such a problem seeing as neither the FM nor the Elong coefficient is

particularly significant. In fact, the high P-values for FM and Elong , coupled with the low R2

indicate that a prediction equation based upon the input factors chosen is not significantly better

at predicting failure height than is the average failure height alone.

2.3.1.3 Adding Strain Rate Dependencies to the Prediction Model

The input factors used in the previous model are typically derived from tests utilizing low

strain rates. As such, they do not capture the strain rate dependencies on material properties

exhibited by polymers. An impact is a high strain rate event so it follows that strain rate



dependencies would play a significant factor in drop test performance. Therefore, additional

input factors predicated on these dependencies are required to increase the accuracy of the

prediction model.

The strain rate dependencies of polymers are often modeled using viscoelastic elements.

One such simple model is the standard linear solid (SLS) model [8], illustrated in Figure 4.

EE
E42

E1 and E2  = Elastic coefficients
rn = Viscous coefficient
a = Stress
E = Strain

Figure 4 - Standard Linear Solid Model

The SLS has a constitutive stress/strain relationship shown below:

de E1  E1 + E2  1 do

dt q 1iE 2  E 2 dt

To check if such a strain rate dependent stress/strain relationship is substantially better

for modeling an impact event, the author approximated a wheel impact in two ways. First, using

a simple elastic relationship (linear, but no strain rate dependencies - representative of a

stress/strain relationship captured by the input factors used in section 2.3.1.1) as shown in Figure
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Figure 5 -Elastic Approximation of Wheel Impact

Here, x represents displacement of the hub towards the rim. In this model the governing

equation is

d 2x
m + kx = 0.

dt 2

The second approximation uses a viscoelastic relationship (linear, with strain rate dependencies -

representative of the SLS model), depicted in Figure 6.

Mass representing axle load
compressing hub to rim

Wheel Rim

Rigid surface of infinite mass
(i.e. the ground)

Figure 6 - Viscoelastic Approximation of Wheel Impact

Here x again represents the displacement of the hub towards the rim. In this case, the governing

equation is

d 3x d2x dx
cm d +m(k +k 2) 2 +ck 2 -+klk 2x=O.

dt3 dt dt

/haAIhml I--hh

Whoal WI ih
VV!
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These two approximations were compared against actual acceleration data. In this test, a

prototype wheel of each material was dropped from six inches and the resulting acceleration

values were captured with a Silicon Designs 200G accelerometer (model 2210-200) mounted to

the slide hammer of the drop test fixture. The test results are shown for Material A in Figure 7.

Similar results were achieved for the remaining seven materials. As defined in the two

governing equations, the acceleration acting upon the mass upon impact is negative. So, for ease

of viewing, Figure 7 plots deceleration. The elastic and viscoelastic curves in Figure 7 represent

the best fit of the appropriate governing equation to the actual data. Appendix B covers in

greater detail the derivation of these best fit curves.

Material A - 6" Drop

0 0.002 0.004 0.006 0.008 0.01
Time (sec)

0.012 0.014 0.016 0.018

Figure 7 - Wheel Drop Test Deceleration Data

It is fairly apparent that the viscoelastic approximation is better at matching actual data.

This approximation deals with forces and displacements as opposed to stresses and strains.

Therefore, it incorporates the SLS parameters and the geometry of the prototype wheels. Since



the prototype wheel geometry is held constant, it reasonably follows that the SLS parameters

alone should accurately reflect the stain rate dependencies of the polymer materials tested.

Therefore, a material's SLS parameters might be valuable input factors to a drop test failure

height prediction equation. Unfortunately, SLS parameters are not commonly published so they

must by extracted through material tests.

2.3.1.4 Deriving Standard Linear Solid Parameters through Acceleration Measurements

One possible method of deriving SLS parameters starts with the parameters of the

viscoelastic impact approximation. As stated earlier, the governing equation for this

approximation is in terms of force and displacement, while the constitutive equation for the SLS

model describes stresses and strains. Thus, to get from the viscoelastic impact approximation

parameters to the SLS values, one must convert force and acceleration data to stress and strain

data. Doing so on the prototype wheels is impractical for two reasons. First, the contact area

and axis of displacement during the course of impact is not straightforward to calculate. Second,

and more importantly, performing such a conversion on a prototype wheel eliminates the

advantage of developing a prediction equation in the first place. If, in order to determine the

input factors for a drop test failure height prediction equation, one must prototype a wheel and

drop it at least once in order to gather acceleration data, there is no point in having a prediction

equation as it would only save the 15 minutes or so it takes to drop the prototype wheel to

failure. Fortunately a conversion of force / acceleration data to stress / strain data is practical if

manufacturer test plaques are used. Test plaques come in simple rectangular solid geometries,

allowing for straightforward calculations of contact areas and original lengths along

displacement axes. Additionally, they are available as free samples, obviating the need for time

consuming prototyping.

The procedure for using test plaques to determine the SLS parameters begins with a

simple modification to the drop test figure as pictured in Figure 8.



Figure 8 - Drop Test Fixture with "Nose"

The "nose" affixed to the slide hammer is used to impact a material test plaque placed upon the

anvil. Acceleration measurements from the impact can then be used to determine the k1 , k2 , and

c of the viscoelastic impact approximation. The appropriate conversion factor is LI A, where

L is the original length along the axis of displacement, and A is the force contact area.

Therefore,

k L
E 1 = 1 ,A

k2L
E2 -'

A

and

cL

A

The origin of this conversion factor is outlined in Appendix C.

In practice, this approach for determining SLS parameters is not viable because

deceleration data from different materials is virtually indistinguishable. Figure 9 reveals this fact

for materials A and H. These two materials differ significantly in terms of published material



properties but, as the figure shows, the deceleration data measured from their test plaques is

practically identical.
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Figure 9 - Test Plaque Drop Test Deceleration Data - 1/8" Drop

The exact reason for these indistinguishable results is not fully understood, nor was it fully

explored. The author's theory, however, is that in rectangular solid form the materials tested are

all sufficiently stiff so that any differences between them are washed out by the compliance of

the test apparatus itself. Evidence to support this theory is shown in Figure 10, where one can

see that the response from dropping the slide hammer directly on the anvil, with no material

present, is not radically different from the response with material present.
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Figure 10 - 1/8" Drop Test Deceleration Data - No Material vs. Test Plaque

2.3.1.5 Deriving Standard Linear Solid Parameters through Time-Temperature

Superposition Measurements

A second method of extracting the SLS parameters can be seen by recognizing that the

SLS model acts as a mechanical filter. In response to a sinusoidal stress, there is a phase lag in

the resulting strain. The tangent of this phase lag is often referred to as the loss tangent, and is

given by

tan(delta)= ,7E2CO
El (El + E2 )+ (rw0) 2

where o is frequency measured in rad/s. Refer to Appendix D for a derivation of this result.

Plotted against frequency, the loss tangent has a resonant peak that falls off on either side, as

depicted in Figure 11.
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Figure 11 - Ideal Loss Tangent Function vs. Frequency [rad/s]

Therefore, one could derive SLS parameters by measuring the actual loss tangent function of a

material and fitting the best idealized curve. Taking such measurements falls under a class of

testing referred to as Dynamic Mechanical Analysis (DMA), and many techniques and test

equipment exist for this purpose. The author used TA Instrument's Q800 in single-point,

cantilever mode. Refer to Appendix E for test setup and data.

Even with access to appropriate test equipment and techniques, measuring loss tangent

functions versus frequency is problematic. This is because while the idealized loss tangent

function shown in Figure 11 is normalized to have a peak equal to one that occurs at one rad/s,

actual loss tangent function peaks vary greatly in amplitude and frequency depending on the

material. However, most measurement devices, including the Q800, have a relatively small

frequency range (on the order of 1 - 1000 rad/s), making it very probable that the loss tangent

peak falls outside the dynamic range of the test instrument. Instead, one must rely on the time-

temperature superposition (TTS) principle [8]. Because of the relationship between temperature

and molecular mobility, the TTS principle allows one to trade temperature for time (1/frequency)



in measuring dynamic mechanical behavior. In other words, mechanical effects present at high

temperatures and high frequencies (small time intervals) can also be observed at low

temperatures and low frequencies (large time intervals). Measurements made at the low

temperatures and low frequencies can be translated into their high temperature/high frequency

equivalents with a multiplicative shift factor.

Specifically, for a given loss tangent value, we can define a shift factor aT as

f (ref)
aT- f(T)

Therefore, if one makes a loss tangent measurement at a certain temperature T and finds a

:specified loss tangent value to occur at frequency f(T), then the frequency at which this same

loss tangent value will occur at a reference temperature T,,e is given by

f (Tre, ) = aTf(T) .

In general, one can suppose the characteristic frequency of any time and temperature

dependent process to be described with an Arrhenius relationship:

f (T) = Ce - "RT,

where A is the activation energy of the process [J/mol], R is the gas constant (8.3 J/K mol), and

T is the absolute temperature [K]. The shift factor then becomes

A 1 1
aT =exp [ - .

R loT Tsit

In log space, the shift factor becomes additive:

In(f (T,,-,))= In(f (T))+ In(aT),



where

EA l 1/ln(ar)= A I  "R T Trj

One can therefore take low frequency sweep measurements (from -1 - 100 rad/s) at several

discrete temperature steps and shift them left or right in log space until they line up in a master

curve. The extent to which the individual frequency sweep curves "line up" can be qualitatively

judged by how well the resulting shift factors follow an Arrhenius curve. Performing the TTS

measurements for the eight materials in the data set yields the loss tangent functions pictured in

Figure 12." Appendix E discusses the quality of the master curves and the reason behind the

choice of 100°C as a reference temperature.

The curves in Figure 12, while they have the characteristic loss tangent shape, are not

ideal. The ideal loss tangent function, in log space, is symmetric about the peak and has

ascending and descending slopes equal to one. This is not the case for the experimentally

derived curves, making any attempt to fit an ideal loss tangent function to these curves a

relatively futile exercise. However, these curves certainly contain information about the

individual materials. The author has chosen to quantify this information through the peak loss

tangent value and the frequency at which this peak occurs. In defense of this choice, the reader

should note that these values are easy to obtain and relate to the original SLS parameters in the

following way:

EI(El + E2)
(peak - E 2

E2
tan(delta) = 2 E

2
llmpeak

"The data in Figure 12 is given in Logio. This is an inconvenient and potentially confusing switch from the natural

logarithms used to derive the shift factor, a, , but it remains mathematically valid and is consistent with the way in

which data is presented in TTS analysis software and in the literature.
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Figure 12 - Loss Tangent Functions vs. Frequency [rad/s] (1000C Reference Temp)

2.3.1.6 Redefined Input Factors and Resulting Model Fit

Adding al)peak and tan(delta)wpeak to the flexural modulus and elongation input factors

defined in section 2.3.1.1, the author obtained the revised input factors shown in Table 5.

Material F
+ Material G
o Material H

SI I I I I I



100C Ref Temp
Flexural
Modulus Elongation

Material [Mpa] [0%] log(w [rad/s]) log(tan delta)
A 2930 50 9.771625843 -0.990191419
B 2310 52.5 14.28828845 -0.968476695
C 1116 400 9.293901913 -0.855560129
D 2230 98 -10.38832401 0.260576689
E 3510 60 -23.14789589 0.364807365
F 483 350 6.210411091 -0.456009206
G 1793 55 5.254963231 -0.851217185
H 550 450 15.91689276 -0.942419026

Table 5 - Input Factors: Revision 1

Using a prediction equation of the form

failureheight = b, FM + b2Elong + b3 log(w) - b4 log 2(tandelta)

results in a much better model fit. Table 6 reveals incredibly significant results that explain over

99% of drop failure height variability, as opposed to just over 16% before.

Coeff Std Error t-Stat P-value
FM 0.030879 0.002358 13.09518 0.00%

Elong 0.068393 0.00632 10.8222 0.00%
log(w) 4.001448 0.344369 11.61967 0.00%

log^2(tan delta) -74.12129 9.967347 -7.436412 0.00%
R2 0.992248

Table 6 - Model Fit Results: Input Factors Revision 1

Table 7 shows that this prediction equation also predicts failure height fairly well (within 20%

worst case).

While this model allows failure height prediction without the need to prototype wheels, it

still suffers from a couple drawbacks. To begin with, manufacturers don't speak in terms of

Opeak and tan(delta) peak , so the data must be obtained independently. Also, obtaining Wopeak and

tan(delta) op,,k is cumbersome. Taking the numerous frequency sweep measurements at discrete

temperature steps necessary to perform TTS shifting requires six hours on average per material

sample tested. In order to address these drawbacks, it is best to revise the input factors one more

time.



Average
Failure Predicted
Height Failure

Material [in] Height [in] % Error
A 59 60.3211027 2.24%
B 62 62.572884 0.92%
C 45 44.7517025 0.55%
D 25 28.9612911 15.85%
E 11 9.99902964 9.10%
F 53 48.289698 8.89%
G 32 26.4488343 17.35%
H 42 45.6199089 8.62%

Table 7 - Predicted Failure Heights: Input Factors Revision 1

Due to the time and temperature trade off exploited for the TTS measurements, one might

expect loss tangent data versus frequency (fixed temperature) to have a similar behavior to loss

tangent data versus temperature (fixed frequency). This is exactly what is observed. Figure 13

shows that virtually the same information is present in loss tangent data versus temperature as

was present in the loss tangent versus frequency curves of Figure 12. In a similar fashion to that

used before, the author has quantified this data in terms of Tpeak , the temperature at which the

peak loss tangent occurs, and peak loss tangent, tan(delta)rT.

Replacing Wpeak and tan(delta) Opeak with Tpeak and tan(delta)T pk addresses the

disadvantages of the former input factors. Firstly, Tpeak corresponds to the glass transition

temperature, T, . An alternative expression for the loss tangent is the ratio of the loss modulus to

the storage modulus: G"/G' [9]. At the glass transition temperature, the storage modulus drops

precipitously relative to the loss modulus, leading to a peaking of the loss tangent [10]. Glass

transition temperatures of polymers are well understood and often measured by manufacturers.

Therefore, flexural modulus, elongation at failure, glass transition temperature, and loss tangent

(or loss coefficient as it sometimes named) at the glass transition comprise a set of input factors

based upon material properties commonly understood by manufacturers.
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Secondly, directly as a result of the first point, the inputs factors are all easily obtainable.

Even if Tg and tan(delta)T are not available from the manufacturer, they are easier to obtain

through DMA measurements than opeak and tan(delta)•W, . Collecting loss tangent data versus

temperature requires only a single temperature sweep at one frequency, which can reduce testing

time from the six hours previously quoted to less than one hour.

Revision two of the input factors leads to the data in Table 8.
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10 Hz Reference Frequency
Flexural
Modulus Elongation

Material [Mpa] [%] Tg [C] log(tan delta)
A 2930 50 41.3 -0.990191419
B 2310 52.5 18.6 -0.968476695
C 1116 400 52.4 -0.855560129
D 2230 98 163.5 0.260576689
E 3510 60 235.6 0.364807365
F 483 350 60 -0.456009206
G 1793 55 76 -0.851217185
H 550 450 24.3 -0.942419026

Table 8 - Input Factors: Revision 2

The resulting model fit, shown in Table 9, is based upon a prediction equation of the form:

failureheight = bo + b, FM + b2Elong +b3T, -b 4 log 2 (tan delta).

Coeff Std Error t-Stat P-value
Intercept 69.28176 4.793976 14.45184 0.00%

FM 0.019813 0.002421 8.183769 0.00%
Elong 0.042497 0.01022 4.158029 0.16%

Tg -0.531116 0.035824 -14.82588 0.00%
logA2(tan delta) -48.91906 5.62998 -8.689028 0.00%

R2 0.978007 1 1 1

Table 9 - Model Fit Results: Input Factors Revision 2

Average
Failure Predicted
Height Failure

Material [in] Height [in] % Error
A 59 59.558731 0.95%
B 62 61.518022 0.78%
C 45 44.753013 0.55%
D 25 27.469797 9.88%
E 11 9.7330428 11.52%
F 53 51.68572 2.48%
G 32 31.333205 2.08%
H 42 42.948469 2.26%

Table 10 - Predicted Failure Heights: Input Factors Revision 2



This fit is also very good. In fact it is arguably better than the fit of revision I in terms of

prediction performance, shown in Table 10.

The prediction model looks good but in order to more firmly establish confidence in it

one must ask two pertinent questions. How well does it predict failure heights for materials

outside of the data set with which it was created and does it make good physical sense? To

address the first question, the author capitalized on the fact that the model uses a data set of eight

materials to fit five coefficient estimates. This results in more degrees of freedom than are

needed, so we can drop materials out of the data set, re-fit the model, and then see how well the

prediction equation predicts the failure heights of the excluded materials. The author chose to

exclude materials D and E, the materials with the poorest predicted failure heights in terms of

percent error. Table 11 and Table 12 tabulate the results. The fit remains significant and the

prediction performance is promising. Materials D and E, although not used to fit the model,

have predicted percent errors of less than 20% in the worst case.

Coeff Std Error t-Stat P-value
Intercept 72.6254 8.520789 8.523318 0.01%

FM 0.019599 0.003166 6.190218 0.04%
Elong 0.039367 0.013758 2.861479 2.43%

Tg -0.533358 0.061577 -8.661633 0.01%
logA2(tan delta) -51.61031 6.345302 -8.133626 0.01%

R2 0.947115

Table 11 - Model Fit Results: Materials D & E Excluded

Average
Failure Predicted
Height Failure

Material [in] Height [in] % Error
A 59 59.386973 0.66%
B 62 61.636611 0.59%
C 45 44.518399 1.07%
D 25 29.479709 17.92%
E 11 11.250587 2.28%
F 53 53.136437 0.26%
G 32 32.000239 0.00%
H 42 42.321341 0.77%

Table 12 - Predicted Failure Heights: Materials D & E Excluded



To address the second question, consider a normalized prediction model. To normalize

the model, the author divided each input factor by the largest magnitude within the range. For

example, from Table 8, the largest of the tan(delta)T, input factors by magnitude is that of

material A at 0.99. Therefore, each tan(delta),, input factor was divided by 0.99. This method

led to the normalized input factors depicted in Table 13.

10Hz Ref Freq
Flexural
Modulus

Material (MPa) Elongation Tg log(tan delta)
A 0.834758 0.11111111 0.175297 -1
B 0.65812 0.11666667 0.078947 -0.978070175
C 0.317949 0.88888889 0.222411 -0.864035088
D 0.635328 0.21777778 0.693973 0.263157895
E 1 0.13333333 1 0.368421053
F 0.137607 0.77777778 0.254669 -0.460526316
G 0.510826 0.12222222 0.322581 -0.859649123
H 0.156695 1 0.103141 -0.951754386

Table 13 - Normalized Input Factors

By normalizing the input factors, the magnitude of the coefficient estimates then provides

a measure of their importance in impacting the response value. Figure 14 shows the coefficient

magnitudes.
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The results show T. and FM to be the most important effects, which makes good

physical sense. The glass transition temperature is the temperature at which a polymer

transitions from the glassy plateau to the rubbery plateau. As such, below this temperature a

polymer is more glassy and brittle and above this temperature a polymer is more rubbery and

ductile. Therefore, the glass transition temperature is inversely proportional to ductility. So T9

speaks to ductility and FM speaks to stiffness. Since the sign of the T. estimate is negative and

the sign of the FM estimate is positive, the model indicates that high ductility (low Tg ) and high

stiffness (high FM ) are the most important for determining failure height performance. This

jibes well with the argument made in section 2.1 that wheels must be ductile enough to undergo

large deformation without fracture or permanent deformation, yet stiff enough to absorb large

amounts of energy for a given deformation. The only difference now as compared to this earlier

argument is that Tg is apparently a much better indication of ductility than is tensile elongation

to failure.

2.3.1.7 Experimental Prediction Model Conclusions and Observations

There are a few conclusions to draw from the experimentally derived prediction model:

* It provides good insight into what governs wheel impact performance. Specifically, stiff,

ductile materials perform best. This is not an exceptionally revealing statement, however

capturing both of these qualities in a single material appears to be something unique to

materials A and B, explaining their superior performance.

* Prediction is possible.

* If prediction is possible, then computer aided engineering (CAE) tools can be brought to

bear in order to model and simulate complex design problems such as wheel impacts far

more quickly than even experimental model fitting.

It is this last point that will be explored further in the following sections.



2.3.2 Prediction Modeling using Computer Aided Engineering Tools

The quest for a prediction model started with some assumptions on the constitutive

relationship between stress and strain and experimentally derived some material properties that

play a significant role in governing drop failure height performance. If instead one can

determine the appropriate constitutive stress/strain relationship or the appropriate series of

stress/strain relationships that govern deformation through an entire wheel impact event, one can

treat the complex wheel geometry as a series of infinitesimally small, but finite in number,

elements, each governed by the aforementioned stress/strain relationship(s). Solving for stresses

and strains at any given point in space or time then becomes a case of solving a system of

thousands, simultaneous stress/strain equations, something at which computers excel.

The analysis technique described above is a numerical technique known as the Finite

Element Method (FEM) and is the foundation of Finite Element Analysis (FEA). FEA was first

developed in the nineteen forties to analyze relatively simple structural problems that defied

closed form solution [11]. Developments in FEM knowledge and computing power over the

years have led to countless FEA software packages today that are capable of accurately modeling

incredibly complex problems. Included in these developments is the derivation of numerous

models to capture the stress/strain behavior of materials under a wide range of applications.

Previously in this document the author has explored simple linear elastic and linear viscoelastic

models but there are several stress/strain models for use in FEA software such as non-linear

viscoelastic, elastoplastic, and even models relying on equations of state.

To test the suitability of FEA, the iRobot contracted with an outside company to perform

analysis on the SUGV wheel design. This outside design firm was given performance

specifications, to include:

* Peak impact energy.

* Maximum allowable deceleration.

* Target wheel weight.

In addition, volumetric constraints were specified (i.e. the wheel must be round and fit with the

specified dimensions). The design firm was free to vary material used and geometry particulars

within the volumetric constraints. Working under these conditions, the design firm was able to

iterate through multiple design combinations until the performance specifications were met. The



iterative process relied solely on FEA to model and simulate performance of each of the designs

and took no longer than 2 man-weeks to execute. This is significantly less time than the many

man-months of effort to develop performance prediction through the regression model fitting

discussed in section 2.3.1. Additionally, the FEA model was able to predict the effects of both

material and geometry on performance. These time savings and the increased capabilities of the

resulting model are arguments enough for the benefits of FEA, but to strengthen the argument

the author will examine the business case for FEA in greater detail in the following chapter.



Chapter 3: Building a Business Case for CAE

3.1 Estimated Cost of Experimental Trial and Error Methodology

Previous sections have shown CAE tools such as FEA to have large potential time

savings in performance prediction. To better understand how these time savings translate into

costs, the author wishes to directly compare the cost of design using the legacy experimental trial

and error approach with the desired future design approach of performance prediction using

FEA. For sake of comparison, the author will attempt to capture all costs from the specification

of performance requirements to the point in the design phase were enough confidence exists to

prototype a full scale working part for confirmation tests.

This time window is hard to define for the experimental trial and error approach due, in

part, to the evolving nature of the performance requirements themselves. However, as an

estimate, the author has chosen to include the design time of the PackBot wheel, which led to the

geometry and material baseline for the SUGV wheel, and the design time spent to optimize this

baseline in order to find a material that can be manufactured more cost effectively. The PackBot

design took approximately four man-months of engineering time and cost $5,000 in materials.

SUGV optimization led to enough confidence in material F to move forward with full sized

prototype production. This effort required another five and a half man-months of time and cost

$12,000 in materials."' Engineering time for both the PackBot and SUGV design phases was

estimated to be divided among senior and junior engineers in a one-third to two-thirds ratio.

iRobot's burdened hourly rate for those two groups is $174.18 and $109.47 respectively. So, for

engineering time, the resulting cost is

1 (9.5 man - months) 173.33 man - hours $174.18 +
3 man - month man - hour

2 (9.5man - months)(173.33 man - hour $109.47 =$215,775.05
3 man - month man - hour

SThis time estimate does not include the time spent by the author in developing the performance prediction
equations of section 2.3.1. The author's time was omitted because confidence in material F was developed by
parallel work of other engineers.



Here, 173.33man - houryman - month was derivedman- mnthwasdervedby taking

((52man- weeks/man- year)(40 man - hours/man - week))/(l2 man - months/man - year).

Adding material expenditures to the engineering time costs leads to a total design cost of

$215,775.05 + $5,000.00 + $12,000.00 = $232,775.05.

Therefore, the total design effort, leading to enough confidence in material F to prototype a full

size part, required 9.5 man-months of engineering time at a cost of -$230k.

3.2 Estimated Cost of FEA Approach

In contrast, the author spent an estimated half of a man-month coordinating the efforts of

the design firm, efforts that resulted in a geometry and material selection ready for prototyping.

The design firm charged $7,083.00 for their design study and took 2 man-weeks to complete it.

A conservative estimate bills the author's time at a senior engineer's burdened hourly rate.

Therefore, the cost of engineering time to iRobot is

(0.5man- months)(173.33 man - hours man- $mont) 174.18man- hour = $15,095.31

Adding the $7,083.00 charge from the design firm and the total cost to iRobot is $22,178.31.

Thus, the FEA design effort required one man-month of engineering time (one half from iRobot

and one half from the design firm) at a cost of ~$22k.

These numbers are about an order of magnitude lower in terms of both time and money,

making a very convincing case for the use of FEA in the design process.



3.3 Applicability of FEA to Other Aspects of the SUGV Design

Similar savings to those discussed above could be realized in other areas of the SUGV

design. One potential use for FEA that immediately stands out involves thermal analysis. A

problem faced by the SUGV designers is heat dissipation within the main electronics housing.

As no dedicated cooling system exists, heat dissipation occurs solely as the result of conduction

through the chassis and convection to the environment. In the PackBot design, an all aluminum

chassis provides sufficient thermal conductive capacity and surface area to cool the electronics

during normal operation. In the SUGV, as weight is a critical design parameter, it would be nice

to replace some chassis elements with lighter weight materials such as plastics. However, such a

design decision raises the question of impact on thermal dissipation. Will the electronics get too

hot if plastic materials of lower thermal conductivity are used?

To answer this question, designers relied on the tried and true approach of experimental

trial and error. A chassis mock-up was made using part aluminum and part plastic and a sample

power load was placed in the electronics housing. The temperature within the housing was

measured to see if it exceeded acceptable levels. Determining performance using a different

material or different chassis configuration would require a new chassis mock up and an

additional experimental run.

Heat transfer is generally well understood and thermal properties of materials are well

known, so this is a problem that lends itself even more readily to FEA than the wheel design

problem. In fact, the simple FEA software owned by iRobot as an add-on module to its

computer aided design (CAD) package is very capable of handling this thermal problem. The

original experimentation, including time to machine the chassis mock-up and collect temperature

data, required two man-weeks to complete. The results from this experiment were replicated

using FEA to within 8% (320 C final air temperature within the electronics box for experimental

results versus 32.5°C in FEA) in three man-days time [12].

3.4 FEA - Required Investment

Sections 3.1 through 3.3 show multiple aspects of the SUGV design where using CAE

tools such as FEA could have potentially large returns in terms of time and money. How best to

proceed in implementing FEA more widely throughout the design process therefore depends on



the level of investment required. A first level of investment is in the software packages needed

to perform FEA.

3.4.1 Cost of FEA Software

Many FEA software packages exist on the market today ranging from basic tools capable

of handling a small subset of problems to very robust tools that can solve a wide range of

problems. Part of what separates FEA tools on this spectrum is their ability to solve linear versus

non-linear problems and their inclusion of implicit versus explicit solvers.

Linear tools can only incorporate linear constitutive relationships. This precludes their

ability to solve problems requiring complex, non-linear models in order to accurately capture real

world behavior. Implicit versus explicit solvers differ in their ability to solve for steady-state

versus transient behavior. To illustrate this difference let's assume a quantity Q that we want to

evaluate at time t = (n + 1)dt in terms of its value at time t = ndt, i.e.

Q+ = Q, + Sdt,

where S is the rate of change in Q. An implicit solver would evaluate S in terms of some

quantities known only at the new time step t = (n + I)dt, while an explicit solver evaluates S

solely in terms of known quantities at the old time step t = ndt [13]. Implicit solutions are

unconditionally stable, meaning they are stable for any size dt. This makes them attractive for

steady-state problems as large time steps can be used in order to reach steady-state quickly.

However, implicit methods require iteration to advance the solution for each time step towards a

final, converged state. This becomes computationally intensive for small time steps, making

implicit solvers impractical for capturing transient or dynamic behavior. Explicit solutions, on

the contrary, are conditionally stable, meaning there is a limit to the size of dt before the

solution explodes. This makes explicit solvers a poor choice for solving steady-state problems of

a large time scale, as a prohibitively large number of time steps would be required to reach a

solution. However, explicit solutions do not require iteration to converge to a solution for each

time step, making an explicit method ideal for solving for transient behavior.



FEA packages vary greatly in price depending of where they are on the scale of

robustness. Pro/ENGINEER Structural and Thermal, the FEA package that iRobot has as an

add-on to its Pro/ENGINEER CAD package, is a linear FEA package with only an implicit

solver, placing it in the basic tool category. As such, it is inexpensive (a license costs $5000 plus

$840 annually for maintenance, where maintenance includes access to technical support).

However, it is not well suited to solve more complex design problems like the SUGV wheel.

On the more robust end of the FEA software spectrum are packages like ANSYS and

ABAQUS. These packages can solve both linear and non-linear problems and have implicit and

explicit solvers. They are well suited to solve design problems like the SUGV wheel. In fact,

the design firm utilized by iRobot to perform an analysis of the SUGV wheel design used

ABAQUS. As shown in Table 14, the robustness of these packages comes at a cost. This table

summarizes the cost for all three FEA packages.

Cost
Purchase Lease

FEA Package Type of Solver Capabilites Price Annual Maintenance Annual Fee
Pro/ENGINEER Structural Linear Mechanical
and Thermal Implicit and Thermal 5,000.00 850.00 N/A

Linear and Non-
Linear Mechanical

ANSYS Mechanical Implicit and Thermal 30,390.00 6,080.00 17,470.00
ANSYS LS-DYNA Explicit Transient 12,600.00 2,520.00 7,250.00

Total 42,990.00 8,600.00 24,720.00

Linear and Non-
Linear Mechanical

ABAQUS Standard Implicit and Thermal
ABAQUS Explicit Explicit Transient

Total 54,312.00 13,035.00 19,750.00

Table 14 - FEA Software Costs

3.4.2 Cost of FEA Expertise

Of course FEA is only as good as the engineer using it, so a substantial piece of the cost

in investing in FEA capabilities is the cost of the people to use them. As Pro/ENGINEER

Structural and Thermal is a basic tool, it can be fairly well understood and utilized by engineers

working with it on a part time basis (the three man-days of effort to conduct the thermal analysis

on the chassis discussed in section 3.3 included time taken by the engineer to figure out how to



use the software). Therefore, iRobot would incur no additional labor cost in utilizing

Pro/ENGINEER Structural and Thermal.

ANSYS and ABAQUS, by contrast, are far more complex, as are the problems they are

capable of solving. Thus, getting good utility out of these packages would require at least one

full time engineer with FEA experience. Such an engineer, due to the experience required,

would bill at iRobot's senior engineer burdened rate. This leads to an annual labor expense of

($174.18/man - hourX208Oman - hours/man - year) = $362,294.40/man - year.

3.4.3 Recouping FEA Investment

To solve a complete range of FEA problems, the Pro/ENGINEER Structural and Thermal

package iRobot already has in house is inadequate by itself. iRobot must utilize a robust

package like ANSYS or ABAQUS. Figure 15 estimates the net present costs of operating either

ANSYS or ABAQUS through both the lease or purchase options. This figure shows that leasing

ABAQUS is the least expensive option up until the five year mark. As this is on the time scale

of software obsolescence, leasing ABAQUS is arguably the best option for acquiring a robust

FEA software package. Therefore, total annual operating costs include software lease fees of

$19,750/year and labor expenses of $362,294.40/year. Sections 3.1 and 3.2 suggest a

potential savings of approximately $200,000 in using FEA for the SUGV wheel design problem.

Thus, a full time FEA engineer would have to work ($362,294.40+ $19,750.00)/$200,000 = 1.91

wheel design sized jobs per year in order to recoup the investment in software and labor.



Figure 15 - FEA Software Net Present Operating Costs

Another option is to use the Pro/ENGINEER Structural and Thermal package iRobot

already owns for simple problems and use FEA consulting firms, like the design firm used to

analyze the SUGV wheel design problem, to solve problems requiring a robust tool. This would

obviate the need to acquire robust software like ANSYS or ABAQUS, as well as the talent to use

it.. Pricing various FEA consulting firms yields a typical hourly rate around

$175.00/man - hour. This rate results in an annual labor cost of

($175.00/man - hour)(2080man - hours/man - year) = $364,000/man - year.

Here the only additional costs are the administrative costs of coordinating the contracted

work. These costs include the time spent generating statements of work and purchase orders and

paying invoices. Let's assume this administrative overhead adds a 9% time increase for every

man-hour of FEA consulting work used. This translates to an extra two man-days per man-

month of FEA work of coordination over what would be required if the work was done in house.

We know from sections 3.4.1 and 3.4.2 that the cost of doing any amount of ABAQUS level

REA work (from one to 2080 man-hours) in house would cost $382,044.40 annually ($19,750 for

software lease and $362,294.40 for labor). The question then becomes how many hours of

contract FEA work must be done before it is more cost effective to bring this work in house.

This question is answered by solving the following equation:



($175.00)x + 0.09x($109.47) > $382,044.40.

In the above equation it is assumed that the required coordination effort could be accomplished

at a lower burdened rate, equivalent to a junior engineer. Solving for x yields 2067 man-hours,

or 0.99 man-years.

These results show that utilizing FEA to optimize designs through performance

prediction offers a potentially large return on investment over the experimental trial and error

approach used in the past, on the order of 1000% using the SUGV wheel design problem as a

guide (-$230,000 saved for -$22,000 invested). The best way to incorporate FEA tools is to

utilize the existing software for basic problems and contract out more complex problems to FEA

consulting firms up until the point of one man-year of consulting work. After this threshold, it is

more cost effective to invest in the robust tools and expertise and bring them in house.

Such conclusions confirm the belief held by some of the SUGV design engineers that the

experimental trial and error design approach had grown too costly. However, skepticism over

the usefulness of CAE tools like FEA as an alternative still exists. Specifically there are

concerns over whether FEA will actually reduce the number of prototypes required or will

require more prototypes to verify that simulation was accurate. This skepticism can only be

overcome by actually trying to use tools such as advanced FEA to incorporate more modeling

and simulation into the design process. The potential cost savings calculated and the

recommendations made in this chapter provide an impetus and direction for doing just that.



Chapter 4: Conclusion

For historical and cultural reasons, iRobot's SUGV group has come to rely on extensive

prototyping to optimize and prove out designs. Aggressive cost targets for the SUGV require a

design optimized not only for performance but also for manufacturability. Achieving this

balance necessitates a paradigm shift away from the process of experimental trial and error to

one involving more use of performance prediction. To demonstrate that performance prediction

is possible and reliable, the author used regression fitting to develop a prediction model for

determining material performance in a wheel drop test. The result of this effort was a prediction

model that explains over 97% of the variability in failure drop height using readily obtainable

material properties and provides some good intuition for the physics governing wheel impact

performance.

These results provide an insight into the possibilities of performance prediction that

opened the door for exploration of computer aided engineering tools like finite element analysis

software packages that rely on the finite element method. While performance prediction through

regression fitting provides some relief from the resource intensity required by the experimental

trial and error approach, the use of FEA provides a real competitive advantage in design

optimization by providing significant savings in time and money required. Again, using the

wheel design problem as a test case, the author was able to show that FEA tools can offer

savings up to an order of magnitude in the time and money required to optimize a design.

Finally, the author was able to concretely show that the best path forward for iRobot in terms of

implementing the use of FEA more widely in its design process is to make better use of the basic

tools it already has for simple problems and contract out more complicated problems to FEA

consulting firms.

Future research in this area could occur in three major areas:

Combining high stiffness with a low glass transition temperature in the same material: Section

2.3.1.7 concludes that materials with a low T, and high stiffness provide the best performance in

wheel drop tests. However materials A and B appear to be unique in achieving both of these

properties in the same material. Determining how these two materials do so could provide the



knowledge necessary to replicate a low T, and high stiffness in an injection moldable material.

This would allow iRobot to manufacture wheels of comparable performance to those of the

current PackBot design at a fraction of the cost. This could be beneficial because while there is

confidence that material F, the lead contender of the injection moldable materials, performs

adequately, the material used in the current PackBot design still significantly outperforms it.

Further work along these lines is of little strategic value, however, as it only addresses the

particular problem of the wheel design, a problem that is arguably already solved to a level that

does not warrant such further investigation.

Implementing lessons learned: Of more strategic importance is the implementation of the

lessons learned regarding the power of utilizing FEA in the design process. Work has just begun

to expand the knowledge of the capabilities of the Pro/ENGINEER Structural and Thermal tool

already in house, to understand the boundary between problems this tool can solve and problems

more robust tools like ANSYS and ABAQUS can solve, and to develop a relationship with a

FEA consulting firm capable of utilizing robust tools to solve complex problems. As a first step

in this process, the author has worked with several of the design engineers to develop three

structural test cases that were presented to both a firm specializing in Pro/ENGINEERING

Structural and Thermal training and a firm specialized in the use of ABAQUS. The idea behind

this process is to use the test cases as a way to understand the capabilities and limitations of each

FEA tool, while at the same time to get useful information needed for design that would

otherwise be obtained through prototyping. Results from this process will have to be

incorporated into a new design methodology that can intelligently determine what work is best

suited for Pro/ENGINEERING Structural and Thermal versus more robust tools versus work that

still must be performed through prototyping. Additionally, this modified design methodology

needs to be incorporated into the design processes used on other product lines across both

divisions of iRobot to solidify the corporation's competitive advantage in product design moving

forward into the future.

Incorporating intangible costs into the CAE cost analysis: Key to implementing the lessons

learned in a manner discussed above is expanding the CAE cost analysis to include intangible

costs. Chapter 3 analyzed costs from a purely accounting perspective. The conclusion stating



that it is best to outsource FEA work up until the threshold of one man-year of work could

change drastically if costs on intangible items like intellectual property are factored in. To use

the wheel design as an example, one could argue that the wheels and the impact survivability

they enable are at the core of iRobot's competitive advantage in military robots. The intellectual

property of their design should therefore be guarded and not shared. If there are enough similar

design components that could benefit from FEA but do not amount to one man-year of effort, it

still might make sense to invest in the resources to perform the complex analysis in house.



Appendix A: Least Squares Regression Primer

Response variables can be expressed as a combination of input factors plus some random

error:

Yi =) + flxl, +/J2x2i +EF,

where yj is the ith response value; ,8, A, and 82 represent the coefficients; x1i and x2i

represent the ith input factors; and ei is a random error [5]. This example illustrates a linear

combination of two input factors, though this doesn't have to be the case. Non-linear terms such

as interaction terms (xli x2 i ) or polynomial terms (xli2 ) can also be explored. In addition, while

there are only two input factors in the above example, in general, the number of input factors is

only limited by the number of response value data points in the data set.

Let bo , bl, and b2 be the estimates of the coefficients ,0, A, and l2. Then Yi, the

predicted value of the ith response value, is given by the prediction equation below:

Yi = bo + bxli +b2x2i.

The ith residual, ej, then becomes

ei = Yi- Yi.

Least squares regression generates coefficient estimates such that the sum of the squares of the

residuals is minimized:
/n

min(SSres )= min z e .
,.i=l

As b0 , b , and b2 are estimates of the true coefficients, they are random variables with a

mean and variance. It can be shown that the mean of an estimate is the true coefficient it is

estimating. Therefore, one quality measure of a prediction equation involves determining each

input factor's significance by utilizing the variance of the estimate of its coefficient to develop a



level of confidence that the estimate's mean, or the true coefficient, is non-zero. Evaluating an

estimate's variance requires at least one degree of freedom. For example, if one wishes to fit a

straight line prediction equation, consisting of an intercept term and slope term, to a response

value data set consisting of only two data points, there are no remaining degrees of freedom with

which to evaluate variance of the coefficient estimates. In this simple case, the lack of any

degrees of freedom is readily apparent because two points define a line. There are no residuals

with which to evaluate variance. The number of degrees of freedom for variance analysis is

equal to the number of response value data points minus the number of coefficients estimated.

,Since, as stated before, at least one degree of freedom is required for variance analysis, the

number of coefficients that can be estimated is therefore equal to the number of response value

data points minus one. This imposes a limit, as discussed earlier in this appendix, on the number

of input factors one can include in a prediction equation.

Another quality metric is the coefficient of determination, R2 , that provides a measure of

the overall adequacy of a prediction equation. The coefficient of determination is given by:

SSR 2 = 1 SSres

SStotal

where

n

SSre s =•e ,
i=1

n
sstotaI = (yi _ Y)2

i=1

and

In
Y=-- Yi"

n i=1

In this way, R 2 varies from zero to one. An R2 of zero indicates that the prediction equation

explains none of the variability in the response. An R 2 of one indicates that the prediction

equation explains all of the variability in the response. Generally speaking, the higher the R- ,

the greater the overall adequacy of the prediction equation.

The regression results from Table 4 (reprinted here for convenience) offer an example

with which to gain a more concrete understanding of regression and regression metrics.



Coeff Std Error t-stat P-value
Intercept 70.49325 24.15349 2.918553 1.20%
FM -0.011472 0.008099 -1.416422 18.02%
Elong -0.041995 0.050069 -0.838738 41.68%
R2 0.165358

Table 4 -Model Fit Results: Material Data Sheet Input Factors

In this table, the Coeff column gives the coefficient estimates for the prediction equation. Thus,

the prediction equation for failure height becomes:

failureheight = 70.49325 -0.011472* FM -0.041995* Elong.

The standard error of the coefficient estimate is the square root of the variance. Dividing

the coefficient estimate by the standard error yields a test statistic (t-stat) for the significance of

the coefficient estimate. This t-stat is a measure of how many standard errors the coefficient

estimate is away from zero. Armed with this statistic, and knowledge that coefficient estimates

follow a t-distribution, it is possible to determine the probability (P-value) of observing a given

coefficient estimate if the true coefficient is actually zero. As a rule of thumb, 5% is usually

taken as a significance level cutoff, i.e. a P-value less than 5% indicates that there is less than a

5% chance that the true coefficient is zero given the observed coefficient estimate.

One can immediately see the poor quality of these regression results. The two input

factors used, FM and Elong , both have a P-value much larger than 5%. Additionally, the R 2

indicates that the prediction equation less than 17% of the failure height variability.



Appendix B: Derivation of Best Fit Viscoelastic and Elastic Wheel Impact

Approximation Curves

From section 2.3.1.3, the governing equation for the viscoelastic approximation of wheel

impacts is

d 3x d 2x dx
cm 3 +m(k +k 2) 2 +ck2 -+k 1 k2x= 0,

dt dt dt

where, as depicted in Figure 6, x is the displacement of the wheels hub towards its rim and m

represents the mass of the axle load acting on the wheel hub. This equation can be rearranged in

the following form:

x =ax + a2x + a 3x,

where

a =- (k, + k2 )
C

a2 k2

m

a3 - k1k2
cm

and

Acceleration, x', during impact can be measured directly through the accelerometer

mounted to the slide hammer of the drop test fixture. Taking the derivative of acceleration yields

jerk, x"'. Integrating acceleration once gives velocity, x', and integrating acceleration twice

gives displacement, x. Therefore, armed with jerk, acceleration, velocity, and displacement data

versus time, one can estimate al, a2 , and a3 using least squares regression where x ' is the

response and x", x', and x are the inputs. From al, a2 , and a 3 it is possible to calculate k,

kA2, and c:



k2 =-ma2

- k,

a3 +a 1
a2

and

ki = cal
a2

The calculated k,, k2 , and c can then be plugged back into the governing equation to yield a

viscoelastic approximation to the measured acceleration data.

In practice, this approach does not work well. The governing equation for the

viscoelastic approximation is only valid for the first half cycle of the impact event (i.e. only up

until the point where the wheel rebounds off of the impacting surface). The equation assumes

the model is anchored to the impacting surface and would therefore provide invalid results past

this point. Running a regression on the first half cycle of the jerk, acceleration, velocity, and

displacement vectors can sometimes leads to negative values for k,, k2, or c. This is

mathematically possible because while negative values provide an unstable system, the

exploding errors are not captured within the first half cycle and therefore do not impact the

regression fit. Figure 16 illustrates this phenomenon. Here the reader can see the unstable nature

of the viscoelastic approximation, due in this case to a negative k,. However, the fit for the first

half cycle is pretty good, revealing how negative values for kJ, k2, or c could still produce a

good fit when performing a least squares regression on only the first half cycle.

To constrain the values of k1, k2 , or c to be positive, the author took a different

approach beginning with breaking up the governing differential equation into a series of

differences equations:

x[n+ 1] = x[n]+ x'[n](t[n + 1]-t[n]),

x'[n+ 1] = x'[n]+ x'[n](t[n + 1]-t[n]),

x"[n + 1] = x"[n] + x"[n](t[n + 1]- t[n]),

and



x"[n]= (k, +k 2 ) , k2 _-kk2 x[n];

c m cm

The initial conditions for these differences equations are

x[1]=0,
x'[1] = [2gh,

and

x"[1] = 0,

where g is the acceleration due to gravity measured in

in m.

m 2 , and h is the drop height measured

0 5
Time (ms)

10 15

Figure 16 - Unstable Deceleration Data Approximation



These difference equations were programmed in a Microsoft Excel spreadsheet, depicted

in Figure 17, which calculates the acceleration value for a given k1 , k,, and c at each time step,

compares it the to the value from the accelerometer data at that same time step, and calculates the

square error. The square errors from each time step in the first half cycle of the impact event are

then summed and Microsoft Excel's Solver add-in is used to solve for the optimal kt, k2, and c

that minimizes the summed square errors subject to the constraint that kI, k2 , and c must be

non-negative. Assuming the time steps (t[n +1 - t[n]) are sufficiently small, this approach yields

good results.
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Figure 17 - Spreadsheet for Finding Optimal Viscoelastic Approximation Parameters

In essence, the author used the spreadsheet in Figure 17 to run a manual least squares

optimization in order to constrain the decision variables to be positive. Mathematically this

optimization problem is represented as follows:

[NX
min xan]-Xapproximation [n

Ln=

by varying k,, k2 , and c; subject to the constraint

... ...... .... ....... ........... ......... .. .........L ........ .. .. ............. .. .......... .... .......... ........ .....



k, >0,

k, >0,

and

c>0.

Here, x".tu.1 [n] are the acceleration values from the accelerometer measurements and

xapproxination [n] are the acceleration values calculated from the difference equations outlined

above.

A similar approach was used to derive the elastic approximations. For these, the

governing equation, given in section 2.3.1.3 and is reprinted here:

d 2

m + kx=0,dt 2

canm be reduced to the following difference equations:

x[n + 1] = x[n]+ x'[n](t[n + 1]- t[n]),

x'[n + 1]= x'[n]+ x"[n](t[n + 1]- t[n]),

and

"[n]= k x[n].
m

These difference equations were programmed into a Microsoft Excel spreadsheet identical in

nature to the one described above, thereby solving the optimization problem

min Xact,,,, [n] - Xapproximatio [n])2

by varying k; subject to the constraint k >0.



Appendix C: Derivation of Geometric Conversion Factor

To convert from k1, k2 , and c to E1, E2 , and r/, let's begin by defining some terms:

F = force (N),

ar = stress (N/m2),

x = displacement (m),

e = strain (%),

k = elastic coefficient (N/m),

E = elastic coefficient (N/m 2),

c = viscous coefficient ((N)(s)/m),

rq = viscous coefficient ((N)(s)/m 2),

A= contact area (m2),

L = original length along axis of displacement (m).

The constitutive relationship of the elastic elements in the viscoelastic approximation is

F=kx.

Recognizing that

and

F = A

x = EL,

we can substitute as follows

CA = keL.

Gathering terms leads to



kL
o-=-E.

A

The constitutive relationship for the elastic elements in the SLS model is

ao = EE,

kL
E=

A

as stated in section 2.3.1.4.

The constitutive relationship for the viscous elements in the viscoelastic approximation is

dx
F=c-.

dt

Applying the same substitution as before yields

de
A A=cLde

dt

Gathering terms results in

cL dea'-
Adt

The constitutive relationship for the viscous elements in the SLS model is

de
Or = r7-,

dt



cL
A

as stated in section 2.3.1.4.



Appendix D: Derivation of SLS Constitutive Stress/Strain Relationship and

Loss Tangent Function

The SLS model from Figure 4 is represented again in Figure 18, which shows the

stress/strain relationships for each of the individual elements.

= 7 17

Figure 18 - SLS Model with Stress/Strain Relationships for Each Individual Element

Equilibrium and compatibility give the following relationships:

a= U2 = + "3'

6= 1 +2 2

and

=1 3

The subscripted terms can be written in terms of c and e:

o"

8 2 -'UE1
E2

E 2

E,

EI=al/E I

j71 = El El =



C3 = a - O

d&3 - C3

dt 77
El
E2

and

dE3 dE 1 do
dt dt E2 dt

Equating the last two equations yields

S1+

7 -) de 1 deo

jdt E2 dt

which is equivalent to the form of the constitutive equation in Figure 4:"iv

de El E £E2
dt Y 27E2)

I da

E2 dt

The loss tangent function is in response to a sinusoidal input in stress. Therefore, oa(t)

takes the form a(t) = o" sin(at). The resulting strain will also be sinusoidal but will lag the

stress in phase: e(t)= e0 sin(oxt - 0). The constitutive equation then becomes

E.
eoWCOS(wt - 0) + L eo sin(at - )

77
E, + E2
r/E, )o" sin(to) +

1
-1 UoCOS(Wt).
E2

Using the following trigonometric identities:

cos(a ± b) = cos(a)cos(b)T sin (a)sin(b)

i" This form includes an o term omitted, erroneously in the author's opinion, from Powell's [8] derivation.

E+ E - Ee,
IE2)

+(l+17 _



sin(a ± b)= sin(a)cos(b)± cos(a)sin(b),

and collecting terms leads to

sin(ot) Eowsin()+ E co
/7

= f --E2 $osin(ot) +-

cosos() + cos(ot eocos() -E , in(

- wo cos(wt)
2

Equating sin(cot) and cos(wt) terms from the left and right side of the equation results in the

following two equations:

E (oOwsin(o) +E, o cos(O)= - O ,

and
___ 1

E c sin(0)+ co Ocos(0) - cro0 .

Solving this system of equations for sin(O) and cos(O) gives

sin(0) =

and

OaE 2
cos(0) =

E

Finally, solving for tan(0):

+ El (E, +



sin(0) Etan(0)- = sin(O)_ iE2) tan(delta),
cos(O) E (E, + El )+(•o) 2

as given in section 2.3.1.5.



Appendix E: DMA Test Setup and Data Analysis

The DMA used to derive loss tangent data was TA Instrument's Q800, pictured in Figure

19.

Figure 19 - Q800 DMA

This machine is capable of measuring loss tangent in one of several modes, to include tension,

compression, and bending. The expression of the loss tangent function derived in Appendix D

remains unchanged for any of these modes. Deciding which mode is most suitable therefore

relies mostly on sample size and geometry.

For the eight materials tested, the author started with manufacturer test plaques. These

test plaques typically come in solid rectangular form in something like 3" x 5" x 1/8"

dimensions. Test plaques were chosen as they can be obtained at no cost and relatively quickly,

typically seven to ten days. These plaques lend themselves well to testing in bending mode

because they can be readily cut with unsophisticated tooling into rectangular beams small

enough to fit in the Q800 (on the order of 1" x 1/8" x 1/8").

Testing in bending mode requires the Q800's cantilever clamp, shown in Figure 20. This

clamp has two outer anchor points that are fixed and a movable anchor point in the center.

Longer material samples are anchored at both ends and deflected in the center. This is the dual

point cantilever method. Shorter material samples pass through only the center, movable anchor

point and one of the outer, fixed anchor points. In this way they are anchored at one end and

deflected at the opposite end. This is the single point cantilever method and is the method used



by the author for his testing. In either case the loss tangent is calculated by measuring the phase

lag between the applied force on the movable anchor point and the resulting deflection.

Figure 20 - Q800 Cantilever Clamp

TTS shifting requires frequency sweep measurements made at several discrete

temperatures; the larger the frequency range in the sweep measurements and the more

temperatures used, the more accurate the generated master curve. The frequency range is limited

by inertial effects. As test frequency increases, the inertia of the movable anchor begins to

dominate the measured phase lag between applied force and displacement. The frequency at

which the inertial effects begin to dominate depends on the material being tested (the stiffer the

material, the higher the frequency) and can be easily observed by a rapid increase in loss tangent.

The frequency range must therefore be chosen appropriately for the material under test to avoid

inertial effects. For the eight materials tested by the author, a frequency range in the

neighborhood of one to 20 Hertz sufficed.

Practically speaking, the number of discrete temperatures tested is only limited by the

allowable time to run a test. Stepping in temperature requires significant time to equilibrate the

test chamber and material sample. Thus, one wants to use the minimum number of temperatures

that will generate a master curve which accurately captures the peaking behavior of the loss

tangent function. As discussed in section 2.3.1.6, the peak in the loss tangents of polymers

occurs as a result of the glass transition. So to capture the rising and falling edges of the peak,

one would want to test temperatures around the glass transition temperature. The author tested

every 50 C from approximately T, ± 50 0C.



Tested Frequency Tested Temperature
Material Range (Hz) Range (5C steps)

A 1 thru 20 20 thru 120
B 1 thru 20 0 thru 100
C 1 thru 20 -10 thru 90
D 1 thru 20 100 thru 200
E 1 thru 20 165 thru 265
F 1 thru 15 0 thru 100
G 1 thru 20 0 thru 100
H 1 thru 20 0 thru 100

Table 15 - Test Conditions for TTS Data

Table 15 summarized the frequency and temperature ranges used for collected the TTS

data. This data was imported into TA Instrument's Rheology Advantage Data Analysis software

to perform the TTS shifting and master curve generation. In frequency space, the frequency at

which the peak loss tangent occurs depends greatly on the reference temperature chosen. Thus, a

common reference temperature must be chosen for all eight material master curves in order to

get comparable data. The author chose 100C somewhat arbitrarily, as it was a good middle

ground temperature to which all eight master curves would converge in the software.

As mentioned in section 2.3.1.5, the quality of a master curve can be measured by how

well the shift factors for each frequency sweep curve follow an Arrhenius curve given by

a = exp .-

Figure 21 plots this comparison for material A. The other seven materials exhibit similarly good

fits, as summarized in Table 16, which shows the activation energy, A, and the R2 of the

Arrhenius fit for each of the eight materials tested.



Figure 21 - Material A Shift Factors versus Arrhenius Curve

Material A (kJ/mol) R^2
A 308.02 0.9921
B 317.52 0.9937
C 363.19 0.9962
D 598.97 0.9851
E 668.91 0.9875
F 268.93 0.9512
G 361.56 0.9944
H 391.84 0.9980

Table 16 - Activation Energy and R2 of Arrhenius Fit to TTS Shift Factors

Measuring the loss tangent versus temperature is a far easier measurement to make on the

Q800. One simply needs to fix frequency and sweep across the desired temperatures. As the

dynamic temperature range of the test chamber is very large, any temperature one could

practically want to measure is directly obtainable. Additionally, the time required to run this test

is far less than that required to collect the TTS data.

Since the objective in this case is still to capture the loss tangent peak, T, +50 0 C remains

a good temperature range across which to test. The reference frequency is again restricted by

inertial effects. One needs to choose a reference frequency that is below the critical inertial

effects frequency for all materials tested. The author chose a reference frequency of 10 Hz for

this purpose.

20

15

010

.! 5
. 0

& -5

-10

-15

-20

* Actual

- Arrhenius Fit
(A=308.02 kJ/mol)

0 50 100 150

Temperature (C)

nr



As an alternative to retesting all samples for loss tangent versus temperature, it is

important to recognize that the TTS data already captures the loss tangent value at 10 Hz across

the desired temperature range. The Rheology Advantage Data Analysis software can tease out

these values and piece together master curves versus temperature for the desired reference

frequency. The author used this approach to generate the master curves shown in Figure 13.



Appendix F: Useful Acronym Definitions

CAE - Computer Aided Engineering

SUGV - Small Unmanned Ground Vehicle

G&IR - Government and Industrial Robots

BAA - Broad Agency Announcement

EOD - Explosive Ordinance Disposal

FCS - Future Combat Systems

SLS - Standard Linear Solid

DMA - Dynamic Mechanical Analysis

TTS - Time-Temperature Superposition

FEM - Finite Element Method

FEA - Finite Element Analysis

CAD - Computer Aided Design
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