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by

S. Neil Bar

Submitted to the Sloan School of Management and the Department of Mechanical
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of Master of Business Administration and Master of Science in Mechanical Engineering

ABSTRACT

Sikorsky Aircraft is undergoing a lean transformation as its helicopter blade line is
relocated from Stratford to Site B. Value Stream Mapping is a vital tool to eliminate
sources of waste in the existing blade shop and to create a vision for the future state
production system. This thesis briefly focuses on the enterprise to provide a sound
understanding of the business and aerospace industry, describing the flow of information
from customer proposal through product delivery. Detailed value stream maps for the
main and tail rotor blades are then analyzed from an operations perspective to uncover
major time and process delays.

Implementation is a topic of in-depth review within this thesis. As a management tool,
Value Stream Mapping does not reinforce roles, responsibilities, and accountability to
achieve the future state vision. Therefore, a set of guidelines are followed to coordinate
kaizen initiatives. Examples consist of matrices to quantify and prioritize opportunities,
charters to organize teams and deliverables, and work plans to track progress and metrics.
The introduction of management tools aid in satisfying monthly throughput targets while
establishing a precedence for upcoming lean programs.

The thesis concludes with the design of a lean production system, which includes a new
cellular layout. The future operating system is intended to align Sikorsky's lean flow
philosophy with manufacturing capabilities. Recommendations to further enhance
factory operations are evaluated in the final chapters along with an action list for on-
going projects. A wrap-up for sustaining change is also discussed through a formal
critique of the management organization.

Thesis Advisor: Daniel Whitney
Senior Research Scientist
Center for Technology, Policy and Industrial Development

Thesis Advisor: Roy Welsch
Professor of Statistics and Management Science
Center for Computational Research in Economics and Management Science
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Chapter 1: Background and Introduction

Located in Stratford, Connecticut, Sikorsky Aircraft aspires to become the first name

of choice in vertical flight. The company, a longstanding division of United

Technologies Corporation, has been immersed in an operations transformation after the

turn of the century. Such an endeavor led by Chairman and CEO, George David, can be

characterized as a business-wide strategy to increase operating margin and inventory

turns across all existing factories.

Since the early 1990s, the aerospace industry has been confronted with demand

uncertainty and steep pricing pressure, giving way to a bleak competitive landscape. As a

result, manufacturers and vendors must minimize lead time and inventory levels by fine-

tuning production and supply chain activities. Doing so requires a sound understanding

and ability to apply lean manufacturing techniques, which serve as a foundation for

UTC's operations transformation. The methodology has been a key contributor towards

sustained growth in a volatile economy. Rigorous implementation is therefore a

necessity to Sikorsky's continued success.

In this chapter, an overview of United Technologies and Sikorsky Aircraft is

provided, including a brief history of lean applications in helicopter manufacturing.

Although lean practices were brought into UTC during the 1980s in part by Pratt &

Whitney, a comprehensive program was not instituted company-wide until two decades

later. Chapter 1 concludes with a general outline of this thesis.

1.1 Background of United Technologies and Sikorsky Aircraft

Named the most admired aerospace company for five consecutive years, United

Technologies is a diversified industrial firm headquartered in Hartford, Connecticut with

2005 revenues of $37 Billion. Globally represented in over 62 countries, UTC has a

reputation for pioneering innovation in aerospace, aviation, helicopter design, climate

control, elevator design, and hydrogen fuel cells. Eight independent business units

comprising the corporation are summarized below:

* Carrier Heating and Air Conditioning
* UTC Fire & Security Protection Services
* Hamilton Sunstrand Aerospace and Industrial Systems
* Otis Elevators and Escalators
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* Sikorsky Aircraft
* Pratt & Whitney Aircraft Engines

* UTC Power

* United Technologies Research Center

The majority of these subsidiaries share a unique and common bond in that they were

founded by the original product inventors.

Sikorsky Aircraft traces its legacy to 1939 when Igor Sikorsky developed and flew

the first practical and stable helicopter that could remain airborne for 15 minutes at a

time. The VS-300 was a simple machine composed of steel tubing, open cockpit, a 65-

horsepower engine, and a belt transmission turning a 3-bladed main rotor. Over the past

65 years, the company has become a world leader in the design and manufacture of

advanced helicopters for commercial, industrial, and military applications with major

facilities in Connecticut, Florida, Alabama, and Wisconsin.

From a military standpoint, Sikorsky helicopters currently serve roughly 50% of all

five branches of the United States armed forces. The Blackhawk and its derivatives

continue to remain the core company product, flying various missions for the Army, Air

Force, and Marine Corps. Additionally, the company manufactures the Seahawk for the

Navy and the Jayhawk for the Coast Guard. Finally, Sikorsky supplies the heavy-lift CH-

53 to the Air Force, Navy, and Marine Corps for use in anti-mine warfare and

personnel/equipment transport.

In the commercial and industrial arena, Sikorsky provides two types of helicopters.

The S-76 is widely flown in 40 countries for executive travel, offshore oil, emergency

medical service, and airline missions. The company's civil aircraft line-up also

encompasses the S-92, capable of carrying up to 22 passengers per load. See Figure 2

below for an illustration of Sikorsky's general product classification.
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Figure 2. Market Segments and Product Portfolio
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Like its sister company Pratt & Whitney, Sikorsky complements its products with a

diverse array of aftermarket services designed to minimize operator downtime, improve

usability, and reduce cost of ownership. Helicopter Support Incorporated (HSI) is an

independent subsidiary that tends to the needs of commercial operators, offering a full

range of factory-authorized services. On the military side, Sikorsky acquired Derco

Holding, which is a leader in aircraft logistics, component distribution, repairs, and

aftermarket program management. The alliance fostered between HSI and Derco

combines the strength of a major manufacturer with the flexibility of a small company.

1.2 Lean Manufacturing at Sikorsky Aircraft

American companies during the post war period, extending into the 1980s, had an

inclination to emphasize products over processes, ultimately laying the groundwork for

economies of scale and standardized products. UTC has parted ways with this norm and

embarked on a lean journey, leading a revolution to integrate Japanese production

techniques for dramatic process improvements. George David described the mental shift

as follows:

"We treated setup times as fixed and established lot sizes accordingly; Japanese

methodology eliminated setup times and costs. We drove the manufacturing process by

push, relying on extremely complicated scheduling systems; Japanese processes stressed

kanban scheduling. We relied on end of line inspection; Japanese practice sought process

control at each individual station, working to a philosophy of never building bad product

in the first place, and therefore eliminating inspections entirely; We treated our suppliers

as adversaries, seeking to maximize our gains at their expense; Japanese methodology

sought integration among suppliers and customers, generating value for both parties by

doing things better together" (David, 1999).

The ACE (Achieving Competitive Excellence) Program, created by United

Technologies in the early 1990s, was the first legitimate effort towards enhancing quality

across the business. The initiative itself is not quite lean manufacturing in its purest

form. Common lean principles such as specifying and identifying value, creating flow,

and using kanban systems are missing from ACE. However, the toolkit reinforces
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continuous improvement through 6-sigma with elements of 5S, total productive

maintenance, root cause analysis, mistake proofing, standard work, and setup reduction.

As mentioned earlier, United Technologies has instituted a broader undertaking

termed "Operations Transformation." The program is geared towards increasing

operating margins by addressing challenges in four areas: strategic sourcing, low-cost

sourcing, design for manufacturability, and leadership. A fifth component of Operations

Transformation, Value Stream Mapping (VSM), has been coupled with ACE to

strengthen Sikorsky's lean capabilities.

1.3 Thesis Structure

The organization of this thesis is outlined below:

Chapter 1: A brief overview of United Technologies and Sikorsky Aircraft has been

provided. The industry environment, corporate history, product classes, and

events leading to lean transformation serve as a suitable primer to understand

the project framework.

Chapter 2: The motivating force behind the internship as well as the goals, objectives,

and hypotheses are covered. A basic approach to identify, analyze, and

resolve the critical issues is also revealed.

Chapter 3: This chapter describes traditional elements of lean manufacturing and their

application in the helicopter blade shop. A literature review on lean

implementations by previous LFM students is included.

Chapter 4: The core of this thesis begins with an enterprise perspective. Chapter 4

essentially captures the informational flow across the business value stream

from contract authorization to new product release.

Chapter 5: Chapter 5 transitions to a department level analysis with a deep-dive into rotor

blade operations to illustrate product flow through the factory. The value

stream maps are used to identify sources of waste in the production process.

Chapter 6: This chapter focuses on the key factors attributed to long lead times and poor

monthly blade deliveries. Tools to quantify, prioritize, and implement

improvement initiatives are discussed in chapter 6.
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Chapter 7: New territory is explored with a future state layout of the factory. In this

chapter, a one-piece flow system in a cellular arrangement is proposed and

validated through a simulation software package (SIMUL8).

Chapter 8: The final chapter concludes with an evaluation of Sikorsky's management

organization and potential plans for sustaining change in a dynamic business.

Appendix A: Current state maps for the main and tail rotor blades document the

individual processes, inventory locations, and value-added manufacturing

times.

Appendix B: This thesis is written under the assumption that its readers have at least a

beginner level knowledge of lean manufacturing philosophy. Data will be

evaluated and conclusions shall be drawn where appropriate to aid in the

reader's understanding of the material. However, the thesis alone is not

thorough enough to sufficiently explain the icons specifically applied in

value stream mapping. Although Appendix B contains a legend with

symbol descriptions, the workbook Learning to See (Rother and Shook,

1999) is a better resource.
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Chapter 2: Problem Statement and Discussion

This chapter presents an introduction to the challenges confronted by Sikorsky

Aircraft and the motivation behind the internship. A concise lesson in blade

manufacturing practices will shed ample light on the project objectives and methodology

to address critical issues observed in the factory. The end of chapter 2 outlines the

underlying hypotheses guiding this research.

2.1 Project Motivation

Sikorsky is expecting a doubling in business volume over the next 3 years. Once a

vertically integrated company, Sikorsky has revised its strategy by shifting non-core

manufacturing to the supply base and transforming batch and queue process villages into

lean flow lines. Choosing a low cost, high profit operating model has influenced

Sikorsky's decision to concentrate on key competencies, including parts manufacturing.

Given an aggressive demand setting for upgraded aircraft and spares, the parts

manufacturing organization is under pressure. Sikorsky must free up factory floor space

to accommodate its growing production requirements. To execute this task, the company

is transferring the main and tail rotor blade lines for the K200 helicopter to Site B. To

maintain confidentiality, the specific site and aircraft model have been masked. With

K200 orders on the rise, Sikorsky plans to accelerate blade production in the third quarter

to ensure aircraft delivery and avoid contract penalties. Thus, the purpose of the

internship is to assist in the relocation, improve throughput at Site B with a temporary

plant layout, and propose a lean factory re-design for future main blade operations.

2.2 Short-Course in Rotor Blade Manufacturing

In order to fully grasp the internship direction embedded within Sikorsky's lean

transformation effort, the reader should possess a rudimentary knowledge of how

composite rotor blades are constructed by industry players. A main blade is typically

manufactured in two progressive stages, which are listed as follows:

1. Spar Fabrication

2. Blade Assembly

17



The spar, or skeleton of the blade, is a composite made up of several layers of

textured graphite and glass ply kits. In their collective arrangement, these plies are more

advanced and environmentally friendly than titanium, maintaining greater flexibility and

requiring little finishing treatment. The disadvantage, however, is that composites are

susceptible to defects related to air gaps between successive layers of plies. Figure 3

depicts a spar that is formed around a fixture for its oval shape.

SIDE VIEW

Figure 3. Composite Spar for Main Rotor Blade

During blade assembly, material is compacted onto the spar and cured in a large

autoclave. The pocket, composed of a skin with honeycomb core, is primed and bonded

to the spar's trailing edge. Counterweights are then mounted to the opposing end of the

spar and enclosed by a sheath stretching over the leading edge. The sheath essentially

releases heat as a de-icer element and contains a combination of materials including

nickel, titanium, and fiberglass. Figure 4 shows the spar progressing towards an

aerodynamic profile.

POCKET

SHEATH

Figure 4. Main Blade Clamshell

After the pocket and sheath are applied, the main blade assembly proceeds to

laminate bond, where it receives additional composite layers for strength under dynamic

loading conditions. The purpose of this operation is to alleviate high stresses occurring at

the root end near the helicopter rotor head. The next step involves milling and drilling

holes at a multiple axis machining center. Refer to Figure 5 for a visual.
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ROOTEND * TIPEND

Figure 5. Main Blade Root End

In the finals station, manual detail work is completed on the tip and root ends. The

cuff, an interfacing component that connects to the helicopter rotor head, is then fastened

to the main blade. Similar to a spar, the cuff is also constructed from layered composites.

Figure 6 demonstrates how the main blade and cuff are joined together.

Figure 6. Main Blade Attachment to Cuff

Once complete, the entire assembly is passed on to paint and finishing for a durable

coating. Before releasing a main blade to the hangar or spares customer, it is balanced

and tested on a whirl stand. See Figure 7 for a view of the completed product.
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MAIN BLADE

Figure 7. Isometric View of Main Blade

Tail blade manufacturing is slightly different from that of a main blade. While the

main blade contains a spar, the tail blade consists of a torque tube similar in material and

shape, but much smaller in scale. Instead of using a cuff, technicians install a slender

beam to join the blade to the aircraft. The tail blade is also robust in that it does not

require a laminate bond.

2.3 Goals, Scope, and Approach

Fabrication for the K200 helicopter commenced in 2004 and transformation of the

rotor blade lines followed shortly afterwards. In one year, Sikorsky progressed rapidly

along a sharp learning curve to satisfy customer needs and categorized its lean execution

into three major stages:

Phase I - Relocate all K200 production equipment to Site B.

Phase II - Establish a temporary layout around existing monuments.

Phase III - Implement cellular arrangement with in-line machines.

20



This research hinges on three aspects of lean methodology: enterprise and department

level value stream mapping, management of improvement initiatives, and the design of a

dedicated lean flow line for main rotor blades.

Deliverable 1

Value Stream Mapping is employed during Phase II to assess the current state of the

main and tail blade production systems. However, before analyzing material flow, it is

important to step back and observe how factory processes fit into the overall context of

the business. For example, the purchasing organization may be optimized as a stand-

alone department, but could be considered sub-optimal if the total enterprise is not lean

(Figure 8). That is why documenting information flow across various cross-functional

areas provides a valuable frame of reference.

Contracts and Pricing

Engineering

Total Lean
Enterprise

Purchasing

Lean Department

Planning and Control

Figure 8. Breaking Cross-Functional Boundaries

Deliverable 2

Using future state value stream maps, several potential kaizen events are identified to

reduce lead time and increase monthly blade deliveries. However, as a management tool,

value stream mapping by itself does not emphasize team roles, responsibilities, and

actions needed to achieve an ideal production system. Therefore, specific guidelines are

applied to prioritize the activities, track performance, and audit the changes.
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Deliverable 3

Long lead times and poor throughput levels have been logged throughout Phase II.

With orders expected to double by 2006, Phase III capital investment plans are under

review to ensure that the plant can adequately accommodate the volume. Although most

expenditures have been approved, a cellular arrangement will not be finalized within the

scope of the internship. Despite the timing issue, a proposed factory layout for the main

rotor blade is presented. The challenge in designing a lean flow line becomes evident

given the physical constraints of the Site B plant.. A discrete event simulation is included

to validate the new manufacturing cell.

2.4 Key Ideas and Hypotheses

In certain instances, companies apply lean to rectify individual processes. While

locally patching the problem offers some relief, the result is often times temporary or

even negligible over the long haul. Introducing a sustainable solution means that the

whole value chain must be examined as a complete entity. One hypothesis of this

research is that the presence of "fat" in the upstream activities places pressure on

downstream operations. Value Stream Mapping is an excellent tool to detect waste and

establish a future vision of the enterprise.

Many production facilities are historic behemoths developed around mass production

principles. However, in light of aggressive competition, manufacturers are embracing

lean methodology to reduce costs, enhance quality, and accelerate responsiveness to

changing customer demands. The disposal of batch and queue processing has brought

about greater agility in the market. A second supporting hypothesis is that the

introduction of flow in a brownfield site can significantly boost operating metrics and

dramatically reduce space requirements. But, a full system redesign is necessary to

realize the plant's true potential and benefits of lean.

2.5 Chapter 2 Summary

Throughout chapter 2, we touched upon the motivating factors for the internship, an

introductory course to rotor blade fabrication, and the hypotheses guiding the author's

project objectives. In Chapter 3, relevant lean terms and concepts are introduced to
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provide a flavor for twenty-first century manufacturing challenges. Some of the tools

from this discussion are selectively applied in the later chapters to address the

deliverables presented in Section 2.3.
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Chapter 3: Key Concepts and Literature Review

3.1 Mass Production Loses Steam

Similar to Henry Ford and the mass production concepts employed under his

supervision, many organizations operating in various industries prospered during the

early 1900s utilizing identical techniques. Prominent breakthroughs included

interchangeability of parts, standard work sequences, and the moving assembly line.

However, in the latter half of the twentieth century, mass production fell short of meeting

the customer need.

First and foremost, unions despised the repetitive nature of the job and sought to

minimize working hours, which indicated a strained partnership between management

and its people. Secondly, companies purchased larger equipment to support scale

economies, eventually leading to batch production, huge work-in-progress, and soaring

finished goods inventories. Quality was directly impacted as operators became less

involved, allowing defects to duplicate in any given batch before being detected. Under

this reactive system, end-of-line inspection stations were common as completed products

were removed for repairs. Lastly, engineers branched into specialized departments in

response to the growing complexity of products. The lack in communication not only

introduced design problems, but also lengthened overall time to market.

3.2 The Birth of Lean Production

If mass production ideology proved inadequate as mentioned in the previous section,

then what type of system would satisfy a diverse customer base? The corporate building

blocks, mainly people and machines, must be aligned such that the output (Dennis, 2002):

* Is defect-free with the features and performance the customer expects
" Can be delivered one request at a time (batch size of 1)
* Can be supplied on demand in the version requested
* Can be delivered immediately
" Can be produced without wasting any materials, labor, energy, or other

resources (such as costs associated with inventory)
" Can be produced in a work environment that is safe physically, emotionally, and

professionally for every employee

This definition is a founding principle of lean manufacturing, where better performance

can be expected with less time, effort, equipment, and space. Instituted by Taiichi Ohno
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and Eiji Toyoda in the 1950s, the Toyota Production System (TPS) was developed and

refined to address the driving forces behind today's global challenges: fragmented

markets demanding several low-volume products, rapidly changing technology, tough

competition, fixed or falling prices, high cost of capital, and greater worker involvement

(Dennis, 2002).

Over the past five decades, the Toyota Production System has been perceived more as

a "way of thinking" rather than a "list of things to do." Until recently, the tools had

rarely been articulated in writing, making it difficult for outside firms to grasp. Although

several books currently exist to describe specific TPS practices in isolated pieces, Jim

Womack and Dan Jones co-authored a text in 1996 that ties all the methods together into

a cohesive implementation guide. Based on their extensive research, lean thinking can be

summarized in five steps, which will be discussed further in the following sections:

precisely specify value by specific product, identify the value stream for each product,

make valueflow without interruptions, let the customer pull value from the producer, and

pursue perfection (Womack and Jones, 1996).

3.3 Value Specification and Identification

Lean thinking establishes a complementary relationship between producers and

consumers. It must begin with a value proposition that can only be defined according to

the end customer. A producer, on the other hand, creates value for the sole purpose of

providing a good or service which meets the customer need at a specific price and time.

Identifying the value stream exposes value-creating activities as designs progress

from concept to launch, information flows from initial order to delivery, and physical

product moves from raw material to customer. Doing so reveals three types of processes

along the value stream (Dennis, 2002):

1. Actual Work: Refers to actions that add value to the good or service (i.e.

installing a blade on a helicopter rotor head)

2. Auxiliary Work: Unavoidable action supporting actual work (i.e. selecting a

blade from storage)

3. Muda: Opposite of value; Any action for which the customer is unwilling to pay

(i.e. making more parts than customer demands)
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Techniques for value stream mapping and categorizing sources of waste in the blade shop

will be covered in Chapter 5.

3.4 Creation of Flow

Creating continuous flow is the second phase in lean transformation and most likely

the hardest since today's leaders are evaluated based on their adherence to existing

measurement systems. Organizing work into vital steps with no interruptions, excess

motion, batches, or queues can have a dramatic effect on operations. But, successfully

applying flow calls for managers to challenge the deep-rooted assumptions, obsolete

models, and traditional indicators of efficient production.

3.4.1 Design

Product design has always been a batch-and-queue process where work is handed off

from one department to another. The marketers translate the voice of the customer to

designers who develop a good. After a design is complete, buyers purchase certain parts

and arrange delivery from the supplier base. Finally, manufacturing engineers consider

tooling and factory requirements to fabricate and assemble components. While this

format would suffice for a single initiative, ownership issues surface when

simultaneously driving multiple platforms. If something is everyone's problem, it

becomes nobody's problem (Spear and Bowen, 1999).

The lean solution is to appoint dedicated product teams with keen proficiency in

value specification, design engineering, purchasing, tooling, and production planning.

This specialized approach is more responsive, allowing teams to execute with limited

rework and effectively transition products from concept to customer.

3.4.2 Order-Processing

Historically, the sales force has taken responsibility for independently securing

business from retailers. Once orders are cleared, the information is relayed to the

scheduling department which in turn communicates relative ship dates to the customer. If

a particular delivery is late, scheduling personnel expedites the request by manually

moving idle parts to the front of the queue where they can be immediately assembled.
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Repeating this cycle compromises the customer relationship by increasing overall wait

time for prior orders.

In a lean environment, the sales and scheduling functions are critical members of the

product team, where both parties share a mutual knowledge of production capabilities.

Generating a strong sales plan ensures that information contained in each unique order

can flow alongside its respective product from sale to delivery. A key to achieving such

consistency is the notion of takt time, which synchronizes the rate of production to that of

demand. The term will be further explained in chapter 6.

3.4.3 Production

Since the introduction of lean philosophy to American culture, the production setting

has received much attention. Even before Jim Womack and Dan Jones published Lean

Thinking, J.T. Black wrote The Design of the Factory with a Future in 1991, chronicling

the efforts of companies to incorporate critical elements of the Toyota Production

System. In his book, Black outlines ten steps to create an Integrated Manufacturing

Production System (IMPS), half of which address flow methodology and coincide with

Just-in-Time (JIT) innovation pioneered at Toyota in the 1950s (Black, 1991).

3.4.3.1 Manufacturing and Assembly Cells

In a continuous flow scenario, manufacturing cells should be arranged as a group of

sequential fabrication steps with one-piece movement of parts and no buffer of work-in-

process. Equally important, the cells must be organized by product family and contain

right-sized machines that can fit directly into the production line. See Figure 9 for an

example layout.
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Figure 9. Single Piece Flow Cells by Product Family

The diagram shows greater flexibility because storage disappears, work teams can be

adjusted in size depending on cell volumes, and larger machines that were once central to

all products are now dedicated to individual families.

3.4.3.2 Setup Times

In a technologically advancing society, many customers demand tailored goods at a

price comparable to large volume production and lead time of "instant availability."

Thus, providing mixed models without adding changeover time is crucial if companies

expect to meet customer needs. Quick changeovers also enable manufacturers to

alleviate bottlenecks, lower costs, and improve quality. But, bear in mind, the end

objective of flow thinking is to totally eliminate all stoppages in an entire production

process (Rother and Harris, 2001).

While Taiichi Ohno had completed some setup reduction at Toyota, Shigeo Shingo

revolutionized the factory by developing an approach known as Single Minute Exchange

of Dies (SMED). Through his teachings, companies have utilized the methodology to

uncover its benefits, cutting changeover times from hours to just minutes (Shingo, 1985).

3.4.3.3 Quality and Preventative Maintenance

The third and fourth steps in creating flow are to integrate quality and preventative

maintenance within the cell. In a lean operation, tasks are standardized such that

employees assemble every component correctly on the first attempt. Even more so, it
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becomes vitally important that workers feel empowered to monitor their own work as

products move downstream. This can be aided through an inspection technique called

poka-yoke, or mistake-proofing, which applies visual control to prevent defective parts

from proceeding to subsequent stages (Womack and Jones, 1996). For example, a part

with two similar sized holes may be difficult for an operator to distinguish during

assembly. However, placing a notch or letter "L" next to the larger hole eliminates

potential confusion.

3.4.3.4 Level and Balance

Companies embracing a lean culture strive to facilitate one-piece flow in the factory,

but often build to order with a "speed up, slow down" strategy. The monthly variation in

demand generates an uneven schedule that encourages operations planners to switch

between making substantial and minimal quantities from week to week. While customers

are unpredictable, this production mentality fosters high inventory level and poor quality.

More importantly, it leads to mismanagement of resources and complicates upstream

supplier interactions.

Black's fifth step in regulating flow is to level the work schedule by volume and

model mix, otherwise known as heijunka according to Toyota philosophy. Those who

employ heijunjka do not build product based on actual customer demand. Instead, they

take the total volume of orders in a given period and balance them so that the same

amount and mix can be made every day. Figure 10 represents basic shapes as mixed

models and visually clarifies un-leveled versus leveled conditions.

UN-LEVELED PRODUCTION LEVELED PRODUCTION

Week 1 Week 1

0000 OQOL 0A
Week 2 Week 2

00000 OQOLA_
Week 3 Week 3

OOAAO OOIA
Week 4 Week 4

AAIDEII OODOA
Figure 10. Simple Illustration Exemplifying Heijunka
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3.5 Pulling Product

Although any company can apply the framework in Section 3.4 to initiate faster flow

in a factory, how does one assure that the right goods are provided at the appropriate time

and in the correct amount? The third phase in lean implementation is pull production,

which means that nobody upstream should produce an item unless the downstream

customer requests it. Communication between downstream and upstream processes

usually takes the form of a pull signal, or kanban.

A kanban system maintains an orderly and efficient flow of material across the entire

manufacturing chain. It primarily relies on the movement of parts through the use of

cards and containers. With this tool, the supplier (or warehouse in some cases) should

deliver components to work stations only when they are required. Conversely, each

station must only produce when a card and empty bin is received, indicating a need for

more components.

3.6 Perfection

The final phase in creating a lean factory is perfection, where business leaders can

continuously revitalize operational performance through radical and incremental

improvements. In order to visualize and pursue perfection, managers must specify value,

identify the value stream, optimize flow, and pull from the customer. Following this

sequence of events not only exposes additional wastes to be removed, but also reveals the

gap between current reality and the desired future state.

3.7 Lean in the Blade Shop

As knowledge from the Toyota Production System permeates the global marketplace,

several LFM theses have emerged within the past decade to address lean business issues.

Yuliya Frenkel's research in 2004 centered around dissemination of lean principles on the

enterprise level at Northrup Grumman. She created value stream maps for aircraft carrier

pipe assemblies that enabled her to identify opportunities to reduce or eliminate time

delays, inventory buildups, and rework along the value stream (Frenkel, 2004). In the

same year, Matthew Gates developed a set of management tools to organize and facilitate
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lean initiatives at United Technologies Hamilton Sundstrand. He also employed cellular

manufacturing techniques to redesign the factory for efficient mixed-model rotor

production (Gates, 2004).

The application of lean in the blade shop invokes some new material while combining

Yuliya and Matthew's approaches. Chapter 4 presents a broad enterprise perspective,

documenting the high-level flow of information from contract agreement to product

release. The author's research then narrows in on manufacturing, where he uses

management tools to aid in the physical improvement of current operations. The final

part of the thesis focuses on the redesign of a dedicated plant layout for Sikorsky's K200

helicopter blade line.
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Chapter 4: The Enterprise Perspective

A full analysis of the evolution of lean thinking urges a broader view of lean, centered

on the entire enterprise. Improving parts of a system taken separately is not likely to

improve performance of the system as a whole. The majority of product value in

aerospace resides in upstream design and development and in downstream sustaining

operations. While manufacturing has been the first area of focus in the application of

lean thinking in the aerospace industry, it is increasingly clear that a focus across the

entire business enterprise is essential. Anything less than a holistic systems approach is

bound to result in sub-optimization (Murman, et al, 2002).

4.1 Contracts and Pricing

Sikorsky maintains a balanced customer base by competing in the commercial and

military markets - the company has consistently served branches of the armed forces

including the Army and Navy. Contracts with Sikorsky do not necessarily relate to new

products alone since they can also incorporate aircraft upgrades and even repairs. To

initiate an order, the customer must release a statement of work containing specifications,

delivery scheduling, and terms and conditions. This is usually completed through a

formalized Request for Proposal (RFP).

Although commercial contracts are clear-cut with standard pricing and requirements,

military orders are exactly the opposite with rigorous, individualized guidelines. More

importantly, there is a tremendous amount of transparency associated with government

contracts, where all data and activities are available to the customer upon request. If for

example a supplier bid for production is lower than the quantity noted in the original

contract, Sikorsky is obligated to reimburse the difference in cost to the government.

When the RFP is submitted, several groups such as engineering, manufacturing, and

sourcing review the statement of work and generate a preliminary Bill of Materials

(BOM) for estimation purposes. Additionally, the worldwide customer service

department prepares technical publications and lists of spares for the new product or

aftermarket service. After the RFP is evaluated, Sikorsky and the intended customer

negotiate the pricing, which is frequently the most contentious subject. Quite often, there

are other concerns that demand equal or greater attention. For instance, socio-economic
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discussions are very relevant in considering a military order. If the government wants to

retain jobs in the United States to protect the economy, then it may be in Sikorsky's best

interest to limit outsourcing options and fabricate in-house. The time between RFP

submission to successful negotiation can range from a few days to one year.

4.2 Blade Engineering

Once a new product contract is mutually acceptable to Sikorsky and the customer, the

blade engineering organization moves forward with aircraft development. The

preliminary Bill of Materials examined during the negotiation period can now be refined.

Utilizing a skeleton BOM framework reflective of previous generations of blades, the

engineering staff is able to further customize the parts list in accordance with specific

requirements.

The conceptual design effort for a main rotor blade begins with an aerodynamic

profile, which engineers interpret as an empty envelope or shell. Given an exterior shape,

they start the design from the outermost surface of a blade and progress inward.

Following this methodology, the engineering team conducts cross-sectional analyses

along the length of the blade, accounting for changing load stresses at the tip and root

ends. The blade is then pieced together one section at time in a manner that can endure

dynamic conditions.

When the internal space of the basic shell is filled with structure, engineers must

perform a deeper level of detailed design. Determining the correct number of graphite

ply kits and selecting the appropriate tool surface are just a sample of activities. Among

these tasks, blade designers also interface with their counterparts in the machining and

transmissions function to construct mating components. In the verification stage,

accelerated life testing is carried out through extensive in-flight simulations and

correlated with actual prototype testing. Physical specimens are often obtained through

an external provider. While product confirmation is an absolute necessity for long term

reliability, the engineering organization places similar importance on the validation of

design processes to ensure that they are in control. The overall development lead time

spans from eighteen months to several years depending on the maturity of the technology.
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4.3 Purchasing

Sourcing personnel coordinate the order and prompt shipment of materials for both

new and existing products. This section will not cover the latter responsibility related to

design enhancements and daily change traffic.

The purchasing process is initiated when buyers receive a specification from

engineering. In the past, requirements from engineering were limited since Sikorsky

performed most if not all operations in-house and requested only small items from

vendors. However, as the company becomes less vertically integrated, more power and

accountability is being shifted to the suppliers.

After reviewing the specification, the sourcing function formulates a Request for

Quote (RFQ) and arranges an open bidders conference, where competing vendors offer

their best solutions while having access to a shared knowledge network. Thus, a question

or concern brought about by one supplier is communicated to all participants. Before

issuing a Purchase Order (PO), sourcing specialists perform a comprehensive down-

select analysis, measuring and rating each vendor against a set of weighted factors.

Example criteria include price, delivery targets, and longest mean time to failure. If the

complexity of the part or assembly is high, then additional variables may be considered.

In many cases, some suppliers have identical scores, but strengths in different areas of a

design. Therefore, it is common on occasion for at least two bidders to join forces. The

purchasing lead time from RFQ to material arrival ranges from six to nine months.

4.4 Planning and Control

When the sales group ascertains how many helicopters the company aims to sell, the

operations team enters the forecast and engineering Bill of Material into a Material

Requirements Planning (MRP) system. With this computerized algorithm, an MRP

controller synchronizes the arrival of components from suppliers so that the product can

be assembled and available to the end customer on the expected need date.

In general, an MRP report informs supply chain managers what parts or materials to

buy, how much to purchase, when to buy them, and when they need to arrive. The

database usually invokes a buffer where more parts are ordered than necessary and

delivered ahead of schedule to avoid any potential delays or shortages. Perhaps the most
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significant parameter in MRP context is lead time, which is the time between the day a

component or assembly is ordered to the day it is delivered to the factory. Lead time

depends on multiple factors such as transportation, minimum order quantity, and design

complexity. The turnaround for an order is typically faster if a proficient vendor is

located near the facility and produces a commodity in low volume. An un-scaled MRP

tree diagram for a blade and its constituents is shown in Figure 11

Purchase Order Supplier Delivery
Submitted Received

Ti-me

Figure 11. Rough MRIP Illustration for Blade Fabrication

4.5 Enterprise Summary

Chapter 4 captures the logical flow of information from contract authorization to

manufacturing. Yet, a closer look reveals that the enterprise is not entirely lean. In fact,

even the smallest hiccup in upstream processes translates to greater stress on downstream

activities. Configuring aircraft is a prime example, where a customer can modify the

contract multiple times after an initial agreement is reached. Despite the flexibility, re-
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negotiation hinders engineering if the design is altered, further delaying development

progress. Purchasing efforts are compromised as well especially for components with

long supplier lead times, which in turn postpones part availability. This case illustrates

how uncertainty filters through the value chain, eventually impacting production. Due to

the limited scope of the internship, the remainder of the thesis concentrates on lean issues

in the factory.

In Chapter 5, we attempt to build on our understanding of the total enterprise by

quantifying system performance specifically in the plant. Through the concept of value

stream mapping, we intend to diagnose and classify wasteful activities in the existing

plant that are tied to long manufacturing lead times. Using this tool, we also establish an

ideal plan and set of operating guidelines for the future state factory.
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Chapter 5: Value Stream Mapping at Sikorsky Aircraft

As mentioned in Section 3.3, a value stream is all the actions (both value-added and

non-value added) required to bring a product through the main flows essential to every

product: (1) the production flow from raw material into the arms of the customer, and (2)

the design flow from concept to launch (Rother and Shook, 1999). Chapter 5 deals with

door-to-door production flow inside the factory from customer demand back through raw

material.

Value Stream Mapping is a method to better understand the flow of material and

information as a product moves through the value stream. More specifically, it allows

one to follow the assembly path and track the steps that transform raw materials into

finished goods. The tool helps visualize flow across the entire plant, shows the linkage

between information and material, assists with identifying sources of waste, provides a

common language for discussing processes, represents a blueprint for lean

implementation, and describes qualitatively how a facility should operate to create flow

(Rother and Shook, 1999).

5.1 Classifying Waste

The elimination of non-value adding processes lies at the heart of any lean enterprise.

Figure 12 breaks down eight general types of waste and shows that nearly 95% of daily

activities are governed by muda. True value, as stated by Taiichi Ohno, is literally the

size of a plum seed. A brief description of each waste is noted below (Dennis, 2002).

Value-Adding: 5%

Knowtedige
isconnection Motion

Inventory 8 1 Wafting
7 2

6 3
Overproduction 5 4 Conveyance

VJe: 95%

Figure 12. Dissecting and Interpreting Waste
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1. Motion - Poor ergonomics related to unnecessary walking, reaching, or twisting

2. Delay - Waiting for material to be delivered or a line stoppage to be cleared

3. Conveyance - Excess movement of parts from one process to another

4. Correction - Fixing defective product

5. Overprocessing - Doing more than what the customer desires

6. Overproduction - Making things that do not sell

7. Inventory - Surplus of raw materials, parts, and Work-in-Progress (WIP)

8. Knowledge Disconnect - Obstructs transfer of ideas and connection between a

company and the voice of the customer

5.2 Creating Value Stream Maps

A firm grasp on existing end-to-end rotor blade fabrication begins with an analysis of

the current state value stream. The book Learning to See lists a few suggestions for

drawing a map (Rother and Shook, 1999):

" Always collect current-state data while walking the actual material and

information flows yourself

* Begin with a quick walk along the entire door-to-door value stream

* Begin with the shipping end and work upstream

* Bring your stopwatch and do not rely on standard times or information that you

did not personally obtain

* Map the whole value stream yourself

* Always draw by hand in pencil

Please refer to Appendix C and the textbook for additional details and instructions.

5.3 Inter-Plant Overview - K200 Main Blade

For a single plant scenario, the granularity of a value stream map should be on a door-

to-door level. However, before pursuing this route, a broader plant-to-plant assessment is

recommended due to ongoing Phase I equipment relocation. Figure 13 magnifies the

flow of main rotor blades between Stratford and the new facility. When the internship

began, only 50% of production capability had been transferred, forcing Sikorsky to ship

assemblies back and forth by flatbed truck. The manufacturing lead time for a main
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blade, from incoming raw material to delivery to the aircraft hangar, was approximately
75 time units (masked for confidentiality). Of this amount, nearly 15% (12 units) was
consumed by inter-plant travel, which made transportation an enormous waste and
immediate priority for removal. In December 2005, the kit cutting tool was installed at
Site B, decreasing total lead time by 4 units. Relocation of final assembly is still in
progress, but the paint operation will remain in Stratford.

Phase I SPAR Phase CLAMSHELL
GFM 2005 ASSEMBLY 2005 ASSEMBLY

STFD BPT STFD

4 units 4 units
4 units 25 units 6 units

Phase 1
2005 LAMINATEIN SY PAINT,

BOND BALANCE, WHIRL- -Phase 1
200~

BPT I STFD
4 units 4 units

1 unit 24 units

Figure 13. Inter-Plant Value Stream Map for K200 Main Blade

5.4 Current State - K200 Main Blade

The main blade current state map can be found in Appendix A. 1. Upon first glance, it

is apparent how MRP is being used in the factory to estimate the demand for product.

This push system encourages each process to operate independently, disconnected from

the true needs of any downstream customer. One may counter that there are no tell-tale

signs of MRP such as massive inventory between steps and long changeover times.

However, it is arguable that K200 volumes are still too low to see the effects. The

symptoms would be more visible when production ramps up four-fold within two years.

Based on the map, the process time, otherwise known as the value-added "hands on"

time, equates to 20 units. But quite shockingly, the total production lead time shows that

one blade takes 38 time units to move through the plant from start to finish, with the
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exclusion of 12 additional units of plant-to-plant transportation noted in Section 5.2. The

ratio of value-added to non-value added work is 0.40, which is better than the aerospace

industry benchmark of 0.30. Even so, Womack and Jones firmly declare, "To hell with

competitors; compete against perfection by identifying all activities that are muda and

eliminating them. This is an absolute rather than a relative standard that can provide the

essential north star for any organization" (Womack and Jones, 1996).

5.5 Future State Vision - K200 Main Blade

Figure 14 displays the main blade future state map and represents an ideal, yet

realistic manufacturing system that can be attained. The goal for lean experts is to build a

chain of production where the individual processes are linked to their customers either by

continuous flow or pull, and each process gets as close as possible to producing only

what its customers need when they need it (Rother and Harris, 2001). In defining future

state concepts, the rotor blade team answered the following crucial questions (Rother and

Shook, 1999):

1. What is the takt time, based on the available working time of our downstream

processes that are nearest the customer?

2. Will we build to a finished goods supermarket from which the customer pulls, or

directly to shipping?

3. Where can we use continuous flow processing?

4. Where will we need to use supermarket pull systems in order to control

production of upstream processes?

5. At what single point in the production chain (pacemaker process) will we

schedule production?

6. How will we level the production mix at the pacemaker process?

7. What process improvements will be necessary for the value stream to flow as our

future state design specifies?

These questions are explored in the order they are listed.

The takt time, known as the heart beat, matches the pace of sales with that of

production. It can be numerically computed by dividing the available work time by the
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customer demand rate. With the main rotor blade, the equation can be expressed in the

format below.

Takt Time = Available Time 225 brs / working day 45 h / blade
Demand 10 blades /20 working days

This calculation is based on 3 shifts and 20 full work days in a calendar month. Since the

plant fabricates ten blades per month, production control must release a ship ticket almost

every other day.

Whether to build blades to a supermarket or directly to shipping depends heavily on

process reliability and the customer buying behavior. Because K200 manufacturing

expertise is still in the emerging stages, product yield is low but expected to improve over

the next year. In addition, nearly 90% of scheduled and incoming orders are primarily

for aircraft sales. If a greater percentage of the business was driven by spares, then a

make-to-order model would be advised. However, a finished goods supermarket is more

suitable in light of the main blade characteristics.

Continuous flow refers to producing one piece at a time, with each item passed

immediately from one process to the next without stagnation. For the main rotor blade,

the spar fabrication and blade assembly steps are combined where possible to minimize

accumulation of inventory. But, a few FIFO lanes are incorporated as a precaution to

avoid merging all the lead times (and down times). Once process reliability increases, the

FIFO lanes may be removed and replaced with single piece flow.

Aside from FIFO lanes, there are often spots in the value stream where batching is

necessary (Rother and Shook, 1999). Some processes are far away and shipping one

piece at a time is impossible. Others have too much lead time or are too unreliable to

couple directly to other steps. The former case applies specifically to the blade shop as

Sikorsky embraces the global market. With a growing number of parts being outsourced

to external suppliers, the factory should create supermarkets for raw material and

purchased components. It is extremely important to install responsive pull signals

(kanban) in these locations where continuous flow is interrupted.

The pacemaker process is essentially the scheduling point in the door-to-door value

stream. In Figure 14, the final assembly area sets the pace for all upstream processes.

Any delays or fluctuations in volume at this station will affect capacity requirements
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throughout the factory. Also, leveling of the production mix at the pacemaker can be

disregarded because the main blade line is solely dedicated to K200 output.

Numerous kaizen initiatives are necessary to achieve the future state and will be the

subject of discussion in Chapter 6.

5.6 K200 Tail Blade

The current and future state maps for the tail rotor blade can be referenced in

Appendix A.2 and A.3. Unlike the main blade, all production equipment for tail blade

fabrication has been relocated to Site B with the exception of final paint, which shall

reside in Stratford. Although tail blade manufacturing may appear to have more

continuity due to less plant-to-plant travel, production lead time is estimated to be 49

units. However, tail blade process time is 10 units of actual work, roughly half that of a

main blade. In constructing a future state vision, similar questions from Section 5.4 were

raised to establish a sound operating system.

5.7 Chapter 5 Summary

In Chapter 5, we discussed the basis and criteria for value stream mapping and

applied the technique to better understand existing rotor blade processes in the plant.

Utilizing VSM, we also crafted a vision for the ideal operating system through flow and

kanban methodology. In Chapter 6, the author assesses the current factory and identifies

potential improvements to achieve the future state. A set of tools are then developed to

prioritize the opportunities and guide implementation for a specific initiative.
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Chapter 6: Implementation of Kaizen Initiatives

A future state map conveys a clear image of the various wastes that weaken
productivity, but there is no defined methodology on implementing change. While the
Learning to See text recommends yearly value stream action plans and even status
reviews against proposed goals, the manual falls short of the bigger picture. With dozens
of kaizen bursts identified to achieve the future state, there is no information about
prioritizing initiatives and enforcing accountability on projects that provide the greatest
return on investment to the business. Therefore, an extensive set of management tools is
imperative to executing and sustaining enhancements in the factory.

The value stream management guidelines portrayed in Figure 15 were studied by
Matthew Gates through a course offered at the University of Michigan (Gates, 2004).
These tools support a system where lean teams and management can select a product
value stream, pinpoint improvement opportunities, perform the work, and track progress.
Moreover, the framework acts as a binding agreement within the operations committee to
limit the fire-fighting behavior that is too prevalent in today's manufacturing

environment. Since value stream mapping has already been addressed for main and tail
rotor blades, Chapter 6 will begin with choosing the right kaizen activities to pursue.

1. Management and team selects
strategic value streams for focus

9. Closure -
Release resources 2. Create current state map

8-Audit and stabilize

systemchange
3. Create future state map

7- Create work plans and
track key metrics

4. Identify, quantify, and

6 Implementation and prioritize opportunities
project reviews

5. Team chartered to implement
target opportunities

Figure 15. Value Stream Improvement Process
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6.1 Prioritizing Kaizen Events

The gap between the current and future state of rotor blade manufacturing lengthens

as additional wastes are highlighted. Given the array of opportunities to reduce muda in

the factory, there are fortunately two techniques to quantify and prioritize initiatives

according to business needs. The first tool is the goal spreadsheet laid out in Table 1,

which itemizes the bottom line performance targets for 2005. Notice the anticipated

decline in plant-to-plant travel by 75% for main blades and the impact on minimizing

lead time. This example emphasizes the relationship among key metrics, where

improving one area can benefit another. The high-level document unites lean

practitioners with a shared vision and serves as a gold standard when measuring the

success of a project.

Table 1. K200 Goal Document

Key Metric Product Current State 2005 Goal % Improvement
____________________(Expected)

Main Blade 61 53 13.11%
Lead Time (Days)

Tail Blade 49 45 8.16%

Main Blade 8 10 25-00%
Monthly Deliveries

Tail Blade 8 10 25.00%

Main Blade 232,320 58,080 75.00%
Inter-Plant Travel (ft)

Tail Blade N/A N/A N/A

The second tool is a detailed method of prioritizing several kaizen bursts and is

displayed in Table 2. On the left hand column, a list of possible improvement initiatives

were generated by the rotor blade team. Along the top row, there are six weighted factors

narrowed down from a larger group of attributes. Each of these criteria were then scored

(1, 5, or 9) depending on the relative significance to the organization. For instance,

implementation time was critical and assigned a "9" since the author's internship lasted

just six months while project complexity was moderately important with a "5."

In the next step, all kaizen events were ranked (1, 3, or 5) to determine how well each

initiative stacked up against the designated factors. A grade of "5" indicates the best

outcome whereas a "1" denotes the worst case. For example, standardizing work in

project I greatly satisfies safety commitments (5), but only has a marginal effect on

inventory and lead time reduction (3). Once complete, the individual values from each
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Complexity

Weight (Stakeholder Priority) 5

A Eliminate main blade transportation time (total #
trips) between Stratford & Site B

Priodty x Score
5 x 3 =15

Sum Across Row
Implementation Inventory/Lead Customer Safety Cost/B* 5 +9+45 +45 + 15 +15 134

Tne Time Satisfaction

9 9 9 5 5 Total

5 5 3 3 (7Ey
Optimize manpower & equipment utilization to 3 5 3 5 1 5 162
synchronize main spar layup with demand rate

Determine outsourcing plan for main and tail
blade sub-assemblies so that autoclaves can be 3 1 3 3 3 3 108
dedicated to critical path items only
Analyze autoclave capability and capacity to 3 3 3 5 1 5 144
support part production according to takt time

Purchase and instal right-sized ovens for final 3 3 1 1 1 3 80
assembly area to avoid use of shared resources

Minimize wait time for items awaiting inspection 3 3 3 1 1 3 98

Investigate root causes for delay associated with 3 3 3 5 1 3 134
tail blade flexbeam deliveries

Reduce accumulating inventory for tail blade 5 5 1 1 1 3 108
torque tubes

Standardize operator work in the pacemaker 1 1 3 3 5 3 108
processes for main and tail blades

Coordinate incoming work orders for the six-axis 3 3 3 3 1 3 116
machine to enable flow
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opportunity were multiplied by their respective weighted criteria and summed across the

rows, giving a total score in Table 2. As the reader can see, main blade project B

possesses a high mark and has been selected for further analysis. It is also tied to the

monthly delivery target specified in the goal sheet in Table 1. Although there is some

subjectivity in the rankings, the matrix is nevertheless indispensable as a quantitative and

comparative tool.

6.2 The Site B Challenge

As stated earlier, Site B has been a location for expansion and consolidation in

previous years. The favorable situation is that much of the supplementary tools are

already in place to manufacture rotor blades. However, the facility has several

monuments which complicate lean methodology and single-piece movement of parts with

right-sized equipment. This sentiment is better expressed through the Phase II temporary

layout illustrated in Figure 16. The superimposed spaghetti chart displays the general

sequence of events and demonstrates how monuments like the massive machining center

and stand-alone autoclaves can disrupt product flow. A dotted line between steps

indicates an operation that has yet to be transferred to Site B.

The prioritization matrix in the preceding section brought one project to the forefront

of Phase II implementation: Optimize manpower and equipment utilization to synchronize

main spar layup with demand rate. This initiative plays a major role in delivering

finished blades to the hangar for final assembly to the aircraft. More specifically, Project

B presents a tremendous opportunity to increase monthly throughput because spar

fabrication consumes nearly 40% of total main blade processing time. Also, the value

stream map from Appendix A. 1 reveals a large portion of inventory and work-in-progress

(WIP) in the layup stations. The congestion is particularly evident between steps 1 and 2

in Figure 16 as spars are built and loaded into the 50-foot autoclave.
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6.3 Chartering Teams

The prioritization matrix applied in Section 6.1 quantifies high-leverage projects to

achieve the future state production system, but is absolutely worthless without a

formalized plan for implementation. A team charter, such as the one portrayed in Figure

17, establishes a framework around key stakeholders by specifying deliverables, metrics,

timelines, boundary conditions, and constraints. The sponsor, or lean manager at

Sikorsky, invests his efforts for the team to succeed while enforcing accountability. The

leader heads the team and is personally responsible for facilitating the process through to

completion. Finally, the coach provides educational and directional support to the leader

upon request.

VALUE STREAM TEAM CHARTER

Name of Team: Main Rotor Blade

Objectives: Optimize manpower and equipment utlization to sychronize main spar layup
with demand rate

Sponsor: N_ Crockett

Leader: N_ Bar

Coach: L Donohue

Team Members: A- Appleby, B_ Mahmood, B_ Smith

Deliverables: Spar fabrication time studies, shift loading chart

Metrics: Monthly deliveries

Timeline: June through November 2005

Reviews: Sessions with coach on bi-weekly basis

Boundary Conditions: Addresses only main rotor spars; Excludes yield issues
Tail rotor blades components and assemblies not included

Time Constraints: Complete by November 2005

Figure 17. Main Blade Value Stream Team Charter for Project B
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6.4 Project B - Work Planning and Metrics

With a takt time of 45 hours, the plant had to manufacture and ship one blade every

other day, corresponding to a throughput of ten blades per month. Prior to the author's

internship, no data existed to suggest whether this could be achieved since much of the

knowledge was based on anecdotal evidence provided by veteran employees. What's

more is that the current shop was only producing eight blades per month. As a result, the

first part of Project B was to document spar fabrication processes through time

observations like the one in Figure 18.

0
1 Select proper laser orientation 1:15

3:10
2 Lay down FEP J

T Lay down 1st layer of ply 115 & remove 900
backing 5:50

4 Lay down 2nd layer of ply 115 & remove 14:30 &V
backing 5:30

20:20
DCLaydown ply6 500 &1511

25:00IMark witness line @ middle of pack J & V

2650
7 Lay down FEP, fluor peel, & N10 and close Id J & V

1:40

8 compaction 3 Auto: 20 minutes Layup halted, humidity
bag18:35 hIgh

32:0000220 Step 220 J&V

Figure 18. Partial Time Study for Process 1 of Spar Fabrication

There are essentially five sequential components that make up spar fabrication:

1 Process 1 32 hours

" Process2 ---- 12 hours
" Process 3 ---- 8 hours

* Autoclave --- 24 hours (Automatic Machine Cycle)
" Process 5 ---- 4 hours

Of these processes, the 50-foot autoclave is the most important because it is a miniature

pacemaker helping to regulate the flow of preceding activities. Given the overall times

above, a shift loading chart was created to coordinate spar production (Table 3).
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SHIFT LOADING CHART - K200 SPAR

DAY M T W R F S S M T W R F S S

SHIFT 12 3 1 2 3 1 2 3 1 2 3 1 213 1 2 312 3 1 2 3 1 2 311 2 3 1 2 3 1 2 3 1123 1 2 3

Process 1 226 226 226 227 227 228 228 229 229 230

Process 2 225 226 227 229

Process 3 224 225 226 227 28

Autoclave [24 Hours] 224 225 226 227

Process 5
22 4 2 27

CL

0~
wI



In Table 3, a shift is equivalent to eight hours and every spar is numbered to track

progress. An immediate conclusion can be drawn regarding the series orientation of

individual operations. Because each process has one tool or machine, certain steps

become dependent on one another, eventually restricting output. Process 3, for example,

cannot be initiated unless Process 5 is complete. Despite the limitation, this

configuration feeds five blades into the autoclave every two weeks, leading to ten blades

per month.

At the start of the fourth quarter, demand spiked to twelve blades per month. In order

to accommodate the need, the lean team added flexibility to the spar fabrication stations

with the intent of testing the maximum capability of the system. First, a spare tool was

introduced to Process 1, cutting its time from 32 to 24 hours while keeping operator

headcount the same. Secondly, management approved weekend labor and readily

incorporated third shift resources to perform Process 5 during the off-hours. Table 4

shows a follow-up draft of the "train schedule." By loading the autoclave on Sunday

evenings, six blades could be cured every two weeks. Between June and October 2005,

throughput increased nearly 50%. However, in retrospect, Project B signified more of a

lesson in change management than tactical planning.
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SHIFT LOADING CHART - K200 SPAR

DAY M T W R F I S IS MI T W I R IF I SI S

SHIFT 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 112 3 1 213 1 213 1 2 3 1 2 3 11 2 3 1 2 3 1 2 3 1 2 3

Process 1 236 237 238 240 241
23 3 33 3 4

Process 2
3 35 3C 36 3 237 40 240

Process 3 235 236 23240

Autoclave [24 Hoursl 234 235 236

Process 5
234 235 236 237 238 39

.

0

9



6.5 Auditing

An audit sheet is a formalized mechanism to monitor manufacturing performance and

prevent kaizen bursts from turning into a flavor-of-the-day initiative. Figure 19 displays

the number of blade deliveries to the aircraft hangar by month. Although the throughput

target for the third quarter of 2005 was 10 blades every 4 weeks, the lean team missed the

goal in August. Failure to comply with the customer requirement exposed a major flaw

in the factory that had been neglected for some time.

The problem was not related to equipment or processes, but rather the people. With

production quickly ramping up, there was a deficiency in transferring skilled labor to Site

B. The primary cast of operators could complete their duties without hitches. However,

when these first string employees took vacation for example, throughput was severely

impacted as the plant did not have a knowledgeable reserve of alternative workers.

Because blade assembly is manually intensive, back-up operators with little familiarity of

the process finished tasks at a slower pace as they progressed along the learning curve.

Through this experience, lean experts have assigned supplementary resources to the K200

line and even emphasized cross-training the staff.

K200 Deliveries

14-

12

10- -+-K200

4-
0

2-
C
0

4-

2

May June July August September October November

Month

Figure 19. K200 Monthly Throughput
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6.6 Chapter 6 Summary

In Chapter 6, we presented a step-by-step approach to identify and prioritize a range

of multiple kaizen opportunities. On the back end, we followed through with project

implementation to increase monthly blade throughput in the spar fabrication area. In

Chapter 7, the author transitions from improving current production efforts to optimizing

operational performance for the future factory. A re-designed plant layout with

dedicated, right-sized equipment is considered and evaluated through a discrete event

simulation and capacity analysis.
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Chapter 7: Achieving Phase III

In the preceding sections, there is much discussion about Sikorsky's MRP-driven

operation and single-piece "push" production system. While the temporary plant layout

in Chapter 6 could suffice under a constant year-over-year demand scenario, it will not be

fundamentally sound to satisfy customers when the need for spares exceeds 20 blades per

month in 2006, decreasing takt time to 22.5 hours. This is primarily due to the lack of

dedicated equipment such as right-sized autoclaves and machining centers.

But, holistically speaking, the importance of Phase III extends well beyond

throughput alone. It draws attention to the fact that sixty days between incoming raw

material and delivery of a blade to the hangar leaves room for improvement. Although

transportation between sites is the chief contributing factor, the core issue is centered

around the sub-optimal layout of the existing factory. As can be seen in Figure 16, work

stations are not arranged intuitively to promote efficient movement of material from one

process to another. Thus, the purpose of Chapter 7 is to design a lean facility that can

accommodate peak demand, enhance product flow, and shorten lead time to market.

7.1 Cellular Arrangement

Three important assumptions were made in constructing a cellular layout for Site B.

Because the facility is only 225 feet long by 80 feet wide (see Figure 19 dimensions) and

rotor blades are approximately 25 feet in length, building the entire end-to-end

manufacturing line within the allotted space is impossible. Due to this constraint, the

author has chosen to exclude spar fabrication from in-house operations. Secondly, since

spar production would be outsourced, the upstream vendor network must be capable of

reliably supplying goods depending on customer needs. Thirdly, despite the resource

deficits mentioned in Section 6.5, the author presumes that both people and equipment

will be available to support the proposed system.

As shown in Figure 20, incoming raw material (spars) arrives on the left and the

process hooks around at each end of the plant such that flow occurs in the shape of the

letter "S". Given the large product size, main blades may in few cases have to exit a

station from the side as opposed to the front or rear. Movement from one step to the next
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would be handled with a mechanical cart that can lift and lower blades with a manual foot

crank. Table 5 provides a detailed break down of how the facility can be organized.

Table 5. Orientation of Processes for K200 Future State

1,2,3,4,5,6,7 Material Compaction and Blade Curing
8 Inventory Location

9,10,11 Strengthening and Machining of Blade Root End
12 inventory Location

13,14,15,16,17,18 Final Assembly

AB,C,D Part Supermarkets
F1,F2,F3,F4,F5 Supporting Processes to Feed Material Compaction

The feeder lines and many of the critical path stations are eleven feet by thirty feet,

providing enough room for operator mobility, tools, and machines. Inventory locations,

part supermarkets, and final assembly areas are about six feet by thirty feet. In addition,

there are four lengthwise aisles six feet in width along the walls and in the center of the

factory to promote easy access and visibility. It is also important to note that nearly 55%

of the stations listed in Table 5 require a modular clean room to separate them from the

remaining dirty operations and prevent contamination.

7.2 Simulation Modeling

With the physical layout known, several process variables have been entered into a

software package (Simul8) to model the future factory. Examples of input parameters

include supermarket material arrival rate, operation time characteristics for individual

stations, and inventory limits. A key inference of this simulation is that management will

exercise three shifts, excluding weekends, where each shift is comprised of 7.5 hours plus

a 30-minute break. Another generalization addresses the nature of workers. Since many

of the non-automated steps are manually intensive and people-dependent, there is an

issue related to repeatability and reproducibility. In other words, the concern is how

consistently an operator can complete a task on time and whether others can duplicate the

results. Due to the high degree of uncertainty, all processes are assigned a normal

operation time (as opposed to fixed) distribution.
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Upon running a one-month trial, presented in Figure 21, the strategic inventory levels

(stations 8 and 12) were found to be at reasonable levels with three or four rotor blades.

I MONTH TRIAL k
I

Station 12
Station 13 Station 14 station 16 Station 16 Station 17 StatIon 18

nv.

Station 8

Station 11 Station 10 Statior S Station 7 Station 6 Station 5 Station 4

F4

F3A Station I Station 2 Station 3

C Fl D F5 B F2

Figure 21. One-Month Production Simulation

However, after allowing the trial to resume for a full quarter (Figure 22), the inventory

locations spiked and would have exploded had they not been capped. Even worse, the

"traffic jam" slowly crept upstream to partially clog the supermarkets feeding the

material compaction stations. Now, the fact that three months passed before these

problems emerged demonstrates that the factory has close to enough capacity. The

simulation actually predicts a lead time of 17 days and throughput of 18 blades per

month, barely shy of the 20 blade commitment. Section 7.3 takes a further look into what

exactly is causing the system to falter.
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I
Station 12

Station 13 Station 14 Station 15 Station 16 Station 17 Station S

-- - ~& 4 -- 4 ---
Inv.

stationS
Station 11 Station 10 Station 9 Station 7 Station 6 Station 6 Station 4

In.

S Stat on 1 Station 2 Station 3

C F1 D F B

Figure 22. One-Quarter Production Simulation
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F3

F2

7.3 Discussion

Through the simulation tool, we determined that our proposed cellular design will

have difficulty fulfilling the anticipated monthly demand of 20 blades. In this section, we

seek to answer why. According to Ravi Anupindi, if we observe a given resource during

the period in which it is available, we will notice that it alternates between periods in

which it is utilized, or busy processing flow units, and periods during which it is idle.

Machines, for instance, may be out of service (maintenance or breakdown), occupied for

setups (changeovers), or interrupted by other activities. Any one of these events will

reduce the time period during which a resource is available (Anupindi, et al, 1999).

Idleness aside, the theoretical capacity of a resource pool is its maximum sustainable

flow rate if it were completely utilized during its scheduled availability. Table 6 contains

a capacity analysis for each of the critical path and supplementary work stations. The

calculation can be derived as follows:

Th. Cap. of Resource Pool= 1 x Load Sched. Working Days # of Units in

Unit Load Batch Availability Per Month Resource Pool
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In our scenario, load batch and total number of units in resource pool are both equivalent

to 1 due to a single-piece pull manufacturing system and equipment shortages. Also,

there are 20 working days to every month, corresponding to 22.5 hours of daily scheduled

availability as mentioned in Section 7.2.

If the reader may recall from The Goal, two types of resource pools co-exist in

manufacturing: bottlenecks and non-bottlenecks. A bottleneck is a resource that defines

the effective capacity of a plant and is equal to or less than the demand placed upon it

(Goldratt, 1992). In the text, Eli Goldratt stresses balancing the floor by controlling flow

through the bottleneck and into the market. For the main blade line, the final assembly

area (stations 14 to 18) is an obvious bottleneck and establishes the pace of production,

taking at least twice the time to complete when compared to upstream operations. The

factory could theoretically deliver 20 blades per month, but the inherent variation in each

of the processes is collectively bringing the system under water.

Table 6. K200 Main Blade Capacity Analysis

THEORETICAL CAPACITY ANALYSIS FOR K200 MAIN BLADES

Unit Load Load Batch Th. Capacity of # Of Units in Th. Capacity of
Resource Pool (hrs/blade) (blades/batch) Resource Unit Resource Pool Resource Pool

(blades/mo) (blades/mo)
1 3.58 1 126 1 126

F1 4.74 1 95 1 95
2 0.82 1 549 1 549
3 2.00 1 225 1 225

F5 2.00 1 225 1 225
F2 0.66 1 682 1 682
F3 1.50 1 300 1 300
F4 2.48 1 181 1 181
4 1.75 1 257 1 257
5 7.00 1 64 1 64
6 10.69 1 42 1 42
7 0.75 1 600 1 600
9 11.75 1 38 1 38
10 4.00 1 113 1 113
11 1.00 1 450 1 450
13 4.45 1 101 1 101
14 22.50 1 20 1 20
15 22.50 1 20 1 20
16 22.50 1 20 1 20
17 22.50 1 20 1 20
18 22.50 1 20 1 20
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7.4 Recommendations

With a keen understanding of the limitations discussed in Section 7.3, there are a

couple options for Sikorsky to ensure that blades are delivered in unison with the rate of

sales. From a short-term perspective, the factory could artificially maintain process

reliability by installing a supermarket after final assembly to absorb some of the system

variation (Figure 23). A harder solution involves standardizing the content and flow of

activities in the final assembly stations where main blades would spend up to 53% of

their time. Since the distribution of work is lopsided with greater labor focus at the tail-

end of production, this particular scenario favors cross-trained operators who can easily

rotate to support downstream operations.

Eventually, customer demand will climb to 40 blades per month, cutting takt time to

11.25 hours. Looking ahead, the business could employ a pair of tactics to soften the

impact. With the right amount of capital, the factory can strengthen production capability

by increasing capacity in final assembly as depicted in Figure 24.

-U vs.

Figure 24. Shift from Series to Parallel Processing

For example, instead of having three stations at 22.5 hours a piece, one could build a

second set of stations to operate in parallel, thus doubling output from twenty to forty

blades per month. Based on Figure 25, Sikorsky also has an opportunity to maximize

throughput by "bite-sizing" its bottlenecks.

S 22.51 V 5k 25 H 11.25vs 1125

Figure 25. Simplifying Bottlenecks in Final Assembly

In this case, for instance, the plant can divide final assembly work into smaller chunks

such that transfer of product from station to station is synchronized with takt time. While

both of these solutions are flexible to market fluctuations, space is a critical constraint for

Site B. As a result, management will more than likely opt for a larger facility to house

the additional equipment and expand operations.

65



WKLY PROD CONTROL QTRLY HAGR
SUPPLIER ORDER FORECAST, SAE

20 BLADES 4
PER MO.

O O PURCH 2 SHIP TICKETS

9

t'.)

"0
0
0~

t

9

Cr
w

*0

0
9

0

S.

Clamshell Laminate Final

_AMY_ Bond A _Av_
SPARS &--O -FIF0 -FIF0 PACE --

4 units I unit I unit 5 units

1 unit 1 unit 6 units

EVERY 22.5 HRS

Paint, Bal, __I
Whirl IMXShip

Sta-. pging

1 unit 1 unit 13 units

4 units 12 units

MATLJ--4



Chapter 8: Leadership and Organizational Change

This chapter is a stand-alone paper, extending beyond the author's internship

experience to describe personal leadership in the midst of organizational change. It

specifically captures the context of the research and stakeholder alignment surrounding

the project. In tying these elements together, Chapter 8 concludes with a reflection on the

author's lessons learned, professional strengths, and development needs.

8.1 Project Background and Description

As part of my 6-month internship, I joined Sikorsky Aircraft in Connecticut to drive

lean transformation initiatives in the rotor blade shop while supporting business

expansion efforts. In June 2005, the company was planning for a doubling in production

volume over the next three years. Once a vertically integrated company, Sikorsky has

revised its strategy by shifting non-core manufacturing to the supply base and converting

batch and queue process villages into lean flow lines. Choosing a low cost, high profit

operating model influenced Sikorsky's decision to concentrate on key competencies.

Sikorsky's core military platform, the Blackhawk, has always been a mature and

long-standing source of revenue. In fact, the need for spare blades continues to reach

record highs in light of the ongoing war in Iraq. As a result, management set aside

additional capacity in the Stratford facility to accommodate the rise in demand.

However, by reserving extra floor space in the existing factory for this purpose, business

leaders decided to relocate the K200 program (masked for confidentiality) to an alternate

site. Compared to the Blackhawk, K200 manufacturing proficiency is still in its infancy,

functioning much like a job shop. This is not the desired state especially when orders are

expected to quadruple by 2007.

Shortly after commencement of K200 helicopter rotor blade fabrication,

transformation of the rotor blade lines followed. In one year, Sikorsky progressed rapidly

along a sharp learning curve to satisfy customer needs and categorized its lean execution

into three major stages:

Phase I - Relocate all K200 production equipment to Site B.

Phase II - Establish a temporary layout around existing monuments.
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Phase III - Implement cellular arrangement with in-line machines.

Given the business objectives, my internship focused on three aspects of lean

methodology: enterprise and department level value stream mapping, management of

improvement initiatives, and the design of a dedicated lean flow line for main blades.

Deliverable 1

Value Stream Mapping was employed during Phase II to assess the current state of

the main and tail blade production systems. However, before analyzing material flow, I

took a step back and observed how factory processes fit into the overall framework of the

business. For example, the purchasing department may be internally optimized, but

could be considered sub-optimal if the total enterprise is not lean. Thus, documenting

information flow across various cross-functional areas provided a valuable frame of

reference as illustrated below (Figure 26).

Contracts Planning
Pricing Engineering Purchasing Control

LEAN ACROSS ENTERPRISE

Figure 26. Enterprise Versus Department Level Lean

Deliverable 2

Using future state value stream maps, I identified several potential kaizen events to

reduce lead time and increase monthly blade deliveries. Though, as a management tool,

value stream mapping by itself did not emphasize team roles, responsibilities, and actions

needed to achieve an ideal production system. Therefore, specific guidelines were

applied to prioritize the activities, track performance, and audit the changes.

Deliverable 3

Long lead times and poor throughput levels have been logged throughout Phase II.

With orders expected to double by 2006, Phase III capital investment plans were under
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review to ensure that the plant could adequately accommodate the volume. Although

most expenditures received approval, a cellular arrangement could not be finalized within

the scope of the internship. Despite the timing issue, I completed a proposed factory

layout for the main rotor blade. The primary challenge in designing a lean flow line

became evident given the physical constraints of the Site B plant.. A discrete simulation

was also created to validate the new manufacturing cell.

8.2 Three Perspectives on Organizational Processes

"Businesses are changing rapidly in response to economic, social, political, and

technological forces. Companies have flattened their hierarchies in order to be flexible

and to cut costs. More companies have global reach and diversity of people and ideas to

match the diversity of their customers and stakeholders. Companies are networked

internally and externally to gather information and combine resources for emerging

opportunities. The idea that companies or firms are the central actors in economic life is

yielding to teams, projects, joint ventures, supply chains, and other structures that cut

across traditional boundaries" (Caroll, 1995). This section offers various insights on

organizational behavior from a strategic, political, and cultural perspective.

8.2.1 Strategic Design

The strategic design of an organization encompasses the mission of a company based

on rational analysis of opportunities and capabilities. Guided by a vision, senior leaders

recruit knowledgeable individuals and group them by expertise to execute on corporate

objectives. Considering Sikorsky's goals, the business is expanding its presence in the

military and commercial helicopter space for greater market penetration. To capitalize on

the increase in aircraft demand, Sikorsky has focused on profit margins, shifting non-core

manufacturing to its supply network and re-grouping employees into various distinct

departments including Contracts/Pricing, Engineering, Purchasing, and Planning/Control.

Of course, some of these functions are further categorized according to product family

(i.e. Blackhawk, CH-53, S-76, etc.) and competencies mentioned in Section 8.1.

From a Planning/Control standpoint, both production output and proficiency continue

to ramp up significantly for K200 rotor blades. In terms of customer profile, 90% of
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blades currently service complete aircraft sales while the remaining 10% fulfill requests

for spares. Though, as the product matures, the percentages will eventually become more

balanced. Due to high volume forecasts and the desire to minimize internal operating

costs, the business has developed a strategy to integrate lean methodologies within the

factory through single-piece flow and cellular manufacturing. Many believe the adoption

of Toyota Production System (TPS) principles will improve responsiveness to the

customer and shorten lead time to market.

During my internship, I was directly exposed to the lean transformation initiative.

My stretch goal was to help relocate the entire K200 line (Phase I), but I was primarily

responsible for meeting product delivery targets with equipment that had already been

transferred to Site B (Phase 1I). As part of my second deliverable, I led a focused team to

increase monthly throughput by enhancing the flow of activities in the rotor blade

fabrication area. This kaizen project fit well with the overall need to demonstrate system

capability and satisfy volume expectations.

8.2.2 Political Perspective

The political viewpoint assumes that an organization is a diverse collection of

stakeholders with different and sometimes conflicting interests (Caroll, 1995).

Individuals and/or coalitions with "power" does not mean exercising control over others.

Rather, it suggests the ability to get things done or thwart progress through persuasion,

access to resources, special alliances, and knowledge. Since my assignment was closely

linked to factory performance, key stakeholders included the operations manager, plant

foreman, and line workers. Figure 27 portrays the nature of these relationships with

respect to my project in addition to external participants having a vested interest in the

outcome. A plus (+) implies that the initiative is favored whereas a negative (-) denotes

resistance.
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Lean Manager DIrector of
Operations

Operations +
Manger+ ForemanManager

Line Workers

-------------------------------------------------------

Figure 27. Project Stakeholder Map

In evaluating the reasons for support and disagreement, I realized that each of the

stakeholders had something to gain or lose with the throughput project. On the top-most

level, my lean manager and the director recognized that the business would eventually

take a hit and lose money if aircraft assembly did not march to the beat of increasing

sales. Both the foreman and operations manager understood that blade deliveries to the

hangar were rising sharply, but did not have an instant solution to match supply with

demand. Standing in opposition were the line workers who are adroit in their trade and

have mastered the intricate manufacturing processes for years. Because Sikorsky is off-

loading parts to competing vendors, line operators' concerns about their livelihood

continue to grow. Learning from them or documenting how they work was initially

perceived as a threat because their expertise (knowledge) is a main source of power and

losing it would make them expendable.

8.2.3 Culture

Underlying the visible aspects of culture are a set of articulated attitudes and beliefs,

shaping a "way of life" for how and why things are done in a particular fashion. Prior to

the 21 s century, Sikorsky operated as a traditional batch and queue manufacturer with

large inventories and long lead times to market. With only a small number of
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competitors, the business was once complacent in its position as the dominant player in

vertical flight. However, increased customer expectations and the management decision

to pursue a lean philosophy described in Section 8.2.1 truly challenged the existing

culture by rocking the foundation of a historic mental model.

8.3 Evaluation and Recommendations

Although the full production relocation effort was not completed within a six month

period, I was still successful in increasing blade throughput by roughly 50% for a specific

set of fabrication stations. During my internship, the idea of implementing a shift-load

chart eventually evolved into a standard sustainable solution for tracking deliveries to the

aircraft hangar. However, the impact of my project was equally significant from an

organizational perspective as well. I was amazed to see how a data-driven, team-oriented

mindset could simultaneously improve operational metrics and overcome the age-old

paradigm of "don't fix it if it isn't broken."

While at Sikorsky, I had a terrific manager and mentor who instructed me on the lean

principles and values of leadership. I would like to pass on three of his mantras that are

meaningful to me and may be helpful in guiding others engaged in similar situations:

1. "A great leader must have solid interpersonal skills, the passion to learn and

acquire knowledge, and the ability to initiate change."

2. "It is easy to manage through fire-fighting because the choices are simple: you

either turn left or right. The true challenge is one ofproactive management."

3. "A capable leader must manage the appropriate amount of tension to enforce

accountability. In a short assignment, pushing the envelope for change among

team members isjust as important as building relationships and establishing

credibility. Maintaining the right balance separates the good from the great."
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APPENDIX B - VALUE STREAM MAPPING SYMBOLS

Manufacturing
Process

Truck Delivery

Shared Manufacturing
Process

[IILLL(>

PUSH Arrow

p/t =5 mm/pc
cJo = 20 min

2 shifts
yield= 100%

ret = 95%

Data box

FI J1f

First-In-First-
Out Sequence

FLOW

External Source
(Customer/Supplier)

Pull Withdrawal

Electronic
Information Flow

Production Kanban

"Go see"
Production
Scheduling

Signal Kanban

Supermarket

Withdrawal
Kanban

Kaizen burst

99

1.5 d

Inventory

Operator
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