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Abstract

The majority of human genes are not encoded in contiguous segments in the genome
but are rather punctuated by long interruptions known as introns. These introns are
copied from generation to generation, and even from cell to cell as a person grows
from an embryo into an adult. Each time a gene is activated, the cell must first
accurately excise all the introns in a process known as splicing.

This excision is determined by the sequence of the gene, but in a complicated way
that is not fully understood. By analyzing gene sequences we can learn about how
cells decide which sequences to splice. We have developed two new mathematical
models, one for the end of introns, and another for long distance interactions between
different parts of genes, that expose previously unknown elements potentially involved
in the splicing reaction.

However their boundaries are determined, introns are very ancient: although they
are absent from bacteria they are found in almost all protists, fungi, plants and
animals. It is therefore of great interest to explain their evolutionary origins. We have
developed a probabilistic model for the evolution of introns and used it to perform
a genome-wide analysis of the patterns of intron conservation in four euascomycete
fungi, establishing that intron gain and loss are constantly reshaping the distribution
of introns in genes.

Thesis Supervisor: Christopher B. Burge
Title: Associate Professor of Biology, Department of Biology
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Chapter 1

Introduction

The role of enzymes in the life of the cell is to mediate the transformation

of the simple chemical world of the environment into living protoplasm.

In effect, they guide molecules across the threshold of life.[13]

Biochemistry was born when scientists in the nineteenth century studying fermen-

tation discovered that the conversion of sugar to ethanol was catalyzed by enzymes,

molecular machines formed by living yeast cells. Such machines are responsible for

every cellular process in the human body, from processing the air we breathe to help-

ing us digest our food to enabling us to have thoughts. We now know that the vast

majority of these machines are proteins, and that each one arises from its own gene.

The program of gene expression is therefore tightly regulated in every cell. Not

only does each protein need to be synthesized correctly in order to function, but

it needs to be synthesized in the right cells under the right conditions. Proteins are

linear chains of repetitive subunits, each subunit being one of twenty amino acids, and

it is this sequence of amino acids that determines all the chemical properties of the

protein—for example, which reaction it will catalyze, how quickly it will degrade, into

what shape it will fold, and whether or not it will aggregate. Errors in the sequence,

sometimes even a single incorrect amino acid, can cause the protein to malfunction

and lead to serious diseases (anemia, cystic fibrosis, and Alzheimer’s disease to name

a few). On the other hand, even proteins synthesized correctly can be deadly when

17
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Figure 1-1: A schematic example of four bases of double-stranded DNA. The backbone is shown
in gray and the bases in black.

they are made in the wrong cells or at the wrong time. For example, mis-regulation

of many cell-cycle proteins causes cancer.

The sequence of every protein is encoded by a gene, and these genes are inherited

from generation to generation. Aside from the protein sequence, each gene contains

signals for the cell to use that control its expression. Understanding gene expression,

the pathway that starts with genes and ends with correctly regulated proteins, is

therefore of vital importance to both biology and medicine.

1.1 The Life Cycle of a Gene

Genes are encoded in DNA in a four letter chemical alphabet (adenosine, guanosine,

cytidine and thymine, abbreviated A, C, G and T respectively) in long linear molecules

called chromosomes. These chromosomes are two-stranded polymers made of these

subunits, where the residues from each polymer are paired up like half-ties of a railroad

track, with the bases C and G always paired, and A and T always paired (Figure 1-1).

The strands each have an orientation beginning from the so-called “5′ end” and ending

at the “3′ end”. In humans, 24 distinct chromosomes make up the entire genome, 22

autosomes and 2 sex chromosomes, and they range in length from about 50 million

to 250 million base pairs, totaling about 3 billion bases.

Although the sequence of one strand can be determined from the other by reversing

it and taking the complement (i.e. swapping C with G and A with T) each gene is

encoded by a single strand—the coding strand for that gene. The first step required to

activate a gene is the binding of the protein complex RNA Polymerase to its promoter

18
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Figure 1-2: RNA Polymerase, DNA (white letters on black), and RNA (black letters) form a
ternary complex during transcription.

region. This is the region of DNA at the beginning (5′-most end) of the gene, and it

tells the cell under what conditions the gene should be expressed, and also on which

strand the gene lies. RNA Polymerase makes an exact RNA copy of one strand. RNA

is similar to DNA but uses a different backbone, typically has only one strand, and

uses the chemical letter uracil (abbreviated U) instead of T. The process of copying a

gene into an RNA is called transcription.

The RNA is transcribed from its 5′ end to its 3′ end, so that RNA Polymerase,

DNA and the growing RNA strand form a ternary complex at any point during

transcription (Figure 1-2). The transcript ends after recognition of a cleavage signal

sequence by protein factors associated with RNA Polymerase.

A complete RNA transcript is also known as a pre-messenger RNA, or pre-mRNA,

and is an exact RNA copy of a contiguous region of one strand of the DNA genome.

It is at this point that the splicing reaction takes place (see section 1.2 below), and in-

trons are excised, leaving the mature messenger RNA, or mRNA. Two other changes

associated with the maturation of the pre-mRNA are the addition of a special nu-

cleotide known as a cap to the 5′ end of the molecule, and the addition of a 3′ tail of

typically 100-200 adenosines.

This capped, spliced and polyadenylated mRNA is then exported from the nu-

cleus into the cytoplasm. In the cytoplasm it is bound by ribosomes, large complexes

of RNA and protein which catalyze the translation of the mRNA into protein. The

19
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Figure 1-3: The genetic code is highly sensitive to nucleotide insertion and deletion. (a) Proteins
are made by translating consecutive RNA nucleotide triplets into the 20-letter amino acid alphabet.
RNA sequence is shown in small letters and protein sequence in big letters. (b) A single nucleotide

insertion C in the RNA sequence completely changes the rest of the protein sequence.

ribosome begins translation near the 5′ end of the mRNA, and reads triplets of nu-

cleotides, or codons (Figure 1-3a). Each codon corresponds to a single amino acid

from the 20 amino acid alphabet. Three of the sixty-four (43) codons are stop codons

and signal the ribosome to terminate and release the growing protein. A given stretch

of RNA could in principle encode three different proteins, according to whether the

first codon begins with the first, second, or third nucleotide. Therefore, the insertion

or skipping of even a single nucleotide at any point in the mRNA will render the

rest the of the protein nonsense (Figure 1-3b). Thus even the slightest error in the

production of the mRNA can have a profound effect on the production of a functional

protein.

1.2 Splicing the Interrupted Gene

Splicing was first discovered in viruses in 1977 [3, 8]. The investigators were studying

which parts of the DNA were being transcribed into RNA. They were able to isolate

a single type of mRNA from the virus, and also isolate the non-coding or template

strand of DNA from which the mRNA was expressed. When single-stranded DNA

and complementary RNA are mixed they form a DNA:RNA hybrid, which is a double-

stranded polymer with similar railroad-type structure and base-pairing properties as

native DNA. When this single type of mRNA was hybridized to the single template

strand of DNA, electron micrographs revealed that there were regions of the DNA

that would hybridize with the mRNA interrupted by other regions that would loop

out without forming base pairs (Figure 1-4).

20



1

2

A 1 2
B

Figure 1-4: The discovery of interrupted genes. (A) Schematic of electron micrograph of single-
stranded DNA (solid line) hybridized to mRNA (dashed line). The loops in the DNA represent
introns which, absent in the mRNA, remain unbound. (B) Diagram of a three-exon/two-intron
gene. Exons, boxes. Non-transcribed DNA, solid lines. Introns, dashed lines. Top, pre-mRNA.
Bottom, mature mRNA. Dotted lines indicate correspondence of splice junctions in pre-mRNA and
mature mRNA.

The entire region was transcribed, but the regions that looped out without forming

base pairs, later termed introns, were then excised from the pre-mRNA. The regions

that remained in the mature mRNA, termed exons, were able to base pair with the

corresponding regions from the DNA.

The idea that genes were not contiguously encoded in the genome came as a shock,

and a great deal of energy was put into understanding both the mechanism by which

the splicing reaction took place and also the manner in which the excisions were spec-

ified in the RNA sequence. Although much progress has been made, both problems

remain at least partially open today. The spliceosome, the cellular machinery respon-

sible for the splicing reaction, is one of the largest and most complex of the entire

cell. Although most of its components are known, many of their roles in the context

of the larger machine are still poorly understood. As for the elements in the RNA

sequence that specify the ends of the introns, they have been described very well in

yeast [56], but remain only partly understood in humans and other animals.

As more and more introns and exons were mapped, it became clear that there were

at least three such elements in every splicing reaction. Two of three are the 5′ and 3′

splice sites, located respectively at the beginning and end of every intron (Figures 1-

5 and 1-6). They act as flags that say “cut here” to the spliceosome, like the lines

drawn by a carpenter on a wooden beam to guide the saw. The third element, known

as the branch site, or, when it needs to be abbreviated, the branch point site (BPS), is

21



intron
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intron

3’ splice
site

5’ splice
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Exon

Figure 1-5: The parts of an exon. Every exon (gray box) begins with a 3′ splice site (right-facing
periscope) and ends with a 5′ splice site (left-facing periscope).

3’ splice site 5’ splice site

Figure 1-6: Human splice sites. The 3′ splice site (left) appears upstream and the 5′ splice site
(right) appears downstream of every exon. The height of each letter at each position is proportional
to the number of actual human splice sites that have that letter in their DNA sequence at that
position relative to the splice junction.

located usually in the last 20-30 bases of the intron, near the 3′ splice site. It turned

out that this functioned as a sort of handle by which the spliceosome could grab the

excised intron, and also as a marker to tell the spliceosome to look nearby for the 3′

splice site.

Another idea that emerged from research into human RNA splicing was that the

basic unit of recognition is the exon, not the intron [46]. Rather than looking at

the pre-mRNA as mostly exon with a few introns that need to be excised (as in

yeast), the human spliceosome needs to identify and join the short exons from a sea

of introns: exons tend to be about 125 nucleotides long, with very few any longer

than 250 nucleotides, whereas human introns tend to be about 10 times longer.

This “exon definition” model, then, suggested that the spliceosome searches pre-

mRNA for a branch site followed very soon by a 3′ splice site and then by a 5′ splice
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Figure 1-7: Human Sirt1 gene splice sites. (Top) Sequences along the DNA are scored for their
similarity to the 3′ splice site (right-facing periscope) and 5′ splice site (left-facing periscope) con-
sensus sequences (Figure 1-6). The heights of the periscopes are proportional to the sequence scores,
and are plotted only for those scores above a minimum threshold. (Bottom) Known Sirt1 mRNAs
from GenBank (see section 1.5). Black boxes indicate mRNA sequence (exons) and cross-hashed
lines indicate intronic or genomic sequence.

site at a distance of at most another 250 nucleotides. Surprisingly, if we look at the

distribution of sequences that are similar to consensus in Figure 1-6 we see that they

are abundant in a typical human gene. As an example, Figure 1-7 shows the extent

to which such sequences, known as decoy splice sites, pepper the length of the human

Sirt1 gene, and the extent to which most of them are nevertheless ignored. The cell

always seems to include the correct sequences as exons into the mature mRNA and

exclude the rest.

Such a picture is typical for many human genes, and suggests two basic questions

about splicing. First, how is it that the inclusion of true exons into the transcript is

enforced, and second, how is it that pairs of nearby splice sites with good consensus

scores (pseudoexons) are consistently excluded from mature mRNA.

Part of the answer to these questions lies in short sequences called exonic splicing

enhancers (ESEs). These sequences, which are present in nearly all human exons,

serve as binding sites for members of the SR protein family. SR proteins recruit

components of the spliceosome to the upstream 3′ and downstream 5′ splice sites,

thereby defining ESE-containing pre-mRNA segments as exons [20, 62, 15]. There

has also been a report that the SR proteins, when bound to ESEs, suppress the

skipping of that exon, so that an upstream 5′ splice site cannot be joined with a

downstream 3′ splice site when they are separated by ESEs [26].

In fact, another class of sequences, the exonic splicing silencers (ESSs) can sup-

press the inclusion of a putative exon in which they are located [61]. These elements
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are abundant in pseudoexons, which is one mechanism by which they are consis-

tently excluded. Intronic splicing enhancers (ISEs) and silencers (ISSs) have also

been studied to some extent. These are elements that appear in introns nearby exons

or pseudoexons and function to enhance or repress their inclusion in the mRNA.

Chapter 3 describes our discovery of a new class of putative splicing regulatory

sequences. These are collocations, or pairs of elements which function in concert

with each other. In one particularly interesting example, the GC/AU collocation, a

G+C-rich motif appears at the beginning of introns paired with an A+U-rich motif at

their end. We believe that this pair of motifs cooperatively represses the inclusion of

pseudoexons throughout the length of the intron.

1.3 Alternative Splicing

It is possible for cells to modulate gene expression to their advantage. As an example

consider the gene AQP in frogs. This gene, which has a human homolog, encodes

the protein aquaporin, which resides in cellular membranes and makes them water-

permeable. Without the expression of such proteins we would not, for example, be

able to take in water from our environment and would surely die. On the other hand,

aquaporins are absent in frog egg cells. When, by artificial methods, such cells are

forced to express aquaporins and then placed in water with low salt concentration,

such as would be found in a fresh water pond, they burst. This is due to the osmotic

influx of water from low to high salt concentration. Thus the regulation of the ex-

pression of AQP is essential for the life of a frog: off in eggs, and then on in various

adult cells.

It seems that every step along the gene pathway is regulated at some point by

some part of the human body. At the most basic level, we know that the initiation

of transcription is tightly controlled, with most genes completely shut off in most

cells. Once a gene is transcribed into an mRNA, its export to the cytoplasm could

be regulated. Once in the cytoplasm, its half-life can be regulated. Next, the various

steps of translation can be regulated. Finally, the half-life of the translated protein can
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Figure 1-8: Five common patterns of alternative splicing. Exons are shown as boxes, introns or
genomic sequence as dashed line, splicing pathways as solid lines. (SE) Skipped exon. One pathway
(upper) includes the middle exon but the other skips it. (MXE) Mutually exclusive exon. Each
pathway includes one or the other, but not both, of the two middle exons. This is exemplified by
α-actinin. (A5SS) Alternative 5′ splice site. One pathway (upper) uses the first 5′ splice site and
the other uses the second. Thus the upper pathway gives rise to a shorter transcript than the lower.
(A3SS) Alternative 3′ splice site. Similar to A5SS, but at the 3′ splice site. (RI) Retained intron.
One pathway (upper) splices out the first intron, but the other includes it in the mRNA, creating a
longer transcript.

be regulated. Each of these steps, when positively regulated, lead to greater expression

of the encoded protein, and when negatively regulated lead to lower expression or the

complete shutting off of the protein.

When the splicing of pre-mRNA to mRNA is regulated the effect can be much

more subtle. In one case, since it is known that some genes cannot be efficiently

exported until they are spliced, if the rate of splicing is regulated, it will simply affect

the final level of the protein. Surprisingly, there are many examples where the actual

choice of splice sites is regulated, so that it is not only the final protein level but the

actual sequence of the protein that is regulated! This is called alternative splicing,

and the different mature mRNAs that can be spliced out of a given pre-mRNA are

known as isoforms. It has been estimated that at least half of all human genes can

be alternatively spliced [27]. Some of the common patterns of alternative splicing are

shown in Figure 1-8.

An interesting example of alternative splicing is the gene α-actinin, which func-

tions in the cytoskeleton, the intracellular matrix that gives order and shape to every

cell. This gene contains among its exons two in a row that are known as NM and

SM. These exons are mutually exclusive—the spliceosome always chooses one or the

other, but not both, to include in the mature mRNA. These exons are regulated in

such a fashion that smooth muscle cells generally produce the SM-containing isoform,
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Figure 1-9: Alternative splicing of alpha-actinin. (Top) NM-containing isoform spliced in non-
muscle cells. (Middle) alpha-actinin pre-mRNA with two splicing pathways. Dashed lines represent
introns and solid lines represent splices. (Bottom) SM-containing isoform splice in smooth muscle
cells. (Figure modified from [58].)

whereas non-muscle cells generally produce the NM-containing isoform (see Figure 1-

9).

Alternative splicing is important because it multiplies the diversity of proteins

that can be expressed in one organism. For example, the fly Dscam gene can be

alternatively spliced in over 38,000 ways [50]. In this extreme example, a single gene

can in theory give rise to more variant proteins than there are genes in the entire

genome. Sometimes the variants of the protein will have different properties in the

cell, and sometimes the changes are more important at the RNA level—for example

one splice might include a sequence that targets the mRNA to be degraded. Therefore,

understanding alternative splicing is key to a complete picture of gene expression.

Our interest was in probing the role of the branch point in alternative splicing

which has, to this point, been poorly studied. We were motivated by the α-actinin

exons, whose mutual exclusion, we shall see, is due to the position of their branch

points. Chapter 4 describes our creation of the largest known set of branch points in

human and mouse, and what we might learn from examining them. One interesting

discovery is that the ordering of otherwise normal regulatory elements can lead to the

skipping of an exon.
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Figure 1-10: The three domains of life. Eukaryotes are the organisms with nuclei, and also the
only ones known to date that have spliceosomes. They include all plants, animals, fungi and the
early-branching protists. The ‘E’ within a circle denotes the last common ancestor of all eukaryotes.

1.4 The Evolution of Introns

It was not long after the discovery of splicing that researchers began to wonder about

their evolutionary origins. Why weren’t genes encoded contiguously? How widespread

was this phenomenon in the tree of life? What advantage would cells with introns

have over those without?

In any evolutionary study the first task is to tell the history, and only then can

one begin to speculate the reasons. In the case of splicing, it was crucial to know

exactly when introns arose in the history of life, and then how quickly and where they

spread.

To date, no bacterium or archaeon has been found that has a spliceosome, but

every eukaryote studied does (see Figure 1-10), from the most complicated multi-

cellular animals and plants all the way down to simple single-celled organisms such as

yeast, Giardia and Plasmodium that do not need alternative splicing to diversify their

protein production. Therefore it is very likely that the last ancestor of the eukaryotes

had a spliceosome.

This suggests two more questions: How much earlier before that ancestor was the

spliceosome invented, and how many introns did that ancestor have? These questions

have fueled an intense debate. On the one hand, the introns early camp maintained
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that the very earliest life had introns, and that they were lost along the bacterial

and archaeal lineages. This camp also put forth the exon theory of genes which said

that most modern genes today arose from shuffling and recombination of ancient

exons. They also propose that the eukaryotic ancestor had many introns, much like

mammals and other vertebrates today. Yeast, which has much fewer, they maintain

came about through the loss of introns. The introns late camp proposed that the

spliceosome arose in an early eukaryotic cell and furthermore that most introns that

we see today arose after the split of the plant and opisthokont (animal + fungal)

lineages.

In recent years, with wide-scale availability of complete genome sequences and

exon annotations, it is finally possible to resolve at least the question of intron number

using phylogenetic methods (see 1.6.1). Chapter 2 shows our effort to mathematically

model the gain and loss of introns in four fungi. This represents one of the earliest

and most thorough examinations of genome-scale patterns of intron gain and loss.

We find that, at least in this clade of fungi, gain and loss are roughly in balance.

Their common ancestor had approximately the same number of introns as they do

today, and that number has persisted.

1.5 Biological Data

The field of computational biology has arisen over the past few decades due to the

abundance of data that has been generated from a variety of high-throughput tech-

nologies. These data include nucleic acid sequence data, microarray data, and a

variety of protein data. The nucleic acid sequence data, with which we are primarily

concerned here, includes genomic as well as transcript sequence. Microarrays are a

method of measuring in parallel the relative abundances of thousands or even mil-

lions of different species of nucleic acid by applying cell extract to a chip with probes

complementary to sequences of interest. Protein data include sequences of puri-

fied proteins by Edman degradation or mass spectrometry, measurements of protein

abundances by antibody arrays, and three-dimensional structures solved by X-ray
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diffraction or NMR spectroscopy. For the work contained in this thesis, the most

important data are nucleic acid sequences.

Of the nucleic acid sequences, the most fundamental are the genomic. Entire

genomes can be sequenced by isolating DNA from cells, shearing the DNA into

shorter pieces, and then sequencing these short pieces. This method is called shot-

gun sequencing and requires the subsequent computational assembly of the different

pieces. Genomic sequences can be downloaded from a number of websites. Per-

haps the most important are GenBank (http://www.ncbi.nlm.nih.gov/), Ensembl

(http://www.ensembl.org), and UCSC (http://genome.ucsc.edu/).

The other important class of sequence data that we use are transcript data. These

are sequences of RNA from cells and are generally of two types: full-length mRNA

and EST. Full-length mRNAs traditionally represent the efforts of individual research

groups in sequencing genes of interest. mRNAs differ from the genomic sequence in

that introns are absent. By aligning the mRNA sequence to the genome one can tell

where transcription starts, where cleavage (and polyadenylation) occurs, and where

each exon begins and ends. EST (expressed sequence tags) are from high-throughput

sequencing projects. An EST project begins with the aggregation of RNA from a

large number of cells. These cells will generally be similar, for example all from

the same organ or cell line. Short pieces of RNA are then amplified and sequenced,

so that each sequence represents an internal region of a longer mRNA. These short

sequences are called ESTs. When they are aligned against the genome they tell us

not only that the gene in that part of the genome is expressed in the corresponding

cell, but also allow exon boundaries to be defined if they happen to span an intron

(see Figure 1-11).

Collectively, ESTs give us the most complete picture available to date of the

variety of human splicing isoforms. Currently there are 7.7 million human ESTs.

With about 25,000 genes that gives us a coverage of roughly 300 ESTs per gene.

Most ESTs overlap at least one intron, and so by examining the boundaries of their

alignments to the genome we can create a database of all known human splice sites.

By analyzing the sequence near these splice sites we can learn about what determines
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Figure 1-11: Exons 20-24 of the alpha-actinin gene. Coordinates along chromosome 14 are shown
at the top, and a sample of EST sequences (ID codes on left) aligned back to the genome are displayed
below. The black boxes represent exons, or aligned sequences, and the thin lines represent introns.
The small left-pointing arrows indicate that the gene is on the minus strand of the chromosome.
The middle two exons, 21 and 22, can be seen to be mutually exclusive; the two are never seen
together in the same transcript. Different boundaries of exons 20 and 24 reflect the beginning and
end of ESTs. Image modified from http://genome.ucsc.edu [28].

patterns of splicing in human cells.

1.6 Algorithms of Computational Biology

1.6.1 Phylogeny

Phylogeny is the re-creation of the tree of life from characteristics of modern organ-

isms. In the past, these characteristics (or “characters”) were typically morphological:

number of appendages, typical size of a species, type of skin, etc. Today we can use

sequence analysis to infer evolutionary history. We assume only that sequences that

are similar must be evolutionarily related, and that the time since divergence of dis-

similar sequences must be longer.

We often model phylogenetic trees as rooted binary trees. Each leaf represents a

modern organism, and each internal (non-leaf) node represents a hypothetical ancient

organism. In particular, the root node represents the last common ancestor of all the

modern organisms. Each bifurcation in the tree represents a speciation event—one

species becoming two. For example, in Figure 1-10, we imagine that there was a
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species of single celled organisms that was the progenitor of all modern eukaryotes.

At the point marked E in the figure, this population somehow split into two groups,

one becoming the progenitor of all modern plants, and the other of modern fungi and

animals.

The simplest way to construct a phylogenetic tree from a set of genes is called

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). This method

starts with a symmetric matrix D whose rows and columns are indexed by the set

of modern organisms and whose entries are the evolutionary distances between the

corresponding pairs of organisms. Such a matrix could be constructed, for example,

by looking at percent mismatch in alignments of homologs of the same gene in all

organisms, or by taking the average of pairwise percent mismatch over a large number

of genes.

The UPGMA tree is constructed recursively, from the leaves up to the root. At

each step the minimum entry dij in D is selected. In other words, we choose the

pair of organisms i and j that are most closely related. These two are connected

with an internal node. Then i and j are removed from D and a row and column

corresponding to the internal node (say ı) is added. The new distances are calculated

by the arithmetic mean, or dı,k := (dik + djk)/2, and the process is iterated until all

the nodes have been added to the tree.

We use the UPGMA method in chapter 2 to create the tree relating four fungi.

1.6.2 Motif Finding Using k-mer Statistics

The most näıve, and yet powerful, type of sequence analysis is the study of k-mer

statistics. A k-mer is a word of length k from a fixed alphabet (in our case usually the

DNA alphabet Σ = {A,C,G,T}). Typically an investigator starts with a set of sequences

B known to have a certain biological function, and then some control sequences C,

and, after choosing a fixed length k, for each x ∈ Σk tallies some measure of the

abundance of x in the sequences of B relative to its abundance in C. Those x

enriched in B are then predicted to have some biological activity.

One elegant use of k-mer statistics has been the identification of exonic splicing
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enhancers [15]. In this case the investigators were interested in finding exonic splic-

ing enhancers (ESEs). These are sequences that appear within exons that promote

splicing. They are thought to function by recruiting multi-domain proteins that can

both bind the ESE and stabilize the spliceosome at the nearby splice sites.

The investigators began with a set of constitutive exons E. They created this set

by looking for exons with EST support that had no evidence of alternative splicing

(e.g. any of the classes in Figure 1-8). They then scored the splice sites of the

exons according to their similarity with the consensus sequences in Figure 1-6, and

separated the exons into those with strong splice sites (close to consensus) Es or weak

splice sites (differing from consensus) Ew. They also created a set of introns I that,

according to EST evidence, were never known to be included in any transcript. In this

study they examined hexamers (i.e. k = 6). For each hexamer x they then calculated

its frequency in the four different sets E, Es, Ew and I (that is, the number of times

x is seen in that set divided by the total number of hexamers in the set).

They next considered that a hexamer that functioned to enhance splicing in exons

should satisfy two properties. First, it should be more prevalent in exons E than

introns I, because if it were to occur in introns it might recruit the spliceosome to the

wrong place. Second, it should be more prevalent in exons with weak splice sites Ew

than exons with strong splice sites Es, because it is precisely those with weak splice

sites that need “the extra help”, and therefore should experience stronger selection to

conserve ESEs. Therefore they looked for hexamers for which both fE/fI and fEw
/fEs

were above some threshold. Indeed when they tested such hexamers by inserted them

into a mini-gene construct where the middle exon is typically skipped they found that

they could enhance their inclusion, proving their role as ESEs.

In chapter 3 we develop a new k-mer statistical method for detecting pairs of

sequences that interact at a distance.

1.6.3 Hidden Markov Models

Hidden Markov Models (HMMs) are a more complicated way of analyzing sequence

data that seeks to annotate entire regions of sequence. Gentler introductions than
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we present here can be found in the literature (e.g. [14]). A (discrete) HMM is

a probability distribution on the set of pairs of sequences of equal length, the first

taken from the alphabet of hidden states S, and the second from the emitted alphabet

Σ. These can be any finite sets, but for our purposes we think of Σ as either protein

or DNA sequence, and of S as some useful annotations for different parts of a gene,

such as “exon” and “intron”.

The HMM is defined by a transition matrix T ∈ R
S×S, and an emission matrix

E ∈ R
S×Σ. The marginal probability of the state sequences are just Markov proba-

bilities taken from T . In other words, (ignoring the probability of the starting state)

P (s1 · · · sn) =
∏n

i=2 tsi−1si
. Then, conditional on a given state sequence, the prob-

ability of the emitted sequence is given by multiplying independently the emission

probabilities for corresponding positions in the sequences: P (σ1 · · ·σn|s1 · · · sn) =
∏n

i=1 esiσi
.

Given a sequence σ there are efficient algorithms to (1) calculate its marginal

probability, (2) find the parse, or sequence of hidden states s1 · · · sn, that emits it

with maximum likelihood, (3) to calculate the probabilities, conditional on σ, of any

particular state at a particular position, and (4) to find the maximum likelihood

estimates of all the entries in T and E.

The forward algorithm gives the probability of the sequence σ, say of length n.

It uses dynamic programming to fill the matrix F , which represents probabilities of

emission of initial segments of σ ending in particular states: fis := P (σ1 · · ·σi, si = s).

fis satisfies the recursion

fis =
∑

s′∈S

fi−1,s′ts′sesσi
.

The total probability is then
∑

s∈S fns. Similarly, the backwards algorithm fills the

matrix B whose entries are defined as bis := P (σi · · ·σn|si = s) for all 1 ≤ i ≤ n and

s ∈ S, and gives the total probability
∑

s∈S b1s, which is identically
∑

s∈S fns.

The Viterbi algorithm calculates the maximum likelihood parse given σ. It uses a
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similar recursion, replacing the sum with a maximum:

PML(σ1 · · ·σi, si = s) = max
s′∈S

P (σ1 · · ·σi−1, si−1 = s′)ts′sesσi
.

Typically the calculation is done with the logarithms of these probabilities:

log PML(σ1 · · ·σi, si = s) = max
s′∈S

[
log P (σ1 · · ·σi−1, si−1 = s′) + log ts′s + log esσi

]
.

Thus the maximum likelihood parse of the entire sequence has probability PML(σ) =

maxs∈S PML(σ, sn = s). Keeping track of the states that give the maxima at each

step of the algorithm allows the entire parse to be reconstructed.

The probabilities in F and B can be used to calculate posterior probabilities for

a state s given the sequence σ. In other words, for each position i we can calculate

P post
s (i) := P (si = s, σ). This is done by multiplying the forward and backward

probabilities together:

P post
s (i) =

fisbis

esσi

.

Dividing by P (σ) turns this into a conditional probability, so that it can be interpreted

as the probability that position i was emitted by state s.

Finally, training the HMM is accomplished by an expectation-maximization (EM)

procedure known as the Baum-Welch algorithm. Given σ we calculate the maximum

likelihood estimates of E using

êsσ :=

∑
i:σi=σ P post

s (i)
∑n

i=1 P post
s (i)

(1.1)

The numerator is the number of times we see state s emitting letter σ, averaged over

all parses of σ, and the denominator is the number of times we see state s emitting

any letter, also averaged over all parses. For T the calculation is only slightly more

complicated. To get t̂ss′ we would like to have a term that represents the number of

times we see state s followed by state s′ in the hidden state sequence. We will divide
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this by a term that represents the number of times we see state s at all, being careful

about boundaries:

t̂ss′ :=

∑n−1
i=1 fistss′bi+1,s∑n−1

i=1 P post
s (i)

. (1.2)

The forward-backward algorithm, then, is to cycle through calculating F and B, then

updating E and T according to equations 1.1 and 1.2.

There are two simple but useful variants of the Baum-Welch algorithm. The first

variant uses multiple sequences for training. The only change is to extend the sums

in Equations 1.1 and 1.2 to sum over all the sequences. The other variant is known

as Viterbi training. Here the numerators and denominators in these equations, which

represent expected counts, are replaced by the actual counts taken from maximum

likelihood parses of the sequences. The name Viterbi Training highlights that the

maximum likelihood parse generated by the Viterbi algorithm is used to update these

parameters.

HMMs and an important generalization, the hidden semi-Markov models have had

an important role in sequence analysis. In chapter 4 we apply them to the problem

of identifying branch points in introns to predict the largest set of high-confidence

branch points to date.
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Chapter 2

Patterns of Intron Gain and Loss

in Fungi

Abstract

Little is known about the patterns of intron gain and loss or the relative contribu-

tions of these two processes to gene evolution. To investigate the dynamics of intron

evolution, we analyzed orthologous genes from four filamentous fungal genomes and

determined the pattern of intron conservation. We developed a probabilistic model to

estimate the most likely rates of intron gain and loss giving rise to these observed con-

servation patterns. Our data reveal the surprising importance of intron gain. Between

about 150 and 250 gains and between 150 and 350 losses were inferred in each lineage.

We discuss one gene in particular (encoding 1-phosphoribosyl-5-pyrophosphate syn-

thetase) that displays an unusually high rate of intron gain in multiple lineages. It has

been recognized that introns are biased towards the 5′ ends of genes in intron-poor

genomes but are evenly distributed in intron-rich genomes. Current models attribute

this bias to 3′ intron loss through a polyadenosine-primed reverse transcription mech-

anism. Contrary to standard models, we find no increased frequency of intron loss

toward the 3′ ends of genes. Thus, recent intron dynamics do not support a model

whereby 5′ intron positional bias is generated solely by 3′-biased intron loss.

37



2.1 Introduction

Over a quarter of a century after the discovery of introns, fundamental questions

about their function and evolutionary origins remain unanswered. Although intron

density differs radically between organisms, the mechanisms by which introns are in-

serted and deleted from gene loci are not well understood. A correlation has been

observed between intron density and positional bias [35]. Introns are evenly dis-

tributed within the coding sequence of genes in intron-rich organisms, but are biased

toward the 5′ ends of genes in intron-poor organisms. This bias is particularly pro-

nounced in the yeast Saccharomyces cerevisiae. It has been suggested that both the

paucity and positional bias of introns in yeast may be due to intron loss through

a mechanism of homologous recombination of spliced messages reverse-transcribed

from the 3′ polyadenylated tail [19]. This reverse transcription mechanism was first

demonstrated in experiments with intron-containing Ty elements in yeast [4]. More

recently, [35] concluded that homologous recombination of cDNAs is the simplest ex-

planation for the positional bias observed in all intron-poor eukaryotes. However, few

data exist concerning the actual mechanisms and dynamics of intron evolution.

Fungal genomes are in many ways ideal for exploring questions of intron evolu-

tion. The fundamental aspects of intron biology are shared between fungi and other

eukaryotes, making fungi appropriate model organisms for intron study. They are

gene dense with relatively simple gene structures compared with plants and animals,

making gene prediction more accurate. Fungi also display a wide diversity of gene

structures, ranging from far less than one intron per gene for S. cerevisiae, to approx-

imately 1-2 introns per gene on average for many recently sequenced ascomycetes

(including the organisms in this study), to roughly seven introns per gene on average

for some basidiomycetes (e.g., Cryptococcus). Finally, fungi display a strong 5′ bias in

intron positions, enabling us to investigate the processes underlying this phenomenon.

In principle, a 5′ intron bias could arise through various combinations of intron

gain and loss, and a complete understanding of intron positional bias requires an as-

sessment of the contributions of both of these processes. A number of studies demon-
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strate the occurrence of intron gain and loss in individual genes or gene families. [34]

offered early examples of well-supported intron gain by comparing triose-phosphate

isomerase genes from diverse eukaryotes and demonstrated that numerous introns

could be most parsimoniously explained by a single gain with no subsequent losses.

[41] later provided evidence for de novo intron insertion into the otherwise intron-less

mammalian sex-determining gene SRY. Evidence for the occurrence of multiple in-

dependent intron losses has also been reported in studies such as [47] which inferred

gain and loss events in a family of chemoreceptors in Caenorhabditis elegans.

More recently, a number of genome-wide studies of intron dynamics have been

conducted. [49] described genome-wide comparisons between human and mouse (with

Fugu as an outgroup) and between mouse and rat (with human as an outgroup), and

observed a sparseness of intron loss and complete absence of intron gain in these

closely related organisms. On the other hand, [48] observed an abundance of lineage-

specific intron loss and gain when analyzing clusters of orthologous genes in deeply

branching eukaryotes. Similarly, [43] analyzed ten protein families in distantly related

eukaryotes, with a single prokaryotic outgroup, and obtained evidence that extant

introns are predominantly the result of intron gains. In search of clues to understand

the mechanism of intron gain, [18] aligned introns from various eukaryotes, and [10]

applied a similar approach in a comparative study of nematodes. None of these

studies addressed the positional bias of intron gain and loss events. Here we report

the results of a genome-wide comparative analysis of intron evolution in organisms

that have a strong 5′ bias in intron location and are at an appropriate evolutionary

distance to reveal positional trends in intron gain and loss.

2.2 Results

2.2.1 Construction of a Set of 2,000 Orthologs

To investigate the roles of both gain and loss in intron evolution, we compared the

genomes of four recently sequenced fungi spanning at least 330 million years of evolu-
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Figure 2-1: Phylogenetic Tree and Intron Conservation Patterns. A, Phylogenetic tree of the four
fungal organisms studied (M. grisea, N. crassa, F. graminearum, and A. nidulans) with estimated
time scale in millions of years ago. The rooted organismal tree was constructed using an unweighted
pair group method using arithmetic averages based on a concatenated alignment of 2,073 orthologous
gene sets. Estimated dates of divergence from [60], [2] and [23]. B, Classification of intron presence
(+) and absence (—) patterns across the four fungal species. A blue “+” indicates a raw intron gain
in the corresponding organism, a red “—” indicates a raw intron loss in the corresponding organism,
a green “+” indicates a conserved intron, and all other introns are indicated in black.

tion [60], [2], [23] (Figure 2-1): Aspergillus nidulans, Fusarium graminearum, Magna-

porthe grisea, and Neurospora crassa. Ortholog sets composed of one gene from each

of the four genomes were identified as pairwise best bidirectional BLAST hits satis-

fying stringent overlap criteria. Orthologs in each set were subsequently aligned, and

the locations of introns were marked. These intron positions (regions of the multiple

sequence alignment containing an intron in at least one of the four sequences) were

subjected to rigorous alignment quality filtering to eliminate alignment and annota-

tion errors (Figure 2-2A). To set the filtering thresholds, we manually classified ten

residue alignment windows on either side of 181 randomly selected intron positions

as “clearly homologous,” “possibly homologous,” or “non-homologous.” Requiring

30% identity and 50% similarity in these windows captured 92% of the clearly ho-

mologous positions, 29% of the possibly homologous positions, and only 2% of the

non-homologous positions (Figure 2-2B). Passing intron positions were split into five

quintiles according to their relative position within the annotated coding sequence.

2.2.2 Genome-Wide Characterization of Intron Conservation

We applied our analysis protocol to 2,073 putative ortholog sets that included 9,352

intron positions. Of these initial intron positions, 5,811 were removed because of low
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Figure 2-2: Alignment Filtering Protocol. A, Schematic of filtering protocol applied to a ten-
residue window on each side of every intron position. If either side failed the filter, the position
was discarded. B, Distributions of minimum percent identity and similarity in ten-residue windows
around 181 randomly selected intron positions, for three manual classifications. The minima were
taken between the left and right windows. The yellow lines indicate the chosen thresholds of at least
50% similarity and 30% identity, and bars are colored yellow if they fall above the thresholds (pass)
or orange if they fall below the thresholds (fail). Parentheses indicate the number of introns in each
class that pass the cutoff and the total number of introns in that class. The five lowest-percent
identity and similarity bars, containing 77 positions, in the “non-homologous” plot are omitted so
as to not obscure the rest of the histogram.
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conservation surrounding the intron, or because of an adjacent gap, or both. It is

possible that some of the positions neighboring gaps may in fact reflect intron gain or

loss events that occurred simultaneously with coding sequence insertion or deletion

[32]. However, removing these positions did not significantly impact our results, as

the number of positions adjacent to gaps was only about one-tenth of the number of

positions that passed the quality filter, and the removal of these introns did not alter

the apparent positional bias of the overall distribution (Figure 2-3). An additional

92 introns had nearby introns with insufficient conservation between the two introns

and were thus also rejected.

In the end, a total of 3,450 intron positions (roughly 37% of intron positions con-

sidered) passed the quality filter. The complete set of aligned orthologs with passing

and failing intron positions is available at http://genes.mit.edu/NielsenEtAl/.

These data constitute a genome-wide survey of high-confidence aligned intron posi-

tions and their patterns of conservation over at least 330 million years of evolution.

An example of an alignment of putative orthologs with three passing intron posi-

tions is shown in Figure 2-4A. In each passing intron position (black-edged rectangles),

individual introns are labeled according to the classes previously outlined in Figure 2-

1B. The first intron position is conserved across all four species, the second is a raw

gain in N. crassa, and the third is present only in A. nidulans, and, because of the

ambiguity in inferring gain or loss in this case, is classified as “Other”. Examining

the region around the one raw gained intron in N. crassa at the nucleotide level (Fig-

ure 2-4B) reveals a clean insertion of the intron sequence within a highly conserved

region. The gained intron has consensus terminal dinucleotides GT. . .AG and a puta-

tive branch point sequence that matches the yeast consensus TACTAAC at six of seven

positions. In addition, the fourth intron position of this set of orthologs was poorly

aligned and excluded by our filters. All three passing positions (black-edged rectan-

gles) display high amino acid sequence conservation on both sides flanking the intron,

supporting the correctness of the alignment. In contrast, the failing intron position

(unedged gray rectangle) is adjacent to a region of the alignment that lacks signifi-

cant conservation. The 3′ flank of this intron position displays considerable variation,
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Figure 2-3: Positional Biases in Intron Gain and Loss. Relative intron positions were defined
as the number of bases in the coding sequence upstream of the intron divided by the total length
of the coding sequence. These relative positions were binned into five categories (quintiles), each
representing one-fifth of the coding sequence length (quintiles numbered 1-5 on the x-axis). A,
Introns passing quality filter (back) and introns adjacent to gaps in the protein alignment that
were removed by our quality filter (front). B, Raw and inferred gains. Raw gains (back) are those
introns present in exactly one organism (excluding the outgroup, A. nidulans). Inferred gains (front)
are corrected for the estimated number of cases that arose by other combinations of gain and loss
events. Inferred gains are thus slightly lower than raw gains. C, Raw and inferred losses. Raw losses
(front) are those introns absent in the organism in question but present in at least one of its siblings
(descendants of its parent in the phylogenetic tree) and one of its cousins (non-descendants of its
parent). Inferred losses (back) are corrected for the estimated number of introns lost along multiple
lineages, or gained and then lost. Inferred losses are thus slightly higher than raw losses. D, Number
of introns gained (above 0) and lost (below 0) since last common ancestor. E, Intron loss rate at
each position since last common ancestor (introns lost per ancestral intron). Error bars represent
binomial standard deviation.
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especially with respect to the M. grisea gene, which was predicted to have a much

longer 3′ coding region. In such an alignment region, it is difficult to distinguish true

differences in intron conservation from potential annotation or alignment errors. Our

filtering process thus eliminated this position from further analysis.

2.2.3 Calculation of Raw Gains and Losses

We calculated “raw gains” and “raw losses” by positional quintile for each organism

other than the outgroup, A. nidulans. We defined raw gains as those introns present

in only a single organism (see Figure 2-1B). We defined raw losses as those introns

that are absent in the organism in question, present in some other descendant of the

organism’s parent (a “sibling”), and present in some non-descendant of the parent (a

“cousin”) (Figure 2-1B). Intron positions are considered conserved if present across

all four organisms. Patterns of intron presence and absence that are not captured by

the above definitions were excluded from the raw counts because of the ambiguity in

inferring intron gain or loss events in such cases (marked as “Other” in Figure 2-1B).

2.2.4 Probabilistic Model of Intron Gain and Loss

Raw gain and loss counts are based on parsimony and may differ somewhat from the

true number of gain and loss events. The set of raw gains may include introns that

were lost in multiple lineages, thus over-counting the true number of gains in a given

lineage. Similarly, the set of raw losses excludes introns lost in the given organism

and also lost in all cousins or siblings (marked as “Other” in Figure 2-1B).

We used a probabilistic model to correct for these inaccuracies. Our model as-

sumes that all loss and gain events occur independently and uniformly within each

quintile. In particular, we assume Dollo’s postulate [12]: any introns that align to

the same position must have a common ancestor (no “double gains”), as in [36] and

[48]. Our method differs from the Dollo parsimony method described in [16] and

applied in [48] in that we do not artificially minimize loss events by assuming that

gains occurred at the latest possible point in evolution. It also differs in that we allow
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Figure 2-4: Example Ortholog Alignment. A, Alignment of protein sequences for orthologs
MG04228, NCU05623, FG06415, and AN1892 with intron characters inserted. “0”, “1”, and “2”
indicate the phase of an intron. A black-edged rectangle (first three intron positions) indicates an
intron position passing our quality filters; the unedged rectangle (last intron) indicates an intron
position that was removed by our filter. The first intron position was classified as “conserved” and
the second as a “raw gain”. The consensus (bottom) line characters are as follows: asterisk, identi-
cal residue in all four sequences; colon, similar residue; and period, neutral residue. B, Nucleotide
alignment of the region flanking the gained intron in A. Putative 5′ and 3′ splice sites and a branch
point sequence are shown from the intron.

45



different branches of the phylogenetic tree to have different rates of loss and gain.

We applied our method separately to each of the five positional quintiles for each

organism other than the outgroup, A. nidulans.

First we estimate two types of intron loss rates. The organismal loss rate, q, is

calculated by dividing the number of raw losses in an organism by the total number

of introns present in at least one sibling and at least one cousin. This represents

the fraction of introns in the parent that did not survive to the present day in that

organism. For instance, the organismal loss rate in F. graminearum is given by

q =
AM + AN + AMN

(AM + AN + AMN) + (AFM + AFN + AFMN)
,

where AM , for example, represents the number of intron positions with an intron

present in A. nidulans (A) and M. grisea (M) but absent from F. graminearum (F )

and N. crassa (N).

The sibling loss rate, r is defined for a given organism as the fraction of introns

in the parent that did not survive in any sibling. We define “sibling raw losses” for

an organism as the number of introns that are present in the organism and at least

one cousin but in no sibling. This quantity is then divided by the number of introns

present in that organism and at least one cousin to give the sibling loss rate. For

example, the sibling loss rate for F. graminearum is given by

r =
AF

AF + AFM + AFN + AFMN
.

We next correct the raw gains for each organism. Raw gains include some introns

that were in fact lost in all but one lineage. We use the loss rates to calculate the

expected number of these multiple losses, m, and subtract this quantity from the

raw gains to obtain “inferred gains.” To calculate m we first count B0, the number

of introns conserved in the organism and at least one sibling, but in no cousin. The

quantities m and B0 are related through the variable n0, the number of introns present
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in an organism’s parent but not in any cousin, as follows:

m = n0r(1 − q)

B0 = n0(1 − r)(1 − q). (2.1)

This follows from our assumption of independent gains and losses. Thus, we can

calculate the expected number of multiple losses as

m =
B0r

1 − r

We use the loss rates to estimate the number of introns in each organism’s parent.

To do so, we estimate separately the number of parental introns present in at least

one cousin n1, and the number not present in any cousin n0 (introduced above). To

estimate the size of the set of parental introns present in at least one cousin, we first

count the subset of these introns that are presently observable. An intron is in this

set if it is present in at least one cousin and at least one sibling, or is present in at

least one cousin and in the organism in question. We call this number of introns B1.

By the assumption that gains and losses are independent, we have

B1 = n1(1 − qr)

Using this relation and the one in equation 2.1 above, we calculate the number of

introns in the phylogenetic parent as

ntotal = n1 + n0 =
B1

1 − qr
+

B0

(1 − q)(1 − r)

Finally, we correct raw losses. Our definition of raw losses undercounts the true

number by omitting those introns not conserved in at least one cousin and at least

one sibling. Taking F. graminearum as an example, the true number of losses would

also include some introns conserved in the patterns A, M , N , and MN . We calculate

the number of inferred losses as ntotalq.
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This method can be extended to any phylogenetic tree and to any organism with

at least one cousin.

2.2.5 Abundance of Intron Gains

One immediate conclusion stemming from our analysis is the importance of intron

gain. A summary of all raw and inferred gains and losses is shown in Figure 2-

3. Substantial numbers of gained introns were observed in all three organisms—

more than 100 independent inferred gains in each lineage, with over 200 in M. grisea

(Figure 2-3B). The total numbers of gains that have occurred in each genome are

likely to be substantially higher, since only predicted orthologs in all four species were

considered, and roughly a third of the introns in these genes passed our quality filters.

Differences in intron dynamics between lineages are also apparent, with the numbers

of gained and lost introns approximately balanced in M. grisea and F. graminearum,

but with roughly twice as many losses as gains in N. crassa (Figure 2-3D). It is thus

apparent from these data that the process of intron gain plays a significant role in

intron evolution.

2.2.6 PRPP Synthetase Genes Display Lineage-Specific In-

creases in Intron Gain Rate

A striking example of intron gain occurs in a set of putative orthologous 1-phosphoribosyl-

5-pyrophosphate (PRPP) synthetase genes. These genes encode a widely conserved

protein that catalyzes the production of PRPP, a precursor in the nucleotide biosyn-

thesis pathway. In contrast to the majority of orthologs that displayed fewer than two

gained introns, the set of PRPP synthetase genes displayed a total of 22 raw gains

(Figure 5A) that passed our alignment quality filters: six in N. crassa, 14 in M. grisea,

and two in F. graminearum. The number of raw gains in the PRPP synthetase genes

in M. grisea and N. crassa was significantly higher (P < 3× 10−22 and P < 4× 10−9

respectively) than the average for other genes analyzed, resulting in unusually large

numbers of introns in these genes (Figure 2-5B). In comparison, the numbers of in-
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trons in PRPP synthetase genes in available animal genomes were within the typical

range for the respective organisms, e.g., five in C. elegans, and six in fruit-fly, human,

mouse, rat, and Fugu. Thus the rate of intron gain for the PRPP synthetase gene in

some fungi is unusually high. This gene represents an extreme example of the impact

of intron gain and illustrates the variability of gain rates in different lineages.

2.2.7 Absence of 3′ Bias in Intron Losses

To determine whether the pattern of intron loss in these fungi might account for

the observed bias in intron position, we examined the pattern of loss as a function

of position within the gene (see Figure 2-3E). Contrary to what would be expected

if intron loss primarily involved homologous recombination of polyadenosine-primed

reverse transcripts, the rate of intron loss tends to be lower, rather than higher, at

the 3′ ends of genes. Moreover, the highest rates of intron loss occur in the middles

of genes in all three organisms. We found no evidence that this pattern was affected

by our filtering methods. These findings suggest either other mutational mechanisms

(e.g., reverse transcription primed internally) or the presence of selective pressure to

preferentially conserve introns near the 5′ and 3′ ends of genes.

2.3 Discussion

We developed a system that automatically identifies evolutionary and positional pat-

terns of intron conservation on a genome-wide scale. The core of the system is a

process for stringently filtering alignments of orthologous genes to exclude potential

annotation or alignment errors. The result of the filtering process is a high-confidence

set of aligned intron positions. Differences in intron conservation at each individual

position can be characterized as gains or losses (or ambiguous) based on parsimony.

However, this does not accurately account for the possibility of multiple gain or loss

events. We have developed a probabilistic model that allows for multiple events, pro-

viding a corrected estimate of the total number of gains and losses within the dataset.

Our probabilistic method allows for a more accurate assessment of rates of gain and
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Figure 2-5: Intron Conservation in the PRPP Synthetase Gene. A, Alignment of PRPP synthetase
putative orthologs MG07148, NCU06970, FG09299, and AN1965. A black-edged rectangle indicates
an intron position passing our quality filters, whereas an unedged gray rectangle indicates an intron
position that was removed by our filter. Blue boxes mark raw intron gains, red boxes indicate raw
intron losses, and gray boxes within black-edged rectangles highlight all other introns. We manually
corrected an annotation error in the first intron of the last row of the alignment. B, Phylogenetic
conservation pattern of introns in the PRPP synthetase gene. Each passing intron position was
categorized as being present in A. nidulans (A), F. graminearum (F), M. grisea (M), N. crassa (N),
A. nidulans and N. crassa (AN), F. graminearum and M. grisea (FM), or all four organisms (AFMN).
There are no passing cases of conservation in three or four species. The number of introns in each
category is shown with a purple line. The black error bar plot shows the mean and standard deviation
for each category for all 2,008 ortholog sets after fitting to a Poisson distribution (see Section 2.4.5).
The number of introns in M. grisea and N. crassa is significantly higher, at the P < 1× 10−9 level.



loss. In our dataset, allowing for multiple events results in only modest corrections

to the rates estimated using parsimony.

Our analysis demonstrates a significant role for intron gain over the past few

hundred million years in the fungi analyzed. Previous analyses of specific gene families

have provided evidence of specific instances of gained introns [33], [47], [22], [43].

However, the relative importance of intron gain versus loss is not well understood.

Recent large-scale analyses have suggested that intron gain may play a predominant

role in shaping gene structures [43], although lineage-specific differences are apparent

[48]. In particular, intron gain appears to occur rarely if at all in mammalian genes

[49]. Our data suggest that intron gain is a significant driving force in the evolution

of genes in fungi. In F. graminearum and M. grisea the number of introns gained

was on par with the number lost and similar in magnitude to the number of introns

gained in N. crassa.

The mechanisms underlying intron gain are not known. We analyzed the set of

predicted intron gains for possible signatures that might shed light on this process.

No statistically significant bias was detected in the positions of gained introns along

the coding sequence (see Figure 2-3 and data not shown). Similarly, no preferred

insertion site sequence was detectable and no significant phase bias for gained in-

trons was observed (data not shown). The lack of an insertion site preference and

absence of significant phase bias for gained introns in fungi is consistent with previous

investigations and may set fungi apart from other organisms [43].

Our data further indicate that intron gain can vary substantially between different

gene families in a lineage-specific fashion. The PRPP synthetase gene is a particularly

striking example, exhibiting significant increases in gained introns in two of the four

lineages investigated. Moreover, the paucity of intron positions shared between N.

crassa and M. grisea suggests the possibility of independent increases in gain rate in

the two species. Alternatively, the apparent high intron gain rate exhibited by this

gene may have arisen just prior to the last common ancestor of N. crassa and M.

grisea. Although it is premature to speculate about possible mechanisms, one possi-

bility is that a factor or factors responsible for intron insertion evolved to associate
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with the PRPP synthetase gene locus, transcript, or message at this point, leading

to a higher rate of intron insertion in this gene.

Finally, our results do not support the mechanism commonly proposed to account

for the 5′ positional bias of introns in intron-poor organisms [35]. Contrary to what

would be expected if intron loss primarily involved recombination of polyadenosine-

primed reverse transcripts, the rate of intron loss tends to be lower at the 3′ ends

of genes. Instead, the highest rates of intron loss occur in the middles of genes in

all three organisms. (This result is consistent with the results of [49], an analysis

of intron evolution in mammals. Although the report describes only six instances

of loss, in each case it was an internal intron.) The preference for internal introns

may reflect a process of reverse transcription primed internally. Alternatively, there

may be pressure to preferentially conserve introns near the 5′ and 3′ ends of genes.

In particular, there is strong evidence for a functional role for the 5′-most intron in

many genes. What remains clear is that the pattern of loss in these fungi over the last

330 million years cannot be explained solely by a mechanism involving 3′-end-primed

reverse transcription of spliced messages. Instead, fungal intron dynamics appear to

reflect a more complex interplay between intron gain and loss, an interplay that is

likely to shape intron evolution in other eukaryotes.

2.4 Materials and Methods

2.4.1 Sequences and Annotations

All sequences and annotations were taken from the Broad Institute Fungal Genome

Initiative website (http://www.broad.mit.edu/annotation/fungi/fgi). The fol-

lowing datasets were used: A. nidulans (Assembly 1, 18 February 2003), N. crassa

(Assembly 3, 1 February 2001), F. graminearum (Assembly 1, 11 March 2003), and

M. grisea (Assembly 2, 18 July 2002).
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2.4.2 Ortholog Identification

A group of four proteins, one from each organism, was considered an ortholog set

if each pair was a pairwise best bidirectional BLAST hit in the respective genomes,

and all the BLAST hits overlapped by at least 60% of the length of the longest

protein. This yielded 2,073 sets of orthologs (out of an average of 10,500 genes in the

four organisms). We repeated our analysis, requiring that each best bidirectional hit

also be the only BLAST hit in each genome (spanning 60% the length of the longest

protein). This protocol yielded only 1,178 ortholog sets, but gave qualitatively similar

results for intron gains and losses (data not shown).

2.4.3 Ortholog Alignment

The proteins in each ortholog set were aligned using ClustalW 1.82 [7], and intron

position characters were inserted into the alignments, using “0”, “1” or “2” to indicate

the intron phase. Phase 0 intron characters were inserted between the amino acids

coded for by the codons adjacent to that intron, and phase 1 and 2 intron characters

were inserted immediately following the amino acid coded for by the codon interrupted

by the intron. If an intron was not present in all the sequences at a given position,

special intron gap characters “˜”, were inserted in the other sequences in order to

maintain the downstream amino acid alignment. A total of 9,352 intron positions

were aligned. At only 28 (0.3%) of these positions were introns of different phases

aligned, making it reasonable to ignore “phase shifting” in our analysis.

2.4.4 Alignment Filtering

Regions of low alignment quality were eliminated with a filter that required at least

30% identity and 50% similarity in a window of ten residues on each side of the intron

position. These parameters were determined following manual classification of a set of

181 randomly selected intron positions as “clearly homologous,” “ambiguous/possibly

homologous,” or “non-homologous” (see Figure 2-2B). Using the parameters above,

92% of the homologous positions, 29% of the ambiguous positions and only 2% of the
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non-homologous positions passed the filter.

To further exclude likely annotation and alignment errors, intron positions were

also filtered by eliminating positions adjacent to gaps in the amino acid alignment

and by eliminating positions with nearby introns but low evidence of homology in

the intervening sequence. It is possible that some of these positions may in fact

reflect intron gain or loss events that occurred simultaneously with coding sequence

insertion or deletion. However, removing these positions did not significantly impact

our results, as the number of positions adjacent to gaps was only about one-tenth of

the number of positions that passed the quality filter, and the introns removed did

not have an apparent positional bias (see Figure 2-3A).

2.4.5 Statistical Significance of High Gain Rate in PRPP

Synthetase

We modeled the number of gains in a particular organism as a Poisson distribution

under two different null hypotheses. One null hypothesis was that the gains were

spread uniformly across all genes. The other was that the number of gains in each

gene was proportional to the length of the gene. In the first case the Poisson parameter

λ is given by the total number of raw gains observed in that organism divided by the

total number of ortholog sets (P < 3 × 10−22 for M. grisea, P < 4 × 10−9 for N.

crassa, and P < 0.007 for F. graminearum). In the second case λ is given by the total

number of raw gains observed in that organism multiplied by the length of that gene

in amino acids and divided by the total number of amino acids in all genes in that

organism (P < 7×10−25 for M. grisea, P < 3×10−10 for N. crassa, and P < 0.003 for

F. graminearum). We reported the less significant of the two P -values in the results.
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Chapter 3

Discovery of Interacting

Regulatory Elements Using

Collocation

Abstract

The sequence determinants of the RNA splicing reaction in human include canonical

elements at the beginning and end of every intron, but these are not sufficient to

specify the splice sites of most exons. Other elements, known as splicing regulatory

elements, can function within exons or flanking introns to modulate inclusion levels

and exon boundaries. A number of computational and experimental screens have

been successful in defining a library of known regulatory elements. However, there are

many known interactions between sequence elements that might not function alone,

and therefore would have been missed by these screens. We present here a method to

detect interacting motifs in pairs of sequences and apply it to search for motif pairs

functioning between the beginning and end of introns. The method controls for the

known G+C heterogeneity of the human genome, which otherwise can give false signals.

The method is successful in recapitulating the U12 splice sites, elements marking the

beginning and end of the 0.2% of human introns spliced by the minor spliceosome,
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and also identifies a novel motif pair. This motif pair collocates across constitutive

introns as well as distal splice sites of introns flanking alternatively included exons,

and also is enriched in very long introns, suggesting that it functions to suppress the

inclusion of intervening exons. Experiments with a mini-gene construct confirm this

hypothesis.

3.1 Introduction

The sequence determinants of splicing are still not fully understood. While the se-

quences occurring at the splice sites have been well characterized (see Figure 1-6 and

[65]), there are many examples of these sequences appearing together and yet not be-

ing included in any known transcript, and there are also some exons with weak splice

sites that are still constitutively included. One of the reasons that splice sites alone

cannot predict exon/intron structure is that other sequence elements are important

in determining splice choices.

To date, a large number of these elements have been found and characterized. The

most well-studied classes are the exonic splicing enhancers and silencers (ESEs and

ESSs). These are sequences that appear within exons and enhance (or suppress) their

inclusion into the final transcript. Similarly, intronic splicing enhancers and silencers

appear in introns flanking exons and either enhance or suppress the exons’ inclusion.

Collectively, sequences in these four classes are known as splicing regulatory elements

(SREs).

Various in vitro, in vivo and in silico approaches to high-throughput identification

of such elements have been carried out. Experimental screens have used either screen-

ing of random oligonucleotide libraries in cell-based assays [61, 11] or SELEX [59] to

determine sequences that function to control splicing. The assays for this activity

have been both functional (inclusion or skipping of a reporter exon) and binding (to

a known trans-factor).

The computational approaches have been based on k-mer statistics. One approach

to identifying ESEs, described in section 1.6.2, looked for hexamers enriched in weak
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(A)

(B)

Figure 3-1: The U12-dependent 5′ splice site (A) and branch site (B). The first three nucleotides
from (A) are from the upstream exon and the rest is from the beginning of the intron. At the time
of publication it was not known that some u12 introns begin with G instead of A. Figure modified
from [5].

exons relative to strong exons and in exons overall relative to introns [15]. Another

paper looked instead for octomers enriched in internal non-coding exons relative to

both pseudoexons and intronless genes [66].

All of these methods aimed to discover isolated elements. If an element only

functioned in concert with a second element then it might not be uncovered. One

such example would be the U12 5′ splice site and branch site (Figure 3-1). These

sequences are found respectively at the beginning and end of introns spliced by the

so-called minor spliceosome. This is a second spliceosome that shares some molecular

components with the major spliceosome, but for which some key components are

different. In particular, the specificity of the 5′ and 3′ splice sites are very different,

and in general a U12 splice site and a U2 splice site are incompatible within the same

intron. As such, either one of the U12 splice sites is functionless alone, but together

they can promote the excision of an entire intron.

Another example of a pair of elements that function together are the binding sites

of the polypyrimidine tract binding protein (PTB). These sites are known to appear

flanking some alternatively skipped exons. PTB is a multi-domain protein in which

each domain has a similar binding specificity. When two domains bind to C/U -rich
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elements flanking an exon, PTB can cause a “looping out” of the exon, effectively

preventing its inclusion in the mature transcript [40].

Knowing these as well as other examples, we set out to identify interacting SREs

in silico. Our philosophy was that such motifs should “collocate”, that is, they should

co-occur more often than expected by chance. We developed a statistical framework

that can identify collocating motifs while controlling for artifacts unrelated to splicing:

the G+C heterogeneity of the human genome, repetitive elements, and paralogous

genes. We showed that, in a variety of control sets, similarly enriched pairs of motifs

could not be found. Finally, we explored computationally a novel detected pair and

confirmed it effect on splicing in a mini-gene reporter transfected into HeLa cells.

The statistical method we develop is general enough to be applied to a number of

different data sets, for example to identifying motif pairs that flank polyadenylation or

branch point sites, or that co-appear in promoter regions and their distant enhancers.

3.2 Results

3.2.1 Simple Collocation Exhibits G+C Bias

Our method begins with a set of N pairs of sequences. These sequences typically

bear some biological relation to each other: beginning and end of introns, intron and

exon flanking 5′ splice sites, etc. We choose some oligonucleotide length k to study.

For each pair of k-mers x, y we would like to test if x and y tend to collocate. Let

C(x, y) denote the number of x-y collocations, sequence pairs that contain x in the

first sequence and y in the second.

Since C(x, y) is affected by the abundance of x in the first sequence set and y in

the second, we take this into account in deciding if x and y significantly collocate. In

particular, let n1(x) denote the number of sequences containing x in the first set, and

similarly for n2(y). Next define the frequencies of the hexamers by normalizing their

counts, f1(x) := n1(x)/N and f2(y) := n2(y)/N . Then under the null hypothesis

that occurrences of x and y in their respective sets are independently distributed, the
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expected number of collocations is

EC(x, y) = Nf1(x)f2(y). (3.1)

To test if C(x, y) is significantly higher than EC(x, y) we model the collocations

as a Poisson process, so that C(x, y) is distributed as a Poisson random variable with

parameter λ = EC(x, y). This approximation is very good so long as the frequency

of a single collocation under the null hypothesis fcoll = f1(x)f2(y) is not too big.

Averaged over all hexamers, fi(x) is about 4−kL where L is the length of the sequences

in the sequence set, so fcoll averages to about L24−2k. In this project we work with

k ≥ 4 and L ≤ 80, so this quantity is at most 1%. Thus we can calculate a P value

for significance of collocation using

P = P (X ≥ C(x, y))

= 1 − P (X < C(x, y))

= 1 − P (X ≤ C(x, y) − 1)

= 1 − Fpois(C(x, y) − 1, EC(x, y)), (3.2)

where X is a Poisson random variable with parameter EC(x, y) and Fpois(·, λ) denotes

the cumulative distribution function for the Poisson distribution with parameter λ.

Using this method we calculated the significance of collocation between the first

and last 80 nucleotides of introns (see section 3.4) for each of 412 pairs of hexamers.

At a significance cutoff of P = 4−12 we would expect a single false positive. Indeed,

we found 72366 significant collocations between 1377 hexamers at the 5′ splice site

and 1374 hexamers at the 3′ splice site.

Figure 3-2 depicts these hexamers as nodes, colored by their G+C content, and the

collocations between them as edges. From this plot we can see an obvious partition

of the hexamers into a G+C-rich (light) and an A+T-rich (dark) set. This has been

interpreted to mean that there are two spliceosomes, one corresponding to each set,

but we believe instead that this is an artifact due to the G+C heterogeneity of the
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#G+C: 6543210

Figure 3-2: Significant collocations between the beginning and end of introns under a null hypoth-
esis of independence. Each node represents a hexamer, colored according to its C+G content, and
each edge represents a significant collocation at P ≤ 4−12/100000. We choose such a conservative P
value cutoff, at which we expect to see no false positives, for visualization purposes only. Note that
this plot does not show the sets (beginning or end of intron) to which the hexamers belong. At this
P value cutoff 848 nodes (21% of all hexamers) are joined by 21,389 collocations.

human genome.

3.2.2 G+C Heterogeneity Causes Many Collocations

It has been known for several decades that many genomes, especially those of warm-

blooded mammals, exhibit nonuniform sequence composition. The biggest variation

is in G+C content. Indeed, if one performs principle component analysis (data not

shown) on the dinucleotide content of samples of the human genome, the first principle

component is composed of approximately equal amounts of the four dinucleotides

made of just G and C, (CC, CG, GC and GG) and approximately equal but opposite

amounts of the four made of just A and T (AA, AT, TA and TT). The other eight

dinucleotides contribute very little to this component, supporting the notion that the

most important sequence heterogeneity in the human genome is G+C content.

Why would such heterogeneity lead to collocations? Because of the way it is or-

ganized. G+C content is tightly correlated across stretches of the genome extending

much beyond the length of a single gene. The heterogeneity occurs between different
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Figure 3-3: G+C content in the first 80 nucleotides (x-axis) and last 80 nucleotides (y-axis) of
introns is correlated. Darker squares correspond to more introns (53326 total). The diagonal line is
a plot of y = x for reference.

chromosomes or different parts of the same chromosome. One way to see this corre-

lation is to plot a scattergram of the G+C contents of the sequence pairs in our intron

begin/end set. Figure 3-3 shows this as a heat map.

How might G+C heterogeneity have influenced the collocation results shown in

Figure 3-2? In fact it could explain nearly all of them, because G+C-rich hexamers

are more frequent at both ends of introns in G+C-rich regions of the genome, and

A+T-rich hexamers are more frequent in A+T-rich regions of the genome, even though

this is unrelated to splicing. Statistically speaking, the assumption of independence

between in the two sets is invalid.

To examine this possibility, we co-GC shuffled the sequence pairs. To each se-

quence pair we associate the pair (s1, s2) of G+C contents, and we then reassign the

pairings in such a way as to preserve the total number of pairs with each co-GC con-

tent (see Figure 3-4). In our example, s1 represents the number of G+C in the first

80 nucleotides of the intron and s2 represents the number in the last 80 nucleotides.

This type of shuffling controls for the sequences in the sequence sets as well as the

correlated bias in G+C content exhibited by the sequence pairs.
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a5

b5

a3

b3

b5

a5

a3

b3

Figure 3-4: co-GC shuffling. (Left) Two hypothetical introns, A and B, with 5′ splice site (a5/b5)
and 3′ splice site (a3/b3). Intron A is G+C-rich near both splice sites (thick lines) and intron B is
G+C-rich near 5′ splice site, but G+C-poor near 3′ splice site (thin solid line). Since both introns
are G+C-rich near their 5′ splice sites we can swap those splice sites (double arrow). (Right) co-
GCshuffled introns. The beginning of intron B (b5) is now paired with the end of intron A (a3), top,
and the beginning of intron A (a5) is now paired with the end of intron B (b3), bottom. Overall
co-GC content is preserved. See section 3.4.3 for more details.

#G+C: 6543210

Figure 3-5: Significant collocations between co-GC shuffled intron beginnings and ends. Same as
Figure 3-2 except for shuffling. At the same cutoff of P ≤ 4−12/1000000 we still have 840 hexamers
(unshuffled: 848) and 18,645 collocations (unshuffled: 21,389).

Indeed, we see that even in this co-GC shuffled set, we still find 67,068 significant

collocations between 1351 hexamers at the 5′ splice site and 1312 hexamers at the 3′

splice site (Figure 3-5). Therefore over 90% of the signal from the real data can be

explained simply by G+C heterogeneity, and therefore is not likely to be related to

splicing.

3.2.3 Stratification Controls for G+C Heterogeneity

We next set out to find a method that would control for the sequence heterogeneity

that was obscuring any signal that might be present. We knew that for a restricted
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Figure 3-6: A hypothetical co-GC binning of the intron begin/end sequence pairs. Gray lines
correspond to bin boundaries overlaid on Figure 3-3. Note that the boundaries are closer together
around 23 and 50 G+C where most introns fall. The binning method chooses boundaries so that each
one-dimensional bin has the same number of sequence pairs in it. The co-GC bins would correspond
to the cells in the grid laid out by the gray lines, and show great variation in number of sequence
pairs.

set of sequence pairs that all had similar G+C content the assumption of independence

of the pairs was not unreasonable. Therefore, we doubly binned the sequence pairs

according to their co-GC content (s1, s2), where s1 denotes the G+C content of the

first sequence and s2 denotes the G+C content of the second sequence. We created

400 bins, each with a double index (b1, b2) (1 ≤ bi ≤ 20) corresponding to binnings of

G+C contents of the first and second sequences, respectively. Thus this co-GC binning

yielded 400 bins, each one containing sequence pairs whose first sequences had similar

G+C contents and whose second sequences had similar G+C contents (Figure 3-6).

For each bin (b1, b2) we can imagine analyzing the data in a similar way as we did

for the entire set. Let N b1,b2 denote the number of sequence pairs in the bin (b1, b2),

and let Cb1,b2(x, y) denote the number of sequence pairs in that bin containing k-mers

x and y respectively. We define nb1
1 (x), the number of first sequences in G+C bin

b1 containing x, and similarly nb2
2 (y), the number of second sequences in G+C bin b2

containing y. Letting N b1
1 denote the total number of first sequences of G+C content

b1 and N b2
2 the number of second sequences of G+C content b2, we can define the
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Figure 3-7: Probability plots of co-GC shuffled controls. x-axis, significance level. y-axis, fraction
of data significant at that level. Left, entire range of P -values. Right, zoom in on smallest P -values.
k = 4, 5 and 6 are colored in black, dark gray, and light gray respectively.

k-mer frequencies by f b1
1 (x) := nb1

1 (x)/N b1
1 and f b2

2 (x) := nb2
2 (x)/N b2

2 . Putting all this

together gives the analog of equation 3.1,

ECb1,b2(x, y) = N b1,b2f b1
1 (x)f b2

2 (y). (3.3)

We then use the property of the Poisson distribution that adding independent Pois-

son random variables corresponds to adding their parameters—if Xi ∼ Poi(λi) then
∑

i Xi ∼ Poi(
∑

i λi). Since the total number of x-y collocations is such a sum,

C(x, y) =
∑

b1,b2
Cb1,b2(x, y), it should take a Poisson distribution with parameter

EC(x, y) =
∑

b1,b2
ECb1,b2(x, y). Calculating this sum of expectations and putting it

into formula 3.2 then gives us the significance of collocation of the k-mers x and y.

Does this method in fact control for the G+C heterogeneity of the human genome?

We can go back to our co-GC shuffled controls from Figure 3-5. In this case, there

are no significant collocations at P ≤ 4−2k for k = 4, 5 or 6. Another way to see that

the new method accurately calculates P values is to look at a probability plot, which

shows how the fraction of significant collocations (out of all possible 42k collocations)

depends on the P value cutoff. For the shuffled data, this plot should be roughly a

straight line, indicating that we get the expected number of false positives (Figure 3-

7, left). Zooming in on the small P values (for example up to 1%) shows that in fact

the method is somewhat conservative (Figure 3-7, right). In this regime the controls
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show even fewer significant collocations than expected by chance. This is because a

perfectly straight line in a probability plot only follows under the assumption that

P values are uniformly distributed under the null hypothesis, and this only holds

for continuous distributions. In short, there is no detectable signal in these shuffled

controls—we have effectively controlled for G+C heterogeneity.

3.2.4 GC-Stratification Reveals Three Groups of Collocations

Between Beginning and End of Introns

We have shown that our negative controls now show no significant collocations. What

about our real data? Figure 3-8 displays the significant GC-stratified collocations

between the beginning (5′SS) and end (3′SS) of introns. The three columns correspond

to k = 4, 5 and 6 respectively. Note that the collocations shown here are at a P value

that would give a single expected false positive, whereas the cutoff in previous figures

(unstratified) was 1/1,000,000th of that, and we still see the signal decrease by several

orders of magnitude. Again, the data clusters very cleanly, with no edges between

clusters. Three different groups of motifs are shown in the figure, indicated by different

line styles.

The first cluster corresponds to splice sites of the U12-type introns (dashed line,

k = 6 only). The set near the 5′ splice site matches the consensus for 5′ splice sites

of U12-type introns perfectly if one allows G at position +1 of the intron, which is

present in about 2/3 of U12-type introns. The set near the 3′ splice site matches

the consensus for branch sites of U12-type introns (Figure 3-1). This cluster has

11 collocations, and the non-stratified method also identifies 11 U12 collocations

at the same P value, 10 of which are shared between the two methods (data not

shown). Coincidentally, the small 5-node cluster in the bottom right of Figure 3-2

(significant collocations calculated by the non-stratified method at the more stringent

P ≤ 4−12/100000 cutoff) is formed of members of this motif. On the other hand,

the total number of significant collocations decreased roughly 1000 times upon GC-

stratification. Thus GC-stratification purifies true collocations from false positives.
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Figure 3-8: Significant GC-stratified collocations between the beginning and end of constitutive
introns. Three columns correspond to k = 4, 5, 6 with P value cutoffs P ≤ 4−k, corresponding to a
single expected false positive. Only k-mers participating in significant collocations are shown. Total
number of k-mers at beginning (5′SS) and end (3′SS) of intron shown, as well as total number of
collocations. Dashed line, U12 cluster. Dotted line, C-rich cluster. Solid line, GC/AU cluster.
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An interesting aspect of this cluster is that it only appears at k = 6. A likely

explanation for this is that the true motif is a long one and U12-type introns are very

rare (about 0.2% of all introns). Thus the signal for collocation may be diluted by

non-functional short submotifs for k < 6.

The second cluster is the C-rich cluster (dotted line). These also appear in the non-

stratified results. We have not undertaken a more thorough study of their possible

function, however Crich elements have been previously identified as putative intronic

splicing enhancers [65].

We called the final cluster the GC/AU cluster (solid line). At the beginning of

introns it features a G+C-rich motif with no other apparent structure, and at the end

it features an A+U-rich motif, which seem to have some preference for stretches of A

or U. This motif is present for all three values of k. Unlike the other two motifs, it is

not found at all by the non-stratified method.

3.2.5 Control Sequence Sets Show No Collocations

Since the GC/AU cluster is not significant in the non-stratified method, one might ask

whether it is an artifact of stratification. In other words, since G+C-rich and A+U-rich

intron ends rarely co-occur, the expected number of collocations for G+C-rich and

A+U-rich k-mers is lower under GC-stratification than non-stratification. This would

be a side effect of stratification, since the original aim was to raise the expected

number of collocations between G+C-rich and G+C-rich or A+U-rich and A+U-rich

k-mers.

Three observations argue against this interpretation:

• The co-GC shuffles (Figure 3-7) do not show the GC/AU cluster as significantly

collocating.

• The flipped motifs, with the G+C-rich motif at the 3′ splice site and the A+U-rich

motif at the 5′ splice site, is not significant.

• There seems to be a tendency towards repeated A or repeated U in the A+U-rich

motif, rather than a general significant collocation of all A+U-rich motifs.
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Constitutive Intron
Start/End

Alternative Exon
Upstream Start/

Downstream End
Upstream Start/

Downstream End

Constitutive Exon

Real 5’ splice site
Decoy 3’ splice site Real 3’ splice site

Decoy 5’ splice site

20489 26591

A

12778 2815553326

B

Figure 3-9: 5′ splice site/3′ splice site control sets. White boxes, exons. Gray boxes, locations
of motifs. Dashed lines, introns. Angled line, alternative splice. Periscopes, decoy splice sites.
Numbers are of sequence pairs in each set. (A) Sequence sets in which the GC/AU motif was found
to significantly collocate. (B) Sequence sets in which the GC/AU motif was not found to significantly
collocate.

Still, the most interesting evidence came from our control sets. We constructed these

sets of pairs of related 5′ splice sites upstream of 3′ splice sites according to different

criteria, show in Figure 3-9.

Figure 3-10 shows the significant collocations in four control sets. Starting with

the decoy sets, which were constructed by finding high-scoring splice sites within

constitutive introns that, according to EST evidence, are never used, we see that

there are about as many significant collocations as one might expect by chance given

our significance cutoff of one expected false positive per set.

More interestingly, we find the GC/AU motif pair in distal splice sites of introns

flanking both alternative and constitutive exons. The lack of any significant colloca-

tions at k = 6 probably reflects a decrease in statistical power for longer k-mers—the

average counts per k-mer pair goes down by a factor of 16 for each increment of k.

The finding of the GC/AU motif pair in distal splice sites of the alternative and

constitutive exon sets suggests that it regulates the inclusion of intervening exons.

However, the effect of this regulation is at first glance unclear. The pair’s collo-

cation distal to constitutive exons suggests it functions to enhance inclusion of the

intervening exon, yet its collocation distal to alternative exons suggests suggests that

it functions to suppress intervening exons. Interestingly, no more significant GC/AU

collocations were detected in the constitutive exon set than in the alternative exon
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set for both k = 4 (31 for constitutive and 7 for alternative) and k = 5 (7 for both

sets), and yet there were over twice as many sequence pairs in the constitutive set

(N = 28155) than the alternative set (N = 12778). Therefore, the signal of this collo-

cation in the alternative set is much stronger than in the constitutive set. These data

suggest that the GC/AU motif pair primarily functions to suppress intervening exons.

This interpretation is also supported by the collocation in the constitutive intron set

in which it was first discovered. Its presence in the constitutive exon set may reflect

contamination of alternative exons whose skipping isoforms are not represented in

the EST databases.

3.2.6 GC/AU Motif Pair Enriched in Long Introns

We next set out to analyze the length distribution of constitutive introns contain-

ing the GC/AU motif pair. To simplify the analysis we defined the GC motif as a

stretch of seven nucleotides containing at most one A or T. Likewise we defined the

AT motif as a stretch of seven nucleotides containing at most one G or C. Then, for

each of the 53326 constitutive introns in our starting set we counted the number of

non-overlapping copies of each motif it contained, and plotted empirical cumulative

distribution functions (ECDFs) of the length distributions conditional on different

motif copy numbers.

Figure 3-11 shows these plots. Looking at the plots from top to bottom, we first

see a slight shift toward shorter introns for multiple copies of the GC motif near the 5′

splice site. This is not a surprise as short intron length is known to be associated with

G+C isochores, for reasons that are unclear. Similarly, we see a shift towards slightly

longer introns for multiple copies of the AU motif near the 3′ splice site. Again, long

introns are associated with more A+U-rich regions of the genome. However, when we

look at the set of introns that have many copies of both motifs at the corresponding

splice sites, the shift towards long introns is impressive. Beginning with four copies

the shift is clear, but with at least six copies the shift is even stronger. Note the

logarithmic scale for the x-axis. This shift represents a roughly 10-fold increase in

intron length.
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Figure 3-11: Introns with many GC/AU motif pairs tend to be very long. ECDF of lengths of
constitutive intron with increasing numbers of GC motif near the 5′ splice site (top), AT motifs near
the 3′ splice site (middle), or both motifs at their corresponding splice sites. Note the supershift in
intron length for at least 6 copies of both motifs.
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As a control, we made the same plots but with the GC motif at the 3′ splice site and

the AU motif at the 5′ splice site. The result is shown in Figure A-1 of Appendix A.

The GC and AU plots look similar, with a high copy number-dependent shift to short

and long introns respectively. As for introns with many copies of both motifs, there

are generally fewer when the motifs are flipped, and the shift to long introns is either

very weak or absent. This control is important because it rules out the the explanation

that the length shift is due to isochore boundaries within introns.

This result argues for a function of the motif pair either in promotion of long

splices or, since the number of decoy splice sites in an intron is generally proportional

to its length, suppression of intervening exons.

3.2.7 The GC/AU Motif Pair Suppresses the Middle Exon of a

Three Exon Mini-Gene∗

In order to probe the effect of the GC/AU motif on an intervening exon we used a

three exon mini-gene construct originally created by Dr. Zefeng Wang (Figure 3-12).

When the middle exon is skipped exons 1 and 3 encode a functional Green Fluorescent

Protein, whereas the inclusion of the middle exon, which is from the IMP1 gene [29]

yields a non-functional protein. We cloned the first motif after the HindIII site 16

nucleotides from the 5′ splice site to clone the first motif, so that it begins 22 bases

after the 5′ splice site, and the second motif 17 bases upstream of the SacII site which

itself is 14 bases upstream of the 3′ splice site, so that the second motif ends 37 bases

upstream of the 3′ splice site. The reason for the extra spacer was to avoid making

our insertion between the branch point and polypyrimidine tract.

Three representative daydreamers were inserted at the two insertion points. The

representative for the GC motif was GGGCGCGGGCGC, and for the AU motif the represen-

tative was TTAAAATTAAAA. These are duplicates of the most significant hexamer collo-

cation for the constitutive intron start/end set. The third motif was CGGTTACGAGTA,

a neutral motif chosen to avoid known splicing regulatory elements and composed

∗Mr. Daniel Ding and I performed these experiments with the help of Drs. Noam Shomron and
Zefeng Wang.
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Figure 3-12: Mini-gene construct for interrogating GC/AU motif pair. A , putative branch site. *,
second insertion site (first insertion site immediately follows HindIII site). Both restriction sites are
six nucleotides long (not shown). Nucleotide lengths indicated.

exactly 50% of G+C and 50% of A+T (see Section 3.4.4).

Five constructs were made as follows:

Construct 1 2 3 4 5

5′ splice site motif Neutral GC Neutral GC AU

3′ splice site motif Neutral Neutral AU AU GC

These five constructs were transiently transfected into HeLa cells and their splicing

assayed by quantitative RT-PCR (Figure 3-13). Construct 4 (GC motif at the 5′ splice

site and AU motif at the 3′ splice site) showed a roughly 2 fold increase in skipping

frequency relative to the neutral construct, significant at the P ≤ 5−4 level by a

one-sided t-test. None of the other constructs exhibited differences in skipping levels,

confirming our prediction that these motifs function only as a pair to suppress the

inclusion of intervening exons.

3.3 Discussion

We presented a statistical method for the detection of functional motifs in paired

sequence sets. The method successfully controls for the known G+C-heterogeneity of

the human genome and, in the case of intron 5′/3′ ends rediscovers the U12 splice

sites which comprise less than 0.2% of all introns [5]. This method also revealed a

novel GC/AU motif pair which functions to suppress the inclusion of an intervening

exon in a mini-gene construct.
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Figure 3-13: GC/AU motif pair promotes exon skipping in HeLa cells. Five constructs (see text)
were transfected into HeLa cells. Twenty-four hours later RNA was extracted and quantiative RT-
PCR was performed (20 cycles of PCR) to assay for relative isoform levels. Top, representative gel
showing levels of inclusion isoform (upper band) and skipping isoform (lower band). Motifs inserted
at 5′ and 3′ splice sites are shown above each lane. Box indicates GC/AU motif pair. Bottom,
quantitation of skipping levels. Five different constructs are shown on the x-axis with 5′ splice site
and 3′ splice site motif inserts separated by colons. X’s and O’s represent repetitions of quantitative
PCR for two independent transfections. Bar heights and errors are means and standard deviations
of four data. * indicates significance at the P ≤ 5 × 10−4 level by a one-sided t-test versus N:N
construct. No other constructs are significantly different from N:N even at the 5% level.
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3.3.1 Stratification Controls for G+C Heterogeneity

The G+C heterogeneity of the mammalian genome was first observed in the 1970s by

separating genomic fragments in a cesium chloride gradient (reviewed in [17]). The

genome is comprised of long regions within which the G+C content is homogeneous,

but between which the G+C content varies extensively. The homogeneity is so strong

that G+C content of splice sites, introns, and third-codon positions all correlate with

the G+C content of the region in which they lie. Several theories have been put forth

to explain this heterogeneity but no clear consensus has yet emerged. Whatever the

reason for G+C heterogeneity, it will certainly cause k-mers of similar G+C content

to apparently collocate, and could potentially mislead an investigator (for example

Figure 3-2).

Our stratification method successfully controls for this effect, as no significant col-

locations were detected in co-GC shuffled intron ends (Figure 3-7). The method works

because the null hypothesis takes into account the expected number of collocations

in each intron based on the G+C content of its ends. A simplification of this method

which we have not tried is to stratify only on the G+C content of the entire intron

rather than in both dimensions on the co-G+C content. We expect that this variation

will give similar results.

3.3.2 Humans Likely Have No More Than Two Spliceosomes

Given the ability of our method to detect the U12 splice sites, even though they

account for only 0.2% of human introns, our results indicate that a third spliceosome

does not exist. There are, however, a number of scenarios in which a third spliceosome

could escape notice by our methods. First, this third type of intron might be less

abundant than the U12 introns. This would mean that there could be at most about

100 such introns in all the human genome.

A second scenario is that the splice sites would be more degenerate than the

U12 splice sites. Then no collocations would be detected because the counts of any

particular hexamer would be depleted by the degenerate positions. We consider this
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possibility unlikely because of the general observation that degeneracy of splice sites

is negatively correlated with the number of introns spliced by a spliceosome (consider

yeast and U12-type splice sites as non-degenerate and intron-poor and mammalian U2

splice sites as degenerate but intron-rich). Still, it is a possibility we cannot exclude.

Finally, if the splice sites were very long (longer than 6) we might not detect them

if the hexamers making up these longer splice sites were relatively abundant. In that

case, the noise of the hexamers appearing outside of these hypothetical splice sites

would mask out the signal of the hexamers collocating within the splice sites.

Thus our data strongly suggest but do not prove that humans lack a third spliceo-

some.

3.3.3 Suppression of Pseudoexons

With human introns on average about 10 times longer than human exons, how is it

that pairs of decoy splice sites appearing within introns (“pseudoexons”) don’t tend

to confuse the spliceosome? We have identified one possible mechanism by which cells

can avoid this error. The GC/AU motif pair, with a G+C-rich motif at the beginning of

an intron and an A+U-rich motif at the end, can function to inhibit the inclusion of

intervening exons. These motifs collocate across both constitutive introns and distal

splice sites of introns flanking alternatively spliced exons (Figures 3-8 and 3-9), they

are found in high copy number at the ends of very long introns (Figure 3-11), and

they function in a mini-gene construct to suppress the inclusion of an intervening

exon (Figure 3-13). Thus the GC/AU motif can potentially be a mechanism for cells

to suppress pseudoexons.

In order to estimate the importance of this motif pair, we counted the total number

of collocations in the intron 5′/3′ end set of any of the G+C-rich pentamers in the GC/AU

cluster at the 5′ end and any of the A+T-rich pentamers in the GC/AU cluster at the

3′ end. We found 3365 such collocations, suggesting that the motif pair might be

involved in the splicing of as many as 6% of the 53,326 constitutive introns in our

set. In the case of distal splice sites of introns flanking skipped exons, we find such

1126 collocations, suggesting that the motif pair might be involved in the splicing
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of as many as 9% of all 12,778 skipped exons in our set. The GC/AU motif pairs are

widespread in both sets, and if functional in these contexts are therefore a key element

in splicing specificity.

3.3.4 Motifs from Collocating k-mers

One problem which did not arise in these sequence sets, but is in general an important

issue, is the problem of grouping together k-mers into functionally relevant clusters.

In my opinion the best method for doing this would ignore the actual sequence simi-

larities of the k-mers. This would come into play as a control after the analysis was

finished, or could be added independently.

Given a set of k-mers X appearing in the first sequences and another set Y ap-

pearing in the second sequences, how can we ask if the sets as wholes collocate? We

can follow the analysis of Section 3.2.3 exactly, replacing “contains hexamer x” with

“contains any hexamer x ∈ X” and “contains hexamer y” with “contains any hex-

amer y ∈ Y ”. Thus we can calculate a P value for setwise collocations, measuring all

the pairwise interactions between the sets simultaneously.

There are two central problems to be solved. The first is determining which sets

X and Y to look at (there are (246

− 1)2 ≈ 102466 pairs of such sets of hexamers!),

and the second is the calculation of statistical significance, given the enormous space

we are searching.

A possible solution to the first problem is to cluster the collocations, that is pairs

of hexamers (x, y). Then a set of collocations {(xi, yi)}i induces a pair of k-mer sets

{xi}i and {yi}i. Thus the setwise collocation P value could constitute a distance

measure to be used for a hierarchical clustering. Thus a tree could be formed with all

the collocations at its leaves where the height of an internal node is the P value for

setwise collocation of the sets induced by all its leaves. This method also leaves open

the possibility of a particular hexamer functioning as part of two different complexes

depending on its collocating partner. As described here, it has the problem that the

height of a parent might be less than the height of a child. It is a future research

direction to sort that out.
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3.3.5 A New Type of Motif Finder

Traditional motif finders such as Gibbs Sampler [31] or MEME [1] search for statis-

tically enriched motifs in sequence sets, assuming that these motifs should exhibit

biological function. The basis of this assumption is that neutrally evolving sequences

should have a steady-state k-mer distribution depending only on the parameters of

evolution of the organism’s DNA [25], which are controlled for either by appropriate

null-hypotheses, sequence shuffling, or with a negative control sequence set (e.g. see

Section 4.2.4).

Here we solve the problem of motif pair finding by looking for pairs of motifs that

are co-enriched. Our null-hypothesis now controls for all k-mer frequencies in each

set, regardless of whether those frequencies are due to neutral or purifying selection.

When two motifs function in concert, they should exhibit a different selective pressure

together than separately, and hence their occurrences should not be independent, as

we would expect from non-interacting motifs. Thus the basic principle of traditional

motif finding, “enrichment implies function”, is also the basic principle of our paired

motif finder.

Furthermore, just as traditional motif finders come in different flavors that can

solve variants of the motif finding problem, so could many flavors of paired motif

finders be created. One variety that would be particularly useful would identify

functional motif pairs in unpaired sequences. Such a program could, for example,

detect pairs of functionally interacting miRNAs by analyzing the co-distributions of

their seed matches in 3′ UTRs. Another useful flavor would allow for detection of

degenerate motifs (see Section 3.3.4). We expect that the basic ideas laid out in this

manuscript could be applied to these and other similar problems with only a few

careful changes.
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3.4 Materials and Methods

3.4.1 Sequence Sets

The sequence sets used in this analysis all came from the program SpliceGraph [57]

developed by Drs. Rickard Sandberg and Michael Stadler. SpliceGraph downloads

genomic alignments of ESTs from the UCSC website http://genome.ucsc.edu [28]

and calculates the coordinates of all the splice sites necessary to generate each set.

It next clusters ESTs that share splice sites into gene models. Finally, it parses the

gene models to define sets of splicing variation patterns such as constitutive exon or

alternative exon.

The sequence sets were all prepared by Dr. Stadler. In all cases he used the

beginning and ending 80 nucleotides of the region.

The Constitutive Intron Start/End set was made from constitutive introns in

SpliceGraph that were at least 160 nucleotides long (so that the two regions did

not overlap). These were defined as pairs of splice sites that were supported by EST

evidence and for which, furthermore, there was no evidence of any alternative splicing

in that region.

The Alternative Exon Upstream Start/Downstream End set (also referred to in the

text as “distal splice sites of alternative exons”) was made from SpliceGraph Exons

and flanking introns for which there was evidence of both inclusion and exclusion.

Furthermore, the introns were both required to be at least 160 nucleotides long, so

that the set could be used without resulting in overlapping 80-mers for analyses of the

proximal splice sites, which are not discussed here. The exons were also required to

be at least 80 nucleotides so that 40 nucleotides of non-overlapping exonic sequence

could be extracted near each splice site for another analysis that was not discussed

here.

The Constitutive Exon Upstream Start/Downstream End set (also referred to as

“distal splice sites of constitutive exons”) was made from constitutive exons at least

80 nucleotides long (again due to the constraints of another analysis not discussed

here) with flanking constitutive introns that were both at least 160 nucleotides long.
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The Real 5′ Splice Site/Decoy 3′ Splice Site set was made by taking the Constitu-

tive Intron set and searching for decoy 3′ splice sites at least 160 nucleotides from the

5′ splice site. A decoy 3′ splice site was defined as a stretch of 23 nucleotides which

scored at least as high as the 20 intronic and 3 exonic nucleotides at the true 3′ splice

site in the Maximum Entropy model [64]. The Decoy 5′ Splice Site/Real 3′ Splice Site

set was formed analogously.

3.4.2 Sequence Set Filtering

Two steps were performed on each sequence set. First, Dr. Stadler removed any

sequences that overlapped with annotated repeats (also from the UCSC website [28]).

These included both repetitive elements such as Alus and LINEs and shorter simple

sequence repeats.

In the second step we removed paralogous sequence pairs. To do this, three

similarity graphs were made for each set. These graphs had the same node set, one

node for each sequence pair in the set. The first graph had an edge for each significant

BLASTN hit of nucleotides +10 to +85 from the 5′ splice site, and the second graph

the same for nucleotides -100 to -25 from the 3′ splice site. These regions were chosen

to avoid the most information-rich parts of the splice site. The third graph had as

its edge set the intersection of the first two graphs, so that two sequence pairs were

connected if and only if both regions showed sequence homology.

From this intersection graph we performed greedy node removal, iteratively re-

moving the node of highest degree (and any attached edges) until no edges remained,

so that there were no two sequence pairs with both ends homologous. The sequence

pairs corresponding to the remaining nodes formed the input to the collocation algo-

rithms.

3.4.3 Co-GC Shuffling

Our implementation of co-GC shuffling differed from the simplified description in the

caption of Figure 3-4. In fact we generated the co-GC shuffled sets in “one fell swoop”
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without any swaps. As we walked through the real sequence pair sets, whenever we

saw a sequence pair of co-GC content (s1, s2) we chose at random, and without replace-

ment, a first sequence (i.e. first in its pair) of co-GC content s1 and, independently,

a second sequence of co-GC content s2. These together formed one co-GC shuffled

sequence pair. Thus the final set had the same overall co-GC content but very few, if

any, of the original pairs.

3.4.4 Selection of the Neutral Motif

The neutral motif used in the experiments was chosen so that, when inserted into

either cloning site, it would not create any known splicing regulatory elements. Our

set of “known” splicing regulatory elements was the union of the RESCUE-ESEs [15],

the cut2 FAS-ESS hexamers [61] and a set of putative ISE and ISS hexamers provided

by Dr. Grace Xiao determined from her computational screen. The motif does not

contain any of the hexamers, nor does it overlap any at either of the two contexts.

Furthermore, it has 50% G+C content.
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Chapter 4

A Sequence Model for the Branch

Site

Abstract

The first catalytic step of splicing is the formation of the branch point, a special

adenosine about 25 nucleotides from the end of the intron. This adenosine and its

flanking recognition sequence are necessary for the splicing reaction to proceed, and

mutations in these positions are associated with a number of different human dis-

eases. Nevertheless, the branch point has been poorly characterized and in fact only

a handful of natural branch points have been accurately mapped. We built a sequence

model of intron 3′ ends that is capable of both scoring potential 3′ splice sites and

predicting branch points. The model was trained using an EM algorithm with initial

guesses based on introns containing a single adenosine within a restricted region. It

was validated on a set of 24 branch points reported in the literature. We used the

model to identify a set of nearly 40,000 high-confidence human branch points, which

we estimate is 90% accurate. We examined the conservation of branch point position

and found that it is highly conserved between human and mouse. Finally, we applied

the model to study the role of the branch point in alternative splicing, and found

that skipped exons show an enrichment for misordered 3′ end elements relative to

constitutive exons, and that although branch point sequences of skipped exons are
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Figure 4-1: The two catalytic steps of splicing. Step 1, 2’ OH from branch point adenosine
attacks 5′ phosphate of guanosine at beginning of intron (*), leaving upstream exon with 3′ OH and
covalently linked lariat and downstream exon. Step 2, free 3′ OH attacks 3′ phosphate of guanosine
at end of intron, liberating lariat and ligated exons.

more highly conserved than those of constitutive exons, their positions are conserved

at the same rate.

4.1 Introduction

The RNA splicing reaction occurs in two catalytic steps (Figure 4-1). In the first

step a specific adenosine is recognized, usually near the -25 position of the intron (i.e.

25 bases 5′ of the first base of the downstream exon). This base is thought to bulge

out of an RNA helix formed between the intron and the U2 snRNA, although it is

initially recognized as part of a complex involving the protein SF1 (also known as

branch point binding protein, BBP), and stabilized by a nearby polypyrimidine tract

and the protein U2AF65. The 2’ OH group of the sugar attacks the 5′ phosphate

group of the +1 guanosine. The final products, the ligated exons and an excised

lariat, result from the second step of splicing [6].

The branch point is essential for the reaction, which often will not go forward if

it is mutated. Indeed, the first step of splicing can occur in the absence of a 3′ splice

site AG (acceptor site), but not in the absence of a branch point [44]. Furthermore,

the choice of 3′ splice site is thought to be determined by scanning downstream for

the first AG beginning about 10 bases after the branch point [52], [54].
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The branch point is also known to be important for alternative splicing of the

α-tropomyosin and α-actinin genes ([53], [55] and see Figure 1-9). These genes both

contain pairs of exons whose mutual exclusion depends on the position of the branch

point upstream of the second exon of the pair. This branch point is located so close

to the first exon of the pair that the formation of the lariat is sterically hindered.

This was proved by insertion of a spacer between the first exon’s 5′ splice site and

the branch point, which allowed inclusion of both exons.

Despite their importance, human branch points have not been extensively studied.

A recent literature survey found only 19 mapped mammalian branch points [29]. One

reason for the paucity of known branch points is the difficulty in their experimental

determination. Branch points can be mapped either by genetic or biochemical meth-

ods. For the genetic method one needs to have an idea of which base is the branched

adenosine, then mutate it and show that splicing is abolished. This method may not

always work because some introns can splice through more than one branch point.

The result can also be questioned, as mutation of an intronic splicing enhancer could

yield the same phenotype.

There are several biochemical methods to map branch points, but most require

large amounts of lariat RNA, which is not abundant in mammalian cells. Therefore,

it is necessary to create a mini-gene and to splice in vitro. This has the problem

of physiological relevance. Once lariat RNA has been isolated, it can be debranched

into linear intron using the enzyme debranchase. The branch point can be mapped by

looking at differential mobility of an RNAse fragment in the two samples, by looking

for a lariat-specific reverse transcriptase (RT) stop, or by RT-PCR with primers across

the branch point. The latter two methods depend on the pausing of certain reverse

transcriptases at the branched adenosine. This yields a stop in the primer extension

assay, but also allows for cross-lariat amplification in the RT-PCR assay.

Previously, Kol et al computationally modeled branch sites and studied the dif-

ference between alternatively spliced and constitutively included exons in human and

mouse [29]. They built a position specific scoring matrix for the branch site based on

19 experimentally proven branch points, and used it to predict branch sites in authen-
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tic introns by searching for high-scoring branch site sequences followed by a tract of

at least 14 nucleotides of at least 50% pyrimidine. Using this model they found that

the branch site sequences of alternatively spliced exons are more conserved between

human and mouse than those of constitutively spliced exons. They also mutated

their predicted branch sites using RT-PCR of mini-gene constructs and determined

that mutating the branch point adenosine or position -2 to guanosine increased exon

skipping.

Knowing the difficulties of experimental mapping, we decided to create a com-

putational model of intron 3′ ends, including the branch point, the polypyrimidine

tract, the AG, and the first three bases of the exon. Our model differs from the Kol

model in that it uses a larger training set, an EM algorithm to improve the initial

training guesses, and gives a posterior probability indicating the confidence of any

given branch site prediction. We applied our model to study differences between

alternatively and constitutively spliced exons.

4.2 Results

4.2.1 A Linear Sequence Model for Intron 3′ Ends

We developed a Linear Sequence Model (see Section 4.4.1) for the 3′ end of introns. We

used seven ordered states (Figure 4-2, BPA): intronic, branch point site (BPS), first

gap, polypyrimidine tract (PPT), second gap, acceptor site (the last three positions of

the intron, consensus YAG [Y = C or U]), exonic. We call this the BPA model because

of the three conserved elements: BPS, PPT and acceptor site.

The BPA model can make two types of predictions. The first type of prediction

is that, given a sequence extending three bases into the beginning of an exon, it can

generate a score for the whole region. A higher score indicates that the region contains

all the elements necessary for recognition as a 3′ splice site by the spliceosome, and a

lower score indicates that the region looks more like internal intron sequence. Thus

the model can be used to help discriminate decoy and real 3′ splice sites. This is the
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same problem that is addressed by the Maximum Entropy model for 3′ splice sites

[64]. As an example, Figure 4-3 shows the model score for every AG in the full length

transcript of SirT1.

The second type of prediction is that, given an authentic 3′ splice site, it can

generate posterior probabilities for the BPS. This means assigning one probability pi

for each position i in the sequence with
∑

i pi = 1. This probability can be interpreted

as the likelihood that that position is the true branch point. Figure 4-4 shows these

distributions for the adenovirus major late transcript (AdML), where the branch point

has been experimentally mapped and correctly predicted, and the 8 real 3′ splice sites

in SirT1, whose true branch points have not been mapped.

4.2.2 Creating the BPA Model

Initial Guesses for Emission and Length Parameters

The examples of the last section were created with our fully-trained BPA model. To

create this model, we began with an “educated guess” for all parameter values except

for the branch point state, which was trained on a set of 80 introns we generated that

contained only a single adenosine in the region beginning 40 nucleotides downstream

of the 5′ splice site and ending 10 nucleotides upstream. The reason for excluding

the beginning and end of the intron is that branch sites too close to the splice sites

are thought to be prevented by steric hindrance. Evidence for this is found in the

mechanism enforcing the mutual exclusivity of α-tropomyosin exons (Figure 1-9).

Experiments involving the insertion of spacer elements between the 5′ splice site of

the first mutually exclusive exon and the branch site of the second show that branch

sites cannot form closer than about 50 nucleotides from the 5′ splice site [53]. We

chose a conservative cutoff of 40 nucleotides. The evidence for excluding the last

10 nucleotides of the intron comes from experiments introducing AG dinucleotides by

mutation at varying distances from the branch site. In general the first AG at least

12 nucleotides downstream of the branch site become the 3′ splice site [52], and AG

dinucleotides closer than that are not competitive as 3′ splice sites. We chose the
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Figure 4-4: BPA calculates posterior probabilities for branch point position
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conservative cutoff of 10 nucleotides. Finally, the rule for a single adenosine in the

allowed region is based on the fact that nearly all branch sites are adenosines. In fact

there are examples where other nucleotides can be used as branch points, but only in

the absence of a nearby adenosine [21].

The branch sequences of 80 single-adenosine introns we found were then used to

build a positional weight matrix which was the initial guess for the emission prob-

abilities of seven branch point states of our LSM. We guessed length distributions

and other emission probabilities based on our intuition from looking at many authen-

tic intron sequences in the expectation that any reasonable guess would be properly

trained by the EM algorithm.

Training and Validating the BPA Model

The guesses of the previous section were then expanded into higher order emission

probabilities to allow for neighboring dependencies. One or more iterations of the

Baum-Welch algorithm were run starting with this guess on a set of about 10,000

real 3′ splice sites taken from SpliceGraph [57], a database of known gene isoforms

derived from EST/genomic alignment (see section 3.4.1).

We tried using different orders for the Markov models (0 through 4) and also

different number of training iterations (0, corresponding to the guess without training,

through 5 iterations). We evaluated the quality of the different models by using the

model to score 3′ splice sites within the splicing simulator ExonScan [61]. ExonScan

normally uses Maximum Entropy models [64] for the 5′ and 3′ splice sites (MaxEnt),

as well as adding bonus scores to putative exons that contain exonic splicing enhancers

(RESCUE-ESEs [15]) or that are flanked by the intronic splicing enhancer GGG, and

penalizing those that contain exonic splicing silencers (FAS-HEX2 [61]). ExonScan

performance is measured by Exact Accuracy on a set of 1820 constitutively spliced

transcripts, defined as the fraction of exons with both splice sites correctly predicted

at a score cutoff with equal numbers of false positive and false negatives.

Figure 4-5 shows the performance of our 30 different versions of BPA when re-

placing the MaxEnt model of the 3′ splice site in ExonScan. The best one, Markov
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order 2 with three rounds of training, achieved an exact accuracy (both splice sites

correct) of 55.8% on the test set, compared to 53.3% by MaxEnt. We performed all

further analysis with this model, which we call BPA2.3.

Removing the BPS Negatively Impacts BPA2.3′s Accuracy

We next set out to understand the source of BPA2.3′s accuracy in splice site predic-

tion. In particular, we wanted to know if the branch point part of the model was

actually useful in predicting 3′ splice sites, or if the PPT/acceptor/exon portion of

the model was the reason for its relative success in this task. We formed a shortened

model that contained the intronic state followed by PPT, a gap state, acceptor and

then exonic states, with parameters taken from BPA2.3 (Figure 4-2, IP2AE). When

this model, called IP2AE for the states it contains, was used in ExonScan, it gave

an exact accuracy of 46.3%. Three training iterations brought the accuracy up to

49.7%, still short of the full model (55.8%). Therefore, the branch point is important

for splice site prediction.
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An Inhomogeneous Markov Model Outperforms BPA2.3 and MaxEnt in

3′ Splice Site Prediction

We noticed that the regions modeled by IP2AE and MaxEnt are basically the same,

and yet MaxEnt performs better (53.3% versus 49.7%). Therefore, we reasoned that

we might be able to improve BPA2.3 in terms of ExonScan exact accuracy if we

modeled the polypyrimidine tract similarly to MaxEnt. Since the MaxEnt formulation

doesn’t fit into our LSM, we used an inhomogeneous Markov model (IHMM) to model

the pyrimidine tract. Figure 4-6 shows that the best such models are of second order.

Modeling 20 intronic nucleotides (IHMM20, Figure 4-2, IHMM20) achieves 53.9%

ExonScan exact accuracy (compare to MaxEnt’s 53.3%). The highest accuracy, 56.6%

is achieved by IHMM30 (compare to 55.8% for BPA2.3).

Since the IHMM was so successful, we considered replacing the polypyrimidine

tract model from our LSM with this simpler model. We formed a model using the

Intronic, BPS, and first gap states of BPA2.3 followed by 17 intronic nucleotides of

inhomogeneous second order Markov model. The reason for choosing 17 instead of
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20 or more was that we wanted to be sure that the inhomogeneous Markov model

would not cover branch points. We called this model IB1-IHMM17, again for the

states it contains (Figure 4-2, IB1-IHMM17). It achieves an exact accuracy of 56.6%

if it is trained for two iterations. This is a slight improvement over IHMM17 alone,

but not over IHMM20, which also achieves an exact accuracy of 56.6%. On the other

hand, IB1-IHMM20, the model composed of the intronic, BPS and first gap states

of BPA2.3 followed by 20 instead of 17 intronic nucleotides of inhomogeneous second

order Markov model, only achieves an exact accuracy of 56.2%, which is actually less

that IHMM20 alone. Therefore, the addition of the branch point to this model is

actually detrimental.

In conclusion, we learned that adding the branch point can have a small effect on

accuracy in predicting 3′ splice sites, depending on the polypyrimidine tract model

used. We also discovered that a relatively simple IHMM can outperform MaxEnt in

this task.

Prediction of Known Branch Points

In terms of 3′ splice site prediction, the models IHMM20 and IB1-IHMM17 both

outperform BPA2.3, but we decided nevertheless to use BPA2.3 for branch point

prediction. Obviously we couldn’t use IHMM20 since it does not model the branch

point at all. We could have used IB1-IHMM17 but decided that this would be against

our original philosophy of modeling the branch point together juxtaposed with the

polypyrimidine tract.

Although it is possible for a given intron to have more than one branch point, for

simplicity we decided to have BPA2.3 predict at most a single branch site for each

intron. That branch site would be the one with highest posterior probability, and the

prediction would be made if this probability was sufficiently high.

In order to choose a posterior probability cutoff P we first compiled a set of

24 trusted branch sites from the literature (Table 4.1). All of these were mapped

by one the genetic or biochemical methods described above. Most are from human

or viral genes, although mTCRB1 is a mouse gene, and AdML and Ftz are artifi-
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Gene
Branch
Position

Branch
Sequence Reference

HSV-1 LAT -25 GAGGGAG [37]
DQB1 intron 3 -21 CACAGAC [30]
L1CAM -19 AUCCAAG [29]
LIPC -14 CCCCAAU [29]
FBN2 -15 UUGCAAU [29]
HEXB -17 UUGCAAU [29]
XPC -24 UACUGAU [29]
HEMB -25 CGUUAAU [29]
TSC2 -18 GCGUGAC [29]
LCAT -20 CCCUGAC [29]
ITGB4 -17 GGCUCAC [29]
TH -22 GGCUGAU [29]
COL5A1 -23 GACUGAU [29]
mTCRB1 -42 GUCUCAU [9]
β-globin IVS1 -37 CACUGAC [29]
γ-globin IVS1 -30 UUCUGAC [29]
ε-globin IVS1 -31 CUCUAAU [29]
α-globin IVS1 -19 CCCUCAC [29]
α-globin IVS2 -18 CACUGAC [29]
CGRP-1 IVS3-4 -36 CACUCAC [29]
AdML -24 UGCUGAC [45]
Ftz -29 AGCUAAC [45]
SV40 -18 UUCUAAU [39]
HGH -37 ACCCAAG [29]
LDL-R -25 CGCUGAU [63]

Table 4.1: Trusted Branch Sites

cial constructs spliced in HeLa extract. Figure 4-7 shows the posterior probability

of these real branch sites and the dependence of the true positive rate (No. cor-

rectly predicted BPS/total No. predicted BPS) and coverage rate (total No. of pre-

dicted BPS/25) on the cutoff P .

At P = 0.9 we predict 5 branch sites of 25 of our trusted set, and all of them are

correct, corresponding to a true positive rate of 100% and a coverage rate of 20%.

More conservative estimates of these rates come from the smoothed curves (dashed

lines in Figure 4-7, right): 96.7% true positive rate and 16.8% coverage rate.
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4.2.3 Prediction of 38,000 Novel Human Branch Points

We next set out to predict as many human branch points as we could. We began

with the set of all human 3′ splice sites from SpliceGraph [57] (n = 275,960). Of

these 38,017 had a putative branch site with a BPA2.3 posterior probability at least

0.9, giving a coverage rate of 13.7% for this larger dataset. This constitutes our first

high-confidence set of branch points, and represents by three orders of magnitude

the largest such set ever constructed. Although we expect the set to exhibit some

biases (for example low adenosine content) due to its construction, it has roughly

the expected sequence composition and distances to 3′ splice site (Figure 4-8) that

we expect in branch points. In particular, it shows high percentages of -2 U and the

-3 C and is about 20-25 nucleotides from the 3′ splice site. This is encouraging but

not definitive evidence of accuracy, which can only be obtained by experimentally

mapping the branch points of some of these predictions.
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Figure 4-8: 38,000 novel human branch points. Top, pictogram of the BPS (exclamation point)
and 10 flanking bases upstream and downstream for high-confidence predicted human branch points
of SpliceGraph [57] introns. Overline indicates canonical branch site recognition positions relative
to the predicted branch site (yeast consensus TACTAAC). Bottom, branch position relative to the 3′

splice site for same data set.
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4.2.4 Branch Points and Exon Skipping

We next used SpliceGraph to determine which of our high-confidence branch points

were associated with alternative exons. We formed a set of skipped exons (SE) by

finding exons for which both isoforms (skipped and included) are supported by ESTs

(n = 3098, or 5.1% of high-confidence branch points), and also a set of constitutive

exons (CE) that are supported by at least two different ESTs and have no evidence

of alternative splicing (n = 12129, 37.0%). Requiring support from two different

ESTs for constitutive exons both increases the quality of the dataset and controls for

expression bias: transcripts supported by more ESTs tend to be expressed at higher

levels.

Skipped Exons Have Weaker Intron 3′ Ends than Constitutive Exons

We compared these two sets by several measures to see if there were any global

differences between the branch points of skipped and constitutive exons. They were

significantly different by several measures (see also Figures 4-9 and 4-10):

• BPSs of CE are more distant from the 3′ splice site than those of SE.

• CE have stronger branch point sequences when scored by the BPS state of

BPA2.3.

• CE have stronger 3′ splice site when scored by IHMM20 or MaxEnt.

• CE have stronger branch sites when scored by highest posterior probability.

Although the magnitude of some of these differences is modest, it should be em-

phasized that these differences may be diminished by noise due to misprediction of

branch sites or misannotation of SE/CE, and the true effect may be stronger. For

example, the change in IHMM20 score is less than one bit, but it has been clearly

documented in experimental systems that the most common result of weakening a

splice site is exon skipping. Thus, in many ways the 3′ ends of skipped exons are

weaker than those of constitutive exons.
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SE Exhibit Improperly Ordered Elements

Continuing to compare skipped and constitutive exons, we next considered the differ-

ence in their sequence contents. We examined regions upstream and downstream of

the predicted branch points: -45 to -6, termed up40, and +2 to +19, termed down18.

We further fine-tuned down18 in two ways. First, since we already know that SE have

weaker PPT than CE, we created balanced subsets (Section 4.4.3) of SE and CE hav-

ing the same IHMM20 score. These sets are about 10% smaller than the original sets

(Figure 4-11, top) but now have essentially identical score distributions (Figure 4-11,

bottom; compare with Figure 4-10, bottom). The reason for creating these sets is

that we already know that CE have stronger 3′ splice sites than SE, but we want

to discover other differences. Next, we discarded those regions that overlapped the

splice site AG, so that down18 would only contain regions properly between the branch

sequence and AG (Figure 4-11, down18).

For up40 and down18 and for k = 1, . . . , 6, we performed χ2 tests to identify k-

mers enriched in SE or CE. Figure 4-12 shows those k-mers that showed a significant

difference in their frequencies in sequence flanking predicted branch points of skipped

versus constitutive exons.

The general trend in up40 is that A+T-rich oligonucleotides are less frequent up-

stream of BPS of skipped exons than constitutive exons, and G+C-rich oligonucleotides

are more frequent. In fact, the SE regions tend to be slightly more G+C-rich than

the CE regions in general. The other group of k-mers we see are pyrimidine rich, for

example TTTCTC and TCTCCG. These are enriched in the skipped exons relative to the

constitutive exons. This suggests the possibility that pyrimidine tracts upstream of

branch sites function as ISSs. In some ways this is analogous to the discovery that

decoy 5′ splice sites can suppress splicing when placed within exons [61], perhaps by

competing with the real 5′ splice sites for U1 binding. In a similar fashion, BPS-

upstream pyrimidine tracts might function by competing with the BPS-downstream

tracts for binding of U2AF65.

In down18 the trend of A+T-rich oligonucleotide depletion in in skipped exons
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persists (e.g. TAT and TTAT depletion in SE versus CE) but is weaker. Another group

we see are perfect stretches of poly-T (k = 3, 4, 5, 6). These are enriched in SE versus

CE, and increasingly enriched for larger k, suggesting that they function to suppress

exon inclusion. U2AF65 has been previously shown to have a very high binding

affinity for poly-T oligonucleotides [51], but our results suggest that this interaction

actually suppresses the usage of the associated 3′ splice site. Finally, the last group

are the AG-containing sequences such as CAG and AGGA. These may bind U2AF35

and compete with the correct 3′ splice site. These motifs are not enriched in up40,

suggesting that AG alone is not efficient at binding U2AF35 in the absence of an

upstream pyrimidine tract and/or branch point.

PPTs Occur Upstream of BPS in SE

Following the observation that pyrimidine-rich k-mers are enriched in SE relative to

CE in up40, we asked whether skipped exons had a higher frequency of polypyrimidine

tracts upstream of their BPS. To answer this question we created a linear sequence

model consisting of positions -20 to -5 of IHMM20 flanked on both sides by the

intronic state, which is the same in all models. We called this model IPI for the states

it contains (Figure 4-13A). Positions -20 to -5 were chosen so as to exclude base -4,

which does not generally have a pyrimidine composition, as well as subsequent bases.

We then defined a putative PPT-containing region as one with a positive maximum

likelihood score. The median IPI score for the last 40 nucleotides of SE was 0.02 bits,

so this is roughly the same. At first it may be surprising that the median score for this

positive control set would be so close to zero, but it makes sense when one considers

that the maximum likelihood score for IPI is a maximum over about 20 different

parses (corresponding to possible starting positions for the putative PPT). Thus the

probability of the maximum likelihood parse is in a sense penalized by log2 20 ≈ 4

bits. If we add to this 4 bits another 4 bits for the conserved AG and another bit or

two for the -3 and exonic positions then we have a typical 3′ splice site score of 9-10

bits. So the cutoff of 0 actually makes a lot of sense in the context of what we know

about 3′ splice sites.
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Having chosen this cutoff, we then scored the up40 region of SE (n = 12129) and

CE (n = 3098). 6.8% of CE and 8.9% of SE had putative PPT in up40 so SE have

significantly more putative PPT upstream of their branch points (P = 7.0× 10−5, by

χ2 test, Figure 4-13B), in agreement with our interpretation of the k-mer enrichment

data.

4.2.5 A Murine Branch Point Model Finds 32,000 Branch

Points

We created a murine branch point model in order to be able to ask evolutionary

questions about branch points, and also to be able to use comparative genomics to

identify conserved features of intron 3′ ends. To construct this model we took the

human BPA2.3 and trained it for two iterations on a random set of about 10,000

murine 3′ splice sites taken from the mouse (mm6) version of SpliceGraph. We then

used this model, which we call mBPA, to predict branch points on all murine 3′ splice

sites in SpliceGraph, by taking those sites with a posterior probability at least 90%.

This yielded 32,055 putative murine branch points.

In order to compare these murine branch points to human branch points we used

107



the liftOver utility available on the UCSC website, which can convert a range of

coordinates in one genome to those on another. We took all BPS-3′ splice site ranges

from the high-confidence mouse set and mapped them back to the human genome.

Of 32,055 murine 3′ splice sites with high-confidence branch points, 3756 (11.7%)

mapped onto human 3′ splice sites with high-confidence branch points. Of these,

the predicted branch points of 3185 (84.8%) were at the same position in human

and mouse. Thus it seems that branch point positions are highly conserved between

human and mouse.

To address the question of whether branch sites are more conserved for SE or CE,

we performed two χ2 tests for homogeneity. First we examined whether the set of

3185 conserved BPS-3′ splice site ranges we found are enriched for SE or CE. 248

(8%) of SE were in this set, and 1130 (9.3%) of CE were in this set, a difference which

is significant only at the 2.5% level. This is a surprise given the report of Kol et

al finding branch sites of SE more conserved than those of CE [29]. However, those

authors were examining sequence conservation specifically. If we take these 248 SE

and 1130 CE whose BPS-3′ splice site ranges are conserved and ask what fraction of

their sequences are conserved, we see that indeed the SE are more highly conserved

at the sequence level (71 or 28.6% having perfectly conserved heptamer branch site)

than CE (243 or 21.5% having perfectly conserved heptamer branch site), concurring

with the other study. Thus we see that the extra branch site conservation in SE is

specific to the sequence and does not apply to the position.

4.3 Discussion

We present here a new model for the 3′ ends of introns containing the branch site, the

polypyrimidine tract, and the nucleotides near the 3′ splice site. Compared to previous

models, this model is less dependent on very small training sets, and also provides a

posterior probability indicating the confidence of each predicted branch site. Such a

model should be used in any study of intronic regions near the 3′ splice site, as the

sequences upstream and downstream of the branch point are vastly different.
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4.3.1 Single-Adenosine Introns as a Branch Point Training

Set

Most of the parameters of our BPA model were based on educated guesses based on

our experience looking at authentic intron 3′ ends. These parameters were refined

during three iterations of the EM training algorithm, so we reasoned that it was not

essential that they be exactly correct. However, for the initial guesses of branch point

emission probabilities we generated a set of introns containing exactly one adenosine

in the branch point permissible region (intron positions +40..-10). The consensus se-

quence at positions -5..+1 relative to the branch point adenosine strongly resembles

previously reported branch point sequences, except for an artefactual avoidance of

adenosine at the other positions. As such, we are highly confident that these rep-

resent a set of correct, albeit biased branch sites. This set can be used by other

researchers interested in studying high-confidence branch points apart from those

already published in the literature mapped by biochemical or genetic methods.

4.3.2 Model Validation

BPA2.3 can achieve the same or better Exact Accuracy as the MaxEnt model [64]

when used as part of the Exonscan splicing simulator [61] to predict exons in a test

set of about 2000 constitutively spliced transcripts. Furthermore, BPA2.3 correctly

predicts 15 of 25 experimentally mapped branch point sites mined from the literature

when the maximum posterior probability position is chosen. Of the 25 branch point

sites, 5 had a position with 90% or greater posterior probability, and all of the 5

were correctly predicted (Figure 4-7). Therefore we chose a cutoff of 90% posterior

probability for our high-confidence set of branch points.
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4.3.3 Prediction of High-Confidence Branch Points for 40,000

Authentic Human 3′ Splice Sites

Out of roughly 275,000 human 3′ splice sites in the SpliceGraph database [57], 40,000

exhibited high-confidence branch points as scored by BPA2.3. This set showed ex-

pected sequence composition flanking the branch sites as well as expected distribution

of distance to the 3′ splice site (Figure 4-8). A similar model specialized for mouse

introns predicted roughly 30,000 high-confidence branch points upstream of 3′ splice

sites in that organism. Of these splice sites, approximately 4000 (12%) aligned to hu-

man splice sites with high-confidence predicted branch sites, and these branch sites

were also aligned for approximately 85% of the aligned 3′ splice sites. These data

point to a high conservation of branch sites in evolution between human and mouse,

suggesting that mutations in the branch site are often deleterious and not easily

compensated by activating latent branch points.

4.3.4 Skipped Exons Exhibit Misordered Sequence Elements

As an application of our BPA2.3 model we studied the branch sites upstream of exons

in SpliceGraph associated with either alternatively skipped (SE, roughly 3,000) or

constitutively included (CE, roughly 12,000) exons. As has been previously observed,

the skipped exons had weaker 3′ splice sites when scored by either MaxEnt or our

second order inhomogeneous Markov model (P = 2.3 × 10−42). In addition, the

branch sites of SE had lower sequence scores (P = 2.3× 10−6) and were closer to the

3′ splice sites (P = 0.0063) than constitutive exons. Finally, the entire region scored

by BPA2.3 had a lower score in SE than CE when scored by maximum posterior

probability (P = 0.0077). These results extend previous observations about the

weakness of splice sites of skipped exons relative to constitutive exons.

To see if we could identify specific motifs related to exon skipping or inclusion,

we looked at k-mer frequencies appearing in upstream and downstream windows of

branch sites of constitutive exons (CE) and skipped exons (SE). Interestingly, we

found pyrimidine-rich sequences upstream of branch sites enriched in SE relative to
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CE, and sequences containing the AG dinucleotide between branch sites and 3′ splice

sites enriched in SE relative to CE. Typically we expect the region between branch

sites and 3′ splice sites to contain polypyrimidine tracts and to lack AG dinucleotides

except at the last two positions of the intron. Thus a salient feature of SE relative to

CE is the misordering of 3′-end elements. To further test this interpretation we looked

specifically for high-scoring polypyrimidine tracts using our inhomogeneous Markov

model and found that they are enriched upstream of branch points of SE relative to

CE (P = 7.0 × 10−5), in corroboration of our interpretation.

Finally, we examined the conservation of branch sites of SE and CE between

human and mouse. As previously reported, the heptamer branch site sequences of

SE are more highly conserved than those of CE. However, the positions of those

branch sites in sequence alignments relative to the 3′ splice site are conserved at

an approximately equal rate in SE and CE, indicating that the geometry of branch

sites is highly conserved and therefore highlighting the importance of branch sites in

evolution.

The BPA model is thus a high-confidence method to predict branch points at

the 3′ end of introns. It could be used in medical applications to predict branch

sites in disease-associated mutations. It will be interesting to continue studying the

evolution of branch points using this model. Finally, since the regions upstream and

downstream of branch sites are drastically different, such a model will be important

in the analysis of the 3′ ends of introns flanking alternatively spliced exons.

4.4 Methods

4.4.1 The Theory of Linear Sequence Models

Definition

We develop here the theory for a class of probability distributions which we call lin-

ear sequence models (LSMs)∗. As we shall see, there are many analogies between

∗These are actually a special case of a class of distributions known as hidden semi-Markov models
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the HMMs of Section 1.6.3 and LSMs. In LSMs we have S states and a finite al-

phabet A. In general, each state is a probability distribution Ps on all finite words

taken from A:
∑

l≥0

∑
x∈Al Ps(x) = 1. In our case, we specify state s by a Markov

model of some order ks, specified by transition matrix Ts ∈ R
Aks×A, and, indepen-

dently, a length distribution Ls (
∑

l≥0 Ls(l) = 1). Therefore for a word x ∈ Al of

length l, Ps(x) = Ls(l)Ms(x), where Ms(x) = Ps(x|l) denotes the Markov probability
∏l

i=1 Ts(xi−ks
· · ·xi−1 → xi).

Given the Ls and Ms, the model generates sequence by selecting lengths l1, . . . , lS ≥

0 each according to Ls(ls), generating subsequences xs of those lengths according to

the Markov probabilities Ms, and concatenating those subsequences.

Sequence Parsing

Given the sequence σ of length n the forward algorithm for LSMs fills the matrix

F , which represents the probability of an initial segment of states emitting an initial

segment of sequence:

fis = P (states 1 . . . s emit σ1 · · ·σi)

=
∑

0=i0≤···≤is=i

[ ∏

1≤t≤s

Lt(it − it−1)Mt(σit−1+1 · · ·σit)

]
.

(4.1)

Here t iterates over the states from 1 to s, and (it) represent the boundaries of the

states, so that state t emits the sequence σit−1+1 · · ·σit , which is of length it − it−1.

In English, the second line of Equation 4.1 is the sum over all possible partitions of

sequence σ1 · · ·σi among the first s states of the product over those states of emission

probabilities for the corresponding subsequences. This sum can be quickly calculated

by recursing over the length of the last state:

fis =
i∑

l=0

fi−l,s−1 Ls(l) Ms(σi−l+1 · · ·σi)

fi0 = δ(i)

f0s = δ(s).

(4.2)
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where δ(·) is the Kronecker Delta function, valued 1 at 0 and 0 elsewhere. Just as with

simple HMMs, fnS gives the total probability of the sequence σ. Similarly, the back-

ward algorithm for LSMs fills the matrix B where bis = P (states s . . . S emit σi · · ·σn).

The forward and backward algorithm run in O(n2S) time and require O(nS) space,

compared to O(nS2) time and O(nS) space for simple HMMs.

The Viterbi algorithm for LSMs gives the maximum log likelihood parse of σ. For

LSMs, a parse is specified by the boundaries of the states. The Viterbi algorithm fills

the matrix V defined by

vis = max
0=i0≤···≤is=i

[ ∑

1≤t≤s

log Lt(it − it−1) + log Mt(σit−1+1 · · ·σit)

]
.

Note the similarity with Equation 4.1. The mapping (
∑

,
∏

) → (max,
∑

) is known

as tropicalization† ([42]). V is filled by tropicalizing Equations 4.2:

vis =
i

max
l=0

[
vi−l,s−1 + log Ls(l) + log Ms(σi−l+1 · · ·σi)

]

vi0 = log δ(i)

v0s = log δ(s),

where log δ(·) is valued 0 at 0 and −∞ elsewhere. The viterbi algorithm has the same

complexity as the forward and backward algorithms, namely O(n2S) time and O(nS)

space.

The actual maximum likelihood parse can be reconstructed by remembering the

lengths that achieve the maxima. This requires an extra O(nS) space, which is

not problematic, so does not necessitate the traceback algorithm sometimes used in

stochastic context free grammars [24].

F and B can be used to calculate posterior probabilities for a state s given the

sequence σ. Thus for i ≤ j+1 the posterior probability of the state s emitting σi · · ·σj

†since it was first studied by the Brazilian mathematician Imre Simon
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is given by

P post
s (i, j) = fi−1,s−1 Ls(j − i + 1) Ms(σi · · ·σj) bj+1,s+1. (4.3)

This expression is very useful for evaluating different positions in our sequence as

potential branch points, and also important in the training algorithm.

Training

Training is accomplished by the Baum-Welch algorithm for LSMs. Given sequences

σ(i) for i = 1 . . .N we have to determine the length distribution L̂s and Markov prob-

abilities T̂s for each state s. Since, for each sequence, P post
s (i, j) (Equation 4.3) is a

probability distribution on the intervals i ≤ j + 1, it also induces a probability distri-

bution on the lengths, namely Lpost
s (l; σ) =

∑
i−j+1=l P

post
s (i, j; σ), where P post

s (i, j; σ)

denotes the posterior probability of the state s on the interval [i, j] given the sequence

σ.

The trained length distribution can therefore be calculated by averaging the pos-

terior length distributions of all the sequences:

L̂s(l) =
1

N

N∑

i=1

Lpost
s (l; σ(i)).

The trained Markov transition probabilities are calculated in a similar fashion.

For x ∈ Aks and y ∈ A, we would like to set the transition probability of x to y,

T̂s(x → y), to be the ratio of expected counts of xy and x in state s. We can calculate

these expected counts by weighing the actual occurrences of these words by posterior

probabilities of the intervals containing them, being careful about which positions are

conditional and which are emitted by the Markov model. Letting #z(τ ) denote the

number of times the word z appears among the letters in the sequence τ , the expected
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counts of xy and x in state s in the sequence σ are given respectively by

N̂s(x → y; σ) =
∑

i≤j+1

P post
s (i, j; σ) #xy(σi−ks

· · ·σj) and

N̂s(x → ·; σ) =
∑

i≤j+1

P post
s (i, j; σ) #x(σi−ks

· · ·σj−1).

Finally we can calculate the trained Markov transition probabilities by

T̂s(x → y) =

∑N

i=1 N̂s(x → y; σ(i))
∑N

i=1 N̂s(x → ·; σ(i))
.

With these new T̂s and L̂s another iteration of training can be performed if desired.

4.4.2 The BPA implementation

We actually use a conditional version of the Linear Sequence Model algorithms, which

means that all probabilities are conditioned on the first few nucleotides of the se-

quence. This distinction is probably only important in the implementation of the

model and not for any of the actual results.

In practice LSMs are used in three different predictive modes. The first is posterior

probability which is described above. The second is total probability, in which we

use the forward probability. To get a LOD score for the total probability we use the

Markov model from the intronic state as our background distribution, matching the

length distributions. This means that we need to generate the length distribution of

the entire LSM, but that can be quickly done by convoluting the length distributions

of the individual states according to the recursion

Ls(l) =
∑

l′

Ls−1(l − l′)Ls(l
′)

L1(l) = L1(l),

where Ls(l) represents the probability that the length of sequence emitted by the

first s states is l; Ls(·) is the length distribution of state s, as in the previous section;
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and l′ ranges from the minimum to maximum lengths of the state. Therefore, the

final LOD score for a sequence σ of length n would be given by

log fnS − log LS(n) − log MI(σ), (4.4)

where fnS is the total (forward) probability of the σ for that LSM, and MI(·) denotes

the Markov probability using the Markov model from the intronic state.

Finally, in the case where we would like a score for the maximum likelihood parse,

we use Equation 4.4, replacing log fnS with vnS, the log likelihood of that parse given

by the Viterbi algorithm for LSMs.

4.4.3 Balanced Datasets by Relative Reduction

Suppose we have two datasets X and Y for which each element contains a number

of properties, one of which v is an integer-valued statistic that we’d like to control,

letting v(z) represent the value of this property for an element z ∈ X or z ∈ Y .

One example of this problem is when X and Y are 3′ splice sites of skipped and

constitutive exons, and v is their splice site score.

We can create balanced subsets of X and Y having the same distribution of v

using the following stochastic algorithm. First define the smoothed density function

fZ of v (Z = X or Y ) by fixing a window radius w and letting

fZ(z) =
|{z′ ∈ Z : z − w ≤ z′ ≤ z + w}|

|Z|
.

For the 3′ splice site case we used w = 0.2 bits. Next define the relative reduction

functions for the two sets, rX(·) and rY (·). This quantity represents, for a given value

v, the factor by which we need to reduce the density of that set in order to match

the density of the other set, or 1 if the density is already less than the other set:

rX(v) =





fY (v)
fX(v)

if fX(v) > fY (v)

1 else

,

116



and rY (v) is defined analogously.

With the relative reductions calculated, we then form the subsets by taking each

element x ∈ X with probability rX(x) and likewise for Y .
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Figure A-1: Introns with many AU/GC motif pairs do not show the same tendency toward length as
those with many GC/AU pairs (see Figure 3-11). ECDF of lengths of constituive intron with increasing
numbers of AT motif near the 3′ splice site (top), GC motifs near the 3′ splice site (middle), or both
motifs at their corresponding splice sites.
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