
MIT AITI 2004 – Lecture 12

Inheritance

What is Inheritance?

In the real world: We inherit traits from our
mother and father. We also inherit traits from
our grandmother, grandfather, and ancestors.
We might have similar eyes, the same smile,
a different height . . . but we are in many
ways "derived" from our parents.

In software: Object inheritance is more well
defined! Objects that are derived from other
object "resemble" their parents by inheriting
both state (fields) and behavior (methods).

Dog Class
public class Dog {

private String name;
private int fleas;

public Dog(String n, int f) {
name = n;
fleas = f;

}

public String getName() { return name; }

public int getFleas() { return fleas; }

public void speak() {
System.out.println("Woof");

}
}

May want to replace "Woof" with whatever the "dog sound" is in your country.

Cat Class
public class Cat {

private String name;
private int hairballs;

public Cat(String n, int h) {
name = n;
hairballs = h;

}

public String getName() { return name; }

public int getHairballs() { return hairballs; }

public void speak() {
System.out.println("Meow");

}
}

Mention that fields should be private, but not private just for example
May want to replace "Meow" with whatever the "cat sound" is in your country.

Problem: Code Duplication

• Dog and Cat have the name field and
the getName method in common

• Classes often have a lot of state and
behavior in common

• Result: lots of duplicate code!

Solution: Inheritance

• Inheritance allows you to write new classes
that inherit from existing classes

• The existing class whose properties are
inherited is called the "parent" or superclass

• The new class that inherits from the super
class is called the "child" or subclass

• Result: Lots of code reuse!

Dog
String name
int fleas

String getName()
int getFleas()
void speak()

Cat
String name

int hairballs
String getName()
int getHairballs()

void speak()

using
inheritance

Dog
int fleas

int getFleas()
void speak()

Cat
int hairballs

int getHairballs()
void speak()

Animal
String name

String getName()

superclass

subclass

subclass

Animal Superclass

public class Animal {

private String name;

public Animal(String n) {
name = n;

}

public String getName() {
return name;

}
}

Dog Subclass
public class Dog extends Animal {

private int fleas;

public Dog(String n, int f) {
super(n); // calls Animal constructor
fleas = f;

}

public int getFleas() {
return fleas;

}

public void speak() {
return System.out.println("Woof");

}
}

May want to replace "Woof" with whatever the "dog sound" is in your country.

Cat Subclass
public class Cat extends Animal {

private int hairballs;

public Cat(String n, int h) {
super(n); // calls Animal constructor
hairballs = h;

}

public int getHairballs() {
return hairballs;

}

public void speak() {
return System.out.println("Meow");

}
}

May want to replace "Meow" with whatever the "cat sound" is in your country.

Inheritance Quiz 1
• What is the output of the following?

Dog d = new Dog("Rover" 3);
Cat c = new Cat("Kitty", 2);
System.out.println(d.getName() + " has " +

d.getFleas() + " fleas");
System.out.println(c.getName() + " has " +

c.getHairballs() + " hairballs");

Rover has 3 fleas
Kitty has 2 hairballs

(Dog and Cat inherit the getName method from Animal)

may want to change names to pet names in your country

Inheritance Rules

• Use the extends keyword to indicate that
one class inherits from another

• The subclass inherits all the fields and
methods of the superclass

• Use the super keyword in the subclass
constructor to call the superclass constructor

Subclass Constructor

• The first thing a subclass constructor must do
is call the superclass constructor

• This ensures that the superclass part of the
object is constructed before the subclass part

• If you do not call the superclass constructor
with the super keyword, and the superclass
has a constructor with no arguments, then that
superclass constructor will be called implicitly.

example of the third point on the next page

Implicit Super Constructor Call
then this Beef subclass:

public class Beef extends Food {
private double weight;
public Beef(double w) {

weight = w
}

}

is equivalent to:

public class Beef extends Food {
private double weight;
public Beef(double w) {

super();
weight = w

}
}

If I have this Food class:

public class Food {
private boolean raw;
public Food() {

raw = true;
}

}

Inheritance Quiz 2
public class A {

public A() { System.out.println("I'm A"); }
}

public class B extends A {
public B() { System.out.println("I'm B"); }

}

public class C extends B {
public C() { System.out.println("I'm C"); }

}

What does this print out?

C x = new C();

I'm A
I'm B
I'm C

• Subclasses can override methods in their superclass

• What is the output of the following?
ThermUS thermometer = new ThermUS(100);
System.out.println(thermometer.getTemp());

Overriding Methods

class ThermUS extends Therm {

public ThermUS(double c) {
super(c);

}

// degrees in Fahrenheit
public double getTemp() {
return celsius * 1.8 + 32;

}
}

class Therm {
public double celsius;

public Therm(double c) {
celsius = c;

}

public double getTemp() {
return celcius;

}
}

212

May want to change Meow and Roar to whatever the animal sounds are in your country

Calling Superclass Methods
• When you override a method, you can call

the superclass's copy of the method by
using the syntax super.method()

class Therm {
private double celsius;

public Therm(double c) {
celcius = c;

}

public double getTemp() {
return celcius;

}
}

class ThermUS extends Therm {

public ThermUS(double c) {
super(c);

}

public double getTemp() {
return super.getTemp()

* 1.8 + 32;
}

}
Note that the celsius field can now be private as it should be!

Access Level

• Classes can contain fields and methods
of four different access levels:

• private: access only to the class itself

• package: access only to classes in the
same package

• protected: access to classes in the
same package and to all subclasses

• public: access to all classes everywhere
when protected comes up, tell them this one is new.

Variable Type vs Object Type

• Variables have the types they are given when
they are declared and objects have the type of
their class.

• For an object to be assigned to a variable is
must be of the same class or a subclass of the
type of the variable.

• You may not call a method on a variable if it's
type does not have that method, even if the
object it references has the method.

Which Lines Don't Compile?
public static void main(String[] args) {

Animal a1 = new Animal();
a1.getName();
a1.getFleas();
a1.getHairballs();
a1.speak();
Animal a2 = new Dog();
a2.getName();
a2.getFleas();
a2.getHairballs();
a2.speak();
Dog d = new Dog();
d.getName();
d.getFleas();
d.getHairballs();
d.speak();

}

// Animal does not have getFleas
// Animal does not have getHairballs
// Animal does not have speak

// Animal does not have getFleas
// Animal does not have getHairballs
// Animal does not have speak

// Dog does not have getHairballs

May want to go through slides 8, 9, and 10 to remind them of the Animal, Dog, and
Cat classes

Remember Casting?

• "Casting" means "promising" the compiler
that the object will be of a particular type

• You can cast a variable to the type of the
object that it references to use that object's
methods without the compiler complaining.

• The cast will fail if the variable doesn't
reference an object of that type.

Which Castings Will Fail?
public static void main(String[] args) {
Animal a1 = new Animal();
((Dog)a1).getFleas();
((Cat)a1).getHairballs();
((Dog)a1).speak();

Animal a2 = new Dog();
((Dog)a2).getFleas();
((Cat)a2).getHairballs();
((Dog)a2).speak();

Dog d = new Dog();
((Cat)d).getHairballs();

}

// a1 is not a Dog
// a1 is not a Cat
// a1 is not a Dog

// a2 is not a Cat

// d is not a Cat

May want to go through slides 8, 9, and 10 to remind them of the Animal, Dog, and
Cat classes

Programming Example
• A Company has a list of Employees. It asks you

to provide a payroll sheet for all employees.
– Has extensive data (name, department, pay amount,

…) for all employees.
– Different types of employees – manager, engineer,

software engineer.
– You have an old Employee class but need to add

very different data and methods for managers and
engineers.

• Suppose someone wrote a name system, and already
provided a legacy Employee class. The old Employee class
had a printData() method for each Employee that only
printed the name. We want to reuse it, and print pay info.

Borrowed with permission from Course 1.00 Notes

REVIEW PICTURE
Message passing "Main event loop"Encapsulation

public … Main(…){
Employee e1…("Mary","Wang");
...
e1.printData();
// Prints Employee names.
...
}

Employee e1

lastName
firstName

printData

private:

Employee class
This is a simple super or base class.

class Employee {
// Data

private String firstName, lastName;

// Constructor

public Employee(String fName, String lName) {
firstName= fName; lastName= lName;

}

// Method
public void printData() {

System.out.println(firstName + " " + lastName);}

}

Inheritance
Class Employee

firstName
lastName

printData()

Class Manager

salary

firstName
lastName

Class Engineer

hoursWorked
wages

firstName
lastName

printData()
getPay()

is-a

printData()
getPay()

Already written:

is-a

You next write:

Engineer class
Subclass or (directly) derived class

class Engineer extends Employee {
private double wage;
private double hoursWorked;
public Engineer(String fName, String lName,

double rate, double hours) {
super(fName, lName);
wage = rate;
hoursWorked = hours;

}

public double getPay() {
return wage * hoursWorked;

}

public void printData() {
super.printData(); // PRINT NAME
System.out.println("Weekly pay: $" + getPay(); }

}

Manager class
Subclass or (directly) derived class

class Manager extends Employee {
private double salary;

public Manager(String fName, String lName, double sal){
super(fName, lName);
salary = sal; }

public double getPay() {
return salary; }

public void printData() {
super.printData();
System.out.println("Monthly salary: $" + salary);}

}

Inheritance…

Class Manager

Salary

firstName
lastName

printData
getPay

Class SalesManager
firstName
lastName

printData
getPay

Salary

salesBonus

is-a

SalesManager Class
(Derived class from derived class)

class SalesManager extends Manager {
private double bonus; // Bonus Possible as commission.

// A SalesManager gets a constant salary of $1250.0
public SalesManager(String fName, String lName, double b) {

super(fName, lName, 1250.0);
bonus = b; }

public double getPay() {
return 1250.0; }

public void printData() {
super.printData();
System.out.println("Bonus Pay: $" + bonus; }

}

Main method
public class PayRoll {
public static void main(String[] args) {

// Could get Data from tables in a Database.
Engineer fred = new Engineer("Fred", "Smith", 12.0, 8.0);
Manager ann = new Manager("Ann", "Brown", 1500.0);
SalesManager mary= new SalesManager("Mary", "Kate", 2000.0);

// Polymorphism, or late binding
Employee[] employees = new Employee[3];
employees[0]= fred;
employees[1]= ann;
employees[2]= mary;
for (int i=0; i < 3; i++)

employees[i].printData();
}

}

Java knows the
object type and
chooses the
appropriate method
at run time

Output from main method
Fred Smith
Weekly pay: $96.0
Ann Brown
Monthly salary: $1500.0
Mary Barrett
Monthly salary: $1250.0
Bonus: $2000.0

Note that we could not write:
employees[i].getPay();

because getPay() is not a method of the superclass Employee.

In contrast, printData() is a method of Employee, so Java can find the
appropriate version.

Object Class

• All Java classes implicitly inherit from
java.lang.Object

• So every class you write will automatically
have methods in Object such as equals,
hashCode, and toString.

• We'll learn about the importance of some
of these methods in later lectures.

