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Abstract

We propose an approach to address data uncertainty
for discrete optimization problems that allows control-
ling the degree of conservatism of the solution, and is
computationally tractable both practically and theoret-
ically. When both the cost coefficients and the data in
the constraints of an integer programming problem are
subject to uncertainty, we propose a robust integer pro-
gramming problem of moderately larger size that allows
to control the degree of conservatism of the solution in
terms of probabilistic bounds on constraint violation.
When only the cost coefficients are subject to uncer-
tainty and the problem is a 0 — 1 discrete optimization
problem on n variables, then we solve the robust coun-
terpart by solving n 4+ 1 instances of the original prob-
lem. Thus, the robust counterpart of a polynomially
solvable 0 — 1 discrete optimization problem remains
polynomially solvable. Moreover, we show that the ro-
bust counterpart of an N P-hard a-approximable 0 — 1

discrete optimization problem, remains a-approximable.

1 Introduction

Addressing data uncertainty in mathematical program-

ming models has long been recognized as a central prob-

*Research supported by the Singapore-MIT alliance and a

graduate scholarship from the National University of Singapore.

lem in optimization. There are two principal methods
that have been proposed to address data uncertainty
over the years: (a) stochastic programming, and (b) ro-
bust optimization.

As early as the mid 1950s, Dantzig [7] introduced
stochastic programming as an approach to model data
uncertainty by assuming scenarios for the data occur-
ring with different probabilities. The two main difficul-
ties with such an approach are: (a) Knowing the exact
distribution for the data, and thus enumerating scenar-
ios that capture this distribution is rarely satisfied in
practice, and (b) the size of the resulting optimization
model increases drastically as a function of the num-
ber of scenarios, which poses substantial computational
challenges.

In recent years a body of literature is developing
under the name of robust optimization, in which we op-
timize against the worst instances that might arise by
using a min-max objective. Mulvey et al. [12] present
an approach that integrates goal programming formu-
lations with scenario-based description of the problem
data. Soyster, in the early 1970s, [13] proposes a lin-
ear optimization model to construct a solution that is
feasible for all input data such that each uncertain in-
put data can take any value from an interval. This ap-
proach, however, tends to find solutions that are over-
conservative. Ben-Tal and Nemirovski [2, 3, 4] and El-
Ghaoui et al. [9, 10] address the over-conservatism of

robust solutions by allowing the uncertainty sets for the



data to be ellipsoids, and propose efficient algorithms
to solve convex optimization problems under data un-
certainty. However, as the resulting robust formulations
involve conic quadratic problems (see [3]), such methods
cannot be directly applied to discrete optimization.

In this research we propose a new approach for ro-
bust linear optimization that retains the advantages of
the linear framework of Soyster [13]. More importantly,
our approach offers full control on the degree of conser-
vatism for every constraint. We protect against viola-
tion of constraint ¢ deterministically, when only a pre-
specified number I'; of the coefficients changes, that is
we guarantee that the solution is feasible if less than
I'; uncertain coefficients change. Moreover, we pro-
vide a probabilistic guarantee that even if more than
I'; change, then the robust solution will be feasible with
high probability. In the process we prove a new, to the
best of our knowledge, tight bound on sums of symmet-
rically distributed random variables. In this way, the
proposed framework is at least as flexible than the one
proposed by Ben-Tal and Nemirovski [2, 3, 4] and El-
Ghaoui et al. [9, 10] and possibly more. Unlike these ap-
proaches, the robust counterparts we propose are linear
optimization problems, and thus our approach readily
generalizes to discrete optimization problems.

Specifically for discrete optimization problems, Kou-
velis and Yu [11] propose a framework for robust discrete
optimization, which seeks to find a solution that mini-
mizes the worst case performance under a set of scenar-
10s for the data. Unfortunately, under their approach,
the robust counterpart of many polynomially solvable
discrete optimization problems becomes NP-hard. A re-
lated objective 1s the minimax-regret approach, which
seeks to minimize the worst case loss in objective value
that may occur. Again, under the minimax-regret no-
tion of robustness, many of the polynomially solvable
discrete optimization problems become N P-hard. Un-
der the minimax-regret robustness approach, Averbakh
[1] showed that polynomial solvability is preserved for
a specific discrete optimization problem (optimization

over a uniform matroid) when each cost coefficient can

vary within an interval (interval representation of uncer-
tainty); however, the approach does not seem to gener-
alize to other discrete optimization problems.

Our goal in this paper is to propose an approach
to address data uncertainty for discrete optimization

problems that has the following features:

(a) Tt allows to control the degree of conservatism of

the solution;

(b) Tt is computationally tractable both practically
and theoretically.

Specifically, our contributions include:

(a) When both the cost coefficients and the data in
the constraints of an integer programming prob-
lem are subject to uncertainty, we propose a ro-
bust integer programming problem of moderately
larger size that allows to control the degree of con-
servatism of the solution in terms of probabilistic
bounds on constraint violation.

(b) When only the cost coefficients are subject to un-

certainty and the problem is a 0 — 1 discrete opti-

mization problem on n variables, then we solve the
robust counterpart by solving n+ 1 nominal prob-
lems. Thus, we show that the robust counterpart
of a polynomially solvable 0 — 1 discrete optimiza-
tion problem remains polynomially solvable. In
particular, robust matching, spanning tree, short-
est path, matroid intersection, etc. are polyno-
mially solvable. Moreover, we show that the ro-
bust counterpart of an N P-hard a-approximable
0 — 1 discrete optimization problem, remains a-

approximable.

Structure of the paper. In Section 2, we present
the general framework and formulation of robust dis-
We also show that the

proposed robust formulation has attractive probabilistic

crete optimization problems.

and deterministic guarantees. In Section 3, we propose
an efficient algorithm for solving robust combinatorial
optimization problems. In Section 4, we show that the
robust counterpart of an N P-hard 0—1 a-approximable

discrete optimization problem remains a-approximable.



In Section 5, we present some experimental findings re-
lating to the computation speed and the quality of ro-
bust solutions. Finally, Section 6 contains some remarks
with respect to the practical applicability of the pro-
posed methods.

2 Robust Formulation of Discrete

Optimization Problems

Let ¢, I, u be n-vectors, let A be an m x n matrix,
and b be an m-vector. We consider the following nom-
inal mixed integer programming (MIP) on a set of n

variables, the first £ of which are integers:

min =
st. Az <b
- (1)
I<ze<wu
x; € Z, i=1,...k,

We assume without loss of generality that data uncer-
tainty affects only the elements of the matrix A and c,
but not the vector b, since in this case we can intro-
duce a new variable x, 1, and write Az — bz,41 <0,
1<z <wu,1 <z,41 <1, thus augmenting A to include
b.

In typical applications, we have reasonable estimates
for the mean value of the coefficients a;; and its range
a;;. We feel that it is unlikely that we know the exact
distribution of these coefficients. Similarly, we have es-
timates for the cost coefficients ¢; and an estimate of
its range d;. Specifically, the model of data uncertainty
we consider is as follows:

Model of Data Uncertainty U:

(a) (Uncertainty for matrix A): Let J;, i =1,...,m
be the set of coefficients of row ¢ of A that are
subject to uncertainty. Each entry a;;, j € J; is
modelled as independent, symmetric and bounded
random variable (but with unknown distribution)
@ij,j € J; that takes values in [a;; — @45, a5 + s5].

(b) (Uncertainty for cost vector c¢): Let Jy be

the set of coefficients in ¢ that are subject to un-

certainty. Each entry ¢;, j € Jo takes values in

l¢j, ¢;+d;], where d; represents the deviation from

the nominal cost coefficient, ¢;.
Note that the only assumption that we place on the
distribution of the coefficients a;; is that it is symmetric.

2.1 Robust MIP Formulation

For robustness purposes, for every ¢, we introduce a
number I';, ¢ = 0,1,...,m that takes values in the in-
terval [0,]J;]]. T is assumed to be integer, while T,
¢t =1,...,m are not necessarily integers.

The role of the parameter I'; in the constraints is to
adjust the robustness of the proposed method against
the level of conservativeness of the solution. Consider
the ith constraint of the nominal problem ajz < b;.
Let J; be the set of coefficients a;;, j € J; that are
subject to parameter uncertainty, i.e., @;;, j € J; inde-
pendently takes values according to a symmetric distri-
bution with mean equal to the nominal value a;; in the
interval [a;; — @;;, a;; + @;;]. Speaking intuitively, it is
unlikely that all of the a;;, j € J; will change. Our goal
is to be protected against all cases that up to [I';]| of
these coefficients are allowed to change, and one coeffi-
cient a;+ changes from (T'; — |T;])a;:. In other words,
we stipulate that nature will be restricted in i1ts behav-
ior, in that only a subset of the coefficients will change
in order to adversely affect the solution. We will then
guarantee that if nature behaves like this then the ro-
bust solution will be feasible deterministically. We will
also show that, essentially because the distributions we
allow are symmetric, even if more than |T';| change,
then the robust solution will be feasible with very high
probability. Hence, we call I'; the protection level for
the 7th constraint.

The parameter I'y orchestrating the level of robust-
ness in the objective serves a different purpose from
those parameters in the constraints, as it does not af-
fect the feasibility of the problem. We are interested in
finding an optimal solution that optimizes against all
scenarios under which a number I'y of the cost coeffi-

cients can vary in such a way as to maximally influence



the objective. If I'y = 0, we completely ignore the in-
fluence of the cost deviations, while if T'y = |Jg|, we are
considering all possible cost deviations, which is indeed
most conservative. In general a higher value of 'y in-
creases the level of robustness at the expense of higher
nominal cost.

Specifically, the proposed robust counterpart of Prob-

lem (1) is as follows:

min 'z + max E di|z;]
{Sol S0CJo,|S0|=T0} | :
JESo

s.t. E ajjx; + max
. {S,U{t,}| S,EJ,,|S,|:|_F,J,t,EJ,\S,}
J

Z aijle;| + (Lo — [T ])aue, |2, | p < bi, Vi
JES:

I<ze<wu

neZ,  Yi=1,. .k

(2)

Problem (2) can be reformulated as another MIP.

Theorem 1 Problem (2) has an equivalent MIP for-

mulation as follows:

: 7
min 'z + zlg + ZjeJo Poj

s.t. Zaijl‘j + z; I + Z pij <b; Vi
J Jjedi
zo + poj > djy; Vi € Jo
zi + pij > ijy; Yi#£0,j € J;
pij > 0 Vi, j € J;
y; >0 vy
zi >0 Vi
—y; < ;< y; vj
lj <wj <y vj
x; € Z t=1,... k.

While the original Problem (1) involves n variables and
m constraints, its robust counterpart Problem (3) has
2n 4+ m +1 variables, where I = Y7 /| J;| is the number
of uncertain coefficients, and 2n + m + [ constraints.
As we discussed, if less than [I';| coefficients a;j,
j € J; participating in the ith constraint vary, then the
robust solution will be feasible deterministically. We

next show that even if more than |T;| change, then the

robust solution will be feasible with very high probabil-
ity.

Theorem 2 Let ®* be an optimal solution of Problem
(3). (a) Suppose that the data in matriz A are subject
to the model of data uncertainty U, the probability that

the ith constraint is violated satisfies:

Pr (S, aije; > bi) < B(n,Ty)

=5 (1—p) 2=y () 1 =41 (1)}’

F’% Moreover,

where n = |J;|, v = and p = v —|v].
the bound is tight.
(b) ForT; = 6\/n,

lim B(n,T;) =1— ®(0),

n—od

where

o= [ oo ()

1s the cumulative distribution function of a standard

normal.

Remarks:

(a) The bound (4) is independent of &*.

(b) Eq. (5) is a formal asymptotic theorem that applies
when T'; = 6\/n. We can use the De Moivre-Laplace
approximation of the Binomial distribution to obtain

the approximation

B(n,I'i)~1-@ (Fi\/—ﬁl) |

that applies, even when T'; does not scale as 6+/n.

(6)

(¢) We make no theoretical claims regarding subopti-
mality given that we made no probabilistic assumptions
on the cost coefficients. In Section 5.1, we apply these
bounds in the context of the zero-one knapsack problem.

Note that in order to guarantee that the probabil-
ity that the ith constraint is violated is less than 1%,
L=t & 2.326. Table 1

illustrates the choice of T'; as a function of |J;| so that

we need to select I'; such that

the probability of violating the constraint is less than
1%. For |J;] = 200, we need to use I'; = 33.89, i.e.,

only 17% of the number of uncertain data, to guarantee



| il | T

5 5
10 | 8.3565
100 | 24.263
200 | 33.899

Table 1: Choice of T'; as a function of |J;| so that the

probability of constraint violation is less than 1%.

violation probability of less than 1%. For constraints
with fewer number of uncertain data such as |J;| = 5,
it is necessary to ensure full protection. Therefore, for
constraints with large number of uncertain data, the
proposed approach is capable of delivering less conser-

vative solutions compared to having full protection.

3 Robust Combinatorial Optimiza-

tion

Combinatorial optimization is an important class of dis-
crete optimization whose decision variables are binary,
that is @ € {0,1}". Let X be the set of feasible 0 — 1
vectors representing the set of feasible solutions. The
nominal combinatorial optimization problem is:

min c'x

st. e X. )
We are interested in the class of problems where each
entry &, j € J C N = {1,2,...,n} takes values in
lej,e5 +di], ¢ > 0,j € Nandd; > 0,5 € J. We
would like to find a solution @ € X that minimizes the
maximum cost ¢ such that T' of the |J| = r coefficients

¢; are allowed to change:

* _ : ’
Z*= min dx+ . Src_nﬁl)glzr}jezsdjxj .
st. xe X,
Without loss of generality, we let J = {1,...,r} and
the indices are sorted such that di > dy > ... > d,.
Examples of such problems include the shortest path,

the minimum spanning tree, the minimum assignment,

the travelling salesman, the vehicle routing and matroid
intersection problems. Data uncertainty in the context
of the vehicle routing problem for example, captures
the variability of travel times in some of links of the
network.

In the context of scenario based uncertainty, finding
an optimally robust solution involves solving the prob-
lem (for the case that only two scenarios for the cost

vectors ¢1, ¢z are known):

min max(cix, che)

st. xeX.

For many classical combinatorial problems (for exam-
ple the shortest path problem), finding such a robust
solution is N P-hard, even if minimizing c}a subject to
x € X is polynomially solvable (Kouvelis and Yu [11]).
Clearly the robust counterpart of an N P-hard com-
binatorial optimization problem is N P-hard. We next
show that surprisingly, the robust counterpart of a poly-
nomially solvable combinatorial optimization problem is
also polynomially solvable.

3.1 Algorithm for Robust Combinato-

rial Optimization Problems

In this section, we show that we can solve Problem (8)
by solving at most n 4+ 1 nominal problems min fix,

subject to ®w € X, fori=1,...,n+ 1.

Theorem 3 Problem (8) can be solved by solving the
n + 1 nominal problems:
7% =

min
n+

!
=1 1 ¢, (9)

yeeey

where forl =1,...,n+1:
l
Gl = I'd; + min (C,:B =+ Z (d] — dl) l‘j)
j=1 (10)
subject to ® € X.

Theorem 3 leads to the following algorithm.
Algorithm A



1. Forl=1,...,n+ 1 solve the n + 1 nominal prob-
lems Eqgs. (10):

l
G'=Td + )I‘:Iél)I(l (c'w + Z;(dj - dl)l‘j),
]:
and let ' be an optimal solution of the corre-

sponding problem.

G .

2. Let I* = arg min
=1,...,n+1

3. 25 =G w* =",
Note that Z! is not in general equal to G'. If f is the
., dp, then it is

clear that Algorithm A solves f + 1 nominal problems,
since if d; = dj41, then G' = G!*1. In particular, if all

number of distinct values among dy, ..

d; =dforall j =1,...,n,then Algorithm A solves only
two nominal problems. Thus, if 7 is the time to solve
one nominal problem, Algorithm A solves the robust
counterpart in (f + 1)7 time, thus preserving the poly-
nomial solvability of the nominal problem. In particu-
lar, Theorem 3 implies that the robust counterpart of
many classical 0-1 combinatorial optimization problems
like the minimum spanning tree, the minimum assign-
ment, minimum matching, shortest path and matroid

intersection, are polynomially solvable.

4 Approximation Algorithms

In this section, we show that if the nominal combinato-
rial optimization problem (7) has an a-approximation
polynomial time algorithm, then the robust counterpart
Problem (8) with optimal solution value Z* is also a-
approximable. Specifically, we assume that there exists
a polynomial time Algorithm H for the nominal prob-
lem (7), that returns a solution with an objective Zp:
Z<Zg<al,a>l.

The proposed algorithm for the robust Problem (8)
is to utilize Algorithm H in Algorithm A, instead of
solving the nominal instances exactly. The proposed

algorithm is as follows:

Algorithm B

1. Forl =1,...,n+1 find an a-approximate solution
xY; using Algorithm H for the nominal problem:
l
l .
G —-Td, = )1;%1)1(1 cx+ Z(dj —di)z;

j=1

(11)

2. Forl=1,...,n+1, let

Zl = ! d l .
H=ernT sgﬁ?sgr}z i)

JES

3. Let I* = arg _ min

ZL.
n+1 q

yeeey

_ ogl*. B _ "
4. ZIp =Zy; x° =z

Theorem 4 Algorithm B yields a solution % with an

objective value Zg that satisfies:
7" < Zp < aZ”.

Note that Algorithm A is a special case of Algorithm
B for « = 1.

approximation algorithm for all nominal instances (11).

Note that 1t 1s critical to have an «-

In particular, if the nominal problem is the travelling
salesman problem under triangle inequality, which can
be approximated within o = 3/2, Algorithm B is not
an a-approximation algorithm for the robust counter-
part, as the instances (11) may not satisfy the triangle

inequality.

5 Experimental Results

In this section we consider concrete discrete optimiza-

tion problems and solve the robust counterparts.

5.1 The Robust Knapsack Problem

The zero-one nominal knapsack problem is:

max E Ci Xy

1EN

s.t. Z wiz; < b
1EN
x € {0,1}".
We assume that the weights w; are uncertain, indepen-

dently distributed and follow symmetric distributions in



r Violation Prob. | Optimal Val. | Reduction

0 0.5 5592 0%
2.8 4.49 x 1071 5585 0.13%
36.8 5.71 x 1073 5506 1.54%
82.0 5.04 x 107° 5408 3.29%
200 0 5283 5.50%

Table 2: Robust Knapsack Solutions.

[w; —d;,w; +8;]. The objective value vector ¢ is not sub-
ject to data uncertainty. An application of this problem
is to maximize the total value of goods to be loaded on
a cargo that has strict weight restrictions. The weight
of the individual item is assumed to be uncertain, inde-
pendent of other weights and follows a symmetric dis-
tribution. In our robust model, we want to maximize
the total value of the goods but allowing a maximum
of 1% chance of constraint violation. Problem (2) is as
follows:
max Z Cix;
1EN
s.t.

Z w;x; + max
Py {SU{t}| SCN,|S|=|T|,teN\S}

Y G+ (D= [L))deae ¢ <
Jj€Ss
x € {0,1}".

For this experiment, we solve Problem (3) using CPLEX
7.0 for a random knapsack problem of size, |N| = 200.
We set the capacity limit, b to 4000, the nominal weight,
w; being randomly chosen from the set {20, ...,29} and
the cost ¢; randomly chosen from the set {16,...,77}.
We set, the weight uncertainty d; to equal 10% of the
nominal weight. The time to solve the robust discrete
problems to optimality using CPLEX 7.0 on a Pentium
IT 400 PC ranges from 0.05 to 50 seconds.

Under zero protection level, I' = 0, the optimal value
i1s 5,592. However, with full protection, I' = 200, the
optimal value is reduced by 5.5% to 5,283. In Table 2,
we present a sample of the objective function value and
the probability bound of constraint violation computed

from Eq. (4). Tt is interesting to note that the optimal

value is marginally affected when we increase the pro-
tection level. For instance, to have a probability guar-
antee of at most 0.57% chance of constraint violation,
we only reduce the objective by 1.54%. It appears that
in this example we do not heavily penalize the objec-
tive function value in order to protect ourselves against

constraint violation.

5.2 Robust Sorting

We consider the problem of minimizing the total cost of
selecting k items out of a set of n items that can be ex-
pressed as the following integer programming problem:
min Z X

1EN

s.t. le =k, =e{0,1}"

1EN

(12)

In this problem, the cost components are subjected to
uncertainty. If the model is deterministic, we can easily
solve the problem in O(nlogn) by sorting the costs in
ascending order and choosing the first & items. How-
ever, under the influence of data uncertainty, we will il-
lustrate empirically that the deterministic model could
lead to large deviations when the cost components are
subject to uncertainty. Under our proposed Problem

(8), we solve the following problem,

Z*(IY= min =+ max dixz;
(r) s ng,|S|=r}§ o

s.t. le =k (13)
ieEN
x € {0,1}".

We experiment with a problem of size |N| = 200 and
k = 100. The cost and deviation components, ¢; and
d; are uniformly distributed in [50,200] and [20,200]
respectively. Since only k items will be selected, the
robust solution for I' > k is the same as when I' = %.
Hence, T' takes integral values from [0, k]. By varying
I', we will illustrate empirically that we can control the
deviation of the objective value under the influence of

cost uncertainty.



r | Z2(0) | % Z(r) | o(I') | % o(I)
0 | 8822 0% |501.0| 0.0%
20 | 8923 | 1.145% | 471.9 | -5.8 %
40 | 9627 | 9.125 % | 396.3 | -20.9 %
60 | 10146 | 15.00 % | 365.7 | -27.0 %
80 | 10619 | 20.37 % | 342.5 | -31.6 %
100 | 10619 | 20.37 % | 340.1 | -32.1 %

Table 3: Influence of T on Z(F) and o(T).

We solve Problem (13) in two ways. First using Al-
gorithm A, and second solving Problem (3):

min c'az—i—zF—l—ij
JEN
st. z24p; >djx; YjEeN (14)
Zl‘i:k
1EN

ZZOa p]ZOa :)36{0,1}”

Algorithm A was able to find the robust solution for
all T € {0,...k} in less than a second. The typical
running time using CPLEX 7.0 to solve Problem (14)
for only one of the I' ranges from 30 to 80 minutes,
which underscores the effectiveness of Algorithm A.
We let ®(T') be an optimal solution to the robust
model, with parameter I' and define Z(T') = ¢'=(T)
as the nominal cost in the absence of any cost devi-
ations. To analyze the robustness of the solution, we
simulate the distribution of the objective by subjecting
the cost components to random perturbations. Under
the simulation, each cost component independently de-
viates with probability p from the nominal value ¢; to
¢j +d;. In Table 3, we report Z(I') and the standard
deviation ¢(T") found in the simulation for p = 0.2.
Table 3 suggests that as we increase I', the standard
deviation of the objective, o(T") decreases, implying that
the robustness of the solution increases, and Z(I') in-
creases. Varying I we can find the tradeoff between the
variability of the objective and the increase in nominal

cost.

5.3 The Robust Shortest Path Problem

The shortest path problem surfaces in many important
problems and has a wide range of applications from lo-
gistics planning to telecommunications. In these ap-
plications, the arc costs are estimated and subjected to
uncertainty. Using Dijkstra’s algorithm [8], the shortest
path problem can be solved in O(|A|?), while Algorithm
A runs in O(JA||AV[?). In order to test the performance
of Algorithm A, we construct a randomly generated di-
graph with || = 300 and |A| = 1475 as shown in
Figure 1. The starting node, s is at the origin (0, 0) and
the terminal node ¢ is placed in coordinate (1,1). The
nominal arc cost, ¢;; equals to the Euclidean distance
between the adjacent nodes {i, j} and the arc cost devi-
ation, d;; is set to yc¢;;, where v is uniformly distributed
in [0, 8]. Hence, some of the arcs have cost deviations of
at most eight times of their nominal values. Using Al-
gorithm A (calling Dijkstra’s algorithm [A| + 1 times),
we solve for the complete set of robust shortest paths

(for various I'’s), which are drawn in bold in Figure 1.

s o
0 b EN e o

]

01 02 03 04 05 06 07 08 09 1

Figure 1: Randomly generated digraph and the set of robust

shortest {s,t} paths for various I" values.

We simulate the distribution of the path cost by sub-
jecting the arc cost to random perturbations. In each
instance of the simulation, every arc (¢, j) has cost that
is independently perturbed, with probability p, from its
nominal value ¢;; to ¢;; +d;;. Setting p = 0.1, we gener-
ate 20,000 random scenarios and plot the distributions
of the path cost for I' = 0, 3,6 and 10, which are shown

in Figure 2. We observe that as I increases, the nominal



Figure 2: Influence of I' on the distribution of path cost for
p=0.1.

path cost also increases, while cost variability decreases.

6

Conclusions

Unlike all other approaches that create robust solutions

for combinatorial optimization problems, the proposed

approach retains the complexity of the nominal problem

or its approximability guarantee and offers the modeler

the capability to control the tradeoftf between cost and

robustness by varying a single parameter I'. For ar-

bitrary discrete optimization problems, the increase in

problem size is still moderate, and thus the proposed

approach has the potential of being practically useful.
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