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Problem Set 4 Solutions 

Reading: Chapters 17, 21.1–21.3 
Both exercises and problems should be solved, but only the problems should be turned in. 

Exercises are intended to help you master the course material. Even though you should not turn in 
the exercise solutions, you are responsible for material covered in the exercises. 

Mark the top of each sheet with your name, the course number, the problem number, your 
recitation section, the date and the names of any students with whom you collaborated. 

Three-hole punch your paper on submissions. 
You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up 

should take the form of a short essay. A topic paragraph should summarize the problem you are 
solving and what your results are. The body of the essay should provide the following: 

1. A description of the algorithm in English and, if helpful, pseudo-code. 

2. At least one worked example or diagram to show more precisely how your algorithm works. 

3. A proof (or indication) of the correctness of the algorithm. 

4. An analysis of the running time of the algorithm. 

Remember, your goal is to communicate. Full credit will be given only to correct algorithms 
which are which are described clearly. Convoluted and obtuse descriptions will receive low marks. 

Exercise 4-1. The Ski Rental Problem 

A father decides to start taking his young daughter to go skiing once a week. The daughter may 
lose interest in the enterprise of skiing at any moment, so the kth week of skiing may be the last, 
for any k. Note that k is unknown. 

The father now has to decide how to procure skis for his daughter for every weekly session (until 
she quits). One can buy skis at a one-time cost of B dollars, or rent skis at a weekly cost of R 
dollars. (Note that one can buy skis at any time—e.g., rent for two weeks, then buy.) 

Give a 2-competitive algorithm for this problem—that is, give an online algorithm that incurs a 
total cost of at most twice the offline optimal (i.e., the optimal scheme if k is known). 

Problem 4-1. Queues as Stacks 

Suppose we had code lying around that implemented a stack, and we now wanted to implement a 
queue. One way to do this is to use two stacks S1 and S2. To insert into our queue, we push into 
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stack S1. To remove from our queue we first check if S2 is empty, and if so, we “dump” S1 into S2 

(that is, we pop each element from S1 and push it immediately onto S2). Then we pop from S2. 

For instance, if we execute INSERT(a), INSERT(b), DELETE(), the results are: 

S1 =[] S2 =[] 
INSERT(a) S1 =[a] S2 =[] 
INSERT(b) S1 =[b a] S2 =[] 
DELETE() S1 =[] S2 =[a b] “dump” 

S1 =[] S2 =[b] “pop” (returns a) 

Suppose each push and pop costs 1 unit of work, so that performing a dump when S1 has n elements 
costs 2n units (since we do n pushes and n pops). 

(a)	 Suppose that (starting from an empty queue) we do 3 insertions, then 2 removals,

then 3 more insertions, and then 2 more removals. What is the total cost of these 10

operations, and how many elements are in each stack at the end?


Solution: The total work is 3 + (6 + 2) + 3 + (1 + 6 + 1) = 22. At the end, S1 has 0 
elements, and S2 has 2. 

(b)	 If a total of n insertions and n removals are done in some order, how large might the

running time of one of the operations be (give an exact, non-asymptotic answer)? Give

a sequence of operations that induces this behavior, and indicate which operation has

the running time you specified.


Solution: An insertion always takes 1 unit, so our worst-case cost must be caused by 
a removal. No more that n elements can ever be in S1, and no fewer than 0 elements 
can be in S2. Therefore the worst-case cost is 2n + 1: 2n units to dump, and one extra 
to pop from S2. This bound is tight, as seen by the following sequence: perform n 
insertions, then n removals. The first removal will cause a dump of n elements plus a 
pop, for 2n + 1 work. 

(c)	 Suppose we perform an arbitrary sequence of insertions and removals, starting from

an empty queue. What is the amortized cost of each operation? Give as tight (i.e.,

non-asymptotic) of an upper bound as you can. Use the accounting method to prove

your answer. That is, charge $x for insertion and $y for deletion. What are x and y?

Prove your answer.


Solution: The tightest amortized upper bounds are 3 units per insertion, and 1 unit per 
removal. We will prove this 2 ways (using the accounting and potential methods; the 
aggregate method seems too weak to employ elegantly in this case). (We would also 
accept valid proofs of 4 units per insertion and 0 per removal, although this answer is 
looser than the one we give here.) 
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Here is an analysis using the accounting method: with every insertion we pay $3: $1 
is used to push onto S1, and the remaining $2 remain attached to the element just 
inserted. Therefore every element in S1 has $2 attached to it. With every removal we 
pay $1, which will (eventually) be used to pop the desired element off of S2. Before 
that, however, we may need to dump S1 into S2; this involves popping each element 
off of S1 and pushing it onto S2. We can pay for these pairs of operations with the $2 
attached to each element in S1. 

(d)	 Now we’ll analyze the structure using the potential method. For a queue Q imple

mented as stacks S1 and S2, consider the potential function


�(Q) = number of elements in stack S1. 

Use this potential function to analyze the amortized cost of insert and delete opera
tions. 

Solution: Let |S1
i | denote the number of elements in S1 after the ith operation. Then 

the potential function � on our structure Qi (the state of the queue after the ith oper
ation) is defined to be �(Qi) = 2|Si |. Note that |S1

i | � 0 at all times, so �(Qi) � 0.1


Also, |S1
0| = 0 initially, so �(Q0) = 0 as desired.


Now we compute the amortized costs: for an insertion, we have S i+1 = Si + 1, and 1 1 

the actual cost ci = 1, so 

ĉi = ci + �(Qi+1) − �(Qi) = 1 + 2(S1 
i + 1) − 2(S1

i ) = 3. 

For a removal, we have two cases. First, when there is no dump from S1 to S2, the 
actual cost is 1, and Si+1 = S1

i . Therefore ĉi = 1. When there is a dump, the actual 1


cost is 2|Si | + 1, and we have Si+1 = 0. Therefore we get
1	 1 

ĉi = (2|S1

i | + 1) + 0 − 2|Si | = 1 1

as desired. 

Problem 4-2. David Digs Donuts 

Your TA David has two loves in life: (1) roaming around Massachusetts on his forest-green Can
nondale R300 road bike, and (2) eating Boston Kreme donuts. One Sunday afternoon, he is biking 
along Main Street in Acton, and suddenly turns the corner onto Mass Ave. (Yes, that Mass Ave.) 
His growling stomach announces that it is time for a donut. Because Mass Ave has so many donut 
shops along it, David decides to find a shop somewhere along that street. He faces two obstacles in 
his quest to satisfy his hunger: first, he does not know whether the nearest donut shop is to his left 
or to his right (or how far away the nearest shop is); and second, when he goes riding his contact 
lenses dry out dramatically, blurring his vision, and he can’t see a donut shop until he is directly in 
front of it. 

You may assume that all donut shops are at an integral distance (in feet) from the starting location. 
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(a)	 Give an efficient (deterministic) algorithm for David to locate a donut shop on Mass

Ave as quickly as possible. Your algorithm will be online in the sense that the location

of the nearest donut shop is unknown until you actually find the shop. The algorithm

should be O(1)-competitive: if the nearest donut shop is distance d away from David’s

starting point, the total distance that David has to bike before he gets his donut should

be O(d). (The optimal offline algorithm would require David to bike only distance d.)


Solution: WLOG, let’s call the two directions of Mass Ave “east” and “west.” 

1. Check for a shop at the origin. 

2. i := 0. 

3. direction := east; 

4. Repeat the following until a donut is found: 

(a) Bike 2i units in direction direction. If you pass a donut shop, stop and eat. 

(b) Bike 2i units back to the origin. 

(c)	 i := i + 1. 

(d)	 direction := −direction. 

Notice that you are back at the origin after every iteration of the loop.


Suppose that the nearest donut shop is d feet away from the origin. Let k be such that

2k < d � 2k+1. Observe that in the ith iteration of the loop, we explore the stretch of

road between the origin and ±2i, so after k + 2 iterations we are guaranteed to have

found the shop.


The total distance that we travel in the ith iteration is 2·2i, so the total distance traveled

in these k + 2 iterations is 

�
k+2 2i+1 � 2 · 2k+3 = 16 · 2k < 16d. Thus the algorithm 
i=0 

is 16-competitive. 

(b)	 Optimize the competitive ratio for your algorithm—that is, minimize the constant hid

den by the O(·) in the competitive ratio.


Solution: The only tweak to the above is to more tightly analyze the last iteration. 
In the (k + 2)nd iteration, we are done after we travel distance d, since we were 
at the origin and had to travel only distance d. Thus the total distance we travel is �

k+1 2i+1 + d � 8 · 2k + d � 9d. (One can also try to optimize the base of the 
i=0 

exponential search, but it turns out that two is optimal.) 

(c)	 Suppose you flip a coin to decide whether to start moving to the left or to the right ini

tially. Show that incorporating this step into your algorithm results in an improvement

to the expected competitive ratio.


Solution: Then, using the above notation, with probability 1/2 we will find the shop 
in the (k + 1)st iteration, and with probability 1/2 we will find it in the (k + 2)nd 
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iteration. Thus the expected travel distance is 

k+1 
 

i=0 

2
k + d)/2 + (

k+2 
 

i=0 

2( k + d)/2 � (5d + 9d)/2 = 7d.



