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Abstract Our premise is that to protect this infrastructure we need

Information systems form the backbones of the critical
infrastructures of modern societies. Unfortunately, these
systems are highly vulnerable to attacks that can result in
enormous damage. Furthermore, traditional approaches to
information security have not provided all the protections
necessary to defeat and recover from a concerted attack;
in particular, they are largely irrelevant to the problem of
defending against attacks launched by insiders.

This paper describes two related systems PMOP and
AWDRAT! that were developed during the DARPA Self Re-
generative Systems program. PMOP defends against in-
sider attacks while AWDRAT is intended to detect compro-
mises to software systems. Both rely on self-monitoring, di-
agnosis and self-adaptation. We describe both systems and
show the results of experiments with each.

1 Background and Motivation

The infrastructure of modern society is controlled by
computational systems that are vulnerable to information
attacks that can lead to consequences as dire as those of
modern warfare. In virtually every exercise conducted by
the government, the attacking team has compromised the
target systems with little difficulty. Hence, there is an ur-
gent need for new approaches to protect the computational
infrastructure from such attacks and to enable it to con-
tinue functioning even when attacks have been successfully
launched.

IThis article describe research conducted at the Computer Science and
Artificial Intelligence Laboratory of the Massachusetts Institute of Tech-
nology. Support for this research was provided by the Information Pro-
cessing Technology Office of the Defense Advanced Research Projects
Agency (DARPA) under AFRL Contract Numbers FA8750-04-2-0240 and
FA8750-04-C-0252 The views presented are those of the author alone and
do not represent the view of DARPA or AFRL.

to restructure its software systems as Self Adaptive Surviv-
able Systems. In particular, we believe that a software sys-
tem must be capable of detecting its own malfunction, it
must be capable of diagnosing the cause of the problem, it
must be capable of repairing itself, and it must be capable
of preventing itself from doing harm, even if it is compro-
mised.

Our work is set in the difficult context in which there is
a concerted and coordinated attack by a determined adver-
sary who may be either an external attacker or a privileged
insider. This context places an extra burden on the self-
protective machinery. It is no longer adequate merely to
determine which component of a computation has failed to
achieve its goal, in addition we wish to determine whether
that failure is indicative of a compromise to the underlying
infrastructure and whether it is due to an insider abusing
his privileges. In addition, we need to assess whether the
problem is likely to lead to failures of other computations
at other times. Finally, we need to regenerate the system so
that it can continue its work with reduced threat and lower
likelihood of doing harm.

This paper describes 2 related systems, PMOP and AW-
DRAT that were developed as part of the DARPA Self Re-
generative Systems program. These two systems share a
base of common tools and were applied to the defense of a
common test system. However, PMOP’s focus is detection
of insider attacks, while AWDRAT’s is on external threats.
PMOP’s job is to determine that the operator has asked the
system to do something that will lead to harm (whether or
not the system is compromised), while AWDRAT’s task is
to determine that the system has behaved incorrectly in re-
sponse to a legitimate request. Both share a common philos-
ophy that the system must monitor its own behavior, have
models of itself that it can reason about and adapt itself to
prevent harm from occurring.

Both PMOP and AWDRAT are model based and de-
tect differences from expected behavior. AWDRAT detects



differences from predicted behavior (what the system was
contracted to do) and PMOP detects differences from be-
nign behavior (what the larger system - comprising the user
and the application - was designed to do). AWDRAT de-
tects when the application has been compromised while the
PMOP detects when the user has been compromised.

1.1 A Common Monitoring Infrastructure

The common infrastructure shared by these systems is a
self-monitoring framework consisting of:

o Wrappers that are placed around critical parts of the
system, to collect data and control whether and how
application level operations are performed.

e An Architectural System Model that is capable of
predicting how the system ought to behave in response
to user-level and internal requests. It is fine-grained
enough to provide an architectural level view of how
the system operates, but coarse grained enough to
avoid excessive overhead.

Both the AWDRAT and PMOP architectures are in-
tended to be widely applicable and could, in principle, be
applied to a variety of target systems written in a variety of
programming languages for use on a variety of platforms;
however, wrapper technologies are often specific to a par-
ticular programming language and/or operating system en-
vironment. Our current set of wrapper technologies limits
us to Java and C programs running in a Windows environ-
ment.

PMOP and AWDRAT employ two distinct wrapper tech-
nologies: SafeFamily[1, 4] and JavaWrap. The first of these
encapsulates system DLL’s, allowing AWDRAT and PMOP
to monitor accesses to external resources such as files or
communication ports. To use the SafeFamily facility, one
must provide an XML file of rules specifying the resources
(e.g. files, ports) and actions (e.g. writing the file, commu-
nicating over the port) that are to be prevented.

The second wrapper facility provides method wrap-
pers for Java programs, delivering a capability similar to
“:around” methods in the Common-Lisp Object System[5,
2] or in Aspect-J[6]. To use the JavaWrap facility, one must
provide an XML file specifying the methods one wants to
wrap as well as a Java Class of mediator methods, one for
each wrapped method in the original application. When a
class-file is loaded, JavaWrap rewrites the wrapped meth-
ods to call the corresponding wrapper methods; wrapper
methods are passed a handle to the original method allow-
ing them to invoke the original method if desired.

These two capabilities are complementary: JavaWrap
provides visibility to all application level code, SafeFam-
ily provides visibility to operations that take place below
the abstraction barrier of the Java language runtime model.

Together they provide AWDRAT with the ability to monitor
the applications behavior in detail as is shown in Figure 1.
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Figure 1. Two Types of Wrappers Used in
PMOP and AWDRAT

2 PMOP: Protecting Against Insider Threats

PMOP (Prevention of Misuse of Operator Privileges) is
concerned with threats from insiders. Insiders are distin-
guished from other attackers by the fact that they have been
granted access to the system being defended, have been
granted privileges on that system, and know how it oper-
ates. This means that we must assume that the insider has
all the access, privileges, and knowledge needed to effect an
attack and that traditional security mechanisms, which are
focused on detecting and preventing attempts to escalate the
user’s privileges, are ineffective. Instead the PMOP project
focuses on detecting the application behavior that will cause
harm in the real world.

2.1 The PMOP Architecture

The job of the PMOP architecture is to detect and prevent
actions that could lead to harm. The components that com-
prise the overall PMOP architecture are shown in figure 2.
Wrappers intercept operator requests issued to the running
application and forward the stream of requests to the op-
erational system model which makes predictions about the
effects of the actions that the system is asked to perform.
The predictions of the operational system model are then
assessed for whether they would lead to harmful effects. If
so, then a further assessment is made as to the likelihood
that the harm was intended. If it appears so then the system
increases its degree of suspicion of the user (and notifies hu-
man security personnel); if not, then the actions are deemed
to be an operator error and feedback is provided to the user.
If the user’s request is deemed to be legitimate (i.e. causes
no harm) then the intercepted operator request is passed to
the application to be processed.

A level of suspicion is established by the relative degree
to which the user’s actions fit the role-based plans to the
exclusion of the attack plans. This level of suspicion trig-
gers unique effectors that contain the effects of suspected
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Figure 2. The PMOP Architecture

insider attacks (in a dynamic process-level virtual machine)
to protect the system while additional evidence is gathered;
administrators can determine whether to authorize or quar-
antine the contained actions.

Two unique capabilities result from detecting attacks
based on model-based predicted harm (about to be) caused
to a system:

1. There is no need to update the defense as new insider
attacks are discovered or new ways to obfuscate them
are invented.

2. Attacks based on corrupted operand values or the situ-
ation in which operations are invoked can be detected
and blocked.

Because our attack detectors are model based, and thus
harder to fool, the vast majority of insider attacks can be
detected and blocked (at least to the level of sophistication
of the system models and harm inference reasoning).

The assumption that the insider has all the access, privi-
leges, and knowledge needed for an attack - which defines
what it means to be an insider - means that insider attack de-
tection and thwarting must be based on the attack behavior
itself. Although detection could occur after the fact, from
observation of the damage caused, thwarting requires the
detection to occur before the damage has been caused so
that it can be prevented.

The detection must therefore be based on pre-damage ac-
tivity - namely the user’s commands or directives to some
software system and that software’s execution of system
level operations to effect those commands or directives.
Neither of these phenomena is normally available, but can
be made so through proper instrumentation (discussed be-
low).

2.2 Operational System Model

These additional capabilities do not come for free. They
are based on the availability of an individually constructed

operational system model, whose quality is determined by
the fidelity of that model. In the example system studied
in this project, the models were initially propositional rule
bases, from which we inferred both the predicted state of
the system and the likelihood of harm resulting from the
change of state. In addition to modeling the system in its
nominal state, one could also model the system in various
states of compromise. For example, if a system has had its
effective communication bandwidth reduced by a network
denial of service attack, we need to infer the effect of user
actions in that context, not simply the nominal context. In
our earliest efforts the models were only able to detect harm
when that harm was explicitly associated with the predicted
state (e.g. detonating a missile before launching it) or it
could be inferred from the transition into the predicted state
on the basis of one of the following transition rules:

1. Actions that make resources unavailable to authorized
users;

2. Actions that make resources available to unauthorized
users;

3. Actions that inject disinformation into databases;

4. Actions that delete truthful information from
databases.

More subtle attacks, as for example, injecting truthful but
misleading information into a database, will have to wait for
more refined operational system models and more powerful
harm-inference reasoners.

2.3 Behavior Monitor (Sensors)

Detection is based on a set of application-level sensors
that are able to detect user actions as they occur.

Wrappers monitor in real-time the users actions in a
legacy application, including typing, editing, copying, past-
ing, and other actions. Actions are sensed uniformly
whether they are invoked via menus, shortcuts, toolbars, or
mouse-dragging. Relevant parameter values like the text
that was entered, copied, or deleted are also accessible.

Conceptually, our wrapper is positioned between the ap-
plications high-level user interface and the application it-
self, allowing the wrapper to monitor the users interaction
with the application in terms of the applications own object
model. This application model is defined by and accessed
through a COM API that allows external code to query and
manipulate this model (i.e. the application state).

This COM API and the application object model to
which it provides access are the heart of our approach to
providing an application-level behavior monitor. The API
defines the application-level operations that the application
can perform (whether invoked through the GUI or through
script) and the operands needed for those operations.



2.4 Impending Harm Detector

By intercepting and mediating the calls from the GUI
on these COM APIs, or the internal methods behind the
COM API, the user’s application-level actions can be cap-
tured and screened before those judged safe are allowed to
pass onto the application itself for processing. By medi-
ating the communication between the GUI and the appli-
cation, the application-level actions are directly accessible
(because they are the operations that the application is ca-
pable of performing). The GUI has performed the idiosyn-
cratic translation from interface gestures (keyboard input,
mouse clicks, and drags) to these application-level actions.
We are merely mediating its communication with the appli-
cation once this translation has occurred.

2.5 Malicious Behavior Detector

We developed a malicious behavior detector based
on data received from these wrappers that analyzes the
application-level user modification history relative to a role-
based model of expected behavior. This model identifies
both the types of behavior expected in a situation and the
means for assessing the appropriateness of the particular be-
havior observed. The assessment uses a variety of mecha-
nisms for determining the appropriateness of an action such
as safety models, plant models, design rules, best practices,
and heuristics. This analyzer detects both intentional and
accidental actions that harm the system.

The suspicious behavior detector differentiates the two
by inferring user goals from the observed harmful behavior,
recent historical behaviors, and the set of plans consistent
with the larger behavior context. These plans are extracted
from a library and include both plans associated with the
users role and attack plans (both generic and site specific).
A level of suspicion is established by the relative degree to
which the users actions fit the role-based plans to the exclu-
sion of the attack plans.

This library plays no part in the detection of an attack
(based solely on predicted harm). Instead it is used after
an attack has been detected to distinguish malicious intent
(following an attack plan) from inadvertent operator error
(following a role-based expected behavior plan).

2.6 Intent Inference

Inferring the actual intent of an operator is a very difficult
task. In many cases, an operator could perform a harmful
action either by accident or intentionally. To facilitate this,
we log all user actions, to call attention to those that do
eventually cause harm, and for those that seem malicious,
to open a case book on the user, documenting the suspicious

behavior and leaving final determinations of intent to human
examiners.

However, some behavior is more suspicious than others
and so part of our goal is to identify those actions that are
more likely to have been the result of malicious intent. We
have developed guiding principles for this assessment: A set
of actions that is consistent with a plan for causing harm but
not consistent with normal operations is cause for suspicion.
The larger the deviation between the two (e.g. the number
of steps consistent with harmful outcome, but inconsistent
with benign outcome) is a metric of how suspicious the ac-
tivity is.

We use Computational Vulnerability Analysis [12] to
develop a library of abstract attack plans that an insider
might use to render harm. Similarly we provide a library
of abstract normal (or role-based) plans that are consis-
tent with normal operator behavior. Using plan recognition
techniques, we then assess how well the logged behavior
matches any of these plans and then accordingly score the
operator actions.

2.7 Demonstration System

To demonstrate the applicability of our Misuse Preven-
tion architecture to legacy systems, we chose a moderately
large example legacy system to model and defend against
insider attacks, the OASIS Dem/Val system, developed un-
der an earlier DARPA program. This system relies on the
Joint Battlespace Infosphere (JBI) repository and commu-
nication protocol for coordinating and managing informa-
tion from a variety of agents cooperating in the develop-
ment of major military plans. The OASIS Dem/Val system
developed air tasking orders for air cargo and munitions
delivery and deployment and was created to demonstrate
how existing military systems could interoperate with new
components through the JBI infrastructure. In particular,
we focused mainly on a single application within OASIS
Dem/Val, the MAF/CAF mission planner, an interactive,
Java-based, graphical editor for producing flight plans.

PMOP used its two types of wrappers as follows: Java
wrappers are used to derive state by intercepting calls to
publish and read information from the repository. The at-
tempts to publish are filtered by our Harm Detector and Ma-
licious Behavior Detector; if they determine that harm will
ensue, the publication is blocked. SafeFamily wrappers are
used to monitor all accesses to local resources, such as files,
communications ports, etc. Information gathered fro these
wrappers are used to detect and prevent harm to these re-
sources.

The operational model we developed for the OASIS
system was used to detect corrupted data, effectively data
whose use in the final air tasking order would have harmed
the mission. The model itself is expressed as a set of rules



that constitute the application semantics.

The following sample rules are typical of those that de-
termine whether an air tasking order produced by the MAF
/ CAF operators is harmful.

e Planes have types, which have a maximum Range be-
fore the plane must land or be refueled (refueling resets
the starting point to the refueling point i.e. assumes the
plane has been fully refueled).

e Planes have types which have a minimum required
runway length for takeoffs and landings

e Planes cannot land or takeoff in restricted-access
zones.

e Refueling can only occur in designated refueling areas.

e A plane’s weight (determined by its plane type) cannot
exceed the weight-handling maximum for each run-
way it lands on or takes off from.

e A plane can only land or take off from a runway
at night (1800 to 0600 local time) if that runway is
equipped with night lighting.

e The duration of a leg must exceed the time needed to
fly that leg (i.e. the distance between its start and end
locations) at the plane’s maximum speed

The rules monitor an operator’s behavior to detect harm
at the point that the operator’s actions are committed. In
our case, this is when the Mission Plan constructed by the
operator is published. Harm is detected by determining
whether the plan satisfies the integrity constraints illustrated
above. If not, its publication is blocked to prevent that harm.
An analysis is then performed on the offending action, the
failed integrity check(s), and the history of operator actions
that led to the offending action to determine whether there is
a consistent pattern of malicious operator activity. Harmful
plans are characterized using a relatively simple rule-based
inferencing system and are then archived in a “case-file”
that stores and compares several bad plans produced by the
same operator.

2.8 Validation: Red Team Experiment

In order to validate our system’s ability to detect and
thwart insider attacks either through the application’s GUI
or through the operating system GUI (the Explorer process),
a Red Team experiment was conducted. Out of 14 attempts
to harm the application or induce a false positive, no attacks
causing harm and one false positive were induced through
the application’s GUI, while one attack causing harm and
no false positives were induced through the operating sys-
tem GUIL

3 AWDRAT : Protecting Against External
Attacks

Like PMOP, AWDRAT [13] is a middleware system to
which an existing application software system (the “target
system”) may be retrofitted. AWDRAT provides immunity
to compromises of the target system, making it appear self-
aware and capable of actively checking that its behavior
corresponds to that intended by its designers. “AWDRAT”
stands for Architectural-differencing, Wrappers, Diagnosis,
Recovery, Adaptivity and Trust-modeling.

AWDRAT uses these facilities in order to provide the
target system with a cluster of services that are normally
taken care of in an ad hoc manner in each individual appli-
cation, if at all. These services include fault containment,
execution monitoring, diagnosis, recovery from failure and
adaption to variations in the trustworthiness of the avail-
able resources. Software systems tethered to the AWDRAT
environment behave adaptively; furthermore, with the aid
of AWDRAT, these system regenerate themselves when at-
tacks cause serious damage.

3.1 The AWDRAT Approach

Before delving into the details, it’s useful to understand
the general approach taken by AWDRAT. AWDRAT can be
applied to a “legacy” system, without modifying the source
code of that system. Instead, the programmer provides AW-
DRAT with a “System Architectural Model” that specifies
how the program is intended to behave; usually this descrip-
tion is provided at a fairly high level of abstraction (this
model can be thought of as an “executable specification” of
the target system). AWDRAT checks that the actual behav-
ior of the target system is consistent with that specified in
the System Architectural Model. If the actual behavior ever
diverges from that specified in the model, then AWDRAT
suspends the program’s execution and attempts to diagnose
why the program failed to behave as expected. The diagnos-
tic process identifies an attack and a set of resources (e.g.
binary code in memory, files, databases) that might have
been corrupted by the attack together with a causal chain
of how the attack corrupted the resources and of how the
corruption of the resources led to the observed misbehavior.
AWDRAT then attempts to repair the corrupted resources
if possible (for example by using backup copies of the re-
sources). Finally AWDRAT restarts the application from
the point of failure and attempts to find a way to continue
rendering services without using resources that it suspects
might still be compromised.



3.2 The AWDRAT Architecture

The AWDRAT architecture is shown in Figure 3. This
architecture includes both a variety of models maintained
by AWDRAT (the round boxes in the figure) as well as
a number of major computational components (the square
boxes in the figure). AWDRAT is provided with a model of
the intended behavior of the target system (the System Ar-
chitectural Model in the figure). AWDRAT actively mon-
itors the actual behavior of the target system using “wrap-
per” technology. The Wrapper Synthesis module in the fig-
ure is responsible for synthesizing non-bypassable wrappers
(shown in the figure surrounding the target system). These
wrappers instrument the target system and deliver observa-
tions of its behavior to the component labeled “Architectural
Differencer”. This module consults the System Architec-
tural Model and check that the observations of the target
system’s behavior are consistent with the prediction of the
System Architectural Model suspending the target system’s
execution if they are inconsistent. In the event that unan-
ticipated behavior is detected, a description of the discrep-
ancy between expected and actual behaviors is send to the
AWDRAT component labeled Diagnosis in the figure. The
AWDRAT Diagnosis module uses Model-Based Diagnosis
to determine the possible ways in which the system could
have been compromised so as to produce the observed dis-
crepancy. AWDRAT proceeds to use the results of the di-
agnosis to calculate the types of compromise that may have
effected each computational resource of the target system.
AWDRAT also calculates the likelihood of each possible
compromise. These results are stored in an internal model,
labeled “Trust Model” in the figure.

Next, AWDRAT attempts to help the target system re-
cover from the failure. First it uses backup and redundant
data to attempt to repair any compromised resources (the
component labeled Recover and Regeneration in the figure)
and then, during and after recovery, AWDRAT tries to help
the target avoid using any residual compromised resources
by using alternative methods that are capable of achieving
the target system’s goals and that don’t require the use of the
compromised resources. The module in the figure labeled
“Alternative Method Selection” is responsible for choosing
between such alternative methods using decision theoretic
techniques. Similarly, even if there is only one possible
method for a task, there is often the possibility of choosing
between alternative resources (e.g. there might be redun-
dant copies of data, there might be the possibility of run-
ning the code on more than one host). Such choices are
also managed by the Alternative Method Selection compo-
nent of AWDRAT. Part of the reasoning involved in making
these choices is guided by the Trust Model: If a resource
is potentially compromised then there is a possibility that
any method using it will lead to a system failure. However,

some methods might be much more desirable than others
because they deliver better quality of service (e.g. because
they run faster, or render better images). The method se-
lection module, therefore, attempts to find a combination of
method and resources that makes a good tradeoff, maximiz-
ing the quality of service rendered and minimizing the risk
of system failure.
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Figure 3. The AWDRAT Architecture

AWDRAT also uses the target system’s System Archi-
tectural Model to recognize the critical data that must be
preserved in case of failure. AWDRAT’s Wrapper Synthe-
sizer module generates wrappers that dynamically provision
backup copies and redundant encodings of this critical data
(labeled Backup Data in the figure). During recovery ef-
forts, AWDRAT uses these backup copies to repair com-
promised data resources; in addition, the AWDRAT Adap-
tive Method Selection module may decide to use the backup
copies of data instead of the primary copy.

Using this combination of technologies, AWDRAT pro-
vides “cognitive immunity” to both intentional and acci-
dental compromises. An application that runs within the
AWDRAT environment appears to be self-aware, know-
ing its plans and goals; it actively checks that its behav-
ior is consistent with its goals and provisions resources for
recovery from future failures. AWDRAT builds a “Trust
Model” shared by all application software, indicating which
resources can be relied on for which purposes. This al-
lows an application to make rational choices about how to
achieve its goals.

3.3 Synthesis of Wrappers and Execution
Monitor

AWDRAT uses the same wrapper frameworks as PMOP;
the inputs to the wrapper facilities (the JavaWrap XML
spec, the Java Mediator files and the SafeFamily XML spec-
ification file) are not written by the user, but are instead au-
tomatically generated by AWDRAT from its “System Ar-
chitectural Model”. The System Architectural Model is



written in a language similar to the ‘“Plan Calculus” of the
Programmer’s Apprentice [9, 10, 8]; it includes a hierarchi-
cal nesting of components, each with input and output ports
connected by data and control-flow links. Each component
is provided with prerequisite and post-conditions. In AW-
DRAT, we have extended this notation to include a variety
of event specifications, where events include the entry to
a method in the application, exit from a method or the at-
tempt to perform an operation on an external resource (e.g.
write to a file). The occurrence of an entry (exit) event in-
dicates that a Java method corresponding to a component
in the System Architectural Model has started (completed)
execution; these events are generated by JavaWrap. A pro-
hibited event occurs when the target attempts to access a re-
source in a way not sanctioned by the System Architectural
Model; this is detected by SafeFamily. Similarly invocation
of a Java method not predicted by the System architectural
model is treated as a prohibited event; this is detected by
JavaWrap.

Given this information, the AWDRAT wrapper synthe-
sizer collects up all event specifications used in the Sys-
tem Architectural Model and then synthesizes the wrapper
method code and the two required XML specification files.

3.4 Architectural Differencing

In addition to synthesizing wrappers, the AWDRAT gen-
erator also synthesizes an “execution monitor” correspond-
ing to the System Architectural Model The role of the wrap-
pers is to create an “event stream” tracing the execution of
the application. The role of the execution monitor is to inter-
pret the event stream against the specification of the System
Architectural Model and to detect any differences between
the two as shown in Figure 4. Should a deviation be de-
tected, diagnosis and recovery is attempted.

The System Architectural Model provided to AWDRAT
includes prerequisite and post-conditions for each of its
components. A special subset of the predicates used to de-
scribe these conditions are built into AWDRAT and provide
a simple abstract representation of data structuring. The
AWDRAT synthesizer analyzes these statements and gen-
erates code in the Lisp mediators that creates backup copies
of those data-structures which are manipulated by the ap-
plication and that the System Architectural Model indicates
are crucial.

Using these generated capabilities, AWDRAT detects
any deviation of the application from the abstract behavior
specified in its System Architectural Model and invokes its
diagnostic services.
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Figure 4. Architectural Differencing

3.5 Diagnostic Reasoning

AWDRAT’s diagnostic service is described in more de-
tail in [11] and draws heavily on ideas in [3]. Each com-
ponent in the System Architectural Model provided to AW-
DRAT is provided with behavioral specifications for both
its normal mode of behavior as well as additional speci-
fications of known or anticipated faulty behavior. As ex-
plained in section 3.4, an event stream tracing the execu-
tion of the application system, is passed to the execution
monitor, which in turn checks that these events are consis-
tent with the System Architectural Model. The execution
monitor builds up a data base of assertions describing the
system’s execution and connects these assertions in a de-
pendency network. Any directly observed condition is jus-
tified as a “premise” while those assertions derived by in-
ference are linked by justifications to the assertions they de-
pend upon. In particular, post-conditions of any component
are justified as depending on the assumption that the com-
ponent has executed normally as is shown in Figure 5. This
is similar to the reasoning techniques in [10].
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Figure 5. Dependency Graph

Should a discrepancy between actual and intended be-
havior be detected, it will show up as a contradiction in the
database of assertions describing the application’s execu-
tion history. Diagnosis then consists of finding alternative
behavior specifications for some subset of the components



in the System Architectural Model such that the contradic-
tion disappears when these specifications of off-nominal be-
havior are substituted.

In addition to modeling the behavior of the components
in the System Architectural Model, AWDRAT also mod-
els the health status of resources used by the application.
We use the term “resource” quite generally to include data
read by the application, loadable files (e.g. Class files) and
even the binary representation of the code in memory. Part
of the System Architectural Model provided to AWDRAT
describes how a compromise to a resource might result in
an abnormal behavior in a component of the computation;
these are provided as conditional probability links. Sim-
ilarly, AWDRAT’s general knowledge base contains de-
scriptions of how various types of attacks might result in
compromises to the resources used by the application as is
shown in Figure 6. AWDRAT’s diagnostic service uses this
probabilistic information as well as the symbolic informa-
tion in the dependency network to build a Bayesian Net-
work and thereby to deduce the probabilities that specific
resources used by the application have been compromised.
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Figure 6. Diagnosis With Fault and Attack
Models

3.6 Self-Adaptive Software

Recovery in AWDRAT depends critically on self-
adaptive techniques such as those described in [7]. The crit-
ical idea is that in many cases an application may have more
than one way to perform a task. Self-adaptive software in-
volves making dynamic choices between such alternative
methods.

The general framework starts from the observation that
we can regard alternative methods as different means for
achieving the same goal. But the choice between methods
will result in different values of the “non-functional proper-
ties” of the goal; for example, different methods for load-
ing images have different speeds and different resulting im-

age quality. The application designer presumably has some
preferences over these properties and we have developed
techniques for turning these preferences into a utility func-
tion representing the benefit to the application of achiev-
ing the goal with a specific set of non-functional properties.
Each alternative method also requires a set of resources (and
these resources must meet a set of requirements peculiar to
the method); we may think about these resources having
a cost. As is shown in Figure 7, the task of AWDRAT’s
adaptive software facility is to pick that method and set of
resources that will deliver the highest net benefit. Thus AW-
DRAT’s self-adaptive software service provides a decision
theoretic framework for choosing between alternative meth-
ods.
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Figure 7. Adaptive Software Picks the Best
Method

3.7 Recovery and Trust Modeling

As shown in Figure 8, the results of diagnosis are leftin a
Trust Model that persists beyond the lifetime of a particular
invocation of the application system. This Trust Model con-
tains assessments of whether system resources have been
compromised and with what likelihood. The Trust Model
guides the recovery process.

Recovery consists of first resetting the application sys-
tem to a consistent state and then attempting to complete
the computation successfully. This is guided by the Trust
Model and the use of self-adaptive software. One form of
recovery, for example, consists of restarting the application
and then rebuilding the application state using resources
that are trustable. This consists of:

e Restarting the application or dynamically reloading
its code files (assuming that the application system’s
language and run-time environment supports dynamic
loading, as does Java or Lisp, for example). In doing
so AWSDRAT uses alternative copies of the loadable
code files if the Trust Model indicates that the primary



copies of the code files have possibly been compro-
mised.

e Using alternative methods for manipulating complex
data, such as image files or using alternative copies of
the data resources. The idea is to avoid the use of re-
sources that are likely to have been compromised.

e Rebuilding the application’s data structures from
backup copies maintained by the AWDRAT infrastruc-
ture.

The Trust Model enters into AWDRAT’s self-adaptive
software infrastructure by extending the decision theoretic
framework to (1) Recognize the possibility that a particular
choice of method might fail and to (2) associate a cost with
the method’s failure (e.g. the cost of information leakage).
Thus, the expected benefit of a method is the raw benefit
multiplied by the probability that the method will succeed
while the cost of the method includes the cost of the re-
sources used by the method plus the cost of method failure
multiplied by the probability that the method will fail (i.e.
expected cost). The probability of success is just the joint
probability that all required resources are in their uncom-
promised states (and the failure probability is just 1 minus
the probability of success). In decision theoretic terms, the
best method is, in this revised view, the one with the high-
est net expected benefit. This approach allows AWDRAT
to balance off the attraction of a method that provides a
highly desirable quality of service against the risk of using
resources that might be compromised.
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Figure 8. The Trust Model Guides Future Re-
covery

3.8 Experimentation and Results

AWDRAT’s goal is to guarantee that the target system
tethered to it faithfully executes the intent of the software
designer. To assess AWDRAT we applied it to the defense
of MAF interactive mission planner, also used as the target
system for the PMOP experiments. We identified the fol-
lowing properties that AWDRAT should guarantee:

e The data structures maintained by the application
should accurately reflect user requests:

e The application should not be able to open a port to
any application other than to those JBI servers that it
must communicate with (i.e. the JBOSS server).

e The application should not be able to open a port to a
foreign host

e The application should not be able to write files ex-
cept in the specified set of directories that constitute its
temporary storage areas.

These properties are rather typical of the security con-
cerns that one would have for any program, namely that the
integrity of its data structures should be maintained, that it
shouldn’t divulge internal information except as authorized
and that it shouldn’t modify external information.

To test the effectiveness of AWDRAT in guaranteeing
these properties we adopted three distinct ways of attempt-
ing to violate the properties:

e Modification of class files. We hand inserted attack
code into a Java source file, recompiled and placed
the class file into the appropriate directory on the Java
Classpath. This is intended to simulate the case where
an external attacker gained sufficient privileges to cor-
rupt the class files.

e Random attacks. The AWDRAT controller launches
a parasitic thread on startup. This thread waits for a
random delay and then attempts to violate one of the
constraints listed above (e.g. attempts to launch an ap-
plication, to open a port, or to corrupt the data struc-
tures). Which type of violation (and in the case of data
integrity which field of which data structure) is cho-
sen randomly; the specific attack selected is logged for
analysis purposes.

e Wrapped methods. AWDRAT places wrappers around
a significant number of methods in the MAF applica-
tion. The wrappers can be used as a place from which
to launch a simulated attack; for example, by wrapping
the “loadImage” method, one can simulate an attack
payload that is carried by a corrupted image file (with-
out actually having to do the very laborious work of
constructing such a corrupted image file).

These should be thought of as different ways of intro-
ducing unexpected behavior into the MAF program; they
do not correspond directly to any particular attacks. Rather
they correspond more closely to the effects that a variety of
different attacks might have in corrupting files used by the
target system or in modifying its binary code in memory.
We observe that for an attack to be effective it must cause
the target system to:

1.
2.
3.

divulge information that it is not intended to

modify information that it is not intended to

modify its own state in ways that are not sanctioned by
its specification



4. consume resources that starve out other applications
5. fail to meet its intended performance envelope.

Our tests are aimed at the first three of these items.

The results of our experiments show that 91% of all at-
tempts to launch an application, write a file other than those
sanctioned or to open an un-sanctioned port or to inappro-
priately modify a MAF data structure were detected and
correctly diagnosed. Finally we note that there are no false
positives. This is to be expected if the System Architectural
Model is a reasonable abstraction of the program.

4 Conclusions

PMOP and AWDRAT provide valuable services; but at
what cost? There are two major costs involved in the use of
these systems: The development cost of building a System
Architectural Model and the runtime overhead imposed by
monitoring the application. In our experience so far, the sec-
ond of these costs is negligible, particularly since the target
system in our experiments was an interactive system.

The development cost of building the System Architec-
tural Model depends on how well one understands the tar-
get system’s architecture and how hard it is to translate that
understanding into the formalism used for our System Ar-
chitectural Model.

In the best of cases, the application to be protected is well
understood and reasonably well modularized. However, this
isn’t normally the case for legacy applications; they are typ-
ically poorly documented. Furthermore, the documentation
that exists is usually out of sync with the actual system
code. All these were true of our target system; however,
the availability of our wrapper technology made it consid-
erably easier for us to to engage in the necessary “software
archeology” to gain an understanding of the system before
constructing its System Architectural Model.

Once the architecture of the application was understood,
the construction of the System Architectural Model was
conceptually straightforward; however, the actual coding
of the System Architectural Model in our current plan lan-
guage is rather tedious and might well be more easily gener-
ated from a graphical language (e.g. UML). The core of the
MAF system itself is on the order of 30,000 lines of Java
code while The System Architectural Model that we built
to describe it is 448 lines of code, together with other ancil-
lary code that provided greater services, our coding effort
amounted to about 8% of the size of the target system.

AWDRAT and PMOP are frameworks to which an ap-
plication system may be tethered in order to provide sur-
vivability properties such as error detection, fault diagnosis,
backup and recovery. They remove the concern for these
properties from the domain of the application design team,
instead providing these properties as infrastructure services.

10

They use cognitive techniques to provide the target sys-
tem with the self-awareness and self-adaptivity necessary
to monitor its behavior, diagnose failures, adapt and recover
from both insider and external attackers. This frees appli-
cation designers to concentrate on functionality instead of
exception handling, and provides a framework for ensur-
ing a high level of system survivablility, independent of the
skills of the application designers.
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