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1.  Introduction 
 

Institutional investors usually employ mean-variance analysis to determine 

optimal portfolio weights.  Almost immediately upon implementation, however, the 

portfolio’s weights become sub-optimal as changes in asset prices cause the portfolio to 

drift away from the optimal targets.  In an idealized world without transaction costs 

investors would rebalance continually to the optimal weights.  In the presence of 

transaction costs investors must trade off the cost of sub-optimality with the cost of 

restoring the optimal weights.  Most investors employ heuristics that rebalance the 

portfolio as a function of the passage of time or the size of the misallocation.  Sun et al. 

(2006) employ dynamic programming to determine optimal rebalancing rules, and they 

demonstrate that their approach is significantly superior to standard industry heuristics.  

Their approach is seriously limited, however, because it does not scale beyond a few 

assets.  It suffers from the curse of dimensionality.   

Markowitz and van Dijk (2004) present a quadratic heuristic for rebalancing a 

portfolio to capture shifting views about the mean returns of portfolio assets.  It has been 

shown previously that we can closely approximate a variety of utility functions with 

quadratic functions (see, for example: Levy and Markowtiz, 1979, Kroll, Levy and 

Markowtiz, 1984, Cremers, Kritzman and Page, 2003, Cremers, Kritzman and Page, 

2005). 

We adapt the Markowitz-van Dijk heuristic to address the asset weight drift 

problem, and we compare its solution to the unscalable dynamic programming solution as 

well as to solutions based on standard industry heuristics.   Our tests reveal that the 

Markowitz-van Dijk heuristic provides solutions that are remarkably close to the dynamic 

programming solutions for those cases in which dynamic programming is feasible and far 

superior to solutions based on standard industry heuristics. In the case of five or more 

assets, in fact, it performs better than dynamic programming due approximations required 

to implement the dynamic programming algorithm. Moreover, unlike the dynamic 

programming solution, the Markowitz-van Dijk heuristic is scalable to as many as several 

hundred assets. 
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2.  The General Portfolio Rebalancing Problem 
We begin by assuming an investor with log-wealth utility wishes to select a set of 

portfolio weights that maximize expected utility over a forthcoming period.  The 

expected utility E(U) of the portfolio is written as the weighted sum of the n security 

expected returns under m scenarios, each with associated p probability 
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is the matrix of expected returns, [ ]nXXX ,,1 K=  are the current portfolio weights, and 

 are the probabilities associated with the m scenarios. Let [ mppp ,,1 K= ] optX , 

[ ]opt
nXoptopt XX ,...,1=

opt

, denote the optimal portfolio weights. E(U) is then maximized 

when XX =  and denoted E(U*).  With the passage of time asset prices change, and X 

deviates from Xopt resulting in a loss of expected utility. Following Samuelson (2003), for 

a given sub-optimal E(U) we quantify the loss in expected utility as the certainty 

equivalent cost (CEC), which for the log wealth investor is given by: 

 
)(*)( UEUE eeCEC −=          (2) 

 

Doing so conveniently converts the portfolio’s sub-optimality cost into monetary units 

that are directly comparable to transaction costs.  

The transaction costs (TC) at period t are written as  
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whereC  is the cost of trading security j from the previous weights  to the new 

weights .  
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The general portfolio rebalancing problem is therefore to minimize the combined 

costs associated with deviations from optX  as defined in (2) while also minimizing 

transaction costs as defined in (3). It is a multi-period problem, which is solved 

recursively.  

 

2. The Dynamic Programming Solution 
 Bellman (1952) introduced dynamic programming in the same year that 

Markowitz published his landmark article on portfolio selection.  Dynamic programming 

provides solutions to multistage decision processes and is used in a diverse set of 

applications including automatic sign language recognition, hydropower optimization, 

sequential bidding in auctions, ecological management, and robotics, to mention just a 

few.1  

Following Sun et al. (2006), we define the dynamic programming solution to 

portfolio rebalancing as the recursive minimization of the cost function 

 

( ) ( tttttttt XXJTCCECXXJ ,, 11 +− ++= )        (4) 

 

where the total cost for the current period ( )1, −ttt XXJ , is a function of the current CEC 

and TC, but also of future costs ( )tXtt XJ ,1+ .   In our experiments, we assume that we 

rebalance the portfolio each period in increments as small as 1%, and we estimate the 

potential future cost of each decision as the discounted average cost across 50 potential 

allocations randomly generated by Monte Carlo sampling. 

Unfortunately, this approach suffers from the curse of dimensionality.  To 

rebalance a portfolio among three assets in increments of 1%, for example, we must 

consider 5,151 possible portfolios2 and analyze 26,532,801 (5,1512 ) rebalancing 

decisions for each period. Moreover, to solve this problem recursively we must generate 

at least 50 Monte Carlo paths for each possible decision at each time step.  For a one-year 

horizon with monthly monitoring (12 time steps), we must therefore perform 

14,619,573,351 (5,1512 x 50 x 11 + 5,1512) calculations.  Table 1 shows how the number 

of portfolios and the number of calculations grow as we add more assets.  
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[Insert Table 1 here] 

 

In our experiments we use a 28-processor grid computing platform. Grid 

computing relies on parallel processing to allocate process execution efficiently, thus 

enabling faster processing of large-scale computation problems. Even with access to a 

grid computer, deriving the optimal decisions associated with a 10 asset portfolio and a 

choice of 1% granularity is computationally intractable. On a regular workstation, for 

example, the computing time required to solve this problem would be nearly 12,000 

times of times the age of the universe.   

 

3.  The Markowitz and van Dijk Heuristic 
Table1 underscores the limitations of dynamic programming when we wish to 

consider more than a few assets.  Markowitz and van Dijk (2004) propose an alternative 

approach for determining optimal rebalancing rules.  Although they apply their heuristic 

to account for changing means in asset returns, we adapt it to address the asset weight 

drift problem.    

As with the dynamic programming approach, we wish to minimize the combined 

costs of sub-optimality and rebalancing, taking into account the current period’s costs as 

well as the discounted expected costs of future choices.  However, we replace 

 in (4) by a quadratic function of the current and optimal portfolio weights. 

In general, a quadratic approximation Q to 

( ttt XXJ ,1+ )

( )ttt XXJ ,1+  has the following form: 

 

∑ ∑ ∑∑
>

++=
i ij

jiijiiii XXcXbXaQ 22        (5) 

 

To simplify our experiments, however, we conjecture that Q is separable and is 

minimized by the target portfolio, so that  
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The cost function (4) then becomes 

 

( ) tttttt QTCCECXXJ +−=−1,         (7) 

 

We assume all dis have the same value. To determine this value we use Monte 

Carlo simulations. We generate 200 possible incoming portfolios given the expected 

returns, variances, and covariances of the component assets of the initial optimal portfolio 

along with its weights.  For a given coefficient d, we solve for a new portfolio for each of 

the incoming portfolios such that we minimize cost as defined in 73.  Given these new 

portfolios, we again apply Monte Carlo simulation to generate a new set of 200 incoming 

portfolios, and we solve for 200 cost-minimizing new portfolios.  We proceed forward 

through 12 periods and accumulate the costs.  We then calculate a figure of merit by 

taking the average of the 200 cumulative costs. 

Next we select a new value for the coefficient d and repeat the process.  We 

proceed in this fashion using a mesh approach to select new coefficients.  We start with a 

relatively coarse mesh and gradually refine its granularity until we identify the coefficient 

which produces the best figure of merit. Computational intensity, which is low to begin 

with, remains manageable as we add more assets4.   

 

4.  Results 
We test the relative efficacy of dynamic programming and the MvD heuristic with 

data on domestic equities, domestic fixed income, non-US equities, non-US fixed 

income, and emerging market equities. For these portfolios the expected portfolio return 

is 
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where  is the set of asset weights, [ nXXX ,,1 K= ] [ ]nµµµ ,,1 K=  is the set of expected 

returns on the n assets, ijσ  is the covariance between assets i and j, and is the 

covariance matrix (

C

ijσ ). 

 

Table 2 shows our returns, standard deviations, and transaction cost assumptions.  

 

[Insert Table 2 here] 

 

Table 3 shows our correlation assumptions. We use monthly returns from 

October, 2001 through September, 2006 to measure standard deviations and correlations. 

To estimate expected returns we solve for the implied returns under the assumption that 

the allocations in Table 4 are optimal under mean-variance utility and a fully invested 

budget constraint:  
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Here λ  is the risk aversion parameter (7.5) and 1  is a vector of ones. We thus calculate 

the implied returns as follows: 
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[Insert Table 3 here] 

 

We use domestic stocks and domestic fixed income for the two-asset case. We 

add non-US equities for the three-asset case, non-US fixed income for the four-asset case, 
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and emerging market equities for the five-asset case. Table 4 shows the assumed optimal 

portfolio weights, which as stated before are optimal under the standard mean-variance 

utility function.  We use mean-variance optimality for illustrative purposes.  We could 

just as well substitute optimal weights based on other descriptions of expected utility. 

 

[Insert Table 4 here] 

 

We assume that we have a two-year investment horizon over which we wish to 

minimize the aggregate total cost; that is, the cumulative sum of trading costs and sub-

optimality costs. For the calendar heuristics, we fully rebalance the portfolio at pre-

determined time intervals. For the tolerance band heuristics, we fully rebalance the 

portfolio when asset weights breach pre-determined thresholds. Although we cannot 

extend the dynamic programming algorithm beyond five assets, we test the MvD 

heuristic and the other heuristics for portfolios of 10, 25, 50, and 100 assets using 

individual stocks, which are listed in the appendix.   

As indicated in section 3, for each portfolio we sample several hundred values for 

d until we find the d which yields the lowest average figure of merit (AFOM), which we 

define as follows: 
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where CEC  is the certainty equivalent cost for the iMV
pi,

th portfolio path in the pth period 

under mean-variance utility and TC  are the transaction costs (3) for the ipi,
th portfolio 

path in the pth period.  

Table 5 summarizes the results.  It shows that the MvD heuristic performs quite 

well compared to the dynamic programming solution for the two asset case and 

substantially better than other heuristics. As we increase the number of assets we find that 

the advantage of dynamic programming over the MvD heuristic shrinks and is reversed at 

five assets.  We are not able to apply dynamic programming beyond five assets, but we 

are able to extend the MvD heuristic up to 100 assets. We find that the MvD heuristic 
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reduces total costs relative to all of the other heuristics by substantial amounts.   In the 

appendix we present a more detailed cost analysis that partitions costs into trading and 

sub-optimality components.  

 

[Insert Table 5 here] 

 

Although the performance of the MvD heuristic improves relative to the dynamic 

programming solution as more assets are added, this improvement reflects a growing 

reliance on approximation for the dynamic programming approach.  For the two-asset 

case the dynamic programming solution searches within an interval of plus or minus 5% 

around the optimal portfolio, and divides this range into 5,000 units.  For greater than two 

assets, the search is confined to plus or minus 3% around the optimal portfolio, and this 

space is divided into increasingly coarser units, as shown in Table 6. 

 

[Insert Table 6 here] 

 
 We have no way of knowing how well the MvD heuristic would track the ideal 

but unobtainable dynamic programming solution, but we are encouraged that its 

advantage over the next best heuristic increases as we add more assets.  Moreover, we 

would not know ex ante which heuristic is the next best; hence a fairer assessment of the 

relative efficacy of the  MvD heuristic might be to compare it to the average result of the 

other heuristics. 

 

Part V.  Conclusion 
Portfolio allocations drift from their optimal weights as prices shift.  Most 

investors employ naïve heuristics to rebalance their portfolios.  We describe how 

dynamic programming can be used to identify an optimal rebalancing schedule, which 

significantly reduces rebalancing and sub-optimality costs compared to naïve heuristics.   

 Unfortunately the curse of dimensionality prevents us from applying dynamic 

programming to more than a few assets.  As an alternative we examine the efficacy of a 

more sophisticated heuristic called the MvD heuristic, which scales up to several hundred 
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assets.  Our tests show that the MvD heuristic performs almost as well as dynamic 

programming for up to four assets and better than dynamic programming for five assets.  

In theory, of course, dynamic programming always yields the best result, but we cannot 

observe these results beyond a few assets.  Therefore, we have no way of determining 

how the MvD heuristic would compare to the unobservable “correct” dynamic 

programming solution.  To the extent of our knowledge, however, the MvD heuristic is 

the best alternative by far for rebalancing portfolios with more than just a few assets. 
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Table 1. The Curse of Dimensionality 
Number of Number of

Assets Portfolios

2 101
3 5,151
4 176,851
5 4,598,126
6 96,560,646
7 1,705,904,746
8 26,075,972,546
9 352,025,629,371

10 4,263,421,511,271

Number of Calculations
to Perform 

5,620,751
14,619,573,351

17,233,228,186,751
11,649,662,254,243,700

5,137,501,054,121,460,000
1,603,471,162,336,350,000,000

374,655,945,665,079,000,000,000
68,281,046,097,460,800,000,000,000

10,015,396,403,505,300,000,000,000,000  
Notes. This table shows the number of portfolios as a function of the number of assets, 

assuming 1% granularity. It also shows the number of calculations one would need to 

perform in order to solve the dynamic programming problem for a one-year horizon 

with12 time steps. 
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Table 2. Volatilities and Transaction Costs 
Rebalancing Standard Transaction
Asset Class Index Deviation Cost

Domestic Equities S&P 500 12.74% 0.40%
Domestic Fixed Income Lehman US Agg 3.96% 0.45%
Non-US Equity MSCI EAFE + Canada 13.41% 0.50%
Non-US Bonds CGBI World ex US 8.20% 0.75%
Non-US Equity MSCI EM 18.51% 0.75%  
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Table 3. Correlations 
Domestic Domestic Foreign Foreign
Equities Fixed income Equities Fixed income

Domestic Equities
Domestic Fixed Income -0.31
Non-US Equity 0.84 -0.19
Non-US Bonds -0.14 0.53 0.16
Non-US Equity 0.77 -0.17 0.83 -0.05  
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Table 4. Optimal Portfolios 
Two Three Four Five

Assets Assets Assets Assets
Domestic Equities 60.00% 40.00% 40.00% 40.00%
Domestic Fixed Income 40.00% 40.00% 25.00% 25.00%
Non-US Equity 20.00% 20.00% 15.00%
Non-US Bonds 15.00% 15.00%
Non-US Equity 5.00%  
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Table 5. Performance Comparison – Total Costs (bps) 
Rebalancing Two Three Four Five Ten Twenty Five Fifty Hundred

Strategy Assets Assets Assets Assets Assets Assets Assets Assets
Dynamic Programming 6.31 6.66 7.33 8.76 NA NA NA NA
MvD Heuristic 6.90 7.03 7.58 8.61 25.57 20.38 17.92 12.46
0.25% Bands 15.19 17.01 19.81 21.37 41.93 42.96 41.53 26.88
0.50% Bands 14.11 15.75 17.81 18.92 41.73 38.42 31.15 21.82
0.75% Bands 12.80 14.09 15.32 16.27 40.05 32.95 31.46 25.02
1% Bands 11.54 12.52 13.15 14.13 37.71 31.95 36.74 29.47
2% Bands 8.73 9.20 9.79 10.73 41.94 48.59 66.96 39.33
3% Bands 8.51 8.66 10.14 11.43 61.29 73.78 89.03 41.54
4% Bands 9.46 9.52 12.08 13.78 88.49 93.23 98.55 41.96
5% Bands 11.20 11.21 14.80 16.77 120.19 106.38 102.38 42.03
Monthly 15.65 17.25 20.07 21.85 41.92 42.92 43.34 39.75
Quarterly 11.05 11.86 13.51 14.76 45.17 34.32 33.12 26.54
Semi-annually 11.13 11.53 12.67 13.95 69.97 40.75 37.33 24.41  
Notes. This table shows results for 5,000 Monte Carlo simulations. For the 10 through 

100 asset cases, which employ equally weighted portfolios of stocks drawn from the S&P 

500, a dynamic programming solution is unachievable.  
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Table 6. Dynamic Programming Discretization Scheme 
Number of Number of

Assets Discreetization Points

2 5,000
3 60
4 14
5 7 1,508

2,174

Number of
Portfolios

5,001
3,323

 
Notes. Given that large fluctuations from the optimal allocation are improbable we chose 

to sample with higher density around the optimal allocation.
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Appendix 
 

Table A1 shows the securities used to create the stock portfolios for the 10, 25, 

50, and 100 asset cases. 

 
Exhibit A1: Securities used for stock portfolios

MICROSOFT SLM SIGMA ALDRICH MORGAN STANLEY
IBM GOLDEN WEST FINANCIAL GENERAL DYNAMICS GOLDMAN SACHS
CISCO SYSTEMS PFIZER DANAHER FANNIE MAE
DELL JOHNSON & JOHNSON CENDANT US BANCORP
ORACLE AMGEN GENERAL ELECTRIC WASHINGTON MUTUAL
EBAY UNITEDHEALTH GROUP UNITED TECHNOLOGIES PRUDENTIAL FINL.
YAHOO MEDTRONIC BOEING LEHMAN BROTHERS
FIRST DATA ELI LILLY 3M METLIFE
ADOBE SYSTEMS WYETH TYCO INTL. ALLSTATE
HOME DEPOT CARDINAL HEALTH UNITED PARCEL SER. SAINT PAUL TRAVELERS
LOWE'S COMPANIES GILEAD SCIENCES CATERPILLAR SUNTRUST BANKS
TARGET SCHERING-PLOUGH HONEYWELL INTERNATIONAL BANK OF NEW YORK 
STARBUCKS GUIDANT EMERSON ELECTRIC FRANK.RES.
BEST BUY CAREMARK RX LOCKHEED MARTIN HARTFORD FINANCIAL SERVICES
SEARS HOLDINGS STRYKER FEDEX INTEL
NIKE VALERO ENERGY BURLINGTON NORTHERN SANTA FE CORPORATION HEWLETT-PACKARD
AMAZON.COM BURLINGTON RES ILLINOIS TOOL WORKS QUALCOMM
KOHLS DEVON ENERGY UNION PACIFIC APPLE COMPUTERS
CLEAR CHANNEL COMMUNICATIONS ANADARKO PETROLEUM CITIGROUP MOTOROLA
OMNICOM GROUP PROCTER & GAMBLE BANK OF AMERICA TEXAS INSTRUMENTS
HARLEY-DAVIDSON WAL MART STORES AMERICAN INTERNATIONAL GROUP CORNING
YUM! BRANDS PEPSICO JP MORGAN CHASE & COMPANY EMC
AMERICAN EXPRESS WALGREEN WELLS FARGO & COMPANY APPLIED MATERIALS
FREDDIE MAC ANHEUSER-BUSCH WACHOVIA AUTOMATIC DATA PROCESSING
CAPITAL ONE FINANCIAL ECOLAB MERRILL LYNCH & COMPANY ADVANCED MICRO DEVICES  
 

For example, the first 10 securities in column one constitute the 10 asset portfolio, 

and the securities in the first column constitute the 25 asset portfolio. 

We determine the risks and correlations of the securities in Table A1 based on 

monthly historical returns from January, 2005 through January, 2006 and estimate the 

expected returns as the implied returns under the assumption that the equally weighted 

portfolio is optimal under mean-variance optimization. 

Tables A2 through A9 show the trading cost and sub-optimality cost components 

for the various rebalancing algorithms. 
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Exhibit A2: Performance Comparison - Two Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

Dynamic Programming 4.87 1.44 6.31
MvD Heuristic 4.86 2.04 6.90
0.25% Bands 15.18 0.01 15.19
0.50% Bands 14.06 0.05 14.11
0.75% Bands 12.63 0.17 12.80
1% Bands 11.19 0.34 11.54
2% Bands 7.18 1.55 8.73
3% Bands 5.17 3.34 8.51
4% Bands 3.88 5.58 9.46
5% Bands 3.00 8.20 11.20
Monthly 15.65 0.00 15.65
Quarterly 9.31 1.74 11.05
Semi-annually 6.70 4.43 11.13

Costs (bps)

 
 

Exhibit A3: Performance Comparison - Three Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

Dynamic Programming 4.68 1.98 6.66
MvD Heuristic 4.73 2.30 7.03
0.25% Bands 17.00 0.00 17.01
0.50% Bands 15.71 0.04 15.75
0.75% Bands 13.94 0.15 14.09
1% Bands 12.20 0.32 12.52
2% Bands 7.69 1.50 9.20
3% Bands 5.40 3.26 8.66
4% Bands 4.03 5.49 9.52
5% Bands 3.16 8.05 11.21
Monthly 17.25 0.00 17.25
Quarterly 10.24 1.61 11.86
Semi-annually 7.38 4.15 11.53

Costs (bps)
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Exhibit A4: Performance Comparison - Four Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

Dynamic Programming 5.10 2.23 7.33
MvD Heuristic 4.94 2.64 7.58
0.25% Bands 19.80 0.00 19.81
0.50% Bands 17.73 0.08 17.81
0.75% bands 15.05 0.27 15.32
1% Bands 12.57 0.58 13.15
2% Bands 7.29 2.50 9.79
3% Bands 4.82 5.32 10.14
4% Bands 3.33 8.75 12.08
5% Bands 2.29 12.51 14.80
Monthly 20.07 0.00 20.07
Quarterly 11.87 1.64 13.51
Semi-annually 8.50 4.17 12.67

Costs (bps)

 
 

Exhibit A5: Performance Comparison - Five Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

Dynamic Programming 6.21 2.55 8.76
MvD Heuristic 5.30 3.31 8.61
0.25% Bands 21.36 0.01 21.37
0.50% Bands 18.81 0.11 18.92
0.75% bands 15.92 0.35 16.27
1% Bands 13.41 0.72 14.13
2% Bands 7.70 3.02 10.73
3% Bands 5.09 6.33 11.43
4% Bands 3.55 10.23 13.78
5% Bands 2.46 14.31 16.77
Monthly 21.85 0.00 21.85
Quarterly 12.95 1.82 14.76
Semi-annually 9.29 4.66 13.95

Costs (bps)
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Exhibit A6: Performance Comparison - Ten Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

MvD Heuristic 19.59 5.98 25.57
0.25% Bands 41.93 0.00 41.93
0.50% Bands 41.68 0.05 41.73
0.75% bands 39.21 0.83 40.05
1% Bands 34.47 3.24 37.71
2% Bands 20.76 21.18 41.94
3% Bands 14.11 47.19 61.29
4% Bands 10.14 78.35 88.49
5% Bands 7.42 112.76 120.19
Monthly 41.92 0.00 41.92
Quarterly 24.83 20.34 45.17
Semi-annually 17.69 52.28 69.97

Costs (bps)

 
 

Exhibit A7: Performance Comparison - Twenty-Five Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

MvD Heuristic 14.16 6.22 20.38
0.25% Bands 42.96 0.00 42.96
0.50% Bands 37.07 1.34 38.42
0.75% bands 27.60 5.35 32.95
1% Bands 21.63 10.32 31.95
2% Bands 10.56 38.02 48.59
3% Bands 5.91 67.87 73.78
4% Bands 3.35 89.88 93.23
5% Bands 1.78 104.59 106.38
Monthly 42.92 0.00 42.92
Quarterly 25.32 9.01 34.32
Semi-annually 17.97 22.78 40.75

Costs (bps)
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Exhibit A8: Performance Comparison - Fifty Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

MvD Heuristic 12.05 5.86 17.91
0.25% Bands 41.22 0.31 41.53
0.50% Bands 25.23 5.92 31.15
0.75% bands 17.46 14.00 31.46
1% Bands 12.93 23.73 36.66
2% Bands 5.15 61.82 66.96
3% Bands 1.80 87.23 89.03
4% Bands 0.59 97.95 98.55
5% Bands 0.23 102.16 102.38
Monthly 43.34 0.00 43.34
Quarterly 25.57 7.55 33.12
Semi-annually 18.14 19.19 37.33

Costs (bps)

 
 

Exhibit A9: Performance Comparison - Hundred Assets
(5,000 Monte Carlo Simulations)

Rebalancing
Strategy Trading Sub-optimality Total

MvD Heuristic 7.55 4.91 12.46
0.25% Bands 24.75 2.13 26.88
0.50% Bands 12.95 8.88 21.82
0.75% bands 8.13 16.89 25.02
1% Bands 5.39 24.08 29.47
2% Bands 0.71 38.61 39.33
3% Bands 0.10 41.44 41.54
4% Bands 0.02 41.94 41.96
5% Bands 0.01 42.02 42.03
Monthly 39.75 0.00 39.75
Quarterly 23.46 3.08 26.54
Semi-annually 16.63 7.78 24.41

Costs (bps)
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1 A particularly intuitive illustration of dynamic programming is provided by Smith (1997).  He 
demonstrates how dynamic programming can be used to find a soul mate.   
2 The number of portfolios is given by the formula, N = (1/g) + n-1)! ÷ ((n-1)! · (1/g)!), where g equals 
granularity and n equals number of assets. 
3 There are a variety of optimization algorithms to minimize this cost function.  We use the fmincon 
function which is available in the optimization toolbox of MatLab. 
4 For example, finding the best coefficient d for a 100 asset case would take slightly more than 10 days 
without grid computing. 
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