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Abstract

A three-dimensional Euler solver employing Zalesak's multidimensional flux-limiter in a Flux-

Corrected Transport (FCT) algorithm has been developed and used for the analysis of flow phe-

nomena in a three-dimensional lobed mixer. In particular, results from the computed flow in a

subsonic low penetration mixer, a supersonic low penetration mixer, a subsonic high penetration

mixer and a supersonic high penetration mixer are used to investigate the effects of compressibility

and lobe geometry on the generation of streamwise vorticity and the subsequent downstream evo-

lution of the vortex sheet. The main results of this work are: (1) over the range of Mach numbers

examined (M < 2.0) compressibility has only a marginal effect on the generation and evolution of

the vortex sheet, (2) the dependence of the secondary circulation on the geometry can be estimated

through the use of the simple scaling law developed by Barber, Paterson and Skebe in [3], and

(3) the vortex sheet shed from the mixer lobe trailing edge exhibits a tendency to roll-up into a

discrete, approximately circular, vortical region.
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Chapter 1

Introduction

In two-dimensional shear layers, the dominant component of the vorticity vector is normal tc

the velocity field. Three-dimensionality in these types of mixing layers is not a key feature of the

flow and takes a long time to develop [1,39]. The basic mechanism by which mixing is achieved

is through the large scale fluid motions associated with the Kelvin-Helmholtz instability and the

subsequent nonlinear rollup. The only parameters that can be used to alter the mixing properties

of the shear layer are related to the velocity difference (through the factor (V1 - V2)/(V 2 + V1)),

the convective Mach number, M, = (VI - V2)/2a (for equal soundspeeds) and, if two different

fluids are used, the density ratio, (P2/P1) and (72/71). Available experimental data and theoretical

analyses [47,37] of the compressible two-dimensional shear layer, however, have demonstrated that

the growth rate of the Kelvin-Helmholtz instability decreases rapidly above a convective Mach

number of about 0.7 or so. Because of this, it may be difficult to obtain efficient molecular mixing

of fuel and air, for example, at the supersonic Mach numbers found in a scramjet.

The purpose of lobed mixers (of which a typical geometry is shown in Figure 1.1) is to intro-

duce strong streamwise vorticity into the shear layer so that the flow becomes inherently three-

dimensional. The production of streamwise vorticity is achieved in a fashion analogous to its

generation by a wing of finite length. As a result of the transverse penetration of the lobed mixer

into the stream, the mixer lobes have a pressure difference across them and thus an associated

bound vorticity. Due to the spanwise variations of the geometry, the loading and bound vorticity

strength also vary in the spanwise direction, so that streamwise vortex lines, emanating from the

trailing edge, must occur. Thus the lobed mixer can be viewed as the periodic juxtapositioning

of a wing and an identical inverted wing. In a flow configuration where the stream on one side

of the lobed mixer has a total pressure that is different from that on the other side, the resulting



downstream shear layer will consist of streamwise vorticity associated with the three-dimensionality

of the mixer and spanwise vorticity associated with the variation in total pressure. The strength

and distribution of the streamwise vorticity are parameters that can be used to alter the mixing

properties of the three-dimensional shear layer in addition to the two-dimensional shear layer pa-

rameters mentioned above. Because of this, the three-dimensional shear layers generated by lobed

mixers are very different from the conventional two-dimensional shear layer.

Lobed mixers are in widespread usage in aircraft engines where one of the initial applications

was for jet noise reduction. As shown for the turbofan engine in Figure 1.2, the streamwise vorticity

generated by the mixer serves to mix the core and bypass airstreams such that lower effective jet

velocity and shear layer intensity result. Hence an accompanying noise reduction is achieved. Lobed

mixers have also been used to mix the exhaust gases from turbojet engines with the freestream

atmospheric air. This also results in reduced noise level. In addition, if the stagnation enthalpies of

the core and bypass streams are significantly different (whch is usually the case in turbofan engines),

the mixer configuration shown in Figure 1.1 can result in thrust augmentation [2] and hence lower

specific fuel consumption. There is reason to believe that the streamwise vorticity enhanced mixing

observed at low Mach numbers will also be found in supersonic three-dimensional shear layers. The

reasoning behind this argument is that even though flow in the streamwise direction is supersonic,

the cross-stream flow is subsonic and compressibility effects may be small. The potential of lobed

mixers for ejector pumping systems and as a means of improving airfoil stall margins and lift-to-

drag ratios are also being investigated. Thus it is of engineering significance to develop the scientific

basis for the design of optimum mixer configurations, e.g. one that produces a given mixing in the

shortest length/time or maximum mixing in a given length/time, with minimum losses.

Previous research efforts include experimental investigations that established mixing is domi-

nated by the secondary flow generated by the lobed mixer [4] and pinpointed the inviscid mech-

anisms that create the secondary fiowfield [3]. However, in the latter case, measurements were



limited to downstream of the trailing edge with flow visualization being used on the surface of the

lobed mixer. The role of the lobed mixer in mixing supersonic flow jets has also been examined

[6]. Numerical investigations have been carried out for flow downstream of the lobed mixer [7,5]

but these relied on experimental or other data for use as the inlet boundary conditions and the

potential interaction between lobed mixer and downstream mixing duct was not modelled. Re-

cently numerical investigations have been reported that generate solutions for the entire flowfield

[8,9]. The first approach uses a full Navier-Stokes solver and the geometry corresponds to a specific

high bypass-ratio turbofan engine. The second approach uses the two-equation x - E eddy viscosity

turbulence model in the incompressible elliptic equations of fluid flow and the geometry, again,

corresponds to a turbofan engine.

The research issues that need to be addressed before one can begin to develop the engineering

and scientific basis for the design of an optimum mixer are:

(1) the extent to which three-dimensionality plays a role in the performance of lobed mixers

as a mixing and thrust augmentation device in a propulsion system

(2) the roles of streamwise and spanwise vorticity in a three-dimensional shear layer

(3) the effects of compressibility

(4) the dependence of the mixing on the trailing edge vorticity field

(5) the effects of the different geometrical parameters such as amplitude-to-wavelength ra-

tio, a(z, z)/A, and mixer length L on establishing this vorticity field.

One objective of the present work was to develop a CFD tool capable of generating an accurate

solution of the three-dimensional Euler equations for the flow in the entire domain, both around the

lobed mixer and in the downstream mixing duct and over the subsonic, transonic and supersonic

Mach number ranges. With the aid of this CFD tool, the generation of streamwise vorticity by the



lobed mixer is evaluated and the effects of compressibility on the mixing parameters are assessed. To

this end, a Flux-Corrected Transoort (FCT) code using Zalesak's multidimensional flux limiter (see

Section 2.5) was developed for use with three-dimensional numerical grids with general curvilinear

coordinates. To the author's knowledge, it is the first implementation of Zalesak's limiter in three-

dimensional curvilinear coordinates. This algorithm can handle different geometries and is capable

of modelling flows with total pressure variation at inflow, although time limitations precluded the

investigation of these types of flows.

The development of the numerical algorithm is the subject of Chapter Two. Two-dimensional

numerical solutions for standard test cases (which capture most of the flow phenomena to be

expected in the three-dimensional case) are presented in Chapter Three. Full-, three-dimensional

solutions for two different lobed mixers in subsonic and supersonic freestreams are presented in

Chapter Four. Chapter Five emphasises the conclusions of the investigation while the subject of

Chapter Six is recommendations for future work.



Figure 1.1: Typical lobed mixer

Figure 1.2: Lobed mixer as found in a turbofan



Chapter 2

Computational Algorithm

In this chapter, the governing equations for an inviscid flow are introduced, along with their

three-dimensional finite-volume discretized form. Two algorithms for their solution are presented.

One is suitable for applications in which a general orthogonal numerical grid (such as Cartesian or

Cylindrical Polar) can be used. The other has no orthogonality restriction and can be used with

any curvilinear grid as long as the grid is structured. Both use the principle of Flux-Corrected

Transport [17,18,19,21]. The first (which will be referred to henceforth as Boris-Book FCT) was

developed by Boris and Book and has undergone extensive validation [17,18,19,26,27],etc. The

second algorithm (which will be referred to henceforth as FVFCT (Finite Volume Flux-Corrected

Transport) utilizes the principles of Zalesak's multidimensional flux limiter [21] and was developed

by the author. It is the first finite volume implementation of FCT in general curvilinear coordinates

that the author is aware of.

2.1 Finite Volume Discretization of the Euler Equations

The Euler equations in integral form are (from Conservation of Mass, Momentum and Energy)

f• wdV + w. adS + (es,f,,g) .AdS = 0 (2.1)

where,
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(2.3)

(2.4)

and Et is the total energy per unit volume

Et = e+ 1p(v2 + v2 + v2) (2.5)

Assuming a calorically perfect gas, the internal energy is given by

c = pcvT =- T= -- 1
(2.6)

which closes the system. To put the Euler equations in conservation law form we first write them

as

Ta fwdV + (e,f,g) -IdS = 0 (2.7)

where,

Using the Divergence

conservation law form

pvz

2

pvz

(Et + P)v,

Theorem and the

pvy

PVYVZ

=1 pt 2

PVyVz
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fact that V is an

pvz

pezrz I,-

g p Ivu 128

pvZ

(Et + P)v,

arbitrary volume we get the familiar

8w 8e 8f ag
09t 1=0x (2.9)

Spatial discretization is performed using a conservative finite-volume method. This allows

shocks to be "captured" without special treatment in the neighbourhood of discontinuities. This is

possible because the finite-volume form discretizes the integral form of the Euler equations rather

ii=(n., ny) nz)

vV (vzZ~ Zy~vz)

rn



than the differential form. The integral form is applicable everywhere while the differential form is

not valid in the neighbourhood of discontinuities.

The spatial discretization of Equation (2.1) based on the finite volume method reduces to a

system of ordinary differential equations in the flow variables at each cell centre of the numerical

grid. This numerical grid consists of a number of hexahedral cells each of which forms its own

control volume around which the semi-discretized form of Equation (2.1) must be satisfied. Flow

variables are defined at cell centers (i, j, k) from which the face values can be found by averaging

the corresponding adjacent cell center values

1
Pi+4,,k = "+(Pij,k + Pi+1,j,k) (2.10)

(Zalesak [25] has proposed a method for increasing the spatial order of accuracy by including

more cell center values in the equation for Pi+•,ik but for nonuniform three-dimensional grids,

the complexities of the formulation are prohibitive and this method was not used.) As mentioned

previously, the semi-discrete finite volume form is then a system of ordinary differential equations

of the form

dw 1 6
E= (e, f , g)face * Sface (2.11)

Ft Vk face=1

or
dw 1 6

dt V.ifk a (Vace• W)ace + (es,f,g.)face • .face)ISfaceI (2.12)
face'1

where face = 1 represents the face located at (i - ½,j, k), face = 2 that located at (i + 4,j, k),

face = 3 that located at (i,j- 1, k), etc., the unit normals are always taken to be directed outwards

and
ace - ace * face (2.13)

The normal vector A is found from

A Sface



and the area vector S is found from the cross product of the displacement vectors with endpoints

at the midpoints of each side of the face (see Figure 2.1)

Sface = s x 82 (2.15)

si = (r + rd - r - r) (2.16)

= (r + r - r-r) (2.17)

where r' is the position vector of the node located at a. The volume of cell (ij,k) is found from

the vector triple product of the displacement vectors with endpoints at the midpoint of each face

(see Figure 2.2)

V= (t~ x t) t (2.18)

(2.19)- 1tl -" (r? + r-• + rt + r) - r" - r] - rl - rl) (2.19)

t2=--(r÷rc +rdrh -r-r-rb -rl) (2.20)

1
t- = -(rc + rb + rf + rý - rd - rt - r - rh) (2.21)

As a consistency check, it is instructive to perform the spatial discretization through the ap-

plication of a generalized transformation of the Euler equations from the physical domain (x, y, z)

to the computational domain (e, rq, ). The semi-discrete form becomes (reference [28] shows the

details of the manipulations)

dw 1

dt J (((e, f,g) (Jz, JE, JCz)) + ((e,f,g) -(JOz, J+Y,Jt1,)), +

((e, f, g) 9 (J)- , Ja, Jz)) ) (2.22)

where J is the Jacobian and e., rj7, s, etc. are the metrics of the transformation. It can be easily

shown that the discretized form of this equation is identical to the finite volume discretization,

Equation (2.12) and that the correspondences between the finite volume and computational space

coordinates discretizations are

Vi,jk - J ifk (2.23)



si+rik +" J(eZ, eV, •Z)i+,y,k (2.24)

Si + .k + J(y,1Y) 2i, ,k (2.25)

Sijk+-L _+ JUZ4V)Mij(2.26)

An important property of the area discretization given in Equation (2.15) is that the sum of

any component of S around all six faces of a hexahedral cell is equal to zero. This means that

uniform flow stays uniform to within roundoff for even the most distorted numerical grids and that

grid dependent errors are eliminated.

2.2 Flux-Corrected Transport

For the numerical solution of the Euler equations, one must account for the finite speed of

propagation of pressure waves and the possibile formation of discontinuities (e.g. shocks, vortex

sheets) arising as the flow field evolves with time. (Discontinuities may also occur in incompressible

inviscid flows in the form of density interfaces as well as vortex sheets which are often found in the

wakes shed off sharp trailing edged bodies.) Unless appropriately treated, the resulting numerical

solution can overshoot and undershoot in the neighbourhood of the discontinuity. This is the

well-known Gibbs phenomenon and is associated with approximating a discontinuous function by a

smooth continuous function. The spurious ripples associated with the phenomenon can contaminate

the solution leading to numerical instability. Increasing resolution in the neighbourhood of the

discontinuity does not help because the ripples simply move closer to the discontinuity. Oscillations

can also result from numerical dispersion. These arise because, at the discontinuity, the third

derivative can be large, while away from the discontinuity. the solution is smooth so that behind

the discontinuity there is an algebraically decaying oscillation.

Invariably, non-physical artificial viscosity is added to the algorithm to prevent the occurence

of spurious oscillations in the vicinity of the discontinuity. This is usually in the form of second



or fourth order damping. Although this can successfully deal with the ripples around shocks, it

also introduces a new error to the rest of the solution. (For the particular problem being discussed

in this thesis (i.e., mixing layers with streamwise vorticity) it will also cause the rapid decay of

the vortex sheet as it leaves the trailing edge of the mixer.) Characteristic-based schemes for the

Euler equations have been reported [10,11,12,13] that avoid the need to impose artificial viscosity.

However, these algorithms are still in the early stages of development and much work still has to

be done before robustness can be claimed.

FCT deals with the problem of oscillations near discontinuities by mathematically enforcing

monotonicity in the numerical solution. It does this by ensuring that no non-physical extrema

develop in the solution. This is achieved by computing the net transportive flux as a nonlinearly

weighted average of a flux calculated using a low order (and highly diffusive) scheme and a flux

calculated using a high order scheme. The averaging is such that the high order flux is weighted as

highly as possible without creating overshoots or undershoots. The high order scheme tends to dom-

inate in smooth regions of the flowfield while the low order method dominates in the neighbourhood

of large gradients. This weighting procedure is known as "flux-correction" or "flux-limiting".

Sod [14] presented an elucidating interpretation of the original FCT algorithm due to Boris and

Book [17]. He considered a first order diffusive difference scheme which can be represented by

Wt + f(w). = At[g(w, At/AX)w,,]z (2.27)

where g(w, At/Ax) is the coefficient of the diffusion term. FCT can then be considered to be a

modification of Equation (2.27) represented by

wt + f(w)2 = At[(g(w, At/Ax) - r(w, At/Ax))wels (2.28)

The antidiffusion term is introduced by operator splitting. The first step consists of solving Equa-

tion (2.27) to give the "transported-and-diffused" solution.

Id = Lwi (2.29)



The antidiffusion step then gives the state vector at the next time level

wn = Aw td = ALwu4 (2.30)

Sod points out that

g(w, At/Az) - r(w, At/Az) 0 (2.31)

is required for stability. The fluxes used in the antidiffusion step are corrected to ensure that

there is no extrema creation or accentuation. We shall now proceed to present the details of the

Boris-Book FCT algorithm.

2.3 One-Dimensional Boris-Book FCT

The theory of Flux-corrected transport (FCT) was initially developed to solve one dimensional

transport equations (such as the one-dimensional continuity equation) by Boris and Book [17],

[18], [19] and was later extended to solve multidimensional problems through the use of direc-

tional timestep-splitting [29]. However, severe limitations have been found in the use of directional

timestep splitting approach for the computation of three-dimensional flowfields using nonorthogo-

nal grids. This will be dealt with in more detail later in this section. As the original Boris-Book

FCT is used in two-dimensional shear layer calculations and for diagnostic purposes, the original

FCT algorithm is described in some detail here. In addition, a complete understanding of the in-

tricacies of Boris-Book FCT is helpful before embarking on an effort of developing an FCT scheme

for three-dimensional shear layer calculations. Because FCT can be loosely defined as the means

of creating a weighted average of a low order and a high order scheme, it can be implemented

in various ways. This can be seen in its early development [20]. Of the Boris-Book algorithms,

Phoenical FCT appears to be optimal in terms of amplitude and phase errors in various test cases.

In addition it can be implemented with relative ease. It was therefore logical to choose Phoenical

FCT with directional timestep-splitting applications for two-dimensional shear layer calculations.



Phoenical FCT consists of the following sequential stages (an orthogonal grid is assumed and

w represents any one of the scalar components that together comprise the state vector w for the

Euler equations)

(1) Compute the diffusive fluxes

F+ = v i+1'Vi.(w421 - Wi) (2.32)

(2) Compute the transported solution

w = w (vi+ w + Si+ - vi-. w Si- + Source+. - Source - 1) (2.33)
i+ 2 2 2 2 2 2

where, for the continuity equation

Sourcei+i = 0

for the momentum equation

Sourcei+L = Pi+ S,,

for the energy equation

Sourcei+ . + +I 6s+. 1

(3) Compute the antidiffusive fluxes

A "= i i+V+ (w4, - Wi) (2.34)

(4) Compute the "transported-and-diffused" solution

wi = W + (F - F ) (2.35)=j + -(F

(5) Limit the antidiffusive fluxes

ad1i+V), si+ d ))) (2.36)
X+= 8 .+ima(O, min(IFf +si+i(wtd (d -(2.36)



where

Ssi+ = sign(lwf 1 - wd)

(6) Apply the limited antidiffusive fluxes

n+1 td 1w = w (A 1 - A ) (2.37)

For Phoenical FCT, Boris and Book [20] chose as diffusion and antidiffusion coefficients, respectively

1 1 2 (2.38)
= +

1 1
1i+= -6 6+1 (2.39)

where for a uniform grid

2= 1 (2.40)
2 AX

and for a nonuniform grid
+ + S,+ I~At

Si+ a(2.41)

which reduce the relative phase errors in convection on a locally uniform grid to fourth order. These

values will be used throughout this research for applications involving one-dimensional Boris-Book

FCT with timestep splitting.

There are several features of the above algorithm that warrant remark. To ensure monotonicity,

the values assigned to the diffusion coefficients would necessarily cause the provisional values wtd

to be strongly diffused. Secondly, the diffusive and antidiffusive fluxes are zeroth order so that

diffusion and antidiffusion are no longer proportional to for nonuniform grids. Consequently,

the damping decreases in fine regions of the grid.

It should be noted that step (5) ensures that the limited antidiffusive fluxes will not create new

extrema nor accentuate existing ones in the "transported-and-diffused" solution wid. This can be

illustrated by studying the eight possible configurations of wtd in the vicinity of a positive Ai+L.



Fig 2.3 shows the normal situation in which Ai+. has the same sign as the local gradient of wud

and will therefore tend to steepen the gradient (this is in contrast to a diffusive flux which would

reduce the gradient). Examination of equation (2.36) reveals that when either (w4d - wdl) or

(wu42 - wf+l) has a sign opposite to Ai+g a negative quantity will appear inside the parenthesis to

nullify Ai+ . In such a situation the high order flux would have been given zero weighting, which

is in line with the intentions of the limiter since the antidiffusive flux would have accentuated the

already existing extrema in cases (2), (3) and (4) in Fig 2.3. In case (1), there is no extremum

in the wtd profile, so equation (2.36) will just limit the antidiffusive flux, (Ai+ ) to prevent the

formation of a new extremum; this is so since Ai+i will not be selected from the inner parenthesis

if Ai+4 exceeds either Vi+I(wId 2 - wfd) or V,((wd - wd_).

Cases (5)-(8) in Fig 2.3 are the same as (1)-(4) except that wt l, - wtd has the opposite sign.

(Therefore the antidiffusive flux has actually become a diffusive flux.) Since w~fl - wt d does not

enter into the equation (2.36) the results are exactly the same. Zalesak explains that cases (5)-(8)

arise very rarely and that when they do, the errors introduced by (2.36) represent the correct action

to take (since additional diffusion of the the wtd profile is undesirable).

As mentioned earlier, one-dimensional Boris-Book FCT can be used to construct a multidimen-

sional algorithm through the use of directional timestep splitting in each coordinate direction. This

is straightforward when an orthogonal grid is used. The flux terms on the right-hand-side of (2.10)

are separated into those representing fluxes in the same computational space direction (C, r7,0).

Sequence (1)-(6) is then carried out sequentially for each direction using the updated values of Wud

for each step. Hence, the time integration of the Euler Equations would take the following form:-

wt+1 = L (At)L, (At)L, (At)w~n (2.42)

where Le, L,, Lý represent the operations that carry out steps (1) through (6) above in the compu-

tational direction indicated in the subscript. For a uniform grid, the temporal order of accuracy can

be increased by making the sequence of operations symmetric [301. One of the many permutations



is:-

+ At At At At
w,' = L(( )(Ln( )L,(At)L4( )(L,(- )  (243)

The main drawback of directional timestep splitting is that problems develop when the algorithm

is used with nonorthogonal curvilinear coordinates. The source of the problem can be readily

identified by applying the scheme to the computation of uniform flow through a channel with

straight walls but using a non-uniform grid. The resulting numerical solution indicates that the

flow does not stay uniform. Deviations from uniform flow increase with the number of iterations

until they reached an asymptotic steady state, with the largest deviation occuring in the most

distorted cells. This scheme clearly yields an erroneous solution. One can perceive how this

problem arises by examining the conservation of momentum equation for the C-direction stage of

the timestep splitting sequence for uniform flow in the x-direction

At
z =k)i,) =,k -- Vi,j,k

(peV + P)n(Sz. + S+ ) (2.44)

For there to be no change in (pvz)ij,k we require

S = -S+,j,k (2.45)

and it can be shown that this is so for cartesian, spherical polar and cylindrical polar coordinates;

however it is not necessarily true for curvilinear coordinates. As a result, errors are introduced.

These errors are compounded by the fact that the diffusion-antidiffusion process then acts on the

intermediate flow variables which have been affected by these erroneous, grid-dependent fluxes.

For this reason we recommend the use of directional timestep splitting only to applications with

orthogonal grids.

This appears to be an appropriate point to comment on the advantages of using a nonorthogonal,

curvilinear, numerical grid. As stated earlier, the main objective of this research is to devise a

computational tool that can generate an accurate numerical solution to the Euler equations in the



physical domain of a convoluted lobed mixer and in the downstream mixing duct. The complex

topography of the lobed mixer does not permit the use of a Cartesian grid that conforms naturally

to the physical boundaries. Therefore, a Cartesian grid would entail the use of rather complicated

two-dimensional interpolation techniques. In addition to these complexities, interpolation provides

an additional source of error at the locations that provide the dominant influence on the character of

the solution [31]. These inaccuracies are worst when the boundary has high curvature or when large

gradients are present in the vicinity of the boundary. Both of these are the case for the flowfield of

the lobed mixer. Furthermore, with a Cartesian grid it is difficult to pack grid points into regions

where the largest gradients exist (such as at the trailing edge of the lobed mixer and in the mixing

layer as it evolves downstream) without also packing grid points needlessly into regions where the

high resolution is not required. These difficulties are eliminated when a nonorthogonal, body-

aligned, curvilinear grid can be generated with, for example, a scheme that calculates curvilinear

coordinates as the solution of an elliptic partial differential system. Hence a body-aligned grid was

chosen, and it thus became necessary to develop an Euler solver that does not resort to directional

timestep-splitting.

2.4 Zalesak's Extension of Boris-Book FCT to Multidirnensions

Zalesak [21] summarized the theory of FCT in a simple generalized format and presented a new

algorithm for implementing Boris-Book FCT in multidimensions without any directional timestep

splitting. This particular algorithm is computationally somewhat more expensive; in spite of this,

its use for simulating flow in a domain with a general curvilinear grid is preferable to the use of

directional timestep-splitting. The three-dimensional Euler equations, with finite volume spatial

discretization and simple forward time temporal discretization are

wn,i,k = ,, Vnk - + - • + Gik+. - G .n-) (2.46)
, S V +21,k 3 12



where

I+,i,.k = ((e, f,g) . ),+,ikt
iF+ = ((e, f,g) ",

= ik+ - ((e• ) 19 ,k+

For two dimensions, Vij, k becomes an area and the projected arear., (S., Su, S,) become projected

distances. The FCT algorithm then proceeds as follows:-

(1) Compute the low order fluxes, E ,, FL GL , by a low order, monotonicity-i+a,j,k' ij+a,k' i,j,k+br

preserving scheme;

(2) Compute the high order fluxes, EH F+H, Gfi,k+ by a high order scheme;

(3) Define the antidiffusive fluxes

Ai+ = E,+, = j,k - EL k (2.47)

A ,k = Ei,+ ,k - Eii+, k (2.48)

Ai,,+= E, , - EEik+ (2.49)

(4) Compute the low order time-advanced solution

W-,Ek = -- •,j+,k,-) E - ,kF ,k+ +Gk+ - ) (2.50)s-'',$,k k ,3 +.,k 1,- , S 2,

(5) Limit the antidiffusive fluxes

Ac+,j,k = C Ai+ ,i,k (2.51)
2  2j 2

Ai+,I = Ci,i+_.,kAij+ ,k  (2.52)

Aik+I = Ci,i,k+_. Ai,j,k+ (2.53)



with

O <C,+,i,k

o < Cj+ik < 1
0 < •,i+• < 1

(6) Apply the limited antidiffusive fluxes

, = witd-k (Ai -A-~J,,k+A+ -,k Ai2 ,k+ i,,k+~ i,k-.) (2.54)

The critical step in this sequence is step (5). Zalesak suggested that step(5) may just consist of the

original Boris-Book limiter (see Equation (2.36)) acting on Ai+b,j,k, Ai,j+L,kAi,j,k+A separately

with all corrected antidiffusive fluxes being applied simultaneously in step (6). This approach does

away with the need for using directional timestep splitting. However this procedure may result in a

quite diffusive algorithm since the Boris-Book limiter looks in each coordinate direction separately

for extrema. Even though a quantity may be an extremum with respect to one coordinate direction,

it may not be an extremum with respect to all coordinate directions. Therefore, the Boris-Book

limiter will limit antidiffusive fluxes needlessly in some cases.

2.5 Zalesak's Fully Multidimensional Flux Limiter

Zalesak proposed an implementation of step (5) above that takes into account all fluxes acting

towards or away from a cell (ij,k) and searches for extrema in all coordinate directions. It should

be pointed out initially that the purpose of the limiter is to ensure that the corrected antidiffusive

fluxes,Ae i+ ,k ,,k' I ,k+ acting in concert shall not cause

,+n+ 1 A _A +_ AA_ AC
wn,, k = wi,jktd- (A +L -,i,k + A - Ac j ,k + Ai,k+ X ,i,k-)



to exceed some maximum value w",' nor fall below some minimum value w!," The method

for the determination of wmaz and win will be explained subsequently. The process is divided

into two stages: the first limits the antidiffusive fluxes to ensure that no maxima are created nor

accentuated while the second limits those provisionally corrected antidiffusive fluxes so that no

minima are created nor accentuated. The algorithm proceeds as follows:-

(1) Calculate the sum of all antidiffusive fluxes into cell (ij,k). ( Negative contributions

due to fluxes directed away from the cell should not be included in this sum since they

may be cancelled by the flux-correction process in an adjacent cell and a worst case

scenario should be assumed.)

P+,k = maz(0, A i-•,k) - min(O, Ai+,j,k) +

maz(O, Ai,i- ,k) - min(O, Ai,+ k) +

maz(O, Ai,j,k- I) - min(O, Ai,j,k+- )  (2.55)

(2) Calculate the maximum allowable increase in mass (or momentum, or energy) in cell

(ij,k)

=+ ma- td,i,k ,,k - Wi,i,k)Vi•,k (2.56)

(3) Calculate the least-upper-bound on the fraction that must multiply all antidiffusive

fluxes into cell (ij,k) to guarantee no overshoot in wwn+

min(1, /+ Q ,k P+. > 0Rid, = (2.57)
1 P+. =0

,jk -

(4) Limit the fluxes so that no maxima are created nor accentuated

A Rij,kAi+ 1,,k Ai+ ,i,k < 0

Ai+R,i,k A 2, (2.58)
RI+l ,,kAi+-,fik Ai+*,ik>k



(5) Calculate the sum of all antidiffusive fluxes away from cell (ij,k).

P'ik = maz(O, Ai+.,k)

maz(0, Aij+,k)

maz(O, Ai,jk+i)

(6) Calculate the maximum allowable increase in

(ij,k)

= (,k mi-- • •j,k - Wid>ki, ,k

- min(0, Ai-_ *k) +

- min(O, Ai,d- .L) +

- min(O, Ai,j,k-) (2.59)

mass (or momentum, or energy) in cell

(2.60)

(7) Calculate the least-upper-bound on the fraction that must multiply all antidiffusive

fluxes away from cell (ij,k) to guarantee no undershoot in wi,k

= {in(l,Q-,Tk/F k)
P+' >0

t,j,k (2.61)

(8) Limit the fluxes so that no maxima are created nor accentuated

+ I
A R i+,Cj,kR+ A

Ri+1,j, ,k i+ - ,k

Following the example of the Boris-Book limiter, Zalesak

flux if it has a sign opposite to the gradient in w t d :-

Ai+ =,k- 0 if

and either

or

The following choice for w•i,k and i,i, was

Zalesak's limiter.

A,> 0

Ai+ j,k < 0

(2.62)

also proposes to cancel the antidiffusive

Ai , 1,,ktd tdk) < 0

Ai+.,k(W2 + 2,,k - 1,,k) < 0 (2.63)

Ai+,,k(wi,,k - 1,,k) < 0

used for most of the calculations carried out using

wi,,k - ma(Z j,k i ,,k ) wi (2.64)



ma. =ma(w,, G + a a ,k-1)
Wi,,k - ,i,k' Wj1 1j,k I W k Wi, l,k j,-l ,k ,j, w ,k+l j,k1)

(2.65)

-- = min ,k , w,k) (2.66)

mit =min(wi b b b b b b (2.67)
w -, m(wkWi'+,,kM, w-,k, iwj+1,k i j-1,k ,W i,k+l , i,k-l) (2.67)

The Zalesak limiter is less likely to correct the antidiffusive fluxes than the Boris-Book limiter

because it will check in all three computational dimensions for a maximum and a minimum. This

causes the allowable variation in w n+ to be larger and so the antidiffusive fluxes will not be limited

as much. In other words, Zalesak's limiter tends to give a higher weighting to the high order fluxes

than Boris' limiter. Nevertheless, in some cases, such as when the quantity of interest is being

convected in a direction perpendicular to a large gradient in that quantity, (for example, a contact

discontinuity or a vortex sheet), it is desirable to check each of the coordinate directions separately

as spurious ripples in the direction perpendicular to the gradient can arise. This is because the

flux limiter will not correct antidiffusive fluxes that produce values of wn + l that lie within the

bounds imposed by wm i n and wmaz. When the gradient is large in the direction perpendicular to

the direction of convection, the evaluation of wmin and wm"z is dominated by the presence of this

gradient. Hence, although a value of wn + l may constitute a violation of monotonicity with respect

to the direction perpendicular to the large gradient, the antidiffusive fluxes causing this violation of

monotonicity will pass through the multidimensional limiter uncorrected. This means that there is

essentially no flux correction in the perpendicular direction. In these cases, it would appear to be

preferable to use the Boris-Book limiter (but not with timestep splitting). However the flexibility

of Zalesak's limiter is such that it is possible to implement it in such a fashion that it will limit the

antidiffusive fluxes in each coordinate direction separately, in the same manner as the Boris-Book

limiter. It also has the added advantage of being capable of searching both wf, k and wfi,k for

extrema.



2.6 High Order Scheme

The high order scheme selected for use with the Zalesak limiter to calculate the high order

fluxes EH F + and Gi+ was the Leapfrog-Trapezoidal Method [32,33]. This is a

predictor/corrector type scheme in which the predictor step is leapfrog and the corrector step is

trapezoidal. The algorithm proceeds as follows. First, the leapfrog discretization of Equation (2.12)

gives the predicted state vector wi,j,k:-

i j - - SV,,k (E+ k S--~ , k F,J+ ,k -F,y-lk - ,,k+ - G , ,k- 1 )  (2.68)

with the fluxes evaluated as follows:

At
E _L (V +1),j,k J,k) Si+. ,i,k)(Wi+1,k + Wi,j,k) + Sources (2.69)

F•,i+, =-((i,4j+1,k +i,j,k)) SJ )( Wij+1,k + Wi,fk) + Sources (2.70)
At ,

-,k+ ((~,,k+1 + i,,k)- S•,k+ )(wi,i,k+1 + Wi,,k) + Sources (2.71)

The trapezoidal stage then corrects the leapfrog prediction to give the state vector at the next time

level wn+ with the following equation

w = w,,k -+,k + Gi,jk+ - G ) (2.72)
,,k i = wjk V- Vij+,k ' )- F*

where,

i ,k (Ei+1,,k + E + ,k) (2.73)

etc. and,

E' = E(w') . (2.74)

The advantages of the leapfrog-trapezoidal method are that it is conservative, virtually non-

dissipative (and stable when implemented with FCT) and it is computationally quite efficient.

Its temporal accuracy is 2nd order while the spatial accuracy is 2nd order for a uniform grid but

deteriorates to 1st order when the stretching between adjacent cells becomes large. One of the



drawbacks is that the leapfrog step requires the state vectors from two time levels, which increases

memory requirements. The scheme is bootstrapped by assuming that the state vector at the first

time level w ° is equal to the state vector at the previous time level, w - 1. Since we are interested in

steady state solutions attained after the initial conditions are convected out of the computational

domain, the inaccuracies associated with this approximation and with the guess for the initial state

vector w' will not significantly affect the final solution. For restarts, time levels from the previous

two time levels are stored to ensure a smooth continuation of the calculation.

The differential approximation to the discretized wave equation based on the leapfrog scheme

is

c(Ax)2  
c(___)_Wt + CZ C (EX 2  1(Az (9C4 - 10e2 + 1)wzzzzz (2.75)

6 120

where E is the CFL number as before. Some information can be extracted from this linearized case.

The leading term in the truncation error containr the odd derivative w... and so the solution will

exhibit predominantly dispersive errors. There are no even derivatives in the modified equation

so the linearized solution will have no dissipative error. This can be seen from the fact that the

amplification factors are identically equal to one

G = -V1 - e2sin2 3- iEsin (2.76)

where 8 = kmIz and kmis the wave number. The relative phase error is

d arctan(-e sin p/± (1i - C2 sin 2 ))()
(2.77)

This brings us to the main disadvantage of the leapfrog method, i.e., that two independent solu-

tions develop as the solution proceeds (since " does not depend on wk). Closely related to

this, there are two amplification factors for the scheme, as can be seen from Equation (2.76) and

Equation (2.77) where one is the amplification factor for the physical mode and the other is the

amplification factor for the computational mode. The magnitude of both is always identically equal



to one for the leapfrog method. This can be seen by examination of the above expression for the

amplification factors.

The complex amplification factor for the leapfrog-trapezoidal method is

G = (1 - (e sin, )2 - li sin/ ) ± (1 - (Esin )2 - ~iEsin)2 - 2iEsin/9) (2.78)

Grammeltvedt [33] shows that for the leapfrog-trapezoidal method, the computational mode is

suppressed while the physical mode still has an amplification factor of about one.

Some comments on the discretization of the flux terms in Equation (2.69) are in order. The

usual discretization of (wv), is

(wv)d = - (wi+1 vi+1 - vilwoi-l) (2.79)

Zalesak [22] suggests a discretization that improves the nonlinear stability properties of the scheme.

He suggests that the product wv be differenced by parts:-

(wV)d = (-Wi(vi+I - Vi-) + vi(wi+1 - wi- 1)) (2.80)

which is equivalent to the straightforward central differencing of

(wv)z = wvX + vwZ (2.81)

This type of differencing has been termed Zip differencing by Zalesak. The reason for the improved

stability properties can be seen by examining the truncation error for the usual finite difference

discretization

1 83 wv 1 5 wv
TE= .(- )6(Az)2 + ),(X)4 + O(Az) 6  (2.82)

and comparing it with that for the Zip differencing discretization

1 83v + -3W 1 ( Wa5V+ sW
TE = (W- + )(a + (5 + ) +O(Az) 6  (2.83)B az a. lz 8, ,,~120 09X ax (.83



The leading term in Equation (2.82) can be found to contain an even derivative in w since

83wv av 82v 8w 82 w av 8aw
w• + 3 + 3- +w-- (2.84)8z3 aX3 x 2093 (2.84)

This even derivative will contribute a destabilizing or dissipative effect depending on the sign of '

except in the trivial case when 3 = 0. The truncation error for for the Zip differencing discretization

contains no even derivatives and so will give rise to errors of only dispersive nature.

The problem with Zip differencing is that it is quite difficult to implement in finite volume

form since it requires the evaluation of metrics (or areas) at the cell centers. If we require the

metric discretizations to allow uniform flow modelled on an irregular grid to stay uniform to within

roundoff, it is not as straightforward as it might appear at first glance. In any case, the flux dis-

cretization used in FVFCT and expressed in Equation (2.69) is an average of the straightforward

(Equation (2.79)) and Zip (Equation (2.80)) discretizations. While it does still have even derivative

terms in its truncation error, it should have reduced inaccuracy associated with the even deriva-

tive in the truncation error than the straightforward discretization and the metric discretization

complications are avoided.

2.7 Low Order Scheme

The main requirement of the low order scheme is that it should be monotonicity-preserving. A

strongly dissipative term is included in the expression for the fluxes in accordance with the original

Boris-Book limiter. A caution is in order here. If the dissipation flux term is too large, instability

results. This can be verified by a simple Fourier analysis of the discretized diffusion equation. It is

shown in reference [28] that for a discretized diffusion equation of the form

wti + 1 = w" + r(w+ 1 - 2win + wi..1) (2.85)

The limiting value of r is given by

rmax= - (2.86)2ma



For two and three dimensions the stability requirement is even more restrictive: rmnax = and

rmax - 6

It was felt that another criterion should be that the low order scheme should be capable of

generating a valid solution of the Euler equations without the assistance of a high order scheme

and FCT. This criterion was also checked for the high order scheme and served as a good validation

of the fluxes produced by both schemes. Several schemes were tried for the low order method

including the donor-cell method [35] (a conservative form of the first order upwind method), the

Rusanov method [34],[24] and an Euler method with an added 2nd order dissipation term. The

finite difference equation for the donor-cell method is

w"+1 = w, - -1 (E.L, - E + F.+k - F. ý k +G,+ G.) (2.87)
wi,y, -,k Vi +2,,ik ,,+ ,- ,k syk+ - G ,k- )

with the fluxes given by,

At .-
E+,ik  i+ i ,k Si+L,,k((1 - + (1 + p, + ,j,k )wi+l,,k) + Sources (2.88)

-i+ -(j+, " S ,i+,k((1 - i+ , + + i ,k) i+k)+ Sources (2.89)
+ ,k t+=-- + +,k)++ Sources (2.89)

Si, k+Sj,(k+ 1 W-Ij,k+ i+)wij,k + (1 + ij,k+ -)W$1j,k+1) + Sources (2.90)

where

,,k = sign(('. )+1j,Ik) (2.91)

+,k = sign((v'- S)"+,k) (2.92)

,i,j,k+ = sign(( ,k+ (2.93)

With the Rusanov method the fluxes become

At
E+ j,k (( j,k(i sj,k i+1,f,k) -

v,(( •n • +i (Ci+1,j,k + cij,k),)) + So (2.94)
2(*- I)(X+1jk-W713-)) + Sources (2.94)



etc. where ci,j,k is the speed of sound and v12 1 is a dissipation coefficient chosen by the user. The

idea of this scheme is to make the dissipation coefficient proportional to the local CFL number.

The fluxes for the Euler method used included a conservative, zeroth order dissipation term:-

E n  + W n  W n  _ W n

E+•1 ,,k = At(( i•S)7+.,jk i ,k +.+l,,k) - v2Vi+4,i,k(W+,i,k - w'jk)) + Sources (2.95)

etc. The Donor-cell method has been found to be incapable of producing an acceptable solution

for the 2-D channel problem to be discussed in the next section. This could be a consequence of

the flip-flopping of the dissipative term in regions where the vertical component of velocity changes

sign.

The Rusanov and Euler methods on their own produce acceptable solutions to the 2-D channel

problem (see Chapter (3) for results of the Rusanov method). The Rusanov method appears to

produce better results without the aid of FCT because the scheme tends to apply reduced damping

at the majority of cells and a larger damping only where it is really needed (e.g., in the vicinity

of shocks). However, the Euler method, with its zeroth order damping term, produces a w'td

profile free of nonphysical extrema more reliably. For the calculation of flowfields associated with

threedimensional lobed mixer, the Euler scheme is used as the low order scheme for the FVFCT

algorithm, while for the 2-D channel flow problem, the Rusanov scheme is used.

2.8 Boundary Conditions

2.8.1 Farfield Boundary Conditions

Characteristic-based boundary conditions were used at the inflow and outflow boundaries for

most of the calculations carried out in this research. For subsonic flow, the boundary conditions at

inflow are found by specifying the four characteristic variables, entropy, s, the tangential velocity

components, vy and v, and the Riemann invariant corresponding to downstream running acoustic

waves, r + . The fifth characteristic variable r- is extrapolated from the interior of the computational



domain. This then produces a closed system at the boundary which can then be solved to give the

following set of equations from which the state vector can be deduced.

v=I (vX 1, +2v, + 2_(1- - cI)) (2.96)2 -1 -1
_-1 2

Cb = (V_ v, + + -+ (1 + ci)) (2.97)
4 "-1

Pb = C7-1 (2.98)

sty = go. (2.99)

vZb = vsZ_ (2.100)

1 + -,1 1 + c + ..
PbA- ( (v... + V,+ ) + )2-1 (2.101)

74 2

At exit, four characteristic variables (s, vy, v., r+) are extrapolated from the interior while the

back pressure is specified. This results in the following set of equations for the boundary state

vector.

P = Pb (2.102)

Pb
Pb = PI(-P) (2.103)

P,

vyb = vyl (2.104)

VZa = v, (2.105)

v,, = v, + - (cI - - ) (2.106)
- 1 V Pb

However, for the two-dimensional shear layer calculations to be presented in the next chapter, a

different set of boundary conditions are imposed. These boundary conditions are intended to allow

feedback between the fluid just entering the computational domain, and the disturbances created

downstream by the Kelvin-Helmholtz rollup [26]. This issue will be discussed further in the next

chapter. In these cases, the inflow density and velocity are specified and a zero slope condition

on the pressure at the inflow boundary is used to derive the energy. For outflow, the density and



velocity are extrapolated from the interior while the pressure is found by assuming that pressure

relaxes to some ambient value Pa0  at z = oo. Interpolation can then be performed between the

boundary cell and z = oo in the variable 1- where z, is the x-location of the tip of the splitter

plate. This results in the following equation for P.

PO = PI + -Z I(Pamb -PI) (2.107)
X9 - X8

where subscripts g, a and I denote the guard cell, the cell at the tip of the splitter plate and the cell

adjacent to the outflow boundary, respectively. (The guard cell is a cell just outside the numerical

domain that is used as a dummy for calculating values at the cell faces at each boundary.)

2.8.2 Solid Body Boundary Conditions

Noting that the normal velocity at solid surfaces vanishes, and dropping terms of higher or-

der terms, the boundary conditions at the wall are derived from solving the component of the

momentum equation in the direction normal to the streamsurface on the wall, assuming zero nor-

mal velocity and dropping terms of order higher than first order [36]. This is accomplished by

forming the inner product of the momentum equation with ni followed by the imposition of the

above-mentioned boundary conditions on velocity. For steady flow, this leads to the following

equation.

pV. (. V)A = A .VP (2.108)

Application of a generalized transformation yields the following equation (for a body-aligned grid).

1

= + 2 (-Pf(C1 z+ CO ++ czIz) - PUzlS + 'v +zW1z) +

P (Czv2 + + 2 CzVz + czyV Vy + CVV + CycVv+)) (2.109)
V1j +1721 + y12 z

where

= n, On, 8n(
CZ = 'on + r1z-- + z, (2.110)

0aý C117 9



CY, = ny + y,, + n, (2.111)

an, On, 8n,en = ,,,.a. + 17t + +-' (2.112)c. =~~' ta. + a, any
,n,, + n n, 8ny an, aon,

C8C", = + + 1 + -- +'7. +-7.- (2.113)

SOn, On, On, an, an, an,
C= ----" "+ r/8n + 8-n + e.- + 1.7 +cn z- (2.114)

+ ,, = n.+a a8, , cn an,, a +, az
Y = +  r/ + " + 4" + 9 +  1 7 (2.115)

Note that the coefficients C,, Cyy, C,,, Cy,, Cz,, Cv, need only be calculated once in a preprocessing

stage of the calculation. It is worth noting that these could safely be set to zero in situations where

the radius of curvature is small (such as the calculation of the flow over Ni's bump (see Chapter

3)). However, in general this not so (e.g. the three-dimensional lobed mixer calculations (Chapter

4)) and they must be included in the calculations.
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Chapter 3

Development of the Numerical Algorithm

for the Implementation of FCT

This chapter describes the development of both the timestep-splitting Euler solver, LCPFCT

and the fully multidimensional FCT Euler solver to which we have given the acronym FVFCT.

Features of the low order and high order schemes discussed in Chapter 2 will be further elucidated

here.

Before applying the numerical scheme to the computational study of three-dimensional flowfields

associated with the lobed mixer, the numerical scheme (and the computer code that implements

the scheme) is used to compute flow in situations where reliable and accurate results exist so that

appropriate comparisons can be made to ensure the correctness and accuracy of the scheme. In

general, a good measure of the quality of a numerical scheme can be estimated by its ability to

correctly predict

(1) shock location and strength

(2) preservation of entropy or stagnation pressure for an inviscid, isentropic situation

(3) circulation variation in accordance with Kelvin's Theorem

(4) vorticity distribution (i.e. vortex sheet location and strength as well as its subsequent

evolution)

Thus a way to accomplish this assessment would be to use the numerical scheme to compute

(i) the two-dimensional flow through a channel with a circular arc for flowfields ranging

from subsonic through transonic to supersonic regimes



(ii) the Kelvin-Helmholtz instability in a two-dimensional shear layer

Simulation (i) is commonly referred to as "Ni's Bump" [43,15,16] and is a good case for assessing the

ability of the scheme to address compressibility effects adequately. On the other hand, simulation

(ii) [26,27] above would give a measure of how well the scheme can describe the evolution of a shear

layer. These features are of interest and importance in the research issues alluded to in Chapter 1.

To be completely thorough in this effort, we should also assess the ability of ihe numerical scheme

to give an adequate description of a contact discontinuity not in alignment with a grid line. This

is an issue since as the mixing layer evolves downstream of lobed mixers, the vortex sheet will in

general not lie along the grid lines. Such an assessment would give a more representative indication

of the performance of the algorithm when it is used to calculate a three-dimensional flow dominated

by vortical structures.

The calculations and comparisons proposed above provide means for assessing the quality of

the numerical scheme in its ability to describe flow features (e.g. vortex sheets, shocks, expansions,

flow along curved surfaces) that are expected to be present in the lobed mixer flowfield (with the

exception of three-dimensionality) at a computationally low expense.

3.1 Flow in a Channel over a Circular Arc Bump

Results from the calculations of subsonic, transonic and supersonic flow over a circular arc bump

are presented in this section. Three numerical schemes are used to generate solutions for each of

these test cases:

(i) low order Rusanov method;

(ii) high order Leapfrog-Trapezoidal method;

(iii) the FCT hybrid of these two.



Figures 3.1-3.3 show the 64x16 node grid used for the supersonic, subsonic and transonic calcu-

lations, respectively. For the supersonic calculation, the circular arc has a thickness-to-chord ratio

r of 0.04. Note that this is equivalent to a circular arc airfoil of 0.08 thickness-to-chord ratio at zero

angle of incidence. For both the subsonic and transonic calculations, a thickness-to-chord ratio of

0.1 was used. These are the standard thickness-to-chord ratios used for these test cases [43,15,16].

Channel height is one chord for all cases. The grids are generated using an elliptic grid generation

scheme with a stretching parameter that clusters the rt = const lines to the lower wall. Another

characteristic of the grids is that nodes are separated by constant distance As (or constant angle

AO) around the circular arc boundary and by constant distance Az on the flat portions of the

lower wall. Neumann boundary conditions are imposed at the left, right and top boundaries while

Dirichlet boundary conditions are imposed at the lower boundary for the generation of each grid.

On a final note, we choose not to use LCPFCT for the solution of this test case. This is because

a boundary-conforming grid is adopted for these calculations (for the reasons given in Chapter two).

Therefore, the use of directional timestep-splitting would introduce unacceptable grid-dependent

errors (as noted in Section 2.3).

3.1.1 Supersonic Circular Bump

Figures 3.4-3.6 show the results of the supersonic test case as calculated by the high order

leapfrog-trapezoidal scheme. As can be seen in Figure 3.4, an oblique shock forms at the leading

edge of the circular arc bump which curves and weakens slightly due to the Prandtl-Meyer expansion

fan emanating from the circular arc bump. The shock loses its sharpness as we move away from the

lower wall due to discretization error (this loss of sharpness would not be so severe if the shock lay

along one of the grid lines). A short Mach stem is barely in evidence as the shock is reflected from

the upper wall. The reflected shock curves and weakens even more as it is intersected by a larger

portion of the expansion fan. Just downstream of the trailing edge, the reflected shock encounters



the shock emanating from the trailing edge, before it undergoes another reflection (from the lower

wall this time) and then coalesces with the trailing edge shock. Details of the shock interaction

at trailing edge are somewhat obscured by the high levels of numerical damping added to ensure

stability of the scheme in this region of high gradients.

Nonetheless, much information can be extracted from the high order solution. The angle of the

oblique shock formed at the leading edge is about

fhigh = 55.8 ± 1.3 (3.1)

by measurement from the leading edge to the impingement point on the upper wall. Note that this

measurement of the shock angle implicitly assumes that the shock is straight. This will lead to an

estimate of the shock angle at the arc leading edge that is lower than in actuality. (Due to the

smearing out of this shock, maximum and minimum measurements of the shock angle were made.)

A theoretical prediction for the shock angle just downstream of the leading edge (before it starts to

curve toward the expansion fan) can be derived form the Rankine-Hugoniot shock relations. The

angle of deflection is

0 = arctan( _ T ) = 9.14 deg (3.2)

where r is the thickness-to-chord ratio of the circular arc. The Rankine-Hugoniot relations (for

inviscid, adiabatic flow) predict that the shock angle is given by the following expression.

M? sin 2 3 - 1
tan 0 = 2 cot M 8(3.3)

M(2cot + cos 2 ) + 2 (3.3)

By looking up shock tables or solving this equation implicitly by an iterative method the shock

angle is found to be

Itheoretical = 64.05 deg (3.4)

However, the Rankine-Hugoniot relations cannot be used in a straightforward manner to give

the impingement point of the shock on the upper wall which is essentially what Equation (3.1)



represents. Taking into account the shock curvature (which causes the measured angle to be less

than the theoretical shock angle) and the smearing out of the shock (which makes it difficult to

measure the impingement point accurately), it can be said that the numerical scheme gives a

result that is consistent in spite of the approximate method used to estimate the shock angle. The

Rankine-Hugoniot relations also provide a means for calculating the Mach number behind the shock

M2 .
1 1 + 2i M• sin2  0

M2 = = 0.987 (3.5)sin ý -yM12 sin 2 #
From Figure 3.5 we see that the minimum Mach number behind the leading edge shock is

M2h.,h = 1.08 (3.6)

The discrepancy is mainly due to numerical damping which has smeared out the shock.

Figures 3.7- 3.9 show the results of the supersonic test case as calculated by the low order

scheme. In Figure 3.8 we see that the shock that should appear at the leading edge of the circular

arc bump has been smeared out and extends 5 or 6 cells upstream of the leading edge at the wall. At

the upper wall it has been smeared out even farther as can be seen in Figure 3.7. The first reflected

shock is not in evidence. The high levels of numerical damping have reduced the usefulness of the

solution. Although the numerical dissipation introduced into this scheme to preserve monotonicity

could be reduced to allow the numerical solution to resolve more of the features of the flow, the

low order results presented here serve to demonstrate the ineffectiveness of the low order scheme

when used to generate a solution to this type of a problem on its own. However, they also show

that the low order scheme has the ability to deliver fluxes that preserve monotonicity in the wtd

distribution.

Figures 3.10- 3.14 show the results of the supersonic test case as calculated by the FCT hybrid

scheme. The FCT scheme generates a leading edge shock that is only one cell at the lower wall

(Figure 3.11) and two cells wide as it approaches the top wall. The Mach stem is also one cell

wide. The reflected shock is two or three cells wide and in Figure 3.10 the details of the shock



interaction downstream of the bump trailing edge are much more discernable than the high order

solution. The leading edge shbrk angle is measured to be

f/ct = 55.9 ± 1.3 (3.7)

and the Mach number behind the shock is found from Figure 3.11 to be

M2 ,-= 1.07 (3.8)

For FCT, the discrepancy between Equation 3.8 and Equation 3.5 is mainly due to the phenomenon

of clipping. This clipping phenomenon can be particularly damaging in the region of a peaked

maximum or minimum which is the case here. The source of clipping for an analytical solution

with a peaked profile (as opposed to a step profile) stems from the inability of the flux limiter to

allow the antidiffusive fluxes to regenerate a local extremum from the "transported-and-diffused"

profile. Clipping will be discussed in more detail in Chapter(4). Furthermore it should be noted

that the prediction given in Equation 3.5 is for the point immediately behind the shock while that

given in Equation 3.8 is at the cell centre adjacent to the shock. This also contributes to the

discrepancy.

There are, however, some problems with the FCT Hybrid solution. There is some unphysical

upstream propagation of information in the region of the shocks (see Figures 3.13- 3.14). This

can be explained by the following reasoning. Ideally, flux limiting should be applied after both

the predictor and corrector steps. This, however, would make the scheme excessively expensive in

terms of CPU time. Therefore the limiter is only applied after the corrector step. The predictor

step thus causes a nonphysical maximum to be generated in the vicinity of a discontinuity that

has an origin in Gibbs phenomenon. The corrector step in turn allows the ripple to propagate

to the next cell by which time it has become a local minimum. The flux limiter is then applied.

The maximum is clipped as it should be. But the local minimum that is two cells away from the

discontinuity survives since it lies within the bounds of the maximum and minimum defined by the



"transported-and-diffused" solution in the vicinity of the discontinuity. This is the source of the

small oscillation observed upstream of the shock in Figure 3.14. It should also be pointed out that

this FCT solution is not a steady-state solution due to the low levels of damping (zero second order

damping and very low fourth order damping). Unless numerical dissipation is added, convergence is

difficult to achieve with FCT schemes due to the inherent unsteadiness associated with the limiting

mechanism. It is this unsteady nature of the solution that is responsible for the presence of small

residual oscillations in the neighbourhood of the outflow boundary. Furthermore, oscillations are

present in the plot of normalized total pressure change (Figure 3.12).

The above-mentioned unsteadiness is one of the reasons for these oscillations. Another is the

fact that flux-limiting is performed on the conserved quantities only (i.e., mass, momentum and

total energy). Hence, FCT can provide no guarantee that no non-physical extrema will arise in

derived quantities such as static and total pressure. Indeed overshoots and undershoots in derived

quantities are possible since in the region of a shock, the numerical jump in momentum may

spatially lead the jump in energy. A way around this problem is to use flux-synchronization in

which the antidiffusive fluxes at a face (i + 1, j, k) are all limited by the same fraction C ,

C+;,J k can be determined from one or more of the conservation equations. One such possibility is

C+1i( += =i+,k(PZL) = C+. ipk(PV) = Ci+ jk(Et)

= min(Ci+4,,,k(p), Ci+j,k(Et)) (3.9)

FCT researchers are currently concentrating their efforts in flux-synchronization [23] as the best

means of improving FCT algorithms.

3.1.2 Transonic Circular Bump

The grid used for this calculation is shown in Figure 3.2. The inflow Mach numrtber was 0.675.

Figures 3.15- 3.19 show the results of the high order solution for this test case while figures 3.20- 3.24

show the results of the FCT hybrid solution for this test case. It can be seen from (for example)



Figure 3.20 that the flow is accelerated around the bump into a supersonic region terminated by

a shock. The same numerical damping coefficients were used for both the FCT hybrid and the

high order schemes. As a result the solutions are almost identical except for the details around

the shock. Since the flow is inviscid, total pressure losses should be confined to the vicinity of the

shock. Figure 3.19 and Figure 3.24 show that this is the case for the high order and the FCT hybrid

scheme except for some resolution-based total pressure variation at the leading and trailing edges.

Notice also that contours of constant total pressure loss closely follow the streamlines downstream

of the shock.

Normal shock relations [45] provide a means for checking the validity of the solution at least in

the vicinity of the shock. The strength of the shock is given by

AP P2 -P 1  2-y 2SP P1  (M - 1) (3.10)
P, P1 7 + 1

and the Mach number behind the shock is given by

M2 = 2 1 (3.11)MM=

Table 3.1 presents a comparison of the values of shock strength as predicted by Equation 3.10 (given

the numerically found M1) and those found in the solutions produced by the FCT and High Order

schemes and as depicted in Figures 3.16, 3.18, 3.21, 3.23. It also presents similar comparisons for

M2 . The High Order scheme predicts a stronger shock due to the undesirable clipping in the region

of the shock caused by the flux limiter. If anything, the High Order scheme produces a superior

solution.

Figures 3.25- 3.27 show the results of the low order solution for this test case. Of course, the

low order method proves to be too diffusive to resolve the transonic shock and indeed the low order

method does not allow the flow to become supersonic. As will be seen subsequently, the solution

is quite similar to the subsonic case with.Mi,f 0,, = 0.5.



Table 3.1: Comparison of normal shock relation and numerically predicted shock values

High Order Solution FCT Hybrid Solution

M, 1.425 1.366

MArllortic, 0.729 0.755

M2 .mer,,c,, 0.745 0.718

P1  0.303 0.324

P2  0.655 0.655

(AP )theoretical 1.204 1.021

(- )numerica 1.160 1.010

3.1.3 Subsonic Circular Bump

For this test case, we have taken Minflo• to be 0.5. There are no supersonic regions and so all

changes in total pressure are numerical in origin. Changes in total pressure are a good indication

of the quality of the solution. The symmetry of the solution can also be a good indication.

Figures 3.28- 3.30 show the results of the high order scheme. The solution is almost symmetric

except for some asymmetry in, for example, the Mach number contour plot (Figure 3.28) down-

stream of the trailing edge. This is due to the generation of an entropy layer at the bump leading

edge and trailing edge that is numerical in origin. Comparison with the Mach distribution in ref-

erence [43] is of limited use since homoenergetic (Ho = const) flow is assumed in that calculation

and this is not the case for the results presented herein. Levels of total pressure loss are very small

as shown in Figure 3.30 except for those due to small resolution-related, nonphysical oscillations

confined to the leading and trailing edges.

Figures 3.34- 3.38 show the results of the FCT hybrid scheme. It can be seen that the results

are almost identical to the High Order results except in the vicinity of the leading and trailing

edges and at the apex of the bump. These differences can be traced to the clipping effect of the



flux limiter near extrema mentioned in Section(3.1.1). For example, examination of the density

distribution along the lower wall (Figure 3.37) reveals that a plateau has been created at the apex

of the bump by the effect of the flux limiter. This clipping also introduces small dispersive errors

which degrade the quality of the solution slightly. The satisfactory nature of the solution by the

FCT hybrid scheme can be deduced from the computed results.

The asymmetry of the low order solution and the high levels of total pressure loss indicate the

unsatisfactory nature of this solution. However the marginal credibility of the solution confirms

that the low order fluxes can be expected to yield a "transported-and-diffused" solution for the

FCT hybrid scheme that is free of nonphysical extrema. This is also confirmed by the satisfactory

nature of the FCT hybrid scheme.

3.1.4 Summary of the Computed Results for Ni's Bump

The low order scheme is found to produce unsatisfactory results for all three (supersonic, tran-

sonic and subsonic) test cases. Shocks are severely smeared out for the supersonic case. Flow

details are obscured almost beyond recognition for all three cases. Large decreases in total pressure

are observed for the subsonic case all of which is numerical in origin. However, all the solutions

generated appear to be free of nonphysical extrema. It is concluded, therefore, that the low order

method will produce satisfactory "transported-and-diffused" profiles (wtd) for the Flux-Corrected

Transport algorithm.

The FCT hybrid and high order schemes are both found to produce satisfactory results for all

three cases. Although some clipping is evident in the solutions generated by the FCT scheme, it

produces sharper shocks (one cell wide at leading edge for the supersonic case) and delineates the

details of the complex shock structure downstream of the trailing edge more clearly than the high

order scheme. The transonic and subsonic solutions generated by the FCT hybrid and high order

schemes are almost identical.



3.2 Planar Shear Layer Calculations

We have shown that the code is capable of resolving flow features associated with Ni's bump. As

we are also interested in using the numerical scheme to investigate the fluid mechanics associated

with the evolution of shear layers, it is logical to next use the code to examine the phenomenon

of the Kelvin-Helmholtz instability found in shear layers. We anticipate encountering this in our

subsequent investigation of the three-dimensional flow produced by the lobed mixer. Theoretical

analyses of the Kelvin-Helmholtz instability in compressible flowfields abound in the literature.

Landau [47] looked at the stability of the compressible shear layer while Blumen et al [37,38] present

a more detailed analysis in which the transverse velocity variation is represented by a hyperbolic

tangent profile. In addition, the literature contains the results of several numerical (from both the

Lagrangian [42] and Eulerian [26] perspectives) and experimental [39,40,41] investigations of planar

shear layers. These numerical, theoretical and experimental results provide a source of information

that can be used for assessing the quality of the planar shear layer results computed by the present

numerical scheme.

3.2.1 Timestep-Splitting Calculations

The timestep-splitting LCPFCT-based algorithm is used for the computation of the evolution

of a planar shear layer with inflow Mach numbers of Mupper = 0.058 and Moe,,,, = 0.289. The

grid used for this calculation is shown in Figure 3.39. It is similar to the grid used in Grinstein's

[26] calculation which also uses the same inflow Mach numbers. Note that the x- and y-axes are

numbered dimensionally (in centimetres) so that results presented herein can be compared directly

with the results presented in reference [26]. A section of the splitter plate is included in the

computational domain with the trailing edge at 2cm from the inflow boundary and a zero slope

condition on the pressure is imposed as explained in Section(2.8.2). These two factors allow the

instability, once initiated to be self-sustaining.



The results are shown in Figures 3.40 and 3.41. The passive scalar, 0, shown in Figure 3.40

represents the mixture-fraction defined as

Nlower (3.12)
Nlower + Nupper

where Nlowe and Nupper are the number densities (e.g. moles/cm2 ) of the material from the lower

and upper streams, respectively. Since 0 is a passive scalar that convects with the flow it satisfies

D- - +  vO = 0 (3.13)

The shear layer has to be forced with disturbance of an appropriate frequency for the instability

to be initiated and sustained. However for the case being computed here, none was required; this

is the result of the fact that the disturbance that triggers the Kelvin-Helmholtz instability arises

through the following mechanism. The initial condition for the calculation imposes a jump in

velocity that occurs over two cells on either side of the middle of the channel. This is the closest

possible discrete approximation to a discontinuity. Subsequent to the initiation of the computation,

the fluid leaving the trailing edge of the splitter plate suddenly finds itself adjacent to a stream

moving at a different speed so that it is subjected to a shearing stress produced by the presence

of (albeit small) numerical dissipation (present in the LCPFCT scheme even after the antidiffusion

step). This causes the fluid in the faster stream to slow down and the fluid in the slower stream

to speed up. For cells far downstream of the tip of the splitter plate, no variation develops in

the streamwise direction because the change in convective velocity at the right face is matched

by an equal change at the left face. However, at the co.. inmediately upstream of the tip, the

convective velocity does not change because it is still adjacent to the splitter plate wall, while

one cell downstream, the convective velocity has changed. Therefore the convective velocity at the

common face is not matched by an equal velocity at the opposite face for both cells. This imbalance

in cell face convective velocities causes a deficit in the slower stream - and a surplus in the faster

stream - of conserved quantities (mass,momentum,energy) in those cells immediately upstream of



the trailing edge. Since no Kutta condition is enforced, this allows the trailing edge of the splitter

plate to become slightly loaded. A small vertical component of velocity at the trailing edge results,

so that the velocity is not tangential at the trailing edge. It is this disturbance that is responsible

for the initiation of shear layer instability. This instability is self-sustaining since the small loading

at the trailing edge is allowed to fluctuate by virtue of the imposed inflow boundary condition on

pressure.

For an inviscid, incompressible, planar flowfield, vorticity satisfies the convective equation.

Dw ao
D = - +a' Vw = 0 (3.14)

Therefore, for incompressible flow, lines of constant vorticity should coincide with lines of constant

4k. A glance at the results presented in Figures 3.40-3.41 show that this not the case. However,

especially in the rolled-up structures that are formed from the initially vortex sheet, maxima and

minima in vorticity are always located very close to corresponding maxima and minima in 14. The

local deviation is explained by the fact that vorticity is not one of the conserved variables and is

therefore not subjected to flux-correction whereas ik is and so nonphysical maxima and minima are

more likely to arise in w than in 4.

Blumen et al provide a means for making a theoretical prediction of the axial exponential growth

rate for the linear stages of the instability of a compressible, inviscid, planar shear layer. For a

convective Mach number, M = 0.1155, where

Me = Mlouer - Mupper (3.15)
2

(for equal sound speeds), they predict that the temporal growth rate corresponding to the most

unstable wavelength, a = 0.432, is

ac, = 0.186 (3.16)

where ci is the imaginary part of the complex phase velocity. Hence the theoretical prediction for



the temporal growth rate is

-" = eiat" = e0.186 t* (3.17)

where t* is a nondimensional time given by t* = Vt/L and L and V are a length scale and a

velocity scale "characteristic of the transverse variation of the basic current" V(y). Hence L for

this problem is the cell height at the vortex sheet and V is the velocity difference between the

upper and lower streams. This can be transformed to an expression for the axial growth rate if we

assume that the structures are convected with the mean velocity V such that z = f/t to give

SaciVVcL
log 17- log17 = T

= 308.5x (3.18)

An approximate estimate of the growth rate for the early linear stages of the instability was

made, wherby individual vortices were tracked and the associated deflections Yj were measured from

the 0 contour plot. From a graph of log t7 versus axial distance , z, an average slope (corresponding

to their axial exponential growth rates) can be estimated from the evolution of three vortical

structures. Its estimated value is

S( )numericaV 143.9 + 194.9 + 169.3 169.4 (3.19)
VL 3

It can be seen that this result is a factor of 2 smaller than the growth rate predicted by Blumen

in Equation 3.18. Although this may seem like a large deviation, consideration should be made of

factors that contribute to the discrepancy. These include the fact that Blumen's most amplified

wavelength is not the most amplified wavelength observed numerically and the fact that the residual

dissipation left by the LCPFCT algorithm would be expected- to reduce the growth rate.

Comparison of Figures 3.40- 3.41 with results in the literature, particularly [26], reveals that

the results concur qualitatively. Quantitatively, the details of the flow structures differ from those

found in [26] because of differences in numerical algorithm, grid and initial conditions. The features

of the flow can also depend on the details of initiation of the instability.



Figure 3.42 shows the results of a supersonic planar shear layer calculation performed by

LCPFCT on a uniform 400x80 grid. The inflow Mach numbers are Mtower = 2.0 and Mupper = 1.2.

The Kelvin-Helmholtz instability is still observed to occur although the growth rate is much smaller,

as predicted by the compressible stability analyses in references [47,37,38]

3.2.2 Finite Volume Calculations

The grid used for this calculation is the same as that used in subsonic calculation in Sec-

tion(3.2.1). Likewise, the inflow Mach numbers are taken to be the same. The limiter used was a

combination of Zalesak's multidimensional limiter and the Boris-Book limiter as defined in Equa-

tion 2.36. The Boris-Book limiter corrects the antidiffusive fluxes in each coordinate direction

prior to their being passed to the Zalesak limiter. As can be seen from the results shown in

Figures 3.43- 3.44, no instability evolved. This is because of the nondissipative nature of the

Leapfrog-Trapezoidal method used as the high order scheme. The leapfrog-trapezoidal method

returns antidiffusive fluxes that regenerate the original step profile from the "transported-and-

diffused" solution after flux-correction.

3.2.3 Summary of Two-dimensional Shear Layer Calculations

The use of timestep-splitting with LCPFCT produces plausible results without forcing for the

subsonic and supersonic two-dimensional shear layers. Qualitative agreement with results quoted in

the literature is found. The initiation of the instability without forcing was traced to a mechanism

dependent on residual diffusion from the diffusion/antidiffusion process in the numerical scheme.

With no forcing, the solution generated by FVFCT exhibits no instability. This is because the

residual diffusion mechanism in the diffusion/antidiffusion process found in LCPFCT is not present

in FVFCT.
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Figure 3.1: Grid with 10% thickness circular arc bump used for subsonic calculation
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Figure 3.2: Grid with 10% thickness circular arc bump used for transonic calculation
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Figure 3.3: Grid with 4% thickness circular arc channel used for supersonic calculation
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Figure 3.4: Isomach contours for supersonic calculation by High Order Scheme

Figure 3.5: Mach Number Distribution along the lower wall as calculated by the High Order Scheme

for supersonic inflow
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Figure 3.6: Total pressure contours for supersonic calculation by High Order Scheme
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Figure 3.7: Isomach contours for supersonic calculation by Low Order Scheme

Figure 3.8: Mach Number Distribution along the lower wall as calculated

for supersonic inflow

by the Low Order Scheme
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Figure 3.9: Total pressure contours for supersonic calculation by Low Order Scheme
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Figure 3.10: Isomach contours for supersonic calculation by FCT Scheme
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Figure 3.11: Mach Number Distribution along the lower wall as calculated by the FCT Scheme for

supersonic inflow
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Figure 3.12: Total pressure contours for supersonic calculation by FCT Scheme



Figure 3.13: Density contours for supersonic calculation by FCT Scheme

Figure 3.14: Density Distribution along the lower wall as calculated by the FCT Scheme for super-

sonic inflow
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Figure 3.15: Isomach contours for transonic calculation by High Order Scheme

I

*1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

Figure 3.16: Mach Number Distribution along the lower wall as calculated by the High Order

Scheme for transonic inflow
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Figure 3.17: c, centours for transonic calculation by High Order Scheme
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Figure 3.18: cp distribution along the lower wall as calculated by the High Order Scheme for

transonic inflow
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Figure 3.19: Total pressure contours for transonic calculation by High Order Scheme
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Figure 3.20: Isomach contours for transomnic calculation by '•;u' cneme
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Figure 3.21: Mach Number Distribution along the lower wall as calculated by the FCT Scheme for

transonic inflow
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Figure 3.22: cp contours for transonic calculation by FCT Scheme
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Figure 3.23: cp distribution along the lower wall as calculated by the FCT Scheme for transonic

inflow
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Figure 3.24: Total pressure contours for transonic calculation by FCT Scheme



Figure 3.25: Isomach contours for transonic calculation by Low Order Scheme
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Figure 3.26: Mach Number Distribution along the lower wall as calculated by the Low Order

Scheme for transonic inflow
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Figure 3.27: Total pressure contours for transonic calculation by Low Order Scheme
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Figure 3.28: Isomach contours for subsonic calculation by High Order Scheme
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Figure 3.29: Mach Number Distribution along the lower wall as calculated by the High Order

Scheme for subsonic inflow
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Figure 3.30: Total pressure contours for subsonic calculation by High Order Scheme
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Figure 3.31: Isomach contours for subsonic calculation by Low Order Scheme
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Figure 3.32: Mach Number Distribution along the lower wall as calculated by the Low Order

Scheme for subsonic inflow
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Figure 3.33: Total pressure contours for subsonic calculation by Low Order Scheme
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Figure 3.34: Isomach contours for subsonic calculation by FCT Scheme
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Figure 3.35: Mach Number Distribution along the lower wall as calculated by the FCT Scheme for

subsonic inflow
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Figure 3.36: Density contours for subsonic calculation by FCT Scheme

Figure 3.37: Density Distribution along the lower wall as calculated by the FCT Scheme for subsonic

inflow
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Figure 3.38: Total pressure contours for subsonic calculation by FCT Scheme
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Figure 3.39: Grid used for subsonic planar shear layer calculations
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Figure 3.41: Vorticity at various stages in the evolution of the subsonic instability
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Figure 3.42: Passive scalar, & = .. , at various stages in the evolution of the supersonic

instability
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Figure 3.43: Passive scalar, k = ....+ ', at various stages in the evolution of the instability

as calculated by FVFCT
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Figure 3.44: Vorticity at various stages in the evolution of the insti;aity as calculated by FVFCT
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Chapter 4

Lobed Mixer Calculations

Numerical solutions to the three-dimensional Euler equations for the flowfield in a lobed mixer

and in the downstream mixing duct are presented in this chapter. In particular, the following com-

putations are performed on the following configurations for the purpose of assessing the influence

of compressibility and the effect of lobe penetration (as measured by the amplitude-to-wavelength

ratio (a/A) and the penetration angle a) on the evolution of the three- dimensional shear layer:

(1) Subsonic low penetration lobed mixer

(2) Supersonic low penetration lobed mixer

(3) Subsonic high penetration lobed mixer

(4) Supersonic low penetration lobed mixer

In all cases, the stagnation pressure is chosen to be uniform (i.e. the inflow velocities are chosen

to be equal for the upper and lower streams). Consequently, the role of spanwise vorticity is not

investigated here. However, a study of (i) vs. (ii) and (iii) v. (iv) would allow one to assess the

effect of compressibility while a study of (i) vs. (iii) and (ii) vs. (iv) allows one to assess the

effect of lobe penetration. Section 4.3 and 4.4 presents the results for a low penetration mixer with

subsonic and supersonic Mach numbers at the inflow boundaries, respectively. The low penetration

mixer, shown in Figure( 4.2), has a penetration angle of 5.770 and an amplitude-to-wavelength

ratio of a/A = 0.25 at the lobe trailing edge. Similarly, section 4.5 an 4.6 present the results for

a high penetration mixer with subsonic and supersonic Mach numbers at the inflow boundary,

respectively. The high penetration mixer, shown in Figure( 4.3), has a penetration angle of 220

and an amplitude-to-wavelength ratio of a/A = 0.5 at the lobe trailing edge. Section 4.2 explains



the grid generation algorithm.

4.1 Further Details of the Numerical Scheme

The low order method used for the lobed mixer calculations is the Euler method with fluxes

given by equation 2.95 and values of u2 between 0.0833 and 0.1666. The high order method used is

the Leapfrog-Trapezoidal method with fourth order dissipation added in the computational region

upstream of the trailing edge. The upstream fluxes are thus given by

nAt
= t-i+.jk + ij,k) +jk)(i+jk+ Wi.k)

2 4 4

"upstreamVi+,j,k (Wi+2j,k - 3Wi+1,j,k + 3 Wij,,k - Wi-1,j,k) + Sources (4.1)

No artificial dissipation is used downstream of the trailing edge because this would result in excessive

diffusion of the vortex sheet in the downstream flowfield.

The flux limiter used is the Zalesak multidimensional limiter with the one-dimensional Boris-

Book limiter prelimiting the (- and C-fluxes. Several combinations were investigated and this

proved to be the best for this problem. A vortex sheet is expected to be shed off the trailing edge of

the lobed mixer, so that quantities such as pvu,pv, will be convected in a direction perpendicular

to large gradients in those quantities. In such a situation, the Zalesak limiter (acting alone) may

fail to preserve monotonicity [21]. This is because the Zalesak limiter only checks for the creation

and accentuation of extrema above or below the bounds set by uwma and wm' in . When the gradient

is large, the difference between w"' " and w i'n is large, so that the effectiveness of the limiter in

detecting violations of monotonicity in directions other than that of the large gradient is reduced.

This fact has been noted in Section 2.5. Hence extrema with respect to the perpendicular direction

can be created and accentuated as long as they lie within the bounds set by w a Z and wmin .

Although the solution may remain stable, these errors are considered to be unacceptable.

Zalesak [21] suggests the use of the one-dimensional Boris-Book limiter to prelimit the antidif-



fusive fluxes so as to prevent the occurence of these dispersive ripples. This was investigated but

it was found that when the Boris-Book limiter acted on the fluxes across the vortex sheet, severe

clipping resulted leading to excessive diffusion of the vortex sheet. The clipping phenomenon can

be seen from the results obtained with the use of two different limiters. These results (Figure 4.1)

show the pVy profiles at the midspan (i.e. z=0.25) of the trailing edge and at five axial locations

downstream of the trailing edge. Limiter 1 is the Zalesak limiter with the Boris-Book limiter pre-

limiting (- and S- antidiffusive fluxes. Limiter 2 is the Zalesak limiter with the Boris-Book limiter

prelimiting the -, ri- and S- antidiffusive fluxes. The clipping phenomenon is evident for Limiter

2; this is not the case for Limiter 1. It can be seen that there is a discontinuity at the trailing edge

with sharply-peaked profiles on either side for both solutions. The low order method will attenuate

the peaked profiles; while the uncorrected antidiffusive fluxes would resurrect the profile, the Boris-

Book limiter would step in to prevent this from happening since it would constitute an accentuation

of the extrema in wtd by the definition used in its formulation. The clipping continues in the next

timestep and so on until eventually we are left with the characteristic three point plateau as seen

in Figure 4.1. In the use of the Zalesak limiter clipping can also occur when the peaked profile is

transported across cell faces, though not nearly as severely since it has the ability to look back to

the previous timestep in its search for the limiting values, w"U mzand w'~". At the trailing edge, the

direction normal to the vortex sheet coincides with the q direction by design (although this does not

remain true as the vortex sheet is convected downstream). Hence using the Boris-Book limiter to

prelimit only the C- and ý- antidiffusive fluxes causes no clipping and prevents dispersive ripples

from arising - at least close the trailing edge. These investigations show that the limiter causes no

problems at all in the rest of the mixing duct. An improved limiter would use a one-dimensional

Zalesak limiter to prelimit the antidiffusive fluxes instead of the Boris-Book limiter since this could

be done in all three computational directions without much clipping. The flexibility of the Zalesak

limiter is such that there are measures that one can take to remove the clipping problem entirely



at least for the test case discussed in ref [21]. However, as mentioned earlier, for all the lobed

mixer calculations performed, the flux limiter used is the Zalesak multidimensional limiter with the

one-dimensional Boris-Book limiter prelimiting the C- and S-fluxes.

4.2 Grid Generation Algorithm

To prevent the requirements for special treatment at the lobe surfaces and the associated in-

accuracies (as discussed in Section (2.3) ) we choose a body-aligned grid for all the calculations.

For resolution purposes, clustering of grid lines to the lobe surface with minimal skewing of cells

is also desirable. The use of Steger and Sorensen's [11] elliptic grid generation algorithm is found

to satisfy both of these requirements. It allows the grid lines adjacent to the lobe boundary to be

clustered to an almost constant distance As from the boundary and it forces = constant lines to

intersect the boundary in a near normal fashion.

These two effects are achieved by adding to the elliptic governing equations the forcing terms as

suggested by Thomson et al [31]. It is these forcing terms that impose the desired clustering. Thus

the grids are generated through the solution of the following system of coupled Poisson's equations

=z + rY -= Q ~(,r) (4.2)

with the forcing terms taken to be

P = pie -a(l -ei)

Q = Q1e - b( n-1 )  (4.3)

These choices are in accordance with the suggestions in reference [11]. Following the use of a

generalized transformation as in reference [11], these equations become

acmf - 2f/Zn + YZ,,, = -J 2 (PxE + Qx,)



ayf - 2/ye, + yyn, = -J 2 (Pye + Qy,)

where

a= X2 + 2 (4.5)

S= xz,7 + y y,7 (4.6)

7 = x + yf (4.7)

Pi and Q1 are chosen such that they force the spacing between the grid lines r7 = r,7 and r7 = r2

to satisfy the above-mentioned boundary clustering and orthogonality requirements. As explained

in [11l the following choices achieve the desired clustering of grid lines and the orthogonality of (-

lines on the surface:

P = J-l(y,7R - xzR2),=q, (4.8)

1 = J-'(-yfR, + xR2)r7=, , (4.9)

R 1 = -J- 2(axz E - 223z,7 + YZxn),7=,, (4.10)

R2 = -J-2 (ayCf - 2/3ye, + "yY,),=P, (4.11)

The details for evaluating R1 and R2 at the boundary are given in [Ill. The relaxation scheme

used for the evaluation of P, and Q, is

p•"' = p" + wp(J-'(yrRI - Xz,7R2)n+l - p) (4.12)

Qn+I = Q + w(J-1(-yfR 1 + zxR 2)n+l _ Qn) (4.13)

where wp and wq are chosen to vary linearly with the log of the relative error between two consec-

utive iterations. For example,

wp + ( logE - logc0
WP = WP + (wp - wp) loge - 1o (4.14)

logel - logeO

and

wp = 0.002 (4.15)

(4.4)



wp = 0.04 (4.16)

EC0o=1 (4.17)

C1= 10-1 (4.18)

,ij((Xintt - X11., + (Y ,ioj+ - Yilj)2 )
E -1 (4.19)

The selection of a and b in equation(4.3) is important since if too large a value is chosen, no

clustering at all occurs while if too small a value is chosen, the SOR iteration scheme would not

converge. The best values of a and b were found to be about 0.5 for a grid with rlmaz = 17 although

the optimum choices of a and b depend on rlmaz-

This two-dimensional grid-generation algorithm is then applied at a specified set of axial loca-

tions where a mid-channel sinusoidal boundary (corresponding to the lobe surface upstream of the

trailing edge) forms the lower boundary of the grid generation domain. The other boundaries are

the upper wall, and the two symmetry boundaries. The result of this calculation gives the grid in

the upper half of the channel. The grid for the lower half of the channel is found by finding the

image under central symmetry of the upper half. This process produces a collection of 2-D grids

which are then stacked to give the full 3-D grid. Figures 4.4-4.5 show the grids generated using this

method for the low penetration (LPM) and high penetration (HPM) mixers. Note that As = 0.02

for the LPM grid and As = 0.005 for the HPM grid.

It should be pointed out here that all lobed mixers investigated here have sinusoidal profiles. It

is found that there is a limiting value of amplitude-to-wavelength ratio ((a/A)maz - 0.85) beyond

which either the grid-generation algorithm will not converge or the desired clustering is not ob-

tained. The distortion of the C = constant lines close to the boundary with the largest slope causes

the right-hand-side forcing term to become excessively large; this would imply a relatively large

change in the right-hand-side term during each iteration which can be destabilizing. Practical lobed

mixers, however, do not have sinusoidal profiles in general and, in fact, the best mixers tested [3]



have had vertical or past-vertical sections between crest and trough. The grid-generation algorithm

used would appear to be incapable of generating acceptable grids for these cases. However, Malecki

et al [8] recently reported an algorithm that was successful in generating a stacked 3-D grid for

a lobed mixer with vertical midsections and this appears to be a promising method. They used

a conformal mapping technique followed by an elliptic smoothing technique for each 2-D planar

slice. Furthermore, their specification of computational variables e = constant and rl = constant

along the physical boundaries provide a scheme for which the internal grid lines do not have to

undergo such destabilizing distortions as is found in conventional boundary specifications (in which

r7 = rlmaz corresponds to y = ymaz and rl = 1 corresponds to the physical lobe boundary). These

boundary specifications provide a possible means for the scheme used in this research to generate

grids for lobed mixers with vertical or past-vertical midsections. However this has not been inves-

tigated in the present work. It is argued, however, the advanced mixer flowfield should definitely

bear qualitative resemblance to the low penetration and high penetration lobed mixer flowfields

investigated here. Furthermore, these mixer designs are adequate for assessing the compressibility

and lobe penetration effects mentioned in the above paragraph.

4.3 Low Penetration Mixer: Subsonic Calculation

The geometry of the lobed mixer used for this calculation has been chosen to be similar to

that of a mixer used in an experimental investigation undertaken at UTRC [3]. The mixer (shown

in Figure 4.2) has a low penetration angle of a = 5.77deg (hence the name low penetration

mixer - LPM) and a trailing edge amplitude-to-wavelength ratio of a/A = 0.25. Since the trailing

edge velocity distribution depends on these parameters, the mixer is chosen to possess these same

numerical values so that the results could be compared with those from the experiments. However,

the axial amplitude variations are slightly different for the two lobes and the resulting nonequal

loading distributions will result in slightly different spanwise velocity profiles along the lobe surface



which will slightly alter the transverse velocity profiles due to the boundary tangency condition.

However, the maximum difference in amplitude (which occurs near the leading edge) is only 2.4%

of the trailing edge amplitude.

As a first calculation of flow over this mixer we choose Mc = 0.5, v2 = 0.125 and 7y4 = 0.0002.

The grid used for this calculation is shown in Figure 4.4; it has a resolution of 128x32x16. An

estimate of the total temporal variation between timesteps was found from the root-mean-square

state vector difference

n Wiknl 1)2)
E= ,ik,,k,(4.20)IJK

where subscript 1 represents the different components of the Euler equations (e.g. wi,i,k,1 = Pi,i,k).

The history of the temporal variation as measured by e is plotted in Figure 4.6 against iteration

number. Four thousand iterations have been performed with timestep At = 0.01. The final value

was e = 2.75 x 10-5 and it was felt that this was sufficiently converged for the solution to be termed

steady.

Figure 4.7 shows the transverse velocity distribution in the axial plane located at the first cell

downstream of the lobe trailing edge. It can be seen that the transverse velocity reaches a maximum

at a spanwise location of z/A = 0.5 and on the inside surface of the mixer. This nondimensional

maximum transverse velocity is vy., = .0469. This is close to the "ideal maximum" that would

occur if the axial velocity retains its freestream value, i.e. v•ydeal = vX,. tan 5.770 = 0.05. Indeed,

examination of the velocity vector distribution in the spanwise plane (Figure 4.8) shows that the

angle of the velocity vector adjacent to the lobe surface at the axial location just upstream of

the trailing edge is 5.33 deg (where the spanwise velocity is assumed small). However, above the

lobe the angle of the velocity vector is 3.06deg which is significantly less than the wall angle of

ci = 5.77 deg. This matter is clarified by an examination of Figure 4.9 which shows the secondary

velocity vector distribution in the same axial plane as Figure 4.7. There is a large component of

spanwise velocity at the cell above the lobe surface adjacent to the symmetry boundary, which



reduces the transverse velocity required for tangency to be satisfied. This large spanwise velocity

close to the symmetry boundary also suggests that the solution may be improved by increasing

resolution in this region. The general circulatory motion of the secondary flowfield generated by

the lobed mixer is also apparent in Figure 4.9. The circulation around a path enclosing the region

extending from the left symmetry boundary to the right symmetry boundary and from the lower

wall to the upper wall is calculated to be r = 0.045 = 0.090UooA.

Results derived from the UTRC experimental investigation are shown in Figures 4.10-4.11. It

can be seen that qualitatively and insofar as normalized quantities (e.g. v/Uoo) are concerned,

the two results agree quite well in spite of the slightly different axial amplitude variations and the

different inflow Mach numbers. Figure 4.12 shows profiles of transverse velocity normalized by the

freestream axial velocity for both experimental and numerical results at spanwise location z = 0

corresponding to the lobe crest and at the axial location just downstream of the lobe trailing edge.

Qualitative agreement is good with the experimental velocity peaking at a lower value because of

the existence of a boundary layer. The experimentally found circulation is r = 0.08UooA.

Also plotted in Figure 4.12 is the profile found from a numerical calculation with Moo = 0.1.

This profile lies very close to the Moo = 0.5 profile. The circulation for this case was found to be

r = 0.0091 = 0.091UooA. It appears that the small compressible effect introduced in the Moo = 0.5

case has little effect on the trailing edge secondary flow field. As M -oo 0, the computation

of steady flow can be computationally expensive. Consequently, we shall use the results of the

Moo = 0.5 for investigative purposes.

The mechanism for the generation of the trailing edge streamwise vorticity can be explained in

light of the results in Figure 4.13 and Figure 4.14. Figure 4.13 shows three-dimensional contour

plots of pressure coefficient, transverse and spanwise velocities while Figure 4.14 shows the axial

variation of surface pressure coefficient at selected spanwise locations. At the lobe leading edge,

(i.e. where the lobe amplitude first starts to vary from zero) a high pressure zone appears at
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the lobe crest that deflects the flow upwards to keep the velocity tangential to the lobe surface.

A corresponding low pressure zone appears at the lobe trough. The resulting spanwise pressure

gradi.nt drives the flow from crest to trough which can be seen in the developing transverse and

spanwise velocity fields in Figure 4.13.

The resulting circulation (F) profile versus at the trailing edge can be seen in Figure 4.15. Each

value of i in this plot has been calculated in the following fashion. For the selected spanwise

location, z, in the trailing edge axial plane, the line integral

Pr=Jiv.ds (4.21)

is evaluated along an elemental closed contour enclosing the trailing edge at z. The discrete

approximation to Equation 4.21 is obtained by evaluating

4 4

Idiscrete = (E viAsi)upper cell + (E Vi"si)lower cell (4.22)
i=1 i=1

(where the summation is performed for every side of the given cell) for the two cells on either side

of the trailing edge at z. All the vorticity is concentrated at the lobed mixer surface and the flow

is irrotational away from the lobe boundary. Since the lobed mixer lies within these two cells, the

above calculation should yield an accurate estimate of the shed circulation distribution along the

lobe trailing edge. In addition, the generated grid is such that the nodes adjacent to the trailing

edge are all at an equal distance it from the trailing edge lobe surface. This feature of the grid

permits one to evaluate the shed vorticity from

1 1 4 4 1
Wshed = J = ds = S(( viAsi)upper cell + ( viAsi)lower cell) = bound (4.23)

i=1 i=1

where S is the net area of the two cells. Since the grid has constant As along the trailing edge, the

values of r shown are proportional to the spanwise gradient of bound circulation, 7bound, given by

obound = arbound/aS (4.24)
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It can be seen that the maximum value of 'occurs at z = .25 corresponding to midspan (halfway

between crest and trough) and r- = 0 at crest and trough where the transverse velocity is maximum.

Thus the streamwise vorticity is a result of the migration of fluid from crest to trough driven by

the spanwise pressure gradients. These in turn are the result of the transverse penetration of the

lobe surface into the flow.

The Kutta condition requires that the loading decrease to zero at trailing edge, and it can be

seen from Figure 4.13 that this appears to be the case in spite of the fact that no explicit Kutta

condition was imposed. The loading is mostly confined to a region extending from the leading edge

to about 1.5A downstream. The surface pressure coefficient distribution at lobe crest shown in

Figure 4.14 shows that some loading extends almost to the trailing edge at this spanwise location.

However, the loading region that extends past the x = 1.5A mark is very narrow being confined to

a short spanwise distance from the spanwise symmetry boundary. This can be seen in Figure 4.16

which shows the loading on the projected lobe surface.

We shall now use the compressible Bernoulli equation to assess the consistency of the computed

aerodynamic loading on the lobed mixer. Using isentropic relations and the energy equation, it can

be shown that

Pt•_ - 1 -1c , - , ((1+ 2 2 pper)7-, - (1+ 2 MIwer) • •_) = 0 (4.25)

Thus the residual in Equation(4.25) can be used as a measure of the quality of the computed

results. This is shown in Figure 4.17 for the case considered here. The maximum absolute value of

the residual is found to be about 2% of the dynamic pressure. Since flow is subsonic throughout,

all changes in total pressure must be numerical in origin. Figure 4.18 shows a three-dimensional

contour plot of total pressure change (normalized by freestream total pressure, Pt.). The largest

total pressure change around the lobe is about 0.2% of Pt. (or about 6% of the dynamic pressure)

which is equal to about 2% of the freestream dynamic pressure. This is of the same order as the

residual from Equation(4.25).
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Next, we shall proceed to examine the evolution of the shed vortex sheet in the mixing duct

downstream of the lobe trailing edge. Figure 4.19 shows contour plots of total pressure change

APt (normalized by the freestream total pressure Pt.) at various axial locations from the lobe

trailing edge to mixing duct exit. The maximum absolute value of APt (all of which is numerical

in origin) is 0.9% of Pt.. This represents an acceptably low level of error. Figure 4.20 shows

the secondary velocity vector fields at three axial locations in the mixing duct at lobe trailing

edge, 8A downstream and at mixing duct exit. An important attribute of the FCT scheme is that

the computed solution is such that the secondary flowfield persists as it is convected downstream

(this might not be the case if artificial viscosity were used). This can be deduced from results in

Figure 4.20 and as well as those of Figure 4.21 which shows the variation of circulation with axial

distance. In fact the circulation increases from the trailing edge by as much as 15% (which is in

Violation of Kelvin's circulation theorem). This discrepancy is a result of the fact that circulation is

not one of the quantities that is explicitly conserved in the discretized Euler equations of FVFCT.

Figure 4.20 also shows that as the streamwise vortex sheet proceeds downstream, it takes on a

circular shape. In other words the root-mean-square radial component of velocity from an origin

located at (y, z) = (0,0.25) is reduced while the root-mean-square circumferential component is

increased and the structure increasingly resembles a vortex with a viscous core.

This perception is reinforced by evidence presented in Figure 4.22 which shows contour plots of

passive scalar, (0), axial vorticity (w•), and pressure coefficient, (cp) at axial locations separated

by one wavelength from trailing edge to mixing duct exit. The evolution of the vortex sheet into

a structure with a viscous core alluded to above is confirmed by the presence of a circular region

of near constant vorticity at mixing duct exit. Note that this region of near constant vorticity

has evolved as a result of a combination of the nonlinear dissipation of the FCT numerical scheme

and the fact that local length scales havey become too small to be resolved by the numerical grid.

The static pressure plot shows evidence of the low pressure region characteristic of the centre of a
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streamwise vortex structure. Note that nonphysical wiggles appear in the the pressure and axial

vorticity fields. This is because FCT checks for monotonicity only in the conserved quantities

(p, pvz, pvP, Pz, Et). Nonphysical extrema can therefore arise in the nonconserved quantities as

pointed out in Section 3.1.1. One means of controling this situation is through flux synchronization

[231 whereby the antidiffusive fluxes for each fluid variable are all corrected by the same factor.

The passive scalar plot shows contours of V = 0.3 to 0- = 0.7 in increments of 0.1. It there-

fore is representative of the interface between fluid particles originating above the lobe and those

originating below the lobe. It can be seen that large portions of fluid from the upper stream have

been swept by the induced velocity of the streamwise vortex into the bottom half of the channel.

Intuitively, this represents an improved situation in terms of mixedness. This is an example of the

large scale motions that Marble [49] recognizes as playing an important part in speeding up the

mixing process along with molecular diffusion. The passive scalar equation modelled includes no

diffusion term so any measured mixing is purely numerical in origin. As Marble points out large

scale motions improve mixing by extending the interface between the two fluids and thus providing

a larger area through which diffusive mixing can occur. In the absence of diffusion, we can estimate

mixing properties in terms of the mixing rate that would occur if we suddenly "switch on" diffusion

and allow molecules to diffuse from regions of 0 = 0 to ip = 1 and vice versa. The mixing rate

would then be given by

"j f NdV = V -(kV)dV

= f kDE . VdS (4.26)

where kD is the transport coefficient appropriate for the diffusion of molecules, N is the total

number of molecules per unit volume and

kD = x~N (4.27)

is the coefficient of diffusion (see for example Batchelor [48]). We assume that the flow was theo-
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retically inviscid and nondiffusive before diffusion is "switched on" and so the only change in VO

comes about due to changes in streamtube area. In the absence of diffusion and severe changes in

streamtube cross-sectional area, we can then estimate the term Vb to be aproximately constant

along the interface and hypothesize that the major contribution to changes in the mixing rate given

in Equation (4.26) is due to changes in the interface area. Therefore we can approximately quantify

the mixing rate by

a j NdV si s =. 5  (4.28)

(We also assume that the interface lies along the i = 0.5 contour in each axial plane.) Figure 4.23

shows the line graph of si versus distance from the lobe trailing edge. It can be seen that si increases

almost linearly with axial distance and reaches a value of si = 2.56 which is almost four times its

value at the trailing edge.

A further check in the validity of the solution in the mixing duct is provided by a Trefftz plane

analysis discussed in [7]. This analysis tracks the evolution of the vortex sheet from the initial

conditions given by the circulation distribution at lobe trailing edge as depicted in Figure 4.15.

The analysis uses the slender body approximation so that one can transform the steady three-

dimensional problem into an unsteady two-dimensional problem. Axial velocity is assumed constant

and therefore a simple linear relationship exists between time and axial distance. Viscous and

diffusive effects are included in the analysis with Re = r = 360 and ' = 1. The Trefftz plane

analysis in [7] does not include the potential influence of the presence of the lobed mixer. A

comparison of the two solutions is presented in Figure 4.24 and Figure 4.25 which show the I

distribution at axial locations 4A and 9A downstream uf the lobe trailing edge. It can be seen that

rather good agreement is obtained between the two solutions once account is taken of the diffusive

effects in the Trefftz plane analysis. The degree to which the potential effect affects the downstream

evolution can be gauged by comparing pressure fields at lobe trailing edge. Figure 4.26 show the

respective pressure distributions at trailing edge. Except for differences at the symmetry boundary
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where slight deterioration in the quality of the FVFCT solution occurs due to lack of resolution

and at midspan of the trailing edge where the FVFCT solution gives a slightly lower pressure,

the pressure fields are very similar. From the evidence presented in Figures 4.24-4.26 it can be

concluded then that the potential effect for the low penetration mixer does not significantly affect

the downstream evolution.

4.4 Low Penetration Mixer: Supersonic Calculation

An inflow Mach number of Moo = 2.0 is used for this calculation. The same grid was used as the

one used in the subsonic case (see Figure 4.4). The rationale for this decision is as follows. Although

the convective velocities will be larger implying larger convective distances, the transverse velocities

should scale with the convective velocity (vy - vz tan a). Compressibility effects notwithstanding,

it was felt that the phenomena of interest should occur in approximately the same axial distances.

This prediction proved to be correct. Parameters used in the numerical algorithm were v2 = .0833,

741obe = 0.0002 and 74d,,c = 0. The convergence history is shown in Figure 4.27 and it can be seen

that the final value of e was 2.6 x 10- 4 after 2400 timesteps with At = 0.005. This can be taken to

be sufficiently small for steady flow to be assumed. However, unlike the subsonic case, e appears

to have reached its lowest value at this point and no further reduction seems likely to occur. One

explanation for this is the lack of fourth order dissipation in the mixing duct. Although there is

fourth order dissipation in the region upstream of the lobe trailing edge, pressure waves associated

with small background residual oscillations can not travel upstream since flow is supersonic, in

contrast to the subsonic case. Hence for the supersonic case, the nonlinear dissipation associated

with FCT is the only mechanism for damping out background oscillations in the mixing duct.

Compressiblity effects for this case would be expected to influence the flow in the lobe region

through the effects of shocks and expansions. However, since the angle of the lobe is small, shocks

will be weak. Also, the transition from flat plate to sinusoidal profile with linear amplitude variation
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is gentle with a large radius of curvature. Therefore isentropic compression waves will be formed

until the compression waves coalesce. The limiting case is the 2-D case which, using Prandtl-Meyer

relations, gives

M2 = M(v 2 )= M(v2 - 5.770) = M(20.620 ) = 1.796 (4.29)

The Mach angles are therefore

1 = sin-( ) =300  p2 = sin-1 ) = 39.60 (4.30)
2 1.7 9 6

and the compression waves will coalesce at an approximate axial distance

tan paXc= tan 2  - 3.31 (4.31)
tan A2 - tan 1

On the other hand the Mach number and angle in the expansion wave can be calculated from

Prandtl-Meyer relations (assuming 2-D flow). They are

M2 = M(v 2) = M(v• + 5.770) = M(32.160 ) = 2.216

1
,2 = sin-l1( 1 ) = 35.1701.796

and this rough estimate tells us that the expansion waves emanating from the trough leading edge

would reach the symmetry boundary at

0.5
Xe 0.71 (4.32)

tan/2

for a 2-D case. Therefore, from this approximate 2-D analysis, it is expected that expansion waves

will weaken the compression waves long before they have a chance to coalesce into a shock. The

three-dimensional supersonic flowfield in the region of the lobe is depicted in Figure 4.28 which

shows three-dimensional plots of cp, vy and v,. As expected no strong shocks are evident. Other

aspects of the flowfield are very similar to the subsonic case (Figure 4.13) with spanwise pressure

gradients again driving fluid from crest to trough. Figure 4.29 shows contours of total pressure

change from inflow to lobe trailing edge. The largest absolute value is 2.3% of the freestream total
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pressure. It would appear that most of this variation is numerical in origin since the supersonic

compression and expansion take place isentropically.

Significant differences are observed, however, in the loading distributions, Figure 4.30 and Fig-

ure 4.31 showing the line and contour plots, respectively, of the loading distribution. The loading at

crest reaches a maximum about two cells downstream of the leading edge and, unlike the subsonic

case, then decreases to a (small) negative value before rising above zero again. Also, the loading

does not drop smoothly to zero at trailing edge (since information can not travel upstream) but

rather the pressures are equalized by the formation of a weak shock and expansion fan. This is

shown in Figure 4.32. The solution in this region is contaminated by small oscillations that are

large compared to variations in physical quantities. They are a result of the sudden imposition

of a steep gradient normal to the supersonic flow and also partly due to the previously-mentioned

insufficiency of resolution adjacent to the symmetry boundary.

Figure 4.33 shows the transverse velocity distribution (normalized by inflow velocity) at trailing

edge. Comparison with Figure 4.7 shows that the two are almost equivalent with all the contours

matching except for the curved zero level contour at y = 1 and y = -1 associated with compression

waves emanating from the lobe leading edge and their reflections from the symmetry boundary. The

transverse profiles of normalized transverse velocity at lobe crest for subsonic and supersonic cases

are shown in Figure 4.34 confirm that the features are essentially the same except for small differ-

ences associated with the above-mentioned compression characteristics. The normalized transverse

velocity reaches the same maximum of v/U = .094 at the surface of the trough close to the ideal

maximum of (v/U)ideal = tan(5.77) = .1.

The circulation profile at trailing edge is shown in Figure 4.35. Qualitatively, the profile is very

similar to that found in the subsonic case (see Figure 4.15). The total circulation is r* = 0.189

and nondimensional circulation is

r* = r/UA = 0.0945 (4.33)
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This value is not very different from that of the subsonic case.

The evolution of the vortex sheet in the mixing duct is also qualitatively very similar to the

subsonic case. The largest absolute value of total pressure change in the mixing duct (see Fig-

ure 4.36) is about 5% of the freestream total pressure. Figure 4.37 confirms that the secondary

flow field once again persists as it is convected downstream in the mixing duct. Also, the increase

in circulation with axial distance is much smaller as shown in Figure 4.38. Circulation peaks at

about 0.198 or 5% greater than the trailing edge value.

The vortex structure again evolves to one similar to a vortex with a viscous core as it moves

downstream (see Figure 4.37 and Figure 4.39). No strong shocks are evident in the mixing layer.

The contour plot of 0 show that fluid originating from the upper stream is swept (if anything, more

* rapidly) into the lower half of the channel. Comparison of the interface length, si, for the subsonic

and supersonic cases (Figure 4.40) reveals that the supersonic case exhibits very slightly improved

mixing properties. The interface length at 15A from the lobe trailing edge is si = 2.75, an increase

of 7% over the subsonic case. (Note that this is also the factor by which the respective circulations

differ.)

4.5 High Penetration Mixer: Subsonic Calculation

An inflow Mach number of M,oo = 0.5 was used for this calculation. The grid used is shown

in Figure 4.5. Parameters used in the numerical algorithm were v2 = .125, 4Lobe = 0.0004 and

N4d•c = 0. The convergence history is shown in Figure 4.41 and it can be seen that the final value

of e was 2.3 x 10 - 4 after 8400 timesteps with At = 2.5 x 10 - 3 . This is taken to be sufficiently small

for steady flow to be assumed.

Figure 4.42 shows a three-dimensional plot of APt/Pt. in the region of the lobe. The maximum

absolute value of APt/Pt. is found to be about 3%. Although this is an order of magnitude larger

than that found in the low penetration case, it still represents a marginally acceptable numerical
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error in the region of the lobed mixer. The three-dimensional flowfield in the region of the lobe is

depicted in Figure 4.44 which shows three-dimensional plots of cp, vy and v,. Although gradients

are much larger than the low penetration case, the qualitative features of the flowfield are similar.

The pressure field at the leading edge is characterized by much larger variation of c, (, +25% at

lobe crest and - -25% at lobe trough) than the low penetration case. Transverse velocity (vy)

quickly attains a maximum at z/A = 0 and on the inner surface of the mixer. Figure 4.43 shows

the transverse velocity (vv) profile at this spanwise location with the experimental results. The

experimental results are for a mixer that has the same penetration angle, but nondimensional values

of amplitude (a/A), mixer length (Lm/A) and wall distance (H/A) that are increased by a factor

of 2. Hence, the geometrical set up used for the numerical.calculations presented here double the

wavelength of the UTRC configuration , In spite of this difference, the profiles are quite similar, with

the numerical solution giving a maximum transverse velocity v/Uoo = .347 that closely approaches

the ideal value of (vy/Uoo)ideal = tana = 0.4. These results suggest that the transverse profile of

vy at the symmetry boundary is not strongly dependent on A. Magnitudes of v, are smaller relative

to the maximum value of transverse velocity vZ,,a/Vyu,, = .360 than for the low penetration case

Vzmaz ,/VYma = .746. The reason for this decrease is that the spanwise velocities (i.e. velocities

tangential to the surface but normal to the streamwise direction) created by the spanwise pressure

gradients have a reduced relative component of v, than for the low penetration case and a larger

relative component of vy. This is because the lobe is closer to vertical at midspan.

The loading shown in Figure 4.45 and Figure 4.46 indicates that again, the loading is mostly

confined to a region just downstream of the lobe trailing edge (except for a narrow region adjacent

to the symmetry boundary that extende to close to the trailing edge). Indeed, because the axial

length of the lobe is less, the Kutta condition forces the region of high loading to be confined to

a region of smaller extent (from x = 0 to z = 0.5) than the low penetration mixer(from x 0 to

zx 1.0). This reduces the effective area over which the spanwise pressure gradient is significant
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but this is matched by a corresponding increase in the magnitude of the loading.

The residual from Equation(4.25) is shown in Figure 4.47. The magnitude of this residual is

an indication of the numerical production of entropy. The maximum value of e is about 25% of

a dynamic pressure corresponding to about 0.037Ptoo which is of the same order as the maximum

variation in total pressure, as expected. Although larger than the corresponding values for the low

penetration mixer cases, these are still marginally acceptable.

The circulation distribution along the lobe trailing edge is shown in Figure4.48. Qualitatively,

the profile is similar to that found in the low penetration case. The total circulation is computed

to be r = 0.268 and the nondimensional circulation is

=* = 0.536 (4.34)

It can be seen from Figure 4.49, which shows the axial variation in circulation, that the secondary

flowfield persists as it is convected downstream, as anticipated. These results also show that the

axial variation in circulation can be as large as 10%. Total pressure variation in the mixing duct

(Figure 4.50) is characterized by a maximum absolute value of about 7% of the freestream total

pressure (or 47% of the freestream dynamic pressure). Again this is all of numerical origin for

subsonic flow. As expected, this is larger than the corresponding value from the lobe region since

the presence of the vortex sheet necessitates more flux correction with its associated detrimental

effect on the monotonicity of nonconserved quanitities. Close examination of the cp, w. and 4

contours in Figure 4.51 reveals that small scale oscillations are present even in the 0 contours.

Associated with the above-mentioned variation in total pressure and circulation, the solution for the

high penetration case is expected to have a higher degree of numerical contamination than the low

penetration case. The main source of numerical error is believed to be associated with the quality

of the numerical grid (Figure 4.5) used for the numerical solution. The closely packed grid lines

around the lobe surface and the downstream surface emanating from the trailing edge were designed

to optimize resolution in regions where gradients are expected to be highest. However, as pointed
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out in Section 2.3, zeroth order dissipation fluxes are reduced with respect to convective fluxes in

fine regions of the grid. Hence, the effectiveness of FCT appears to be reduced in these regions

with the flux limiter no longer ensuring monotonicity. Furthermore, the resulting distortedness of

the grid can also be a source of error. Dannenhoffer [50] separated these grid-related errors and

categorized them in terms of stretchedness, skewness, curvedness and degree of convergence. Most

of the error terms vanish as the temporal variation tends to zero. The temporal variation presented

here has converged to a value of e = 2.3 x 10- 4 which is larger than the corresponding value for the

low penetration subsonic case (e = 2.3 x 10-s). Hence the grid-related errors associated with the

temporal variation will be larger for the high penetration subsonic case than for the low penetration

subsonic case. The errors associated with grid stretching appear to have strong influence on the

solution presented here, particularly as the outflow boundary is approached. When a grid of good

quality is used for the implementation of this numerical calculation, an improved numerical solution

can be anticipated.

In spite of the presence of these numerical oscillations, the results nevertheless yield a reasonable

description of the evolution of the vortex sheet in the mixing duct. Figure 4.51 and Figure 4.52

show that roll-up initially occurs near the extremities of the streamwise vortex structure where two

clumps of vorticity are visible. This feature has also been seen in a separate Trefftz plane analysis

[7] using the circulation distribution shown in Figure 4.48 as the initial condition. The streamwise

vortex structure eventually evolves into a circular shape close to the exit of the computational

domain. The rate of increase of si shown in Figure 4.53 is improved over the low penetration

subsonic case from 0.120 to 0.784. This gives a ratio of 6.53, close to the ratio of normalized

trailing edge circulations, 6 = 5.96..090
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4.6 High Penetration Mixer: Supersonic Calculation

An inflow Mach number of Moo = 2.0 was used for this calculation. The same grid (Figure 4.5)

was used as for the subsonic calculation presented in the previous section. Parameters used in

the numerical algorithm are v2 = .0833, 74roe, = 0.0002 and 74,,., = 0. The temporal variation

of e is shown in Figure 4.54. It is apparent that convergence was not achieved for this case.

For completeness, a value of e was 1.1 x 10-2 is obtained after 4800 timesteps for At = 1.25 x

10- 3. An examination of the solution after 4800 iterations shows that it is the flow variables

in the neighbourhood of the duct exit that contribute the major portion to this large temporal

variation. This temporal variation is a result of numerical oscillations of the same nature as those

found in the subsonic case. When flow is supersonic, pressure waves associated with background

residual oscillations cannot travel upstream into the lobe region (where fourth order dissipation

exists). Since there is no artificial dissipation in the mixing duct except for the nonlinear dissipation

associated with FCT, these residual oscillations are not damped out as efficiently as for the subsonic

case. As for the subsonic case, the worst oscillations occur close to the outflow boundary where the

grid stretching and cell aspect ratios are largest. However in the supersonic case, these oscillations

become so severe that flow becomes subsonic in certain parts of the outflow axial plane thereby

complicating the imposition of outflow boundary conditions in the boundary condition procedure.

However, as flow is supersonic everywhere except close to the outflow boundary, one might expect

that these numerical oscillations do not contaminate the solution in the neighbourhood of the lobed

mixer.

In view of this, it is proposed that the solution there can reasonably be used for investigating

the flow at these conditions. Figure 4.55 shows APt/Pt. variation upstream of the lobe trailing

edge and the maximum absolute value of APt/Pt~ is found to be about 30%. (This positive change

violates the 2nd Law of Thermodynamics. Negative changes,however, have a physical basis in the

presence of shocks which we expect for this supersonic flowfield.) However, this positive change in
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APt/Pt., is local (a result of the fact that Pt is not a conserved quantity, as mentioned previously)

and so the solution is only contaminated locally. Bearing this in mind, we can proceed to analyze

other aspects of the flowfield in the lobe region. Figure 4.56 is a contour plot of density at a

spanwise location corresponding to lobe crest (z = 0). Close to the leading edge, a shock is clearly

in evidence in the upper stream and an expansion occurs in the lower stream. The existence of

this shock is more clearly elucidated in Figure 4.57, which shows transverse profiles of density at

lobe crest (z = 0) at axial locations from the leading to trailing edges. The sharpest discontinuity

in these profiles corresponds to density differences across the lobe boundary while a discontinuity

(smeared out over two cells) can be seen propagating from lobe boundary upwards until it impinges

on the upper wall at z/A = 1.25. A high density, high pressure region appears in the expansion

fan below the lobe. Examination of Figure 4.58 shows that this high pressure region is a result

of the conical shock that emanates from the crest on the far side of the channel impinging on the

symmetry boundary. Interaction of compression and expansion waves occurs at the lobe surface as

we move away from the leading edge region. This is reflected in the loading distribution shown in

Figure 4.59 and Figure 4.60. The shock at leading edge and crest can also be deduced from this

figure.

The circulation distribution at lobe trailing edge is shown in Figure 4.61. The profile is similar

to that found in the subsonic case, both peaking at almost identical normalized values (1.97 x 10-2

for the subsonic case and 2.06 x 10-2 for the supersonic case. The total circulation is computed to

be r = 1.108 so that its nondimensional value is

rt = 0.554 (4.35)

which again is not very different from that of the subsonic case.

Figure 4.62 shows that the circulation remains almost constant up to a point about three wave-

lengths downstream of the lobe trailing edge at which point quite large oscillations in circulation of

about 10% of the trailing edge circulation can be seen. These results indicate that the solution in
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the flow domain within 3A of the trailing edge can reasonably be used for analysis. Total pressure

variation in the mixing duct (Figure 4.63) is characterized by a maximum absolute value of about

72% of the freestream total pressure. Some of this variation is due to the shock system in the lobe

region but there is also negative total pressure v riation that is numerical in origin. Figure 4.65

and Figure 4.64 show that, like the subsonic case, two distinct streamwise vortices are again formed

in the mixing duct. Figure 4.66 shows that si varies with axial distance in a similar fashion to the

subsonic case in the region of interest.

4.7 Summary

Table 4.1 shows the results of the calculations discussed in the previous four sections and a

comparison with the results of the UTRC experimental investigation [3]. They can be summarized

as follows

(1) Good qualitative agreement is found between computed results and experimentally-

measured results for the low penetration mixer in terms of trailing edge circulation, vy

distribution, and the secondary velocity vector field

(2) The effect of compressibility on the generation of streamwise vorticity and on the large

scale motions in the mixing layer is found to be small for the lobe geometries inves-

tigated. This can be seen by comparing rows 1 and 2 for the low penetration mixer

and rows 3 and 4 for the high penetration mixer. When the inflow Mach number Mo

increases from 0.5 to 2.0, the computed results show that the trailing edge circulation

rte and the growth in interface area asi/az remains essentially unchanged in the case

of the low penetration and high penetration mixers.

(3) Comparison of the circulation and interface length variation results for constant Moo

reveals a close correlation between r and asil/z. This can be seen by comparing the
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values in Table 4.1

(4) The dependence of rte on the penetration angle a and the trailing edge amplitude

a/A can be seen to agree with the inviscid scaling law derived in [3]. The scaling law

is derived in an approximate analysis [3] that gives the following expression for the

circulation introduced by a lobed mixer

r = C aUreiatan a (4.36)

Values of C 1 found in [3] and in the present work are listed in the eighth and ninth

columns in Table 4.1. Agreement between the numerical and experimental values is

good.

Table 4.1: Table of Lobed Mixer Results

Mixer a/A a Moo r Pr* 2" C1  C 1,,

LPM 0.25 5.77 0.5 0.045 0.090 0.120 3.60 -

LPM 0.25 5.77 2.0 0.189 0.095 0.128 3.78 -

HPM 0.5 22 0.5 0.268 0.536 0.784 2.68 -

HPM 0.5 22 2.0 1.108 0.554 0.784 2.77 -

LPM(UTRC) 0.25 5.77 0.1 0.008 0.080 - - 3.3

HPM(UTRC) 1.0 22 0.1 0.098 0.980 - - 2.4
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y-momentum profiles at midspan
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Figure 4.1: pvy profiles at midspan of lobe trailing edge and various axial locations downstream for

coarse grid calculations. Limiter 1 is the Zalesak limiter with Boris-Book limiter prelimiting the

(- and g- fluxes. Limiter 2 is the Zalesak limiter with Boris-Book limiter prelimiting the ý-, r7-

and g- fluxes.
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Low Penetration Mixer

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x

Figure 4.2: Low penetration mixer: (a) isometric view; (b) front elevation
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High Penetration Mixer
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Figure 4.3: High penetration mixer: (a) isometric view; (b) front elevation
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Figure 4.4: Numerical grid generated for the low penetration mixer: (a) isometric view of inflow,

outflow, trailing edge and mid channel computational planes; (b) magnified isometric view showing

(= 10, ( = 33, ( = 97 and I = 17 planes; (c) trailing edge plane.
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Figure 4.5: Numerical grid generated for the high penetration mixer: (a) isometric view of inflow,

outflow, trailing edge and mid channel computational planes; (b) magnified isometric view showing

= 9, = 25, = 65 and 17 = 17 planes; (c) trailing edge plane.
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Figure 4.6: Convergence history for subsonic low penetration mixer case

Figure 4.7: Contour plot of transverse velocity normalized by Uoo at an axial location 0.02A down-

stream of the lobe trailing edge. Nine contours in increments of .02 between -.08 and +.08 are

plotted.
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Figure 4.8: Velocity vector field formed by v2 and v, components at the spanwise location corre-

sponding to the lobe crest z = 0
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Figure 4.9: Secondary velocity vector field at an axial location 0.02A downstream of the lobe trailing

edge
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Figure 4.10: Contour plot of transverse velocity normalized by U.o as found by the UT.RC expert-

mental investigation

1.0 . O

Figure 4.11: Secondary velocity vector field as found by the UTRC experimental investigation
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Figure 4.12: Transverse velocity profiles versus transverse distance, y at lobe crest (z = 0) and at

an axial location just downstream of the lobe trailing edge as found by numerical investigations

(M, = 0.5 and M• = 0.1) and the UTRC experimental investigation
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Figure 4.13: Three-dimensional contour plots of cp, v. and v_. The first and last axial slices

are located at the leading and trailing edges, respectively. The exact axial locations are

z/A = -. 05, 0.49, 0.94,1.50,1.95, 2.49, 2.97. Contours are as follows:

cp: 10 contours from -.0225 to +.0225 in increments of .005;

v.: 8 contours from -.035 to +.035 in increments of .01

v,: 10 contours from -.045 to +.045 in increments of .01

(continued overleaf)
126



•0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

('4

C0

('4

in

o

o40u,
..

U

U,

0
C-

0
o

o01

.4. -3. -2. -1. 0. 1. 2. 3. 4.
x

Figure 4.14: Axial variation of cp.,,,, and cp,,o., for crest, quarterspan and midspan spanwise

locations. These correspond to S = 1, 5, 9, respectively.
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Figure 4.15: Circulation versus spanwise distance at lobe trailing edge.
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Figure 4.16: Loading cpp,,, - cpo,,,, on lobe surface projected onto a y = consent surface
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Figure 4.17: Residual from Equation 3.26 on lobe surface projected onto a y = constant surface.

Four contours from -.015 to +.015 in increments of .01 are plotted.
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Figure 4.18: Threedimensional contour plot of total pressure change in flowfield around mixer.

The first and last axial slices are located at the leading and trailing edges, respectively. The exact

axial locations are x/A = -. 05,0.49,0.94,1.50, 1.95,2.49,2.97. Eight contours from -1.75 x 10 - S

to +1.75 x 10-3 in increments of 5 x 10- 4 are plotted
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Figure 4.19: Contour plots of APt/Po, at various axial locations from lobe trailing edge to mixing

duct exit. The axial locations are z/A =2.97, 4.01, 4.97, 5.96, 7.06, 8.03, 9.02, 9.97, 11.06, 12.01,

13.06, 13.83, 15.11, 16.04, 17.05, 18.13, 18.71. Nine contours from -9 x 10-3 to 7 x 10-3 are plotted

in increments of 2 x 10- '
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Figure 4.20: Secondary velocity vector field at axial locations z/A = 3.02, 11.06, 18.71
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Figure 4.21: Circulation variation with axial distance

132

I , II I I I
I I I , I

I 1 I I
I , I , r I

I I I t ,
r I II I , , ,

I I , , I
I 1

.---------- ~-,,,,,,,,,,r,,,, ----. ---I I I
I I I I

I , 1 I ,
I

· I I I I
· I I I
I , , I , ,
· I I
I I ( I I ,
t I I I

t I t I I I
----------- ~---,,,,-,,,~,,,,,,,,,,,~,,,,----------r,.,,,,,,,,,~.,,,,,,,,,,J,,,,,

I I , I , I
( I I I I
) I I I I

I I ) 1
( I I
1 ) I I I I
) I I I I

I I
I r I I I

I , I I I r
1 I I

----------- ~-----------~-----------~--,, ------- ~-----------~------,--,-J-----,,,
( I I I I
I ) I I
I I ( I I
I ) ( I ( I I
I ( ) ) I I (

I ) ( I
( I I I

I ) I I ) tI t
I I ( I I
( I I

----------- '-----------~-----------~----
I I I I

I , 1
I , I , I I
I I , , I
I I I , I I I
I , , , I
· I I I I
I I I , I ,
I I I I I
I I , , ,
· I I 1

~-------,-,~,,,,,,,,,,,~-----------~----,,,,,,,r,,,,,,,,,,,r,,,,III
I , 1 , I

· I I I
I I I , ,I I , I ,
· I I
· I I I I Ir I I , I I
· I I
I I , I t I I

I ,

'''`

' ·

·'' ' ''· ·''
~ ' ' ' '

Id

7 446+ II i i i i i ioF

· .

_ . • 0 • 0
I •

Q 
I • $ •

i•QliQh.

·I ' ~'·

· ' '

·' I

6



I. 2. 3. 4. 5. 6. 7. 8. 9
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Figure 4.22: Contour plots of w, w2 and cp, at various axial locations from lobe trailing edge to

mixing duct exit. The axial locations are z/A =2.97, 4.01, 4.97, 5.96, 7.06, 8.03, 9.02, 9.97, 11.06,

12.01, 13.06, 13.83, 15.11, 16.04, 17.05, 18.13, 18.71. Contours are as follows:

i: 5 contours from 0.3 to 0.7 in increments of .1;

w.: 9 contours from 0.1 to 1.5 in increments of .02

cp: 5 contours from -.0125 to +.0075 in increments of .005

(continued overleaf)
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Figure 4.23: Length of 4' = 0.5 contour versus axial distance for subsonic low penetration calculation
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Figure 4.24: Comparison of ak contour plots at an axial location 4A downstream of the lobe trailing

edge as calculated by 3-D FCT method (left) and Trefftz plane method

0.00 0.25 0.50 0.75 1.Co 1.25 1.50

Figure 4.25: Comparison of 0 contour plots at an axial location 9A downstream of the lobe trailing

edge as calculated by 3-D FCT method (left) and Trefftz plane method
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Figure 4.26: Comparison of cp contour plots at the lobe trailing edge as calculated by 3-D FCT

method (left) and Trefftz plane method

e

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
iler x10"3

Figure 4.27: Convergence history for supersonic low penetration mixer case
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Figure 4.28: Three-dimensional contour plots of cp, vy and v, for supersonic low penetation case.

The first and last axial slices are located at the leading and trailing edges, respectively. The exact

axial locations are z/A = -. 05, 0.49, 0.94,1.50, 1.95, 2.49, 2.97. Contours are as follows:

cp: 14 contours from -.0325 to +.0325 in increments of .005;

vv: 10 contours from -.18 to +.18 in increments of .4

v,: 10 contours from -.18 to +.18 in increments of .4

(continued overleaf)
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Figure 4.29: Threedimensional contour plot of total pressure change in flowfield around mixer.

The first and last axial slices are located at the leading and trailing edges, respectively. The exact

axial locations are z/A = -. 05,0.49,0.94,1.50, 1.95,2.49,2.97. 12 contours from -2.75 x 10-2 to

+2.75 x 10-2 in increments of 5 x 10 - 3 are plotted
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Axial variation of cp.,,., and Cp,. w, , for crest, quarterspan and midspan spanwise

supersonic calculation. These correspond to " = 1, 5, 9, respectively.
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x
Figure 4.31: Loading cp.,,,, - c,,,, on lobe surface projected onto a y = consant surface for

supersonic case.
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Figure 4.32: Contour plot of cp at spanwis. location adjacent to the symmetry boundary (" = 1)

Figure 4.33:

downstream

between -.08

Contour plot of transverse velocity normalized by U, at an axial location 0.02A

of the lobe trailing edge for supersonic case. Nine contours in increments of .02

and +.08 are plotted.
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Figure 4.34: Transverse velocity profiles at lobe crest (z = 0) and at an axial location just down-

stream of the lobe trailing edge as found by numerical investigations M". = 0.5 and M,2.0

Figure 4.35:

tion calculati
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ze at oe traiing edge for supersonic
Circulation versus spanwise distance at lobe trailing edge for supersonic low penetra-

ion.
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Figure 4.36: Contour plots of APt/P, at various axial locations from lobe trailing edge to mixing

duct exit. The axial locations are x/A =2.97, 4.01, 4.97, 5.96, 7.06, 8.03, 9.02, 9.97, 11.06, 12.01,

13.06, 13.83, 15.11, 16.04, 17.05, 18.13, 18.71. Nine contours from -5.5 x 10-2 to 2.5 x 10-2 are

plotted in increments of 1 x 10-2

142



s 0.71 00 00 0.25 0.50

. , . . I - I

I ' ' I
r l · 1.

I ,
r , ( ,,,r r

1I1 I r)(LI

I \ II, I
1

(
\ ·

r r

III~.~

~..····..

·.

I , 1 , I I
I I I , I 1 I

I I I I 1
I I I 1

I I I I I I ,
I I I I I I I
I , I I , I I
( I I I I

I I , I I I
I , I I I ,
I , I I I ,

..... ,,,.,.~,,,,,,,,,,,r..,,,,,,,,,r,,,.
t t I I I
I , I , I I
I , I , I
· I I I I 1
I I I I , I ,
I I 1 , ,
1 I , I I I I
· I I I I
I I I , I I
I I I I r 1
I , , I D I I

.,,,.,,,,,.~,,,,,,,,,,,~,.,,,,,,,,, ,,,.,,,,,,,,, ,,,,,~,,,,, ,,,,r,,,---,,-
I I I , ,

1 t , I , I
t I I I I I
I 1 I I , I
I I I , I 1

1 I
I , I I

I I I , , I ,
I , I I I I

I t I I I r
.. ,,,,,,,,,~,,,,,,,.,,.~,-,,,,,,,,,r,,,,

I I I I I I
I , , I I

t I I I I
I , ( I I I
I i , , ,

I I I t I
1 I I I P I )
) t I I
I ( ( ) ) ( (
( I I 1
I I I I I I 1

.. ,,.,,,,,.r,,,,--,,,~-~-.,.-,,-.-,~,,,,
· r I I I
I 1 I r I I

· I 1 r I
I I , I I I r
I I , 1 I I I
· r I I
I I t 1 I t ,
I I , I I
I , , I , ,
r I I I r r

I 1
.,,,,,,,,,,i,,,,,,,,,,,~,,,,,,,,,,,r,,,,

I I I I
I t I I r I
I t , , I I ,

t 1 r
t I I I I

I I t , I t )
I I ) ( I I I
) I I I
( I I I
( I I
1 I ( ) I I

w

a s a o.s 0.0.29 Olga 0.79 1.00 0.TS 1, 0o0.00

a I I
'r.

1,
I

I
r

Il
r

rI 1

U

p

o

o

Q. i. 4. I'l. 13. 15. 17

,:.-

Figure 4.37: Secondary velocity vector field at axial locations x/A = 3.02, 11.06, 18.71
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1. 2. 3. 4. 5. 6. 7. 8. 9.
Figure 4.39: Contour plots of V;, w. and cp, at various axial locations from lobe trailing edge to

mixing duct exit. The axial locations are z/A =2.97, 4.01, 4.97, 5.96, 7.06, 8.03, 9.02, 9.97, 11.06,

12.01, 13.06, 13.83, 15.11, 16.04, 17.05, 18.13, 18.71. Contours are as follows:

0: 5 contours from 0.3 to 0.7 in increments of .1;

w,: 4 contours from 1.0 to 7.0 in increments of 2.0

cp: 6 contours from -.0125 to +.0125 in increments of .005

(continued overleaf) 144
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Figure 4.41: Convergence history for subsonic high penetration mixer case
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Figure 4.42: Threedimensional contour plot of total pressure change in flowfield around mixer.

The first and last axial slices are located at the leading and trailing edges, respectively. The exact

axial locations are z/A = .08,0.32,0.53,0.724,0.98,1.25,1.48. Eight contours from -3.5 x 10-2 to

+3.5 x 10- 2 in increments of 1 x 10-2 are plotted
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Figure 4.43: Transverse velocity profiles versus transverse distance, y at lobe crest (z = 0) and at

an axial location just downstream of the lobe trailing edge as found by numerical investigations

(Mo = 0.5) and the UTRC experimental investigation
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Figure 4.44: Three-dimensional contour plots of cp, vy and v,. The first and last axial slices

are located at the leading and trailing edges, respectively. The exact axial locations are

z/A = .08,0.32,0.53, 0.724, 0.98, 1.25,1.48.. Contours are as follows:

cp: 12 contours from -.275 to +.275 in increments of .05;

vy: 8 contours from -.175 to +.175 in increments of .05

vz: 6 contours from -.125 to +.125 in increments of .05

(continued overleaf)
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Figure 4.45: Axial variation of cpupp,, and cp,,," for crest, quarterspan and midspan spanwise

locations. These correspond to " = 1,9, 17, respectively.
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Figure 4.46: Loading cp.,., - cp,.,, on lobe surface projected onto a y = consant surface
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Figure 4.47:

Six contours

!°

b

'0

Residual

from -.25
8

from Equation 3.26 on lobe surface projected onto a y = consant surface.

to +.25 in increments of .1 are plotted.
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Figure 4.48: Circulation versus spanwise distance at lobe trailing edge.
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Figure 4.49: Circulation variation with axial distance
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Figure 4.50: Contour plots of APt/Poo at various axial locations from lobe trailing edge to mixing

duct exit. The axial locations are z/A =1.48, 2.03, 2.52, 3.02, 3.53, 4.02, 4.55, 4.98, 5.51, 5.93, 6.42,

6.98, 7.63, 8.00, 8.81, 9.74. Eight contours from -7 x 10 - 2 to 7 x 10-2 are plotted in increments

of 2 x 10-2
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Figure 4.51: Contour plots of b, w. and cp, at various axial locations from lobe trailing edge to

mixing duct exit. The axial locations are z/A =1.48, 2.03, 2.52, 3.02, 3.53, 4.02, 4.55, 4.98, 5.51,

5.93, 6.42, 6.98, 7.63, 8.00, 8.81, 9.74. Contours are as follows:

0: 5 contours from 0.3 to 0.7 in increments of .1;

w.: 6 contours from 2.5 to 27.5 in increments of 5

c,: 8 contours from -.175 to +.175 in increments of .05

(continued overleaf)
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Figure 4.52: Secondary velocity vector field at axial locations z/A = 1.52, 5.51, 9.74 (see over)
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Figure 4.53: Length of , = 0.5 contour versus axial distance for subsonic high penetration calcu-

lation
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Figure 4.54: Convergence history for supersonic high penetration mixer case
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Figure 4.55: Threedimensional contour plot of total pressure change in flowfield around mixer. The

first and last axial slices are located at the leading and trailing edges, respectively. The exact axial

locations are z/A =.08, 0.32, 0.53, 0.724, 0.98, 1.25, 1.48. Eight contours from -3.5 x 10- 1 to

+3.5 x 10- 1 in increments of 1 x 10- 1 are plotted
CY I. .

x

Figure 4.56: contour plot of p at z = 0

157

I



0

O-0O,

0'

U,
0-

0

0. 1. 2. 3.

Figure 4.57: transverse profiles of p at z = 0 and axial locations :-

z/A =.08, 0.32, 0.53, 0.724, 0.98, 1.25, 1.48
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Figure 4.58: Three-dimensional contour plots of cp, v. and v,. The first and last axial slices

are located at the leading and trailing edges, respectively. The exact axial locations are

z/A = .08,0.32, 0.53, 0.724, 0.98, 1.25,1.48.. Contours are as follows:

cp: 8 contours from -.35 to +.35 in increments of .1;

vy: 10 contours from -.9 to +.9 in increments of .2;

vz: 6 contours from -.5 to +.5 in increments of .2

(continued overleaf)
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Figure 4.59: Axial variation of ,.., and cpo..., for crest, quarterspan and midspan spanwise

locations. These correspond to 5 = 1,9, 17, respectively.
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Figure 4.60: Loading cp,,.,, - cplo.,, on lobe surface projected onto a y = consant surface. 12

Contours are plotted from -0.55 to 0.55 in increments of 0.05
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Figure 4.61: Circulation versus spanwise distance at lobe trailing edge for high penetration super-

sonic case.
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Figure 4.62: Circulation variation with axial distance for high penetration supersonic case.
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Figure 4.63: Contour plots of APt/Pw, at various axial locations from lobe trailing edge to mixing

duct exit. The axial locations are z/A =1.48, 2.03, 2.52, 3.02, 3.53, 4.02, 4.55, 4.98, 5.51, 5.93,

6.42, 6.98, 7.63, 8.00, 8.81, 9.74. Sixteen contours from -7.5 x 10- 1 to 7.5 x 10-1 are plotted in

increments of 1 x 10-1

Figure 4.64: Seco.ndeay velocity vector field at axial locations :/A = 1.52, 5.51 (see over)
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Figure 4.65: Contour plots of 0, wý and cp, at various axial locations from lobe trailing edge to

mixing duct exit. The axial locations are z/A =1.48, 2.03, 2.52, 3.02, 3.53, 4.02, 4.55, 4.98, 5.51,

5.93, 6.42, 6.98, 7.63, 8.00, 8.81, 9.74. Contours are as follows:

0: 5 contours from 0.3 to 0.7 in increments of .1;

w.: 6 contours from -10 to 110 in increments of 20

cp: 8 contours from -.175 to +.175 in increments of .05

(continued overleaf)
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Figure 4.66: Length of / = 0.5 contour versus axial distance for supersonic high penetration

calculation
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Chapter 5

Conclusion

In this chapter, the conclusions from the work on the development of a numerical scheme for

three-dimensional Euler flows based on Zalesak's Flux-Corrected Transport algorithm, and its use

for the computational study of a three-dimensional lobed mixer, will be presented. The conclusions

can be divided into two categories: contributions in terms of numerical aspects and contributions

in terms of the fluid mechanical aspects.

5.1 Development of the Numerical Scheme

* A finite volume Flux-Corrected Transport algorithm, using Zalesak's fully multidimensional

antidiffusive flux limiter in three-dimensional curvilinear coordinates has been developed for

the numerical solution of the Euler Equations. This constitutes the first application of such an

algorithm for computing inviscid flow in a three-dimensional curvilinear coordinate system.

Computed results demonstrate the ability of the algorithm to predict flow features associated

with

(i) the generation and evolution of vortical flow in a lobed mixer and mixing duct

(ii) shock waves in transonic and supersonic flow

* It is found that the use of the directional timestep technique to implement the Flux-Corrected

Transport algorithm for computing flows in three-dimensional curvilinear coordinates yields

results that are unacceptable for interrogative use
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5.2 Fluid Mechanics of the Lobed Mixer

* Computed results agree well with experiments on a low penetration lobed mixer. Although

this is not a severe test, the implication is that flow features associated with lobed mixers can

be reliably predicted with the use of this Euler solver.

* Compressibility is only found to have marginal influence on the shed circulation for both low

and high penetration mixer.

* When mixing is measured in terms of the availability of interface area separating the two

streams, i.e. si, it is found that the mixing rate is not strongly affected by compressibil-

ity. This can be explained by the fact that even though the flow is supersonic in the axial

direction, the flowfield in the crossflow plane driven by the presence of streamwise vortices

remains essentially subsonic. (This fact is analogous to the successful use of the slender body

approximation theory for slender delta wing flow.)

* The higher penetration mixer shows a factor of 6.5 increase in asi/az and a factor of 6.0

increase in trailing edge circulation compared to the low penetration lobed mixer. The mixing

rate is thus increased by increasing the strength of the shed circulation, i.e. an increase in

penetration angle leads to an increase in mixing rate. Computed trailing edge circulation

agrees well with Paterson's scaling law [3].

* The computed results show that the shed vorticity evolves into a circular structure that

resembles a vortex with a viscous core. For the high penetration mixer, roll-up initially

occurs at the extremities of the vortex sheet before it takes on a circular shape.

* Comparison with a Trefftz plane analysis [7] for the low penetration mixer case shows that

the potential field influence of the lobed mixer is small.
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Chapter 6

Recommendations for Future Work

The recommendations for future work can be divided into two categories: (i) further improve-

ments of the numerical algorithm and (ii) further investigation of the physical phenomena of the

compressible mixing layer with strong streamwise vorticity through the use of this CFD code. The

division is somewhat arbitrary, however, and many of the points fall between the two headings.

6.1 Improvement of CFD Algorithm

Solution quality could be improved by using a one-dimensional Zalesak limiter to prelimit all

the antidiffusive fluxes. The present use of the Boris-Book limiter appears to have worked well

particularly in the region close to the lobe trailing edge. However, further downstream of the

trailing edge the vortex sheet no longer coincides with the ri = const grid lines; this may cause

clipping to occur due to the Boris-Book prelimiter which may result in the deterioration of the

solution quality in that region. More importantly, the use of the Zalesak limiter for prelimiting

purposes will allow prelimiting in every computational direction (e, r7, ) to be carried out. This is

because the Zalesak limiter does not clip nearly as severely as the Boris-Book limiter and may not

clip at all for this particular problem since it always has the solution from the previous timestep

wn- 1 to check for extrema (see Section2.5). Even if clipping does occur, the flexibility of the Zalesak

limiter is such that means exist for preventing clipping. The details of the technique will not be

discussed in detail here and the reader is referred to Zalesak's article [21] for further details. The

ability to prelimit in all computational directions may preserve monotonicity in each direction and

suppress small dispersive ripples that have been observed to arise with the present limiter.

Further investigation is needed into the selection of a low order scheme that remains effective
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in fine and coarse regions of the grid. The low order method used for most of the calcultions

reported herein, is the Euler method with zeroth order dissipation. One weakness observed with

this method is that, because dissipative fluxes decrease with respect to convective fluxes in fine

regions of the numerical grid, the flux correction process can become somewhat ineffective. The

Rusanov method, discussed in Section 2.7, is a first order scheme designed to overcome this problem.

This is done by multiplying the dissipative fluxes by a coefficient proportional to the local CFL

number. A systematic method for selecting the low order dissipation coefficient should be developed

in conjunction with this effort.

The effectiveness of the FCT scheme may be improved by correcting the antidiffusive fluxes

after both the predictor and the corrector steps instead of just the corrector step as is the case

with the present limiter. Although computationally more expensive, this may be more effective

in suppressing dispersive errors, particularly in the vicinity of discontinuities as discussed in Sec-

tion 3.1.1. Also, flux synchronization offers a means by which solution quality and computational

performance can be improved. Although this is a relatively new field, much research is being done

in this area and it is currently the state of the art in FCT circles. It is also relatively simple to

code.

The use of Zip differencing [22], as discussed in Section 2.6 is likely to significantly improve the

accuracy of the solution generated by the high order method acting alone. It will therefore also

improve FCT solution quality in smooth regions in addition to regions where FCT is active (as found

by Zalesak [22]). On the subject of the high order scheme, the possibility of using methods other

than Leapfrog-Trapezoidal should eventually be investigated. A Runge-Kutta method could be used

for the temporal discretization. (The attractiveness of the relaxed CFL condition (CFLmax = 2V2)

for a Fourth order Runge-Kutta method disappears when it is realized that At must also satisfy

the CFL condition for the low order method.) A spectral method could be used for the spatial

discretization. Zalesak's high order flux formulae [24] could also be used although it should be
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borne in mind that for grids with large stretching, this is pointless as the flux formulae will remain

first order.

The convergence rate to steady state could be improved if fourth order dissipation was used in

the mixing duct as well as the lobe region. The problem is that if this is done in a straightforward

manner, the vortex sheet will tend diffuse away. Some sort of switch could be used similar to the

pressure switch used in many Euler solvers that turns on second order dissipation in the region of

shocks. The most obvious way to implement this is with 0 as the argument of the switch. One of

the many possibilities is

Fi+1/2j,k = 748i+1/2,j,kVi+1/2,j,k(i+2,j,k - 3 Wi+1,j,k + 3 Wi,j,k - Wi-1j,k) (6.1)

where the switch is given by

+1,k 0 if i+1 - i-21 < 0.1
si+1/2,j,k = (6.2)

1 if Ii+1 - >_-2| - 0.1

Since this formulation requires logical operations to be performed, it may not vectorize very well.

If the detrimental effect on CPU time per iteration is excessive other alternatives should be looked

at.

6.2 Physical Aspects

The highest priority item in this section is to generate a better numerical grid for the high

penetration mixer (the low penetration mixer grid could also be improved). Aspect ratios (par-

ticularly in mixing duct, close to the outflow boundary) should be remain less than - 5 - 10 and

stretching (particularly in the rq- direction) should be kept below - 1.2 - 1.3. The current grids

waste resolution in regions far downstream of the lobe trailing edge because grid lines are clustered

on the mid channel sinusoidal surface emanating from the lobe trailing edge. This surface does not

coincide with the physical location of the vortex sheet beyond a certain distance from the trailing
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edge. It would be better to have a uniform grid in these places. The problem is to come up with

a way for the surface to undergo the transition from the trailing edge sinusoidal shape to a flat

surface without losing resolution where it is needed.

For a/A greater than 0.85, the present grid generator is not capable of generating a good quality

grid and an improved grid generation scheme is required for these cases. The innovative method

reported in [8] shows promise. Grids generated with this method should have improved skewedness

properties although some resolution may be wasted where the r) = const and s = const boundaries

intersect at the symmetry boundary. This will allow the flow in the high penetration mixer used

in the UTRC experimental investigation to be computed and will allow grids to be generated to

model advanced mixers such as those with square profiles and rounded corners and mixers with

past-vertical sidewalls.

The role of spanwise vorticity on the fluid dynamics of the mixing layer should be investigated

since, in real applications, the two streams that are being mixed have different total pressures. For

the fluid physics of the mixing layer to be properly modelled, the numerics will have to be able

to "capture" any resulting Kelvin-Helmholtz instability. Fine resolution in the mixing layer will

be needed and this will require some ingenuity in the grid generation scheme. Adaptive grids and

mesh embedding [50] could be used to automatically produce the highest resolution where it is

needed most but this will entail significant code alteration.

A more easily executed step would be to include molecular diffusion in the passive scalar equa-

tion. This will allow us to estimate the molecular mixing in a more tangible fashion. Along these

lines, diffusion of momentum and temperature should eventually be modelled so that the bulk

mixing properties of mixers between streams with different stagnation enthalpies can be calculated

accurately. A more practical short term alternative to the full Navier-Stokes equations are the

Thin-Layer Navier-Stokes equations in which viscous terms containing derivatives in the directions

parallel to the body surface are neglected. The Thin layer approximation would allow modelling
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of the boundary layers on the lobe surface and also allow separated and reverse flow regions to

be computed in a straight forward fashion. This will prove useful for the problem of spanwise

separation for lobes in which the spanwise flow has to pass over surfaces with severe curvature such

as may be found in advance mixers with past-vertical sidewalls.

172



Bibliography

[1] Bernal, L.P., Roshko, A. "Streamwise Vortex Structure in Plane Mixing Layers" J. Fluid

Mechanics (198C) 170 , pp.499-525

[2] Oates, G.C., "The Aerothermodynamics of Aircraft Gas Turbine Engines" AFAPL-TR-78-52

[3] Barber, T. Paterson, R.W., and Skebe, S.A. "Turbofin Forced Mixer Lobe Flow Modelling,"

NASA CR 4147, 1988

[4] Paterson, R.W. "Turbofan Forced Mixer-Nozzle Internal Flowfield, Part I - A Benchmark

Experimental Study," NASA CR 3492, April, 1982

[5] Werle, M.J., Paterson, R.W.,"Flow Structure in a Periodic Axial Vortex Array" AIAA-87-

0610, Reno, January, 1987

[6] Tillman, T.G., Patrick, W.P., Paterson, R.W. "Enhanced Mixing of Supersonic Jets" AIAA-

88-3022, Boston, 1988

[7] Qiu, Y., Ph.D. Thesis, Department of Aeronautics and Astronautics, MIT, June, 1990

[8] Malecki, R., Lord, W., "Navier-Stokes Analysis of a Lobed Mixer and Nozzle" AIAA-90-1453,

Reno, 1990

[9] Koutmos, P., McGuirk, J.J., "Turbofan Forced Mixer/Nozzle Temperature and Flow Field

Modelling" Int. J. Heat Mass Transfer, Vol.32, No.6, pp.1141-1153, 1989

[10] Roe, P.L., "Characteristic-Based Schemes for the Euler Equations," in Ann. Rev. Fluid Mech.

1986, 18, 337-65

173



[11] Steger, J.L., Warming, R.F. "Flux-Vector Splitting of the Inviscid Gasdynamic Equations with

Application to Finite Difference Methods," J. Comput. Phys. 40:263-293

[12] van Leer, B.M, "Flux-Vector Splitting for the Euler Equations," Lect. Notes in Phys. 170:507-

512

[13] Osher, S., Solomon, F. "Upwind Difference Schemes for Hyperbolic Systems of Conservation

Laws," Math. Comput. 38: 339-74

[14] Sod, G.A., "A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic

Conservation Laws," Journal of Computational Physics 27, 1-31 (1978)

[15] Spekreijse, S.P., "Multigrid Solution of the steady Euler Equations" Centrum voor Wiskunde

en Informica, Amsterdam, 1988

[16] Allmaras, S.R., "A Coupled Euler/Navier-Stokes Algorithm for th-e 2-D Unsteady Transonic

Shock/Boundary-Layer Interaction" GTL Report#196, March, 1989

[17] Boris, J.P. and Book, D.L., "Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algo-

rithm That Works," Journal of Computational Physics, Vol. 11, 1973, pp.38 - 69.

[18] Book, D.L., Boris, J.P. and Hain, K., "Flux-Corrected Transport II: Generalization of the

Method," Journal of Computational Physics, Vol. 18, 1975, pp.248-283.

[19] Boris, J.P. and Book, D.L., "Flux-Corrected Transport III Minimal Error FCT Algorithms,"

Journal of Computational Physics, Vol. 20, 1976, pp.397-431.

[20] Boris, J.P. and Book, D.L., "Solutions of Continuity Equations by the Method of Flux-

Corrected Transport," Methods in Computational Physics, Vol. 16, 1976, pp.8 5- 12 9.

[21] Zalesak, S.T., "Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids,"

Journal of Computational Physics, Vol. 31, 1979, 335-362

174



[22] Zalesak, S.T., "High Order Zip Differencing of Convective Terms" Journal of Computational

Physics, Vol. 40, 1981, 497-508

[23] Lohner,R., Morgan,K.,Peraire,J.,Vahdati,M., "Finite Element Flux-Corrected Transport

(FEM-FCT) for the Euler and Navier-Stokes Equations" Internationsl Journal for Numeri-

cal Methods in Fluids, Vol. 7, 1987, 1093-1109

[24] Zalesak, S.T., "Very High Order and Pseudospectral Flux- Corrected Transport (FCT) Al-

gorithms for Conservation Laws," Advances in Computer Methods for Partial Differential

Equations, Vol. 4, 1981, 126-134

[2' ] Zalesak, S.T., "A Physical Interpretation of the Richtmeyer Two-Step Lax-Wendroff Scheme,

and its Generalization to Higher Spatial Order" Advances in Computer Methods for Partial

Differential Equations, Vol. 5, 1984 pp. 491-496

[26] Grinstein, F.F., Oran, E.S. and Boris, J.P.,"Numerical Simulations of Asymmetric Mixing in

Planar Shear Flows," Journal of Fluid Mechanics, Vo1.165, 1986, pp.2 0 1-2 2 0

[27] Guirguis, R.H.,Grinstein, F.F, Young, T.R., Oran, E.S., Kailasanath, K., Boris, J.P."Mixing

Enhancement in Supersonic Shear Layers," AIAA-87-0369,1987

[28] Anderson, D.A.,Tannehill, J.C.,Pletcher, R.H., "Computational Fluid Mechanics and Heat

Transfer," Hemisphere Publishing Co., New York, NY, 1984

[29] Oran, E.S.,Boris, J.P., "Numerical Simulation of Reactive Flow," Elsevier Science Publishing

Co., New York, NY, 1987

[30] MacCormack, R.W., "Numerical Solution of the Interaction of a Shock Wave with a Laminar

Boundary Layer," Proc. of Second Int. Conf. on Num. Methods in Fluid Dynamics, Lecture

Notes in Physics, Vol.8, 1971, pp.151-163

175



[31] Thomson, J.F.,Thames, F.C.,Mastin, C.W. "TOMCAT - A Code fir Numerical Generation

of Boundery-Fitted Curvilinear Coordinate Systems on Fields Containing Any Number of

Arbitrary Two- Dimensional Bodies" Journal of Computational Physics, Vol. 24, 1977, 274-

302

[32] Kurihara, Y. "On the Use of Implicit and Iterative Methods for the Time Integration of the

Wave Equation," Monthly Weather Review, Vol.93, Jan 1965, pp.3 3 -4 6

[33] Grammeltvedt, A., "A Survey of Finite-Difference Schemes for the Primitive Equations for a

Barotropic Fluid," Monthly Weather Review, Vol.97, 1969, pp.384-404

[34] Emery, A.F., "An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Prob-

lems," Journal of Computational Physics, Vol. 2, 1968, 306-331

[35] Gentry, R.A., Martin, R.E., Daly, B.J., "An Eulerian Differencing Method for Unsteady Com-

pressible Flow Problems" Journal of Computational Physics, Vol. 1, 1966, 87-118

[36] Rizzi,A.,"Numerical Implementation of Solid-Body Boundary Conditions for the Euler Equa-

tions," ZAMM, vol 58, pp T301-T304 1978

[37] Blumen, W.,"Shear Layer Instability of an Inviscid Compressible Fluid" J. Fluid Mech, vol

40, part 4, 1970, pp 769-781

[38] Blumen, W.,Drazen, P.G., Billings, D.F., "Shear Layer Instability of an Inviscid Compressible

Fluid. Part 2" J. Fluid Mech, vol 71, part 2, 1975, pp 305-316

[39] Lasheras, J.C., Choi, H., "Three-dimensional instability of a plane shear layer: an experimental

study of the formation and evolution of streamwise vortices," J. Fluid Mech, vol 189, 1988, pp

53-86

[40] Lasheras, J.C., Maxworthy, T. "Structure of the Vorticity Field in a Plane, Free Shear-Layer"

in Turbulent Shear Flows 5 Springer-Verlag, 1986

176



[41] Koochesfahani, M.M., Dimotakis, P.E., Broadwell, J.E. "Chemically reacting turbulent shear

layers" AIAA paper 83-0475, New York, 1983

[42] Lowery, P.S., Reynolds, W.C., "Numerical Simulation of a Spatially-Developing, Forced, Plane

Mixing Layer," NASA Technical Report TF-26, Sept. 1986

[43] Ni, R.H.,"A Multiple-Grid Scheme for Solving the Euler Equations," AIAA J., Vol.20, No.11,

Nov. 1981, pp 1565-1571

[44] Steger, and Sorenson, "Automatic Mesh-Point Clustering Near a Boundary in Grid Generation

with Elliptic Partial Differential Equations" Journal of Computational Physics 33, 405-410

(1979)

[45] Liepmann, H.W.,Roshko, A., Elements of Gasdynamics, John Wiley, New York, 1957

[46] Lamb, H. Hydrodynamics, Dover Press, New York, 1945

[47] Landau, L.D., Lifshitz, E.M. Fluid Mechanics Pergamon, 1959

[48] Batchelor, G.K., An Introduction to Fluid Dynamics Cambridge University Press, 1967

[49] Marble, F.E., "Growth of a Diffusion Flame in the Field of a Vortex," in

Recent Advances in the Aerospace Sciences Ed. C. Casci. pp 395-413

[50] Dannenhofer,J.F.,III "Grid Adaptation for Complex Two-Dimensional Transonic Flows," Sc.D.

Thesis, Department of Aeronautics and Astronautics, MIT, May, 1987

177




