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ABSTRACT

COMPLIANT WATER WAVE ABSORBERS

by
Jerome H. Milgram

Submitted to the Department of Naval Architecture and Marine
Engineering on August 20, 1965 in partial fulfillment of the requirement
for the degree of Doctor of Philosophy.

This report comprises a detailed theoretical and experimental study
of the problem of absorbing plane water waves by means of a moving boundary
at one end of a channel. The non-linear problem is formulated as a sequence
of linear problems by means of perturbation techniques. This formulation is
carried out first for a general moving boundary and then for the specific
case where the boundary is a hinged paddle above a solid wall. In order to
avoid the parameter of the channel length in the theoretical work, this work
is carried out for a semi-infinite tank. Solutions for the necessary wave
absorber characteristics are determined by the first order (linear) theory.
Second order solutions are determined when the incident wave is a plane,
periodic, progressive wave. The theoretical developments are done with the
neglect of surface tension, but these effects are considered in a separate
chapter and they are accounted for in the computer programs used for the
design of a wave absorbing system. The problem of synthesizing a wave ab-
sorbing system whose characteristics closely approximate an ideal absorber
and which can be constructed readily is solved. The solution of this problem
requires a computer-aided design procedure for electric filters which may
be of general interest for its own sake, apart from. the remainder of this
work. The stability of wave absorbers is examined by a utilization of the
theory of waves with complex wave numbers. It is shown that such waves can
be constructed as combinations of waves with real wave numbers travelling
in skew directions in the vertical plane of the channel. The absorption
of wave pulses is considered. The velocity potential for a wave pulse can
be represented as an integral over the normal modes of the absorbing channel
if certain restrictions on the characteristics of the absorber are met. Ex-
periments on the absorption of periodic waves and wave pulses were carried
out. In addition an experiment was performed which confirms the theoretical
relationship between pressure and surface elevation. This was done as part
of an examination of the possibility of activating a wave absorber with a
pressure signal in the future.

Thesis Supervisor: Martin A. Abkowitz

Title: Professor of Naval Architecture
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I INTRODUCTION AND READING GUIDE

This introductory chapter is intended to serve as a guide to the

reader as well as to introduce the chapters which follow. Therefore, the

bulk of this chapter comprises a compendium of the remainder of this report,

chapter by chapter.

The study reported here concerns the absorption of waves by means of

some kind of device which moves in some manner that is controlled by the

wave incident upon it. At the outset of this work it was thought that the

absorber would work by moving in response to the force exerted on it by the

incident wave; thus the title "Compliant Water Wave Absorbers." However,

the wave absorber which was eventually built and tested was actuated by a

signal derived from the surface elevation at a fixed point near the ab-

sorber. The only previous work done in this field which the author has been

able to find is by Baumann (1). In Baumann's work an absorbing paddle is

connected to a mass, a spring and a magnetic damper. The various constants

were experimentally varied in order to achieve complete absorption at one

frequency. For Baumann's absorber, the bandwidth for which the reflection

coefficient was less than 10 percent was about five percent of an octave.

The absorber reported on here has a bandwidth for which the reflection co-

efficient was less than 5 percent of two octaves. Furthermore, the method

described herein can be used for any desired bandwidth.

In addition to the direct results of the study of the wave absorbing

problem, the experimental work reported here gives further confirmation of

the validity of the linearized water wave theory. Some previous work in

this field was done by Ursell, Dean and Yu (2) in their very careful study

-1-



of "Forced Small Amplitude Water Waves."

Since wave absorbers can be used in tanks with a wide variety of

lengths it is desirable that the tank length not be a parameter in the

theoretical work. Therefore the theoretical work is based on a semi-

infinite tank. When waves which are shorter than one tank length are con-

sidered the error in the theoretical reflection coefficient caused by the

finite length is negligible. The solution to the initial value problem

in a finite tank will be very different from the solution in an infinite

tank although the method of solution and the proof of the existence of a

solution is almost identical in the two cases. The finite tank is subject

to a type of instability which is not present in a semi-infinite tank.

However, if an absorber is stable in a semi-infinite tank, it is also

stable in a finite tank provided that it has a reflection coefficient less

than unity at low frequencies and the coefficient does not rise too

rapidly with frequency.

In chapter two a general formulation is carried out for an arbitrary

type of absorber (piston, paddle, etc.). The validity of a perturbation

series is assumed and equations and boundary conditions for the first and

second order potentials are derived. The development is necessarily very

similar 'to other perturbation expansions in this field and need not be

read by the reader who is already familiar with such expansions or is not

interested in them. Chapter three carries out the necessary perturbation

expansions and determines the first and second order boundary conditions

for the case where the wave absorber is a paddle hinged at its bottom a

distance P below the free surface, with a solid •-•ll betwreen th bottom of

-2-



the paddle and the bottom of the tank. Expressions for the first and

second order hydrodynamic moments on the paddle are also derived in

chapter three.

In chapter four the solution of the first order equations subject to

first order boundary conditions for a sinusoidal incident wave is carried

out. The problem is reduced to four separate self-adjoint Sturm-Liouville

problems and the solution is given by the resulting eigenfunction series.

The coefficients of the series are evaluated for the case where the ab-

sorber is a hinged paddle. The linear system function from paddle angle

to force is determined such that there be no reflected wave Similarly the

linear system function from surface elevation at a fixed point to paddle

angle is determined. Since the first order theory is linear, the system

having the correct response will absorb a finite sum of sinusoidal waves.

The solution for the second order problem when the incident wave is

a plane, periodic progressive wave is carried out in chapter five. The

problem is cast in the form of a non-homogeneous linear boundary value

problem in which the non-homogeneous terms are non-linear combinations of

the known first order solutions. Because of these terms, a second order

absorbing system will not absorb an arbitrary finite sum.of plane periodic,

progressive waves.

In the vicinity of the absorber the first order solution contains a

wave having a horizontal sinusoidal dependence and a sequence of waves

having a vertical sinusoidal dependence. The second order wave resulting

from the non-linear interaction of the wave with a horizontal sinusoidal

dependence and one of the other waves is interesting. It has a sinusoidal



dependence in a direction which is neither horizontal nor vertical, but

rather in a direction which is oblique with respect to the horizontal-

vertical frame of reference. The derivation of the second order solution

is very long and the resulting expressions are complicated. Therefore,

the reading of chapter five is not recommended unless the reader has a

similar problem, wants to design a second order absorber or has a particular

interest in the non-linear interaction described above.

Chapter six shows that the effect of surface tension is negligibly

small for the wave frequencies an absorber would usually encounter. The

expressions needed to include surface tension effects in the linear theory

are determined.

If a wave absorbing system is to be useful, its system function must

be a good approximation of that system function which results in complete

absorption. The synthesis of a system function which can be built and has

the above characteristics is carried out in chapter seven for the hinged

paddle type absorber according to linear (first order) theory. In order

to carry out this synthesis, it was necessary to devise a computer-aided

design scheme for synthesizing the system function of an electronic filter.

This scheme is of interest apart from the remainder of this report and is

reported briefly in chapter seven and in detail in appendix g.

In chapter eight the theory of oblique waves in a semi-infinite tank

is carried out and it is shown that these waves can be represented by the

same expressions as more usual waves, except that the wave numbers in the

representation are complex for oblique waves. When oblique waves satisfy

a homogeneous free surface condition . is shown that the frequency must

be complex which results in the fact that the wave amplitude increases or



decreases with time. Such waves must be used in a consideration of the

stability of a wave absorbing system with respect to negative going waves;

this being the topic of chapter nine. Normal modes with complex frequencies

must be used for the solution to the initial value problem in a finite

tank, but theoretical problems in a finite tank are not considered in this

report. Chapters eight and nine constitute a study of the stability of a

servomechanism in which the feedback is provided by a hydrodynamic element

(the region of the tank between the paddle and the wave measuring probe).

If the wave absorbing system had the exact system function calculated

in chapter four, there would be no reflected wave according to linear

theory. Since the synthesized system function differs from the exact

system function there will be a reflected wave in theory, the reflection

coefficient varying with frequency. When an experimental system is built

its system function will vary slightly from the synthesized function

resulting in a different set of reflection coefficients. The above topics

are considered in chapter ten. Also, the results of experiments with the

absorber are reported in chapter ten. In most instances the difference

between measured and theoretical reflection coefficients was about 1 percent.

The solution to the initial value problem for the semi-infinite tank

is considered in chapter eleven. A set of conditions on the behavior of

the absorbing system function sufficient for the validity of a given repre-

sentation of the solution are determined. Some interesting qualitative

experiments on the absorption of wave pulses were carried out and are

reported in chapter eleven. A discussion of theoretical and experimental

wave absorber results constitutes chapter twelve.

-5-



An interesting possibility is to actuate a wave absorber by a signal

derived from a measurement of the pressure at a tap in the tank wall. In

order to confirm the theoretical relationship between pressure and surface

elevation an extensive series of experiments was performed. These experi-

ments do indeed confirm the theoretical relationship. The investigation

of this relationship is reported in chapter thirteen.

Appendix A contains a brief description of the experimental wave tank

as well as a scale drawing of the tank. Appendix B considers the design

of the actual electric circuits needed to achieve the synthesized wave

absorber system function. These are active electric circuits, being

activated by operational amplifiers. Appendix B contains a short descrip-

tion of the operational usage of operational amplifiers for the reader

who is unfamiliar with these devices. The design of two synthesized

system functions is carried out, the more complicated circuit having a

lower reflection coefficient than the simpler circuit of the two. The

simpler circuit was built and tested in the experimental work.

Appendix C contains a description of the wave measuring probe and its

associated circuitry. This wave measuring device performed very well over

a wide range of wave heights and even gave excellent results for waves

which were less than 1/20 of an inch in height.

Ap]iendix D describes the alterations which were made to the paper

chart recorded used in the experiments in order that it would filter out

high frequency noise.

Appendix E is a table of the integrals needed in chapters four and

five. Appendix F contains brief descriptions of the most important computer

J-6-



programs used in this work. It is not intended that these descriptions

be sufficient to inform the reader how to use the programs, but rather

that they are intended to serve as a reference to one who is somewhat

familiar with the programs. An exception to this is the computer program

IMERG which is described in detail in appendix G. This program, which is

used to synthesize electric filters for prescribed magnitude and phase

characteristics may be of considerable general interest for its own sake.

The following figures in this chapter show the experimental apparatus.

.S



FIGURE 1-1 Overall view of experimental apparatus. At
right hand end is the wavemaker and the wave-
maker control as well as the towcord motor and
its control. The apparatus at the left hand end
is labeled in the succeeding figures.
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tank

6 fra wall

FIGURE l-2a Detailed view of apparatus at absorbing end
of the wave tank. The various components are
labeled on the next page.
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GENERAL FORMULATION OF THE PROBLEM

The geometry of the problem is based on a "semi-infinite" tank

containing a fluid of mean depth, h, as shown in Figure 2-1. Two-

dimensional plane progressive surface waves, propagating from left to

right in Figure 1 are to be absorbed. A fixed two-dimensional coordinate

system is used with the x-axis horizontal and positive to the right. X 0

corresponds to a plane which will be the limiting position of a wave

absorbing device as the wave amplitude tends to zero. x = ! corresponds

to the right-hand end wall of the tank shown in Figure 2-1. The y axis

is vertical and positive upwards. y = 0 corresponds to the "still water

line" and y = -h corresponds to the bottom of the tank. The surface

position is denoted by ' (x,t).

The fluid flow is assumed to be frictionless and irrotational so

that:

17 (2-1)

= l 0 (2-2)

The boundary conditions are:

1. There can be no component of flow normal to the bottom of

the tank at the bottom of the tank:

0= 0 (2-3)

-10-



Fluid particles which are on the free surface at any time,

are on the surface at all times (this is equivalent to re-

quiring that the component of fluid velocity normal to the

surface, when measured in a reference frame attached to the

surface, be zero):

This is known as the kinematic free surface condition.

3. Newton's Laws and therefore, Bernoulli's equation, applies

to particles on the free surface upon which the pressure is

assumed to be constant:

This is known as the dynamic free surface condition.

4. Considering the horizontal position of the wave absorber to be

(y,t); V the component of velocity of the absorber normal
n

to the absorber itself must be equal to On1  the component
x =

of fluid velocity normal to the absorber, at the absorber:

-11-



5. At the end wall of the tank, the horizontal component of fluid

velocity must be zero:

00 () (2-7)

The problem will now be formulated by means of a perturbation

theory in which it is assumed that the following series are valid:

(,Zyy% f) +6 CZ.. (2-8)

(2-9)

4 C ,t ) e 4 yt)6 +y,)... (2-10)

It is not known a' priori whether or not the mathematical problem being

considered yields solutions for #, p and 5 which are analytic in

in the neighborhood of E = 0; and even if the expansions were valid the

"radius of convergence" of the series would be unknown. However, because

of the success of this technique in similar problems, it will be carried

out here and the theoretical results then compared with experimental

results. Equations for quantities of order (1) and (2) will be determined.

-12-



By using the perturbation series for 0, Laplace's equation (2-2)

becomes

EV79 +t C .. (2? =0 (2-11)

For 0 to be analytic in E in the

of each power of G in eq. (2-11)

neighborhood of E = 0 the coefficient

must be zero.

= , 0
Sc(2-13)

(2-13)

0 is a harmonic function of x and y throughout the fluid so Ox and Oy

can be expanded in power series in y about y = 0. The existence of a

power series in y for Ot is assumed.

The various series expansions for terms needed in the boundary

conditions at the free surface are:

= ur · + h JL + .. (2-14)

-13-
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= - I-o +77
(2-15)

:::lubstitution of the pertirbation series expansions into equation (2-15)

results in:

C1I
d m( I

(a ,
itVI

Z (S2) +
+t

= e fI.
- ~x;)i

+. (

(2-17)

(2-18)

Substitution of the preceding expressions into the dynamic free surface

condition gives:

6 ( a1 10+ 5 a)]

+ 17
0 le't I =05I~~~ 0 .O 5

(?-19)

As in the case of Laplace's equation, the coefficient of each power of E

must be zero giving:

-14-
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+p " o,

'Vt S

Insertion of the series expansions for the various terms in the free

surface kinematic condition along with the assumed requirement of analyticity

in e around E = 0 gives:

7t1 )
-$my

=0

-

(2-22)

m' 0

Combining equations (2-20) and (2-22) gives:

(O +3 ~).=

(2-23)

(2-24)

Combining equations (2-21) and (2-23) gives:

.15-

V

r"I (2-20)

Is*+9 (2-21),;'a" (D MA"~
Ve+ý0 1s +j S

(I)
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r ~~-

7/ 0a-W "; ý

45 4) 7 a

Mc a)
0; ýt i550

(2-25)

Substitution of equations (2-20) and (2-22) into (2-25) gives:

°'i~' I

13s.
(2-26)

Similarly the lower boundary condition becomes:

=0 (2-27)

Also e boundary condiion at x =0
Also the boundary condition at x = I becomes:

(2-28)

O't
01)

F"

and

0;"?0 (15 1

and

=0

=0

(2-29)

(2-30)
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r
It is assumed that the wave absorber motion can be expanded as:

Z7JZ
(2-31)

and since 0 is a harmonic function, it is known that

=1•O-X 0
+

lZ 
.+.* (2-32)

Thus the boundary condition at the absorber, equation (2-6), becomes:

(2-33)

(0I so fi (2-34)

For convenience the preceding equations are regrouped and renumbered:

0( ) O (2 -3

f Ct"+ 5"')
ý so

LjP,l ·-A
/b1ve

5)

(2-36)

(2-37)

(2-38)

~$1o
OW %,-,

(2-39)
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0a = (2-42)

= E (2-43)

"The perturbation expansion yields a homogeneous boundary value

problem, equations (2-35) through (2-39), for the first order quantities

( and (1) and a non-homogeneous boundary value problem,

equations (2-40) through (2-43), for the second-order quantities (Z)

: G(2) and (2) . The non-homogeneous terms are quantities involving

first-order quantities. Similarly, if the third-order problem were

formulated, the non-homogenous terms would contain first and second order

quantities, and so forth. By sequentially solving first, second, third....

order equations, the solution to the problem can be obtained if the per-

turbation series converge. In order to carry out the above scheme the

general form of the absorber motion must be known. For the specific

-18-



example solved in the following chapters and upon which experiments were

performed, the absorber is a paddle hinged at a distance p beneath the

calm free surface position with a solid wall between the bottom of the

paddle and the bottom of the tank.
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FIGURE 2-1 Diagram of general wave absorber geometry.
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FORMULATION OF THE BOUNDARY CONDITION AT THE WAVE ABSORBER

AND THE HYDRODYNAMIC MOMENT ON THE ABSORBER

WHEN THE ABSORBER IS A HINGED PADDLE

Consider a wave absorbing paddle hinged a distance f below the free

surface and a solid vertical wall between the bottom of the tank and the

paddle hinge at x = 0 as shown in Figure 3-1. The paddle angle 9 is

considered to be positive when the paddle lies in the region

0 < x<f. Q(t) is to be chosen such that there is no energy radiating

reflected wave.

Let,

(L, (t)+c) '· (3-1)

The paddle position is B (y,t)

The normal velocity of the paddle is Vn

low (3-3)

1Expanding cos in a Maclaurin series in 9 and use of equation (3-1)

in equation (3-3) gives:

-21-



F

(I, (Z)

(3-4)

4 =4*
Figure (3.-2ý) shoVe that:

Cos
1

y >.. -p (3-6)

and

(3-7)

0

(3-5)

Use of the Maclaurin series in 9 for sin 9 and cos 9, and equations

(3-1) through (3-5) gives:

ZI

(6 c~%di~t~

- ,)Yr

(3-8)

-

41) SO .so.

-22-
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'V"

= { ' I %s,
%10

(3-10)

1,0

+P) Ot'I,

O

co c "o C9"
4=0

(3-12)

(3-13)

=i ~
(3-14)

Substitution of equations (3-9) and (3-11) into (2-39) gives

(0)0
IV)

Oe

(3-15)

-23-
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Substitution of (3-11), (3-12), (3-13) and (3-14) into (2-43) gives

S0(3-16)
The pressure is denoted by P (x,y,t) and the value this function

takes on the negative x face of the paddle is called P 1 (y,t) and its

value on the positive x face of the paddle is called P2 (y,t).

The moment exerted by the fluid on the paddle, which is taken as

positive when the paddle is pushed toward positive values of x, is denoted

by Mh(t).

C5C J [ If t)-c t d (3-17)

The pressure is related to the velocity potential by Bernoulli's equation:

p-w ' C z ) z-5L (3-18)

It is assumed that a perturbation series for the pressure exists.

4-- -p ('' g• J. .. (3-19)

aic;



P designates either P1 or P2

is a harmonic function of x and y as is Ot for a periodic wave.

Therefore the following expansion for P is valid.

= p &fy~&~ZsD P (3-20)

Substitutions of the various perturbation series into equation (3-18),

evaluating the resulting equations at x = 4 = (y + h) 9 and imposing

analyticity in e at e = 0 gives the following equations.

P ,•p -- ro (3-21)

Using the above expressions as well as the Maclaurin series for cos2

gives the following equations for Mt)and 2)
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r(3-23 (3-23)

A quantity which will prove useful to know is the ch2ange in

immersion of the negative x face of the paddle as the paddle moves in

waves. This quantity is called A. The perturbation series for A will

nov be determined, using Figure(3-2)as a guide.

t SCO t, (3-25)

3s i/ CAs 9(3-26)

(3-28)
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P 7 +pd

(3-29)
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x=O
y= i7(x,t)

x

paddle pivot-, 9y=-p
08

FIGURE 3-1 Diagram of wave absorber geometry when the
absorber is a hinged paddle.

i.

FIGURE 3-2 Diagram showing how the imersed length of an
absorbing paddle changes when the paddle angle
is changed.

-28-
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CHAPTER 4

SOLUTION OF THE EQUATIONS FOR THE FIRST-ORDER WAVES WHEN THE

INCIDENT WAVE IS A PLANE, PERIODIC, PROGRESSIVE WAVE

Introduction

The first-order potential (1) must satisfy equations (2-35)

through (2-39). The case considered here is that of a hinged paddle

wave absorber so the boundary condition at the absorber is given by

equation (3-15). The first-order potential of a plane, progressive,

periodic wave has a sinusoidal time dependence so it is anticipated that

the paddle angle necessary to have no reflected energy radiating wave

will also have a sinusoidal time dependence.

Let

(1)
The physical variable ) is given by the real part of the above equation.

Complex notation is used only as a matter of convenience. Since the

equation and boundary conditions satisfied by the first-order potential

are linear, the use of complex variables can and will be carried through

the calculations. In order to obtain an equation for a physical quantity

at any stage in the following development, it is only necessary to take

the real part of the equation under consideration. The solution for the

first-order potential is sought in the form of a series, each term of

which satisfies equations (2-35) through (2-38) and is separable in the

sense that it is the product of three functions, one of x, one of y, and

one of t. Such a soluiion to the sinusoidal problem will be found

-29-



subsequently and it will be complete in the sense that the function to

which the series converges satisfies equation (3-15). Each of the terms

in the series is to be of the form:

In order that e satisfy Laplace's equation (Equation 2-35), F and Ge

must satisfy:

-- (4-4)

F and G are subjected to the following boundary conditions:

i;' :'o rt z..[ (4-R)

I-SO t(4-6)

mow- Z(4-8)

It is also required that the complete solution for ) satisfy

equation (3-15).

Since there is a specified boundary condition at x = 0, the problem

becomes two problems, one for the potential for--O,; .4 and one

for O0 x I.
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The problem has thus been recast into four Sturm-LionYl1e-pzrobl~es, one

for F and one for G in each of the regions -00 < x 4 0, and 0, x• L.

The solution to equation (4-4) is:

'C) C.~ (4-9)

To satisfy equation (4-5):

Cl z cle (4-1o)

For real values of a equation (4-6) is satisfied if:

AMW Aa ift tax x (4-11)

To consider imaginary values of U, let:

Oc =Coto (4-12)

where C is real. In this case, equation (4-6) is satisfied if:

W (4-13)

Equation (4-11) yields an infinite number of eigenvalues and

equation (4-13) yields a single positive eigenvalue and a single negative

eigenvalue. The solutions to equations (4-11) and (4-13) are both

positive and negative. For every solution +i(C there is one -ja.

However, each of these two eigenvalues has the same eigenfunction so no

loss of generality occurs in considering all the eigenvalues to be positive.
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The Potential in the Region -o # X* 0

The complete solution for (1) in the region -g x < 0 is:

pubsitu4ion ofequatio4n -1o) u4410 i

+ ( do osk qOf tt'er 04' o* adgya

(4-14)

ge, X e yf) e,

Differentiation of equation (4-1) yields:

-) w , - r (4-16)

Substitution of equations (4-15) and (4-16) into equation (3-15) gives:

The term in equation (4-14) whose coefficient is A represents the

first-order potential of the incident wave. The term whose coefficient is

A' represents the first-order potential of the reflected wave. For there

-32-
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to be no first-order reflected wave, A' must be zero. The relationship

between A, A' and B(1) is established by multiplying equation (4-17) by

cosh cO(y + h) and integrating the resulting equation from y = -h to y = 0.

This provides the desired relationship because the function cosh

(y + h) is orthogonal to cos n (y + h) for n = 1, 2... over the interval

y = -h to y = 0. This fact can be seen from direct substitution or ob-

serving that cosh C (y + h) and cos a (y + h) are each eigenfunctions0 0

of the problem for G, but belong to different eigenvalues.

Values of the following integrals are needed:

-i (4-i8)

{-p

Hence,

= (4-20)

The requirement that A' be equal to zero gives the relationship between A

and B( .
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L•·4: """ ' " (4-21)

In order to fix the phase of the incident wave, A is taken as a

real, positive number. Then, equation (4-21) shows that B(1 ) is real.

Therefore the first and fourth terms in equation (4-17) have a time

dependence of the form sin wt and the second term is zero. For the

equation to be valid for all time, all the terms in the sum must have a

time dependence of the form sin wt. This implies that all the An's are

imaginary.

Let

(4-22)
where the b 's are real.n

In order to determine the bh's, multiply equation (4-17) by cos an

(y + h) and integrate from y = -h to y = 0. cos ca (y + h) and cos a (y + h)n m

are orthogonal over the interval if m f n. Values of the following

integrals are needed:

SCOS,,,{"fk s2ýkc ,Kkz kAd] -- f
lip&

for (4-23)
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T_

4:' fD pj WeCi (4-24)

Thus,

(4-25)

The Potential in the Region 0 6 x 4 e

By proceding just as in the case -p V x,6 O, the same eigenvalues

are obtained here. This occurs because the Sturm-Liouville problem for

G determines the eigenvalues and this problem is the same in the two

regions - 40 x4 0 and 0O X0 1. The boundary condition at x = L

(equation 4-8) implies complete reflection at x = I so that the x depen-

dence of the eigenfunctions must be of the form cosh 6(x - 1). Inasmuch

as B(1 ) is real, equation (3-15) shows that x must have a time dependence

of the form sin wt. Therefore, the complete solution for ) in the

region 0 x L is:

(4-26)
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T

) (4-27)
'st

Substitution of equations (4-1) and (4-27) into equation (3-15) gives:

-- )-

I( t1'- (4-28)

The condition that B(1 ) is real has been used in obtaining the above

equation. The relationship between No and B(  is obtained by multi-

plying equation (4-28) by cosh 1 (y + h) and integrating from y = -h to

y = 0.

- ~a) ) ak,,1 64 14Ceosie 4()-osE X4/k)
~ s4L 2y S~4e (4-29)

The relationship between Nn and B(1 ) is obtained by multiplying equation

(4-28) by cos Cn(y + h) and integrating from y = -h to y = 0.
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The first order moment on the paddle is obtained by substituting the

(1)expression for (1) into equation (3-23).

The ratio of the complex amplitude of the first-order moment to

the first-order complex amplitude of the paddle angle is the linear fre-

quency response function from motion to moment and is called Hm(-w)

The minus sign in H(-w) occurs because the time dependence of the

-i w tincident wave is e

7s (4-32)
It is important to realize that the frequency response is based on a

driving function of the form e . This means that i represents a

phase lag, not a phase lead.
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The ratio of the first order complex amplitude of the paddle angle

to the first order complex amplitude of the wave height measured a

distance 4 from the paddle is called H(-w)

'I', ~(4-33)

The wave height can be obtained from equation (4-14) by use of the fact

that A' = 0 and the kinematic boundary condition

(2-22)

This gives

+h(4-34)

Then,

a)d

(4-35)
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CHAPTER 5

SOLUTION OF THE EQUATIONS FOR THE SECOND-ORDER WAVES WHEN THE INCIDENT

IS A PLANE, PERIODIC, PROGRESSIVE WAVE

Waves in the Region -0 4 x 6 0

When the incident wave is a plane, periodic, progressive wave with

circular wave number Z and frequency w and there is no first order
o

energy radiating reflected wave, the first order potential is:

As%
and the first order surface elevation is:

S bC o (5-2)

The above equations as well as the relations between A,w, the U's and

the b's are determined in the preceding chapter.

A solution to equation (2-40) is now sought in the form:

where nh stands for non-homogeneous and h stands for homogeneous.

The individual equations to be satisfied by the two parts of (2) are-
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epf a) .n d

$Y5 7/ -2; P -N
ia))

(5-5)

(5-6)

(5-7)

=0
(5-8)

(5-9)

irycV~t e~yur~ee~

( 9P~ ~P''4

If (2) and (2)
If (2 and Oh2 satisfy the above set of equations,is (2

then their sum,

which is 0(2) satisfies equations (2-40) through (2-43).

The following is a list of expressions needed in expressing the

right-hand side of equation (5-5):

Ago we -
6 myi

4%'
co. •• ~~~os we

(5-2)

-oo--40-

7"

0C

'4P-f (5 -10)

7/

(5 -11)

~~kAMON

04 5

(Pic+]Yn~~



o- I cSi 4 coA C0.k CKo7' -we))
- six w ':Fi A ~csy#S) id

(5-12)= W4Co p £C S coX-wt)

- Aak sokf) cp s (, --w)
(5-13)

c'~ Sor4 X 4&e 5 JI~)tsta witE W 44bots&it tqa)4:1
17%igt C~ ~ o~holr

A I os t a;, U' os croS-wa~~~kdb c Ios < k<" kw
g0

ANEW

-d e)

To simplify the writing of expressions let:
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(5 -14)

4%

(5-15)

(5-16)

J

@
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dceoMt 4,k' C,

At Sitk a.£ S,
(5 -17)

(5-18)

cos Ko--wo) C

(5 -19)

SiKdo-C3) S
(5 -20o)

F.i ra~s 4,k C,
(--21)

6,e~ 44j

(5-23)

(2-24)

-42-

5,
(.-22)

Siu tC =SS,



With this notation, equation (5-2) and equations (5-11) through (5-16 )

become:

mo CoS -c,,, co
5 a5

^ a 0

&WMW I nr0 s,

(5-25)

(5-26)

4tc~~rU
'ID,

500

z S 's Co

X' SC w : A t A

0 a AMONOW cotK

S a) o con - C

Substitution of equations (.5-25 ) through (5-31) into equation

(5-2',)

(5-28)

(5-29)

(5-30)

(5-31)

(s-5)

"" ' Y" I lA'so g 00. •

Ac, t

-ew~cs, c.cc, css• szcc,*5, .s,]C,,C'0 4fF 4Z CC",t SSI] -Z4CSwI ; r
-ZW.•C , C . r +3& Sw ,

(5-32)
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Let (2)
$t)TS $t'(,t

such that, with the operator

=4 dc.

&Cc = trc-P

*w'C3-
4.40)

x,C.

(5-33)

+s#,j4,44IV
denoted by L,

'so- 4(c Co 5 .c
,.c.S -o,-cS, C S , c CO (5-34)

- Et WPIWI 1%6

Next the (2)nhii
's are determined such that

equations (5-34) through (5-36) are satisfied and,

' -4

£ J.[z CC,, +S5 ,do~

(5-35)

s.c.c

(5-36)

(5-37)

(5-38)

ec.00~
5544 CA

L0
- C,5o -z6 cla, O,&c.O

+.-w'Ezx A5 9"34

04, c.,c,

7.~=W0



Let

41,-,rW Cosk zxoýý+kg+ sia otezZWO (5-39)

This function satisfies equations (5-37) and (5-38). In order that it

also satisfies the non-homogeneous boundary condition (5-34),

040 't-cvsk o-tt-A 7) sa&oes4k

(5-40)

For convenience, an equation in complex variables whose real part

is equation (5-35) will be considered. In this equation, the real part

of (2)nh will represent the 0(2) of equation (5-35). In all succeedingnh2  nh 2

complex equations, this will be the case. In order to see that the real

part of the complex equation is equation (5-35), the following identities

will be needed.

SS =(5-42)

(5-43)
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zCCO+SS,

5c -cs,-
(5-44e)

(5-45)

The complex equation to be considered is:

4,i 4'S ao5 pC ~i~i S Il,4 cos e !4e

we# Ote, W C&1k a Cos Ak (e g
coS$ at ) e -T4 e )e,05 Xa ( fe MOM. + k'- ...5 sid (,L

S
-1 oa cosA 4. os 4k (4I. g t% ) 6Ze)

50 ca. , d( e 4A -f tf e'

(5-46)

Let

s£,+t cokAs4k

+ -cosk r.k Coszp

CoS xk 4 ... t19 U 0.1 cos 4%.13
< Co k4,k S4AV.k

£3

and
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T

Then equation (5-46) can be written as:

The solution to equation (5-37) which satisfies the boundary conditions

(5-38) and (5-49) is a series, each term of which is the sum of two

oblique travelling waves (see Chapter 8) plus a steady component with a

spatial dependence similar to that of the travelling waves. It is

assumed that the series converges uniformly. Equation (5-49) shows that

the time dependence of the oblique waves must be sinusoidal with radian

frequency 2w.
Let

e .%440,Co ) ' " '

Tlc (I /to e O'' I' t o. . 40pa toX0 5 ta tý'eph blo,..-ot,•

(3-50)



9 is the obliqueness angle

It has been anticipated that 9 will depend on n.

Let

(5-51)

7'z s44 0X
(5-52)

Use of equations (5-51) and (5-52) in equation (5-50) gives:

(S

-

- A
45%

e;lry

r~c~gI

÷1'

'4Ae ,--e

, do
A 91 (5-5 3)

I,,

.(-,f S X,_ )O, 0 4%-4","
e..

4(t)

14ZjU
0S·tI

5s'j

r ZICItANN

'5iL
e·t." (5-54)

O -aov,

eel 1)
(5-55)

Equation (5-38) is satisfied if

A404 A/C
(5-56)

,•; cos ,

L4Z'

dy

-- e jC,

LdXnOl0 4%f.ý,Aal
e ýA 0 .4`440C

~~ke LI

~ais:ef06 w(mm,

e EO



and

Equations ( -49) and (5-54) imply:

5(5-59)

#W- )ft,, jo (5-6o0
Equations (5-51) and (5-58) imply

With F, given by equation (5-58), equations (5-56), (5-57), (5-59) and

(5-60) are four simultaneous algebraic equations whose inversion gives

the values of A A A and A 4 .

(2)nh will be determined in the form of a double infinite series such

4h
that L operating on the mn'th term of the series equals the mn term on

the right-hand side of equation (5-36) and each term of the series

satisfies equation (5-37) and boundary condition (5-38). The series is

assumed to converge uniformly.

Equation (5-36) is now rewritten with the substitution of the

1 identity:



and the definition

and the definition

kA£4 e SatCs06Ze4if

CoS~+&~a, Ln4,orr

-ZW%04, O Jl5k os ot'k

- ILLo CoI $w M44

tastl

do$ ,

"5%
Let

aCt,4=
(5-68)nr~i

This satisfies equation (5-37) and boundary condition (5-38).

Next, let L operate on equation (5-68)

-50-

4C
4tt co.5 gk

(5-63)

Let

(5-65)

(5-66)

(5-67)

040t 404 O 04 W (p, -A )
/ /1((3)

1~1~1

Ct)
" .ý e

SZKZWte 40COm t cyOOk0 ,
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lo 

SK ta

Thus the boundary condition (5-36) is satisfied if:

44^&

(5-69)

OW #tep x~ot 5 -4 kxft k
(5-70)

Equation (5-33) can now be written in more detail as:

Cos( O 9 (514) Sig (U '0ZO 4

,allti iL(

064% Ncs

(5-71)

Nekt 0h(2) and (2)(t) will be determined such that there is no

reflected energy radiating second order wave.

From the form of (2) it is anticipated that (2))f 

n

steady part and a non-steady part with time dependence e

-51-I-l

will have a

-i 2wt

5ý4 tWueA,%%Cd.S ;464e~fk
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PVa'(0~;~,~ 1' f~c~t (5-72)

Seeking separable solutions for hs2) (x,y) and (2) (x,y,t) leadrto two
ns

Sturm-Liouville problems.

For the non-steady part, the eigenfunctions have the form:

(5-73)

In order that each eigenfunction satisfy Laplace's equation,

'-'i00

/ -. J 9
(5-75j)

The homogeneous boundary conditions (5-8) and (5-9) require that

-OgoA &C If,.& (5-76)

&LISO (5-77)

To have finite velocity everywhere,

<9<) k (5-78)
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With the solutions to (5-75), the boundary conditions require that

the eigenvalues satisfy:

4wzz ---Votg tgx (5-80)

Then the solution for h(2) is:
ns

(-81 )

From Sturm-Lijxu.il. theory it is known that the infinite sum of the

Oe's is complete in the sense that the series can be made to converge to

any square integrable function of y at x = 0. The same is true for the

derivative of the series with respect to x. For the steady part the

eigenfunctions have the form:

00VJb7Z7 4cy (5 -82)

Since the eigenfunctions are to satisfy Laplace's equation,

(5-83)ii!1

N -84)

-53-



The homogenous boundary conditions (5-7) and (5-8) require that:

For finte velocity everywhere,

For finite velocity everywhere,

j(r (<0 is (5-86)z -*-~e-tV

These boundary conditions require that the eigenvalues satisfy

(5-87)

with the corresponding eigenfunctions

-rATIA
(5-88)

(2)The complete solution for A h
a

IA=( elp

is therefore:

cos
eI.%

Now the form of (2) can be written in full detail.

(5-76)

(5-80)

(5-89)

7 K~ita

CosOft =



+Z= 4,c rot z 4(0sga -4 O
V*Sj (loft, t,4."e,

+ Q, cos
V. pe " ,iw

' ( cos'kCos

eD5'yk~0

+ A cosits$ Z4P

(5-90)

The Q's and D's must be chosen such that the second order boundary

condition at x = 0 (3-10) is satisfied. The functions needed in

equation (3-16) are:

I ,°

00%1%1

In- cs - 0, i 6 0 Sz o S i g w

L( -/

61f 04k 6d4104) coo-wt e, o S X4. t) P ootAft~

91)

(5-92)
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e" (5-93)

(5-94)

Those functions which appear in products of functions must be

written in real function form. Substitution of the preceding functions

in equation (3-16) yields the real part of the following equation.

Q.co? 10,"k 4(614) e-wey
+2 ' (f' oS, '.' £ ,4 "'

*LYTdWr ezb4+fZ~ 14; AM, e#*'LI
if A~,, e" ·ti 7.

I

a, cask vsc gke

g 4,-ie -AarAll& e~
~~~~w (oJ~m tp) 0aj*t 4 jjO ea~

(9 p o zceost deL'L-'S~ ( -r-

L 
- zewe

ri r ib

c,,rp·8~a2.Aor aos k 4)
49 1"aa 6. 4k #GCglti)

evi c 1#i) e

w

(5*95)

4e fpsC
B'9~8U,'e"''"C

|

F,, e "

.ý I Boo (P'"6

I

ý z*ýP- i
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Equation (5 -95 implies the following two equations

o,±cosk ;,D*4 A-# C'8 co

, 4<,aYttsk 8.Cy<& * &&V of dir drt:

,d$s4, X cy4 0

"-I, W~ ,'#%p ',,, cos ,

'Iv

tN

eCo
It%

if

A2~e ~&Z 4 i~J

04vk) ,dz.d.e CI05ck xg)

0 iiz

(5-97)
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ir is the complex conjugate of Q'.

The only second order energy radiating wave which would exist in the

absence of a termination to the tank is given by the term containing the

coefficient A. The first three terms on the left-hand side of equation

.(5-96) form a complete set of square integrable functions. The functions

they are to equal will be adjusted so that Q and Q will be zero. This

adjustment will be accomplished by adjusting B(2) . The value of B(2)

which gives the desired result is unique. This value will be determined

by setting Q and Qo to zero, multiplying equation (5-96) by cosh V (y+h)

and integrating from y= -h to y = 0.

The following notation will be used for the various integrals:

S(5-99)

Ija c JD,, wina ~y~r~D~y~S (5-100)
-. p

ax414 (60o " i it (5-1o1)
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" =(5-102)

94

The evaluation of these integrals appearsin appendix E

With this notation3"'=~" [ ~-8 ' "'y ," ,',,"; '3a"AI I'

(5 -oy7)
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The Q's will be determined by multiplying equation (5-96) by

cos 9, (y+ h) and integrating from y = -h to y = 0. The values of the

following integrals will be needed:

cos c·o(pA) c•

'4 csC'$ a 4

f op CoS 9~cixiS

(A i QS

At

I4;CJ

4;L

(0

"*1 $4'j(k ) cosW ft-z
) Cost X; (54) Cos ,yg) dy

66
(5-115)

Cos a )d-60 d

-60-

(5 -108)

(5-109)

(5-111)

(5-112)

(5-113)

(5-114)

90, cf A) A

;. cek.) Wo

)

'"0
i 16fi) 4

(YOP9 C co 4 (9m) cos i y (YA k



-<-'> ./c

cos

(5.-11C )

2Z4 (154) Cos 9A, cIt k) d tj

-s) r (io g o c; (y th Cos 9ta

An expression for % using the above notation follows.

Q4 -' 4
10. wit) d, ..

z w g II,- A All;:'

'-SZ

4/IA

?1*C';'

IUS SI t 15 's~'4

I,

7'V

/I*4*jjCxj3

In order to determine the Dn'S equation (5-97)

(5t -11( )

(:.-11. 8)

SI a P It , "I)0L C Z
-am# _ .: I

is %')

-5:

(5 - 19)

·rfiqk, dy

ý04

O'ta)Ida if

is multiplied by



cos m and the resulting equation integrated from y = -h to y = 0.

mirIAk iiCo d 6^4 
(5-120)

*-j
dtyrAmm~

coS~4dy

(5-121)

LM) % &A
(5-122)

/, xJfco$
(5-123)

1/ o.4 6 Cos

this notation, D can be expressed as follows-,n

(I)#:~ jO(A~
3:1"f.~ ·

(5-125)
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T

A listing of expressions for the various I's appears in appendix E.

i

j

I
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Waves in the Region 0. X 3 I

As in the previous section, (2) will be found in the form of a

non-homogeneous part plus a homogeneous part. Equations (5-3) through

(5-10) must be satisfied. In addition to these requirements, the

boundary condition of no velocity normal to the wall at x = I must be

satisfied.

,• 0 tee zS1
(5-126)

This homogeneous linear condition will be satisfied by making each

additive term of the solution satisfy the same condition. The functions

(1) and (1) are determined in Chapter 4.

Co c 04614 Cos AOCZ-s1) Scot 127

7K -~~Co~4& CS 4C'~t)Cos we'

3S E 4Ys.~~ CIk ~lihL~vi.

(5-128)

The first order functions needed in equation (5 -5) are listed below:

110=-a . OA 4.k 4(%t) sg4, wt

*P z AVO4 x i5 c SU 444) tot

(5-129)



T

<A. cos act-Le sex wc
I.'k cost c-L) si,, w'

(5-130)
3 #Ca 4C 5k 4Ak Cos 4(%-) cos Cot

-lo 4Imp s' s k cskx Gz-l) % we

- -Wa,, X, k of cos o S4% "tw)t5WC

4.X AYZ j, d cofi Se 4si 0 wt

7Z - a J'./ S44oZa-1) Co dte

±4 XA cos t k Sk(tk-)
^SS

( -133)

c&'5/ a CoS f, tose) s.' set-

-"MK os r4k cosA t4t r->) s t

*
*5%

(5 -131)

(5-132)

W AS

s*4

(5-134)

11 ovy

+. -e cos

4COSA,

Itst

cn

1,.

/,
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A simplified notation, like that used in the previous section, will

be used here. Although the symbols used mean different things in each

section, there use is only intermediary and no confusion should result.

Let

640 cos4 wkxO( CO

Cop 4',e'-s)s C

(5 -135) x#5seIk Akz S,

(5-137)

coD5k Ii4(%>A= (s5-141)

coS wes CO (5 -143)

stgo (v-j) r.5

s'ak wer -) S Sk

siL Wet 510
Substitution of equations (5-129) through (5-144) into equation (5-5)

gives:
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(5-138)

(5 -1o40)

(5-142)

(5-144)
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SC(A -) )

Let

(5-33)

S. C0, 2C k . C

(5 -14)
-,, ( !., s)

(5-1468)
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As was done in the preceding section, the iA ( I

that

(5-37)

and =0

In the region 0 x L , each of the

Let

tt' % r.1

Cos /vy() co

s'Z We6

In order that (2)
nh1

satisfy equation (5-146),

(5 -151)

and

it AYcoSk 4t (40 Sj K ~A

(5-152)
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A•:n , will also satisfy:

(5-149)

(5-150)

will be determined such

7 ,.=0

As (4X. (K-L) sýtA t&

WS~coir dk O U s



Equation (5-147) is the real part of the following equation-

C4 t )Ce (5-153)

Let

This function satisfies the lower boundary condition and the

boundary condition at the end wall.

Equation (5-14T7) is satisfied term by term if:

(5-155)

Substituting the appropriate expressions for the abbreviations in

equation (5-148) gives equation (5-156):

(5-156)5
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Let

(5-157)

(5-158)
Substitution of equations (5-157) and (5-158) into (5-156) and use of

the following identities gives equation (5-161)

COO of cqk,8 a (eva (040,0)~ / IIr~Ms~AI kA 3 = (Ca5k 4)- cosn(-))

o) c

CPA 4o f &Y., C¶

Isr,~r#044W OW -11)(·a (5-161)
Let

,, I A CoS4 ' d (Z o ews eo,0 4it 0)
(5-162)

This function satisfies the boundary conditions (5-38) and (5-149).

equation (5-161) to be satisfied:

q5140.:WWCDc cps gA -I
(5-163)
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- CoS a 4 c f
(5-164)

The problem for (2) in the region 0 I x d I is very similar to the

problem for (2) in the region xf 0. The eigenvalues are the same, but

all the eigenfunctions are standing waves for 0 x .

I(c askcosk (z d)c e -ime

As usual the real part of the above equation gives the physical

function h h

The set of eigenfunctions of (2) are all of the solutions to the associated

Sturm-Liouville problem and therefore they are complete in the sense that

the series of eigenfunctions can be made to converge to any square integrable

function at x = 0 as can the derivative of the solution with respect to x.

The complete solution for A(2) in the region O( x < I can now be

written as follows.
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Pm"~~ iC~ cok " vitA

4m: Gji t 9

cAsk ore& %
a

eI , L4NA cok 4f -)C

Co) d.., 4+4,01

6o% dJr ~,

2"os Ae Sf0 cosk

(166)

The problem now becomes that of determining the R's such that the

boundary condition at x = 0, (5-10) is satisfied.
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cosA zx, cq( ) cos Za. L

-W6'1i

'1 44#1-A(4
Xglox qwillk

- r
IC

4- 0
SSj

silkf Cos 04KCL~k

00sqs
(5-167)

The known functions needed in equation (3-16) are:
a,) Cos4,

& cos C'

a,'=

= X 0,df54ý4k X.(vi ) e05 x4L S'ptCWt

fv'

(5-169)
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(5-168)

4111gso

2 4* x" I

-tLc~y(
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ry~l
qol" x, ,* SiZ (-AmaL) dos 0' 61j)

Afo 2.codli ftrgEd) si CA

VA 9 64, COS V4 ) Sid
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9 o e cos( ay c a. ý ssK we

(5 -170)

Substitution of equations (5-167) through (5-170) into equation (3-16)

gives the real part of the following equation:

, sJ 9. 4sk 9tqyj) -, 2 sak ,eZ cos tmyrA)

-z adql cosk t4qa(t) 2os L

*ft ast 0iJ 4 &p
so co4

(5-171)



To determine R , multiply equation (5-171) by cosh 9o(y + h) and

integrate from y = -h to y = 0.

The following notations will be used.

4& U(0
~'/CaSkG

0/ (5-172)

(5-173)

0D

I cos it, * cv÷) Cos ,7,,•I46W , (5 -1i4)

i

MO
Ao ol1

o /00 l e '1Mow f-e
WSJ

-so q:
4

a, Mi - &x 4i~ir ~Oa ll~rC~
" ga) r&

A -wz rei;

(5-175)
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To determine the R n's, multiply equation (5-171) by cos 7m(y + h)

and integrate from y = -h to y = 0.

-M i it4
IL 54" , 'Ow

- c~~ LL

f kie j JEe t
1. . 7
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I it"
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(5-176)
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Chapter 6

THE EFFECT OF SURFACE TENSION

The theory developed in the preceding chapters does not contain the

effects of surface tension. It is shown in this chapter that the effects

of surface tension are negligibly small for the wave frequencies that a

absorber would normally encounter.

In the presence of surface tension there is a discontinuity in the

pressure across the free surface of an amount

(6-1)

where T is the surface tension (force/unit length) and K is the

surface curvature. In the case of two dimensional waves,

K = (6-2)R

R being the radius of curvature of the surface.

In terms of the surface elevation' , K is given by [see Thomas (4)

I-
(6-3)

Use of'the perturbation series for ' (2-9) gives:

7'E~,.41 .(6-4)

Only the linearized (first order) problem will be considered here

for which
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The first order dynamic free surface condition (see chapter 2)

becomes:

r Z(6-6)

The last term of equation (6-6) is the value of p / on the underside

of the free surface and it can be seen that this equation reduces to

equation (2-20) when T = 0. Combining equation (6-6) with the first

order kinematic free surface condition (2-22) gives:

Y! ÷# r(6-7)

The potential (1) must still satisfy Laplace's Equation (2-35) so

the methods of solution of chapter (4) are applicable, but in this case

equation (4-6 ) is replaced by

- q 0 (6-8)

Equation (4-11) is replaced by:

(6-9)
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and Equation (4-13) is replaced by:

+ (6-10)

Thus the solutions here are similar to those of Chapter 4, the only

difference being a change in the eigenvalues. For the value of g at the

surface of earth (32.2 feet/second2 ) and the value of T for water at room

temperature (0.0050 pounds/ft.) the effect of surface tension is signifi-

cant only for values of w that are so large that the viscous attenuation

of these waves obviates a wave absorber.

As an example, a and the first nine a 's were calculated foro n

T = 0.0050 and for T = 0; for values of the radian frequency of 4, 8, 12,

16 and 20 radians per second. The results of these calculations appear

in figure 7-1 and it can be seen that the effect of surface tension is

very small for radian frequencies below 16 radians per second.

Even though the effects of surface tension are very small, they are

taken into account in the following work in the design of the wave

absorber for the sake of physical completeness.
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printf .tape. 4
W 1053.6
00010 00.4167 00.3750 00.2500 01.9400 32.1600 00.0050 00.1667
00020 04.00 20.00 04.00
00030 9
00040 00.40
R .266+1.550

loadgo tten egval
W 1054.0
EXECUTION.

RADIAN FREQUENCY * 4.0

EIGENVALUES FOR SURFACE TENSION OF 0.0050
1.13 7.38 15.00 22.56 30.11 37.66

EIGENVALUES FOR NO SURFACE TENSION
1.13 7.38 15.00 22.56 30.12 37.66

RADIAN FREQUENCY = 8.0

EI GENVALUES FOR SURFACE TENSION OF 0.0050
2.54 6.86 14.75 22.40 29.99 37.55

EIGENVALUES FOR NO SURFACE TENSION
2.54 6.86 14.76 22.41 30.00 37.57

RADIAN FREQUENCY = 12.0

EIGENVALUES FOR SURFACE TENSION OF 0.0050
4.66 6.00 14.34 22.12 29.77 37.37

EIGENVALUES FOR NO SURFACE TENSION
4.66 6.00 14.35 22.14 29.80 37.41

POUNDS/FOOT
45.20 52.75 60.29

45.21 52.75 60.29

POUNDS/FOOT
45.11 52.66 60.20

45.13 52.68 60.23

POUNDS/FOOT
44.95 52.51 60.06

45.00 52.57 60.14

RADIAN FREQUENCY a 16.0

EIGENVALUES FOR SURFACE TENSION OF 0.0050
7.94 5.14 13.81 21.75 29.48 37.13

EIGENVALUES FOR NO SURFACE TENSION
7.98 5.15 13.82 21.78 29.52 37.19

POUNDS/FOOT
44.73 52.31

44.81 52.41 60.00

RADIAN FREQUENCY = 20.0

EIGENVALUES FOR SURFACE TENSION OF 0.0050
12.29 4.62 13.25 21.31 29.13 36.83

EIGENVALUES FOR NO SURFACE TENSION
12.44 4.62 13.27 21.35 29.19 36.92

POUNDS/FOOT
44.47 52.06

44.58 52.21 59.82

FIGURE 6-1 Eigenvalues for the wave absorber problem showing
the effects of surface tension.
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Chapter 7

SYNTHESIS OF A LINEAR WAVE ABSORBING SYSTEM FUNCTION

In general a compliant linear absorber will be a device whose out-

put will be obtained as a linear operation on some input. The device to

be considered in detail here gives as an output the paddle angle as a

linear operation on the wave height at a distance d upstream from the

paddle. The scheme used in this work is to measure the wave height by a

device which produces an electric voltage proportional to the wave height.

(Details of this device appear in appendix C). This voltage serves as

the input to an electric filter whose output controls the paddle angle

by means of a servo mechanism (details of the servo mechanism appear in

appendix B). This section deals with the synthesis of the system function

of the electric filter. Details of the design and construction of the

electric filter appear in appendix B.

At this point, a knowledge of the usual mathematics and methods of

circuit design and synthesis is assumed to be held by the reader. This
information can be found in references (5) and (6). The system function

of the filter He(s) will be sought in the form of a rational polynomial

in S where (7-M)

cs c Cs-r).. cC.V
I -



(A few pertinent facts will be given below). For details, see references

5 and 6. The frequency response for a sinusoidal excitation is

He(-iw). The frequently used convention of improperly calling this

function He(-w) will be followed here. The minus sign in the arguments

occur because the hydrodpamics of the wave absorber problem are based

on the time function e .  , The inverse fourier transform from w to

t of H(w) gives the response of the filter to a unit impulse in time

(dirac delta "function"). In order that this response be real all

complex poles must have a conjugate pole and all complex zeros must

have a conjugate zero, i.e., a zero at S = a requires that there be a zero at

S = a* unless a is real. In order that the filter be stable for zero

input and not give any impulse response before the impulse occurs no

poles can be in the right half of the S plane, i.e., the real parts of the

positions of the poles must not be positive.

The number and positions of the poles and zeros must be chosen such

that an adequate approxUation to the desired frequency response is

given by H (-w). In this case the desired frequency response is h (-w).

S4,neb .1 4cf Ades4reA +Io l4i +h kaeleio coefcnt oP =n he wavrp

absorber to a few percent, it is necessary that the He(-w) approximate

BHh (-) to this degree of accuracy. A number of methods of choosing the

number of poles and zeros and their positions have been studied and the

most satisfactory one is reported in reference 7 by Linvill. He first guessed

at the needed number of poles and zeros and found the logarithm of the fre-

quency response of this system and the error between this function and
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the logarithm of the desired frequency response. Logarithms were used

because they afforded the convenient separation of magnitude and angle

into real and imaginary parts and this facilitated Linvill's evaluation.

Then the rate of change of error with changing each pole and zero position

separately was determined. Next by assuming that these rates of change

were approximately correct over the entire range of position change,

Linvill could find a new set of positions for his poles and zeros by in-

verting a set of algebraic linear equations. The process was repeated

again and again until either the desired accuracy was reached or the

filter designer "gave up." This process involved a tremendous amount of

tedious calculation. In order to ease this task, the present author

wr6te a computer program to carry out Linvill's method and this program

was successful. However, the author has evolved another scheme which

works better than the forementioned method and uses much less computer

time. The first step is to guess at the number of poles and zeros and

their positions as Linvill did. This information and the desired fre-

quency response is transmitted to a computer by typewriter console or

teletype. The computer determines the mean square error. Then the

computer takes the first pole or zero in the input list and moves it by a

slight amount in the complex plane along the direction of the real axis.

The mean square error is computed. Next the pole or zero is moved by a

small amount in the other direction along the direction of the real axis

and the mean square error (henceforth known as MSE) is again computed.

The direction 
in which the MSE is decreased 

most is determined 
and the pole
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or zero is moved in that direction by a given amount. The NBE is again

found and if it is decreased from its initial value the pole or zero is

left at its new position. Otherwise the pole or zero is returned to its

original position. If the pole or zero is complex this scheme is also

carried out for movement in the direction of the imaginary axis. In the

case of complex poles or zeros the conjugate pole or zero is moved simul-

taneously. Then the scheme is carried out for the next pole or zero in

the input list. When this is done for all poles and zeros the new MSE is

typed out so that the designer knows how the scheme is progressing. The

whole process is then repeated with a smaller allowed change in pole and

zero positions usually 90 percent of the previous allowed change. This

process can be repeated as many times as desired.

desired system function. This is done by the computer program BEN

(Listings of all computer programs appear in appendix F). This program

needs the subroutine E(VAL which determines the necessary eigenvalues. In

the first block of output from BHN (see fig. 7-1) the frequency is given

first and the next four columns give real and imaginary parts, size and

angle of the desired frequency response. Examination of the resulting

frequency response shows that over the frequency range of interest, the

needed system behaves somewhat like an integrator. Also, it is desirable

that the system have a zero at the origin of the S-plane to avoid any
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possibility of drift. In order to get something like an integrator and

a zero at the origin the signal will be prefiltered by a system having two

poles on the real axis near the origin at a point S = -a and a zero at

S = 0.

Then the desired frequency response for a filter cascaded with the

pre-filter is determined. The sizes and angles of this frequency response

are given by the columns labeled SF and ANGF in the first block of output

from BHN (figures 7-1 and 7-4). Then the subroutine IMERG performs the

forementioned relaxation scheme of locating the poles and zeros. The

normalized mean square error is printed out after each step as was

mentioned before. These values form the long vertical column of numbers

in figures 7-1 and 7.4. The normalization is based on a mean square value

of unity for the frequency response over the frequency range of interest.

Finally the real and imaginary parts, sizes and angles of the filter

output are printed.

In order to determine the reflection coefficient of the system

which was synthesized, the computer program called TOT was prepared.

Sample, outputs from TOT appear in figures 7-3 and 7-6.where the column

labeled RAD gives the radian frequency of the incident wave, RFR gives

the real part of the reflected wave for a unit incident wave, RFI gives

the imaginary part, SIZE gives the amplitude and ANGLE gives the angle

of the reflected wave with respect to the incident wave.
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The sample outputs show the synthesis of two wave absorbing filters,

one being more complicated and having a lower reflection coefficient than

the other. Figures 7-1, 7-2 and 7-3 show the various computer outputs

for the simpler filter and Figures 7-4, 7-5, and 7-6 show the outputs

for the more sophisticated filter. It is of interest to note that over

the frequency range of interest the root mean square error in the ab-

sorbing filter (square root of the number labeled normalized error in the

output of IMEMG) is considerably greater than the reflection coefficients

given by TOT. This interesting and fortunate effect occurs because the

wave probe senses both 'the reflected as well as the incident wave so

that the component of the reflected wave which is in phase with the

incident wave acts as an error reducing feedback signal to the absorbing

system. Another result which should be noted is that for the simpler

filter waves at some frequencies above the designed range of absorbtion

hkvet.reflection coefficients greater than unity. This appears to indicate

instability at these frequencies for the finite tank in which the ex-

periment was performed. Such an instability does not appear in the output

of the computer program STAXI because this program is based on a semi-

infinite tank. However, the apparent instability does not appear in

practice because at the frequencies for which the reflection coefficient

is large, the viscous dissipation is also large; in fact the viscous

dissipation is large enough so that after a wave has travelled twice the

length of the tank its amplitude was diindnished more than the amplification
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of the "absorber" increases it. Consequently, the finite tank is

stable with this filter.

i
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printf .tape. 4
W 2053.9
00010 00.4167 00.3750 00.2500 01.9400 32.1600 00.0050 00.1667
00020 03.00 13.00 02.00
00030 6 (This is the needed data about the physical parameters,
R .233+1.600 the tank geometry,the frequency range of interest ,

the number of terms to be taken in the eigenfunction
printf .tape. 5 expansions and the positions of the poles in the
W 2054.2 pre-filtering.)
00010 1 2 0 0
00020 1000.0
00030 -50.00
00040 -12.00 -81.
00050 00.00
00060 00.00
00070 00.00
00080 00.00
R .333+.333

(This is the needed data about the initial
choice for an absorbing filter.)00

loadgo bhn e
W 2054.7
EXECUTION.

RAD
3.000
5.000
7.000
9.000

11.000
13.000

gval imerg

Rhi sa sithe lfr auenc )response)zor an ea- asorer
HPR HPI SIZE ANGLE
-1.849 16.780 16.882 1.681
-1.864 9.456 9.638 1.765
-1.888 6.101 6.386 1.871
-1.920 4.077 4.507 2.011
-1.951 2.675 3.311 2.201
-1.962 1.629 2.550 2.449

(This is the needed
frequency response
after pre-filtering)

SF ANGF
51.546 .375
48.497 .354
44.850 .414
40.640 .529
36.473 .703
33.187 .939

FIGURE 7-1 Computer output from the programs
bhn and imerg for the design of a
comparatively simple wave absorbing
filter. This is the result of the
final executions of these programs
for this filter. By previous execu-
tions the pole and zero positions
for the initial mean square error
of 0.00684 were found.

(These are the mean square errors at various
stages during the computation.)

(continued on the following page)
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930.301819

REAL ZEROS

-4.996573E 01

REAL POLES

-1.069712E 01

COMPLEX ZEROS
REAL PART

IMAG I NARY

DUMMY VARIABLE BLOCK

DUMMY VARIABLE BLOCK

-8.229470E 01

DUMMY VARIABLE

PART

COMPLEX POLES
REAL PART

.000000E 00

IMAGINARY PART

.000000E 00

NORMALIZED ERROR=

DUMMY VARIABLE

DUMMY VARIABLE

-. 00000E 00

DUMMY VARIABLE

-.00000E 00

BLOCK

BLOCK

BLOCK

BLOCK

.00548

FILTER FREQUENCY RESPONSE
RAD HPR
3.0000 49.3181
5.0000 44.2316
7.0000 38.4650
9.0000 32.9728

11.0000 28.1983
13.0000 24.2374

EXIT CALLED. PM MAY
R 18.766+7.583

HPI
12.5874
18.6064
22.2856
24.0494
24.5102
24.1897

BE TAKEN.

SIZE
50.8991
47.9858
44.4545
40.8115
37.3617
34.2431

Figure 7-1 (cont.) This shows the data about the computed
filter.
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OM REAL
1.000
1.307
1.473
1.622
1.762
3.000
3.419
3.707
3.920
4.099
5,000
5.451
5.809
6.095
6.330
7.000
7.464
7. 861
8.196
8.481
9.000
9.472
9.890

10.258
10.581
11.000
11.477
11.910
12.300
12.650
13.000
13.481
13.924
14.330
14.701
15.000
15.483
15.934
16.352
16.739
17.000
17.485
17.941
18.369
18.768
19.000
19.487
19.948
20.382
20.792
FIGUR]

OM IMAG GR + RADIM
0. 25.07589054

.541 -1.31697989
.911 -6.44168437

1.169 -7.33790612
1.376 -7.47647679
0. -3.56994247
.555 -4.91426927

1.122 -5.95355988
1.624 -6.66202581
2.049 -6.89567316
0. -5.89086449

.540 -5,96692514
1.119 -6.13324612
1.688 -6.28802925
2.220 -6.40013462
0. -5.90142280

.530 -5.81597275
1.101 -5.80887437
1.682 -5.84152359
2.252 -5.88808513
0. -5.45022464

.525 -5,37219346
1.086 -5.34902942
1.665 -5.36150360
2.245 -5.39445758

0 -4.93188179
.521 -4.88726825

1.074 -4.88082045
1.647 -4.90112507
2.229 -4.93909949
0. -4.44141573
.518 -4.42776853

1.065 -4.44124573
1.632 -4.47497344
2.211 -4.52333945
0, -3.97625068

.516 -3.98753273
1.058 -4.01878649
1.619 -4.06608504
2.194 -4.12586093
0. -3.50807658
.514 -3.53552851

1.052 -3.58143699
1.608 -3.64074391
2.178 -3.71108606
0. -3.00755018

.512 -3.03961098
1.047 -3.09644434
1.599 -3.16566068
2.165 -3.24588943

E 7-2 Results of stability

GI + RADIM
-15.42179585
-19.83724070
-13.77785158
-10.12782574
-7.71284282

-. 20304990
-3. 11987484
-3.94540000
-3.84634888
-3.48070872

-. 81195116
-1.92569959
-2.43364882
-2.58135879
-2.53345722
-1.20469517
-1.67341805
-1.92076042
-2.01158175
-1.99722651
-1.24407649
-1.44193017
-1.54492095
-1.57203308
-1.54309279
-1.05389260
-1.12440780
-1.15093270
-1.13726775
-1.09217687

-. 74426333
-. 74721396
-.72949067
-. 68917129
-,.63050908
-. 38310965
-. 33927162
-. 28938930
-. 22626637
-. 15185494
-.00027516

.08568028

.16410238

.25064040

.34426961

.38886477

.51797118

.62686749

.74164201

.86165439
calculation for

filter synthesized in figure 7-1.
Instability occurs at any complex
frequency for which GR and GI are
simultaneously zero which does not
happen in the calculated frequency
range.
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printf .tape. 4
W 1230.4
00010 00.4167 00.3750 U0.2500 01.9400 32.1600
00020 01.00 20.00 01.00
00030 6
00040 00.40
R .300+.533

00.0050 00.1667

printf .tape. 5
WJ 1230.7
00010 2 4 0
00020 927.228
30030 00.00 -
00040 -00.40 -
00050 00.00
00060 00.00
00070 00.00
00080 00.00
, .333+.533

10ao•o tot trns
'1 1231.1
EX EC JT I 0 N.

RAD
1.000
2.000
3.000
4. 000
5.000
6.000
7.000
8. 000
9. 000

10.000
11.000
12. 000
13.000
14.000
15.000
16. 000
17. 000
18. 000
19.000
20. 000

0

50.45
00.40 -10.72 -82.67

rat egval

RFR
.091
.029
.015
.008
.001

-. 007
-. 016
-. 024
-,029
-.028
-. 016

.016

.076

.171

.312

.514

.811
1.282
2.107
3.296

RFI
.366
.157
.076
.030
.001

-. 017
-. 025
-. 024
-. 014
.007
.036
.071
.105
.128
.132
.106
.042

-. 049
-.029

.860

SIZE
.377
.159
.078
.031
.001
.018
.030
.034
.032
.029
.040
.073
.129
.214
.339
.525
.813

1.283
2.107
3.1407

ANLE L
1.326
1.390
1.373
1.325
1.137
4.310
4.162
3. 944
3.578
2.899
1.980
1.346
.944
.644
.401
.203
.051

-.039
-. 014
.255

FTR SIZE FTR ANGLE

FIGURE 7-3 Results of calculation to determine reflection
coefficients for filter synthesized in figure
7-1 and the frequency response of the complete
filter (including the pre-filter).
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45.313
24.959
16.666
12.265
9.536
7.676
6.331
5.316
4.527
3.900
3.393
2.978
2.633
2.343
2.099
1.890
1.711
1.556
1.421
1.303

895
345
555
698
809
902
982
051
112
166
214
256
294
328
358
385
410
432
452
470



prlntf .tape. 4
W 1314.0
00010 00.4167 00.3750 00.2500 01.9400 32.1600 00.0050 00.1667
00020 03.00 13.00 01.00
00030 6
00040 00.20
R .300+ .533

printf .tape. 5
W 1314.3
00010 0 3 1 0
00020 1000.00
00030 00.00
00040 -45.12 -98.64 -171.63
00050 04.17
00060 20.12
00070 00.00
00080 00.00
R .333+.550

loadgo bhn egval imerg
W 1314.6
EXECUTION.

RAD HPR
3.000 -1.849
4.000 -1.856
5.000 -1.864
6.000 -1.875
7.000 -1.888
8.000 -1.903
9.000 -1.920

10.000 -1.936
11.000 -1.951
12.000 -1.961
13.

o

.o

o

.o

.o

.o

.m

90
90
90
90
89
89
89
89
89
89
39
18
8
8
8
8
8
8
8
8
8

HPI
16.780
12.250
9.456
7.530
6.101
4.984
4.077
3.320
2.675
2.118
1.629

SIZE
16.882
12.390
9.638
7.760
6.386
5.335
4.507
3.844
3.311
2.886
2.550

FIGURE 7-4 This
that

ANGLE
1.681
1.721
1.765
1.815
1.871
1.936
2.011
2.099
2.201
2.318
2.449

SF
50.871
49.683
48.266
46.609
44.740
42.706
40.580
38.453
36.437
34.643
33.163

is like figure 7-1 except
this figure is for a more

complicated filter.

(continued)
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ANGF
.243
.250
.275
.311
.357
.415
.484
.568
.666
.780
.908



H = 1.336292E 05

REAL ZEROS
DUMMY VARIABLE BLOCK

.000000E 00 -. 000000E 00

REAL POLES
DUMMY VARIABLE BLOCK

-5.492040E 01 -1.050855E 02 -1.799702E 02

COMPLEX ZEROS
REAL PART

DUMMY VARIABLE BLOCK

4.087797E 00

IMAGINARY PART
DUMMY VARIABLE BLOCK

1.956879E 01

COMPLEX POLES
REAL PART

DUMMY VARIABLE BLOCK

.000000E 00 -. 000000E 00

IMAGINARY PART
DUMMY VARIABLE BLOCK

.000000E 00 -,000000E 00

NORMALIZED ERROR= .00088

FILTER FREQUENCY RESPONSE
RAD HPR HPI SIZE ANGLE
3.0000 49.5931 8.1296 50.2551 .1625
4.0000 48.1898 10.6754 49.3581 .2180
5.0000 46.4044 13.0824 48.2132 .2748
6.0000 44.2506 15.3184 46.8270 .3333
7.0000 41.7451 17.3524 45.2080 .3939
8.0000 38.9069 19.1555 43.3668 .4575
9.0000 35.7576 20.7005 41.3173 .5248

10.0000 32.3207 21.9626 39.0767 .5968
11.0000 28.6217 22.9192 36.6673 .6752
12.0000 24.6877 23.5504 34.1189 .7618
13.0000 20.5471 23.8386 31.4716 .8594

FIGURE 7-4 (cont.)
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OM REAL
1,000
1.307
1,473
1,622
1.762
3.000
3.419
3.,707
3.920
4.099
5.000
5,451
5.809
6.095
6.330
7,000
7,464
7.861
8.196
8.481
9,000
9.472
9.890

10.258
10.581
11,000
11.477
11.910
12.300
12,650
13.000
13,481
13,924
14,330
14.701
15.000
15,483
15,934
16,352
16.739
17.000
,17,485
17.941
18.369
18.768
19.000
19.487
19.948
20.382
20.792

OM IMAG
0.
,541
.911

1.169
1.376
0.

,555
1.122
1,624
2.049
0.

.540
1.119
1.688
2.220
0.

.530
1.101
1,682
2,252
0,

.525
1.086
1.665
2.245
0.

.521
1.074
1.647
2,229
0,

.518
1.065
1.632
2.211
0.

.516
1.058
1.619
2.194
0,

.514
1.052
1.608
2.178
0.
.512

1.047
1.599
2.165

GR + RADIM
-18.33878732
-35,42846918
-35,66267061
-32,92311192
-30.30980539
-1,35976274
-5,99139506
-9.08221734

-10.84757888
-11.54850972
-.00022192

-2.03622216
-3,75803775
-5.07429743
-6.01989067

.24439156
-.95016365

-2.03529790
-2.97444546
-3. 75720891

.19990624
-.62619440

-1.40095861
-2.10781932
-2,73760936

.03440140
-,59403431
-1.19384781
-1.75602128
-2.27468616
-.18033493
-.68816631

-1.17801630
-1.64481352
-2.08493969
-.39088345
-,81956053

-1.23586872
-1.63717850
-2.02126980
-.55722022
-.92762703

-1.29200929
-1.64626738
-1.98902506
-.65103935
-.97062717

-1.29554090
-1.61414784
-1.92586088

GI + RADIM
-98.35989571
-66.54965591
-48. 90717983
-39.80612516
-34.05883455
-33.45416689
-29.72544479
-25.99602365
-22.70292568
-20.03336453
-18.90171933
-17.64584374
-16.28397965
-14.92240572
-13.64264572
-12.19061434
-11.54961872
-10.87913442
-10.19178843
-9.50764668
-8.14504623
-7.75948763
-7.36975020
-6.97051781
-6.56600744
-5. 34818542
-5.09569544
-4.84761500
-4.59509265
-4.33813322
-3.26229548
-3.08503622
-2.91548795
-2.744 49623
-2.57095474
-1.63298841
-1.49375515
-1.36650102
-1.23950838
-1.11118117
-.31403939
-. 18677346
-.07921662
.02734733
.13440918
.78138889
.91504874

1.01993085
1.12436602
1.22958593

FIGURE 7-5 This
7-2)

is a stability calculation (like figure
for the filter synthesized in figure 7-4.



printf .tape. 5
W 2130.5
00010 1 5 1 0
00020 133374.6
00030 00.00
00040 -00.20 -00.20 -54.90 -104.81 -179.72
00050 04.07
00060 19.55
00070 00.00
00080 00.00
R .150+1.016

loadgo tot rat
W 2146.3
EXECUTION.

RAD
1.000
2 .000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18&'000
19,000
20.000

EXIT CALLED.
R 10.516+.866

trns egval

RFR
.035
.018
.012
.007
.001
-.005
-.011
-. 016
-. 018
-. 016
-. 005

.017

.055

.113

.205

.398

.853

.899

.603

.457
PM MAY

RFI
.193
.090
.054
.035
.024
.018
.015
.017
.021
.026
.031
.029
.012

-. 031
-. 119
-. 263
-. 246

.260

.302

.191
BE TAKEN.

FIGURE 7-6 Results of calculation to determine reflection
coefficients for filter synthesized in figure
7-4.
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SIZE
.196
.092
.055
.036
.024
.018
.019
.023
.028
.031
.031
.034
.056
.117
*.237
.477
.888
.936
.674
.495

ANGLE
1.393
1.379
1.357
1.384
1.527
1.844
2.190
2.340
2.301
2.113
1.734
1.029

.220
-. 272
-. 527
-. 584
-. 281

.282

.464

.396



Chapter 8

OELIQUE WAVES

Consider two-dimensional invisid, incompressible fluid motions in a

semi-infinite channel of depth h as shown in fig.(2-1). The velocity

potential must satisfy

map VF(8-1)

The boundary condition at the bottom of the tank is

0 -k (8-2)

The conditions imposed at the remaining boundaries depend on the parti-

cular problem being considered.

The most common solution to equation (8-1) satisfying (8-2) is of

the form:

-, 1 ~ ~ f

: dtCOSA, tjY) e - (8-3)

where A is an arbitrary complex constant and the real part of the above

expression corresponds to the physical solution.

Another solution is

Examples of both of the above solutions appear in chapter 4.

Solutions of the type of equation (8-3) can be thought of as x directed

-96-

i
i



waves where this means the plus or minus x axis corresponds to the

direction of propagation if the wave is a traveling wave. If the wave is

a standing wave the direction of pure sinusoidal spatial dependence is

the x axis. Similarly solutions of the type of equation (8-4) are y

directed waves.

Now consider an (x', y') coordinate system rotated an angle 9 from

the (x, y) system. 9 is called the obliqueness angle.

iAn x' directed wave which satisfies (8-1) is:

eg(8-5)
Regrouping terms gives

(8-6)
(' .- '

'Tis wave does not satisly tne lower bounaary conauiton iequation o-2)

but the sum of such a wave and a wave with an obliqueness angle of - 9

can satisfy the lower boundary condition. The direction of y' in which

the waves attenuate is chosen such that the potential remains bounded as

x -- - . This is done so the results can be applied to the semi-

infinite channel which is theoretically investigated in this work. In

general, the proper signs are dictated by the physics of the problem.

Consider

1 -97-



(8-7)

Let,
w- si# + (Cv * (8-8)

Then, a 6## +4 (B, 5f (8-9)

f "(8-io)

4 y, (8- 1)(810

The lower boundary condition (equation 8-2) is satisfied if:

, =Ie, I (8-12)
Thus, the sum of two oblique waves at opposite obliqueness angles

provides a solution to equation (8-1) satisfying the lower boundary condition.

Next, equation (8-12) is incorporated in equation (8-10) where

A ea ,e "0't

Note that the form of equation (8-13) is identical to that of

equation (8-3). However equation (8-13) is a wave with a complex wave



number. Waves of this type must be used to satisfy the inhomogeneous

free surface condition for some second order waves as exemplified in the

solution for Onh2 in chapter 5.

Pairs of oblique waves can also be used to satisfy the homogeneous

first order surface condition for unstable or decaying waves. In order

to demonstrate this we seek solutions of equation (8-1) satisfying the

lower boundary condition (8-2) and the usual linearized free surface

condition,

(8-14)

where the solution has the form

sX( Y' T (8-15)

The functions X, Y and T may be complex and the real part of their

product is the physical function •. For such a solution, the free surface

condition is

YC0)T s -0 (8-16)
or

T=Ae IL Be YCO)
(8-1:)
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If the quantity g (0 is positive, the time dependence is sinusoidal.

This corresponds to usual standing or progressive waves. If the quantity

Sf is negative or complex, decaying and/or increasing (unstable)

waves are possible. For example, the potential of equation (8-13)

yields for g Y'(O)/Y(O) the value of (fg) tak (fh) which can be

negative or complex for complex values of f. The preceding discussion is

intended to give an introduction and some physical understanding of the

lbU 4- U A0% A 4M % f ll hl b
J9..I.- J.L , UW LJ & J ,,,D. . A JJ&J.L-• .L . £- A.I..,J 4J, IJW. ..IAAG V A f .L %IOJ..P AO q

countered are the initial value problem and problems of the so-called

"sinusoidal steady state" at frequency w. Problems utilizing real values

of w are the wavemaker problem and the wave absorber problem. Imaginary

values of w are encountered in considerations of the stability of various

terminations at the end of a channel which can remove or add energy to

the fluid.

Fo0rml Derivations of the ELeenfunctions for waves of yfxed or vari abh Ampl_ -.tud

The linear problem is solved for frictionless, irrotational incom-

pressible flow to that

)70W(8-18)
and (8-19)

The boundary conditions are:
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(8-20)

(8-2.1)

7 <V C £• - (8-22)

At x = 0, the boundary condition depends on the termination at this

location which is left arbitrary at this time.

Eigenfunctions of equation (8-18) are sought in the form:

S= (8-23)

For these eigenfunctions equation (8-21) becomes

w-' ÷ ° 0 (8-24)
In equation (8-23) F and G may be complex functions and w may be a

complex variable.

Substitution of equation (8-23) in equation (8-19) yields

0: (8-25)

which requires

(8-26)

(8-27)

f is a complex variable.



The solutions to equation (8-25) are:

(8-28)

and

(8-29)

These solutions place limits on Im(f). If equation (8-28) is used,

Im(f).4 0 to satisfy the boundary condition (8-22) and if equation (8-29)

is used Im(f)/ 0. The solution to equation (8-27) which satisfies the

boundary condition (8-20) is:

zW cosk f~#d (8-30)

The free surface condition (8-24) is satisfied if:

LJg tM 4Jk (8-31)

For any value of w, there are an infinite number of values of f which

satisfy the above equation.

Let Z fk (8-32)

Then, equation (8-31) is equivalent to

- (8-33)

Let f (8-34)

where -(8-35)

A fundamental region in Z for Z tanh Z is 0 (fI) -DZg•0

This strip maps onto the entire w plane. Similarly

are fundamental regions in Z for non-negative integer n. Negative
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1L.

,I -) fJ•• O 9 -- X4.sW . For a definite problem with a

definite choice of equation (8-28) or (8-29) only eigenfunctions associated

with one of the two sets of fundamental regions those with positive B, or

those with negative P satisfy the boundary condition of boundedness at

x - - 0 . Equation (8-34) and therefore equation (8-33) have solutions

in each fundamental region. Each successive value of n from zero to

infinity yields a solution f having a greater imaginary part than the pre-

ceding solution. It should be noted that equation (8-33) is identical to

that used for fixed amplitude waves except for the fact that now f is

complex.

To proceed further, a definite termination at x = 0 must be considered.

To retain in similarity with the remainder of this work, a paddle hinged

at y = -P with a solid wall below the paddle will be considered.

Normal modes for a hinged paddle termination,

For a linear device of the type considered in the remainder of this

work the paddle angle is equal to the filtered wave height as measured a

distance d from the paddle. The filter frequency response is taken as

% (8-36)
where w may be complex.

."ii; :



A normal mode of the tank is defined as a function satisfying all

the boundary conditions and having a fixed w. A normal mode can be

written as

Each Fn and Gn have the form of equation (8-28) or (8-28) and (8-30)

with fn given by equation (8-31) and n corresponding to the n fundamental

region as described in the preceding section. The An's are constahts to

be determined.

(8-38)

Fom I ha tes 3n che reh e at%#A, 0(8-39)
V r, = anI s

(8-40)

(8-41)

Combining equations (8-39) and (8-40) gives

0

(8-42)
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The formulae for the integrals I1 and I2 of chapter 4 are valid for

complex a and will be called II  and I when f replaces aS1 2 nn n

Hence, An = B • (8-43)

The problem just examined of finding the normal modes of a hinged

paddle termination is a non self-adjoint boundary value problem. The

eigenfunctions automatically satisfy the boundary conditions at y = 0,

y = -h and x = -P . In order that the series of eigenfunctions satisfy

the boundary condition at x = 0, the x derivative of the series must

converge to the x directed velocity of the termination in some sense.

The non-self adjointness comes about because of the complex value of

w in equation (8-24). It is hhown by Coddington and Levinson (8)

that in problems of this type the eigenfunctions form a complete, but non-

orthogonal set. Completeness is demonstrated in the sense that the

integral of the error squared over the termination at x = 0 can be made as

small as desired by using a sufficient number of terms in the expansion.

Calling the eigenfunctions Gi(y), the non-orthogonality means that

Therefore, the usual method for determining the coefficients in a self

adjoint problem would fail in this case. However for the particular

problem at hand
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So the coefficients can be easily determined and are given by equation (8-43).

It is shown in chapter 11 that if certain restrictions on the nature

of the wave absorbing system function at very low and very high fre-

quencies are met the complete solution to the initial value problem in a

semi-infinite tank can be represented by an integral over a set of eigen-

functions of fixed amplitude.

If one wishes to solve the initial value problem for a finite tank

the solution will have to be represented by a sum of normal modes for

such a tank with complex frequencies.



Restrictions on the sign of w

Consider positive going travelling waves which propagate towards

the termination at x = 0. For such waves the eigenfunctions have the form:

(8-44)

The sign of Re(w) is arbitrary inasmuch as the physical potential

is the real part of equation (8-44). To avoid ambiguity the sign of

Re(u) is taken as positive.

,•ec•) ;o (8-45)
Then positive going waves require that

oess) ,o (8-46)

For boundedness at x = -

/IL ) 0O (8-4y)

The relation between f and w is given by equation (8-33)

(8-33)

where

(8-32)

Let (8-35)

iS nce h is ositive e uations (8-46) and (8 
t

t , CoZ Y o (8-48)

(8-49)
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(8-50)

Lemma 1

For positive going waves of the form of equation (8-44) which are

bounded at x = -, Im(2) < 0

Proof. If 10ce) lfro)equa c( ) o w
from equation (8-33).

(8-51)

(8-52)

Hence rA2idz V o 40
e5'x tt g sA

.mmUeuUU 4 0 fokr 0 )
Now consider two cases, Case A c tan Bin which 2

cosh a

(8-54)

0 and Case B

in which a tan
cosh a

0 . Case B implies tan B4 0. Case Aj Here Im(w2)

is the sum of two quantities each of which is i 0 so for this case the

(8-53)

I',fok eu to'

,ilk411 4-M&SLeed Lt
ZrIX4 Z



lemma is true.

Case B.

gCSJJL
-p.

(8-55)

____ < I
g 0DOVA&

AVnk
lwclw V .41410 euk

(8-56)

'Osdgx6)

Use of the identity I - I e

gives 4. j 9 ) hKLB

Since tan B 0

(8-5y)

(8-58)

(8-59)

and B Z

(8-60)B~ -
2

Since fl

and ,

the two following inequalities hold

yR
~f- , 7 (8-61)

~r (S~t~d 2) JC¶ ~IIfl 1
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or Itan P( >i,Either Itan P1 i

If Itan BP 1 ec

If Itann BP I , ec

Im(.wM "-E 6 C*A

juation (8-61) shows Im(kZ)• CC4 #)O

iuation (8-62) shows that

(8-63) where E P 0

This proves lemma 1.

Lemma 2. O f I

Proof O d • ol K

! d

(8-64) from Lemma 1

has the two values

and -

From equations (8-64)

o tk d~(o- 4
-~~ C~7z

Thus the value of having the argument -

(8-66)

1 2+ - Argw has

a negative real part which is not permitted by equation (8-45).

fore

so

Aa A s0wk W

ok W7 A d
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which proves Lemma 2.

Theorem 1

Waves with a bounded amplitude at x = -Op and which propagate

towards the channel termination at x = 0 must have a fixed or exponentially

decaying amplitude with respect to time independent of the details or the

termination. Their amplitude cannot increase with time.

Proof: The time dependence of the waves is:

e U-' (8-69)

where

W = Wr +i i (8-70)

wi 4t 0 by lenna 2.

W..t

Hence e decays with increasing positive time.

Theorem 2.

Waves with a bounded amplitude at x = -e and which propagate away

from the termination at x = 0 must have a fixed or exponentially increasing

amplitude with respect to time independent of the details of the termi-

nation. These waves cannot decay with time.

The counterparts to Lemnas 1 and 2 needed to prove theorem 2 can be

proven in the same manner as Lemmas 1 and 2.
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Chapter 9

The Stability of Linear Active Wave Absorbers

In general, a linear active water wave absorber will measure some

signal, pass this signal through a linear filter, and move the tank

termination in some mode with a magnitude that is proportional to the

filter output. In the case of the absorber considered in detail in this

work, the measured signal is the wave height some distance from the paddle

and the mode of paddle motion which is made proportional to the filter

output is the paddle angle. The system function of the filter is some

approximation to that function which would absorb all waves according to

linear theory.

In order that an active wave absorber be a usable device, it must be

stable with respect to negative going waves. It will necessarily be

stable with respect to positive going waves by theorem 1 of chapter eight

which shows that the amplitude of positive going waves cannot increase

with time. However, if the tank and termination have any normal modes

with negative going waves, these waves will be unstable or at best neutrally

stable by theorem 2 of chapter 8. The stability of a hinged paddle ab-

sorber for negative going waves will :ew be examined.

For a normal mode with negative going waves

do. eo K fr (1A) e 'I -* C) (9-1)
with Re4) )0 (9-2)

Re >0 (9-3)
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The upper boundary condition gives the relationship between A and f .

g eas~, fj (9-4)
Within each fundamental region for fn (see chapter 8), fn is a continuous

2 2function of a . The f 's for a given value of w can be found as follows.n

First, find the f 's for
n

This is done in chapter 4 to determine the system function for a linear

wave absorber. Then let Im (w 2) go from zero to the desired value and trace

the path of each fn in the complex plane from its value at Im (w2 ) = 0 to

its value at the desired value of Im (w2 ). A normal mode for the channel

is given by equation (8-38). The A 's are given by equation (8-43) withn

the minus sign

.4 - W$SL,
-

N W 
4 f x

(9-6)

where Ocs (8-41)

The wave amplitude can be determined from equation (2-22), which is the

kinematic boundary condition

I IS&Z(2-22)
This gives

n r-
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From equations (8-41) and (9-7),

The wave absorbing filter has a value of -- given by He(W).
/ xad )

Any complex values of w for which He(w) equals Hh(w) constitutes a

possible unstable radian frequency of the complete electro-hydrodynamical

system. The electric filter should be designed so that its response at

frequencies above the range of interest is small to avoid possible in-

stabilities at these frequencies. In order to determine whether or not a

Possible instability exists in the frequency range of interest, the complex

frequency plane must be searched to see if there are any unstable points.

This is done by the computer program STAR. Sample outputs from STABI

are shown in figures 7-2 and 7-5. STABI uses the subroutines DRVTV,

TRNS AND RAT.

DBV'V is used to compute the derivative of a function which is zero

at an eigenvalue. This derivative is needed by STABI to find the eigenvalues

(f's) for complex w which is done by an extension of Newton's method to

complex numbers. TRNS computes the real and imaginary parts, size and

angle of the following functions of a complex variable:

EXP, SINH, COSH and TANH. RAT computes the complex value of the filter

response which is a rational function of S and therefore of w since

(i) = S (9-8)
( Fig. (7-2) shows the output from STABI where
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Re(w) is labeled OM Real

Im(w) is labeled OM Imag

The preceding theory for stability in a semi-infinite channel does

not indicate one type of instability which can occur in a finite tank.

Consider a finite channel with an absorbing system at one end and a solid

wall at the other end. A possible instability exists if at any frequency

the reflection coefficient exceeds unity. A small wave incident on the

absorber would result in a larger reflected wave. This wave would be

completely reflected by the solid wall and travel back to the absorbing

end of the tank. If this wave at the absorber has a phase relative to

the initial reflected wave phase within a certain range an increase in the

amplitude of the negative going wave would result and an instability would

exist. The stability theory of a finite tank with standing waves could

be carried out in a straightforward fashion, but in order to insure

stability in a finite tank for an absorber which is stable in an infinite

tank it is only necessary to make sure that the reflection coefficient

remains small up to frequencies where the viscous dissipation is large.

To be more explicit, the reflection coefficient multiplied by the viscous

attenuation coefficient for a wave travelling twice the length of the

tank should be less than unity.
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Chapter 10

DETERMINATION OF THE REFLECTION COEFFICIENT

Theory

When the tank is operating in the "sinusoidal steady state" the

wave height due to the traveling waves can be written as

(10-1)

The total wave height will be the sum of % and the local non-

travelling waves at the ends of the tank. The local waves attenuate very

rapidly with distance from the ends of the tank. Calculation has shown

that at the ends of the tank the local waves can have amplitudes as large

as 1/10 of the travelling wave amplitudebut at a position one wavelength

from the end of the tank they have amplitudes less than 1/5000 of the

travelling wave amplitude. Since measurements were not taken near the

ends of the tank, the local waves can be neglected in the measurements.

When a travelling wave is generated by the wavemaker (primary wave)

a part of it is reflected by the absorber. This reflected wave is almost

totally reflected by the wavemaker and at this point it is called a

secondary incident wave by Ursell, Dean and Yu (2). A part of this wave

is then reflected by the absorber, etc. Ursell, Dean and Yu carried out

the determination of the formulae for the reflection coefficient by con-

sidering primary and secondary incident and reflected waves. They did

this because they were interested in eventually determining the amplitude

of the primary incident wave. However, in the present case it is more
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convenient to lump all the incident waves into one, and all the reflected

waves into one as indicated by equation (10-1). Then e (in equation 10-1)

is the reflection coefficient. Since the first term in equation (10-1)

represents a positive going wave with some wavelength A and some speed v,

and the second term represents a negative going wave with the same wave-

length and wave speed; there will be some points in the tank where the

amplitudes of the two waves add and some points where the amplitudes sub-

tract. In fact, since the speed of approach of one wave with respect to

the other is 2V the distance from one point in the tank where the ampli-

tudes add to the next point where the amplitudes add is 1/2 .

At a point in the tank where the amplitude is maximum,

4 =(10-2)

At a point in the tank where the amplitude is minimum,

7/4,= 1 U(£ (10-3)
Hence, e • " ,RM•

(10-4)

This is the same formula that was obtained by Ursell, Dean and Yu (2).

Since the system function of the wave absorbing system is not

exactly equal to the system function needed for complete absorption, a

theoretical value for the reflection coefficient is determined here.

.Let the wave absorber system funeti on fram surface elevation at

x = -d to paddle angle be denoted by He(w)
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Let the relation between paddle angle and surface elevation at

x = -d which is required by the hydrodynamics of the system be denoted

by 1h(w)

r -b -d (10 -6)
The reflection coefficient will then be determined by the relation

/Id,,• .

& W/ i 4 Cud (10o-7)

The notation of chapter 4 will be used in the determination of Hh(w)

except that here a negative going wave is denoted by Re ei( o x-Wt)]

whereas in chapter 4 it is denoted by Re (ei(aox + Wt)

9'rR w ' oA a;* es go e 4edDV 4 (yk)e C&4%-aOC)

'. (10-8)

t (10-9)MONO-,*kdk e'~2-e!1~I
I* A i04kk e-

,i.$"',A

(10-10o)



As in chapter 4,

(10 -11)
(10-12)

(10-13)

The coefficients, A, Al and the bn's are determined as in chapter 4. This

gives:

B %I?. xof3 __~

(10-15)

LDL
f1C

(10-16)

where the I's are also determined in chapter 4.

Let A = 1

Then A' equals the reflection coefficient

s

C") S44 A

(io-1,7)

(i -4')

(10-18)

(10-19)
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The values of A1 for various frequencies when H e() is given by thee

rational function determined by the computer program IMERG are determined

by the computer program TOT. The computer program TOTEX evaluates (10-20)

when He(w) is given by a table of measured values.

Experiments With the Wave Absorber

The following experiment was performed.

The wavemaker was set at a fixed stroke and a fixed frequency. A wave

height measuring probe was attached to a carriage mounted atop the tank

which was towed down the tank at a speed which was very small compared to

the wave speed. The electronic circuitry associated with the wave probe

is the same type as the circuitry associated with the wave probe in the

wave absorbing system (appendix C). The output signal from this wave

measuring probe was sent through a low pass filter and then to a chart

recorder which recorded the wave height at the probe. The low pass filter

was set to a cutoff frequency of 1.5 times wave frequency. At large ampli-

tudes there were significant second harmonic waves in the tan he

non-linearities in the hydrodynamics and in the absorbing system The

filter eliminated the second harmonic from the records. The wave height

pattern was, according to the preceding discussion, an oscillating pattern
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inside an oscillating envelope. The experiment is depicted in figure

(10-1).

A sample record is shown in figure (10-2). From these records

values of andl were determined and were used to calculate the

reflection coefficient. These results are shown in table (10-1) and

figure (10-3). Figure (10-4) shows the calculated magnitude and angle of

the system function of the servomechanism and electronic filter. This

function was measured in the experiment now described and depicted in

figure (10-5). The output from a low frequency sine wave generator was

simultaneously connected to the absorbing filter input and one channel of

the two channel paper recorder. The servomechanism feedback pot output

voltage, which varies linearly with paddle angle to first order in

paddle angle, was connected to the second recorder channel. From the

recordings made by this sytem, the magnitude and phase relations between

input voltage and paddle angle were determined and are shown in figure

10-4 together with the calculated values of these auantities. Within the

range of frequencies for which the wave filter was designed (3 radians/sec

to 13 radians/sec) the measured magnitude of the transfer function is

within 3 percent of the calculated value and has an RmS deviation of less

than one percent. The measured phase is within .045 radians of the

calculated phase with an RmS deviation of less than .03 radians. Figure

10-3 shows a curve of the reflection coefficient computed by TOTEX as

well as the values of the reflection coefficient found in the experiment

described above.
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The difference between theoretical and experimental values of the

reflection coefficient is one percent or less for most experimental

points. The major exception to this occurs for a wave radian frequency of

9.25 radians/sec. Visual observations at the time of the experiment showed

that shortly after the wavemaker was turned on the absorber motion was

sinusoidal, but after some time had elapsed a rather large second harmonic

component of paddle motion existed. This resulted in waves of twice

the wavemaker frequency. The amplitude of these higher frequency waves

was comparable to that of the lower frequency waves generated by the wave-

maker. Examination of figure 10-3 shows that at 18.5 radians/second

(second harmonic frequency) the reflection coefficient is 1.6, The only

reason why the finite length tank is not unstable at some high frequencies

is that the wave attenuates considerably in traversing the length of the

tank twice. Because of the large reflection coefficient at 18.5 radians

per second and the inherent non-linearities in the hydrodynamics and the

servo-mechanism the large second harmonic wave forms when the fundamental

radian frequency is 9.25 radians per second. The effect of the second

harmonic paddle motion upon the first harmonic motion due to non-linearities

in the servo-mechanism seems to be the most likely reason why an 8 percent

reflection coefficient of the fundamental wave was measured although the

theoretical reflection coefficient is 4 percent.
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RADIAN
FREQUENCY

3.13

3.93

4.94

6.o04

7.06

8.38

9.24

11.63

12.57

THEORETICAL
REFLECTION
COEFFICIENT

0.05

0.01

0.03

0.05

0.06

0.05

0.04

0.06

0.06

EXPERIMENTAL
REFLECTION
COEFFICIENT

0.07

0.03

0.03

0.05

0.05

0.06

0.08

0.07

0.06

TABLE 10-1 Reflection Coefficients. The theoretical values
are based on the measured system characteristics.
These theoretical values were determined by the
computer program TOTEX. The experimental value at
any frequency is the average of all measurements
taken at that frequency.
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loadgo ratio
W 1824.5
EXECUTION.

RAD ALP
1.9845 .5000
3.8551 1.0000
5.5353 1,5000
6.9990 2.0000
8.2585 2.5000
9.3450 3.0000

10.2937 3.5000
11.1361 4.0000
11.8971 4.5000
12.5955 5.0000
13.2454 5.5000
13.8566 6.0000
14.4365 6.5000
14.9903 7.0000
15.5220 7.5000
16.0346 8.0000
16.5302 8.5000
17.0108 9.0000
17.4778 9.5000
17.9324 10.0000
18.3756 10.5000
18.8082 11.0000
19.2310 11.5000
19.6447 12.0000
20.0499 12.5000

RATIO
.1049
.2138
.3293
.4513
.5770
.7017
.8203
.9288

1.0251
1.1089
1.1810
1.2428
1.2960
1.3422
1.3825
1.4181
1.4498
1.4783
1.5040
1.5273
1.5486
1.5682
1.5862
1.6028
1.6182

RATIO/ LAMBDA
.0083
.0340
.0786
.1437
.2296
.3351
.4569
.5913
.7342
.8824

1.0338
1.1868
1.3407
1.4953
1.6503
1.8056
1.9613
2.1175
2.2740
2.4308
2.5880
2 17455
2.9032
3.0612
3.2194

TABLE 10-2 The Relationships Between Radian Frequency (RAD),
Circular Wave Number (ALP), Wave Height/Wavemaker
Stroke (RATIO) and the ratio of (RATIO/Wavelength).
To obtain the wave height, multiply the wavemaker
stroke by RATIO. To obtain the ratio of Whve height/
wavelength, multiply the wavemaker stroke by the
appropriate number in the column labeled RATIO/LAMBDA.
This table is based on a water depth of 5"(0.4167T) and
a wavemaker which is hinged -" above the bottom of the
channel. The wavemaker stroke is taken at the waterline.
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RADIAN FREQUENCY (radlans/second)
FIGURE 10-3 Theoretical and experimental reflection coefficients
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RADIAN FREQUENCY (radians/seond)
FIGURE 10-4 Calculated and measured values for the

frequency response of the absorbing system.

-128-

i̧ I I
e I

hi

Ba
i 'I

cg

j£
4
U)

S
O

L

I

I



.J
J4WE ~

-129-



Chapter 11

ABSORPTION OF WAVE PULSES

Introduction

This chapter deals with the absorption of a wave pulse by a linear

wave absorber. The theoretical problem is then a consideration of the

initial value problem according to linear theory (first order). Since the

solution for a sinusoidal incident wave exists (see chapter 4) it seems

reasonable, at first glance, to expect that any square integrable initial

condition could be represented by an integral over the normal modes of the

tank and that the resulting solution would be well behaved. However, this

is not the case in general because of two types of singularities in the

problem. The first type of singularity can come about if the value of17 or

ý t for any eigenfunction is zero at t = 0. The second type of singularity

comes about because for a unit eigenfunction of wave elevation or surface

velocity, as w -- 0 the amplitude of the associated paddle angle eigen-

function can become infinite. As will be shown subsequently, each of these

singularities can be avoided by placing certain restrictions on the trans-

fer function from wave height at the measuring probe to paddle angle.

Theory

The notation of chapter 10 will be used in this development. The

problem considered here will be for a given initial surface elevation which

is square integrable and no initial surface velocity. The problem for

given initial surface velocity and no initial surface elevation can be
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treated in a similar way to the problem treated here. Since the theory used

is linear, the solutions for initial elevation and initial velocity can be

added to achieve the solution for given values of initial elevation and velocity.

Let

K can be determined from the system function of the absorber (see chapter 1O)

Let the initial surface elevation be given by •C•

tk%,0) 0 {: ) (11-2)

The purpose here is to determine the conditions under which the surface

elevation, ;7 (x,t), can be represented by an integral over the eigen-

functions of surface elevation; i.e., to determine when the following repre-

sentation is valid:

-' A,)%J AV co

7Ll' cZei 4t

(11-3)
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(0 ) (11-4)
The normalization of the eigenfunctions will be taken such that:

(11 -5 )
Solving for A in equation (11-5) and using equation (11-1) gives:

X0 (11-6)

It is shown in chapter 10 that

where the A's are functions of (.
0

From equations (11-1) and (11-6),

(11 -7)

Let

(11-8)

-132-



Hence

It should be noted that there are possible singularities in An at any value

of a for which K(a )I = and at a= 0.
0 0 0

Now consider equation (11-4) and make use of the normalization (11-5),

equation (11-9), for the An's and equation (11-2).

where

Equation (11-10) is an integral equation of the first kind. Very

little useful general information exists for conditions needed for the

existence of solutions for such equations. However, an integral equation

of the second kind can be obtained by taking the Fourier transform from x

to B of equation (11-10). For the present problem the integration limits

for Fourier transforms are 1p , O in x and [0,0 ) in B .

Let

(11-12)
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and

(11-13)

Since the paddle velocity is a continuous function of y, the series

for q converges uniformly to a function of x; so the order of summation and

integration in equation (11-13) can be reversed giving:

1

The terms in the sum for Q(%o1,) behave as - for large n except as
n

a goes to zero in which case they behave as 1 . Therefore the series
o n3

converges uniformly for all CO and B in CO,4V ) so in any subsequent inte-

grals, the sum can be integrated term by term if this is necessary.

The Pburier transform of equation (1-10) is:

It is shown in most treatises on Fredholm Integral Equations of the

second kind (for example, see Mikhlin, Ref. 9) that a solution to equation

(11-15) exists if:

and(11-16)

and
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Moreover the solution is unique if there are no non-trivial solutions to

the homogeneous equation.

o(d.)f & ) (11-18)

If a solution to equation (11-18) exists then it represents a solution

to the problem with the water at rest at t = 0. The non-existence of non-

trivial solutions to equation (11-18) is a criterion of stability. There-

fore, if a solution to equation (11-15) exists, it is unique if the ab-

sorber is stable.

In order to determine when equations (11-16) and (11-17) hold, an

upper bound on Q(Co ,) 2 will be determined first. This upper bound

will be called t(ao p) 2 . The expressions for II, 2, I3n and I4n are

taken from chapter 4.

(11-19)
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The equation for the a 's,n

Therefore

(4-11), shows that:

I
.o CDS4k)L

<4
P 

(Ai,&ICo&4

~1+
*'1

(11-21)

C (

C>J<IQ Cc•

(11-22)

Ido:
(11-23)

The integral over B in the expression for , can be carried out

by quadrature leaving:
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8"i.·

f'
F~l·{~DI

[·-

-

The series in equation (11-24) converges to a finite ntumber. Let

this number be S. At this point it is clear that if 10~4( D , then

Therefore, a unique solution to equation (11-15) exists if

Apart

Ook X~sI a
144l01-l I~ ~lgK , 'o,- -*- . - 0-

(11-25)
2

from the factor IL (, 0 )! there are two possible singularities

in the expression for C,. i these being the possible singularity in the

integrand at a = 0 and the infinite integration limit.
o

As a -n 0 the integrand behaves like 1u 1L(CAn 4l 2

As a --w4 the integrand behaves like a2
o o

Therefore, if all the singularities in ig(a) 2

2

t$((a ) o

(11-26)

(11-27)

are properly integrable,
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IUM-)I (11-28)

and

(11-29)

The conditions (11-28) and (11-29) as well as the condition that

IU(S )(2 is properly integrable over (O, a ) form a set of sufficient
conditions for equation (11-15) to be a valid representation for the solu-

tion to the initial value problem. The restriction (11-28) is needed be-

cause for unit wave amplitude the paddle stroke goes to infinity as the

frequency goes to zero. The restriction (11-29) is needed to insure

bounded energy in the local, non-travelling waves.

In theory, any wave pulse can be absorbed by a perfect absorber since

(o ) is identically zero for a perfect absorber. However, unless the low

frequency energy in the pulse goes to zero rapidly enough as ---0O, the

paddle amplitude will become infinite invalidating the assumption of

small motion.

Experiment

In view of the preceding theoretical development, a wave absorber

should absorb almost all of that part of a wave pulse whose spectrum lies

in the frequency range for which the reflection coefficient of the ab-

sorbing system is small compared to unity. In order to confirm this

result the following qualitative experiment was performed.

A wave measuring probe was fixed in the center of the tank and the

wavemaker was given a pulse that would produce a wave pulse whose spectrum
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had a measurable amount of energy in the range of w = 0.8 to w = 20

radians per second. The range for which the wave absorber gives a small

reflection coefficient is from w = 3 to w = 13 radians per second. A

recording of the measured wave elevation for this experiment appears in

figure (11-1). As a control, the experiment was repeated for the absorber

replaced by a 10 degree sloping beach and again for a solid immovable wall

at x = 0. In each case the water started at rest and the wave pulses were

identical. The surface elevation recording for the pulse with the sloping

beach appears as figure (11-2) and the recording for the pulse with a solid

wall appears as figure (11-3).

The recording made with the wave absorber in use (figure 11-1) has

some interesting features. Considerable reflected wave energy is ob-

servable at frequencies outside the range of wave frequencies the system

was designed to absorb (3 to 13 radians per second). These frequencies

should be reflected for the absorbing system function which was used and

the broad band pulse (0.8 to 20 radians/sec) was used to allow an experi-

mental confirmation of this fact. Figure (11-1) also contains a recording

of paddle angle vs time and the comparatively large paddle motion at low

frequencies compared to the low frequency wave elevation is one of the

salient features of the figure. This is a graphic example of the reason

for the possible low frequency singularity described in the theoretical

subchapter of this chapter.
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Chapter 12

DISCUSSION OF THEORETICAL AND EXPERIMENTAL WAVE ABSORBE RESULTS

The theoretical results of chapters 4 and 10 indicate that complete

absorption is theoretically possible at any wave frequency for which the

absorbing system is stable with respect to negative going waves. Roughly

speaking, an absorbing filter will be stable for all frequencies less

than the frequency for which the distance from the absorber to the wave

sensing element is equal to one quarter of a wavelength. This effect is

described as follows. For very long waves, the character of the wave at

the sensing element is almost the same as the character of the wave at the

absorber. In order to absorb waves, the absorbing paddle velocity is

approximately in phase with the fluid velocity in the incident wave, this

velocity being approximately in phase with the surface elevation. Thus,

for very long waves the absorbing paddle has a maximum forward (toward

positive x) velocity when the surface elevation at the probe is maximum.

As the incident wavelength is decreased, the absorbing paddle velocity

lags the wave elevation at the sensing probe to account for the time it

takes for the wave crest to travel from the probe to the paddle. When

the wavelength is four times the distance ffom the probe to the paddle, the

phase lag is approximately 90 degrees. The word "approximately" keeps

coming up because of offects of the local, non-travelling waves. Now

consider the stability of the absorber for very long waves. Say the ab-

sorber attains a small velocity in the negative x direction creating a

wave crest at the absorber and at the wave probe. For long waves (low

frequencies) the absorbing system has the characteristic that when there
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is a crest at the sensing probe the absorbing paddle is moving at maximum

velocity in the positive x direction. Thus there is a negative hydro-

dynamic feedback signal which stabilizes the paddle at low frequencies.

Such is not the case when the distance from the absorber to the probe is

one quarter of a wavelength. If the absorbing paddle obtains a velocity

in the negative x direction and makes a wave whose wavelength is four times

the distance from absorber to probe, the wave crest reaches the probe one

quarter of a period later than the time of maximum magnitude of the negative

paddle velocity. At this frequency the absorbing system causes the paddle

to have a maximum positive velocity one quarter of a period later than the

time of maximum wave elevation at the probe, or one half a period later

than the largest negative paddle velocity. Also, the relationship between

wave amplitude and paddle stroke is the same for a wavemaker as it is for

a wave absorber and hence the magnitude of the positive feedback is unity.

These are the exact criteria for self-sustained oscillation.

In practice, the magnitude of the absorbing system function from wave

elevation to paddle angle should start dropping below the theoretical value

for 100 percent absorption at frequencies somewhat below the critical fre-

quency (frequency for which the wavelength is four times the probe to

paddle distance), say 15 percent below this value. This is desirable so

that the small unavoidable deviations of the system function from its value

for complete absorption will not cause instability and also so that any

negative going waves that get started will decay quickly. The critical
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frequency can be raised by using a more sophisticated wave detection

scheme. If the activating signal is taken as the sum of the signals from

two separate probes and a filter is built to operate on this input signal

to give paddle angle, the critical frequency is that frequency whose

associated wavelength is four times the longitudinal separation of the wave

height probes.

The theory developed in chapter 8 of oblique waves and waves with

complex eigenvalues is useful in dealing with waves where energy is added

or removed at a boundary and with some waves satisfying a non-homogeneous

surface condition such as those second order waves which result from the

non-linear interaction of a travelling first order wave and a bound first

order wave which is considered in chapter 5. At the time of the writing of

chapter 5, the theory of waves with complex eigenvalues was not developed.

Use of the method of complex eigenvalues would simplify some of the cumber-

some expressions of this section.

The comparison between theory and experiment for the compliant wave

absorber is excellent. As is shown in chapter 10 the measured reflection

coefficient is within one percent of the value computed from the measured

filter characteristics except for a few isolated instances. Therefore, it

is reasonable to conclude that the reflection coefficient can be made as

small as the calculated reflection coefficient for the absorbing system

function used down to reflection coefficients somewhat less than one percent.

The calculated reflection coefficient can be made as small as desired.
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However, the smaller the value of the desired reflection coefficient,

the more sophisticated is the needed absorbing filter.

The results on the absorption of wave pulses show that pulses can

be effectively absorbed with a fairly simple electric filter such as that

used in the experiments. Of course more effective absorption can be

achieved with a more sophisticated electric filter. The absorber performs

over a wide amplitude range and is effective for much smaller waves than

for which a scoping beach is effective. This occurs because a sloping

beach depends on non-linear effects for its operation and small waves

are predominantly linear.

Initially it was anticipated that the absorbing system would be a

device which would give the paddle the needed impedance (complex ratio of

moment to paddle angle as a function of frequency) to absorb waves over a

broad frequency range. Since this would be an energy absorbing device for

all frequencies it would necessarily be stable so no stability analysis

would be needed. However, the theoretical impedance for such a device

(equation 4-32) has poles at all frequencies for which:

(n 1-
-- (12-1)o !

Co is the circular wave number, I is the distance from the paddle to the0

end wall of the tank and n is any integer.

At these frequencies, which are the natural frequencies for the body

of fluid between the paddle and the solid end wall of the tank, the moment

an the paddle becomes infinite in theory. From a practical standpoint it
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would be impossible to make such a device operate satisfactorily. First

of all very small errors would result in very large paddle angles thus

causing destruction of the apparatus. Also, at or near resonant fre-

quencies the linear theory is very wrong so absorption would not be

achieved. An interesting possibility is to use a paddle with no water in

the space behind it. With small clearances between the paddle and the

side and bottom walls there would be some small leakage which could be

pumped back into the bottom of the tank. The currents due to the leakage

and the plmping could be made negligibly small.
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Chapter 13

INVESTIGATION OF THE RELATIONSHIP BETWEEN PRESSURE AND SURFACE ELEVATION

Introduction

A very convenient signal to use to activate a wave absorber is the

pressure measured at a solid boundary of a tank. A pressure tap in a side

wall can be located closer to an absorbing paddle without being interfered

with by the paddle than can a wave height probe. A pressure tap is less

susceptible to damage than a wave height probe and a pressure tap signal

is not affected by menisci and free surface dirt. The theoretical relation-

ship between the stroke of a wavemaker and the amplitude of resulting waves

was experimentally verified by Ursell, Dean and Yu( 2 ). Hence it was

expected that a wave absorber activated by the wave height would yield

good performance. Such an expectation would exist for an absorber acti-

vated by a pressure tap if it were known that the theoretical relationship

between the pressure and the wave height was valid. For this reason an

investigation between the pressure at a solid boundary and the wave

height was carried out.

Theory

Consider a semi-infinite channel of depth h extending from x = -d

to x = 0 with a solid wall at x = 0. For two dimensional waves whose

amplitude is uniform in time and which satisfy all the boundary conditions

(see chapters 2 and 4).

= Acos x cosh a (y + h)ei ' t (13-1)

where 2 = 0 g tanh h (13-2)
O o
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Standing waves are required by the boundary condition at x = 0.

From the linearized form of Bernoulli's equation

a - C(13-3)
denoting the time varying part by P (t),

fled) (13-4)

The free surface kinematic condition (• s~ (S• 9) gives,

x.7z sikk 9. k (13-6)

The experiment performed was to determine the ratio of the pressure

measured at x = 0 and at some depth, divided by the wave amplitude measured

at x = -d. The variables were the depth of the pressure tap, the wave

amplitude and the wave frequency.

I %£ drX a 9 CroSi' (13-7)

This function was evaluated by means of the computer program REFLEC,

the output of which appears as table 13-1. The extreme left hand column

of this table gives y and the uppermost row of the table gives the radian

frequency. This table is calculated for h = 0.4167 feet (5 inches) and

d = 0.0833 feet (1 inch).



Experiments

For this experiment, the wave absorbing paddle at x = 0 was replaced

by an immovable wall containing a column of pressure taps along its center-

line as shown in figure 13-1. The wave height probe (Appendix C) was

mounted one inch (0.0833 ft) downstream of the end wall and about two

inches to the side of the tank centerline to avoid interfering with the

pressure measurements which were taken on the tank centerline. Experiments

were performed for pressure measurements at depths of 0.03125, 0.06250,

0.09375, 0.12500, 0.15625, 0.18750, 0.21875, 0.25000 and 0.28125 feet

(every 3/8 inches).

The wave height probe was calibrated by moving it up and down by

fixed amounts in still water and comparing the change in probe height with

recorder pen deflection. The pressure transducer was calibrated by connecting

its input to a vessel of water and moving the vessel up and down by fixed

amounts and comparing the change in vessel level with recorder pen deflection.

In the experiments the wavemaker was turned on and allowed to run

until a constant amplitude standing wave developed. Then the wave height

and the pressure were simultaneously recorded on a two channel recorder

(Appendix D). The pressure transducer is a Sanborn Model 268B. This

transducer is very sensitive to noise so the recorder filtering described

in Appendix D and extreme care in avoiding vibration were necessary to

obtain a clean signal. The experiments were carried out for a range of

radian frequencies from 2 to 20 radians per second and a range of wave-

maker strokes from 0.2 to 2.0 inches.
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Figures (13-2) through (13-10) show the results of this experiment.

Each figure corresponds to a given pressure tap depth. The ordinate of

each graph is the ratio of wave pressure to wave amplitude and the ab-

scissa is the radian frequency. The theoretical functions computed by

REFLEC are shown in these figures as a solid line and the experimental

results are shown as points.

Discussion of Experimental Results

Examination of figures (13-2) through (13-10) shows that the experi-

mental results have an average value within two percent of the theoretical

value with a standard deviation of about two percent except for a few of

the results for the smallest wavemaker stroke and the largest pressure tap

depth at the higher frequencies. For these erroneous points the magnitude

of the measured pressure was about 1/500 PSI so the error could be due to

noise, hysteresis in the transducer or error in the attenuation resistors

in the recorder amplifiers. There does not appear to be any significant

relation between the measured value of the pressure/height ratio and wave

amplitude over the range of wave amplitudes used in this experiment. Be-

cause of this fact and the very good agreement between theory and experiment,

the small.observed error is probably due to calibration error. The agree-

ment between theory and experiment indicates that it would most likely be

feasible to activate a wave absorber with a pressure signal. However,

since such a signal would probably come from a tap in a side wall, it is

deemed advisable to measure the pressure/wave height ratio for a few
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values of wave height and wave frequency with a pressure tap in a side

wall. This would determine whether or not there is a significant effect

on the ratio from the boundary layer at the side wall. There most likely

is no such significant effect, but one does not know this for sure

until the experiment is performed.
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Chapter 14

CONCLUSIONS

The agreement between theory and experiment for the reflection co-

efficient of a moving wave absorber and for the ratio of pressure to ampli-

tude in standing waves has been found to be within two percent of the

measured quantity for almost all of the measured quantities and usually the

deviation is less than one percent. In the case of the pressure measure-

ments there is a two percent standard deviation of the measured quantities

due to calibration uncertainty. The deviation of experimental results

from theory shows no definite trend; sometimes experimental results

slightly exceed theory and sometimes they fall slightly short of theory.

Thus it is reasonable to conclude that the characteristic quantities given

by linear theory are correct within limits of less than one percent for

small waves. Ursell, Dean and Yu (2) found a deviation of three percent

between theory and experiment for the relationship between wave height and

stroke of a piston type wavemaker and concluded that the deviation was

mostly due to experimental problems and the theory really gave a better

approximation to the truth than 97 percent. In light of the present work,

their conclusion seems to be correct.

The agreement between theory and experiment for the linear wave ab-

sorber is sufficiently good to provide experimental confirmation of the

theory. No experiments have been carried out as yet with a non-linear

absorber.
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Some experimental confirmation has been given to the stability theory.

The first absorbing system was constructed prior to considerations of

stability. In operation it was found to be unstable. Later, calculations

showed this system was theoretically unstable.
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Appendix A

DESIGN AND CONSTRUCTION OF THE EXPERIMENTAL WAVE TANK

A drawing of the tank used for this experiment appears as figure A-i.

As shown in the figure, the tank is fitted with paddles at both ends and

has aligning brackets near the paddles as well as every twelve inches

along the sides. As a result of the numerous aligning brackets and careful

construction the tank does not deviate more than 0.005 inches from the

rectangular parallelopiped it approximates. The tank is 8 inches deep, 12

inches wide and 11.04 feet long, being 10 feet between paddles. The tank

was operated with a water depth of 5 inches. There are plates with tapped

holes on the overhangs of the tank which are used to hold equipment.

With the tank properly aligned and with small clearances between the

paddles and the walls (0.005 inches), excellent two dimensional waves

were obtained by moving one of the paddles. When the tank was improperly

aligned, modes with transverse nodes sometimes appeared, so proper align-

ment is important if a good experiment is to be attained.

The material used for the tank structure is 6061-T6 aluminum which

was anodized after fabrication, but before assembly.

The attachment of the sides of the tank to the bottom was done with

bolts and epoxy resin to avoid the possible warping that might occur in

welding.
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Appendix B

DESIGN OF THE WAVE ABSOREING FILTER

Introduction

In chapter 7 a means for synthesizing a wave absorbing system function

was set out and two filters were synthesized, one being more complicated

and having a lower mean reflection coefficient than the other. In this

section, the circuit design of each of these filters is carried out.

Although it is theoretically possible to design the synthesized

filters with wholly passive elements, this is impractical because of the

very large capacitances and inductances which would be needed for filters

operating at water wave frequencies. Therefore, active circuits have been

designed, the active elements being operational amplifiers. In order to

acquaint any reader, who is unfamiliar with operational amplifiers, with

these devices a short description of their operational usage follows.

The Operational Usage of Operational Amplifiers

Figure (B-l) shows the symbol which is used to represent an opera-

tional amplifier.

+-

Figure B-1

The line labeled + is the positive, or plus, input; the line labeled - is

the negative, or minus, input; and the line at the extreme right is the

output. The operational amplifier itself is an extremely high gain amplifier.
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At the present time, 1965, the gain of typical, readily available ampli-

4 8fiers varies from 10 to 10 depending on the exact type of amplifier.

The output voltage of the amplifier is equal to the difference in voltage

at negative and positive inputs multiplied by the gain. In almost all

applications some form of feedback is applied between the output and one

of the inputs. For any normal operating output voltage, the differential

input voltage will be very small. The internal resistance between the

14  8
input terminals is quite high. varying between 10 and 10 ohms. depending

on the amplifier. The internal resistance from either input terminal to

ground is very -ki , typically varying from 107 to 10 9 ohms. Owing to the

small differential voltage and the large input resistance, the input

current is very small in normal operation. Because of the forementioned

facts, a very accurate design approximation is obtained by assuming that

the input current is zero and the differential input voltage is zero.

As a simple example, consider the amplifier circuit of figure (B-2).

Figure B-2
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Since the differential input voltage is zero,

V =V in (B-l)

By Ohm's Law V
i= s-(B-2)
1 R1

Since the input current at either input is zero (in this case the minus

input point is under consideration) Kirchoff's current law gives

2 = i (B--3)

Hence

V out-Vin Vin (B-4)

R Ror 2 1
R

Vout= v. ( + -) (B-5)
out in R

Thus the circuit of figure B-2 is an amplifier with a gain of

R,
(1 +- -- ).

As a more complicated example, consider the very general linear

circuit of figure (B-3) where the Z's represent complex impedances.
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'21

Vin

VOL

Figure B-3

It should be noted here that the designer must take into account

the effect of the input impedance of the circuit of figure (B-3) on the

circuit applying Vin'

Since no current enters the operational amplifier at plus input

4 = i5 (B-6)

and

and V = in(B-7)
e in vz4+

Since there is zero differential input voltage on the operational
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amplifier

V =- 5-
s Z4 + Z

By Ohm's Law

V
S s
2 Z2

Vi= - Vs V Z4
h 

-C--- -1 zi s Z4 + z5

By Kirchoff's Current Law

= in

3 (i Z 54+Z2 Z4
Z,

Then, by Ohm's Law

out s

z3

•4
z1

V -ur- V-*- [ (B-14)
Tout- estz5 N 2 3 Z1

Thus figure (B-3) represents a linear filter with the transfer function:
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(B-9)

(B-10)

(B-11)

(B-12)

(B-13)

Z5
Z2 ( cZ4 +Z

in
TTZZ5)% Z2



= 3 + . )- (B-15)

The Servomechanism Control Circuit

A diagram of the wave absorbing system appears as figure (B-4).

The paddle is activated by a 60 cycle a-c servo motor which is driven by

a power amplifier, this amplifier being driven by a chopper whose input is

a d-c control signal. A d-c feedback signal is provided by a potentiometer

w c s eare to t e s 

s

proportional to the paddle angle within a linearized approximation valid

for small paddle angles. The mechanical gearing is shown in figure (B-5).

The d-c control signal is supplied by an operational amplifier connected

as shown in figure (B-6). The mechanical characteristics of the servo

FEEDBACI
POT

SIGNAL

Figure B-6
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motor can be described in a general way by stating that the control

voltage can be obtained by some operation on the paddle angle. The output

voltage of the operational amplifier, and consequently the control voltage

to the servo motor, is proportional to 1 in figure (B-6) and

i3 = i1 + i2  (B-16)

V.
i in (B-17)2 R

1 + RlC1S

i V R1 ( ) (B-18)

where Vp is the feedback potentiometer voltage and

V = K1 e (B-19)

9 being the paddle angle.

Vin 1+R1 C 1Si3 + K e  ) (B-2)
3 R2 R1

Call the input control voltage to the servo motor V
m

Vpin l+RIClS
Vm= 2p + Kl ) (B-22)v=2 R1•, R

K2 is equal to R3 times the gain in the circuitry between the operational

amplifier output and the servo motor input. The proper operation of the

type of servomechanism used here requires that K2 be sufficiently large
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that equation (B-22) is well approximated by

V. 1 + E 1=
R1n _ ) =0 (B-23)

Then

Ri

V-in K1R2(l+RICIS) (B-24)fethe transfer function from inpr ut v olts to adle an le has: a oleo

at

S = 1 (B-25)

1

Design of the Simpler Wave Absorbing Filter

The system function for this filter is obtained from figure (7-1).

This function is:

()9 3S(S +I 0.4B5 )
H (S)=927.23 (sO.4 (s+ .4)(s + 10 72)(s+B2.67) (B-26)

The zero at S = 0 and the double pole at S = 0.4 constitute the pre-

filtering done by the computer program BHN and the remaining poles and

zero are located by the computer program IMERG. Details of this work are

explained in chapter 7. A pole-zero plot for this filter appears in

figure B-7. The process for designing such a filter is as follows. First,

a filter with a set of nominal values for the various circuit elements is

-175 -



designed. For the filter designed here only resistors and capacitors are

used for the circuit elements. Then the capacitors are obtained and their

capacitance is measured. This capacitance usually differs from the

nominal value, so the needed values for the resistors are altered to keep

the correct positions of the poles and zeros. This sequence is followed

because the usual tolerance of capacity of readily available capacitors

is 10 percent, and one percent resistors are readily available.

Inasmuch as the simpler filter was built and used, the values of the

circuit elements used in the filter will be given here. The filter is

built in three stages. The first stage contains the zero at S : 0, the

pole at S = -10.72 and one of the poles at S = -0.4. The second stage

contains the zero at S = -50.45 and the second of the poles at S = -0.4.

The third stage is the servo mechanism feedback amplifier which contains

the pole at S = -82.67. The circuit elements used gives positions of the

poles and zeros which are very close to the desired values.

The circuits used here are a specialization of figure (B-3) with

Z2 =0 , Z5 = O and Z4 = Go.

For this circuit

V Z
The first stage is shown in figure (B-8).3

Vin -1 

(B-27)

The first stage is shown in figure (B-8).
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240 K

IC4

Figure B-8

For this circuit,

Hence

S+10.7-
11.2 x 105 S

z3 96.1 x 1o S+o14

(B-28)

(B-29)

I .11 u. ) (S+o.4)(S+10.75)

The second stage is shown in figure (B-9)

(B-30)

248 K

Figure B-9
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10
Z- s+50o.5 (B-31)

98.9 x 103
z3 s+o.4 (B-32)

Hence,

Ts= 0.248-S-50-5 (B-33)
12 S+0.4

The third stage is the servomechanism feedback amplifier which is

shown in figure (B-6).

Referring to this figure,

R1 = 24.2 x lo3x

C1 = 5 x 10 - f

This gives a transfer function from volts to paddle angle of

1

T13 K +82.6 (B-34)

where K is a constant to be adjusted so that the overall gain is correct.

The complete system function is T1 .

T=TTT 2 S(S+50. )(B-35)
T1 TllT2Tl3= 2.665 ~E(S+0.4)(S+0.4)(S+10.75)(S+82.b7)

It is desired that T, = H1(s) given by equation (B-26). Hence

K = 348 (B-36)
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K can be adjusted by adjusting R3 in figure (B-6). In order to determine

the correct value of R3 first try any reasonable value and experimentally

measure the d-c relationship between Vin (fig. B-4) and the paddle angle.

The desired ratio at d-c is given by equations (B-35) and (B-36).

K 8267.21 
(B-37)

Then the correct value of R3 is the inserted value multiplied by

4.21

(measured value of( v in)de)

Design of the More Complicated Wave Absorbing Filter

The system function for this filter is obtained from figure (7-4).

This function is

1. 334xlodsls-(4.o2+il9 .96) -4.0 -i19. )7
2 (S+0.2)(S+0.2)( S+54.90)(S+ 04.•1) S+179.72)

(B-38)

As was the ease with the simpler filter, one of the poles will be con-

tained in the servomechanism feedback loop. Experiments with the servo-

mechanism have shown that it will operate satisfactorily with a pole at

S = -54.90 so this pole will be inserted in its feedback loop. H2 (s)

contains a conjugate pair of zeros in the right half of the S-plane. This

could be obtained by use of the generalized circuit of figure (B-3), by a
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twin-tee input circuit (see Guillemin, ref. 6), or by a "brute force"

technique which will be described subsequently. Actually the twin-tee

circuit is a form of figure (B-3) where Z, is the impedance of the twin-

tee. There are other forms of figure (B-3) yielding zeros in the right

half of the S-plane but for the positions of the complex zeros in H2(s),

these circuits subtract two large currents to get a small resulting current

which could result in a large total error caused by a small percentage

error in one resistor. The twin-tee gives an undesirable pole and an un-

desirable zero as well as the two desired zeros and one desired pole.

Therefore the following brute force technique is recommended. Multiplying

together the bracketed factors of equation (B-38) gives:

H (S)= 1.334 x 10 5 s 2 -8.14s+56.1
H2 S (S+0.2)(S+0.2 )(S+54.90)(S+104.81)(S+179.72)

(B-39)

The factor in the square brackets contains the two right half plane zeros.

In short, this factor will be obtained by adding 561 to s2 and subtracting

8.14s. The system function S represents a differentiator,and S2 represents

a double differentiator. These system functions amplify high frequency

noise. Although high frequency noise is attenuated by the complete system

function (there are more poles than zeros) it is important to make sure

that there is a minimum of high frequency noise at all stages of the filter

to prevent saturating the amplifiers which would result in non-linear operation.



First consider the circuit of figure (B-10).

Vin

RIC2S
V1  I+RICIS Vin (

Figure B-IO

Next consider the circuit of figure (B-11) which is the circuit of

figure (B-10) cascaded with another modified differentiator.

B-40)

Vin I

(B-41)

Figure B-11

Now the bracketed quantity in equation (B-39) along with three of the

poles can be obtained by the circuit of figure (B-12).
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where: L1
R6

= R C44

1 R1 R RIC2 RIC2RI

R R? R3 R6  SR8

3=-R8 1 (1 iCS) (l+R4C4S) (i+R8 CS

Figure B-12

Let

1

RlC1

1
S -C5

(B-44)

(B-4o)0.2

R = 561
R2R3 C2C 3

1
RC 4  -= 179. 72

R4

R = 8.14
R6R4C 3 -

(B-48)
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Then cascade the circuit of figure (B-12) with one having a zero at

S = 0 and a pole at S = -0.2 as shown in figure (B-13).

, I
vs Cc u .,r

S= 0.2
R9C7 (B-49)

Figure B-13

Then,

Vout = constant H2 ( s )
(B-50)
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FIGURE B-5 This shows the gearing between the motor, the paddle drive
rack and the feedback potentiometer. Note the springs used
to prevent backlash,
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S = -10.72 dou
a Ld Ai

S=- 50.41
82I 67W

S=-82. 67)

FIGURE B-7 Pole-zero plot for a wave absorbing
system function which was built and
tested.
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Appendix C

WAVE HEIGHT TO VOLTAGE TRANSDUCER

An electrical voltage proportional to the wave height having an

error of less than 1/10 percent in the slope of the response function,

( olts Output ) , was produced by a modulated temperature stabilizedfoot of wave height
differential oscillator. A description of how this device operates

follows:

Two identical 1 mc oscillators are built on a single circuit board.

Each pair of components (one for each oscillator) is matched and the lay-

out of components for one oscillator is symmetrical to the layout of

components for the other oscillator. By this scheme, when the circuit is

enclosed in a case having a high thermal conductivity, the temperature,

although possibly changing with time, and varying with positions in the

case, is the same on a given component of one oscillator as the temperature

on the identical component of the other oscillator. This follows from the

fact that all points on the case have the same temperature. Hence, the

frequency drift of each oscillator is identical. In addition, the oscilla-

tors are designed to have a very small temperature drift. Air core in-

ductors, glass insulation capacitors and low drift transistors are used

for all components which affect the oscillator frequency. The frequency

of one of the oscillators is modulated by a capacitance wave height probe.

The difference frequency between the two oscillator frequencies is detected

by means of an A-M detection diode and an L-C low-pass filter. The dif-

ference frequency between the two oscillators is amplified and clipped at
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an upper and a lower value by means of a zener diode. The clipped signal

then goes to a capacitor-diode network which, gives out a charge propor-

tional to the peak to peak voltage of the clipped wave on every cycle of

wave. This pulsating charge goes into a low-pass filter whose output is a

voltage proportional to the wave height. The peak to peak voltage of the

clipped wave is temperature dependent owing to the temperature dependent

characteristics of the zener diode. To cancel out this effect, the

factor of proportionality between charge out the diode-capacitor network

per cycle and the peak to peak voltage was made temperature dependent by

using temperature dependent capacitors in the network. The capacitors

and zener diode were chosen so that the temperature dependent effects

would cancel each other in the final output voltage.

The capacitance probe itself is a 0.047 inch diameter 9 inch long

piece of spring tempered monel wire covered with a teflon sleeve with a

0.005 inch wall thickness. The immersed end of the probe is sealed off

with a hard thermoplastic wax. If the probe were stationary as the fluid

level moved up and down a considerable error in the measured surface ele-

vation would be introduced because the fluid miniscus at the probe would

invert as the direction of vertical fluid velocity inverts. This effect

causes an error because the wave height transducer measures the capacitance

between the center conductor of the probe and the layer of water immediately

adjacent to the probe. The teflon sleeve on the probe serves as the di-

electric insulator. To avoid this problem, the capacitance probe is

mounted on a loudspeaker driver and oscillated through a double amplitude
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of about 3/32 inches at a frequency of 120 cycles per second. Thus, if

whenever the wave height signal is used it is passed through a low pass

filter having a very small response at 120 cps,.the signal at any time is

"averaged" over all phases of the miniscus position.

A schematic diagram of the transduced appears as figure C-1 and this

diagram is now explained.

The oscillator circuit associated with inductor L2 is the oscillator

whose frequency is modulated by the wave elevation. The oscillator circuit

associated with inductor L1 is the reference oscillator. The 5.1K re-

sistor and the 1N541 diode between the two oscillators form the detection

circuit so that the sum and difference frequencies of the two oscillators

appear across the 5.1K resistor. The filter formed by L3, L4, the 510 A f

capacitor and the 2.7 # f capacitor allows only the difference frequency

of the two oscillators to appear at its output. The first amplifier stage,

centered on the first 2N466 transistor, is an emitter follower stage used so

that the second 2N466 transistor amplifier stage does not load down the

filter output. This second stage is a common emitter amplifier whose out-

put is clipped top and bottom by the 1N757 zenar diode. The circuitry

following the zenar diode is a frequency detector which gives a voltage at

the collector of the 2N267 transistor that is proportional to the input

frequency of the clipped wave. The basis of its operation can be found

in ref. 11. The 2N213A amplifier stage is an emitter follower used to

obtain a low impedance output.
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Appendix D

ALTERATIONS TO THE CHART RECORDER

All chart recordings taken during experiments in this project were

made on a Sanborn Model 297 two channel recording system. This recording

qrstem has a very wide frequency response, being only 3 dB down at 125

cycles per second. For the experiments conducted in this project it was

desirable to cut off the frequency response well below 125 cycles per

second. This is so because the 120 cps from the capacitance probe vibrator

appears as noise in the wave height signal. When pressure measurements are

made the vibrator 120 cps and motor noise appear as noise on the pressure

signal and quite a lot of motor noise around 25 cps comes from the gear

train of the wavemaker which is picked up by the pressure transducer. The

desired cutoff was accomplished by adding two capacitors to the Sanborn

plug in element E78 as shown in figure D-1. These two capacitors filter

the signal to the pen amplifier by the following transfer function:

T1ST = (1 + 0.0275(w)(1 + 0.01875(w)

A graph of T vs w appears as figure D-2.

This transfer function has some attenuation and phase shift in the range

of wave frequencies of interest which is from 0.025 to 3.0 cps. However,

in the experiments done in this work, only ratios of measured quantities

and relative phase shifts between two measured signals are considered. By

adding identical filters to both recorder channels, no error is introduced

in these measurements.
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I I R7
I 2750 1o50

FIGURE D-1 Alterations to eleotnonics of Sanborn Model 297
recorder to produce rolloff characteristic shown
in figure D-2.Alterations are shown as dotted lines.
(Reprinted by permission of Sanborn,Div. Hewlett-
Packard Corp.)
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APPENDIX F

DESCRIPTIONS AND LISTINGS OF COMPUTER PROGRAMS

Introduction

All of the computer programs which follow were written to be executed

via the compatible Time-Sharing System from a remote console connected to

the IBM (094 computer at M.I.T.(ref..O). This is a rather unique computation

facility at the present time and had it not been available, the amount of

work done in the time that was available on the task reported here would

necessarily have been considerably less than was done. Other programs than

those listed and described here were prepared and used in various stages

of the research. Only those programs used in obtaining the reported

results are considered to be of sufficient general interest to report here.

Subroutines in the CTSS systems can and often do,have two or more names.

The filing name is the name used to talk about the program and the name

used manipulate the storage of the program to and from the disc and the

computer memory. The logical name is the name used to call the subroutine

from another program.

The following program descriptions are not intended to inform a

reader, who is unfamiliar with these programs, of sufficient details so

we can use them; but rather as an introduction to the interested reader

of what the programs can do and as a reference for one who has gained some

familiarity with the programs and their use.
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COMPUTER PROGRAM EGVAL

This program is a subroutine used to compute the various eigenvalues

for a normal mode of real radian frequency w. For each frequency the sub-

routine finds a0 which is given implicitly by the formula
O(6-iO)

and the first K w which are given by the formula
n s

This process is carried out for values of the radian frequency of RADO,

RADO + RADS, RADO + 2 RADS... until the value of the radian frequency ex-

ceeds RADF within the following qualification. If a value of the radian

frequency is less than RADF, Egval will find the eigenvalues for this value

plus RADS before returning control to the calling program. The computed

values of C are stored in a one-dimensional array called ALPO(J) where

J = 1 corresponds to a radian frequency of RADO, J = 2 corresponds to

RADO +: RADS, etc. The X, are stored in a two dimensional array called
n's

ALP(J,N) where the J's correspond to the radian frequency just like they

do for ALPO and the N's correspond to the number of the eigenvalue, N = 1

corresponds to the lowest eigenvalue of (6-9) etc.

The eigenvalues are found by Newton's method. In finding the value

of U . the initial guess is

2

guess

In this case the value of the initial guess is not very important because
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2-- CSV4 ki is monotonic in a Whenever the change in

value of a from one iteration to the next is less than 0.00025 of the
o

iterated value of a , the iterated value is taken as the correct value.
o

The set of statements from 210 to 330 in the program listing are the

instructions for finding a.
o

The initial guess for "* is very important becausen

is not monoto c a. It is essential when determining the n
n

root that the iterated value stay on the nth branch of the tangent. This

thcan be assured by making sure that the initial guess for the nth root is
on the nth branch of the tangent and that the guess is an underestimate

for the value of the root. Then (as can be seen in figure ) each

successive iterated value will be an underestimate of the true value, but

a closer approximation than the preceding iterated value. For the present

work a workable value for the initial guess has been found to be

a (guess) = (n - 0.48) ~
n

Since tan x ,akes on all:-reai ..valLs .as..x -changes by n.the change in n .as

the nth branch of the tangent varies over its entire range is . The
h

iterated value of an is taken as correct when the change in the iteratedn
1value from one iteration to the next is less than 4000h " The set of

statements from 340 to 520 in the program listing are the instructions for

finding the • .n's
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All input and output for this subroutine is done via common storage

with a program that performs the input-output operations.

The logical name for EGVAL is EIGVAL.
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EGVAL

EXTERNAL FUNCTION MTR00010
ENTRY TO EIGVAL. MTRO00020
DIMENSION ETR(10),ETI(100),HPR(100),HPI(100) MTRO00030
VECTORVALUESQQ0002 = 000002 ,1 000040 MTR00040
VECTORVALUESQQO003 = 000002 ,1, 000040 MTR00050
VECTORVALUESQQ0004 = 000002 ,1, 000040 MTR0060
VECTORVALUESQQO005 = 000002 ,1, 000040 MTO00070
DIMENSION ALPO(100),81(100),CNO(100),TOR(100),FOI(100),HN(IMTkOOdO
100),HI(100),ALP( 004000, UQAOO2),CN( 004000 0QU0003 MTOO00090
1),CB( 004000, WU0004),T( 004000, QQ005) MTRO00100
PROGRAM COMMON ALPOALP,BlCBCNOCN,TOR,TOITHRHIRADOMTR0Oi1
1RADFRADS,H,P,QL,ROG,FENPIRETRETIHPRHPIK MTR00120
INTERNAL FLNCTIUN SINH .( UQ0006)=0.5*(EXP .( 000006 MTK0030
1)-EXP .( - QQ00006)) MTR00140
INTLRNAL FUNCTION C 0SH .( Q0007)=0.5*(EXP .( Qu0007 MTRo3i00

1)+EXP .( - 300007)) MT 0OO160
PI=3.1415927 MTRO0170
RAD=RADO-RADS MTR00180O
T'H Q00009, FOR J=9l,1 J *G. 100 MT<00i90
RAD=RAD+RADS MTROOZO0
AA=bQRT.(RAD*RAD/(G*H)) MTROOL10

000010 Al=COSH.(AA*H) MTROO220
A2=TEN*(AA.P,2)/RO MTROO30
A3=AA*(G+A2) MTR00240
FU=TANH.(AA*H)-RAD*RAD/A3 MTROP250
A=(H/Al)/Al+RAD*RAD*(G+3.0*A2)/(A3*A3) MTROO260
AAA=AA-FU/A MTROO70
RATIO=.ABS.(FU/(A*AAA)) MTROOZ80
W'R (RATIO-0,O0025) .G. 0.O,TRANSFER TO 000011 MTOO290
TRANSFER TO 000012 MTkOO300

000011 AA=AAA MTkOO10
TRANSFER TO Q00010 MTROO O

Q000012 ALPOIJ)=AAA MTRO0030
T'H QQ000013, FOR N=191, N.G. K MTROO340
PIH=PI/H MTROO350
AA=N*PIH-0.480*PIH MTRO00360

0Q0014 Al=COS.(AA*H) MTROO0370
42=TEN*(AA .P.2)/RO MTROOO80
A3=AA*(G-A2) MTROO390
A4=TAN.(AA*H) MTR00400
A5=RAD*RAD/A3 MTR00410
FU=A4+A5 MTR00420
A6=H/(A1*Al) MTR00430
A7=RAD*RAD*(G-3.0*A2)/(A3*A3) MTR00440
A=A6-A7 MTR00450
AAA=AA-FU/A MTR00460
RATIO=.ABS,(FU*H/A) MTROO470
WR (RATIO-0.00025) .G. 0.O,TRAN.FER TO QQ0015 MTR00480
TRANSFER TO QC0013 MTR00490

000015 AA=AAA MTROO500
TRANSFER TO Q00014 MTRO00510

000013 ALP(JN)=AAA MTRO0520
WR (RADF-KAD) .G. O.0,TRANSFER TO Q00016 MTRO0530
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MFR00 40
TRANSFER TI (u0017 M[ OOR o

OQO 16 CONTINUE MlR0060

••0CC0 CONTINUE MIRO0 70
U'O0017 CONTINUE M

INTEGER QQOO ,02.J,N,k MIK OO9U
FUNCTION Rt rURN MTHOO00
END OF FUNCTION MIR00
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COMPUTER PROGRAM BHN

BHN is the main control program used for determining the characteristics

of a wave absorber and for designing such an absorber. BHN calls EGVAL to

obtain the eigenvalues and calls IMERG to aid in the design of the electric

filter.

The following quantities are inputs to BHN

H = calm water depth

P = depth of paddle pivot point

QL = length of space containing water behind the paddle.

This is a vestige from the time when a previous version of BHN

was used to compute Hm(w) the angular amplitude to moment

response for a wave absorbing paddle.

RO = water density 1.94 slugs/ft. 3

G = acceleration due to gravity = 32.2 ft/sec 2

TER = water surface tension 0.0050 lbs/ft

R = downstream distance from the paddle to the actuating wave

height probe.

RADO = lowest radian frequency for which the computation is carried out.

RADF = highest radian frequency for which the computation is carried out.

RADS = radian frequency increments between values of radian frequency

at which the computation is carried out.

K is the index of the highest eigenvalue computed. For each radian fre-

quency at which the computation is performed the eigenvalues which are

determined (by EGVAL) are: ao, O, a2 ... ' . Also the various
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series which are derived in chapter 4 which have the form E are

trancated to

AP equals the magnitude of the position of two real poles in that S plane

for the prefilter (described in chapter 7. ) in the absorbing system

function. The program statements from 340 to 580 are the instructions for

evaluating equation (4-35) which gives the system function for an ideal

absorber. The statements numbered from 590 to 650 perform the prefiltering

which was described in chapter T.

The system function of the prefilter is

BIf.N prints out the real and imaginary parts, size and angle of the ideal

wave absorbing system function as well as the size and angle of the system

function of a filter which when cascaded with the prefilter will give the

ideal system function (system function for complete absorption).

The statement numbered 7'20 transfers control to the program IMERG

whose logical name is HURAT.
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HPR(J)=B1(J)*ETR(J)/DNM MTROO00540
HPI(J)=-B1(J)*ETI(J)/DNM MTRO0550
SIZE=(HPR(J)*HPR(J)+HPI(J)*HPI(J)) .P.O.5 MTROO560
ANGLE=ATAN.(HPI(J)/HPR(J)) MTROO570
WIR HPR(J) .L. U.O,ANGLE =ANGLL+3.14159 MT~OOtbO
A=AP MTH3090O
SI.GZ=((A*A-RAD*RAD).P.2+4.*A*A*RAD*RAD).P.O.5/RAD MTROO600
AN=ATAN.((PAD*RAP-A*A)/(2.0*RAD*A)) MIRO00610
S(J)=SIZE: IGZ MTROO60
AN=ANGLE-AN+6.28318 MTR00630
N=AN/6.28318 MTR00640
ANT(J)=AN-N*6.28318 MTHOO650
PRINT FORMAT Q0015,RAD,HPR(J),HPI(J),bIZL,ANGLiE MTROO600
15(J),ANT(J) MTR00670
WHENEVER (RADF-RAD) .G.O0 TRANSFER U Q•O0012 MTR30b0
TRANSFER TO QQ0016 MTROO690

Q00012 CONTINUE MTR00700
00QCI6 CONTINUE MTR00710

EXECJTE HURAT.(SANI,RADORADb,RADF) TRKOO740
V'S OQ0015=$(7F10.3)$ MTk00730
INTEGLR J , N , K MTRO0740
E'M MTR00750
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BHN

D)IMENSION LTR I100)ETI (100)HPR(100) ,HPI(100) MT300O10
DIMLNSION S(IUO),AN1(100) MTkOO(40
VECTORVAL UEbO0002 = 000002 91, 000040 MIK00OOJO
VECTORVA LUEOQ0003 = 000002 ,1 000040 MI0OO40O
VECTOR\VALUE',QO(O04 = 000002 ,1 000040 MrTk000 O
VECTORVALUE-QQUO05 = 000002 ,1. 000040 MTROOu60
DIMENdION ALPO( 100) ,B ( 100) ,CNO(100) , IUR 100) IU[l (100) *,H( I1Mi00070
100),HI(100),ALP( 004000, QQ0002),CN( 004000, 'OOO003 ITKOOQ00(o
1),CB( 004000, QU0004),T( 0040009 000005) MIrN0090
PROGRAM COMMON ALPOPALP,81 ,CB,CrNU, Cl, TUk WUI • T,I'RHHI ,vNAUtU,M INO0•iO0U

1RADF ,RAD,_H,P,QL,
INTERNAL FUNCTION

1)-EXP .(
INTLRNAL .FUNCTUION

1)+EXP .( -
READ BCD TAPE

1i QL
READ BCD TAPE

R')G,fEN,PIREIRILiI,HPR,HPI,
SINH *( QQ3006)=0.5*(EXP
Q00006))

CUSH 
*( GQ0007)=0.5*(EXP

000007))
4 UU00008U, H
RU , G , TLN
4 , QQ0009, RADU

I, RADS
READ BCD TAPE 4 , 000010,
VECTOR VALUEbS U00008 = ( 7F8.4)$
VECTOR VALUES 000009 = s( ?F6.2)$
VECTOR VALUES 000010 = $( 12)5
EXECUTE - E.IGVAL T( 0)
PRINT ONL.INEFLRMAT Q0011
Vi~OO0011=$(7H RAD,7X,3HHPR,7XJHHP1,7A
15X,5HANGLEdX,2HSF,IX,4HANcF)i
RAD=RADO-RADS
READ BCD Tv.Pc 4, FORAAP

V,. FORA=$(F7.3)S
THROUGH 000012 sFOR J = I

110,0

RAD=RAD+RADS
A=ALPO(J)
ETR(J)}=A*SINH*(A*H)*SIN.(A*R)
ETI(J)=A*jISNH,(A*H)*COS(A*R)
AA=ý,5*H+0.25*SINH.( 2.0*A*H)/A
AAA=P*SINH.(A*H)/A+(CUSH.(A*(H-Pl)-CU.JH(A
1*H))/(A*A)
81(J)=-A*AA/(RAD*AAA)
THROUGH QQ00013 FOR N = 1.

A=ALP(JN)
AA=O05*H+.25*SIN .( 2,0*A*H)/A
AAA=P*sIN 0( A*H)/A+(COS .( A*H)-C
1))/(A*A)
CB(J,N)=-RAD*b1(J)*AAA/(A*AA)
LTR(J)=ETR(J)+A*Cb(J,N)*SIIr.(A*H)*EXP.(-A*I
T(-',N)=(-C' (J,N)+CN(J,N)*Cusn .( A*UL))
HR(J)=HR(J)*A
ETR(J)=ETR(J)/RAD
ETI(J)=ETI(J)/RAD
DNM=ETR(J)*ETR(J)+EII(JI*ETI(J)

K

9

ý0000Q

UUO0007
MT001.10
iMIKOO i40
Mi (001 50

P M14 00i O6
R M I I(O0170
RADF Miro00io

-Al NO0 190

MTIOOO10

MTkO00 0
I r OOe40

4HolIZE MTr00460

MIRO0•Og

MI f00 fL"

NT • 00 '.

MTRJ0390

MTR 00UG4

,I KO,47U

*AAAin T m 00 O

NMI Tr 0 0 0
IA T k u 0 . cimTkO0D50
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COMPUTER PROGRAMS EP,SCP,•CSSCATHP and THSA

The computer program EP is used to obtain the real part, the imaginary

part, the magnitude or the angle of the exponential function;

f=e(A+iB)

The logical functions contained in EP are:

EPR.(A,B) = Re(e(A+iB)) = eA cos B

EPI. (A,B)

EPS. (A, B)

EPA.(A,B)

= Im(e(A+13)

=I (A+iB)t A

= Arg(e(A + i B)) = B modulo 2 rT
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The program SCP is used to find the real or imaginary part of

SINH (A + IB) or COSH (A + IB): The logical functions contained in SCP are-

SHR (A,B) = Re sinh (A + iB)

SHI (A,B) = Im sinh (A + iB)

CHR (A,B) = Re cosh (A + iB)

CHI (A,B) = Im cosh (A + iB)

The program SCS is used to obtain the magnitude of sinh (A + iB) or

COSH (A + iB). The logical functions contained in SCS are:

SHS (A + iB) = sinh (A + iB)

CHS (A + iB) = cosh (A + iB)

The program SCA is used to find the argument of sinh (A + iB) or

COSH (A + iB). The logical functions contained in SCA are:

SHA. (A,B) = ARG sinh (A + iB)

CHA. (A,B) = ARG cosh (A + iB)

The program THP is used to obtain the real or imaginary part of tanh

(A + iB). The logical functions contained in THP are:

THR. (A,B) = Re tanh (A + iB)

THI. (A,B) = Im tanh (A + iB)

The program THSA is used to find the magnitude or angle of tanh

(A + iB). The logical functions contained in THSA are:
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THS. (A,B) = tanh (A + iB)

THA. (A,B) = ARG tanh (A + iB)

For convenience the binary compilations of EP, SCP, SCS, SCA, THP,

and THSA are lumped into the single disc file called TRNS.
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EPCP,SCS, SCA,TIP,and THSA

EXTERNAL FUNCTION (A,B) 00010

INTEGER N 00020

ENTRY TO EPR. 00030
F=EXP.(A)*COS*(B) 00040

FUNCTION RETURN F 00050
ENTRY TO EPIl 00060
F=EXP.(A)*SIN.(B) 00070

FUNCTION RETURN F 00080
ENTRY TO EPS. EP 00090
F=EXP.(A) 00100

FUNCTION RETURN F 00110

ENTRY TO EPA. 00120

N=B/6.28318 00130

F=B-6.28318*N 00140

FUNCTION RETURN F 00150

END OF FUNCTION 00160
I

EXTERNAL FUNCTION (A,B) 00010

ENTRY TO SHR. 00020

F=0.5*(EPR.(A,B)-EPR.(-A,-b)) 00030

FUNCTION RETURN F 00040

ENTRY TO SHI. scP 00050

F=0.5*(EPI.(A,B)-EPI.(-A, -B)) 00060
FLINCTTIfON RTIIRN F 00070

LNTRY TO C.R, 00080
F=0.5*(EPR.(A,B)+EPR.(-A,-B)) 30090

FUNCTION RETURN F 00100
ENTRY TO CHI. 00110
F=C.5*(EPI.(A,B)-EPI.(-A,-B)) 00120
FUNCTION R[TURN F 00130
END OF FUNCTION 00140

EXTERNAL FUNCTION (A,B) 00010
ENTRY TO SHS, 00020
F=(SHR.(A,B).P°2+SHI.(A,B).P.2).P. 0.5 SCS 30030
FUNCTION RETURN F 00040

ENTRY TO CHS. 00050
F=(CHR.(A,B).P.2+CHI.(Ab).P.2).P. 0.5 00060
FJNCTION RETURN F 00070

END OF FUNCTION 00080
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EXTERNAL FUNCTION (A,b) 30010

ENTRY TO SHA. 00020
F=ASIN.(SHI.(A,B/SHS.(A,B)) 00030
WIR SHR,(AB) *L, 0.O,F=3.14159-F 00040

FUNCTION RETURN F 00050

ENTRY TO CHA. SCA 00060
F=ASIN.(CHI.(A,B)/CHS.(AB)) 00070
W'R CHR.(A,B) ,L. 00O,F=3.14159-F 00080
FUNCTION RETURN F 00090
END OF FUNCTION )0100

EXTERNAL FUNCTION (A,B) 00010
ENTRY TO THR. 00020
F=THS.(AB)*COS.(THA.(AB)) 00030
FUNCTION RETURN F 00040

ENTRY TO THI. 00050
F=THS.(AB)*SIN.(THA.(A, B)) 00060

FUNCTION RETURN F 00070
END OF FUNCTION 00080

EXTERNAL FUNCTION (A,b) 00010

ENTRY TO THS. 00010

W'R A .G. 20.0 00030

F=1.0 00040

OR WHENEVER A ,L. -20.0 00050
F=1.0 TRSA 00060
OTHERWISE 00070
F=SHS.(AB)/CHS. (AB) 00080
EQL 00090
FUNCTION RETURN F 00100
ENTRY TO THA, 00110
W'R A oG. 20,C 00120
F=0.0 00130
OR WHENEVER A L., -20.0 00140
F=3*14159 00150
OTHERWISE 00160
F=SHA.(A,B)-CHA.(Aq) 30170
E'L 30180
FUNCTION RETURN F 00190
END OF FUNCTION 0000
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COMPUTER PROGRAMS RATR AND RATC

RATR is a subroutine used in finding the size and angle of a real

pole or zero in a rational function. The term to be evaluated has the

form:

where s = 6 + i w and sc is the position of the real pole or zero.

.Thus k [o( -ScO t ]
In RATR 6 is called RI and w is called R.

The magnitude of h(S) is given by the logical function FM. (R,RI,SC) and the

angle of h(S) is given by the logical function AGR. (R,RI,SC) RATC is a

subroutine used in finding the contributions to the size and angle of a

rational function from a conjugate pair of poles or zeros. Here the term

to be evaluated is:.

jsr (5s-5.)c3 -se)
where

and

The magnitude of hc(S) is given by the logical function F2. (R,RI,RC,SC)

and the angle of hc(S) is given by the logical function AGC,(R,RI,RC,SC).
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RATR and RATC

EXTERNAL FUNCTION (H,RI,5C) 00010
ENTRY TOAGR. 00020
AR=RI-SC 00030
WoR .ABS.(R/10000.0).G. *AbS.(AR) 00040
ANG=1.57079 00050

WIR AR .E. 0.0ANG=.ABS.(R)*ANG/R 000 0
O'E 00070
ANG=ATAN (R/AR) 000u0
E'L 00090
WoR AR *L, Ou.,ANGmANG+3.14159 00100
FUNCTION RLTURN ANG 00110
ENTRY TO FM. 0010
T=SQRT.((RI-SC)*(R!-SC)+R*R) 001 .0
FUNCTION RETURN T 00140
END OF FUNCTION 00150

nXTLRNAL FbNCTIUN (k,RI,RCSC) ) 300' 0
ENTRY TO AGC 30uJOU
AR=(RI-SC)*(RI-5C)-(R*R-RC*RC) 00030
^I=2,O+R*(PI-SC) 0004'

•,R .A·dS (o I/10000*u) .G. e Abbo(AR) 000U 0
'NG=1l5707U 30060
o AR AR .E. Oo.,AN.G=oAobI.(AI)*ANG/AI 00070

"S E 00061

4NG=ATAN.(AI/AR) 00090
E'L 001
A'R AR L.o U.u. ANG=ANG+3.14159 30110
FUNCTION RETURN A N J0O4LQ
ENTRY TO F2. Oi 0
AR=(RI-SC)*(RI-SC)-(R*R-RC*RC) 00140
AI=4.O*R*(RI-zC) 001 0
T=SQRT.(AR*AR+AI*AI) volou
ýFNCTION RETURN T 0Ui70
END OF FUNCTION O0•oO
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C00MPUER PROGRAMS STACB AND DRVTV

The program STABI is used to investigate the stability of a wave

absorbing system with respect to negative going waves. The theory associated

with this investigation is described in chapter 9 . STABI evaluates

He(4-H (w) (see chapter 9) for any specified complex value of w.

The inputs to STAN1 are:

H, P, RO, G, TEN, R, RAD, RADF and RADS as described in the description

of the computer program BHN.

SIM and BIM control the imaginary parts of w at which He(w) - H ((W)

is evaluated. At any value v of Re (), [He(m)-Hg (w) is evaluated

at the following points of the complex w plane

where n = 1i, 2, ..... until n exceeds BIM/Sim.

For small values of SIM the points in the complex plane are approximately

v, v, + i SIM, V + i*2*SIM, etc.

NZR = number of real zeros of he (s)

NPR = number of real poles

NZC = number of pairs of conjugate zeros

NPC = number of pairs of conjugate poles

HH = multiplicative constant in h(s) where S) - ~5E )CS
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DZ's are positions of the real zeros as in IMEMB

EP's are positions of the real poles as in IMERG

ZER's real parts of the positions of the complex zeros as in IMERG

ZEI's are imaginary parts of the positions of the complex zeros as in IMERG

PR's are real parts of the positions of the complex poles as in IMERG

PI's are imaginary parts of the positions of the complex poles as in IMERG

K is the number of terms in the eigenfunction series for the potential

as in BHN.

The output from STABI is written on the "pseudo tape" disc file.,TAPE.

10 (see CTSS Manual, Ref.10) which can be subsequently printed by a console

command. At each complex radian frequency at which the computation is

performed the output quantities are:

An operational description of STABI follows. First, a subsection of

STABI which is exactly the same as the operational section of EGVAL finds

the eigenvalues at real values of w equal to RADO, RADO + RADS, RADO + 2

RADS, etc. The equation for the complex eigenvalues is (chapter 8 )

fg (8-31)
where the solutions f are the eigenvalues.

Let fh = Z (8-32)

Then,- Z tanh Z = 0 (8-33)
g

Hence the eigenvalues can be determined from the roots of the function
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where w and Z are complex numbers.

Newton's method for finding the roots of a function can be extended

to analytic functions of a complex variable. q(Z) is analytic except for

the poles at (n - PC i. The evaluation of H (w) - H (w) is carried out
2 e •g

at values of Re(w2 ) equal to (RADO)2, (RADO + RADS)2, etc. For these

values of Re(w 2) and Im(w2 ) = 0 the roots of q(Z) are known. For a fixed

value of Re(w2), Im(w2 ) is set at

For this value of w the roots of q(Z) are found by the extended form of

Newton's method using for initial guesses the roots for Im(w2 ) = 0. Then

the imaginary part of w2 is set at

and the roots are determined where the initial guesses are the roots for

Im((2) equal to the previouply computed value.

The process is continued for values of Im(w2 ) given by

tma,( 9  * LA ~SIM*

where the initial guesses for the roots are the computed roots at

After this is done for all the desired values of n, Re(w 2 ) is changed and

the process is repeated.

Newton's Method of finding roots requires the derivative of the

function whose roots are to be found (see Thomas, Ref. i. ), n the extended

form, Newton's Method requires the real and imaginary parts of the derivative
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of q(Z). These values are determined by the subroutine DRVTV. Operationally,

these values are obtained by STABI.in function form as DVR-(FR(M), FI(M))

and DVI.(FR(M), FI(M)), DVR.is the real part of the derivative and DVI. is

the imaginary part of the derivative evaluated at Re(Z) = FR(M), Im(Z)=FI(M).

Outputs from STABI.appear in figures 7-2 and 7-5
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STABI

printf stabl mad
W 1447.0
00010 DIMENSION DR(100),DI(100),DS(100),DA(100),ZR(100),ZI(100)
00020 DIMENSION FR(100),FI(100),ALPO(100),ALP(4000,DIM)
00030 DIMENSION DZ(6),DP((6,ZER(6),ZEI(6),PR(6),PI(6)
00040 V'S DIM=2,41,40
00050 INTEGER KR,KI,LILOI,J,K,L,MNJJ
00060 INTEGER NZR,NPRNZCNPC
00070 INTERNAL FUNCTION
00080 ENTRY TO MA.
00090 AA=0.0
00100 W'R HH .L. 0.0,AA-3.14159
00110 SLA-.ABS.(HH)
00120 T'H T2,FOR JJ=1,1, JJ .G. NZR
00130 V'S TST=$(1H 12)$
00140 SLA-SLA*FM. (-RAD,RADIM,DZ(JJ))
00150 T2 AA=AA+AGR.(-RAD,RADIMDZ(JJ))
00160 T'H T3, FOR JJ-=,1, JJ .G. NPR
00170 SLA.SLA/FM.(-RADRADIM,DP(JJ))
00180 T3 AA-AA-AGR.(-RADRADIMDP(JJ))
00190 T'H T4, FOR JJ=l,1, JJ .G. NZC
00200 SLA.SLA*F2.(-RADRADIMZEI(JJ),ZER(JJ))
00210 Tk AA-AA+AGC.(-RAD,RADIM,ZEI(JJ),ZER(JJ))
00220 T'H T5, FOR JJ=1,1, JJ .G. NPC
00230 SLA=SLA/F2.(-RAD,RAOIMPI(JJ),PR(JJ))
00240 TS AA=AA-AGC.(-RAD,RADIMPI(JJ),PR(JJ))
00250 N-AA/6.28318
00260 W'R AA .L. 0.0, N=N-1
00270 AA-AA-N*6.28318
00280 FRR=SLA*COS.(AA)
00290 FRIuSLA*SIN.(AA)
00300 FUNCTION RETURN
00310 END OF FUNCTION
00320 INTERNAL FUNCTION
00330 ENTRY TO VAL.
00340 NI=0.0
00350 NR-0.0
00360 T'H SUMI, FOR L=O,1, L .G. K
00370 VR=FR(L)/H
00380 VI=FI(L)/H
00390 DEN=VR*VR+VI*VI
00400 BRRVR*H
00410 BI=VI*H
00420 CR=VR*(H-P)
00430 Cl-VI*(H-P)
00440 11R.S*H+.25*(VR*SHR.(2.*BR,2.*81)+VI*SHI.(2.*BR,2.*BI))
00450 1/DEN
00460 111=.25*(VR*SHI.(2.*BR,2.*RI)-VI*SHR.(2.*BR,2.*BI))/DEN
00470 13R=P*SHR.(BR,BI)+(VR*(CHR.(CR,CI)-CHR.(BR,BI))
00480 1+VI*(CHI.(CRCI)-CHI.(BR,Bl)))/DEN
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STABI (cont.)

00490 131=P*SHI.(BRBI)+(VR*(CHI.(CR,CI)-CHI.(BR,BI))
00500 i-Vl*(CHR.(CR,CI)-CHR.(BR,81)))/DEN
00510 I1R=I1R*1.0 E-15
00520 111=111*1.0 E-15
00530 13R=13R*1.0 E-15
00540 131I131*1.0 E-15
00550 DEN=I1R*I1IR+I11*I11
00560 INR= (I1R*I3R+111*I31)/DEN
00570 INI-(I 1R*I31-11*I3R)/DEN
00580 DEN-VR*VR+VI*VI
00590 X-(INR*VR+INI*VI)/DEN
00600 YI(INI*VR-INR*VI)/DEN
00610 DDRu-D*VI
00620 DDI-D*VR
00630 S-SHR.(BR,BI)*EPR.(DDRDDI)-SHI.(BRBI)*EPI.(DDRODDI)
00640 T-SHI.(BR,BI)*EPR-T(4DRDDI)+SHR.(BRB4)*EPI(DOR,vDOD)-
00650 NR=NR+X*S-Y*T
00660 SUMI NI=NI+X*T+S*Y
00670 EXECUTE MA.
00680 DEN-NR*NR+NI*NI
00690 NRR=-NI/DEN
00695 NII=-NR/DEN
00700 ZPR-NRR-FRR
00710 ZPI-NII-FRI
00720 WRITE BCD TAPE LOFFB,RADRADIM,ZPRZPI
00730 V'S FFB=$(1H 2F9.3,2F17.8)$
00740 FUNCTION RETURN
00750 END OF FUNCTION
00760 LI=9
00770 LO-10
00780 READ BCD TAPE LI,FORA,H,P,RO,G,TEN,R
00790 V'S FORA-$(6F8.4)$
00800 READ BCD TAPE LIFORJRADORADFsRADS,BIMSIM
00810 V'S FORJ-$(5F6.2)$
00820 V'S FORK-$(F20.9)$
00830 V'S FORL-$(9F8.2)$
00840 V'S FORGG-$(413)$
00850 READ BCD TAPE 5, FORGG,NZR,NPR,NZC,NPC
00860 READ BCD TAPES, FORKHH
00870 READ BCD TAPE 5,FORL,DZ(1)...DZ(NZR)
00880 READ BCD TAPE 5, FORLDP(1)...DP(NPR)
00890 READ BCD TAPE 5, FORLZER(1)...ZER(NZC)
00900 READ BCD TAPE 5,FORLZEI(1)...ZEI(NZC)
00910 READ BCD TAPE 5, FORL,PR(1)...PR(NPC)
00920 READ BCD TAPE 5o FORLPI(1)...PI(NPC)
00930 PIP*1.0
00940 DIR
00950 CN=H/G
00960 CNN-CN*CN
00970 READ BCD TAPE LIFORB,K
00980 V'S FORB-$(12)$
00990 INTERNAL FUNCTION SINH .( QQ0006)-0.5*(EXP .( QQ0006
01000 1)-EXP .( - QQO006))
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STABI (cont.)

01010
01020
01030
01040
01050
01060
01070
01080 QQO010
01090
01100
01110
01120
01130
01140
01150
01160
01170 QQ0011
01180
01190 QQ0012
01200
01210
01220
01230 QQ0014
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360 QQ0015
01370
01380 QQ0013
01390
01400
01410 QQ0016
01420 QQ0009
01430 QQ0017
01440
01450
01460
01470
01480.
01490
01495
01500
01510
01520

INTERNAL FUNCTION COSH .( QQ0007)0O.5*(EXP .(
1)+EXP .( - QQ0007))

P1-3. 1415927
RAD-RADO-RADS
T'H QQ0009, FOR J-1,1, J .G. 100
RAD=RAD+RADS
AA-SQRT.(RAD*RAD/(G*H))
AI-COSH.(AA*H)
A2=TEN*(AA.P.2)/RO
A3=AA*(G+A2)
FU-TANH.(AA*H)-RAD*RAD/A3
A-(H/A1)/A1+RAD*RAD*(G+3.0*A2)/(A3*A3)
AAA-AA-FU/A
RATIO=.ABS.(FU/(A*AAA))
W'R (RATIO-.001) .G. 0.0,TRANSFER TO QQ0011
TRANSFER TO QQ0012
AA-AAA
TRANSFER TO QQ0010
ALPO(J)-AAA
T'H QQ0013, FOR N=1,1, N.G. K
PIH-PI/H
AA-N*PIH-0.480*PIH
Al-COS.(AA*H)
A2=TEN*(AA .P.2)/RO
A3-AA*(G-A2)
A4-TAN.(AA*H)
A5-RAD*RAD/A3
;UnA4+A5
A6=H/(A1*A1)
:,7=RAD*RAD*(G-3.0*A2)/(A3*A3)
AnA6-A7
AAA=AA-FU/A
RATIO-.ABS.(FU/(A*H))
W'R (RATIO-.001) .G . O.0,TRANSFER TO QQ0015
TRANSFER TO QQ0013
AA=AAA
TRANSFER TO QQ0014
ALP(J,N)-AAA
W'R (RADF-RAD) .G. O.0,TRANSFER TO QQ0016
TRANSFER TO QQ0017
CONTINUE
CONTINUE
CONTINUE
KR-(RADF-RADO)/RADS+1
KI=BIM/SIM
WRITE BCD TAPE LO, FFA
V'S FFA-$(8H OM REAL,4X,7HOM IMAG,7X,1OHGR + RADIM,7X,

110HGI + RADIM)$
T'H TH1, FOR J-1,1, J .G. KR
RAO-RADO+(J-1)*RADS
A-RAD*RAD
SIMM=2.0*SIM*SQRT.(A)
FI(O)-0.0
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STABI (cont.)

J1530
01540
01550
01560
01570
01580 TH2
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730 TR1
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910 TR3
01920 TR2
01930 TH4
01940
01950 TH3
01960 TH1
01970
01980
R 4,.850+2.183

FR(0)=ALPO(J)*H
rI(0)=DVI.(FR(0),0.0)
DR(0)=DVR.(FR(0),0.0)
T'H TH2, FOR Mul,1, M .G. K
FI(M)=ALP(J,M)*H
FR(M)-0.0
AIM=0.0
RADIMI0.0
EXECUTE VAL.
V'S FORR=$(1H )$
V'S FORD=$(23H IMAGINARY PART OF F*F-F6.2)$
T'H TH3, FOR I=1,1, I .G. KI
AIM-AIM+SIMM
MAG=SQRT.(A+AIM)
ANG=0.5*ATAN.(AIM/A)
W'R A .L. 0.0, ANG=-ANG
RAD=MAG*COS. (ANG)
RADIM=MAG*SIN.(ANG)
T'H TH4, FOR M-0,1, M .G. K
N=O
AI-THI.(FR(M),FI(M) )
AR-THR.(FR(M),FI(M))
ZR(M)-A*CN-(FR(M)*AR-FI(M)*AI)
ZI (M)AIM*CN-(FR(M)*AIFI (M)*AR)
DIST=.ABS.(FI (M)-(M-0.5)*3.1159)
W'R DIST .G. 1.57079, DIST-1.57079
CNNN=MAG*MAG*CNN/500.0
W'R (ZR(M).P.2+ZI(M).P.2).L.CNNN,TRANSFER TO TR2
N=N+1
W'R N .G. 50, TRANSFER TO TR3
DR(M)D-VR.(FR(M),FI (M))
lD(M)-DVI.(FR(M),FI(M))

DEN=DR(M)*DR(M)+DI(M)*DI(M)
FR(M)=FR(M)-(ZR(M)*DR(M)+ZI (M)DI(M))/DEN
CGT=(ZI(M)*DR(M)-ZR(M)*DI(M))/DEN
W'R .ABS.(CGT).G.0.5*DISTCGTsO.5*CGT*DIST/.ABS.(CGT)
FI(M)=FI(M)-CGT
TRANSFER TO TR1
CONTINUE
CONTINUE
CONTINUE
EXECUTE VAL.
CONTINUE
CONTINUE
V'S FORG-$(22H NO CONVERGENCE FOR M-12)$
END OF PROGRAM
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VTV

EXTERNAL FUNCTION (A,B) 00010
INTERNAL FUNCTION 00020
ENTRY TO PRELIM. 00030
C=THR.(A8)I 00040
CC=THI.(Ap,) 00050
D=((A*A+B*B).P.0.5)/(CHS.(AB).P.2) 00060
WR .ABS.(B).G.(1000.0*.ABb.(A)) 00070
ANN=1.57070 00080
OTHERWISE 00090
ANN=ATAN.(B/A) 00100
E'L 00110
W'R A.L.0OOANN=ANN+3.14159 00120
AN=ANN-2.0*CHA.(AB) 00130
FUNCTION RETURN 00135
EN 00140
EIO DVR. 00150
EXECUTE PRELIM. 00160
F=-C-D*COS.(AN) 00170
FIN F 00180
ENTRY TO DVI. 00190
EXECUTE PRELIM. 00400
F=-CC-D*SIN.(AN) 00210
F'N F 00220
ENTRY TO DVS. 00230
EXECUTE PRELIE. 00240
F=((C+0*COS.(AN)).o.2+(CC+D*SIN.(AN)).P.2).P.0.5 00450
FIN F 00e60
E'O DVA. 00270
EXECUTE PRLLIM. 00280
PR=-C-D*COS.(AN) 30190
PI=-CC-D*SIN.(AN) 00.00
WIR .ABS.PI *G.(100U.O0*A8S.(PR)) 00310
F=3.14159 00320
OTHERWISE 00330
F=ATAN.(PI/PR) 00340
E'L 00350
W'R PR *L. 0.0, F=F+3.14159 00360
F'N F 00370
E'N 00380

I.
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COMPUTER PROGRA• I TOT AND TOTEX

TOT. evaluates equation (10-i•) to obtain theoretical values for the

reflection coefficient when He(w) is given by a rational function.

TOTEX,evaluates equation O0-2ý to obtain values for the reflection

coefficient when the values of magnitude and phase of He(w) are listed

within the program. TOTEX determines the theoretical values for the

reflection coefficient when the listed values of k are those which are

measured experimentally.

Both TOT and TOTEX take input from the pseudo-tape disc file. .Tape.

4 (see CTSS asnual, Ref. 10 ). These input quantities which are some of

the input quantities that STABI, takes from .TAPE.4 (see the description

of STABI. for an explanation of these quantities) are H, P, RO, G, TEN.

R, RADO, RADS, RADF, and K.

TOT. needs the information about the rational function. This information

is taken from ,TAPE,5 and is the same as the information STABI takes from

,TAPE.5 (see the description of STABI,for an explanation of this information).

The quantities taken from.TAPE.5 are: NZR, NPR, NZC, NPC, HH, DZ, DP ZER

ZEI, PR and PI.

Output from TOT, or TOTEX, is written on ,TAPE, 10 for subsequent printout.

Sample printouts appear in figures 7-3 and 7-6.
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COMPUTER PROGRAM REFLEC

REFLEC evaluates equation (13-$. All needed information is internal

to the program. Output is written on the pseudo-tape disc file (see

CTSS Manual, Ref. 16 ) TAPE 6 for subsequent printing. A printout from

REFLEC appears in table 13-1.
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TOT

DIMENSION ETR(100) ETI(100).HPR(100).HPl(100) MT0OOOLO
DIMENSION S(100)tANT(100) MTOR000O
DIMENSION DZ(6),DP('6),ZER(6),ZEI(6),PR(6),PI(6) MTH000~0
VECTORVALUESQQ0002 = 000002 19. 000040 MTOO00040
VECTORVALUESQQ0003 = 000002 919 000040 MTROO50
VECTORVALUESQQO004 = 000002 919 000040 MTRO00060
VECTORVALUESQQO005 = 000002 91, 000040 MTRO0070
DIMENSION' ALPO(10U),B1(100),CNO(100),TOR(100),TOI(100),HR(lMTROO080
100),HI(100),ALP( 004000, QQ'OO2),CN( 004000, QQ0003 MTR00090
1),CB( 004000, U00004),T( 004000, 0QQ005) MTR00100
PROGRAM COMMON ALPU,ALPB1,CBCNOsCNIORuilTtMRHIRAuUMIRUO110
1RADFoRADb,H,P,QL,RO,GtTENPIR,ETRETIHPRHPIK MTR00OO0
INTERNAL FUNCTION SINH .( QQ0006)=0O.*(EXP e( U0006b MTO01i30
1)-EXP .( - Q000006)) MTHO.0140
INTERNAL FUNCTION CUSH 9( Q000O7)=0.5*(LXP I( UU0007 MTFR0150

1)+EXP.(-QQOOGZ)) MTR30160
V'S FORK=S(F20.9)S MTR00170
VIS FORL=S(9F8.215 MTR00OOI
VS FORGG=!(413)S MTR00190
READ BCD TAPE 5, FORGGNZRNPRNZCoNPC MTROO00
READ BCD TAPES, FORK9HH MTR0OOl0
READ BCD TAPE 5,FORL,DZ(1)...DL(NZR) MTROOZ20
READ BCD TAPE 5, FORL,DP(1)...DP(NPR) MTROO30
READ BCD TAPE 5, FORL,ZER(1)...ZtR(NZC) MTK0O040
READ BCD TAPE 5,FORLZEI(1)..,ZEI(NZC) MTR30050
READ BCD TAPE 5, FORLgPR((1),*PR(NPC) MTRO0O60
READ BCD TAPE 5, FORL,PI(1)**,PI(NPC) MTRUOZ70
READ BCD TAPE 4 , QQ0008, H , P MTROOO80

1, QL , RU , G , TEN , R MrOOl90o
READ BCD TAPE 4 , QQ00099 RADO , RADF MTR0O300

1, RADS MTR00310
READ BCD TAPE 4 , QQ0010, K MTROO00O
VECTOR VALUES Q00008 = S( 7F8.4)S MTRO0330
VECTOR VALUES QQ0009 = S( 3F6.2)5 MTRO00340
VECTOR VALUES W00010 = S( 12)$ MTRO0350
INTERNAL FUNCTION MTR00Jb0
ENTRY TO MA. MTRO0070
AA=O0O MTR00380
W'R HH ,L. 0,0,AA=3.14159 MTR00390
SLA=.ABS.(HH) MTRO0400UO
T'H T2,FOR JJ=1,1, JJ .G. NLR MTk00410
V'S TST=$(1H 12)5 MTR00420
SLA=SLA*FM.(-RADRADIMDZ(JJ)) MTR00430

T2 AA=AA+AGR.(-RADRADIMDZ(JJ)) MTR00440
T'H T3, FOR JJ=1,1, JJ .G. NPR MTR00450
SLA=SLA/FM.(-RADRAUIMDP(JJ)) MTR00460

T3 AA=AA-AGR.(-RAD,RADIMDP(JJ)) MTR00470
T'H T4, FOR JJ=1,1, JJ *G, IZC MTR00480
SLA=SLA*F2.(-RADRUIMZEI(JJ),ZLR(JJ)) MTO00490

T4 AA=AA+AGC*(-RAD,RAJIMZEI(JJ),ZER(JJ)) MTROO500
T'H T5, FOR JJ=1,1, JJ .G. NPC OTK00O10
SLA=SLA/F2,(-RADRADIM,PI(JJ),PR(JJ)) MTROO)20

T5 AA=AA-AGC,(-RA0,RADIMPI(JJ),PR(JJ)) MTkOO•O
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TOT(cont.)

N=AA/6.28318 MTRO0040
WIR AA ,L, 0.0, N=N-1 MTROO550
AA=AA-N*6.28318 MTROOb6O
FRR=SLA*COS.(AA) MTR00570
FRI=SLA*SIN.(AA) MT0k080
FUNCTION RETURN MTOO0090
END OF FUNCTION MTRO0600
RADIM=0.O MTH00610
EXECUTE EIGVAL .( 0) MTk006eO
PRINT ONLINEFURMAT - QQ0011 MTkOUotU
VIS QQ0011=$(10H RAD,7X93HRFRl7X.3HRFI,7X.4HoILl, MTROOb4U
15X95HANGLE,2X,8HFTR SIZE9,1X9HFTR AN(GL)$ MTROO650
RAD=RADO-RADS MTRO00660
THROUGH U00012 %FOR J = 1 9 J *G. MTROO67U

1100 MTR0O680
RAD=RAD+RADS MTOUO u
A=ALPO(J) MTR007u.u
RR=SIN;I.(A*H)*SIN.(A*R) MTk00710
RI=SINH.(A*H)*COS.(A*R) MTR00720
AA=O.5*H+0.25*SINH.( 2.0*A*H)/A MIR0073(
AAA=P*SINH.(A*H)/A+(COSH.(A*(H-P))-C.H.(A MrKOO74u
I*H))/(A*A) Mfr007:0
Bl(J)=AA/AAA MTROO•76
S=0.0 '1T t-O G377 C
THROUGH QQ000013 'FOR N = 1 ,1, N .G. MF ~C7t.

1K MTR00795
A=ALP(JtN) i 301 o 00
AA=0.5*H+.L5*SIN .( 2.0*A*H)/A ilTN~081)
AAA=P*SIN .( A*H)/A+(CUS .( A*H)-CUZ .( A*(H-P)mThlOo~0
1))/(A*A) MTv 300,
CB(JgN)=AAA/AA iTN000O40
S=S+CB(JN)*BI(JI*SIN.(A*H)*EXP.(-A*R) MTtK00.0
EXECUTE MA. MfKOOoJ
HR(J)=FRR iT TO U0 7
HI(J)=FRI MTkrOOo0
FRS=SQRT.(FRR*FRR+FRI*FRI) MTROQo90
FRANG=ATAN.(FRI/FRR) MTRO00900
W'R FRR .L. 0.0, FRANG=3.14159+FRANG MTROO91u
PNR=S+RR MTP30920
PNI=RI MTR309 0
QNR=HR(J)*PNR-HI(J)*PNI+Bl(J) MTR00940
QNI=HR(J)*PNI+HI(J)*PNR MTiOO90O
PDR=-RR-S ,MTr OO b
PDI=RI MTROOý70
DR=a1(J)-HR(J)*PDR+HI(J)*PDI Mr 03900
DI=-HR(J)*PDI-HI(J)*PDR MT KU099
DEN=DR*DR+DI*DI 4MTROivGO
ETR(J)=(QNR*DR+QNI*DI)/DEN MTRO10lO
ETI(J)=(QNI*DR-QNR*DI)/DEN MTROji20
HPR(J)=ETR(J) MTNO1030
HPI(J)=ETI(J) MTR01040
SIZE=(HPR(J)*HPR(J)+HPI(J)*HPI(J)) o.P.0. MT lJv.0 0
ANGLE=ATAN*(HPI(J)/HPR(J)) )T UmUib
WIR HPR(J) .L. 0.0,ANGLE =ANGLE 3.14159 'ATROIoG
N=ANGLE/6.28318 MTR0138.
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TOT(cont.)

ANGLE=ANGLL-6.28318*N MTROIlu9
PIT QQ0015,RAD,HPR(J),HPI(J),SIZEPANGLEFRbFRANG MTRO1100
WHENEVER (RADF-RAD) *.GO, TRANSFER TO Q0O012 MTR31110
TRANSFER TO QQ0016 MTR01120
INTEGER JJNZRNPR,NZC,NPC MTROI130

QQ0012 CONTINUE MTRO1140
000016 CONTINUE MTRO1150

V'S QQ0015=$(1H 7F10.3)S MTRO1160
INTEGER J , N , K MTRO1170
EIM MTRO1180
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TOTE[

DIMENSION C(50)
DIMENSION ETR(100)
DIMENSION S(100),ANT
DIMENSION DZ(6),DP(6
VECTORVALUESQQ0002
VECTORVALUESQ00033

VECTORVALUESQQ0004
VECTORVALUESQQ0005
DIMENSION
100)tHI(100),ALP(
1),CB( 004000,
PROGRAM COMMON
1RADF,RADS,HP,QL,
INTERNAL FUNCTION

1)-EXP *( -
INTERNAL FUNCTION
1)+EXP.(-QQ0007))
5(1)=50.00
5(2)=25.00
S(3)=16.30
5(4)=12.10
5(5)=9*45
5(6)=7.60
5(7) =625
5(8)=5.20
S(9)=4 45
5(10)=3.80
5(11)=3.26
S(12)=3.00
5(13)=2.40
S(14)=2.10
S(15)=1.95
READ BCD TAPE 4,
i, QL 9
READ BCD TAPE
1, RADS
READ BCD TAPE
VECTOR VALUES
VECTOR VALUES
VECTOR VALUES
C(1)=0.20
C(2)=1.10
C(3),=1.59
C(4)=1e76
C(5)=1.87
C(6)=1.96
C(7)=2.03
C(8)=2.09
C(9)=2.14
C(10)=2.20
C(11)=2,23
C(12)=2,27
C(13)=2.35

ETI(100),HPR(100),HPI(100)
100)
,ZER(6),ZEI(6), PR(6)9PI(6)

000002 ,1, 000040
000002 ,1, 000040
000002 ,1, 000040
000002 ,1, 000040

ALPOC130)sBl(100) CNO(100) T0OR 100)
004000, QQ000Z)CN( 004000
QQ0004),T( 004000 QQ00005
ALPOALPB1•CBCNO,CNTOR9TOI9
RO,G,TENPI,R,ETRETI,HPRHPI,K
SINH .( QQ0006)=0.5*(EXP

000006))
CUSH .( QQ0007)=0.5*(EXP

QQ0008,HP
RU
'+ s

4
Q00008
Q000009
QQ0010

G 9
QQ0009,

QQ0010,
7F8.4)
3F6.2)
12)5

TEN
RADO

K

MTRO00005
MTRO0010
MTRO00020
MTOO00030
MTRO0040
MTROO000
MTRO00060
MTR00070

TOI(100),HR(lMTR00O80
S Q(002003 MTNOO090
) MTR00100
T,HRHI,RADOMTR00110

MTR00120
S 00QQ0006 MTROO00130

MTRO00140
0( QQ0007 MTRO0150

MTRO00160
MTRO00170
MTROOidO
MTRO0190
MTR00200
MTRO00210
MTRO0220
MTRP0230
MTR30240
MTR00250
MTROO0260
MTROO270
MTR00271
MTR00272
MTR00o73
MTR00274
MTROO0.0

R MTR30Z90
RADF MTRO00300

MTR00310
MTR00320
MTRO0330
MTR00340
MTR00350
MTR00360
MTR00370
MTR00380
MTR00390
MTR00400
MTR00410
MTR00420
MTR00430
MTR00440
MTR00450
MTR00460
MTR00470
MTR00480
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TOMM(cont.)

C( 14)=239
C(15)=2,44
RADIM=0.0
EXECUTE EIGVAL .( 0)
PRINT ONLINFFORMAT QQ0011
Vo QQO011=$(10H RAD,7X,3HRFR,7X,3HRFl,7X.
15XbHANGLE,2X,8HFTR .IZEIX,9HFTR ANGLE)$
RAD=RADO-RADS
THROUGH Q00012 ,FOR J = 1 ,I9

1100
RAD=RAD+RADS
A=ALPO(J)
RR=SINH,(A*H)*bIN.(A*R)
RI= INH. (A*H)*COS.(A*R)
AA=U.5*H+0.2.5*SINH.( Z.O*A*H)/A
AAA=P*bINH.(A*H)/A+(CObH.(A*(H-P))-CU0H.(A
1*H))/(A*A)
Bl(J)=AA/AAA
S=0.O
THROUGH 000013 ,FOR N = I ,g,

1K

4

J

N

A=ALP(J N)
AA=0.5*H+.25*SIN .( 2.0*A*H)/A
AAA=P*SIN .( A*H)/A+(CcS .( A*H)-CUo
1)1/(A*A)
CB(J,N)=AAA/AA

00CJ13 S=S+CB(JN)*B1(J)*SIN.(A*H)*tXP.(-A*R)
HR(J)=6(J)*COS.(C(JI)
HI(J)=: (J)*',IN.(C(J))
FRS=SQRT.(FRRFRRFRR+FI*FRI)
FRANG=ATAN.(FRI/FRR)
WIR FRR *L. 0.0, FRANG=3.14159+FfANG
PNR=S+RR
PNI=RI
QNR=HR(J)*PNR-HI(J)*PNI+Bl(J)
QNI=HR(J)*PNI+HI(J)*PNR
PDR=-RR-S
PDI=RI
DR=61(J)-HR(J)*PDR*HI(J)*PDI
DI=-HR(J)*PDI-HI(J)*PDR
DEN=DR*DR+DI~D I
ETR(J)=(QNI*DR+QNI*DI)/DEN
ETI(J)=(QNI*DR-QNR*DI)/DEN
HPR(J)=ETR(J)
HPI(J)=ETI(J)
SIZE=(HPR(J)*HPR(J)+HPI(J)*HPI(J)) .P.0.5
ANGLE=ATAN.(HPI(J)/MPR(J))
W'R HPR(J) .L. 0.0,ANGLE =ANGLE+3.14159
N=ANGLE/6.28318
ANGLE=ANGLE-5.28318*N
PoT Q0O15,RADHPR(J),HPI(J),eIZ ,ANGL*,FRo,FNA1oG
WHENEVER (RADF-RADI .G.0, TRANSFER TO Q0001i
TRANSFER TO 000016
INTEGER JJNZRsNPR,NZC,NPC

000012 CONTINUE

MTIR00490
MTROO00
MIR6OOlO

MIROKU00b

HoIZL, MTkOO64O
MTKOb~0
MTR006~0

.Go MTk0o lU
MTROet80
MTROuVO

MTR00700
MTR00710
MTR0074O

MTROO•00
ITKO0740
IA TNU0750
MTR00760
MTR00770

.G. MTR007bO
MTkOO790
MTRO0o0u
Mil006lU

( A*(H-P)MIK 0080MI OOd o

MTROO840
MT 00 00

IAkOOo70
fK000c70

MTRuOd9'
MTR009CO
MTRUC N 1
AT 009/0

M i k _);

MTRu30T70

MT H 309
MTROUV90
MTROUC9o

MTRG0160

MTR0• 140MTRiiOlOb0

A I N 01uou
MTR01o70
MTR,'lu00
MTU k10U

iv TNk 01 i 0MTHOliiO
MTR0113•

MTRO013,
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TOT~(cont.)

QQ0016 CONTINUE MTR01150

V'S QQ0015=$(1H 7FIU.3)$ MTRO1160

INTEGER J , N K MTRO1170

EsM MTRO1180
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APPENDIX G

COMPUTER-AIDED DESIGN PROCEDURE FOR THE SYNTHESIS OF A

RATIONAL SYSTEM FUNCTION WHICH APPROXIMATES PRESCRIBED

FREQUENCY CHARACTERISTICS

Introduction

When one wishes to design an electric filter whose system function

is to approximate a prescribed function, it is convenient to first approxi-

mate the prescribed function by a rational function because of the

connection between rational functions and linear circuits. The procedure

described here utilizes both man and computing machine; the man for his

intuition and ability to consider many factors simultaneously, and the

computing machine for its ability to perform high speed computation.

To begin the procedure the designer examines the prescribed function

and chooses a rational function to approximate it, within a multiplicative

constant. He can do this conveniently by making a pole-zero plot while

examining the rate of change of magnitude and phase of the prescribed

function with respect to a change in frequency. Then the designer

communicate the number of poles and zeros he has chosen and their

positions to a computer. The procedure was developed for use on a time-

sharing system so the communication was thrgugh a typewriter console in

this case. Communication through punched' cards could also be used, but

this would result in a slower procedure. Magnitude and phase characteristics

of the prescribed function must also be stored in the computer. Then the
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computer program IMERG performs a relaxation scheme, moving the poles and

zeros about in the complex plane in a methodical way in order to cause

the rational function to be a better approximation to the prescribed

function. Here the "degree of goodness" of the approximation is based on

minimization of the mean square error. At various stages of the computa-

tion the mean square error is printed out so the designer knows how the

scheme is progressing. Also, after the designer becomes familiar with

the way the scheme proceeds, he can tell how good his initial choice of

a rational function was. If he decides his choice was a poor one, he can

stop the computation, if he is using a time sharing system, and makes a

new initial choice.

After the process of moving the poles and zeros about is completed

the new positions of the poles and zeros are printed out as well as the

frequency response of the synthesized system function. Then the designer

looks over the results and decides if they are satisfactory or what

changes in his initial choice should be made if they are not satisfactory.

A description of the computer program IMERG follows and following

this a s~ample synthesis is carried out. In the Compatible Time-Sharing

System for which this procedure was prepared, subroutines can have two

names, a filing name and a logical name. The filing name is used to access

the program through console commands and the logical name is the name of

the entry point of the subroutine. The logical name is used in calling

sequences. The logical name of Imerg is HtRAT.
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COMPUTER PROGRAM IMERG

IMERG performs a relaxation scheme for locating the poles and zeros

of a rational system function which is supposed to be a good approximation

to a given function. This program is in the form of a subroutine with

the argument list (S,A, RO, RS, RF). The logical name is HURAT.(S,A,RO,RS,RF).

S is the name of the one dimensional array of the values of the magnitude

of the given function which is to be approximated. A is the name of the

one dimensional array of the values of the angle of the given function

which is to be approximated. The values of the radian frequency which

are considered are RO, RO + RS, RO + 2RS, etc. until the value RF is

exceeded. The values of S and A for w = RO must be in locations S(1) and

A(1). Similarly, the values of S and A for w = RO + RS must be in

locations S(2) and A(2), etc.

In addition to the information in the argument list, IMERG takes input

from the pseudo tape file (see CTSS Reference Manual, Ref.l0 ).Tape 5.

The quantities in this input list (statements 1100 to 1200) are described

below.

NZR = number of real zeros in the filter

NPR = number of real poles in the filter

NZC = number of conjugate pairs of complex zeros in the filter

NPC = number of conjugate pairs of complex poles in the filter

The rational function which is to approximate the given function has

the_ form:
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(G-l)
AX(SIVA) CS Ci*(c)...

where:

H = multiplicative constant. The value of H given as input is entirely

inconsequential.

DZ(1) ... DZ(NZR) are the positions of the real zeros on the real axis.

DP(1)... DP(NPR) are the positions of the real poles on the real axis.

The program keeps all poles on or to the left of the line in the S plane

Re(S) = -0.1.

The input values of IP should all be less than -0.1 or else the program

will automatically change the values to -0.1.

ZR(1) ... ZR(NZC) are the real parts of the positions of the NZC pairs

of conjugate zeros.

ZI(1) ... ZI(NPC) are the imaginary parts of the positions of NZC of the

complex zeros. The remaining NZC complex zeros are initially placed at

locations having as imaginary parts the negative of the ZI's.

PR(1)...PR(NPC) are the real parts of the positions of the NPC pairs of

conjugate poles. The preceding discussion about keeping the IP's less

than -0.1 applies to the PR's also.
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PI(1)...PI(NPC) are the imaginary parts of the locations of NPC of the

complex poles. The remaining NPC poles are initially placed at locations

having as imaginary parts the negative of the PI's.

The root mean square value of the magnitude of the given function

is computed, stored (it is called SOM by the program) and divided into the

elements of S in order to normalize the RMS value of the given function

to unity. The normalization to unity is convenient because, for errors

in angle of less than one half of a radian, the mean square error due to

a unit error in angle (measured in radians) is approximately the same as

the mean square error due to a unit error in magnitude of the system function.

IMERG contains an internal subprogram called MA. This subprogram

determines the size and angle of the approximating rational function at the

frequencies under consideration for the locations the poles and zeros

have when it (MA.) is called. MA. automatically adjusts H so that the

approximating rational function has an FMS value of unity, MA. also deter-

mines the mean square error of the approximating function with respect to

the given function where the errors in magnitude and angle are weighted

equally in the error determination. The name given to the mean square

error by the program is ESI.

After normalizing the given function (statements 1230 to 1290) IMERG

executes MA. to determine the initial mean square error (MSE) and stores

the value of this error as BB (statements 1300 and 1310) Then H is re-

plabed by -H and the MSE is again determined (1320 and 1330). The sign of



H is then set to the one yielding the smaller MSE (1340 to 1370).

The program will eventually try to reduce the MSE by moving the poles

and zeros. The size of the movement is arbitrary and will first be 0.9 x SF.

SF is initialized in statement 1380. The arbitrary value 2.0 is con-

venient for the range of frequencies used in this work. Typically SF

should be set at about 20 percent of the center of the frequency range of

interest.

IMERG next moves the poles and zeros in a methodical way to reduce

the MSE. The moving is done by the two internal subprograms MOS and MOC.

MOS is used to move poles and zeros in the direction of the real axis and

MOC is used to move poles and zeros in the direction of the imaginary axis.

The only difference in these two subprograms is that MOS tests to see if

the real part of a pole is moved to a value greater than -0.1 and if it is,

the real part is moved to -0.1. MOS or MOC moves the pole or zero by .001 + SF

along the direction appropriate to the subprogram and then returns the pole

or zero to its original position. If the movement of the pole or zero

reduces the MSE, the pole or zero is moved in the direction it was first

moved by the amount of SF at the time of computation. If the movement in-

creases this MSE the pole or zero is moved in the direction opposite to

the direction it was first moved by the amount of SF at the time of compu-

tation. The MSE is calculated at the new position and if it is reduced

from its previous value the pole or zero is left at the new position. If

the MSE is increased from its previous value, the pole or zero is moved

back to its original position. The statements numbered from 1420 to 1520

perform the above procedure on all poles and zeros (doing it in each of
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two directions for complex poles and zeros) for 44 values of SF each value

being 90 percent of the previous value. After going through its steps

with each value of SF, the MSE is printed out so the filter designer

knows how the scheme is progressing.

After the pole and zero moving is completed, IMERG prints out the new

locations of poles and zeros, the normalized MSE and the value of H needed

to get the actual, non-normalized system function. Then the real and

imaginary parts, sizes and angles of the system functions are printed out.

A sample output from IMERG appears in figure (G-l).
-iWt

IMERG is based on a driving function of the form e The designer

must realize this since for this driving function, i represents a phase

lag, not a phase lead.
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EXTERNAL FUNCTION CbARORStRF) 00010
N •TY IU 1V r.I 0ve

DIMENSION b(2000,DIM),SL(100I)SLA(100),AAl100),X(20) 000Q0
DIMENSION DZ(6)tDP(b),ZR(6),ZI(6),PR(6),PI(6) 00040
VIS DIM=2,i,20 O050
INTERNAL FUNCTION (RRC,SC) 30060
ENTRY TO F2, 30070
T=((RC*RC+SC*SC-R*R),.P.2+4.*SC*SC*R*H).P. 0.5 00080
FUNCTION RETURN T 00090
ENTRY TO Ft 00100
T=(SCSC+(R-RCRC)*(H RC)).P. 0.5 00110
FUNCTION RETURN T 00ieO
END OF FUNCTION 03"1
INTERNAL FUNCTION (N,RCSC) 00140
ENTRY TO AGC. 00i•0
YT=RC*RC+SC*SC-R*R 30160
WIR (.ABS.(2.*R*SC/10000e)).G. *ABS*(YT) 00170
T=-R*SC/( .ABS.(-R*SC)•) 00100
ANG=1*57079*T 00190
O'E 002100
ANG=ATAN.(-2.*R*SC/(RC*RC+SC*+C-R*R)) OOziO
W'R (RC*RC+SCSCC-R*R).L*,0.0ANU=ANG+3•.41, 00O
SEL 00i30
FUNCTION RETURN ANG 0044C
ENTRY TO AGR. 00O50
WIR oAS.(R/10000.3) *G. .Abi.(SC) 00d:1
ANG=1.57079 OOb4L
WIR SC .E. OOANG=*AbS.(R)*ANG/R 00O>>
O'E 00ý54
ANG=ATAN.(R"/(-SC)) O0260
E'L 00261
W'R (-SC) .L. 0.0, ANG=ANG+3.14159 00e70
FUNCTION RETURN ANG 00~b0
END OF FUNCTION 0090
INTERNAL FUNCTION 0000
ENTRY TO MAo C0310
SM=0.0 030 30
ESI=0.0 00J30
R=-(RO-RS) 00.40
T'H T19FOR I=191, !*G*K 00t.G
R=R-RS 03 6 0
AAII)=0.O 00370
WIR H .L. 0.O0AA(I)=3.14159 0060
SLA(I)=.AB•L(H) 00390
TIH T2, FOR J=191, J.G.NZR 30400
SLA(I)=SLA(I)*FM.(R',CDZ(J)) 30410

T2 AA(I)=AA(I)+AGR.(R,U,,OZ(JH 004e0
T'H T3, FOP J=1l1, J .G. NPR 0040•
SLA(I)=SLA(I)/FM.(R,*0, DP(Ji) 00440

T3. AA(I)=AA(i)-ACR.(R,O0.DP(JI) 00450
T'H T4, FOR J=1l,l J.G.NZC 00460
SLA(I)=SLA(I)*F2.(RZI(J)l*ZR(J)) 00470

T4 AA(I)=AA(I)+AGC.(R,LI(J),ZR(J)) CC-dO



TIH T5, FOR J=1,1, J .G. NPC 00490
SLA(I)=SLA(I)/F2*(R,PI(J),PR(J)) 00500

T5 AA(I)=AA(I)-AGC.(R,PI(J),PR(J)) 00!10
N=AA(I)/6.28318 Ob20
W'R AA(I) .L. 0.0, N=N-1 00530
AA(I)=AA(I)-N*6.28318 00540

T1 SM=SM+SLA(I).P.2 00550
SM=(SM/K).P. U.5 00b60
T'H TH3, FOR 1=1,le I .G. K 00570
SLA(I)=SLA(I)/SM 00580
EA=.ABS.(A(I)-AA(I)) 00590
W'R EA .G. 3.14159,MA=6.28318-EA 00600
ES=S(I)-SLA(I) 00610

TH3 ESI=ESI+EA*EA+ES*ES 00620
ESI=ESI/ ( 2.0*K) 00630
H=H/SM 00640
FUNCTION RETURN 00650
END OF FUNCTION 00660
INTERNAL FLNCTION (UMNE) 00070
INTEGER M,NE,IL 300o0
ENTRY TO MOS. 30090
D(M)=D(M)+0.001*SF 00700
EXECUTE MA. 00710
D(M)=D(M)- .001*SF 00720
W'R ESI .G. u,.SF=-oF 00730
SF=SF*0.999 00740
D(M)=D(M)+SF 00750

wR ((D(M) .G -o 1 ) *ANlD. ((NE. .2) ,OR. (NE.E.4))) 00760

AQ=D(M)-SF 00770
D(M)=-O.i 307u-
EXECUTE MA. 07 ;0
W'R ESI .G. 3o 00 00
D(M)=AQ 00i0
EXECUTE MA. OO~0C
BB=ESI 00630
EL 0040
FUNCTION RETURN 00o)0
E L 00 6 0
EXECUTE MA. 00670
WIR ESI .G. Bb 00060
D(M)=D(M)-SF OUdo ,
EXECUTE MA. 0090O
E' L 00n 1
BRP=EST (o 9. n
FUNCTION RETURN 009.0
ENTRY TO MOC, 00940
D(M)=D(M)+0.001*SF 00950
EXECUTZ MA. 0096U
W'R ESI .G. BB, SF=-SF 00970
SF=SF*0.999 00960
D(M)=D(M)+SF 00990
EXECUTE MA. 0100U
W'R ESI .G. Bb Olulu
D(M)=D(M)-SF 0 j1 .U
FXFCiUTF MA0 ni"

T-
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EIL 01040
BB=ESI 010b0
FUNCTION RETURN 31060
END OF FUNCTION 3U170
INTEGER NZRHNPRNZCNPC,NZZINPZKKL,IL,NL,MIg,Ni,MM 010O0
INTEGER I,JKLLL 01090
READ BCD TAPE 5, FORGNZR,NPRNZC,NPC 01100
V'S FORG=$(413)$ 01110
READ BCD TAPE5,FORAH 01ILO
READ BCD TAPE b, FORBDL(1)...DZ(NZR) 01101
READ BCD TAPE 5,FURo,DP(1)...UP(NPR) 01140
READ BCD TAPE 5,FORo,ZR(1)...ZR(NZC) 01150
READ BCD TAPE 5, FORB,ZI(1)...LI(NZC) 01160
READ BCD TAPE 5,FORd,PR(1)...PR(NPC) 01170
READ bCD TAPE 5,FORb,PI(1)...PI(NPC) U01 0
V'S FORA=$(F2U.Q)$ 0119u
V'S FORB=$(9F8.2)$ 1 O00
K=(RF-RO)/RS+1 O0110
VS FORZ=$(1H F 11ll5) 01I 0
SOM=0.0 013O
TIH THI,FORI=1l,1 I*G.K OiL40

TH1 SOM=SOM+S(I)*S(I) 01 d0
SOM=(SOM/K).P*0.5 O.60
H=H/SOM C1L70
TPH TH2, FOR I=,1,l I.G. K OiLrO

TH2 S(I)=S(I/SOM 01L90
EXECUTE MAs. 01i O
BB=ESI 0±10I H=-H 01320
EXECUTE MA. 01) 0
WIR ESI .G. Bb 01.j40
H=-H 31j50
EXECUTE MA. 31500
E'L 0r170
SF=.0Q 0±o0
TIH Tl0, F(R LL=1,ILL.G.44 01i90
SF=0.9*SF 0140C
P'T FORZESI 01410
BB=ESI 014 0
T'H T7, FOR L=191, L *G. NZR 01430

T7 EXECUTE MOS.(DZ,L,1) 01440
TPH T8, FOR L=1,o, L eG. NPR 314-0

T8 EXECUTE MOS.(DPL,2) 3O460
STH T9, FOR L=.,1, L.G. NZC 01470
EXECUTE MOC.(ZIL,3)

T9 EXECUTE MO0.(ZRL,3)
T'H T10, FOR L=1,1, L .G. NPC 0:9O0.
EXECUTE MOC.(PI,L,4) 01510

1Ti EXECuTE MOS.(PR,L,94) C•:
H=H*SOM 01isO
PIT FORR 01 ,40
PRINT RESULTS H Oi•J3
PRINT FORMAT FORR 01560
PRINT COMMENTS REAL ZEROS$ 01570
PRINT RESULTS DZ(1')...DZ(NZR) 01s 0
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PRINT FORMAT FORR 01590
PRINT COMMENT S REAL POLESS 01u00
PRINT RESULTS DP(1)...DP(NPR) 01610
PRINT FORMAT FORR 01620
PRINT COMMENT S COMPLEX LEROS$ 31630
PRINT COMMENT $ REAL PARTS 31635
PRINT RESULTS ZR(1)..,ZR(NZC) 01640

PRINT FORMAT FORP 01650
PRINT COMMINT S IMAGINARY PARTS 01655
PRINT RESULTS ZI(1)...ZI(NZC) 01660
PRINT FORMAT FORR 01670
PRINT COMMENT $ COMPLEX POLESS 01680
PRINT COMMENT S REAL PARTS 016b8
PRINT RESULTS'PR(1)...PR(NPC) 01690
PRINT FORMAT FORR 31700
PRINT COMMENT S IMAGINARY PARTS 01705
PRINT RESULTS PI(1)*..PI(NPC) 01710
PRINT FORMAT FORR 01720
PRINT FORMAT FORIEsI 01730
PRINT FORMAT FORR 01740
PRINT COMMENT S FILTER FREQUENCY RESPONSES 017b0
PRINT FORMAT FORD 01760
VIS FORI=S(18H NORMALIZED ERROR=F8.5)$ 01770
VIS FORD=$(1H ,4X,3HRAD97X,3HHPR,7X,9HHPI, 01780
16X#4HSIZE6bX#SHANGLt)$ 01790
T'H TH14,FORI=1,1i I.G.K Odc00
R=RO+RS*(I-1) 01610
SLA(I)I)SLA(I)*SOM 01820
HPR=SLA(I)*COS.(AA(I)) 01830
HPI=SLA(I)*SIN.(AA(I)) 01U 40

TH14 PRINT FORMAT FORE,R,HPR,HPISLA(I),AA(I) 01O50

V'S FORE=S(1H 5F10.4)S 01860
VIS FORR=S(1H )S 01870
END OF FUNCTION 01880

12 01890
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Sample Synthesis

Assume that the prescribed functIbn which is to be approximated by

rational fungtion is given by table F-1.

Radian Frequency

3
4
5
6
7
8
9
10
11
12
13

Magnitude

50.9
49.7
48.3
46.6
44.7
42.7
40.6
38.5
36.4
34.6
33.2

Angle

0.24
0.25
0.28
0.31
0.36
0.42
0.48
0.57
0.67
0.78
0.91

The computer program MASTER, which follows, is the controlling

program for the design process. Since this process is to be carried out

from a typewriter console it is as easy to make the prescribed function

a part of MASTER as it is to read it as data.
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PROCRAM MASTER

DIMENSION M(20),A(2U)
INTEGER K
RADO=3e0
RADF=13.0
RADS=1.0
M(1) 50.9
A(1)=0.24
M(2)=49,7
A(2 =0.25
M(3)=4803
A(3 )=0*28
M(4) =46,6
A(4 =0,31
M(5 1=44,7
A (5 )=0 36
M(61 =42.7
A(6)=0*42
M(7)=40.6
A(7)1=048
M( 8 =38.5
A(8)=0.57
M(9)=36.4
A(9)=0.67
M(10)=34.6
A(1 C)=0 78
M(11)=33.2
A(11)=0.91
PRINT COMMENT $ PRESCRIBED FUNCTIONS
PIT FORA
V'S FORA=S(B8H RAD,6X,9HMAGNITUDEXS5HANGLt)
T'H THA, FOR K=1,1, K .G. 11
RAD=RADO+(K-1)*RACS
PIT FORB, RAD,MCK),A(K)
V'S FORB=S(1H 3Fl0.i-)
EXECUTE HURAT.(MA,RADORADbRADF)
END OF PROGRAM

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
.30120
30130
00140
00150
00160
00170
'00180
00190
00200
00210
30 40

00 30

00 40
00440
00 60
00470
00 0
00490
00 00
00310
00•0
00..0
00i40
00-j 0
00h0

IHA



Examination of the prescribed function shows that its magnitude

diminishes with increasing frequency and its phase lags with increasing

frequency (remember that the assumed driving function is e-iwt). Therefore

a reasonable initial choice for the filter is a single pole which is located

a distance on the negative real axis of the S-plane from the origin about

equal to the magnitude of the center frequency range. In this case the

initial choice for the pole position is -10.0. The filter data is

written on the pseudo-tape file .TAPE. 5. The program MASTER with the

Subroutine IMERG is then executed. The printout appears in figure G-l.
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printf .tape.
W 1329.0
00010 0 1
00020 5.0
00030 0.0
00040 -10.0
00050 00.00
00060 0.0
00070 0.0
00080 0.0
R .316+.433

0 0

loadgo master imerg
W 1329.3
EXECUTION.

PRESCRIBED FUNCTION
RAD MAGNITUDE ANGLE
3.000 50.900 .240
4.000 49.700 .250
5.000 48.300 .280
6.000 46.600 .310

7.000 44.700 .360
8.000 42.700 .420
9.000 40.600 .480

10.000 38.500 .570
11.000 36.400 .670
12.000 34.600 .780
13.000 33.200 .910
.01733
.00787
.00485
.00482
.00475
.00475
.00469
.00469
.00466
.00465
.00464
.00463
.00462
.00462
.00461
.00461 FIGURE G-1 Computer output for the sample
.00460 Synthesis with one real pole.
.00460
.00460
.00460
.00459
.00459
.00459
.00459
.00459
.00459
.00459 (continued)
.00459
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H - 695.730072

REAL ZEROS

.000000E 00

REAL POLES

-1.412309E 01

COMPLEX ZEROS
REAL PART

IMAG 1 NARY

DUMMY VARIABLE BLOCK

-.000000E 00

DUMMY VARIABLE BLOCK

DUMMY VARIABLE BLOCK

0

PART

COMPLEX POLES
REAL, PART

.000000E 00

IMAGINARY PART

.O00000E 00

NORMALIZED ERROR=

DUMMY VARIABLE

DUMMY VARIABLE

-.000000E 00

DUMMY VARIABLE

-. 000000E 00

.00459

FILTER FREQUENCY RESPONSE
RAD HPR HPI
3.0000 47.1351
4.0000 45.6038
5.0000 43.7752
6.0000 41.7302
7.0000 39.5468
8.0000 37.2952
9.0000 35.0346

10.0000 32.8117
11.0000 30.6616
12.0000 28.6083
13.0000 26.6672

EXIT CALLED. PM MAY
R 11.333+5.200

10.0123
12.9161
15.4978
17.7285
19.6011
21.1258
22.3259
23.2327
23.8813
24.3077
24.5466

BE TAKEN.

BLOCK

BLOCK

BLOCK

SIZE
48.1868
47.3975
46.4376
45.3399
44.1378
42.8630
41.5436
40.2041
38.8645
37.5406
36.2447

FIGURE G-1 (cont.)
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.2093
.2760
.3403
.4017
.4602
.5154
.5674
.6161
.6617
.7043
.7440



As a better approximation, a filter with a pair of conjugate zeros

will be synthesized. The filter probably needs more poles than zeros so

it will be given three real zeros. More poles than zeros is a good design

process to avoid high frequency noise. Figure G-2 shows the result of this

choice. The mean square error of the chosen filter is 0.00209 which means

that it was a very good choice to begin with. IMERG reduces the mean square

error to 0.00086 (on a function normalized to unity).
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Input .tape.
W 1339.4
00010 0 3
00020 5.0
00030 0.0
00040 -50.00
00050 05.00
00060 20.00
00070 00.00
00080 00.00
00090
M file .tape.
W 1340.6
R 1.366+3.100

5

1 0

-100.00 -175.00

5

loadgo master Imerg
W 1340,8
EXECUTION.

PRESCRIBED FUNCTION
RAD MAGNITUDE
3.000 50.900
4.000 49.700
5.000 48.300
6.000 46.600
7.000 44.700
8.000 42.700
9 000 40.600

10.000 38.500
11.000 36.400
12.000 34.600
1,3.000 33.200
.00209
.00144
.00140 .00
.00139 .00

..
00139 

00.00139 .00
.00139 .00
.00139 .00
.00139 .00

.0010039 .00.00115 .00.00100

.00097 .00

.00095 .00

.00093. .00

.00093 .00

.00093 .00

.00093 .00
.00093 .00.00092 00

.00091 .00.00090 .00.00090 .00

.00089
.00089
.00089

.00088

.00088

ANGLE
.240
.250
.280
.310
.360
.420
.480
.570
.670
.780
. 10

FIGURE G -2 Filter with o'ie pair
of co: jugate zeros a;-d
thlree real poles.

088
087
087
087
087
087
087
087
087
086
086
086
086
086
086
086
086
086

(continued)
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H = 1.337010E 05

REAL ZEROS
DUMMY VARIABLE BLOCK

.000000E 00 -. 000000E 00

REAL POLES
DUMMY VARIABLE BLOCK

-5.351484E 01 -1.052622E 02 -1.842701E 02

COMPLEX ZEROS
REAL PART

DUMMY VARIABLE BLOCK

4.059374E 00

IMAGINARY PART
DUMMY VARIABLE BLOCK

1.957211E 01

COMPLEX POLES
REAL PART

DUMMY VARIABLE BLOCK

.000000E 00 -. 000000E 00

IMAGINARY PART
DUMMY VARIABLE BLOCK

.OOOOO0E 00 -. 000000E 00

NORMALIZED ERROR= .00086

FILTER FREQUENCY RESPONSE
RAD HPR HPI SIZE ANGLE
3.0000 49.6288 8.1648 50.2959 .1631
4.0000 48.2170 10.7196 49.3942 .2188
5.0000 46.4213 13.1335 48.2434 .2757
6,0000 44.2558 15.3736 46.8500 .3343
7.0000 41.7376 17.4088 45.2227 .3952
8.0000 38.8864 19.2098 43.3724 .4588
9.0000 35.7242 20.7492 41.3128 .5262

10.0000 32.2752 22.0022 39.0613 .5983
11.0000 28.5656 22.9461 36.6404 .6767
12.0000 24.6231 23.5611 34.0796 .7634
13.0000 20.4766 23.8299 31.4190 .8609

EXIT CALLED. PM MAY BE TAKEN.
R 37.883+6.233

FIGURE G-2 (cont.)
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