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ABSTRACT

AN INVESTIGATION OF HIGH VELOCITY FLASHING FLOW

IN A STRAIGHT TUBE

by John Wilson Murdock

Submitted to .the Department of Mechanical Engineering
January 1967, in partial fulfillment of the requirements

for the degree of Doctor of Science

A study of high-velocity flashing flow in a straight tube has
been made in order to obtain further understanding of this two-
phase flow and also the subsequent choking which occurs if the
downstream pressure is low enough.

A one-dimensional slip model which includes non-equilibrium
effects is proposed. This model predicts the choking pressure with
the upstream single-phase flow conditions as the 'only inputs. The
model is extended to predict the pressure distribution in the two-
phase region in terms of an interphase heat transfer coefficient.

The experimental data were obtained using Freon 114 (C12F4C2)
as a working fluid in a closed flow loop. The test section
was a 0.259 inch diameter stainless steel section with a 90* acrylic
plastic sector inserted for viewing the two-phase flow. The two-
phase flow region was about 1/4 inch long under choked conditions
with liquid velocities at the flash point being about 200 ft/sec.
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NOMENCLATURE

A Area

c Specific heat

C Pressure coefficient
p
D Tube diameter

G Mass flow per unit area

h With subscript, specific enthalpy; without subscript, heat
transfer coefficient

ho Total specific enthalpy

k Thermal conductivity

K Slip ratio (Vapor velocity divided by liquid velocity)

L ý.Tube length

Nu Nusselt number

P Pressure

Pr Prandtl Number

q Heat flow rate

r Radial independent variable

R Bubble radius, Liquid core radius with subscript I

Rey Reynolds Number

s Specific entropy

t Temperature (OF), Time

T Absolute Temperature

v Radial velocity, Specific volume

V Axial Velocity

-V- Volume

x Axial position in flow direction

X Mass flow fraction
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Nomenclature (continued)

y Axial position opposite flow direction

Ia Thermal diffusivity

y Temperature difference defined by Equation A-13

6 Thermal boundary layer thickness

14 Viscosity

Kinematic viscosity

p Density

G Surface tension

Subscripts

c Choked condition

eff Effective value

fg Change from vapor to liquid state

g Gas phase

h Refers to heat transfer area

i Refers to artificial initial pressure

t Liquid phase

o Reference value

p Constant pressure

rel Refers to relative velocity

s Saturation condition

Reference value

1-16 Refers to pressure tap number
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Chapter I

INTRODUCTION

The condensing ejector is a device which has been the object

of considerable research in the recent past. The condensing ejector

is essentially a two-phase jet pump in which one of the entering

streams is a liquid and the other a vapor. Both streams are accelerated

in separate nozzle passages to a lower pressure at the entrance to a

mixing section. After the streams are mixed, the flow enters a

diffuser to recover the dynamic pressure. Since the thermodynamic

availability of the inlet vapor stream is much higher than that of the

inlet liquid stream, it is possible to produce a significant pressure

rise across the condensing ejector. In fact, operation is possible

where the exit pressure is higher than either inlet stagnation pressure.

Conditions also exist for which a temperature rise occurs across the

device with an outlet state whose temperature is higher than either

inlet stagnation-temperature.

Because of these somewhat unusual characteristics---at least

for a no moving parts device---the condensing ejector has been proposed

for use in various thermodynamic cycles. A specific example is

in the field of desalination of water. One of the standard methods for

converting salt water to fresh water is the vapor compression

distillation process in which fresh water vapor is put through a

compressor to increase its temperature and pressure. The vapor is

then circulated through a heat exchanger in which heat is transferred
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back to a boiling mass of salt water in a regenerative system. A

new system has been proposed in which the condensing ejector

substitutes for the vapor compressor. A second type of desalination

system using the condensing ejector is based upon a direct contact

freezing configuration where the condensing ejector replaces the

vapor compressor in a refrigeration system. The attractiveness of the

condensing ejector systems rests on the fact that the overall desa-

lination process can be tailored to receive either a heat or a work

input. Of particular interest to the sponsors of the project, the

M.I.T. Solar Energy Committee, is the fact that this heat input could

be a solar energy input.

In the operation of the condensing ejector both a liquid and

a vapor stream are accelerated through appropriate nozzles into the

mixing section. It would be desirable to match pressure, velocity,

and temperature simultaneously, if possible, in order to minimize

thermodynamic irreversibilities. Under many of the proposed operating

conditions this match requires the liquid to be accelerated into the

two-phase region. This acceleration requires a convergent-divergent

nozzle. This nozzle flow process is qualitatively very similar to

gas flow in a convergent-divergent nozzle in that at low enough

back pressures choking occurs at the throat and shock-like phenomena

are possible in the divergent section. Although adequate models

exist for the prediction of gas nozzle flows, none are available

for predicting the performance of a two-phase nozzle or even

for giving a completely satisfactory explanation of the two-phase

choking process. This investigation began with the aim of
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studying the acceleration of a high velocity flashing liquid in a

convergent-divergent nozzle. Some of the specific problem areas were

the initial nucleation of the vapor phase, the mechanism for the

choking of the flow, and the expansion of the two-phase flow in the

divergent section. Consideration of all these problems was not

possible in a single investigation. The scope was eventually narrowed

down to a study primarily of the mechanism of choking in the limiting

case of a convergent nozzle -- that is a straight tube.

Initial Studies on Nozzles

Preliminary studies of the nozzle flow process were made with

water as a working fluid using a transparent plastic, convergent-

divergent nozzle. This nozzle had straight cones for convergent and

divergent passages with a rounded throat between the two passages.

(See Figure 1) The nozzle throat had a nominal diameter of 1/4 inch.

A typical upstream liquid stagnation pressure was 500 psia. Using

Bernoulli's equation and assuming saturation pressure at the point

of flashing gives 250 ft/sec as a typical liquid velocity. Assuming

that flashing takes place very near the throat (which is a very good

assumption at these high liquid velocities), the flow rate may be

calculated to be about 50 gal/min. These numbers are representative

of the conditions throughout this entire investigation.

Studies with water showed that flashing first occurred less than

a tenth of an inch upstream of the geometric throat. Choking did

take place and shock-like phenomena were present in the divergent

section at high enough back pressures. Downstream of the shock
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region the flow was single-phase liquid at stagnation pressures of

the order of 50 psia compared to the 500 psia upstream. The pressure

dropped from the throat pressure in the divergent section. Thus the

tests on water showed all the qualitative features that were expected

from this type of convergent-divergent nozzle. The water nozzle did

have some difficiencies from an experimental standpoint. The maximum

and minimum water temperature was fixed by the steam and city water

available in the laboratory. Thus the maximum water stagnation

temperature is about 200*F. This means that all the pressures in the

two-phase region are subatmospheric. Secondly and perhaps more

important, the slope of the saturation line in this region is such

that small pressure changes imply large temperature changes. Thus

pressure measurements are difficult to make and a high degree of

accuracy is required as a consequence. The amount of liquid superheat

at the point where flashing first occurs may be determined from a

measured pressure distribution and a visual observation of the flash

point. This is difficult to do if dP/dT is small.

To get around these difficulties it is possible to use water

at higher temperatures or use a different fluid at the same temperature.

To avoid the expense of a large boiler, Freon 114 (F4C12C2) was

adopted as a working fluid. Early tests run with the Freon 114 showed

the same general characteristics as that of water, that is choking,

flashing just upstream of the throat, and the appearance of a shock-

like phenomena in the divergent section. A crucial experimental

parameter needed to understand choking is the throat pressure. The

rather abrupt throat in the first nozzle (see Figure 1) gave rise to
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some questions about the accuracy of the measurements. The rapid

area change in this region could result in non one-dimensional flow

effects due to streamline curvature. The pressure gradient is very

high due to the rapid acceleration of the pure liquid phase and is

even higher due to the two-phase choking. To eliminate the uncertainty

associated with positioning a pressure tap exactly at the throat and the

uncertainty resulting from an expected finite pressure change in a

distance the order of the pressure tap diameter (0.040 inches), a

nozzle with a much longer throat region was constructed from acrylic

plastic. (See Figure 1).

When experiments were performed with this nozzle the measured

throat pressure was found to be as much as 15 psi above the saturation

pressure corresponding to the upstream temperature. Visual observations

of these flows showed the two-phase region started about 1/4 inch

upstream of the throat. It is impossible for a liquid undergoing a

pressure drop at very nearly constant temperature to flash until the

saturation pressure is reached. (The flashing may occur at a pressure

below the saturation pressure, however.) Variation of the pressure

tap hole size tended to confirm that a pressure measuring error

existed and that this was associated with the pressure tap geometry.

Some typical results for the second nozzle are given in the following

table for Freon 114.



-6-

Table 1

Nozzle Throat Pressure Measurements With Different Size

Pressure Taps

Pressure Tap Diameter (Inches) Saturation
Pressure

0.040 0.0292 0.020 0.0125 0.0125

44.9 29.9 20.6 33.7 34.1 40.3

54.8 40.1 30.2 43.9 44.5 37.6

64.0 48.9 38.0 52.8 53.9 47.8

All pressures in psig

Both taps at throat location

The above results were somewhat discouraging in that there seemed

to be no way to determine which pressure reading was the "correct" one.

However, the highest pressure (0.040" tap) can be ruled out as impos-

sible for the reasons cited above. The nozzle was run at a high

enough pressure to maintain single-phase flow throughout the nozzle and

the pressure differences between the various size taps remained about

the same as shown in Table 1. Thus it was concluded that the pressure

error was due primarily to geometric effects and not to flow regime.

Shaw (1) made a careful study of pressure tap error in straight

tubes with fully developed turbulent flow and found the measured

Numbers in parentheses refer to items in the Bibliography
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pressure to be above the true pressures in practically all cases.

This is in agreement with the 0.040" pressure tap in the nozzle,

which was known to have a positive error. (A positive error exists

when the measured pressure is greater than the true pressure.) Assuming

all the taps in the above table have positive errors, then the

0.020" tap is best but still has an unknown error. Because of this

problem it seemed necessary to go to a geometry in which the pressure

error could be calibrated at least in the single-phase region or

nothing at all could be learned about the two-phase flow. The eventual

solution was to consider the choking problem in a long straight tube.

Pressure taps in a straight tube may be calibrated by running tests

in the single-phase region, measuring the back pressure, and using

the fully developed turbulent flow pressure drop to determine the

true pressure at some upstream point. The single-phase pressure tap

calibration and subsequent experimental and theoretical study of two-

phase flow in a straight tube turned out to be sufficiently complicated

to necessitate leaving a study of the overall two-phase nozzle flow

as future work.
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Chapter 2

THEORETICAL MODEL FOR TWO-PHASE CHOKING

IN A STRAIGHT TUBE

Consider the problem of the fully developed flow of a liquid in

a straight tube. The pressure decreases along the tube due to the

effects of wall friction. If the back pressure is lowered then

eventually the saturation pressure of the liquid will be reached

at the exit plane of the tube. A further decrease in the back

pressure will produce nucleation of vapor bubbles at or below the

saturation pressure at some point near the end of the tube and a

two-phase flow will then exist between the nucleation point and the

tube exit plane. Downstream of the nucleation point the pressure

drops and the back pressure and the pressure in the tube exit plane

are equal. Although the back pressure can be lowered indefinitely a

finite pressure limit at the tube exit occurs below which no steady

flow situation is possible and for which the tube pressure distribution

will be independent of the back pressure. This pressure limit is

the choking or the critical pressure. The following analysis contains

a model of the two-phase region and produces predictions regarding

the choking processes.
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Slip Model for Two-Phase Flow Regime

The analysis for this flow is developed from a "slip model"

which contains the following assumptions:

1. The flow is steady.

2. The flow is one dimensional in the sense that any property

may be represented by its average value at a given cross-section.

3. The velocities of the two phases may not be equal. (Hence,

"slip model".)

4. The temperature of the gas phase is the equilibrium

saturation temperature corresponding to the pressure.

5. The liquid temperature is, in general, not the equilibrium

saturation temperature at that pressure.

6. The pressures in the liquid and gas phases are equal; i.e.,

surface tension is negligible.

7. The two-phase mixture is accelerated in such a short distance

that the pressure forces are balanced primarily by the inertia forces.

Friction forces at the wall and between the phases are negligible.

8. Liquid phase density is constant.

9. The specific heat of the liquid is constant.

10. The two-phase flow is adiabatic in the sense that there is no

heat transfer to the tube wall.

For the flow under study it has been observed that the vapor

phase forms at and remains near the wall with the major portion

of the tube being a central core of liquid. The thin annular

region surrounding this central liquid core contains the vapor phase,
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either as a pure vapor or as a high quality two-phase mixture.

Consider first the validity of the one dimensional assumption

in the liquid. A typical diameter Reynolds number for the Freon 114

flow considered here is 106 . Using the universal velocity distribution

in turbulent flow from Rohsenow and Choi (2), the thickness of the

so-called laminar sublayer and of the buffer layer may be calculated.

For a tube with a 1/4 inch diameter, the thickness of the laminar
-5

sublayer is found to be 2.5 x 10-5 inches and the buffer layer
-4

thickness is 1.5 x 10 inches. Thus the one-dimensional assumption

for the liquid velocity is very good in the single-phase region.

This uniform velocity profile should be retained in the two-phase

region in the central liquid core which contains almost all the liquid.

The specific models considered in Appendices A and B show that the

liquid temperature gradients are confined to thin thermal boundary layers.

(Appendix A considers the growth of discrete bubbles while Appendix B

assumes that the flow consists of a liquid core surrounded by a pure

vapor annulus.) The existance of these thin thermal boundary layers

justifies assuming a one dimensional temperature profile in the

liquid. The validity of the one dimensional assumption in the vapor is

related to some of the other assumptions and will be discussed in

connection with these assumptions.

The third assumption is generally accepted as necessary in

two-phase flow under the influence of a pressure gradient. The

"slip" is caused by a pressure gradient acting on phases with very

different densities. Of course the amount of "slip" is controlled by
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the relative magnitudes of the various forces acting on the vapor

phase. (See Assumption #7.)

The fourth and fifth assumptions are related and are based,

to some extent, on studies of the growth of a single stationary

bubble in a superheated liquid. This problem has been studied

theoretically in Appendix A and by Plesset and Zwick (3), Forster

and Zuber (4), and Scriven (5) and experimentally by Dergarabedian (6).

All solutions are obtained by assuming that the vapor bubble is at

the equilibrium temperature corresponding to the pressure and is

growing in a non-equilibrium (superheated) liquid. The theoretical

solutions are similar and in good agreement with Dergarabedian's data.

These data were obtained under constant pressure conditions and

therefore constant saturation temperature conditions. The two-

phase flow considered here has variable pressure and saturation

temperature. To maintain a volume of gas at the saturation temperature

as it expands to a lower pressure would require an infinite thermal

conductivity. Thus the assumption which states that the gas is

at the saturation temperature can never be exactly correct. It is

necessary to know the gas temperature in order to calculate the gas

enthalpy. The important enthalpy change is the final gas enthalpy

minus the initial liquid enthalpy and the largest part of this change

is the enthalpy of vaporization, h fg Thus it is concluded that

small deviations of the gas temperature from the saturation temperature

are negligible in the calculation of this enthalpy change. If the
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average gas temperature were 10*F. above the saturation temperature

the error in the enthalpy calculation would be about 1.5 Btu/lb.

This should be compared to the enthalpy of vaporization of Freon

114, which is about 50 Btu/lb. It is very unlikely that the

average temperature could be more than 100 F above the local saturation

temperature, because of heat transfer effects and because the vapor

being produced is at the local saturation temperature. These

calculations justify the assumption that the gas phase has a one

dimensional temperature profile and that this temperature is the

local saturation temperature. Although this assumption is not

strictly true the errors introduced by it are small.

The assumption which states that the liquid temperature is not

the equilibrium saturation temperature may be further justified by the

well known fact that a liquid which flashes while flowing in a tube

often does not nucleate vapor bubbles until the pressure is significantly

below the saturation pressure. Thus the liquid may start at the

beginning of the two-phase region in a non-equilibrium state and

if so, it would take a finite distance to get back to equilibrium, if

in fact this occurs at all.

The sixth assumption is also based largely on bubble growth studies.

Surface tension forces are important only when very small bubbles are

present. This effect should be negligible when there is a sufficient

amount of vapor present to affect the dynamics of the flow.

The seventh assumption is based on the observed fact that the
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length of the two-phase flow in this investigation is small (about

1/4 inch in a 1/4 inch diameter tube). Futhermore, the pressure

gradient is very high in this region with a pressure drop of 50 psi

or more in 1/4 inch. To justify the neglect of shear forces,

various models must be considered to insure that both wall shear

and interphase shear are negligible regardless of the distribution

of phases. Various possibilities will be considered separately and

the corresponding shear forces will be shown to be negligible.

One possibility is to assume that the liquid remains in contact

with the tube wall and that the shear stress is the same as that in

the fully developed single phase region. A typical value for this

shear stress is 1 psi. The total shear force on a control volume

consisting bf the two-phase region is therefore about 0.2 lb. The

total pressure force is 3 lb. The pressure force is more than an

order of magnitude greater than the shear force and therefore this

shear force may be neglected. This model for the shear stress is

considered in greater detail at the end of this chapter and it is

conclusively shown that this shear force is negligible except in a

small region at the start of the two-phase region.

If the shear force between the phases can be shown to be negligible

assuming that the vapor phase is composed of small bubbles, then it

should also be negligible for other distributions of the vapor phase

which necessarily have a smaller surface area between the phases. Consider

a vapor bubble of a fixed size moving with respect to a liquid and

acted upon by a drag force and a force due to the pressure gradient in
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the liquid. Chao (7) has studied the problem of drag on a vapor

bubble in a liauid from a theoretical point of view and compared

his results with available data. His results indicate that the drag

may be approximated by the Stokes drag (D = 67RVVre ) up to a

Reynolds number of about 4 x 102. Above this Reynolds number the

bubbles deform and the drag coefficient rises rapidly to about unity.

For the two-phase flow under consideration a typical void

fraction is 0.03. If this vapor were distributed in an annulus

around the liquid the thickness of the annulus would be about

0.003 inches. If the vapor is actually made up of discrete bubbles

in this annular region, it is assumed that a characteristic bubble

size would be the 0.003 inches calculated above. A typical pressure

gradient at the start of the two-phase region is 16 psi/inch. The

Stokes drag force is at least an order of magnitude less than the

pressure force for relative velocities less than 20 ft/sec. For

relative velocities greater than 20 ft/sec, the Stokes drag approximation

is no longer correct. The pressure gradient also changes in the

two-phase region and in fact increases to infinity at the choking point.

From the model presented later on in this Chapter, it is found that

when the relative velocity of the phases has reached 20 ft/sec a

typical pressure gradient is 150 psi/inch. At this point the force

on the bubble due to drag, assuming a drag coefficient of unity,

is about the same order of magnitude as the pressure force. The

pressure gradient increases much more rapidly than the bubble drag

and the drag force quickly becomes negligible. Thus over almost the
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entire length of the two-phase flow region the drag force is negligible

compared to the pressure force. On the basis of these calculations

it is concluded that the shear drag between the phases is negligible

regardless of the distribution of the vapor phase. It may also be

concluded that the vapor velocity may be characterized as one dimensional

even though there are discrete bubbles in the flow.

One more possible shear force must be considered. This is vapor

shear at the wall. Assuming that the vapor forms an annulus surrounding

the liquid, a Reynolds number may be calculated and the wall shear force

estimated. Using the thickness of 0.003 inches obtained above gives

a Reynolds number of 19,000. The wall shear is therefore about

0.1 psi. This is negligible compared to the pressure forces. The

buffer layer thickness is about 5% of the thickness of the region.

There will also be a thin boundary layer at the liquid-vapor interface

if the velocity of the vapor coming off this layer is small. Order of

magnitude calculations show this velocity to be about 1 ft/sec. This

is less than 1% of a typical tangential velocity, which is, according

to Schlichting (8), sufficiently small for the boundary layer

approximations to be satisfactory. Thus it is concluded that for

a model in which the vapor is in an annulus around the liquid, the

vapor velocity is one dimensional and the wall shear force is negligible

compared to the pressure force.

Over the range of temperature and pressure variation of the

two-phase flow process the liquid density and specific heat chance very

slightly.
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The assumption of no heat transfer through the tube wall may

be easily justified by calculating the total heat transfer coefficient

through the test section. The test section is stainless steel

and has an outside diameter of 3 inches and an inside diameter of

1/4 inches. The resistance to heat transfer is the sum of the film

resistance inside the tube, the conduction resistance of the tube,

and the natural convection film resistance on the outside of the

tube. The internal film resistance was neglected and the other two

resistances summed to give a total heat transfer coefficient of

20 Btu/hr ft20 F. Assuming a temperature difference of 50*F and a

flow of 8 lb/sec of Freon 114 gives a typical liquid temperature

change of 2 x 10-4 oF. in a 1/4 inch. This is a length comparable

to the length of the two-phase region and the small heat transfer is

obviously negligible.

Making use of the above assumptions the following equations

may be obtained.

The area equation is

A + A = A (1)
g 9.

where A is the cross-sectional area of the tube.

The continuity equation is

0V A + p A = pZVoA (2)

where V is the velocity upstream in the pure liquid phase.

The two-phase flow may be idealized as annular flow to aid in the

derivation of the liquid momentum equation. Using the control volume

defined in Figure 2 the liquid momentum equation may be obtained. Note
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that the control surface is placed just inside the liquid-vapor

interface.

= 2 2 + d( 2£A )
PA - PA - d(PA ) + PdA - V A + p V A + d(P VA )

-V d(p zVA A) = -A IEdP =p pVAdVQ (3)

This may be integrated to give
2 2

V V
P - (4)o - P P 2 (4)

P is the pressure at which nucleation first occurs, i.e. the

pressure at the start of the two-phase region.

The total momentum equation is

-AdP = d iPgVgA + d p V2A (5)

which may be integrated to giver

A A
P -P = V -- + - 2  (6)
o g g A V aA i io

The total energy equation is

F P - P
0 pVA h (P) - h (Ps )+ + h fg+

gg g g g s fg 9

P-P V -V
+ p VA c  (T -T ) + + (7).1 _ t o p0 2.

Where h (P) is the specific enthalpy of the gas phase at some pressure

P on the saturation line and hfg is the specific enthalpy of vapor-

ization evaluated at the pressure P
s

To complete the above set of equations [Equations (1), (2),

(4), (6), and (7)] it is possible to write a second energy equation.
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This equation includes a heat transfer term containing the distance

along the tube, x. Since none of the other equations given above

involve x, they can be solved with pressure (for example) as the

independent variable. All that is required for this solution is a

set of tables or functions giving the appropriate values of the

thermodynamic properties. These equations have the advantage that

all the differential equations can be integrated exactly.

To determine the critical pressure a maximum entropy flux

criterion may be used. As will be shown later, this is not the only

criterion possible. There are other possibilities which are easier

to understand physically and also much easier to calculate than the

entropy method. Care is required in calculating the entropy changes

because the process is very nearly reversible. The average specific

entropy, s, is defined as:

p V As = p V A s + p VA s (8)

Although all the quantities on the right hand side of Equation (8)

are known when the previous equations have been solved simultaneously,

just substituting values into the equation may produce large errors.

The two terms on the right side of Equation (8) are very nearly

equal and are of opposite sign. Substantial errors were obtained when

these calculations were performed on the digital computer which uses

about 8 significant figures. It is possible to reduce this problem

to a large extent by dividing Equation (7) by T and subtracting
o

the result (which equals zero) from Equation (8). Algebraic simpli-

fication and cancellation of equal terms yields an expression which
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is better suited for numerical calculations.

This entropy flux must increase continuously for this irreversible

adiabatic two-phase flow. The slip model indicates that the entropy

flux does increase for a time as the pressure is dropped into the

two-phase region but eventually reaches a maximum and then starts to

drop. This entropy decrease violates the Second Law. Therefore the

point of maximum entropy defines the critical pressure for the flow.

This behavior is shown for a typical case for Freon 114 in Figure 3.

For this case, P = P = 69.6 psia, V = 180 ft/sec, and s is arbi-

tararily defined as zero at the point where the two-phase flow starts.

This curve defines a critical pressure of 22.5 psia. Note that unless

otherwise specified all results refer to Freon 114.

The behavior of the entropy is closely related to that of the

liquid temperature. As the pressure is dropped, the liquid temperature

starts to drop but not nearly as rapidly as the vapor temperature.

The liquid temperature goes through a minimum at the point of maximum

entropy. Thus, the process which is not allowed by the Second Law

is that process in which the liquid temperature rises while in contact

with a colder gas. This is a physical explanation of the violation

of the Second Law. The liquid and vapor temperatures are plotted in

Figure 4. The change in the liquid temperature is plotted in Figure 5

on an expanded scale in order to more clearly show the minimum liquid

temperature at the critical pressure.

To complete the picture, Figure 6 shows the velocity of both

phases and Figure 7 shows the void fraction as a function of pressure.
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The state equations for the saturation line, the enthalpy of the

saturated vapor, the entropy of the saturated vapor, the density of

the saturated vapor, the enthalpy of vaporization, and the density of

the saturated liquid used in the above and following calculations

were obtained from bulletins published by the E.I. du Pont de Nemours

and Company. (9, 10)

Typical Theoretical Predictions

Given a fluid and thus given the form of the state equations, the

above model requires the specification of only three independent

quantities to determine the critical pressure. These three quantities

are the saturation pressure of the liquid phase at the flash point, P

(or its equivalent the liquid temperature, To), the pressure at which

the flashing first begins, Po, and the velocity of the liquid phase at

the flash point, Vo (or equivalently the dynamic pressure, 0 V /2).

It is interesting to consider the effects of these parameters on

the critical pressure. Consider first variations in the pressure at

which flashing occurs, P . This pressure is assumed to be less than
o

or equal to the saturation pressure, P . Bergles and Rohsenow (11) consider
s

the problem of inception of boiling of a liquid flowing in a straight

tube with heat addition. They obtain an expression which predicts the

conditions required to initiate boiling. The result which they obtain

is dependent on surface tension, heat transfer rate to the fluid, and

cavity size in the solid surface. In the present case the flow is

adiabatic: thus the heat transfer at the wall is zero. In this simpler

case it is therefore assumed that bubble nucleation at the wall can
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first occur at the point where the following equality is valid.

P - P = 2o (9)
S o r

Where a is the surface tension and r a typical radius of a surface

cavity. The surface tension of the Freon 114 is given by the following

expression (12)

-5
a = (9.84 - 0.0378t) x 10- lbf/in (10)

Where t is the temperature in degrees Fahrenheit. Thus at 127*V which

is the liquid temperature of the sample case considered above,

a = 5.04 x 10-5 lbf/in. A honed or lapped tube will typically have

an RMS roughness height of 10 microinches. Assuming that this dimension

is also typical of the cavity size and using Equation (9) gives

P P = 10 psi. This is the value for a very carefully machined

surface and most any other machining process reduces this pressure

difference.

On the basis of these rough calculations, the variation of the

critical pressure with Po was considered over a 10 psi range. The results

are summarized in Table 2.
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TABLE 2

Variation of Critical Pressure with Nucleation Pressure

Saturation Pressure, P = 69.6 psia
S

Single-Phase Velocity, V = 180 ft/sec

Nucleation Pressure

P psia
o

69.6

67.6

65.6

63.6

61.6

59.6

Critical Pressure

P psia
c

22.5

21.8

21.1

20.4

19.7

19.0

Critical Pressure Ratio

P /P
c o

0.323

0.322

0.321

0.320

0.319

0.318

The critical pressure ratio based on the nucleation pressure,

Po, is constant within 1.5% over a 10 psi range of P . Thus for all

practical purposes the ratio P /P is not a function of P but only
c o o

of the velocity, Vo, and the saturation pressureP PS

Figure 8 shows the variation of this critical pressure ratio with

changes in saturation pressure, with the liquid phase dynamic pressure

held constant. This curve is very nearly identical to one which would

be obtained by holding the velocity, Vo constant, because of the

relatively small changes in the liquid density with temperature. The

critical pressure ratio is seen to increase almost linearly with

saturation pressure.
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Figures 9 and 10 are typical curves showing the variation of the

critical pressure ratio with the third independent parameter. These

figures are the same except for the fact that in Figure 9 the critical

pressure ratio is plotted versus the liquid dynamic pressure, PoV /2,

and in Figure 10 versus the liquid velocity, V . It should be noted
o

that some of the assumptions introduced into the model are not correct

at low liquid velocities. In particular, the assumption in which the

friction forces were neglected in comparison to the inertia forces

becomes questionable because the length of the two-phase region increases

substantially as the velocity decreases.

Thus the results given in Figures 9 and 10 are, at velocities

below about 150 ft/sec, only results given by a mathematical model which

may or may not correspond to physical reality. Some remarks on this

limiting value will be made later. At the higher velocities the

assumptions which have been made are better, as the predictions at

high velocities are presumed to be correct on the basis of the data

presented later in this report.

Despite the questions about the validity of the model at low

velocities, it is interesting to look at the predictions for this

limiting case. It is to be expected that at very low velocities the

critical pressure ratio will approach unity. This may be seen by

considering Equations (1) through (7). The energy equation, Equation

(7), is the only equation involving the local liquid temperature, Tk.

Thus the other equations may be solved simultaneously for all other

quantities first, and then the energy eauation is used to find the
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liquid temperature. At low enough liquid phase velocity, V , this0

temperature change is positive. This change is impossible and therefore

choking occurs. The critical pressure does in fact go to unity at low

velocity in Figures 9 and 10 but it seems to do so discontinuously. In

Figure 10 when V was lowered from 18.6 to 18.4 the critical pressure
0

ratio jumped from 0.439 to 0.965. This would be an interesting region

to investigate experimentally to see if this discontinuous phenomenon

is really present.

Thermodynamic Property Aproxima tions

In the above results the properties of the Freon 114 were calculated

from rather complicated state equations. In the early stages of this

investigation some approximations were made in order to simplify the

calculation procedure. These approximate results turned out to be in

good agreement with the results obtained by using the more complicated

state equations. The approximations are outlined here, results of

some sample calculations are presented, and a comparison is made with

the earlier results in order to show the usefulness of these simplifications.

In addition to the assumptions listed at the beginning of this

chapter, the following assumptions were made. The gas phase is assumed

to obey the perfect gas law with a constant specific heat. The enthalpy

of vaporization, hfg, was assumed to be constant. The liquid specific

volume is negligible in comparison with the specific volume of the vapor.

As a result of the final assumption the Clapeyron equation may be

written in the following form.
'
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dP
p h = T (11)

g fg g dT

Combining the above expression with the perfect gas law under

the assumption of constant h gives a simple equation which may be

integrated directly. The result of the integration is an approximate

analytic equation for the saturation line in terms of pressure and

temperature.

It should be pointed out that the assumptions made above are not

entirely self-consistant from a thermodynamic point of view. The

assumptions of incompressible liquid, constant liquid specific heat,

perfect gas, constant gas specific heat, and constant enthalpy of

vaporization can be shown to be inconsistant by considering the following

cycle. Saturated liquid is evaporated to vapor at T1 and then

cooled to T2 along the saturation line. The vapor at T2 is condensed to

liquid at T2 and the liquid heated to temperature T1 along the

saturation line. The total enthalpy change around this cycle is not

quite zero, given the above assumptions.

Despite this inconsistency the approximations were good enough to

give results in good agreement with the results obtained with the more

exact and much more complicated state equations. The expression used

for the gas enthalpy change was

P -P
h = c (T - T ) + h + (12)

pgpg g o fg p

The corresponding entropy expression is

S =c in g/T + h (13)
g pg o T

Where c__ and h are the values of these properties at P and T
pg r s

I



-26-

and are assumed to be constant.

A variety of calculations were made to compare the results of the

approximate calculations with those obtained by using the more exact

state equations. In no case did the critical pressure predicted by

the two methods differ by more than 3%. The other quantities differed

by larger percentages and Table 3 summarizes the results of a typical

calculation at the critical pressure.

TABLE 3

Comparison of Results at the Critical Pressure Using Approximate

Thermodynamic Properties and Using the Best Available State Equations

P = P = 69.6 psi p V2/2 = 297 psi
s o o 0

Critical Pressure, Pc, psia

Btu
Average Entropy, s, -Ru

Liquid Temperature, TV, OF

Vapor Temperature, T . OF

Liquid Velocity, VV, ft/sec

Vapor Velocity, V , ft/sec

Void Fraction, A /A
g

Note that the results given

are the same as those plotted in

"Exact Theory"

22.5

6.17 x 10 - 6

126.701

59.73

193

498

0.0725

"Approximate Theory"

22.6

6.39 x 10 - 6

126.691

57.45

194

482

0.0724

in Table 3 for the "Exact Theory"

detail in Figures 3 through 7.
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Theoretical Predictions for Water

Since the approximations to the thermodynamic properties considered

in the previous section worked so well in comparison to the more exact

model for Freon 114, the conclusion was reached that it would be useful

to present results using these approximations for a much more common

fluid, water. Although no experimental work was carried out in this

project using water, predictions for this fluid are included in order

to better relate this work to the large amount of work that has been

done and is being done in the field of two-phase flow using steam

and water.

The results for water are presented in the same manner as were

the results for Freon 114. That is, the variation of the critical

pressure with the three separate initial conditions of the mathematical

model is considered.

Looking first at the variation of the critical pressure with the

pressure at the start of the two-phase flow, P o, it is again found that

the ratio Pc/P o remains constant to within the accuracy of the calculations.

Typical results are summarized in Table 4.
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TABLE 4

Variation of Critical Pressure With

Nucleation Pressure for Water

Saturation Pressure P = 70 psia
s

Single-Phase Velocity V = 221 ft/sec0

Nucleation Pressure

P psia

70

68

66

64

62

60

Critical Pressure

P psia17

17

17

16

16

15

15

Critical Pressure Ratio

P /P
c o

0.24

0.25

0.24

0.2.5

0.24

0.25

The variation of the critical pressure ratio with saturation

pressure shows a much smaller variation for the water than that

observed for the Freon 114. The Freon 114 critical pressure ratio

changed by about 40% over the saturation pressure range considered

in Figure 8, while the water ratio changed by only about 4% over a

similar pressure range. In both cases the critical pressure ratio

increased with increasing saturation pressure (or liquid temperature).

Some typical results for water are summarized in Table 5.
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TABLE 5

Variation of

Satura

P =P
s 0

Saturation Initial Liquid
Pressure Velocity

P psia V ft/sec
s o

10 215

40 218

70 221

120 223

170 225

220 227

Critical Pressure with Initial

tion Pressure for Water

p V2/2 = 300 psi

Critical Pressure

P psia
c

2.4

9.8

17

30

44

58

Critical Pressure
Ratio

P /P
c o

0.24

0.25

0.24

0.25

0.26

0.26

Thus it is concluded from the above calculations, that to a very

good approximation the critical pressure ratio may be considered to be

a function only of the upstream liquid velocity. Figure 11 shows a

curve giving the variation of the critical pressure ratio, P /P , versus
c o

the liquid velocity, V . The shape of the curve is very similar to
0

Figure 10 which displays essentially the same information for the

Freon 114. Again it must be stressed that the assumptions upon which

this theory is based are not necessarily valid at the low velocity

end of the curve.
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Slip Model with Length Variable Included

The above model has a disadvantage in that it does not contain

a relation giving pressure versus length as the pressure drops from

conditions at or near the saturation pressure to the critical pressure.

The length variable appears in a rate equation governing the heat

flow from the liquid to the liquid-vapor interface. The length

variable would also appear in wall and interfacial shear terms if

they were included. In the following development, a constant wall

shear is included for two reasons: (1) the assumption of negligible

wall friction can be investigated by putting into the equations a

zero wall friction term and one of the correct order of magnitude

in order to check the difference. (2) the two-phase flow region can

be connected to the single phase region without a discontinuity in

the pressure gradient by assuming the wall shear in the two-phase region

is the wall shear for fully developed turbulent single-phase flow.

Making this addition, Equation (4) becomes

P - P L= (V2  2 4 Tx (14)
o 2 o D

2

4 T x/D represents a wall shear stress term which is assumed,

for the reasons stated above, to be acting on the liquid phase.

The interfacial shear stress is still zero. x is the axial distance

fv-rnm th etavrt ^f thel W r~s i j-ioT d it 4^ A 4- • ~e a mLn C tha

A ,kQ A.

Equation (6) becomes

i
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A A
p - p = pV2 _ + p--- 2 V2 + (15)

o g g A A 0 D

It is now necessary to derive an energy flow equation for the

liquid phase using the idealized control volume shown in Figure 2.

Before writing an equation it is convenient to consider the physics

of the problem. Under investigation is a two-phase flow problem in

which a vapor phase is being rapidly formed and is strongly affecting

the flow. It is desireable to characterize this vapor formation with

an appropriate rate equation. To form the vaporl heat must be transferred

to the liquid-vapor interface to evaporate the liquid. Referring to

Figure 2) it is obvious that heat may be transferred to this interface

from both the liquid and vapor side. If one of these heat transfer

rates is much larger than the other, then it will be the process which

is controlling and is the appropriate one to consider. For the problems

-4
considered here the vapor mass flow fraction is around 4 x 10 . The

total vapor enthalpy flux is therefore so small that it is impossible

to transfer a significant quantity of heat from the vapor phase. The

heat transfer from the liquid is thus the important physical parameter

and any calculations must consider this heat transfer, To calculate

this heat transfer rate a control volume must be drawn such that the

heat flows across its boundaries. The appropriate control volume is that

shown in Figure 2 which lies on the liquid side at the liquid-vapor

interface. The energy flow equation for this control volume is
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o o o o
dq = pVAh -hVA0h -h d(AVh Ah ) + h d(p V(Ap )

S- VA dho (16)

Where hk is the total, liquid, specific enthalpy.

Equation (16) may be combined with the total energy equation,

Equation (7) to give

dq = (ho - ho) d (p VA ) + p VA dh (17)
g t ggg g gg g

The first term on the right hand side of Equation (17) is the

dominant one and clearly shows that the heat transfer dq is providing

the energy to evaporate the liquid.

Equation (16) may be rewritten to give

dAh dP
h(T -T ) -dx- dx - (cd T + + V dV )pVA (18)

.9. dx P 2 z.zE

where h is an effective heat-transfer coefficient based on the area

of the phase boundary Ah. Both these parameters are probably obtainable

only in an empirical or semi-empirical fashion. For this reason, it

is convenient to combine the two quantities leaving only one

parameter to be experimentally determined.

If Ah is based on the tube wall area then

Ah = rDx (19)

Then Equation (18) becomes

dP
h (TI - T) D dx = -oV A (dT + +VdV2) (20)

Given the value of h and using the previously introduced set

of equations [Equations (1), (2), (7), (14), and (15)], Equation (20)
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may be integrated numerically on the digital computer. This results

in a pressure versus length curve. The integration may be performed

for various functional behaviors of h and the results compared with

experimental data. As will be shown in the following chapter, a

constant value of h can give a good fit with the data. Figure 12

shows the results of numerically integrating Equation (20) using the

well-known Runge-Kutta formula. (See Crandall (13) for a discussion

of numerical techniques.) The initial conditions are the same as those

used to obtain Figures 3 through 7. The coordinate y is the negative of x

and is the distance along the tube measured upstream from the end. The

value of T used is that in the liquid region, assuming fully-developed

turbulent flow in a smooth walled tube. This assumption makes the

slope of the pressure versus length curve continuous at the boundary

between the single-phase and two-phase region.

Also shown in Figure 12 is the solution for the case in which

T = 0. The two curves are seen to be less than one psi apart over

the whole range. The two curves do predict a quite different total

length of the two-phase region but, as may be seen from Figure 12,

this is due largely to a difference in slope at the saturation pressure

end of the curve. This is the region of the two-phase flow curve

in which the assumed wall shear is most nearly correct and also

the only region where the shear has a significant effect. All other

quantities except the entropy calculated from the two models are in

agreement to within less than 5% at the choking point. The entropy

change is significantly changed by the introduction of an additional

irreversible process, wall shear. When r = 0 the maximum entropy is
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-50.618 x 105 Btu/#OR, while when T = 0.791 psi the maximum is 1.44

x 10-5 Btu/#OR. The most important fact is not that the magnitude

of the entropy in these two cases is different but that in both cases

the entropy reaches a maximum value at the same pressure (still

considering pressure to be the independent variable). The curves in

Figure 12 approach the critical pressures predicted from the slip-

model maximum entropy criterion as y goes to zero.

It is interesting to consider the behavior of the mathematical

model at the choking point. As has already been shown, with pressure

as the independent variable the entronv reaches a maximum and the

liquid temperature reaches a minimum value at the choking point.

Combining Equation (20) with Equation (14) gives

4"r dxh(T- T ) wrDdx = -p A (cdT - D) (21)

From this it may be seen that if T has a minimum, then the variable

x must reach a maximum at the choking point. Again it is seen that

a continuation of the solution beyond this point is impossible. If

instead of pressure the length dimension x is considered to be the

independent variable then it is clear that the derivatives with

respect to x of the pressure, liquid velocity, vapor velocity, void

fraction, etc. become infinite:at.the:point of choking. This is

very analogous to the situation which occurs when considering the

one-dimensional flow of a perfect gas at the choking point.
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Chapter 3

EXPERIMENTAL INVESTIGATION OF TWO-PHASE

STRAIGHT TUBE CHOKING

Description of Apparatus

A schematic of the test apparatus used for this project is shown

in Figure I . The test section was mounted witn the Tiow downward.

Various interchangeable test sections were machined from 3 inch round

stock 12 inches in length.. Pressures were measured on carefully

calibrated (1/4% and 1/10% of full scale accuracy) test gauges with

8 1/2 inch diameter dials. The flow downstream of the test section

expanded into a 4 inch line to prevent any two-phase choking effects.

Accurate control of the back pressure at the test section was provided

by two valves in parallel. The two-phase flow was separated by gravity

with the vapor phase flowing vertically upward to the condenser. City

water was used on the tube side of the condenser to liquify the Freon 114.

The two liquid streams rejoin and are pumped by a centrifugal

pump requiring a very low head at the inlet. The centrifugal pump

increases the stagnation pressure of the liquid by about 100 psi. The

liquid is then heated in the heat exchanger with condensing steam on

the shell side. The liquid is then pumped by a positive-displacement

piston pump having a maximum flow rate of 50 gal/min and a maximum output

pressure of 800 psig. A 2 1/2 gallon accumulator was placed on each

side of the piston pump to damp out the fluctuations produced by this pump.
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A 5 micron filter removes particles from the flow which might serve

as nucleation sites. The flow rate was measured using a calibrated

orifice plate flow meter with a flow straightener and a reamed and

honed tube upstream of the orifice plate. The temperature of the

liquid was measured using a calibrated Copper-Constantan thermocouple.

A flow straightener, followed by a pipe with an L/D ratio of 30,produced

fully developed turbulent flow at the entrance to the test section

under all conditions. The flow entered the test section in 1 1/2 inch

(inside diameter of 1.635 inches) stainless steel pipe. Copper or

stainless steel pipe and fittings were used in the flow loop wherever

possible in order to minimize the rust particles in the flow. The

loop was connected to a vacuum system so that the air could be removed

from the system before it was filled with Freon 114.

Pressure Tap Error

Preliminary tests with nozzles indicated that at the velocities of

interest in this investigation pressure measurement errors were a

significant problem. These errors were so large (around 10% of the

dynamic pressure) that it seemed necessary to devise a method for

individually calibrating each pressure tap before actual two-phase

flow tests were made. The following pressure tap calibration technique

was used for straight tube test sections. The test loop was broken

open between the centrifugal pump and the heat exchanger and connected

to the city water main. (See Figure 13.) Water was pumped through

the test section. At the downstream end of the test section the

water issued into the atmosphere as a free jet aimed into the drain

pipe.
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The fact that the water exits from the test section as a free

jet fixes the pressure at the end of the tube very accurately as

atmospheric pressure. Knowing this reference pressure, it is possible

to calculate the pressure upstream in the fully developed region based

on the well-known correlation for turbulent flow in a smooth tube.

This calculated pressure may be compared with a measured pressure at

the same point. The error is thus determined and a curve may be plotted.

A straight tube test section identical to the one shown in Figure 13

was constructed from transparent acrylic plastic (plexiglas). Attempts

to calibrate the pressure taps in this test section were completely

unsuccessful. It was impossible to obtain data which could be repeated

on successive days. Tap #2 for example gave readings about 10 psi

above the calculated pressure when the first tests were run. Other

tests run on the next day produced readings 20 psi below the calculated

pressure under the same test conditions. Data from all other pressure

taps including the 0.0135 inch diameter and 0.0292 inch diameter taps

showed similar trends.

Shaw (1) has shown that very small burrs at the intersection of

the tap hole and the tube strongly affect the pressure tap error. An

inspection of the test section showed considerable surface cracking.

On this basis it was postulated that some sort of geometry change was

occuring near the pressure tap hole which was causing the reading to

change from day to day. It must be noted that the attempts to

calibrate this plastic test section were made using water which presumably

does not attack arcylic plastic. Pressure and temperature changes

associated with starting up and shutting down probably did contribute
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to the cracking, however. The cracking could also have been caused

by the stresses introduced by the machining of the test section.

The assumption that the non-repeatability of the data for the

plastic test section was caused by deterioration of the plastic made

it necessary to use a metal tube. Stainless steel was chosen as the

material least likely to rust or corrode. The stainless steel has a

disadvantage, however, in not being transparent.

The straight tube test section shown in Figure 14 was constructed

and tested as described above using water to calibrate the pressure

taps. The data from three different runs on three different days

were in very good agreement. The spread in this data was of the order

of 1 psi. Each pressure tap had its own calibration curve. Errors

ranged from 30 to 50 psi at various taps when the dynamic pressure

was about 400 psi. (The pressure error is defined as being the measured

pressure minus the "true" pressure.) This successful calibration of

the stainless steel test section seems to confirm the assumption that

calibration was not possible in the plastic test section due to small

geometry changes. It also indicates that the use of acrylic plastic

test sections under conditions of high dynamic pressure may not be

advisable under circumstances where accurate pressure measurement is

desired.

Using a stainless steel test section to solve the pressure measure-

ment problem introduced a problem in viewing the two-phase flow. Two

variables of particular interest may be obtained by viewing the flow.

The first is the location of the start of the two-phase region relative

to the measured pressure distribution and the second is the overall

length of the two-phase flow region.
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In order to be able to view the flow, a 90* acrylic sector was

constructed and carefully fitted into the stainless steel test section.

(See Figure 15.) The pressure taps all entered the test section in

the 270* sector made of stainless steel so that any changes in the

plastic would not affect the readings of the pressure taps. After

the plastic plug was inserted into the stainless steel, the whole

tube was carefully lapped. It was realized that even if the fit was

perfect at room temperature there would be some misalignment at the

higher operating temperatures due to differential thermal expansion.

For this reason the "window" was made considerably longer than the length

of the two-phase region. From preliminary observations made using the.

straight tube plastic test section discussed earlier, the length of

the two-phase region in Freon 114 was known to be less than 1/2 inch.

The "window" starts 2 3/8 inches from the sudden expansion, allowing

an L/D of about 8 for any disturbance caused by a step at the upstream

edge of the "window" to damp out.

Calibration runs were made using the free jet water technique

described above. Measured pressures ranged from about 15 to 30 psi above

the true pressure and were repeatable for runs on two successive days.

Runs made on a third day deviated from the earlier data but the reason

for this was quite obvious. During this third run considerable

cavitation was evident. Many bubbles were generated at the upstream

edge of the "window" and were observed throughout the rest of the

tube. This was apparently caused by some stress relaxation in the

plastic "window", as this cavitation was observed at all operating

temperatures.
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The test section was removed from the flow loop. The stainless

steel section with the "window" in place was placed in boiling water

in order to completely stress relieve the plastic sector. While the

test section was still hot it was carefully lapped by the author in

order to attain a smooth tube at temperatures more nearly typical of

the desired operating conditions.

Heating of the test section as described above seems to have

completely solved the problem caused by the "window" expanding into

the test section. This stainless steel-tube plastic "window" combination

was used for all succeeding tests in this project and at no time was

severe cavitation noted. At some operating conditions a slight

fringe of a white bubbly mixture about 1/16 inch long was observed at

the upstream edge of the "window". No cavitation any more severe than

this has been observed under any operating condition.

Final calibration of this test section was made using the free

water jet technique and the calibration curve for each pressure tap

was repeatable to within 1 or 2 psi as before. However, the error

itself was found to vary from about -10 psi to +10 psi. This is almost

an order of magnitude improvement over some of the earlier pressure

tap errors observed. There are two possible explanations for this

improvement. First consider the history of the test section. The

test section without the "window" was manufactured by drilling the

pressure tap holes into the unfinished tube. The tube was then hand

lapped by a very competent machinist for two or three days, producing

a surface with no visible scratches. Experimental data obtained at

this point gave pressure tap errors of about 50 psi. The test section

was returned to the machine shop and the same machinist fitted the
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"window" into the test section. The final phase of this operation

consisted of lapping the test section with the plastic "window" in

place. Most of the material removed in this operation was taken off

the plastic "window" which was made to project very slightly into the

tube at the start. Tests run at this point gave errors of about 30 psi.

Expansion of the plastic made a third lapping necessary. This was done

by the author after some instruction by the machinist who had done

the rest of the work. Again most of the material removed was from

the plastic piece. The tests at this point produced errorsbetween

-10 and +10 psi. Data presented by Shaw (1) seem to indicate that a

burr projecting 0.0001 inches into the stream at the tap hole could

produce sizeable errors with the geometry considered here. Possibily

a burr caused by drilling the tap hole was present and the three

separate lappings were required to remove it. This seems unlikely

since the first lapping required days, while the second and third

required only an hour or so. A more likely explanation is the method

used to clean the lapping compound out of the pressure tap holes. The

process of lapping requires an abrasive compound which wears away the

surface of the tube being lapped. This compound tends to plug up the

tap holes during the lapping operation and they must be cleaned out

before the test section can be used. The machinist used a drill or

fine wire to clean out these holes, while the author reinstalled the

test section into the flow loop and cleaned out each hole with high

pressure water. It is suggested that the act of pushing a drill through

the pressure tap hole could produce a burr of a large enough size to

alter significantly the tap error. Other explanations could perhaps
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extrapolation is necessary because it was not possible to overlap the

entire Reynolds number test range of the Freon 114 with the water

calibration runs. This difference in Reynolds number range obtained with

the two fluids is due primarily to the difference in viscosity of the

two fluids. (The viscosity of Freon 114 (14) is less than that of water

at the same temperature). As shown later, the fact that the free water

jet calibration did not completely overlap the Freon 114 data range was

not too serious a problem.

As noted above, the calibration technique is only a valid technique

in the region of fully developed turbulent flow. Deissler (15) gives an

analytic solution based on the integral method which indicated that for

pipe Reynolds numbers (p Vo D/) greater than 105 the local friction factor

reaches its fully developed value in less than 8 diameters. (A typical

pipe Reynolds number for these tests is 106.) His experimental results

and also those of Harnett (16) were in agreement with this prediction.

Experiments show that the velocity profile may take 50 or more

diameters to become fully developed.

L"

be developed, but the main point of this discussion is to show just how

much care is required to obtain accurate pressure measurements with flows

having such high dynamic pressures.

Figures 16 through 19 show the calibration curves for four of the

thirteen taps in the straight tube portion of the test section. The

results arerpresented in the dimensionless form which Shaw (1) shows to

be appropriate for fully developed flow. T for these curves is about

1 psi,. A curve has been fitted to the data by eye. The extrapolated

calibration curve is assumed to fall between the horizontal dotted line

and the straight line extension from the last data points. This
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On the basis of the above, the first pressure tap in the tube (tap #2)

was placed a nominal 8 diameters from the termination of the bell-

mounted entry.

Curves for the pressure tap error for taps #4, #6, and #7 were very

similar to that of tap #2 shown in Figure j6. These taps showed a

linear curve for the error over the test range. The slope and range

of the data were about the same as that shown in Figure 16. Taps #3,

#4, and #5 were all located at the same position but had three different

diameters. (#3, d = 0.0135 inches; #4, d = 0.020 inches; #5, d = 0.0292

inches). At any given flow condition the error for these three taps

was very nearly the same. Thus on the basis of this limited test it

was not possible to draw any conclusions as to the most desirable tap size.

(As noted earlier, however, a diameter of 0.020 inches seemed to be

the best size for the pressure tap holes in the plastic test section.)

Pressure Taps #8, #9, #10 and #11 were found to have calibration

curves very similar to those shown in Figures 37, 18, and 19 for taps

#12, #13, and #14. These curves start out very near to the line of

zero error and then curve upward at a higher value of the Reynolds number.

It is also convenient to consider the pressure measurements obtained

at tap #1. _Tap #1 is located upstream of the bellmouth. Measurements

obtained at this tap are useful because there is little or no error

associated with the pressure measurement here. The pressure error, as

shown above, is some fraction of the dynamic pressure. From continuity

-4it is found that the dynamic pressure at tap #1 is 6.3 x 10 times

the dynamic pressure in the straight tube. Thus, not only is the

measurement error unimportant, but the dynamic pressure itself may be

neglected in computing the stagnation pressure. Since tap #1 has no
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error associated with it, it is convenient to relate the pressure

measured here to that in the tube. In order to do this it is

convenient to define a pressure coefficient, Cp, as follows.

Cp =  iP1  v/21 -• 4 f - + P (22)

0 V2/2
So

Where LT is the total length of the straight tube (LT = 9 1/2 inches).

This pressure coefficient is the pressure at the start of the straight

tube, assuming no losses in the bellmouth entrance, minus the pressure

at the start of the straight tube, assuming fully developed flow

through the whole tube, divided by the dynamic pressure. Thus the

pressure coefficient is a stagnation pressure loss coefficient which

adds the flow losses in the bellmouth to the flow losses in the straight

tube entrance region in excess of the fully developed losses. This

pressure loss coefficient is a function only of the pipe Reynolds
pV D

number , and may be determined experimentally. If Cp is known

for a flow then it may be used along with the measured value of P1

and the dynamic pressure to calculate an artificial pressure, Pi, which

should fall on the fully developed pressure drop curve extrapolated to

zero length.

PE - 2V2/ -P
C Zi ] 1 (23)

P Vo/2
Zo

This operation might be termed an artificial calibration of tap #1, as

compared to the actual calibration of the other pressure taps. This

artificial calibration has an advantage over the other calibrations;

Cp is a stagnation pressure loss coefficient and therefore should be

a weak function of Reynolds number at high values of the Reynolds
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number. This is an advantage here since it is desirable to extrapolate

some of the present data to higher Reynolds numbers for use in conjunction

with the Freon data.

Figure 20 shows the experimental data obtained using the free water

jet. These data determine Cp as a function of the pipe Reynolds number.

Most of the data points obtained for Cp are negative. Since Cp is a

loss coefficient it seems that negative values are impossible. In

fact there is a very good explanation for this behavior. When the

straight tube portion of the test section was lapped, the tool was

started from the bellmouth end of the test section. Taking the tool in

and out caused the tube to become slightly oversize at this point. Thus

the bellmouth nozzle ends slightly further downstream and the value

of LT used in Equation (22) should be decreased. Equation (22) is only

a definition which it is convenient to retain since the negative

values of the pressure coefficient have been explained. The experimental

data in Figure 20 have been curve fitted by eye and this curve

extrapolated as with the calibration curves.

The results obtained from the free water jet calibration technique

may now be applied to data obtained for Freon 114 and used to correct

for pressure tap errors. Figure 21 shows typical corrected Freon 114

data for a Reynolds number which lies in the calibration range. The

data point at L = 0 was obtained from a- measurement of the stagnation

pressure, Pl, and from the appropriate value of Cp from Figure 20

Data points for taps #2 through #14 were corrected based on the appropriate

calibration curve. The data point at L = 9 1/2 inches, corresponding

to the end of the tube, is a measured back pressure. The location of

this back pressure measurement is discussed later in this chapter. The



-46-

theoretical curve was obtained from the slip model below the saturation

pressure and the theory for the pressure drop in fully developed turbulent

flow at pressures above the saturation pressure. Thus the theoretical

curve is calculated from the end of the test section to the inlet of

the test section. The agreement between the theory and the experimental

data is excellent.

Figure 22 shows a similar curve at a high Reynolds number. For this

case it is necessary to use the extrapolated calibration curves to

correct the measured pressure. The limits of the extrapolation give

rise to the finite uncertainty in the computed result. This is indicated

in Figure 22 by the bars above and below the data points. There is good

agreement between the data and the theory.

It is concluded that: (1) with a stainless steel test section

pressure tap error is repeatable. (2) it is possible to determine a

non-dimensional curve of this error using the free jet calibration

technique. (3) it is possible to use the non-dimensional curve as a

calibration curve to correct pressure measurement errors obtained

under different experimental conditions. (4) the non-dimensional

pressure curve may be extrapolated to higher Reynolds numbers with some

small loss in accuracy.

Experimental Study of Two-Phase Flow

It was assumed that once the pressure measurement problem was

solved, it would be a relatively simple matter to place pressure taps

in the two-phase region and measure the pressure distribution. As

may be seen from the data in Figures 21 and 22, the real situation is
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not quite so simple. The last tap, tap #14, is 0.125 inches from

the end of the tube. To within the accuracy of the experimental

data, there is no deviation of the measured pressure at this point

from the linear curve of the single-phase region. Of course it would

be possible to add one or two taps downstream of tap #14 but there

is a limit to how close to the end of the tube a finite sized tap

may be placed. Thus it would never be possible to place a tap right

at the end of the tube. (A movable sting placed down the center of

the tube could be placed with a pressure tap in the exit plane. This

possibility was rejected because of the difficulties that would have

been encountered in building it into the existing system). Further-

more, pressure taps placed downstream of tap #14 would be measuring

pressures in a region in which the pressure gradient is extremely

high.

It was noted that the two-phase region became much longer,

extending the full length of the 2 3/8 inch "window", when only the

first stage pump in the system was operating. Under these circum-

stances the stagnation pressure, Pi, was about 150 psig. Assuming

that the dynamic pressure was about 100 psi then V was close to

100 ft/sec. This is noted here even though no data were recorded

under these conditions because this lengthening of the two-phase region

may cause the assumptions of the model tb become invalid. The minimum

velocity at which data were recorded was 170 ft/sec. In Chapter 2 a

conservative statement was made to the effect that the model may not

be valid at velocities below 150 ft/sec. On the other hand, the above

evidence does not preclude the possibility that the model is valid at
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or below velocities of 100 ft/sec. Only more extensive experimental

data can conclusively answer this question.

From Figures 21 and 22 it is obvious that for many practical

purposes a knowledge of the two-phase region is unimportant. For

example, consider a flow situation similar to that in Figure 21 in

which the upstream stagnation pressure and the pressure at the exit

of the tube are given and the flow is to be caluclated. If the back

pressure is below the saturation pressure, the assumption of single-

phase flow and a back pressure equal to the saturation pressure

yields very good results as may be seen by inspection of Figure 21.

There are circumstances when a knowledge of the two-phase

region is useful. Any situation in which it is necessary to know

what exit pressures correspond to unchoked flow or what the choked

pressure is, requires some knowledge of the two-phase flow.

One way of defining a choked flow is the following. Choked

flow exists when variations in the back pressure have no steady flow

effect upstream. Following this line of reasoning it may be asserted

that for unchoked flow back pressure variations do produce measurable

changes in the upstream flow. This statement forms the basis for the

rest of the experimental work performed in this project.

Assume there exists for the test section a unique pressure versus

length curve. This curve consists of a linear single-phase portion

followed by a two-phase curve. Referring to Figure 22, it is clear

that a change in the back pressure, from the choked pressure to a

higher pressure with the flow held constant, implies a shift of this

unique pressure distribution downstream. This shift must be just that
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required for the pressure distribution to match the back pressure at

the end of the tube. The net result of this shift is a rise in

pressure at each point along the tube. Stated another way, an increase

in the back pressure causes all other pressures to rise. Furthermore,

the way in which the pressure at tap #14, for example, varies as

tha back pressure changes is controlled by the pressure distribution

between these two points. Thus the pressure distribution in the two-

phase region has been studied indirectly by looking at changes in

the pressure measured at tap #14 as the back pressure is changed. This

avoids the problem of putting instrumentation in the very short two-

phase region.

A very crucial assumption inthe above argument is that of a

unique pressure distribution regardless of back pressure. It is easy

to conceive of a situation in which this is not true. Consider for

example flow in a very smooth walled tube with only one pressure tap.

If this pressure tap were located in the flow at a point where the

liquid was slightly superheated it would very likely produce sufficient

disturbance to cause nucleation. If the back pressure were changed

slightly, resulting in upstream changes, the nucleation point could

easily remain at the pressure tap. Under these conditions the same

form of the pressure distribution has not been preserved. The nucleation

is occuring at a different pressure and, as shown above, the nucleation

pressure is the point at which the two very different flow regimes

connect. If this could be the case for the flow situation with just one

pressure tap, the situation certainly could be compounded by the

numerous pressure taps that are present in the test section used for

this investigation. This possibility is rejected and the assumption
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made that in all the data obtained in this investigation the nucleation

pressure was equal to the saturation pressure. This assumption is based

on the following experimental observations. At all test conditions

considered herein a stream of bubbles was observed coming from tap #11.

Tap #11 is 0.500 inches from the end of the tube. It was concluded that

the bubbles formed at tap #11 and also at some of the subsequent taps

were the result of localized pressure disturbances caused by the tap

hole, i.e. cavitation, and that this process was occuring at pressures

well above the saturation pressure. That this cavitation takes place at

pressures above the saturation pressure may be seen from the data in

Figures 21 and 22 and similar data not shown here. This is also supported

by the fact that these bubbles do not appear to grow until they have

been swept downstream a substantial distance. The presence of these

vapor bubbles forms the basis for the assumption stated above, that is

the two-phase flow region starts at the saturation pressure. Bubbles

from tap #11 and other taps provide a substitute for wall nucleation

conditions. The tube wall condition has no effect on the two-phase

flow as long as the vapor phase grows from those bubbles produced upstream

of the region of interest. Thus these observations justify the

assumption of the existance of a unique curve of pressure distribution and

also the related assumption of nucleation at the saturation pressure.

The experimental data were obtained in the following manner. The

flow and temperature were set at the desired test condition. It was

necessary to hold these two quantities as nearly constant as possible

over the duration of a run. The flow was fairly easy to hold constant

since the positive displacement pump driven by a very much overpowered
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D.C. motor acted very much like a flow source. The temperature control

presented some problems because fluctuations in steam and cooling

water flow strongly affected the temperature of the Freon 114 in the

test loop. Temperature changes are very important because a temperature

change implies a change in the saturation pressure. Since the two-

phase region starts at the saturation pressure, a change in this pressure

obviously implies a new pressure distribution in the two-phase region.

Eventually the technique of setting the temperature at some nominal

value and then holding at this temperature to within + 1IF was evolved.

The basic measurement for these tests was a pressure change at

the last tap, tap #14. It was necessary to first establish a reference

level for tap #14. This reference pressure is a function of the temper-

ature (or saturation pressure) and therefore it is necessary to obtain

experimentally a curve of this reference pressure versus temperature.

This curve is generated with the flow at or near choking by varying

the temperature over a range somewhat greater than the nominal test

range of + 1OF. A typical set of data used to establish this reference

level is shown in Figure 23.

The back pressure was then raised in steps to a pressure slightly

below the saturation pressure. The liquid temperature, the pressure

at tap #14, the back pressure, and the flow rate were recorded at

each of the steps. Lowering the back pressure back down to its minimum

produced further data. Temperature corrections were made whenever

necessary to maintain the liquid temperature in the desired test range.

The back pressure was measured at two different locations. One

of these measurements was made at tap #15, which is placed in the

stainless steel test section just after the sudden expansion to a diameter
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of 1 inch. (See Figure 14) Downstream of the test section there was

a further expansion into a 4 inch diameter pipe which serves as a plenum

chamber. The second measurement of the back pressure, P16, was made

3 inches from the end of the test section in this chamber. Table 6

summarizes the experimental values of these two pressures for a typical

test run.

Table 6

Comparison of the Measured Back Pressure from Two

Different Pressure Taps for Run #46-B

P15' psia

30.0

29.8

30.5

31.1

32.3

33.3

34.6

35.7

43.0

54.9

58.0

61.1

All pressure measurements

within 2 psi,

Pl6' psia

33.3

37.3

38.8

42.1

44.4

47.3

50.1

51.7

54.9

56.8

59.5

62.1

at higher values were in agreement to
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At or near the theoretical choking pressure the readings obtained

at the two taps were in good agreement. As the back pressure was

increased the difference became quite significant and then decreased

to the order of the experimental accuracy. Based on the following

observations, P16, was eventually chosen as the correct value of the

back pressure. Over the pressure range where there was a large difference

between the pressure readings, the one inch diameter section beyond

the end of the straight tube was observed to be filled with two-phase

flow. As the pressure was increased a vapor "space" opened up around

the two-phase region, which increased as the pressure was increased.

This space was first observed at about the same pressure as that at

which the difference in readings between the two taps became small.

The variation of P16 with position of the back pressure control valve

was much more continuous than that of P15, which seemed to show a

very rapid rise over a short region. Also it was noted, during runs

to obtain the reference value of P14 as a function of temperature, that

PI5 would increase slightly with temperature while no similar change

was noted at tap #16. Based on these observations it was postulated

that when the pressure was low enough to cause the two-phase flow to

expand and fill all of the one inch diameter section there was sufficient

interaction of the flow with the walls to cause the pressure at Plis

to be other than the actual back pressure. (Note that the flow out

of the test section was not in equilibrium and therefore expanded

upon leaving the straight tube due to the flashing of the liquid. This

is in contrast to a gas jet which would only expand upon leaving a

tube if the back pressure were below that required to choke the flow.)
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The existance of this interaction was supported by the simultaneous

occurance of the rapid rate of rise of P15 as a function of valve

position, to a value equal to that of PI16 and the appearance of

the vapor "space" around the two-phase jet. The fact that P16 could

be held quite constant at low back pressures with small temperature

variations, while P15 was affected by the upstream temperature

variations seems to indicate that the flow near tap #15 is controlled

by upstream rather than downstream conditions. Despite this rather

lengthy discussion regarding which measured pressure is the "correct"

back pressure it should be stressed that for all the data presented

in this report the use of the "incorrect" back pressure would have

little effect. This is true because the quantity AP14 is nearly

constant in the experimental range in which there is a large difference

between the two measured pressures. This may be seem by comparing the

data in Table 6 with the corresponding data plotted in Figure 33.

Data reduction consisted of plotting a curve similar to Figure 23

to establish the reference pressure as a function of temperature. Then

all P14 data, including that used to establish the reference pressure

curve, has the reference pressure at that temperature subtracted

from it. ,The resulting quantity, AP14 is then plotted versus the

back pressure.

There is of course some uncertainty associated with all of these

measurements. It has been shown that there is a known and repeatable

single-phase pressure measurement error associated with each pressure

tap. The above mentioned data reduction method involves taking the

difference of two different pressures measured at the same tap under

slightly different flow conditions. Implicit in this technique is
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the assumption of constant error at these two conditions. If these

two conditions both correspond to single-phase flow then the assumption

has been shown by experiment to be correct. If one flow condition is

single-phase and the other two-phase or if both are two-phase then no

such statement can be made. However, it must be noted that the

existance of pressure measurement errors was first noted in the two-

phase region. This is evidence of positive errors under both flow

conditions. A second point is that the measured error at tap #14 is

small (about 5 psi). It is therefore reasonable to assume that changes

in the error would be even smaller. These agruments are not strong

enough to conclusively state that no error is introduced by this effect,

but, lacking direct evidence to the contrary, it has been assumed that

pressure tap error remains constant or changes a negligible amount

under both single-phase and two-phase flow conditions.

Consider now the uncertainty associated with the actual experimental

measurements. The back pressure was measured on a calibrated 100 psi

full scale pressure gauge with 1/4% accuracy. This accuracy is very

satisfactory. More important are the measurements of temperature and

pressure at tap #14. The temperature was measured using a Copper-

Constantan thermocouple. Using an accurate Leeds and Northrup

potentiometer it was possible to observe voltage changes of 0.005

millivolts, corresponding to temperature changes of O:20F. Absolute

uncertainty was somewhat greater, being of the order of 0.O4*F.

Using a 100 psi gauge with an 8 1/2 inch diameter dial it was possible

to read pressure changes to an accuracy of 0.1 psi while the absolute

accuracy was probably more nearly the 0.25 psi rated by the manufacturer.

It should be stressed that all instruments were periodically calibrated.
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The pressure gauges were calibrated on a dead weight tester and the

thermocouple unit was calibrated against a precision thermometer. As

may be seen from Figure 23, an uncertainty of 0.20F in the temperature

measurement corresponds to an uncertainty of about 0.2 psi in the

reference value of P14. The quantity of interest in this study is

the change in pressure at tap #14, AP 14 Both quantities involved

in the calculation of AP14 should have the same uncertainty (0.3 psi)

so the uncertainty in AP14 should be double this or about 0.5 psi.

Comparison of Experimental and Theoretical Results

Figure 24 shows the experimental data corresponding to the physical

situation considered in some detail from a theoretical point of view

in Chapter 2. The agreement between the theoretical and the experimental

results is excellent. The theoretical curve shown in Figure 24 may be

obtained directly from the solid curve in Figure 12. Pick some value

of the back pressure and use this value to obtain y/D from Figure 12.

At the location of tap #14 (y/D = 0.483) move up the curve the distance

y/D which has been obtained above. The pressure change over this

distance is AP14. Note that the theoretical curve in Figure 24 becomes

linear with a slope of unity corresponding to all single-phase flow

at pressures above the saturation pressure.

In the theory used in Figure 24 a constant value of the heat

transfer coefficient, h, was ultimately used. This conclusion was

reached after a rather lengthy process of elimination. It was originally

felt that the two-phase region might best be modeled as a liquid region

containing fairly uniformly dispersed bubbles. As a result of this
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thinking a no slip model was developed which assumed infinite friction

between the phases. It was assumed that the slip and no slip models

would represent the two limiting cases with the actual physical

situation somewhere in between. For the no slip model the equations

presented in Chapter 2 still apply except for the two momentum equations

which must be replaced by the following equations.

V = V (24)
g t

Po - P = p V (V - Vo ) (25)

The no slip model predicts a choking pressure as a result of calculations

similar to those performed in Chapter 2. The no slip model predicts a

pressure which is higher than that obtained from the slip model. For

the physical situations considered in this report the choked pressure

obtained from the no slip model exceeded that of the slip model by

about 10 psi. For the specific case considered theoretically in Chapter 2

and experimentally in Figure 24 the critical pressure obtained from the

no slip model was 32.5 psia as compared to the 22.4 psia for the slip

model.

An inspection of the experimental data shown in Figure 24, in

conjunction with the two choked pressure predictions, seemed to indicate

that the no slip model was more nearly correct. Certainly to within

the accuracy of the datalthe value of AP14 is zero at 32.5 psia. As

a result of this reasoning an attempt was made to find some reasonable

variation of the parameter h(dAh/dx) which would explain the experimental

data in Figure 24. If the no slip model is valid then the vapor phase

must consist of a distribution of very small bubbles to provide

sufficient interphase drag. Therefore as a start it was assumed that
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the gas phase was made up of bubbles which could be characterized by

some mean radius R. This assumption was used to obtain the following

expression for dAh/dx.

dAh 3A
-- (26)dx R

R and h were assumed to be constant. Thus the functional form of

h(dAh/dx) was determined. Once the functional form of this parameter

is known, only the length of the two-phase region is required to determine

its scale. Based on both visual observations and pressure measurements,

the length of the two-phase region was known to be about 1/4 inch.

h(dAh/dx) was scaled (by trial and error) to give solutions with about

the correct length of the two-phase region. Predictions for AP14

did not agree at all with the experimental data. The predicted values

of AP14 were essentially zero up to a back pressure of 55 psia on the

scale plotted in Figure 24.

An analysis predicting the growth of a vapor bubble in a liquid

with a time varying pressure was performed. (For the details of

this analysis see Appendix A.) On the basis of this analysis it was

concluded that the assumption of a constant h was incorrect. Even if

the average bubble radius remained constant as assumed, the analysis

in Appendix A indicated that h should vary as Tt - T . (This means

that the heat transfer to the liquid vapor interface varies as

(T T - Tg)2.) Using this assumption and Equation (26) for dAh/dx

a new prediction for AP1 4 was obtained. The results obtained were

in even poorer agreement with the experimental data than the first

attempt. The values of AP1 4 obtained from this model were less than
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the much too small values obtained from the previous model.

In the first try considered above, h(dAh/dx) increases through

the two-phase region as A . In the second try, h(dhh/dx) increases

as A (Tt - Tg) which is a faster increase than the first. Since

the results obtained from the second try were worse than the first, it

was concluded that what was needed was an h(dAh/dx) which varies less

than A . One possible assumption is to assume this whole parameter to
g

be constant. This assumption was made---still using the no slip

model---and predictions for AP14 obtained. These results were

encouraging in that they at least gave values of AP14 of the correct

order of magnitude. The resulting theoretical curve which started

from 32.5 psia with zero slope did not have the same shape as the

experimental data.

At this point the no slip model was abandoned in favor of the

slip model. A bubble model was also tried with this model, where

Equation (26) was again assumed to be correct. A value of

h D/R - 3.6 x 107 Btu/(hr ft 2 F) gave 0.350 inches as the length of

the two-phase region. The value of AP14 at 50 psia obtained from

this solution was 0.0624 psi. On the basis of the data in Figure 24,

this solution was discarded. A second try with this model using

the value hD/R = 1.8 x 107 Btu/(hr ft2.F) resulted in ymax = 0.492

inches and AP1 4 = 0.19 psi at a back pressure of 50 psia. From these

results it was concluded that this model was not the correct one for

the actual physical situation.

It was known on the basis of the calculations made with the no

slip model that agreement with the data could be improved by allowing
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less variation of h. It was assumed that h(dAh/dx) was a constant

and the calculations were made using the slip model. As shown in

Figures 24 through 33, this assumption gives excellent agreement

with the experimental data. The question still remained as to why

a constant value of h(dAh/dx) worked so well. A possible answer to,

this is that the effective area is nearly constant because the vapor

phase remains in a very thin layer near the tube wall. This is

supported by visual observations. Looking as much down the axis of

the flow as possible, one can see that there exists a large core of

liquid, containing no visible bubbles, beyond the start of the two

phase region. Furthermore, it is possible that the heat transfer

coefficient from the central liquid core to the thin region at the

wall is constant. (A detailed model for this heat transfer process

is considered in Appendix B.)

Having determined that the "slip" model with a constant value of

h(dAh/dx) gave the best agreement with experimental data, it was

necessary to run over a variety of cases in an attempt to learn how

this interphase heat transfer coefficient varied with the flow

parameters. As mentioned above, it is possible, at least in principle,

to determine the magnitude of h solely from a measurement of the length

of the two-phase region. However, it was not possible to determine

experimentally this two-phase length accurately enough by visual

observation. The first visible sign of the two-phase region is a

jagged line running around the tube. Because of this the heat

transfer coefficient was obtained by picking the value which gave the

best fit with the experimental data. The heat transfer coefficient
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was varied in steps of 18,000 Btu/(hr ft2"F). An increase in h shifts

the theoretical curve in Figure 24 downward to lower values of P14'

Figures 25 and 26 show data for runs in which the upstream liquid

velocity has been increased. The heat transfer coefficient for these

runs shows the rather interesting behavior of decreasing with an

increasing velocity. This is contrary to the behavior of most heat

transfer coefficients in flow situations. A simple model was developed

to predict the heat-transfer coefficient but it predicted an increase

in h with the velocity and a decrease with temperature. Despite this

incorrect result in the predicted functional form of the heat transfer

coefficient, the.model did produce numerical values of the correct

order of magnitude and is presented in Appendix B.

Figures 27, 28, and 29 show the data obtained at an increased

temperature, T = 139*F. Again the heat transfer coefficient decreases

with increasing velocity. It also should be noted that h is increasing

with the liquid temperature. The scatter of the data in some of these

Figures is somewhat greater than the previous Figures but most of

the points fall within the + 0.5 psi accuracy estimate.

Figures 30, 31, 32, and 33 constitute a third set of data taken

at another temperature (154*F). Again the velocity is varied over a

range of values. A further increase of h with temperature may be

noted. Although Figures 31 and 32 are best fitted with the same h,

this is probably due to experimental error. The overall trend for

these four curves is still a decreasing h as the velocity increases.

Figure 34 summarizes the values of the heat transfer coefficient

determined experimentally from the various sets of data. There is

obviously some uncertainty in the value of h but this is not too

surprising in view of the 0.5 psi uncertainty in AP14. As mentioned
14 "
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previously, integral steps of 18,000 Btu/(hr ft 2F) in the value of

h were used to determine the best theoretical fit to the data. This

value, therefore represents a minimum uncertainty. On Figures 24

and 30 the variation of the theoretical curve with the value of h

is shown. These two Figures represent a high and a low value of h.

It is concluded from these Figures the uncertainty in h is about

+ 10%. This is very good considering the 0.5 psi uncertainty in

AP14"

The results of this section may be summarized as follows: The

slip model together with the assumption of a constant heat transfer

coefficient has been used in conjunction with experimental data to

determine h. The results are self-consistent in that they predicted

the correct length of the two-phase region which was measured indepen-

dently. Also the assumption of constant h is consistent with the

observed flow, which was made up of a liquid core surrounded by a

vapor phase region. Although the data are not sufficiently accurate

to conclude that h(dAh/dx) does not vary at all throughout the two-

phase region, calculations with other possible models indicated that

order of magnitude variations in h were inconsistent with experimental

results., The constant heat transfer coefficient which gave the best fit

has been determined from the experimental data to an accuracy of about 10%.

This experimentally determined h was found to increase with upstream

liquid temperature and decrease with upstream liquid velocity over

the experimental range. The main result of the slip model without

including the variable, x, was a prediction of the critical pressure,

P . Although this pressure has not been measured directly the
C

experimental data tend to support
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the predicted value. Consider the data in Figures 24 through 33.

Obviously the point at which AP14 no longer changes with back pressure

is, on the basis of the data alone, no more than 20 psi higher than

the line marked "Slip Model Choked Pressure". Even if the predicted

choking pressure were in error by 20 psi it would still be a better

approximation than just using the saturation pressure. However, the

overall consistency of the theoretical model and the data provide

further confidence in the model as a whole. Thus it would seem that

the prediction of the critical pressure has been justified to within

20 psi by the data alone and to a value considerably less than that

by the good agreement between the data and the rest of the theoretical

predictions.
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Chapter 4

COMMENTS ON OTHER DATA AND MODELS

Although there has been much work done in two-phase flow in recent

years with no small amount of concentration on two-phase choking, there

has been little or no concentration on the specific type of two-phase

flow considered here. Much of the recent work in two-phase chokedo

flow has been motivated by an interest in reactor safety. In particular,

the goal has been to predict the flow of the cooling fluid out of a

nuclear reactor should an accident occur. Thus most of the theoretical

and experimental work that has been done has considered the choking of

a two-phase mixture which initially is a two-phase mixture or a slightly

subcooled liquid. In this study Run #43-B (Figure 29). had the minimum

liquid dynamic pressure of 255 psi. This gave a stagnation pressure

of 357 psia at the point of flashing. If the liquid had been accelerated

isentropically to the saturation pressure there would have had to have

been 112*F of subcooling. In the actual case there was considerable

stagnation pressure loss in the long tube so that the actual subcooling

was 1360 F. All other tests reported were subcooled more than this

1360F.

Smith (17) published, in 1963, an extensive literature summary on

choking two-phase flow in which he referenced 79 other works. None of

these papers considered flashing and two-phase flow of a liquid with

more than a few degrees of subcooling. The only work to come to the
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attention of this author in which the problem of high velocity flashing

flow has been treated is that of Brown (18). His work was largely

experimental and consisted of taking pressure measurements in a convergent-

divergent nozzle. Due to the differences in geometry between his

experiments and those presented here, no quantitative comparisons are

possible. He did observe flashing upstream of the throat with subsequent

choking at the throat and a pressure drop in the divergent section. This

is in agreement with the qualitative observations noted in Chapter 1

of this work.

Despite the fact that such a comparison is probably unfair to both

models because of the different physical situations being modeled, some

of the more common two-phase choking models are contrasted with the

present model. The models in the literature which give the best agreement

with the experimental data are those in which critical flow is modeled

in terms of the local properties at the critical point. The problem

remains of predicting critical pressure, etc., in terms of the upstream

flow conditions.

One common way of predicting choking is to attempt to use the well

known relation from gas dynamics as a starting point.

G2 = -) (27)
s

G is the mass flow per unit area and v the specific volume. A similar

expression may be obtained from Eqmatlan(5) by writing it in the following

form.

2 2
-dP = G2d L +(28)

G2 A G2A
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If the expression in brackets is defined as being equal to the specific

volume then Equation (28) is similar to Equation (27). The specific

volume so defined is somewhat artificial in that it does not have any

physical significance. Fauske (19) in an early paper took the derivative

in Equation (28) at constant entropy to complete the analogy with gas

dynamics. To evaluate this derivative he assumed thermal equilibrium

between the phases and that the pressure gradient has a finite maximum

at the choking point. The latter assumption leads to an expression

for the velocity ratio in terms of the density ratio.

V P 1/2
() ( (29)

This expression minimized the momentum flux at the choking point.

Another development has been given by Moody (20). He assumes

thermal equilibrium between the phases and constant energy and entropy

flux at any section. This allows him to write the expression

G = G (ho, So, K, 9) (30)

Where h and s are respectively the stagnation enthalpy and entropy
o o

and K is the so-called slip ratio (V /V). He maximizes G by setting

aG
(-) = 0 (31)

P

and

() f 0 (32)
K

The result of this operation is an expression similar to that of

Fauske for the velocity ratio at choked conditions.
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V p 1/3
(V & p (

9 g

This model minimizes the kinetic energy flux.

The two models presented are typical of some of the models found

in the literature in that they (1) contain somewhat arbitrary assumptions,

(2) are not: necessarily in argeement with each other, and (3) seem to

work quite well. Typical data are presented with the mass flow per unit

area plotted versus the critical pressure with the quality at the

critical point as a parameter.

Using the present model and the typical case considered in Chapter 2,

with P = P = 69.6 psia and V = 180 ft/sec, the slip ratio at choking

obtained from Figure 6 is

V g/V 2.54 (34)

Under these conditions the density ratio is 118. Equations (29) and

(33) give

V /Vt = 10.85 (35)

and

V /V = 4.91 (36)

Thus there seems to be no agreement between these models and the

model developed herein.

Lavoie (21) has developed a generalized one dimensional model

for two-phase flow and has written conservation equations similar to

those presented in Chapter 2. He defines the choking point to be

that point at which a mathematical solution no longer exists. (That

is derivatives with respect to x become infinite.) He assumes that
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(pVA )
d d. is not an explicit function of any derivative. This seems

dx

to be an invalid assumption. Using this assumption he obtained a fairly

simple expression relating conditions at the choked point. It was

felt that this technique might produce another simple expression using

the equations in Chapter 2 and not-making the assumption made by Lavoie.

The calculation was carried out and the resulting expression was

practically useless due to its algebraic complexity. Needless to say

the agreement between the choked conditions predicted by Lavoie and

the model presented here was poor.

Fauske (22) has recently developed a new model for two-phase choking

based on emperical data obtained by measuring the void fraction and

pressure of choking air-water flow. The semi-empirical equation that

he suggested using to predict the slip ratio at choking is

K = 0.17X .18  P)/2

Where X is the mass flow fraction of the vapor (quality). He stated

that if Equation (37) gave values less than unity, then a slip ratio of

one should be used. A value less than unity is obtained when conditions

from Chapter 2 are substituted into Equation (35). Even though this

value doep not equal 2.54 it is closer than any of the earlier estimates.

This is an empirical result and it is perhaps not surprising that it

does not work well with Freon 114. More important than the specific

result are the general conclusions which Fauske draws from his

experimental data. He suggested that the high values of the slip ratio

used in the earlier calculations coupled with the assumption of thermal

equilibrium were both incorrect but that the effects canceled. Based
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on the slip ratios which he calculated from measured void fractions,

he concluded that the slip ratio must be smaller than previously

used. To compensate for the lowered slip ratio he was forced to assume

non-equilibrium conditions existed at the point of choking.

These conclusions which Fauske came to experimentally are in good

agreement with the model developed in Chapter 2 in which thermal

equilibrium was not assumed and calculated values of the slip ratio

were much.smaller than used in many models
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Chapter 5

CONCLUSIONS

The test facility and the apparatus designed and constructed for

this two-phase research operated in a satisfactory manner. A stainless

steel test section with a plastic "window" was designed and constructed.

This test section was shown to be very satisfactory in that it allowed

simultaneous visual observation of the flow and accurate pressure

measurements. Acrylic plastic was shown to be a poor substance in which

to attempt accurate pressure measurements under conditions of high

dynamic pressure. Pressure tap holes drilled through the plastic

caused errors as large as 50 psi and these errors were not repeatable

from day to day but changed significantly.

Stainless steel was demonstrated to be a good material from which

to manufacture a test section containing pressure tap holes. With

careful machining the pressure tap error in stainless steel was shown

to be small and repeatable. A free jet technique was developed for

calibration of pressure taps in a straight tube test section and all

pressure taps were calibrated to an accuracy of about 1 psi.

The flow of high velocity flashing Freon 114 (C12 F4C2 ) in a

straight tube has been studied. Particular emphasis has been placed

on the two-phase pressure distribution and the choking of the flow.

Based on the observation that the length of the two-phase region is

very short (about one L/D in a 1/4 inch diameter tube) a model has been
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developed which predicts the choking pressure with the upstream single-

phase flow parameters as the only inputs. This model has been used to

I redict critical

pressures 
over a wide ran e of conditions 

Some

approximations are made to simplify the thermodynamic state equations

and are shown to give results in good agreement with results obtained

using the much more complicated state equations. Some theoretical

results for water are presented using these approximations.

The model was extended to include a relation between static

pressure and length along the tube in terms of an interphase heat transfer

coefficient. It was concluded that the two-phase region was too short

and the pressure gradient too high to allow this region to be system-

atically studied with pressure taps directly in the region. To get

around this problem a new technique was developed for studying the two-

phase region. This technique allowed the pressure distribution in the

two-phase region to be studied indirectly by varying the back pressure

and looking at pressure changes upstream. It was concluded that a

constant heat transfer coefficient gave the best agreement with

experimental pressure measurements and simultaneously predicted the

correct length for the two-phase region. The heat transfer coefficient

was found experimentally to decrease with velocity and increase with

temperature. The heat transfer coefficient was found to have a very

high value, a typical value being 200,000 Btu/(hr ft2oF). A simple

model for predicting this heat transfer coefficient gave values in this

same general range and therefore increased the level of confidence in

the experimental results. This model is not useful for accurate

calculations of the heat transfer coefficient. On the basis of visual
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observations and also the fact that a constant heat transfer

coefficient worked best, it was concluded that the gas phase may be

confined to a very thin region near the tube wall.

The overall consistency of the data and the model provided a

verification of the model proposed. Although it was impossible to

measure the choking pressure directly, the data indicated that the

predicted choking pressure did not differ from the actual choking

pressure by more than a few psi.
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Chapter 6

RECOMMENDATIONS FOR FUTURE WORK

One interesting follow-up to this work would be to run tests

with fluids other than Freon 114. An interesting result of these

tests would be the heat transfer coefficient as defined in this

work. Experimental determination of this parameter using other

fluids would perhaps lead to a clearer understanding of the basic

nature of this heat transfer coefficient.

It would also be interesting to extend the liquid velocity

range downward to determine the precise limits of the "slip" model

proposed herein. If either of these suggested projects is under-

taken and if the present method of data taking• is used, it is

suggested that more accurate values of the pressure change, dP 14 '

could be obtained by using two identical or nearly identical test

sections in parallel. Very accurate differential pressure gauges

are available commerically and could be used to measure &Pl4 directly

by raising the back pressure at one test section and leaving the

other choked. Flow variations from throttling one and not the other

would be negligible.

It is also suggested that the results obtained here could be

used as a logical starting point for studies of convergent-divergent

nozzle flows. The heat transfer coefficients determined here could
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be used in conjunction with the "slip" model to make an analytic

study of the choked nozzle. This problem is more complicated than

the straight tube problem because the total flow area, A, is now

a function of length and therefore it is not possible to obtain any

solution independent of length.
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Appendix A

BUBBLE GROWTH IN A SUPERSATURATED LIQUID

WITH A TIME VARYING PRESSURE

The problem of bubble growth in a superheated liquid subjected to

a time varying external pressure is considered.

An asymptotic solution is obtained which covers most of the range

of physical interest. The solution agrees very well with that obtained

by other authors for the case of constant external pressure. The

results should be useful in studying problems in which liquids are

accelerated into the two-phase region.

Equilibrium thermodynamics predicts the amount of vapor present

when a liquid near saturation is accelerated through a nozzle or an

orifice. Experimentally, the predicted amount of vapor is not always

present. This deviation from thermodynamic equilibrium is due to rate

processes involved in the phase change from a liquid to a vapor.

Consider a small bubble which is growing in a superheated liquid.

The vapor bubble has a finite radius which gives rise to a pressure

drop across the bubble boundary due to surface tension. The bubble

is growing and pushing the surrounding liquid out of the way. Thus,

there is a radial pressure gradient, which balances the inertia forces

in the liquid. Finally there must be heat transfer to the bubble.

This increases the amount of vapor in the bubble, causing it to grow.

These three things all cause the bubble to grow at a finite rate, and

therefore depart from the equilibrium value.
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The objective of this study was to investigate the bubble growth

problem as a liquid is accelerated into a supersaturated state. It

was hoped that this study would give a characteristic bubble growth

time which could be compared to a characteristic flow time. The

transition from single-phase flow to two-phase flow could then be

more fully understood. The pressure variation with length may be

transformed to the problem of bubble growth in a large sea of liquid

in which the pressure is a function of time.

A number of people have investigated the growth of a bubble

in a uniformly superheated liquid at constant pressure. Among these

are Plesset and Zwick (3), Forster and Zuber (4), and Scriven (5).

Each derivation is different, but all arrive at the same result for

large time except for small differences in a numerical constant. These

results are in excellent agreement with experimental data.

Isbin and Gavalas (23) treat the problem of bubble growth along

a streamline of saturation liquid as it accelerates through an

aperture. In their analysis the drop radius is neglected when writing

the heat conduction equation. This approximation is shown by Zuber (24)

to give an error of about 50% for the case of constant liquid pressure.

They also introduce a power series which by their own admission is

only accurate to within 15%. Because of these equations of accuracy,

and also because their result could not be easily generalized to

other pressure distributions, no attempt was made to modify the Isbin

and Gavalas solution.
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Bubble growth is assumed to occur in the following manner in a

liquid accelerating the nozzle. The liquid contains small solid

particles and/or non-condensible gas bubbles which serve as nucleation

sites for the vapor bubbles to grow on. These particles are convected

downstream until the liquid superheat is great enough to cause these

particles to be in unstable equilibrium and begin to grow.

Dergarabedian (6) has shown that this initial unstable radius must

satisfy the following inequality:

4a _2 _

3 - R 0. 2a (A-l)
3(Pg - PR

)  
o P - P

Once the bubble starts to grow the dynamics of the problem are

controlled by the momentum and energy equations in the liquid with boundary

conditions to be satisfied at the moving bubble surface. The momentum

equation in the liquid is,

au +u 1 aP 1 ;2(ru) 2u (A

at 3r px r r r r(

The continuity equation may be written in terms of the bubble radius

as follows provided the density of the vapor phase is much smaller than

the density of the liquid phase.

2 dR 2
ur = constant = R (A-3)

dt

Scriven (5) carries through the analysis for the case in which the

liquid and vapor densities are of the same order or magnitude. A

similar correction could be made to the results presented here.
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Note that a combination of Eqns. (A-1) and (A-2) eliminates the

viscous term entirely. Scriven (5) erroneously includes a viscous term

by incorrectly operating on the stress tensor in spherical polar coordinates.

This error is not serious since he later drops his viscous term by

stating that it is small.

By using Eqn. (A-3) and integrating Eqn. (A-2) between R and

infinity, the familiar Rayleigh equation results.

P -P 2 2

R - P dR dR
= R -+ 3/2(-) (A-4)p 2 dt (A-4)0 dtd

Note that Pm may, in general, be a function of time.

Introducing the surface tension in Eqn. (A-4) gives

P - P 2 R
= + R + 3/2( ) (A-5)+ 

R dt

2

9. dt

The energy equation in the liquid is

TT aT a (r2  T
- + u - =  (r - )  (A-6)

Using Eqn. (A-3) the energy equation becomes

3T R dR aT a T_ aT
- + (d T) (A-7)
5t 2 dt Dr ;2 r 3rr r

Using the first law of tcerModynamLcs and the nerrect pgs la.w

for a control volume consisting of the vapor bubble, the following

result is obtained.

dT dm dP
4R2k ( )  = m c - +h -+ - (A-8)

r=Rg pg dt fg dt g dt

This can be transformed, by using the perfect gas law, to the

following:
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dT dP
4-R2k (T) m (c - ) + hg  - 1) - -

r = g pg T dt RT dt
r-R g g

Ih ddVf+ fg d (A-9)
R T dt

g g

If the enthalpy of vaporization is much greater than R T and

c T then these terms may be dropped in the above equation. This
pg g

assumption is consistant with the previous one, in which the vapor

density was assumed to be small compared to the liquid density. Both

of these assumptions are true only when the temperature and pressure

are much below the critical temperature and pressure. Thus Eqn. (A-9)

becomes,
dm4R2k (T) h (A-10)

r=R fg dt

The formulation of the problem is now complete except for the

thermodynamic relation between the vapor pressure and the vapor

temperature and the remaining boundary conditions. These boundary

conditions are

dRt 0 R= R -R = 0 T To' dt '

r + T = constant (A-11)

Eqnf. (A-7) is a non-linear partial differential equation. The

rest of the equations are non-linear total differential equations. To

reduce Eqn. (A-7) to a total differential equation an integral

technique, similar to the boundary layer integral method in fluid

mechanics, was used. A thermal boundary layer thickness 6,is assumed

to exist in the liquid outside the vapor bubble. The temperature profile

in the boundary layer is assumed to be

T- T = (T - T) r- R) (r - R) (A-12)
g g -
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It is convenient to define a new variable

S=T -T (A-13)
* g

Combining Eqns. (A-7), (A-12), and (A-13) and integrating between

R and R + 6 gives

r-, --- I r-- I

S 1/3 + 1/6 + 2 + d 1/3 + 1/3() + •() 2
L_ -- - (A-14)

+ /R 2/3 + 1/6(- ) =

This can be simplified if 6 < R. This assumption will be justified

later on in the paper.

2dy + 2d6 4dR 12a dt (A15)+ + -dt (A-15)
y 6 R 2

Eqn. (A-15) can be integrated to give

62 y2R 4 = 12 a 0t y
2 R4 dt (A-16)

Equations (A-4), (A-10), (A-12), (A-13), and (A-16) are now a

set of non-linear total differential equations. Simple numerical

techniques exist for solving this type of equationS. However, further

progress can be made by neglecting the derivatives of o compared with

the derivative of R in Eqn. (A-10). This is physically reasonable since

R changes by orders of magnitude while p changes only by a few percent.

Eqn. (A-10) becomes

p h = k(T 2ky (A-17)dt at r = R 6
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Now Eqns. (A-16) and (A-17) may be combined and integrated to

give an explicit expression for R in terms of y. Combining these two

equations and multiplying by R2 gives

R2 dR 2k y2 R4 dt

pg hfg 2 'a y2R dt 1/2 (A-18)

The right hand side of Eqn. (A-18) is of the form d u/ul / 2

and may be integrated.

The final result is

R hfg d 2 (A-19)

where the initial value of R has been neglected.

This result is valid only if the thermal boundary layer is less

than the bubble radius. Mathematically, this condition is

p h a
6/R = % h < 1 (A-20)ky

By making the above approximations, an explicit expression for

the bubble radius as a function of the temperature difference (y) has

been obtained. To obtain this temperature difference, the vapor temperature

T , must be related to P and Eqn. (A-5) solved for y. Since T and
g g g

P vary only slightly from the reference value, it would be convenient

to use a relation similar to the Clapeyron relation. The Clapeyron

relation is derived for a system in equilibrium in which surface tension

effects are exactly zero. In this problem, surface tension forces may

be a dominate term, so some modification seems to be necessary. However,

Hatsopoulos and Keenan (25) show that the vapor pressure over a curved

surface differs from that over a flat surface only by the difference

in hydrostatic head of the vapor. The vapor density has already been
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assumed small, so the ordinary Clapeyron relation for a system without

surface tension effects may be applied to a system with surface tension

to relate the pressure of the gas phase to the temperature. Plesset

and Zwick (3) Forster and Zuber (4) and Scriven (5) all use the

Clapeyron relation, but none of them adequately justify its use. The

relation is
h p h

AP = hg AT~ fg AT (A-21)
T (V- v ) T
o g o

Using the pressure at t = 0, Po, and the saturation temperature

at pressure Po, To, as reference values, Eqn. (A-21) becomes,

p h
P -P go fg T - T (A-22)
o g T o g

Since P. is a known function of time determined by the flow

geometry, we may say,

P = P - F (t) (A-23)
m O

A combination of Eqns. (A-5), (A-13), (A-22), and (A-23) gives

the following:

To F (t) 20 d2R dR
y = T -T - + + R + 3/2(-) (A-24

go fg . 2 dt

Forster and Zuber (4) have shown that the inertia forces in the

above equation are so small as to be negligible over the whole range of

bubble radii. The surface tension forces are important until R = 10 Ro,

but are negligible after that. Thus in the limit for large time Eqns.

(A-19) and (A-24) may be solved for R in terms of known quantities. The

result is
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available data.

F (t) T 2 - 1/2
2k & ogR fg ( h + T -T ) dt

R go h h 0 go h 0o (A-25)

For the case of constant P , F(t) is zero and Eqn. (A-25) becomes,
1/2

T - T
R 2k ( - o)t

pgo h fg (A-26)

This result is in excellent agreement with the results of Plesset

and Zwick (3) and Scriven (5), who obtained

Sk (T-TO) T 1/2
R= k ( - o) (A-27)R Pgo h fg (A-27)--

Forster and Zuber (4) obtained

T-T t 1/2
R fkfo ) (A-28)

p go hfg g •'-

A solution was also obtained by using a linear temperature profile

in the thermal boundary layer. This result was:

S pg hk t F (t) T 2 1/2
R = 2( o + T - T )dt

go fg 7 go fg ---- (A-29)

If Eqn. (A-27) is assumed to be the exact asymtotic solution for

the constant pressure case, then Eqn. (A-26) is in error by 1.6% and

Eqn. (A-29) is in error 12% (for F(t) equal to zero). The error is

greater for the linear temperature profile, as might be expected, but is

still not large enough to cast any doubts on the integral method of

solution. Since the integral technique gives results very close to the

solution for?, a: constant obtained by three different methods and authors,

it is concluded that Eqn. (A-25) is a valid solution for F(t) non-zero. As

stated earlier, Eqns. (A-27) and (A-28) are in excellent agreement with
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APPENDIX B

Approximate Model for Interphase Heat Transfer Coefficient

In order to theoretically justify the seemingly high value

of the interphase heat transfer coefficient determined experimentally

in the main body of this report, an approximate analysis is presented

here. Assume that the flow consists of a circular core of liquid

surrounded by a vapor annulus as shown in Figure 2. The shear at

the liquid-vapor interface is assumed to be zero and the axial

velocity is constant at any section in the liquid. There is an

heat flow from the liquid core to the liquid-vapor interface. The

temperature at the interface is assumed to be the local saturation

temperature.

The continuity equation in the liquid is

(r + r 0 (B-l)
ar dx

V is the liquid velocity in the x-direction and is a function of x

only and v is the radial velocity.

Neglecting axial heat conduction, the energy equation may be

written as follows:

aT aT _ eff - (T
V _ + v (r (B-2)9 ax + r r ar ar

aeff is an effective turbulent thermal diffusivity.

To approximately solve the above equation, an integral method

was used. The following secord order temperature profile was assumed
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to exist in a thin thermal boundary layer in the liquid.

r - R r - R ,
T = T - (T - T ) [2 ( ) + ( )- (B-3)

g 0. g 6 6

Enuation (B-3) may be substituted into Equation (B-2) and,

using Equation (B-1), integrated from R - 6 to R . After a

considerable amount of algebraic manipulation, the following result

is obtained.

d VR d 6 2
(T - T ) ) + [VT (1/3 R 6 )]o g dx 2 dx I Z 12

2 a R (T - T )
eff R o g (4)

The heat transfer dq shown in Figure 2 is given by

(T -T)
dq = - k ( 2Rdx R dx (B-5)

Skeff r 4 keff 6 z
r=Rz

Using the control volume in Figure 2, a second expression for

dq may be obtained.

0 0 0 0
dq = p • - pV A h V A h - d(p V Abh ) + hn(T ) d (p V A)

£ g

= -pVA d(h) - C (T Tg) d (.(p VA) (B-6)

This differs from the expression obtained in Chapter 2 because, in

this case, the liquid being evaporated leaves the control volume at

temperature T . This difference is not important since this term is

negligible compared to the first.

Combining Equations (B-4), (B-5), and (B-6) and neglecting

/R E with respect to unity gives
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VA dd(h')
(T - T ) d (VA ) + 2/3 d(V A T 6/R ) = -
o g •. c

+ (T - T) d (V A ) (B-7)

The enthalpy change dh may be approximated as cAdT . Using this

Equation (B-7) becomes

2/3 d [V A I(T - T )6/R6 ] = d[V2 A (T- To)] (B-8)

This may be integrated to give

T -T
6 _ 3(To - (B-9)

Rs 2(T - T )
o g

Note that T is the average liquid temperature obtained by averaging

over the liquid core region, which is at temperature To, and the

boundary layer region, with the temperature given by Equation (B-3).

From the definition of h and Equation (B-5) the following

relation is obtained

T -T
dq = h(T - T iD dx - 4 k eff  o g)RS dx (B-10)

It may be assumed that (T - T ) = (T - T ). Inspection of Figure
- g o g

5 shows that this is a good assumption. Thus the value of h is

obtained by combining Equations (B-9) and (B-10)

8k (T - T
h = eff o a (B-11)

3 D (T - T )
o .

In Chapter 3 it was found that a constant value of h gave good

agreement with experimental data. Equation (B-11) is in good agreement
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with this observation. keff should remain constant as the central

liquid core changes little throughout the two-phase region. The

ratio of the two temperature differences is nearly constant, as.

may be seen from Figures 4 and 5. Both the numerator and the

denominator are nearly straight lines, making the ratio nearly

constant.

Since it is possible to calculate the temperature difference

ratio appearing in Equation (B-11) from the slip model developed

in Chapter 2, it is only necessary to determine the value of

keff in order to predict the heat transfer coefficient, h. In

order to get some numbers out of Equation (B-11), it was assumed

that the ratio of kef f to k was the same as the ratio of the Nusselt

number for turbulent pipe flow to the Nusselt number for laminar

flow. Rohsenow and Choi (2) give a value of 4.36 for the Nusselt

number in fully developed laminar flow with a uniform heat flux.

For the turbulent flow the McAdams correlation was used

Nu = 0.023 (Rey).8 (Pr) 4 (4-12)

The Reynolds number in this expression was evaluated in the single

phase region ahead of the actual two-phase flow.

Thus the following expression was used to obtain keff

eff Nu
k 4.36 (B-13)

This expression used in conjunction with Equation (B-11)

produced values of h which were of the same order of magnitude as
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those found experimentally. However, the predicted values of h

increased when the experimentally determined values decreased.

Typical results are summarized in Table 7.

TABLE 7

Comparison of Predicted and Experimentally Determined

Interphase Heat Transfer Coefficient

Vo, ft/sec 180 234 170 179 234

To, OF. 127 127 154.5 154.5 154.5

Figure Number 24 26 30 31 33

Reynolds Number x 10 - 6 1.68 2.63 1.96 2.06 2.70

Prandtl Number 6.42 6.42 5.73 5.73 5.73

(T - T )/(T - T )min 112 195 51.3 57.2 101

(T - T )/(T - T ) 210 423 100.5 114.7 223o g o 9 max

h , tu/(hr ft 2 OF) x 10 - 3 180 126 378 306 252
exp'

hmin Btu/(hr ft 2 oF) x 10 - 3 416 1048 184 214 465

2 -3
h , Btu/(hr ft 0 F) x 10 818 2275 360 429 1026

max -

Since the theoretical model did not correctly predict the variation

of h, further calculations were made to see where the model failed.

Immediately suspect is the method used to determine kef f . A possible

approach is to calculate keff from the experimentally determined h

and see if the resulting values make sense. This was done using the

numerical values in Table 7. The non-dimensional parameter k /ff/k was

found to decrease with increasing Reynolds number and also with increasing

Prandtl number. This is opposite the behavior that was expected.
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Because of this apparent inconsistency no further attempts were

made to modify the theoretical model. It is possible that the

model does not correspond to the actual physical situation closely

enough to produce predictions in agreement with the data.

Thus a model has been developed which predicts values of h

of the same order of magnitude as those found experimentally. This

increases the level of confidence in the experimental heat transfer

coefficient. The model is not sufficiently accurate to be used

for actual predictions of the interphase heat transfer coefficient.
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Appendix C

BIOGRAPHICAL SKETCH

The author, John W. Murdock, was born on 29 July 1941 and lived

in Beaver, Utah, until 1957. He then moved to Southern California

and he graduated from Redlands High School in June 1959.
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X I 2
I I i

Scale: inches

Position of Pressure Tap, x Inches

#1 0 .6 2 5 0 #9 10.500
#2 0.750 #10 10.625
#3 5 . 7 5 0 b #11 10.750
#4 5.750 #12 10.875
#5 5 . 7 5 0 b *13 11.000
#6 7.750 -14 11. 125
#7 8. 750 #15 11.281c

*8 9.750
a Upstream of bellmouth
b All pressure tap holes are 0.020 inches in diameter

except * 3 (0.0135) and # 5 (0.0292).

c Downstream of tube exit plane.

FIG. 14 STRAIGHT TUBE STAINLESS STEEL TEST SECTION
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