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Abstract

Efficient decomposition of program and data on a scalable MIMD processor is necessary in order to minimize
communication and synchronization costs while preserving sufficient parallelism to balance the workload of
the processors. Programmer management of these runtime aspects of computation often proves to be very
tedious and error-prone, and produces non-scalable, non-portable code. Previous efforts to apply compiler
technology have assumed static timing of runtime operations, but real MIMD processors operate with much
asynchrony that is difficult for the compiler to anticipate. Also, real programming environments support
features that prevent the compiler from having total knowledge of and control over the runtime conditions.

Most work recognizing the asynchronous behavior of MIMD machines produce many fine-grained tasks
and rely on special hardware support for fast and cheap task creation, synchronization, and context switching.
The runtime mechanisms prove to be still expensive and cannot adequately improve the performance of
massively data-parallel computations, whose dominant communication and synchronization overhead occurs
at the data array references. Efficient decomposition of these programs requires information available from
compiler analysis of the source program.

We explore a framework for integrating compile-time and runtime parallelism management, whose goal
is to have the compiler produce independently-scheduled, asynchronous tasks that will cooperate flexibly and
efficiently with a runtime manager to distribute work and allocate system resources. The compiler analyzes
the source program to partition parallel loops and data structures, then aligns thread and data partitions from
various loops and other parts of the program into groups called detachments to maximize data reference
locality within each detachment. The threads in a detachment are then provisionally serialized to form a
single-threaded brigade. In the nominal case each brigade is assigned to a processor and executed by a
task to completion in the statically scheduled order; its coarse granularity thus saves much communication,
synchronization, and task management overhead. Should runtime load balancing be required, program threads
can be split off from a brigade at points prioritized by the compiler and executed by tasks on idle processors.
Also, if the pre-scheduled thread ordering becomes incompatible with actual runtime dependencies, a deadlock
condition is averted by initiating work on a thread split from the blocked task before returning to the blocked
task. We expect an overall performance gain when the compiler chooses the approximately correct granularity
and thread ordering, so these exceptional cases are in fact relatively rare. We implement this new framework
and examine potential policies controlling its compiler choices, and compare its performance data with
alternative parallelism management strategies.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor, EECS
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Chapter 1

Introduction

Efficient decomposition of program and data on a scalable MIMD processor is necessary in order

to minimize the communication and synchronization costs and to preserve sufficient parallelism to

balance the workload of the processors. Relying on programmer management of these operational

aspects of computation often proves to be very tedious and error-prone, and produces non-scalable,

non-portable code. Providing a shared-memory programming abstraction spares programmers the

onus of explicitly deciding where to locate data relative to the executing program and coding

accesses to all non-local data, but it does not insure an efficient operation. Somehow someone must

be mindful of these choices if optimized performance is expected. General-purpose architectural

mechanisms and runtime support do not address this problem adequately. Straightforward borrowing

of traditional hardware techniques, such as caching to decouple the memory performance from the

processor, are not effective unless we can show good probability of reuse. Most methods to

parallelize program execution reduce the amount of data reuse. Latency masking by multithreading

incurs high expenses in the context switching overhead and increases the processor state manifold.

Its use therefore must be carefully justified by some overall performance improvement.

Some previous parallel processor projects relied entirely on runtime load balancing and storage

allocation [3, 39]. Others applied aggressive compiler technology [46, 41, 23, 12, 30] assuming

some (perhaps statistically) fixed durations for basic machine operations, leading to an essentially

static scheduling of runtime operations. The static schedule precludes recursions and dynamic

loop bounds and data structures from the input program, and cannot tightly schedule conditionals

with branches of unbalanced amounts of computation. The runtime approach is better suited for

control-parallel computation, while the static approach is better for data-parallel computation.



In control-parallel computation, communication and synchronization paths usually occur pre-

dictably along the fork-join interface between the parent and child tasks, so that a runtime manager

has a chance to optimize task scheduling and placement. In data-parallel computation, however,

those paths are difficult to identify at runtime, requiring, instead, extensive data dependence and

array subscript analyses by the compiler. Experience [34] shows that stringent time allowance

and the lack of sufficient program information confine the best runtime policies to those that are

simplest. Even then, the large number of fine-grained tasks coming from data-parallel programs

can easily overwhelm the runtime manager. Compile-time program reorganization is a way to

alleviate the runtime task management burden. On the other hand, real MIMD computing has much

inherent asynchrony that is difficult for the compiler to anticipate (e.g., communication latency,

cache hits). Also, real programming environments may support features that prevent the compiler

from having a total knowledge of and control over runtime conditions (e.g., dynamic storage al-

location/reclamation, incremental compilation, exception processing, multiprogramming). Total

compiler management forces a MIMD machine to run with global synchronization in either SIMD

or SPMD' mode, neither of which makes good use of its flexibility that is paid for through its

hardware complexity. Hence there is a need to keep both the compiler and the runtime system

usefully involved in the process.

We propose a framework to integrate the compiler and the runtime system together in managing

program parallelism to allow both control- and data-parallel styles of programs to make efficient

use of MIMD machines. But before introducing this strategy, we first explain the greater context in

which it was developed: the dichotomy of the purely compiler-based and the purely runtime-based

approaches to managing runtime parallelism. To understand the problems in relying on a static

global task schedule, we will examine this approach and point out its weaknesses. We will then

turn to show the inadequacies in current approaches to compiling asynchronous data-parallel code

without assuming a static global schedule. The discussion of the specific problems in a specific

domain of programming and machine environment and the developmental steps leading to our

solution of an integrated parallelism management approach are found in the next chapter.

'Single-Program Multiple-Data, see [15].



1.1 The Problem with Static Global Scheduling

A global schedule determines the events of every processor against the time line; therefore, it contains

the relative timing among events occurring on different processors. In contrast, a local schedule

shows the relative timing of events on a single processor, and expresses no information regarding

activities on other processors except at points of synchronization. Many attempts [46, 41, 23, 12, 30]

to involve a compiler in solving the program decomposition problem either explicitly or implicitly

assume a global schedule at compile-time. That is, only with this schedule on hand, which is of

course itself dependent on the outcome of the partitioning and scheduling decision, can a program

be partitioned and scheduled for minimum parallelization overhead (i.e., from communication and

synchronization) that will then compute in the shortest time using p processors. This is because the

rate of speedup of a routine with each additional processor allocated to execute the routine,

S'(p) = A(speedup of routine)
Ap P

is a monotonically diminishing function in general.2 That is, the speedup curve as a function of the

number of processors for which it has been partitioned is convex because the total parallelization

overhead increases with decreasing granularity. 3 Thus when two routines to be partitioned are

known to be simultaneously ready to execute, the optimal schedule would have both running, each

partitioned to use a fraction of the p processors, in a configuration known as space sharing. The

alternative of partitioning each to use all the available processors and then scheduling them in

tandem, known as time sharing, is schedule-independent but suboptimal.4 The computation of

the optimum partition sizes and its proof are given in [41]. The essential observation is that this

partitioning method thus needs to know which computations are contemporaneous throughout the

system - before deciding the partition granularity of a piece of code - and results in its reliance

on a static global schedule.

Unfortunately, the timing of computation events in a typical MIMD machine is far less pre-

dictable than that in a SIMD or a VLIW machine. Data-dependent conditional branches and loop

2 Speedup is defined as
serial execution timeS(p) = p-processor execution time

3A simplifying assumption is used in this section which ignores such factors as the effects of scaling the total cache
size, consideration of which could also yield superlinear speedup results.

4Again, discounting the effects of scaling the various memory resources.



terminations alter the instruction count dynamically. Network traffic congestion [38] is rarely

precisely accounted at compile time.5 Similarly, cache activities are difficult to account for, and

collisions in direct-mapped caches are proving to have a significant impact on multiprocessor

performance.6 So when the actual relative completion times differ from the optimal static global

schedule, our options are either to wait until the slowest processor has caught up with the schedule

before advancing everyone, or to proceed with new tasks and to allow the actual schedule to skew

and diverge from the static schedule. Either choice voids the optimality conditions on which the

initial compile-time partitioning and scheduling decisions were based.

Figure 1-1 shows an instance where runtime adherence to the static schedule could perform

worse than simple greedy runtime scheduling.7 On the left, each of the numbered tasks is executed

by a statically assigned block of processors. A certain processor slow in completing Task 3 will

cause either a stall in the global schedule (as shown on the right) or further timing skew later on,

if the scheduler tries to schedule around the delayed task. This is due to its inability to balance

workload dynamically across processor blocks, and often even among processors within a block.

Furthermore, under a common strategy known as gang scheduling, a contiguous block of processors,

if not a particular block (in this case the entire block of processors assigned to Task 3), has to be

free to allow a succeeding task to be scheduled. Thus the compiler's dependence on a static global

schedule to partition a program could be far from optimal in practice, unless that schedule really

anticipates the detailed event timing. Such details include the effect of control decisions on the

instruction stream (h la strict trace scheduling of VLIW, treating the processors as functional units

and the network as gated data paths), and runtime variables of cache misses and network routing

traffic.

An actual instance of cache-miss-induced schedule skew on a MIMD machine is cited in [2].

The active-processors profile of Figure 1-2 shows that, for a very regular and easily-partitioned

matrix multiply code, static partitioning led to a scenario where some processors were taking much

longer than the rest in completing its statically assigned block of loop iterations. The long tail falls

first at 1,130,000 to 3 active processors, then at 1,220,000 to a lone active processor. It finally

finished at 1,440,000, when all processors entered termination signaling phase. Figure 1-3 shows

5Although when the processors are completely statically scheduled, the network behavior really can be fully anticipated
and its routes pre-computed and statically programmed [30, 51, 5].

6Recent work [2] gives higher priority to minimizing the skew in the global schedule than simply to minimizing the
total work - skew due to nonuniform cache behavior.

7A purely greedy schedule provably performs, at worst, half as well as the optimal schedule [20].
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Figure 1-1: Cost to Stay Synchronized to a Static Global Schedule

the uneven caches misses incurred by the processors, each executing an equal number of iterations.

In this particular case, the problem is due primarily to thrashings from the direct-mapped cache

organization, which is a common choice among current processor designs. A particular solution for

this problem has been to skew the heap starting address for each processor so that accesses to the

same data in different partitions do not contend for the same cache line.
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Figure 1-2: Processor Profile for Parallel Matrix Multiply
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Figure 1-3: Cache Misses of Processors for Parallel Matrix Multiply

1.2 The Problem with Runtime-managed Scheduling

Without the static global schedule, the compiler is left without a means to determine the partition

granularity for optimal trade-off between maximizing useful parallelism and minimizing its overhead

cost. Developments along this path often have the compiler producing many very fine-grained

tasks, and rely on additional special hardware support [22, 3, 21, 15, 1, 14] for fast task creation,

synchronization, suspension/switching, and termination. Refinements have been introduced to delay

runtime task creation until needed [16], or to offer programmers new language features to control

runtime in-lining of tasks [19]. These are general mechanisms that, nevertheless, do not make use

of information that may be available to a compiler and may be particularly useful in efficiently

addressing the following needs of the massively data-parallel procedures:

* The dominant inter-task communication usually occurs at the interface between the parallel

producer and consumer tasks of the large data structures, rather than those at the interface

between the parent and child tasks. A consumer task often cannot start until the corresponding

producer has computed its value, thus creating it as an independent task needlessly burdens

the runtime manager and congests its queues.



* Preservation of communication locality across such parallel producer- and consumer-task

interface is essential to minimize network traffic and access latency when scaling the system

and problem sizes.

* In these instances the existing hardware and runtime parallelism-controlling mechanisms

mentioned above do not provide for alignment of tasks along the appropriate direction -

according to accessors of parallel data structures.

* By itself the runtime manager is unable to identify which tasks are on the critical computation

path and to schedule it preferentially to allow other, dependent tasks to proceed or to be

created, thus maximizing the available parallelism.

These are some key motivating concerns for the present work, which searches for some viable

solutions. Even after addressing these concerns, there may still be large excess of parallel tasks:

Allowing 100,000 tasks to be concurrently created when there are only 100 processors available is

probably suboptimal, given both the task creation costs and the convexity property of the speedup

curve. Extra storage is needed, as well, to hold the context states of pending tasks. Providing the

compiler an estimated runtime machine size and allowing it to fold this excess parallelism could

reduce these runtime overhead significantly.

Yet another approach uses compiler analyses to form loop iteration-based tasks and runtime

scheduling of these tasks to achieve a degree of load balancing and machine-size independence [39,

15]. They exploit parallelism from iterative loops only and have a fixed partition granularity, namely

one loop iteration.

1.3 Revocable Thread Serialization

We introduce an integrated compile-time and runtime program decomposition strategy called Re-

vocable Thread Serialization (RTS) that provides separately a framework and a controlling policy

to partition, schedule, and place parallel programs and their data structures automatically. The

intent is to incorporate information of statically-characterizable iteration constructs and array index

expressions from the compiler to structure the initial allocation and sequencing of computation

among the processors, while leaving the runtime system the flexibility to revoke any of the static

arrangements in order to allow load balancing and to avert deadlocking. The major phases of this

framework performed by the compiler are as follows:



* Partitioning: the compiler analyzes the source program to partition parallel loop iterations

and data arrays by splitting them into partitions to maximize reuse-type locality within the

partition.

* Alignment: the compiler aligns loop and array partitions and individual threads and data

objects that communicate the most by merging them into detachments.

* Provisional Serialization: the compiler then provisionally serializes for each detachment the

threads within to form a coarse-grained, single-threaded brigade - by choosing a default

order of execution and then juxtaposing them with a runtime annotation,8 for undoing the

serialization.

The runtime part of this framework requires a compact runtime manager, also known as the scheduler,

to run on each processor when no user task is active. The runtime manager supports these operations

on tasks:

* Creating an initial task on some processor to execute each dynamic instance of a brigade.

* When a processor becomes idle, attempting to find a ready-to-execute task or one of the

provisionally serialized threads from another processor.

* Once a ready task is found, migrating it to the idle processor and starting it immediately. On

the other hand, if a provisionally serialized thread, splitting the piece of work off from its

brigade cleanly and migrating it to the idle processor for execution.

The compiler's ability to analyze statically the loop structures and communication paths between

parts of the program and the data structures is limited by the complexity of the program constructs.

We contend that a large number of data-parallel numerical programs do have very simple control

and data structures at their compute-intensive core. This class includes programs that can be coded

in a variety of Fortran and analyzed by some parallelizing compiler. But, because of the runtime

support, our compiler can take a much less strictly-top-down procedure characteristic of static global

schedule-based schemes. It is able to resort as well to a bottom-up approach to construct aligned

thread and data partitions that does not require absolute knowledge of loop bounds or the number

of processors, or require resolution of all of the communication paths in a program. With RTS,

8This annotation will be introduced later in sections on implementation strategies as the lazy future mechanism.



the compiler participates in the management of runtime parallelism without losing the flexibility

of a runtime manager to respond to runtime conditions. The RTS framework, in essence, allows

the compiler to play a classic game in computer systems engineering: optimizing for the common

case while maintaining a reasonable cost to handle the exceptional cases. If the common case can

then be arranged to apply most of the time, the system may still be more efficient overall even if

penalties must be paid occasionally for the exceptions. Those exceptions are the instances when the

compiler could not foresee the runtime behavior or system configuration and made a wrong static

partitioning or serialization choice that would need to be revoked later.

The controlling policy is a set of heuristics specifying some variables in tuning the effectiveness

of the compilation framework: the granularity of static partitions the compiler assumes, the amount

of work from a brigade to migrate among processors, and which parcel of work is target for

migration.

There are two major advantages to the RTS approach: adherence to true MIMD operation and

competitive performance on a broader range of programs. First, it is more compatible with the

inherent asynchrony in much MIMD hardware operation, without requiring very frequent global

synchronization to force close lockstep operation or otherwise to bring the runtime state to some

pre-determined condition. Second, it functions in the context of a more general, "symbolic"

programming paradigm within a mostly runtime-managed environment, while still allowing its

data-parallel computations to benefit from compile-time analyses and static program and data

decomposition. In such problem domains we therefore hope to see performance efficiency close to

par with parallel Fortran on SPMD-type machines, where compiler optimizations have been applied

with much more success.

In comparison, the CM-5 [8], currently a leading-edge commercial multiprocessor from Think-

ing Machines Corporation, for example, offers a message-passing facility, CMMD, for explicit

user control of tasks and their communications, and explicit user partitioning of distributed data

structures. The CM-5 also offers a CM Fortran programming system, under which array data

and program loops are automatically partitioned and distributed, but users are not to declare any

parallelism beyond those the compiler infers from those program loops involving array data (such

as having two procedures execute in parallel on different processors). These two programming

models are inherently incompatible. So when CMMD is used in a CM Fortran program, the Fortran

code usually serves only to describe the intra-node-level computations, thus defeating the automatic



global partitioning, scheduling, and communication management done under the data-parallel CM

Fortran.

1.4 Expected Results and the Performance Comparisons

We expect to see performance for the three classes of approaches - the purely static, the purely

runtime, and the RTS parallelism management - to differ based on program characteristics and

runtime conditions. Our analyses and presentation will focus on the most salient metrics that will

distinguish the behavior of our proposed scheme from that of the others. We claim that RTS is

able to tolerate non-uniformity in actual execution time of threads from the statically calculated

execution time. Such variations arise from data-dependent control structures of the program, as well

as from asynchronous hardware operation or network routing described in Section 1.1. Figure 1-4

shows the expected performance degradation from variations in actual execution time of a set of

statically identical threads.
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Figure 1-4: Expected Tolerance to Dynamic Workload Variations

Obviously, static partitioning does best with no variation in execution time among the threads,

since there is almost no additional runtime overhead. It groups the threads into exactly as many

partitions as there are processors and assigns a partition to each processor. But with some introduced

variations, the fixed partitions cannot shift work around. Thus, the completion time would be

determined by the slowest partition, which is linearly proportional to the standard deviation (a)

of a normally-distributed sample. The purely runtime-scheduled system, on the other hand, has

enough short tasks in the scheduler queue that load balancing is not a severe problem, provided

that the scheduler does not itself become a point of severe contention. Its performance should be



largely independent of variations in task sizes, although the runtime management overhead would

be consistently high for fine-grained sizes. Under RTS, the compiler attempts to partition a program

in the same way that static partitioning does. Given similarly sophisticated program analysis and

transformation techniques, and the same amount of information on the input program, compiled

RTS partitions would incur the extra cost of the thread joint annotations in comparison to the

static partitions. With no size variations, no joint will be revoked since all partitions should finish

simultaneously. But, as thread sizes vary, those processors that finish early would take work from

those still working. This action will add to the total overhead, although a significant part of this is

incurred by processors that would otherwise be idle. The outcome is that the RTS curve should rise,

but much more slowly than the static one.

Figure 1-5 shows the expected behavior when the compiler has scheduled threads in an order

incompatible with the actual runtime dependencies. We use the more tangible label of the "amount

of forward references" to quantify this notion. A forward reference arises from a computation

requesting results from some other computation that it or another processor has yet to perform.

Obviously, statically sequenced partitioning cannot tolerate any out-of-order scheduling from the

compiler, while the runtime scheduled system would be, in principle, impervious to the problem.9

Lastly, RTS is expected to outperform a purely runtime-scheduled system because it would have to

create many fewer tasks if all of its provisionally scheduled thread orderings are confirmed valid.

As more of its scheduled orderings are revoked at runtime, the higher cost of revocation would drive

up the overall cost, perhaps at some point exceeding that of the runtime scheduling.

These are assessments of what we expect to see from the work to be presented here. They serve

to motivate and to cast in more specific terms the types of target behaviors we seek. We will return

to these metrics later and compare them using figures from detailed simulations to the alternative

parallelism management schemes. The simulation results to be presented in Chapter 5 confirm all

the qualitative behavior comparisons described in this section.

9Although it should be noted that if there were a large number of interdependent tasks, and a runtime scheduler is used
to pick randomly the order of execution, there would likely be many task suspensions and resumptions, at a great cost,
before the right order is empirically reached.
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Figure 1-5: Expected Cost of Responding to Runtime Reordering

1.5 Summary of Contributions

We have introduced an integrated framework to manage asynchronous tasks for parallel processors

and proposed some of its tuning policies. The top-level contribution of this work is the conception

of the framework itself: a compiler to partition program and data to preserve locality and to serialize

fine-grained threads provisionally to reduce runtime overhead, combined with a runtime system

that decomposes partitions by revoking some serialization and migrates tasks among processors

to maintain load balance and to avert deadlocks. The compiler implementation is realized as a

source-to-source program restructuring package, called Scepter, placed before a serial machine-

code compiler. The major transformation phases - partitioning of loops and array data, alignment

of partitions into detachments, and scheduling of threads in each detachment into brigades - start

after the program analyses. An internal program and thread/data communication representation

form, called WAIF, to capture the results of the program analyses, has been defined to facilitate

the required transformations. The entire framework has been implemented to the extent where

a substantial, 1200-line standard benchmark program has been compiled successfully (without

manual intervention before or after the compilation) and run on up to a 64-node simulated machine.

Alternative serialization strategies have also been implemented under the same framework, using

the same machine and runtime environment, so that direct comparisons with them are possible. Our

specific contributions in the implementation include the alignment of unequal-sized and -shaped

partitions and the revocable serialization of independent threads that allows runtime adjustment of

task granularity and thread scheduling order. The concepts of lexical-environment and control-order

preservation for parallel threads are introduced and enforced throughout the serialization process.



Lastly, we report and analyze simulation results of system performance with some of the tuning

policies, using both synthetic and standard benchmark programs.

1.6 Related Work

Sarkar [46] and Prasanna [41] both do strict top-down partitioning based on an assumed static

global schedule. They both produce atomic task partitions: all inputs are ready before a task

starts; thereafter, the task executes uninterruptedly.10 This constraint would often severely limit the

maximum size of tasks or reduce the amount of actual runtime parallelism. Static task placement

could co-locate related tasks, so maintaining communication locality is not a problem. But if tasks

are allowed to migrate, then maintaining larger tasks becomes desirable. Sarkar uses estimates

of execution times of macro operator nodes such as for iteration counts, probability distribution

of conditional branches, and recursion depths that are in fact very input dependent." Sarkar also

ignores data structure decomposition, assuming the data structures to be functional and treating

each as an indivisible unit, e.g., when passed along the graph edges.

Prasanna's work has only been applied to very specific and regular programs, namely nested

matrix additions and multiplications, because it requires information such as the speedup function

of a parallel program and its derivative function before the method can be applied. Aside from

the difficulty of determining such functions, many program routines do not have smooth speedup

function, nor for that matter the same speedup function through its execution time. 12

Lo, et al. [30] describe the OREGAMI project. Its static task-to-processor mapping takes,

separately from the program itself, a synchronous task communication specification, and, after

trying a few regular, pre-computed solutions, resorts to a general node contraction algorithm. The

contraction is a two-step process using a greedy heuristic that merges adjacent nodes to form a

graph of no more than twice the final node partitions, followed by an optimal maximal-weighted

matching function that reduces to the desired number of equal-sized minimized-communication

partitions. This system's synchronous nature requires specifying the computation tasks and their

communication for each computation phase. Barrier synchronization between phases is assumed, as

'0Sarkar refers to this task partitioning discipline as a "convexity constraint".
11 The static part of our work also relies on approximated or assumed dynamic information; however, our integration of

runtime inputs and controls means that the use of inexact compile-time information would be much less detrimental.
12 [31] introduces the program parallelism profile, which shows the maximum speedup at each instant during program

execution. Its sharp peaks and troughs shows the time varying nature of speedup functions.



well as migration of each task to the processor it is assigned for the next phase. Dynamically-spawned

tasks and intra-phase computing time and communication variations are difficult to accommodate

efficiently.

A line of investigation not based on the top-down, structured approach focuses on parallelizing

independent loops [33, 15], and partially-dependent loops [12]. These are the synchronous analogues

of the schemas described in Sections 4.3.1 and 4.3.2, respectively. The fundamental differences in

the analogy are noted in those sections. The independent loop iterations are then dispatched from a

central site one at a time to requesting processors under self-scheduling [49], or a block of iterations

at a time under guided self-scheduling [40], whose iteration block size is a constant fraction of the

number of iterations remaining to be dispatched.

Work on SIMD machines showed potential for great communication cost-saving in aligning data

arrays between consecutive phases of parallel operations [26]. The partition alignment procedure

in conjunction with the schema in Section 4.3.3 represents our attempt to address this problem.

The dataflow program graph works of Traub [50] and Culler [11] address the compilation of

non-strict functional programs into sequential threads. But they provide no means to capture the

notion of data locality, nor attempt to analyze the data references needed to decide the partition

and placement of task and data. These efforts are concerned with exposing maximum parallelism,

assuming sufficient storage and communication bandwidth and relying on masking latencies with

excess parallelism. In [11 ] the program "partitions" are those along procedure activation boundaries.

In general, the low-level nature of the dataflow graph intermediate form tends to obscure the control

structure of the program and make analyses tedious. 13 We have not found published descriptions of

work that extract from dataflow program graphs information typically required of structural program

transformations; currently they have only been used as target object code for physical or abstract

graph interpreters.

Rogers and Pingali [44] proposed a way to translate conventional shared-memory programs to

dataflow program graphs. They assume programmer-specified data partition and placement, as do

some imperative-language-based work [23].

Runtime managers in dynamic dataflow [10, 45] have focused on controlling the number of

live tasks for the sake of limiting resource usage to prevent deadlocks. The mechanisms control

13In the same way that inferring program flow or the extent of variables' values is more tedious, though sometimes not

impossible, in a non-block-structured program using arbitrary go tos.



how many loop iterations are unrolled, but none takes deliberate position on which iterations of

which loops to unroll. The implicit assumption in both - to unroll in program order - is that such

controlled runtime unrolling will not cause program to deadlock logically, although the functional

language semantics of Id and others does not impose such restriction. A further point of note is that

these proposals present controlling mechanisms, leaving unsolved a significant policy issue of what

should be the appropriate unrolling bounds. Determining this likely requires either programmer

annotations, or a static global analysis of the program's control structure and the actual loops'

iteration bounds.

The lazy future mechanism [16] is introduced to reduce the cost of creating many unneeded

futures, often a result of over-specifying parallelism necessary for scalable programming. This

is a low-level runtime solution which by itself cannot address data-parallel computation needs

adequately, as we have argued earlier. Our proposal builds on this basic mechanism, providing

compile-time restructuring of program threads and data so that applications of the lazy future can

be directed at the appropriate place and time.

Earlier work on integrating control- and data-parallel computation included Chen's [7] efforts

to create functional abstractions for standard data-parallel array manipulation operations so they

could be incorporated into the context of the Crystal functional language. The array operations are

then meant to execute on specialized data-parallel hardware.

1.7 Outline for the Thesis

In the next chapter we describe a specific machine and programming environment that will be

the base for introducing RTS. We explore the implications of this system under various program

scenarios to show its strengths and weaknesses. A strategy to improve this system motivates a

solution implementation in the compiler. Chapter 3 lays out the design structure of the compiler,

and shows how an input program is transformed at each compiler stage to arrive at an object

program whose structure meets the requirements for efficient runtime parallelism management and

maximizes cache and local memory utilization. Chapter 4 describes the detailed implementation

considerations for the static parallelism management stages of the compiler and policy options

for tuning the performance of the framework. Chapter 5 presents the benchmarks, using both

synthetic kernels for testing particular aspects of the system and an entire application for showing



its general performance in adapting to solving real-world computing problems. Chapter 6 gives the

conclusions, and hints at future directions of exploration.



Chapter 2

Background

This chapter describes a specific parallel machine and programming environment that will be the

base for introducing an implementation of the Revocable Thread Serialization framework. The

existing language and runtime system (Sections 2.2.1 and 2.2.2) support a mostly runtime-managed

scheduling scheme operating on fine-grained tasks. Section 2.2.3 notes how the runtime scheduling

interacts with a running program and the expensive runtime costs that result from the scheduler

intervention. Section 2.2.4 examines a runtime mechanism introduced by Mohr, et al., [16] that

has an effect of automatically adjusting task granularity by provisionally joining threads together

according to their serial placement, thus reducing the amount of scheduler intervention required.

The runtime part of the RTS framework adopts this mechanism from Mohr. We will then provide

evidence that this mechanism indeed works quite well for one broad class of programs, although

we will also show how it would become a pure burden for another broad class of programs. Finally,

Section 2.2.5 analyzes the underlying reasons for the mechanism's success and failure and speculates

that a compiler might be used to restructure a program so that the latter class will benefit equally

from the runtime mechanism as the former class. This exposition will motivate the need for, as

well as setting up a complete problem context leading to, the presentation of the compiler phases of

RTS in the next two chapters. Readers who are familiar with the concepts, runtime behaviors, and

insights of a lazy future-based multiprocessor programming model should skip this chapter.



2.1 Hardware Environment

The Alewife multiprocessor [1] is the centerpiece of the Alewife research project at MIT. Its goal

is to explore the utility and cost-effectiveness of providing a shared-memory programming model

based on physically-scalable hardware: homogeneous processor-memory nodes with hardware-

assisted directory-based coherent caching, embedded in a low-dimension network that provides

asynchronous message delivery, shown in Figure 2-1.

The cost structure dictated by the hardware greatly influences compiler optimizations; an intra-

node access (i.e., to the local memory) is much less costly than a network-bound access, while the

incremental cost of reaching a more distant node is only second order with the use of cut-through

routing. Table 2.1 summarizes some raw figures of the current implementation of an Alewife

machine processor node that are of interest to us. A uniform global memory address space is

supported in hardware through the custom-designed cache controller (CMMU) [27] that interfaces

to the processor, local memory, local cache, and the network [18] to provide the function of a

coherent processor-side cache.

The global-memory address mapping of the distributed memory is straightforward: the node

number is the most-significant-digits prefix of each global address, followed by an offset indicating

which memory location within the chosen node. Any distributed data structure must be managed by

the user or compiler explicitly, as the hardware does not support finely interleaved global-memory

addressing. The assumption of a locally-cached shared-memory allows us to abstract the details of

generating remote fetch operations, and to focus our concerns on how best to use the provisions

of these mechanisms: the automatic local replication of global or loop constants, and the easy

runtime relocation of tasks and data. The global address space and the caching can certainly both be

emulated in software at a higher cost. The compiler can perhaps then be called on to optimize these

operations. We choose not to pursue these detail issues here; the available hardware mechanisms

should adequately provide the functions that are sought.

2.2 Programming Environment

Although there certainly are blended varieties, current parallel programming can be broadly classi-

fied into the following three camps:
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Figure 2-1: The Alewife Multiprocessor

* Serial programming: Program is converted to an appropriate parallel version suitable for the

execution system by automatically discovering the necessary parallelism.

* Explicit parallel programming: Parallelism is imperatively specified for (and explicitly placed

on) a particularly configured machine.

* Declarative parallel programming: Program specifies all the parallelism and relies on auto-

matic reorganization to run efficiently on a given system configuration.

The first and last: of these provide configuration-independent machine models to the programmer,

thus achieving practical system scalability. Both therefore must address the problems of how to

automate the management of parallelism. We have chosen the last to bypass the much explored

issues of parallelizing serial code. The generality of this approach can be argued thus: in principle,

a serial program can first be parallelized using any of the existing program parallelization efforts.

The resultant output will then be ready for our processing, which, in fact, focuses on raising the

actual task granularity through a cheap and flexible serialization to achieve efficient operation on a

finite-sized system.



Operation Processor Cycles

Load Instruction 2
Store Instruction 3
Context-switch (Data Request) 14
Private Cache-miss Penalty 9
Shared Local Cache-miss Penalty 11
Remote-initiated Cache Flush 6
Remote Read-miss Penalty (Clean) 28 + 2*distance

(Dirty in Home Node) 35 + 2*distance
(Dirty in Third Node) 58 + 2*distance

Directory-read (cache) 5
Directory-write (cache) 6
Fast Task Dispatch 168 + distance

Table 2.1: Timing of Selected Alewife Machine Operations

2.2.1 The Mul-T Programming Language

We have chosen to build this work on the Mul-T language [13], which has an explicit declaration

construct for parallel computations. Mul-T offers a convenient way to specify fine-grained parallel

computations, while it still preserves the ability to express side-effect-based algorithms and serial

code sections as naturally and efficiently as a sequential language does. Mul-T is an extension of

T [47], a Scheme-like language, for parallel computation.

The principal parallelism generator introduced is the future construct [22]. An invocation of

(future <expression>) evaluates the enclosed <expression> concurrently with the rest of the

program following the future, known as the continuation of the future. We will sometimes refer

to the expression inside the future as the child thread, and the future caller and the continuation

together as the parent thread. Future conforms to the sequential ordering semantics of the rest of

the language by creating a future task to evaluate the expression and immediately returning a special

value, which is a reference to an empty placeholder object, so that the continuation may proceed as

if the expression has already been computed. The placeholder is a self-synchronizing data storage

that enforces the read-after-write access order. While the placeholder is empty, an attempt to read

the value of a placeholder, known as touching the future, causes the reading task to be suspended.

When the future expression is eventually evaluated, the placeholder is filled with the result value.

The placeholder then becomes determined, and all tasks blocked on its reading are again enabled.

Reading a determined placeholder yields its value just as does with a regular variable. A future



expression that returns no value (i.e., executed for side effects only) does not require creation of the

placeholder object.

The following short example function is used to illustrate parallelism generation in the runtime

system.

(define (main x)
(let: ((a (future (f x)))

(b (future (g x))))
(+ a b)))

For the purpose of this discussion, we assume f and g are both entirely serial. Figure 2-2 depicts

an execution of (main 15), spawning two futures for computing (f x) and (g x). These

futures are entered in a queue of available futures. Any processor, including the initial creator of

the future, that has become idle can steal a future by taking one off a queue and initiate the task

to compute its value. Thus, a total of three tasks are called for to complete the specified work.

Figure 2-3 show's the argument/results data communication links for the (f x) future. At future

creation, the bindings of the free variables in the future expression are captured, since they must

refer to the lexical environment valid at the place the future is declared.' During evaluation of the

future expression, the values of the free variables may be read and, in general although not here,

their contents may be written.2 Also, the result of the future expression is finally written into the

value slot of the placeholder object that is in t l.

Figure 2-4 shows the program's parallelism profile, the number of active tasks as a function of

time, assuming there is an unbounded number of available processors so that newly created futures

become running tasks immediately. The graph is shaded only to relate an accounting of the active

tasks to parts of the program text. At the beginning, main alone runs. At times Tfb and Tgb, tasks

f and g are started. Almost immediately afterwards, at time Tms,, main is suspended, waiting on

the touch of the future value of a. As task f ends at time Tf , main resumes at Tmrl and quickly

suspends again at Tms2, now waiting for the value of b. When task g ends at time Tge, main

resumes and eventually ends at T,,.

Mul-T presents a shared-memory model; that is, all data is accessible, without explicit copying,

to any part of a program.3 It has a store-based semantics, meaning that variables refer to storage

'This may be accomplished by creating a closure [48] for the future expression at that time.
2 Of course, function f itself may contain free variables that refer to the lexical environment at the place of its definition.3Stack-resident and other dynamically-allocated data, of course, have limited lifetimes.
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Figure 2-3: Dynamic Data Linkage of Future Tasks

locations that contain values. Its standard data structure types include lists, structures (or records),

and arrays. In addition, there are the self-synchronizing data types to provide fine-grained synchro-

nization for enforcing the producer-consumer relationships in data-parallel programs: J-structure

and L-structure. The J-structure, derived from the I-structure [4], is an array each of whose elements

has an associated full/empty (F/E) flag. The F/E flag is initialized to empty. A J-structure read

operation reads the content of the location if the flag was full, otherwise it suspends the reading

task and enters it in a queue of waiting tasks for the given location. A J-structure write operation

stores a value at the location and sets the flag to full if the flag was empty, otherwise it signals

a double-write error. A valid write also wakes up all the waiting reading tasks by moving them

onto a queue of runnable tasks. There is much similarity between the future's placeholder object

and a J-structure element. The L-structure is a J-structure with a resettable F/E flag and a more

symmetrical read/write semantics. We will not be referring to the L-structure in this work.

In this work an instantiation of the body of a future is also referred to more generally as a

thread, although we shall see other ways to produce threads. A thread is not concerned, by itself,

r
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Figure 2-4: Dynamic Schedule and Parallelism Profile of Future Tasks

with the future's placeholder linkage setup. The term task refers to the basic runtime-scheduled

entity; that is, each task has an entry in a runtime manager task queue of some processor. The task

queue is distinct from the future queue mentioned earlier. Although for now task and future can

be treated synonymously, it will become obvious that they need to be different later, when a "lazy"

implementation of futures is introduced. A task is needed to execute a thread or a brigade (a thread

that serializes a collection of threads). Since our tasks all share the same address space, they are

more closely related to the notion of lightweight threads in the operating systems literature, where

tasks are usually synonymous with processes. We use the term job to refer to the collection of

tasks that, together, computes a single user program. There may be other jobs running concurrently

in the system, whether under a space-partitioned scheme4 or not. We do not address the issue of

protection amongst the tasks or the jobs.

2.2.2 Mul-T's Runtime Task Manager

Our runtime task manager is a system program that places runtime tasks onto processors, schedules

a task to each idle processor from queues of runnable tasks, and on demand migrates tasks among

processors to fill their idle time. But more specifically, it has no notion of the actual requirements of

communication locality among tasks and data, nor the ability to prioritize effectively the scheduling

of tasks; these requirements must be imposed within a task before the runtime. The runtime

manager treats all tasks in its FIFO task queue with equal preference in regards to scheduling and

4A non-overlapping subset of processors is explicitly allocated for each job.



task migration choices because it has to be kept very simple and minimal to limit its own impact on

the system performance. Examples of the prescribed runtime manager are described in [36]. When

a processor becomes idle, the manager repeatedly tries all tasks in its task queue until one is found

that is able to continue. 5 Thus, it is desirable for tasks that are obviously dependent on others'

completion not be created earlier.

In our conception, the division of labor between the static and runtime task management will

be as follows. For sections of code that the compiler is able to analyze, it decides how many

initial runtime tasks to create6 , which threads are computed in what order by which runtime tasks,

and which new tasks to create should the runtime manager demand more. The runtime system

distributes and redistributes the tasks to keep processors from idling, and occasionally asks for more

tasks when there are not enough to do its work efficiently.

2.2.3 Toward an Efficient Future Implementation

This section explores the interaction of runtime task scheduling with a running program to reveal

the runtime costs that result from the scheduler intervention. Shown is the variability in the amount

of required scheduler intervention and the importance in controlling the overall costs of creating

and scheduling tasks. Finally, ideas are suggested in this section to direct the runtime scheduler

from the compiler's output code.

Section 2.2.1 noted that, for the example program presented, two futures were invoked, and

thus three tasks were needed, to complete the computation. They would always be created and then

scheduled for some processor by the runtime system described whether there are actually enough

processors to speed up the execution through parallel processing. In realistic scenarios, often this

extra work will never reap any benefit, because far too many futures are created by recursive or

looping programs when compared to the number of processors used to execute such ajob. Instead of

generating useful parallelism, the excess tasks will pile on the task queues, for each task a substantial

creation overhead will have already been paid. Before showing the existing solution to this problem,

we note another penalty of having many more tasks around than necessary: it is expensive to juggle

tasks.

5Tasks that are blocked on a future placeholder or a self-synchronizing data store are entirely taken out of the task
queue and therefore do not affect scheduling of executable tasks.

6The number of initial runtime tasks is equal to the dynamic count of the detachments generated by the compiler.



In the runtime scenario depicted in Figure 2-4, if there are no other processors available to

compute the two spawned futures, the lone processor will switch to and start task f after suspending

main at Tmsl on touching a. When f finishes and writes a, main will be awakened by the

placeholder determination, resumed, and quickly suspended again on touching b. Then task g will

start and when it finishes, main will resume and eventually terminate. Compare this execution

description to the case where a serial version (i.e., the same program without the future forms) is

run on the lone processor - enter main; compute f; store a; compute g; store b; finish main -

it becomes apparent that in addition to the cost of creating the tasks, much scheduling operations

overhead, those of suspending, queuing, and resuming tasks, are often involved.

Changing the default order of which task to compute first at a task branch point (e.g., when

a future is "called") sometimes can substantially reduce the task management cost. Consider an

alternative where the processor, after creating a new future, suspends the parent task and enters it on

a task queue. It then starts a task for the child thread. With this scheduling order, a lone processor

executing the example parallel program will behave exactly as it does the serial version - no more

repetitive suspension and task switching - except that the two futures are still unconditionally

created. An indirect cost born by this choice is that, should the parent task be stolen by another

processor, its context and state, most of which are likely to reside already on the local node, will

have to be migrated to or remotely fetched by that processor. In contrast, the original scheduler

would have left the child task as target for a load-stealing processor. The child task, although still

needing access to the free variables captured by its future closure, can migrate to a new processor

before allocating its own local stack frame of local variables.

It is worthwhile examining the generality of this scheduling order: is the child-first order always

optimal? Since it mimics the depth-first traversal of traditional stack-based serial programming

semantics, any parallel program derived from adding future constructs to a serial program that

already operates correctly and without deadlocking will similarly execute on a single processor,

suspension-free, using child-first scheduling. Programs not parallelized from serial programs in this

way do not necessarily have a suspension-free left-to-right, top-to-bottom serialization. Thus, our

simple alternative strategy cannot guarantee suspension-free task scheduling, only that it is probably

very likely with most programs. More sophisticated compiler-directed strategies will be explored

later in Chapter 4, although in practice most Mul-T programs are serializable in a left-to-right,

top-to-bottom textual order. Altering the scheduling order can also dramatically change the amount

of runtime parallelism generated. We will consider the detailed aspects of manipulating parallelism



through compiler control of such scheduling order later.

2.2.4 Streamlining Future Implementation - The Lazy Future

We have identified and highlighted two problems in implementing a future-based parallel computing

environment: reducing the amortized costs of creating futures and of scheduling tasks. Achieving

a degree of success here will encourage futures to be used more liberally, thus increasing the

maximum parallelism expressed in source programs, yet without incurring the parallelization costs

when the excess parallelism is not needed or realized at runtime. This section examines a runtime

mechanism introduced by Mohr, et al., that has an effect of automatically adjusting task granularity

by provisionally joining threads together and dictating scheduling order among them, thus reducing

the amount of scheduler intervention required. Evidence they provided shows that the new runtime

mechanism indeed works quite well for a broad class of programs, although we will also cite how

it would become a pure burden for another broad class of programs.

A mechanism known as the lazy future [16] was introduced and implemented to gain runtime

control of task granularity. It functions by effectively ignoring the future declaration and executing

the child thread in-line when enough tasks has already been created to keep the available processors

busy. That is, for the program segment

(f (future (g x)))

if no processors are idle, instead of creating a future to evaluate (g x), the parent task directly

computes it itself first, and then proceeds with the function f. Rather than commit firmly to a

decision upon calling the future (e.g., [19]), a lazy future provisionally in-lines the future by

keeping enough runtime information so that the decision can be revoked later. This flexibility

is maintained through permitting any processor (including, as we shall see why, the originating

processor that is now computing the child thread) to steal f, the continuation, any time while g, the

child, is being computed.

The implementation of the lazy future mechanism consists of three key sections, at the points

of the future call, steal, and return. When a lazy future is called, a pointer to the continuation stack

frame is entered on the future queue to denote a stealable point. Upon returning from the future, if the

continuation has remained intact, the pointer is removed from the future queue and the continuation

is resumed as for a normal procedure call. But while the future is in progress, another processor



can steal the continuation by getting a pointer from the future queue, creating a placeholder for the

future's result, and substituting a determination procedure in place of the continuation frame in the

stack. The stealing processor then resumes the continuation by "returning" the placeholder to it.

When the future then returns to the substituted determination procedure, it writes the placeholder

with the returned value and enters the runtime scheduler, which will seek for another runnable

task. The detailed specific implementations of lazy future, including considerations for shared- and

distributed-memory machines, are described in [16].

In analyzing the cost of the lazy future, we see that the case of a future returning to continue its

original parent is now quite efficient even in comparison to a regular function call. The only extra

work required is for the maintenance of the future queue. Neither a future nor a placeholder object

has to be created, and no scheduler intervention is involved. The work required for the case when

a future is actually stolen is equivalent to that of a regular (or "eager") future: both a placeholder

and a task, with states copied from the parent environment, will need to be created. The lazy

future mechanism does nominally fix the scheduling order for the child and the continuation thread.

Unless the programmer or the compiler swaps the two to enforce a particular order, the child thread

will compute before the continuation by default.

Performance of the Lazy Future

We now examine how the lazy future mechanism works in the context of a program to reduce

runtime overhead and present its performance in actual implementations. We will also show an

example program for which the lazy future is very ill-suited. We will discuss what is fundamentally

different in the new program and adapt a new strategy based on the original intent of the lazy future

that will address the new scenario properly.

Consider computing the n-th fibonacci number in a two-branched recursion.

(define (fib n)
(if (< n 3) 1

(+ (future (fib (- n 1)))
(future (fib (- n 2))))))

The structure of this program is representative of the general class of recursive-descent or divide-

and-conquer algorithms. At each invocation for which n > 2, two future threads are produced. 7

7Only one future is really needed, provided we know the evaluation order of the arguments of +. If the evaluation



With the eager future, 0(2n) tasks will be created all together, as shown by the future tree in

Figure 2-5, independent of the runtime resources (i.e., whether there are 4 or 4000 processors).

With the lazy future, there would be exactly as many lazy future calls and hence as many threads,

but we expect many less actual tasks. The new threads diagram of threads in Figure 2-6 depicts

future production for the same program. The executing processor descends down the path on the

right, shown by the dark arrow, stepping into child threads produced by the first future call of the

recursion. The first processor seeking work will, with the oldest-first load-stealing policy, sever the

execution stack at the cut indicated and steal the oldest lazy future on the call stack, thus taking the

left-most part of the tree for itself. The next steal will take the next oldest future on the stack, and

get the middle piece. It is also possible that the second (or a later) steal takes a part of the left-most

piece that was itself stolen. With three processors allocated for the job, initially only three tasks

are created, as described. But as a processor finishes its share of work, it will attempt to steal from

others' queues. The actual scheduling behavior is thus quite dynamic and hard to predict statically,

but the net effect is to balance the workload. Tasks are created from available lazy future threads

only when a processor is in need of work.

Since the lazy future call is incurred in in-line with every future in the program, its cost must

be minimal. In the Alewife implementation, a lazy future call is 9 Sun SPARC instructions (or 14

cycles). Table 2.2, excerpted from [16], shows the actual execution time and the number of tasks

created with eager and lazy futures. Execution time of a purely sequential version is also shown for

comparison.

occurs left to right, we could write

(+ (future (fib (- n 1)))
(fib (- n 2)))

and achieve the same parallelism with less overhead. Alas, the definition for T [47], as that for Scheme, specifies
a random ordering of argument evaluation. In the discussions, we assume evaluation is left-to-right for clarity. The
following is one way to ensure an exact evaluation order.

(let* ((a (future (fib (- n 1))))
(b (fib (- n 2))))

(+ a b))
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Figure 2-5: Recursively Creating Futures for (Fib 5)

Evaluation of Lazy Future Effectiveness

We see that lazy future effectively eliminates most of the unnecessary task creations. But why use it

at all? Besides lazy future, there are the options to remove excess futures at either compile-time or

runtime. The lazy future achieves two unique goals compared to removing futures via in-lining: the

allowance for runtime load balancing and deadlock avoidance. Compiler in-lining, of course, does

not provide load balancing below the granularity of the blocks of in-lined code. Although runtime

in-lining allows a degree of load balancing, lazy future defers assignment of work to processors

to a still later time. Unlike in-lining, the lazy future accommodates out-of-order dependencies

by allowing suspension of a task blocked on unavailable data or other synchronization failures,

thus preserving the independently-scheduled semantics of futures. Even compiler analyses cannot

resolve all of these dependencies without unduly restricting the expressivity of the language. Where

a future and its continuation thread contend for monitor locks, in-lining could certainly result in
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Figure 2-6: Runtime Behavior from the Lazy Future Tree of (Fib 5)

Processors Eager Future Lazy Future
Time # Tasks Time # Tasks

seq 62 - 59 -
1 881 3192 88 0
2 442 3192 46 6
4 223 3192 26 35
8 114 3192 17 104

16 60 3192 11 190

Table 2.2: Performance of Eager and Lazy Futures

deadlocking the program. Hence, it is legitimate for a processor's needing to steal work from its

own lazy-future queue sometimes.

We have been fortunate in our choice of the example program used to validate the efficiency of

the lazy future. Suppose we are to examine the behavior of another common routine: element-by-

element summing of two arrays.

(doall (i 0 n 1)
(set (aref c i)

(+ (aref a i) (aref b i))))

where doall is syntactic sugar for a loop with each iteration of its body an independent parallel

thread.8 The structure of the program is representative of array computation, a popular use for

fib(16) Execution Time and Created Tasks
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rCr
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massively-parallel systems. As many threads will be created at runtime as iterations of the loop.

The threads diagram shown in Figure 2-7 of the looping construct has a long backbone with shallow

(single-deep) futures forked from it. The backbone is the unrolling path of the iterated loop.

With either type of future, we will have great difficulty choosing a good scheduling order for

the future calls in this program. If a single processor executes the backbone thread of loop unrolling

(as the dark arrow in Figure 2-7-A shows), it alone is responsible for creating all the loop threads.

Each stealing processor will take only a single thread each time, regardless of the stealing policy;

thus creating a tremendous bottleneck for timely distributing tasks around the system. Further, note

that since every thread is converted to a task during the stealing process, the lazy implementation

of futures achieves no gain.

Now consider the alternative scheduling order: proceed into the child thread first and leave

the continuation (i.e., the loop unrolling path) for another processor to steal (as the dark arrow in

Figure 2-7-B shows). It results in each processor "peeling off" a loop iteration and passing the

continuation around the system. The overhead of migrating a task is now included in the critical

path of loop unrolling. Again, a slow serialization of the parallelism generation phase occurs and,

even using lazy futures, every thread is turned into a task.

Slow parallelism generation can severely restrict the amount of parallelism actually realized,

when it is unable to unroll a loop fast enough to keep all available processors busy, even when there

is otherwise sufficient concurrent loop iterations to saturate a system. The problem is exacerbated

by a relatively small loop body. A simple model, ignoring the accounting of which part of a task

creation should be charged to the parent or the child task, predicts there will be unused processors

when

time to compute loop body
time to unroll an iteration >

number of processors

And the upper bound of actual parallelism is the lower of the number of independent loop iterations

or

time to compute loop body
time to unroll an iteration

(define-syntax (doall (var init limit step) . body)
'(do ((,var ,init (+ ,var ,step)))

((> ,var ,limit))
(future (block ,@body))))



So, a straightforward application of future to denote concurrent iterations for looping structures

cannot be supported efficiently by the same runtime mechanisms.
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Figure 2-7: Runtime Unrolling of Parallel Loop Iterations

2.2.5 Summary and a New View of Parallel Loops

In retrospect of the present state of the programming and runtime systems, we note that they are well

suited for control-parallel programs - ones in which the task boundaries are split along function

calls such that the caller and the called functions are executed by different tasks. The inter-task

communication consists mostly of the direct passing of argument and result values of the function

call. We have described a simple case of f ib whose structure represents a general class of recursive

algorithms, and briefly presented its runtime performance. More cases of this variety have been

tested and their similar outcomes documented in [16]. But because of the difficulties in predicting

at compile time the behavior of control-parallel programs, such as the number of threads actually

produced at runtime, most multiprocessor compilers require programmers to manage parallel tasks

manually or to confine them to the iterations of the regularly-structured array-accessing loops.

Those that devised compiler-based methods as solutions are difficult to realize in practice. They

have assumed a customized (with respect to the user programs' specific algorithms) compiler [41],

assumed statistical runtime data [46], or asked user to describe task structure and interaction using

special language [30]. Except for committing the substantial respective efforts that would be

1=n = =nn ,



required of each user program under one of these compiler optimization strategies, the environment

presented in this chapter provides a painless alternative. By choosing to preserve it, we keep full and

efficient support of the simple and general future-based parallel programming methodology. We

now seek ideas to extended this environment to handle parallel loops efficiently, so that data-parallel

computations can be accommodated as well.

It appears that the thread structure of an unrolling loop, when interpreted directly as defined,

yields a long serial path with shallow threads forked out therefrom that is unsuited to parallel

execution. An alternative view of the above doal 1 loop is as a macro operator that simultaneously

forks out all the iteration threads, each with its unique induction variable value. To accomplish

further along this line that would still incorporate the same runtime system developed thus far, the

macro operator has to be implemented in a way such that these goals are realized:

* The parallelism generation phase is itself parallelizable.

* The macro operator can be designed so as to take advantage of the lazy future mechanism.

* The amount of work taken from a processor by a load steal is roughly proportional to the

amount of work found at that processing node, as was done for the recursive fibonacci function.

If special forms, like doall with constant bounds, are required explicitly from the programmer,

the compiler can directly build a binary lazy future fan-out tree 9 with leaf nodes of iteration threads,

as shown in Figure 2-8. This is in fact the model that will be expanded greatly in the next two

chapters on the work the compiler accomplishes. Generalizations beyond strictly-independent loop

iterations and partitioning and alignment of iterations into detachments of work that can be directly

dispatched to processors will be discussed presently.

9It is binary because a future forms a two-branched task fork.
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Chapter 3

Compile-time Program

Transformations: An Example

In this chapter and the next we focus on the compiler parallelism management phases of the

Revocable Thread Serialization framework. The primary intention of the compile-time processing

is to use information from static program analyses to improve the performance of data-parallel

computation. In this chapter we first describe the top-level structure of the compiler itself. We then

follow the progress of a short sample program, examining the transformations that it undergoes at

each compiler phase and motivating why they are needed. With an understanding of what overall

effects are needed and how they are coordinated among the compiler phases, the implementation

considerations of each of the phases to be covered in the next chapter can then be better grasped in

their proper context.

3.1 Structure of the Compilation Phases

As we concluded at the end of last chapter, the purpose of the compiler parallelism management

phases of this framework is to restructure the input program to assure efficient execution of various

looping constructs associated with data-parallel computations only. To this end, the following

specific goals have to be met:

* Parallel loops and data arrays are partitioned for an expected number of processors. The

parceled work is directly distributed among the processors so that maximal system resources



can be deployed quickly.

* Since these loops often take data from arrays generated by other loops and produce arrays to

be used by succeeding loops, all communication-related loops and arrays are aligned along

their partitions to minimize inter-processor data transfer.

* Generate future fan-out tree control structures of the type that had worked well in the last

chapter under the runtime management scheme.

The program restructuring strategy to implement the RTS framework is incorporated into the

entire compilation process as a source-to-source transformation package called Scepter. It functions

as the front-end to Orbit, a Mul-T compiler that knows about sequential language constructs and

the parallelism generation primitives to create tasks on some specified processor or to demarcate

the stack frame with lazy future steal points. Orbit solves the problems related to machine code

generation for a target processor, such as call linkage, stack frame maintenance, register allocation,

etc.Scepter performs scalar, alias, escape, dynamic, and index analyses on the source program,

identifying data references and collecting looping and other control structure information. These

are used to build a dynamic thread/data communication graph (WAIF-CG) consisting of threads and

data nodes and the communication edges among them.

The compilation process is represented in Figure 3-1. The derivation of WAIF-CG from the

source, as well as the internals of WAIF-CG nodes and edges, are described in the Appendix and

defined in [32]. The graph records dynamic instance information that Scepter propagates from

known iteration constructs to annotate the statements in the loop bodies. Using this information

Scepter assesses how many times each textual statement is executed and therefore the number

of runtime threads each future creates. An important distinction to note is that, although the

program analyses and transformations in Scepter seem at times similar to the standard static global

analyses and transformations, the process can tolerate any lack of or undecidability in the static

information. We will later see how none of the static information is essential to the process, because

of the bottom-up compiler program-transformation strategies and the flexible runtime support. To

simplify the problem somewhat, we are treating partitioning, alignment, and scheduling as mostly

independent phases and present them in that linear order. As most compiler designers know all too

well, the mutual dependence and thus the ordering of the transformation and optimization phases

of a compiler are rarely non-circular.
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Figure 3-1: Program Parallelism Restructuring and Compilation Process

3.2 Compiler Walk-through of an Example Program

The program in Figure 3-2 serves as the example for demonstrating what transformations occur

at successive Scepter stages. In this program, x is a J-structure (array) of size 7 created by

make-j struct. Its cells x0 through X5 are set by SetCells, while SetBounds defines some

boundary values that are stored in y. RefCells uses successively the boundary value in yo, and

then x1 through x5, followed by the other boundary value yl + xz, in computing further values.

J-structures are used here instead of plain arrays because threads in SetCells, SetBounds, and

RefCells are all concurrently executing, according to the semantics of the future. Without the

data-synchronization J-structure, it would not be semantically incorrect if RefCel ls read a value

from an array cell before it was set by SetCells or SetBounds. We note that the numbers of
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loop iterations and array cells are made deliberately small to keep the illustrations clear. In real

programs, and thus in the compilation steps and in the code generation, all considerations assume

that these numbers will be very large (e.g., we will in fact build a generalized loop to execute what

is ostensibly one or two iterations rather than enumerate them in-line.)

(define (Example)
(let ((x (make-jstruct 7)))

(SetCells x)
(let ((y (SetBounds)))

(RefCells x y))))

(define (SetCells x)
(doall (i 0 6 1)

(set (jref x i) (f i))))

(define (SetBounds)
(let ((z (f 0))

(y (make-jstruct 2)))
(future (set (jref y 1) z))
(future (set (jref y 0) (/ z 2)))

y))

(define (RefCells x y)
(future ( ... (jref y 0)))
(doall (i 0 4 1)

(... (jref x (+ i 1))))
(future ( ... (+ (jref y 1) (jref x 0)))))

Figure 3-2: Compilation Demonstration Program

After the static program analyses described in the Appendix, a thread structure is extracted from

the program text. A simplified representation of the thread graph is shown in Figure 3-3. The

internal nodes are future forks; the leaf nodes are parallel threads; the solid lines are the program

control flow; the dashed lines the data communications, which come from the possibility of accesses

to the same data locations - rather than data dependencies. Since the "def" and "use" points in the

program are concurrent, only runtime synchronizations (none for plain arrays) enforce the actual

directions of data propagation.

The program starts at top center of the graph and exits at bottom center. Three subroutines

are called, each of which creates parallel threads. The definition of doall is as given in the last

chapter, although each parallel loop is now represented by a single node with many out-edges in



the thread graph instead of a long unrolling thread. Note that data array creators are recognized

and given its own special thread node. As we will see, in these transformations they represent the

shape, size, and location of the data memory they create.
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Figure 3-3: Initial Thread Graph for Example Program

3.2.1 Compiler Loop and Array Partitioning

The partitioning process forms groups of concurrent loop iterations and segments of data arrays.

The purpose of this and the subsequent alignment transformations is to restrict all threads and data

within a partition, and eventually within a detachment, to be dispatched to run on the same processor

node; therefore, within a partition concurrency is limited, but locality of access is improved. Also,

it reduces the number of initial tasks that will be created for the loops, and the compiler will further

be able to pre-schedule intra-partition (and intra-detachment) threads. The chunk size of the thread

groups and array segments is controlled by the policy.

The partitioning phase, given the thread graph and a parameter for the number of processors to

partition for, returns a graph shown in Figure 3-4 as partitioned for four processors. Data reference

patterns are examined to decide the partition shape. The array creators have been partitioned into



segments, and the threads in each loop of SetCells and RefCells have been grouped into

partitions, as indicated by dashed ovals. Note that the grouping of the iterations of these loops are

different - the iterations pairings do not have the same starting offsets because this produces the

more optimal access locality of the array.

make-jstruct

Figure 3-4: Partitioned Thread Graph for Example Program

3.2.2 Compiler Thread and Data Alignment

The alignment phase matches the communication-linked partitions from different loops and array

creators, as well as independent threads, by placing them into the same detachment as shown in

Figure 3-5 with the dashed bubbles. We have labeled the detachments with distinct numbers. Note

that no more than one partition from each loop or array creator is placed into each detachment. This

is intended to prevent the partitions from collapsing, to ensure enough detachments remain for all

expected processors to get an initial work allocation.

3.2.3 Compiler Thread Serialization

After partitioning and alignment, threads and arrays are put into detachments, leaving the runtime

system to sort out which threads are actually executable. Without further static serialization, each
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Figure 3-5: Aligned Thread Graph for Example Program

thread will be placed on its compiler-selected processor and executed there as an independently

scheduled runtime task. The resulting fine granularity will incur high runtime overhead from creation

of many small tasks that can also cause the runtime scheduler to thrash about much, possibly holding

up resources long before they are required, and executing unnecessary synchronization code. These

problems were discussed in Section 2.2.3. The tasks should be lengthened as much as possible via

static serialization of threads within a detachment.

The compile-time thread scheduler is given a list of detachments. The default ordering for

the threads of each detachment is to follow their original serial program execution order, as we

have argued in Chapter 2, constructing a top-level control thread that invokes each of them in the

desired order. Loop iteration threads, as we have pointed out, need to be serialized in a more

particular fashion. Another set of rules constraining the serializability of detachment threads must

be observed as well. Applied to our example program, it is the evaluation of ( f 0) in SetBounds

that prevents a complete serialization of the detachments. Function f has be called and variable z

set after the code for setCells is forked out but before the rest of SetBounds and RefCells,

both of which need access to z, can be started. The general rules and transformations regarding this

scenario will be described more fully in the next chapter, under the section on scheduling of random

parallel threads. The final serialization thus has a "break" in each of the parallel detachments,



creating two brigades for each detachment as shown in the diagram in Figure 3-6, and in abstract

code in Figure 3-7. That is, a set of parallel tasks are spawned to create the array partitions and set

their initial values; without first requiring their completion, (f 0) is evaluated for z and another

set of parallel tasks are spawned to set boundary values and to read out the array cells for further

work. 1

Note that the placement of arrays is realized by having a chosen processor execute a local

make-array type of system call of the proper segment size. The do-parallel-tasks form

creates one task on each processor executing its code body, with variable mt bound for each task

to the task sequence number (i.e., from 0 to 3). align does the alignment mapping to allow a

task to execute the partition that is assigned to its brigade. The value of m returned tells the task

which partition number it is to execute. The compiler inserts in each align expansion its static

alignment map. This mechanism will be described in Section 4.2 on alignment. doall-segment

is a binary future tree macro that will execute at its leaf nodes the iteration range assigned to the

loop partition. The detailed construction of this future tree will be discussed later in Section 4.3.1.

The variable I is bound to values that step through the assigned range (in the loops found here, two

iterations with partition offsets of 0 and 1. The different offsets for the loop partitions was pointed

out in Section 3.2.1). Array index is generated by j -addr. These are necessitated by the loop

iteration- and array index-space conversions to and from the partition-spaces introduced through

the m and 1 variables. Also serving this purpose is index-i, which converts m, I to the original i

value. These macros implement the space-mapping translations to be described in Section 4.1.1.

3.3 Summary

This chapter has described in functional terms the compiler end of the Revocable Thread Serialization

framework, and demonstrated the intended transformations performed at each compile-time phase.

We showed what the structure of the output code would look like. When executing, this code will

spawn two sets of four tasks, concurrently with the main program thread, running from its own

task that will be sharing Processor 0 with two of the other eight tasks. In addition to this runtime

crowding, note also that the amount of work in the parallel brigades is slightly uneven. In a real

'Were we to analyze and re-serialize the intra-thread instructions as well, and if f is determined to be side-effect
and internal-state free, (f 0) could be moved to before the code for SetCells, thus allowing an uninterrupted serial
sequence in each detachment.
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situation, these differences would be dwarfed by the amount of work from the partitioned loops, and

by the uneven hardware operation and runtime scheduling. And, of course, in any case the static

arrangements will still be subjected to runtime load balancing.



(define (Example)
(let ((x (make-istruct 4)))

(do-parallel-tasks mt
(let ((m (align mt)))

(future (set (jref
(doall-segment 1 2

(set (j-addr x m

;; make dope vector

;; put on each processor
;; partition alignment mapping macro

m) (make-jstruct 2))) ;; create array segmer
;; loop through iterations in partitic

(f (index-i m 1))))))

(let ((z (f 0))
(y (make-jstruct 2)))

(do-parallel-tasks mt
(cond ((= mt 0) ;; do aligned individual threads

(future (set (jref y 0) (make-jstruct 1)))
(set (j-addr y 0 0) z)
(future ( ... (jref y 0 0))))

((= mt 1)
(future (set (jref y 1) (make-jstruct 1)))
(set (jref y 1 0) (/ z 2))))

(let ((m (align mt))) ;; do aligned loop partitions
(doall-segment 1 2 1

(... (j-addr x m 1) (+ (index-i m 1) 1))))
(if (= m 1)

(future ( ... (+ (jref y 1 0) (jref x 0 0)))))))))

Figure 3-7: Abstract Output of Transformed Example Program



Chapter 4

Compile-time Program

Transformations: Theory and

Implementation

We saw from the last chapter how a program undergoes a set of compiler transformations and

what the final output code looks like in the abstract. In this chapter we explore more details

of what are under the abstractions in that code listing, how they are actually constructed, and

some performance tuning issues. But first Section 4.1.1 explains the implementation of loops

and arrays in the distributed processor and memory space, because that has a pervasive impact on

the resulting code and on its performance, even though the scheme itself is not particularly novel

and merely achieves the desired low-level function. Understanding the scheme is also essential

to seeing how the results of the compiler parallelism restructuring is realized in the output code.

Thereafter, the three main compiler back-end parallelism transformation processes are described (in

Sections 4.1.4, 4.2, and 4.3), as well as some policy alternatives used for tailoring the framework

for specific input conditions and system parameters (in Section 4.4). The effectiveness of these

strategies and processes will be covered in the next chapter. As noted in the last chapter, the front-

end program analyses and the WAIF intermediate form building phases of Scepter will be skipped

here. A description of them is found in the Appendix.



4.1 Partitioning of Parallel Loops and Data Arrays

4.1.1 Abstractions for Distributed Loops and Arrays

This section describes a scheme to support the distribution of numerically-indexed instances of

array elements and loop iterations automatically across a range of processing and memory units.

Although hardware interpretation of global memory addresses has been assumed, we only rely on it

as a low-level address-space resolution and memory access mechanism, not as an implementation

of storage allocation policies. Thus there is no hardware reconfigurable memory blocking or

low-order-bit address interleaving, as on some shared-memory machines [37]. Instead, a global

memory address is simply a concatenation of a processor node number prefix and the linear offset

within the global memory block at that node. The compiler and the runtime system together

implement whatever storage mapping is desirable for the memory access demands of a particular

program. This design choice simplifies the hardware configuration and ultimately provides more

flexibility to accommodate a diversity of storage mapping policies. Thus, references to distributed or

multi-dimensional arrays must be re-expressed as native linear vector references with the necessary

processor node crossings made explicit through coordinate translations. A similar problem occurs

in partitioning and distributing a loop for multiple processors, fragmenting the contiguous iteration

space generated by the sequence of values of its induction variables. These considerations apply to

the following program constructs:

* Array creations (those that are accessed from parallel loops or otherwise too large to fit on a

single node) modified to distribute to multiple nodes.

* Parallel loop control and the induction variables modified for distribution to multiple nodes.

These variables often also form the index expressions of distributed arrays.

* Array elements references modified to access those distributed arrays.

4.1.2 Distributed Iteration and Array Spaces

At the core of these translations is the maintenance of three distinct spaces by the compiler, while

giving the illusion of only the one seen in the source program. For this discussion we confine loops

and arrays to be two-dimensional, although all equations derived are for any number of dimensions.



We call the original loop iteration space from the program the (i, j)-space, where the programmer

presumably used i and j as the loop induction variables and in the array index expressions. The

implementation of partitioned loops and segmented arrays described in this report creates two more

spaces: the partitioned loop iteration space we call the (m, 14, lj)-space and the segmented array

index space the (g, o)-space. Figure 4-1 shows the relationship of these instance spaces and how

a specific program coordinate (x, y) (i.e., loop iteration (x, y) which accesses an array's (x, y)-th

element) is mapped within these distributed spaces. m and g range through valid processor node

numbers; (li x 1j) spans the subrange of loop iterations assigned to each partition, and o spans the

segment of an array allocated to each partition. The compiler's space translations to be described

in the next section will thus ensure that processor 4 will execute the iteration (x, y) and that its

reference to the array's element (x, y) will be directed to processor g's local memory at address

o corresponding to the mapping of (x, y) in the (g, o)-space. The space mapping used here and

the partition strategy used in a following section only cover rectangular blocks, which as fairly

general and efficient - extensions to others such as linear or blocked stripes are trivial, whereas

non-rectangular shapes, such as hexagons, are significantly less efficient to compute.

4.1.3 Application of the Inter-space Translations

Now we show how the space translations are realized in the compiler program transformations.

Inspecting the output code in Figure 3-7, we see that the space translation-related program trans-

formations cited in the list above are buried under the abstraction of procedure calls. A distributed

array is shown formed by creating a dope vector of one cell for each data segment. A set of parallel

tasks is then spawned on the participating processors to create a local segment on each node. In

this way, each node maintains its own storage allocation, and the addresses of the new segments

are entered into the centrally-located dope vector, whose address is given as the reference for the

entire array. During execution, the dope vector values, which are written once and thereafter strictly

read-only, required by each node is read once and locally cached, so there is not the hotspot problem

that might otherwise be anticipated.

In doal 1- segment, a loop starts at the conformal offset for the (si, sj) position as determined

by m, and generates locally its own series of (li, ij). When required, the original (i, j) coordinate

can be reconstructed with (si + 14, sj + lj). This is what index-i does. As demonstrated by

the (m, li, lj)-space example in Figure 4-1, a partition tile may be truncated short by the actual
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loop bounds. The v-dimensional starting iteration coordinate (s,,..., sk,..

determined by

0

Sk = max(initk, wkmod(m, nk)

wkmod(m/(- 1n d), nk)

*, so) of partition m is

if nk = 1,

if k = 0,

otherwise.

where initk is the programmed starting value of the k-th induction variable , wk is the width of

the partition in the k-th dimension, nk is the number of partitions to tiles the k-th dimension of

the iteration space, and mod(a, b) is modulo b of a. The v-dimensional ending iteration coordinate

1See doall definition on Page 44.

0
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(ev, . . ., ek,. ., eo) is determined by

ek = min(limitk, sk + wk)

where limitk is the terminal loop bound.

Distributed-array index expressions must be translated from either the (m, li, 1j)-space, if found

with induction variables of a distributed loop, or the (i, j)-space otherwise, to its (g, o)-space

coordinate. j -addr is seen in Figure 3-7 in place of such an index expression translation for a

J-structure reference. The (g, o) coordinate for a written index expression (i,,..., ik,..., io) is

v d-1

g = io/wo + Z(1 ne)(id/Wd)
d=1 e=O

v d-I

o = mod(io, wo) + j(f1 we)mod(id, Wd)
d=1 e=O

Because on many processors, the Sun SPARC being among the worst, integer multiply and divide

operations are very costly, often being much slower even than their floating-point equivalents, the

coordinate translations must be streamlined not to impose a large bias on measured performance of

the parallelized code. In all our benchmarks, the compiler rounds off partition and segment sizes to

powers of two, and the code generator then substitutes cheap binary shifts and bit masking operations

for the multiply, divide, and modulo functions. Also, each array access currently undergoes a full

coordinate translation, most of which could be manually or automatically simplified with standard

compiler optimizations for constant expressions or common sub-expression.

Because the compiler can be invoked incrementally in a T system and because in reality

there are many situations where we simply cannot analyze and trace the identity of all the array

references in an entire program, a means must be provided for addressing the distributed arrays

when the compiler is unable to substitute the proper address translation expression. Through a

compiler analysis on escaping variable values 2, (e.g., among the arguments passed in calling a

foreign procedure,) partitioned arrays that exit a compiler-controlled program context are noted,

and their descriptor headers, where type and size information normally reside, annotated with an

index translation function. On the accessor end, an array reference whose origin cannot be identified

through the alias and dataflow analyses will be compiled to examine the descriptor for an index

translation function. When the look up fails, the array reference would assumed be for a standard

contiguous array.

2See the Appendix.



4.1.4 Partitioning of Parallel Loops and Data Arrays

The function of the compiler partitioning phase is to group the parallel loop iterations and to

segment the data arrays that these loops access according to the expected number of processors

allocated at runtime and to the array reference traffic obtained through static program analyses.

Automatic partitioning of loops is a much-studied problem for parallelizing compilers with many

ready solutions in the field [25, 42, 24, 52]. We have adopted and implemented a simple strategy

suggested in [24]. Our relatively modest goals are to produce no more initial tasks to compute

the loop than the expected number of processors and to improve processor utilization through

maximizing reuse of entries in the local data cache. To simplify loop induction variable generation

and the in-line translation computations for the array accesses, all partitions for each loop or array

are constrained to be rectangular and of identical size (except at the boundaries). They must of

course also "tile" (i.e., completely cover but without any overlap) the entire iteration or index space.

Since the p partitions must tile the entire iteration or array space of area A, each one will have

an area of A/p. The decision of what length and width a partition should be becomes a matter of

minimizing the communication cost, considering the effects of local data caching. For example,

computing ai,j = ai, + ai,j+5, as in the loop

(doall (i ... )
(doall (j ... )

(set (aref a i j) (+ (aref a i j) (aref a i (+ j 5))))))

would gain from a partition of maximum length along the j dimension. This is because, to compute

a partition, in addition to fetching the Alp array values under the partition tile, it also has to fetch

past the edge extra values along its j dimension. Therefore, lengthening the j dimension will reduce

the number of rows (i.e., in the i dimension) that will be fetching past its end, thus minimizing

communication with a neighboring partition. There is no such boundary crossings along the i

dimension, thus no point in attempting to reduce its boundary length.

To generalize this problem, we consider in detail the case of

aij = ai,j + ai+ri,j+rj

Figure 4-2 shows in a combined iteration and array space a partition and its boundary-crossing

accesses for ri = 1 and rj = 2. The access area outside of the partition is

Ae = wirj + wjri - rirj
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Figure 4-3: The Loop and Data Partitions Communication Graph

E of each loop iteration partition, which are [..., fe(S),..., fo(S)] and [..., fc(E),.. ., fo(E)],

among the array partitions, as shown in Figure 4-4. The next step is to calculate, for those array

partitions covered, the region of overlap in each. This corresponds in the figure to the gray region

cast by loop partition 1 inside the array partitions 0, 1, 3, 4, 6, and 7, representing the proportion

of communication of the loop partition with each of these array partitions induced by the index

expression. Along each dimension c, the overlap is computed as from max(sc, min(f,(S), f:(E)))

to min(e, max(fc(S), fc(E))), and the total overlap volume is the product of these along all

dimensions. This volume, multiplied by the weight of the WAIF data edge associated with the

program array reference, is added to the weight of the communication edge between the loop and

array partitions.
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shapes of loop partitions and array segments with non-uniform, possibly overlapping, and inexact

communication patterns can all be accommodated. This degree of flexibility is necessary especially

since a consequence of our choice to perform partitioning and alignment as two independent phases

is that the partitions to be aligned often will be of different sizes or even shapes.

The input to be aligned is a set of partitioned loop and array nodes representing an initial thread

grouping and data segmentation. We first compute the weighted communication edges among

partitions from the individual edges between array referencing program statements and the array

objects, observing the repetition factor from their enclosing looping structures. Then, the most-

accessed array partition from a loop partition are assigned to the same detachment as the loop

partition.

4.2.1 Building the Partition Communications Graph

Consider the example in Figure 4-3, whose left-hand column pictures the assumed input items:

some partitioned 2-dimensional loops, L1 and L2, and data arrays, D 1 and D2. Each has been

partitioned into 6 blocks. For simplicity, we assume that the index expressions for the D 1 and

D2 references in L1 and L2 are all identity functions, meaning that Llij writes Dlij, which is

then read by L2ij to compute D2ij, for valid range of i and j. 3 To the right in the figure is a

graph of the partition nodes of the original loops and arrays and the weighted communication edges

among them induced by the identity array index. The nodes are numbered corresponding to the

row-major-ordered partition numbers.

The communication edge weight is computed by projecting a loop iteration partition onto the

array space. Since we use rectangular partitions, two coordinates are sufficient to characterize a

partition under any linear transformation. Consider them the bounding boxes for the set of points

in the rectangular region, R: S = (..., d,... , so) and E = (..., ed,..., e0o), where Sd and ed are

respectively the minimum and maximum values along dimension d of all the points contained in R.

A linear transformation t on S and E, S' = t(S) and E' = t(E), will preserve S' and E' as the

bounding box for the set of points in R' = t(R).

For each array index expression in the program, [..., f0 (X),..., fo(X)], where each fc(X)

is of the form Xd + k with constant k, we locate the array index space mapping for the S and

3This particular set of indices would not induce the partitioning outcome shown, but that is not our concern here.



partitions. They can easily be substituted in place of the supplied partitioning module (with a

corresponding change in the code generator for space translations for non-rectangular partitions) to

accommodate programs with more complex array index expressions. The present partitioner serves

its purpose in completing and for validating the framework.

4.1.5 Partitioning without Sufficient Information

What if the loop or array bounds or the number of processors are not known statically, or that the

compiler cannot resolve some of the array index expressions? The bottom-up partitioning strategy

just described can still produce usable code. The compiler takes a default number (which may be

user specified) of iterations to place into a partition. If the array index expressions are known, the

partition shape ratio can be computed; otherwise, it defaults to a square. The follow-up procedures

to align for detachments and serialize for brigades can be applied to these partitions, and the final

code will simply incorporate expressions to determine dynamically the initial number of tasks to

create.

Since the code for each partition already performs dynamic end-of-loop test, as described for the

function of doal - s egment in Section 4.1.3, generating enough initial tasks is all that is needed.

If there are more processors than initial tasks, some of the tasks will be immediately broken up by

the idle processors. If there are more initial tasks, then each processor will have several loaded

in its task queue. The default partition size is chosen to yield a reasonable initial task granularity

depending on whether it is better to err on having too fine-grained tasks or having to break up large

tasks. We will suggest some policy heuristics later in Section 4.4.

4.2 Aligning Partitions

Alignment of loop and data partitions that communicate the most among themselves places them into

the same detachment to minimize communication. There are numerous schemes to align loop and

array partitions based on linear transformations of index expressions (e.g., systolic machines [43],

SIMDs [26]). 'These are precise alignments from which synchronized, global data movement

instructions are then generated to cause the right data to land on the right processor at the right time

for the designated operation to proceed. This degree of rigidity is not necessary for our scenario.

We use an algorithm that provides more generality and permits more uncertainty; different sizes and
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Figure 4-2: Partition Boundary-Crossing Array Accesses

Returning to the partitioning procedure, we collect for each loop the maximum and minimum

access offsets for an array object to determine

= Irimax - riminl

and

j = rjmax - rjminI

because the array partitions can be conformally shifted relative to the iteration partitions. We sum up

Ae from all the array objects a loop accesses to represent the total cost of boundary crossing accesses,

and use this to determine its partition shape. The result is merely an annotation in the compiler's

loop node structure of (wd, rd, rdmin) for each dimension d. After all loops are partitioned, each

array object is then partitioned similarly to one of the loops that accesses the array object.

This partitioning method admits array indices of the simple form, v + k, for any loop induction

variable v and constant offset k. More sophisticated methods will accept indices of E• civi + ki,

where vi is any of the n extant loop induction variables and ci and ki are constants. These will cover

any linear combinations of induction variables for each index coordinate and produce parallelogram
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4.2.2 Computing Partition Alignment

From the constructed communication graph of loop and array partitions, we arrange an alignment

of them to produce minimum amount of communication between unaligned partitions. A simple

two-level cost structure is assumed: communication between two aligned nodes incurs no cost,

while that between nonaligned nodes incurs a constant cost per unit data transferred, regardless of

the actual distance between them. Several heuristics will approximate an optimized alignment of

thread and data partitions. A simple 2-pass greedy algorithm assigns the first row loop nodes in

Figure 4-3 distinct alignment numbers. On subsequent rows, each node is assigned as follows:

* On first pass, pick the node to which it is connected with the highest-weighted edge. If it

has been assigned an alignment number that has not already been assigned to a node of the

current row, then choose the same number.

* Otherwise, pick successively lower-weighted edges until an alignment number is found that

is not already used in the current row. Assign the node this number.

* When the list of connected edges is exhausted, set the node aside for pass two, go to the next

node in the row.

* On second pass, for each unassigned node, arbitrarily pick for it an unused alignment number.

Leaving these nodes unassigned until the second pass improves alignment for the rest of the

nodes of the row.
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Using this strategy, the partitions of the example in the figure may be assigned to detachments

thus: L1 (1 2 3 4 5 6), Dl (1 2 3 4 5 6), L2 (1 2 4 3 5 6), D2 (1 3 2 5 4 6). In the next chapter,

the effectiveness of the alignment phase and its impact on running time will be shown for some

programs.

4.2.3 Aligning Large Numbers of Partitions

With very large numbers of partitions, it becomes expensive and also often unnecessary to enumerate

every partition. We may only need to align a subregion of the entire iteration or index space. Since

all the partitions for a loop or array are identical in size and shape, (again, ignoring boundaries,)

the spatial relationships of the partitions between loops and arrays recur along dimension d with

a span equal to the least-common-multiple (LCM) of the dimension d width of the partitions, wd.

Consider the following example

(define a (array (1000 1000) 5))
(define c (array (1000 1000) ))

(doall (x 0 997 1)
(doall (y 0 997 1)

(set (aref c x y)
(+ (aref a (+ x 2) y) (aref a x (+ y 1))))))

The loop and arrays are partitioned for 200 processors, thus

The LCM blocks are (1800 x 3350), which unfortunately are even larger than the original dimensions

of the items.

But large, relative prime partition widths can be padded out to the nearest simple fractions of

each other to reduce their LCM block size. Reshaping the loop and c into (75 x 70), for example,

will reduce the LCM blocks to (300 x 350). The number of partitions participating in the alignment

is thus reduced from around 200 to around 20 for each partitioned item. Padding the partitions to

powers of two, as we have already pointed out, also improves the efficiency of compiled code with

Name Partition Size Number of Partitions

Loop (72 x 67) (14 x 15)

a (100 x 50) (10 x 20)

c (72 x 67) (14 x 15)



regards to generating distributed array references. The alignment phase then is able to do its work

on a subregion reduced to the LCM of the partitions of the loops and arrays to be aligned. The

alignment pattern is then repeated to tile the actual spaces.

We are assuming here that the index expression involves short constant offsets. The LCM

reduction becomes ineffective when the index offset is large or global in nature, or index expression

has a periodicity of its own. As an example, consider a loop computing ai = bi + bN-i. This

accesses an array (of size N) from both ends; alignment on a reduced subregion will not yield the

right results.

Now we show how align from Figure 3-7 accomplishes alignment of partitions. At runtime,

align is given mi, the initial-task number corresponding to the detachment number. It returns a

partition number, m, that, when applied to the coordinate translations compiled into the code body,

will yield the right iterations to execute and the right array elements to access. The assignment

numbers given at the end of last section must first be inversely-mapped, for they indicated in which

detachment a partition is to be rather than which partition a detachment should assume. Once we

have this list, it can be compiled as a static lookup table. Index into it with the detachment number,

and the content gives the partition number. To accommodate LCM reduction, though, we would

actually use mod(mt, len), where len is the length of the mapping list, to index into the table, and

add mt - mod(mt, len) to the content. This simple operation allows mappings of the aligned LCM

subregion to be extended by repetition to the whole iteration space at runtime.

4.3 Intra-detachment Thread Scheduling

The threads and partitions in a detachment are given a provisional execution order by the compiler

in this phase. We use the lazy future to construct one or more brigades from the collection of

threads and loop partitions assigned to a detachment. A lazy future provisionally in-lines its child

thread by saving enough parent state and directly entering the child code, leaving the parent thread's

continuation available for load stealing by idle processors. The initial cost of a lazy future's deferred

task creation is much less than that of a regular future's immediate task creation, but much higher

when that deferred task creation eventually becomes necessary.

An implication of using lazy futures is that there would be a top-level control thread that

sequences through the threads of a detachment in forming each brigade, thus pre-determining the



default serial order that these threads will execute on one processor in the absence of load stealing

or synchronization fault. Lazy futures also demarcate the load-steal points along that control thread.

Of runtime efficiency concern are the order in which the original threads are sequenced along

the control thread and the placement of the load-steal points. In a sense, thread scheduling with

lazy futures is akin to most of the "optimization for the common case" strategies4 - it creates

a scenario in which some static choices of thread ordering and granularity will most likely save

more overhead from unnecessary task creation and synchronization, while other choices will likely

result in orderings that cause more runtime synchronization faults or granularities that cause more

mutual load stealings among processors, over some probability-weighted set of possible runtime

conditions. The compiler management goal is to construct static code blocks that are sure to result

in runtime occurrences matching those expected cases to dominate the exceptions significantly.

In this section, we will examine some detachment configurations appearing at the end of the

partition and alignment phases, and propose ways to pre-schedule them statically. The primary

concerns here are to control the default sequential thread ordering and the location of load-steal

points. The former we consider more important than the latter when they cannot both be addressed

because, again, the former occurs presumably as a part of the "common case", whereas the latter

only occurs during an exception to the former. We rely as well on the original, programmer-

specified sequence and on the single-assignment semantics of return values of futures and self-

synchronizing data structures to predict the default thread ordering. The relative thread ordering

specified in the program is assumed to be the one likely to cause the least number of synchronization

faults. This is based on the observation that many Mul-T programs can be execute as serial

programs free of deadlocks simply by removing all future declarations. When this order cannot be

determined or honored, ordering inferred from reads and writes to single-assignment locations may

be substituted. As we shall see, one such case arises from a need to expedite the scheduling of the

loop unrolling critical path.

Before motivating the general intra-detachment thread scheduling problem, we first consider

some commonly encountered cases. The following sections cover both independent and partially-

dependent threads scheduling that arise from parallel loops. Finally, the general threads scheduling

problem is examined and a particularly interesting instance of this scenario, the joining of parallel

4E.g., branch prediction and processor register allocation gain from cost and usage frequency asymmetries. Branch
instructions with symmetrical timing (whether taken or not) and heap-allocated procedure local variables - like the
regular future - offer no such a way for a compiler to improve on their performance.



loops, is presented in depth.

4.3.1 Scheduling Independent Loop Iterations

The first, very common and relatively simple case is the scheduling of threads that originate from

the same control point in the parent process (e.g., successive future expressions or parallel loop

iterations). Because they are from adjacent threads, where adjacency is defined as those futures that

follow one another without any intervening operations5, their serial (i.e., thread spawning) order in

the program may be freely interchanged. More importantly, it means that the threads assigned to

different partitions from this control structure can all be all be started totally independently once

the program control has reached the futures' point in the parent thread. It also means that the

stolen threads can be started immediately without regards to the state of computation in the parent

detachment. For this reason, this case offers the maximum parallelism unrolling of all the scenarios

we will examine, and it is beneficial to cast program structures into this case. For the doall

loop, in particular, the induction variable incrementing in series with each iteration invocation may

be assumed absent (or internalized in the loop node) so that all the iterations may be considered

adjacent - as long as each iteration eventually gets the proper induction variable binding value.

We will see in the next section what to do when there is serial code between the iteration threads.

We consider the problem of building a lazy future tree to execute a given number of identical

length adjacent threads. Depending on how much work each load-stealing operation is to take, we

construct a tree to spawn out subtrees with the desired fractional divisions. A lazy thread fan-out

tree is shown in Figure 4-5 with load-steal points arranged to allow each steal to take approximately

I - n of the remaining work in the detachment (therefore, leaving n of the work behind, 0 < n < 1),

assuming the oldest-first load-stealing policy described in Section 2.2.4. The first steal thus takes

(1 - n) of the total threads assigned to the detachment; the second takes n(1 - n) of the remaining

n. The original task executing the detachment is then only left with n2 of its assigned threads. In

reality, the lazy future builds only binary trees, by forking a child thread from its parent continuation,

so the resulting tree would be unbalanced for all n # 0.5. An actual lazy future tree with n ; 0.6

is shown in Figure 4-6.

We now examine the implications of choosing n, the loading ratio, and propose a simple

analytical model to obtain some insights into choosing n to minimize run time. We focus on the

5This idea will be refined later in discussion of the general thread scheduling of Section 4.3.3.



Figure 4-5: Controlling the Loading Ratio of a Lazy Future Tree

Figure 4-6: Binary Lazy Future Fan-out Tree for n , 0.6

possible outcomes at a single internal node in the tree, whose function is to split the amount of work

given between its child and its continuation. The model uses these parameters:

T = total number of threads under the node

n = tree loading ratio (0.5 = balanced)

A = threads in the child branch = nT

B = threads in the continuation branch = T - A

c = time to steal a lazy future and create task

t = expected time between lazy future creation and its stealing

To limit complexity, the analysis assumes that A and B are not split further. At time r a processor

(PE#0) creates a lazy future and enters its child to compute the threads of A. Some t time later

an idle processor (PE#1) comes to steal B, the continuation. After spending time c to migrate the

context and set up a new task, it starts B at time r + t + c (See Scenario #1 of Figure 4-7). The



completion time is the later of the two processors to finish. We will therefore pick n to minimize

max(A, t + c + B) = max(nT, t + c + (1 - n)T)

which occurs when

nt = t+ c+ (1- n)T

Moving terms to get

(2n - 1)T = t + c

and then

n = (t + c)/(2T) + 1/2

This is the first scenario, for which t + c < A and the continuation is better stolen. In Scenario #2

of Figure 4-7, it takes too long for another processor to become idle and come steal a task, so that

all the work is done by one processor. This happens when t + c > A or really t + c > T since A

could be any fraction of T. The completion time for the node is therefore

P(T) = min(Scenario #1, Scenario #2)

= min((t + c + T)/2, T)

Along with the earlier solution
t+c 1n= C+-
2T 2

we see that 1/2 < n < 1 and that n increases as T decreases to t + c, which is actually more likely

to happen further down the tree.

Scenario 1:

PE #0 A

t .
PE #1 ----

Time

Scenario 2:
A B

PE #0 A B

Figure 4-7: Execution Time Schedule for Computing the Loading Ratio

Figure 4-8 shows the load split ratio as a function of the amount of work (thus the number

of threads to be scheduled) in units of t + c at each node of the tree. In practice, both A and B



may be recursively broken down further by other stealing processors, and it is difficult to ascertain

a value for t, since it is very dependent on when there are idle processors and how the runtime

scheduler hunts for work. In light of these shortcomings, this model should only be considered as

an exercise in gaining insights into the scheduling dynamics at each tree node and a stepping stone

in building far more sophisticated stochastic models. Our implementation currently constructs trees

with n = 0.5.
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Figure 4-8: Optimum Loading Ratio vs. Amount of Work

In the context of the restructured example program of Figure 3-7, doall-segment would

call ftree, the lazy future fan-out tree macro shown abstractly in Figure 4-9, using the induction

variable name and the range of its values assigned to the partition. For multiple dimension loops

the macro can be recursively nested. In actual implementation, the multiple dimension calls are

collapsed somewhat and the induction variable values are computed more efficiently. Note that

the induction variable values can be computed at each tree node independently of its preceding

iterations because of the constant start, limit, and stride values. This constraint has allowed the

substitution of a fan-out tree for the linear loop unrolling.

For more arbitrary loop controls, the paradigm to be described in the next section may still be
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applicable instead of resorting to the general procedure. Thread terminations are explicitly checked

in this code, so that when the code returns, it signals the completion of all work below the current

node. This signal can be waited on before starting computations following the loop, or collected in

a list to be checked as part of program termination condition.

(define-local-syntax (ftree var start limit stride . body)
'(iterate btree ((begin 0)

(end (/ (- ,limit ,start 1) ,stride)))
(let ((range (- end begin)))

(if (< range 2) ;; leaf node?

(let* ((,var (+ ,start (* begin ,stride)))
(afut (future ,@body))) ;; left thread

(if (> range 0)
(let ((,var (+ ,var ,stride)))

,@body)) ;; right thread
(touch afut)) ;; synchronize completion

(let* ((center (+ begin (/ range 2)))
(afut (future (btree begin center)))) ;; left subtree

(btree (+ center 1) end) ;; right subtree
(touch afut))) ;; synchronize subtree completion

'done))) ;; acknowledge everything here is done

Figure 4-9: Lazy Future Fan-out Tree Macro for Parallel Loop Iterations

4.3.2 Scheduling Partially-dependent Loop Iterations

A somewhat more complex case arises when the threads to be serialized are not all from the same

control point, but rather have small intervening sequential sections. This occurs, for example, in a

C-style for loop with an iterated future body:

el e2 e3

for (p = list; p != NULL; p = p->next )

future( ... expression with p ...

where both e2, the termination check, and e3, the induction variable "incrementing function", really

are intervening sequential loop sections, even when the body itself is an expression fully enclosed

in a future. Instances fitting this scenario include the above example of dereferencing items from a



list, each of which is then processed in parallel, or the calling of a pseudo-random number generator

to produce a random value and a seed for the next iteration in a typical Monte Carlo simulation.

This case is our asynchronous analogue to the globally synchronous doacross construct [12] or

the software iteration pipelining [29] in the sense that parallel tasks are initiated staggered in time to

execute iterations of a partially-dependent loop on multiple processors. In a globally-synchronous

system, a simple duration can be specified to offset the start of tasks on each successive processor

that will insure that the corresponding instructions in successive iterations are delayed by the same

initial offset to satisfy their dependence constraints. In an asynchronous system, however, the serial

section must be executed before explicitly initiating a succeeding task. The thread structure of

a generalized parallel for loop is illustrated in Figure 4-10. On the left, we see the dark line

representing the sequential control thread of the iterating loop, along which parallel threads are

spawned to execute the body of each iteration. Example partitions A and B are shown in shaded

regions. A brigade, in other words a provisional serialization, must now be constructed to honor the

partition specification without really creating individual tasks out of the threads at first.

H CNJ C~ *

ro Td d r

m m mV V %J %
PQ M PQ MC

Figure 4-10: Restructuring of Loop Iterations with Intervening Sequential Sections

The ramifications of the relative scheduling order between the two thread branches exiting at

a future fork were discussed in Section 2.2.3. Here we encounter another example6 where the

6The earlier case being the doall, where the sequential unfolding of fully-parallel iterations are rearranged such that
some are executed, "out of textual sequence", concurrently on distinct processors.
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compiler explicitly manipulates the input code to control that execution order. Since a lazy future

executes the child thread in-line first, the individual iteration threads in a brigade will be executed

first by a task, only after which will the succeeding task be initiated. In order to expedite the path

to start the next task over the lower priority execution of the iteration threads, the parent and child

continuations are swapped in the diagram on the right. The unrolling branch is thus in line to start

immediately - before work begins on any of the loop body iterations - until all iterations in the

brigade have been exposed. At this time the unrolling branch is passed to the succeeding processor

node, and execution of the iteration bodies begins on the "return" path. To describe the process in

terms of the elements of the parallel f or loop template, upon starting the loop, sequential statements

e3 (el for the first iteration) and e2 are executed and a stealable return continuation is created for

the loop body, as shown by the solid tracing arrow on the left side of Figure 4-11.
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Figure 4-11: Execution Schedule of a Partitioned Partially-dependent Loop

This execution proceeds until a brigade crossing is reached, which is accomplished through

a real task creation onto the next processor in succession. The succeeding processor, which is

determined by the static alignment as before, then starts its loop task, while the first processor

returns to evaluate the loop bodies it has left behind. These actions are shown by the solid tracing

arrows in the diagram on the right. The abstract macro definition to implement the parallel for loop

is shown in Figure 4-12. The construct (future-on <node-id> <expression>) enqueues a

task on processor <node-id> to evaluate <expression>. Note that a task executes the loop bodies

of, for instance, Brigade A of Figure 4-11 on its return continuation, so that body. 2 is scheduled

before body. 1 (i.e., in the reverse order from the way they are entered). The reversal would be

entirely inconsequential if the loop bodies are truly independent of each other, as they should since

m

m



any loop-carried dependencies should have been hoisted into the expression e2 or e3.

(define-local-syntax (facross var start limit stride el e2 e3 . body)
(iterate new-brigade ((partition 0) (begin ,start) (end ,limit))

(future-on (align partition)
(iterate loop ((,var begin))

(if (= ,var ,start) ,el
,e3)

(if ,e2 (block
(future (if (< ,var end)

(loop (+ ,var ,stride))
(new-brigade (+ partition 1)

(+ ,var ,stride)
(+ end ,limit))))

,@body))))))

Figure 4-12: Macro for Unrolling Partitioned Partially-dependent Loop Iterations

This scheme for accommodating partially-dependent loops has some incompatibilities with the

current lazy future mechanism and the runtime system implementation described in Chapter 2.

First, the in-line distribution of brigades requires the sequential section to be passed among the

processors, therefore it becomes very important for the critical sequential path to unroll its way

around at a high priority in order to distribute computation quickly. We have prioritized the static

scheduling within a brigade, but the runtime scheduler should also cooperate. A simple modification

is to provide a priority task queue, for this and other time-critical operations. But task dispatching

can be even more expeditious if a processor's active task can be preempted by such a time-critical

task. Current work on user-level IPI (interprocessor-interrupt) messaging and user-specifiable IPI

message handler facilities [28] will eventually allow this idea to be implemented from within the

compiler-generated code.

Second, it is not possible to restructure the steal points freely as before, so that the default oldest-

first load-stealing policy now takes only a single iteration at a time. To overcome this setback, the

lazy-future queue can be annotated for entries from the facross macro and the load-stealing code

modified to extract the n-th oldest future in the queue, where n can be either a fixed number or

determined as a fraction of the number of futures in the queue. These changes will complicate

substantially what is now a very minimal runtime scheduler. Of course, the future queue size will

grow linearly with the partition size instead of only logarithmically.



Lastly, because of the considerably longer time it takes for a loop to be distributed onto all the

participating processors, there is a sufficient timing window - when starting on an idle machine

- for heavy amounts of load stealings from those idle processors that will not be getting their

turn for a while. To prevent the static partitions and alignments from being severely disturbed at

runtime, load stealing should be turned off initially on all processors until a processor has had its

turn to unroll its iterations. Yet another tack is to assign more iterations to the "earlier" partitions

to compensate for losing their workload due to such early stealings, as well as for the fact that the

"later" partitions will have less time to complete their work due to their later starting time. This

tapering of the partition sizes is less necessary if there is much work pending before the loop and

work awaiting after it, especially if what comes before or after is another f across macro-spawned

loop that will mate well with the staggered starting or completion schedule of the loop. These are

concerns that should be addressed as part of performance tuning parameters and heuristics.

4.3.3 Scheduling Random Parallel Threads

Now we consider the general case of forming a brigade from threads co-located in a detachment

that are from random parts of the program. The procedure starts by constructing a serial thread

that calls, through a future, the first thread, in program order, in the detachment. Thereafter, it

calls, always through the revocable serialization of a future, successive threads in the detachment.

When it encounters a recognized loop partition, the appropriate partition macro introduced in the

last two sections is expanded to replicate instances of the loop body. When all the threads have

been incorporated, the brigade ends. The brigade is then called - through a future-on or a

gang task-spawning macro such as the do-paral lel -tasks of Figure 3-7 - at the original call

point of the first thread in the brigade by its parent thread. The serial thread chaining the threads

of a brigade must preserve the original lexical environment and control order for each thread that it

incorporates.

* Sometimes, in incorporating a thread, it is possible to conform to these requirements by

inserting synchronizations to control explicitly the scheduled execution of the thread.

* In other cases, when a single thread is unable to reach all threads of a brigade, several separate

serializing threads must be used to cover all of them, thus forcing a breakup into several

brigades.



A task will be created at runtime for each of these serialized brigades. We will consider the

lexical-environment and control-order preservation requirements separately.

Lexical-environment Preservation

Since the thread body of a future sees the variable bindings valid at the point of call, it is necessary

in the restructured code to maintain the original lexical environment of each thread incorporated

into a brigade. Since the brigade sees the variable bindings at the time of its calling, (i.e., in the

context of its first thread), a later thread can only be incorporated if it shares the same lexical context

as the first thread, or that all the intervening context-defining code has been incorporated into the

brigade. Since the compiler normally keeps track of the active context at all points in the program,

it is easily decided if the condition is met to incorporate a given thread. If not, then a new brigade

has to be started at that thread and continued forth. The example in Figure 3-7 showed the brigades

being broken up midway by the evaluation of (f 0), originally from the function SetBounds,

which is part of the main thread and thus was not incorporated into any of the other brigades.

Control-order Preservation

The purpose of control-order preservation is to insure that the serial sections (i.e., all computations

not explicitly parallelized with future declarations) in the restructured code strictly obey the original

program order, since Mul-T allows side effects. Control order is like that imposed by the serial

program execution order - top to bottom, left to right, and, for function calls, depth first - in a

sequential program, except that the future declarations create concurrent branching structures in the

linear program order. Thus, in the example below,

ex-1
(future a)
(future b)
ex-2
(future c)
ex-3



the control order is

(future a)

(future b)
... -- ex-1

(future c )

1 ex-3 - ...

The two future expressions a and b, and the expressions in the continuation thread

ex-2 (future c) ex-3 ... are mutually parallel. Threads are adjacent if they are parallel

and share the same predecessor control node. So, (future a), (future b), and the contin-

uation starting at ex-2 are adjacent. And although (future c) is parallel with the other two

futures, it is not adjacent to them. It is, however, adjacent to ex-3.

Figure 4-13 shows the thread diagram for some code fragments. The solid lines indicate the

threads that have been assigned to the same brigade that is now our job to schedule. In Fragment A,

functions f and g are in this brigade. Scheduling f and g into a brigade is trivial - just leave the

code as is. It is similar for Fragment B, where f and g are in the same brigade but p is elsewhere. In

Fragment C, the intervening future computation of h, which is to be executed from another brigade,

is not a problem, either; scheduling of f followed by g and simply bypassing h:

(future (f x))
(future (g x))

But Fragment D does present a problem in that g cannot start without waiting for h to have completed.

Possible solutions include inserting explicit signaling code between brigades to synchronize the

computations and forcing a break in the brigade (such that when f is completed, the task is

terminated; a new task is then created to execute g when h finishes). 7

In codifying rules for thread scheduling in these scenarios, we may directly chain threads via a

future without violating control-order constraints when they meet one of the following conditions:

* A thread may be chained to its parent. This is just what the future declaration does.

7Another possible solution, which we have not yet explored, dispatches the compiler to analyze the side effects of h.
If there are none, or none that is seen by g, then the brigade for f and g can be scheduled as if in Fragment C.



A:

(future (f x))
(g x)

B:

(future (f x))
(future (g x))
(p x)

C:

(future (f x))
(future (h x))
(future (g x))
(p x)

D:

(future (f x))
(h x)
(future (g x))
(p x)

(g x) (f x)

(f x)

(h x)

(p x) (g x)

(h x) (f x)

(p x) (g x)
Vi

Figure 4-13: Scenarios for Thread Scheduling

* A thread may be chained to its adjacent thread. The iterations of a doall, as seen in

Section 4.3.1, is a special case of this, where all iterations are adjacent once the induction

variable computation is abstracted into the loop node itself or pushed into the iterations.

These rules allow adjacent threads to be scheduled in any order amongst themselves, and allow any

subset of them to be allocated to other processors, or stolen by them, without additional scheduling

or synchronization considerations. Moreover, as the parallel threads in Mul-T do not in general

mean dependence-free computation as they do in Parallel Fortran, we should avoid choosing a static

ordering of adjacent threads where there would be compiler-detectable forward data dependencies

involving synchronizing data references among these serialized threads - these dependencies are



certain to incur expensive runtime synchronization faults. Such information can be obtained during

compilation in the same way as standard data-flow analysis. A simple, blind heuristics suggested in

Section 2.2.3 is to follow the serial program order for scheduling adjacent threads whenever there

is no overriding reason otherwise.

When the listed conditions cannot be met, two threads can be chained in a brigade only after

inserting proper synchronization to insure execution of the threads maintains the control order.

We use the example code below to demonstrate the overall structure of a program transformed by

generalized static thread scheduling.

(define (example)
(let ((a (future (computeArray n))))
(reduceArray a)
(future (scaleArray a) ) ) )

Here reduceArray applies a serial reduction function over the elements of the array; computeArray

and scaleArray are parallel loops to fill a j-structure array with initial values and to scale the

element values based on the result 8 of the reduction function, respectively. Note that the futures

share the same lexical environment, except for a, which is actually defined in the first future. Sup-

pose that the functions called are in-line expanded for analysis and transformation purposes, that

reduceArray is a sequential function executed in-line within the top-level thread, that the many

parallel loop iterations in computeArray and scaleArray have been partitioned and aligned

based on their high-volume communication through the intermediary array a, and that we wish

to schedule the threads assigned to each detachment. The scenario is diagrammed at the top of

Figure 4-14. Arcs show the arguments and results data exchange between the functional blocks.

The return value from scaleArray is labeled as d. The partitions of scaleArray cannot be

chained directly to the corresponding partitions of computeArray with which they have been

co-located - the intervening code in reduceArray must be executed before scaleArray can

begin. (Here, the result of this reduction function is stored in a global variable and used by the

subsequent scaling function.)

Correct control order can be maintained, however, using explicit synchronization provided by

inserting a flag-setting statement at the completion of reduceArray and modifying the partition

8Stored in some global variable.



joints to wait for the flag before proceeding into the scaleArray code. This merging trans-

formation is shown in the lower half of Figure 4-14 as the added gating of control flow inside

the brigades of computeNscale 9 created from chaining partitioned iterations of the original

computeArray and scaleArray functions. Cache consistency protocol will have propagated

all intervening store updates from reduceArray to the scaleArray partitions when they have

detected the flag setting. The introduced synchronization likewise would prevent scaleArray

from side-effecting the computation of reduceArray by delaying the former until the latter's

completion. The example also shows how to rearrange the data value exchanges that occurred on the

original future entries and exits. The standard future interface at computeArray is restructured

to accommodate the return of the future value, a. The variable a is bound to a newly created

placeholder before the function call. It is then passed into computeNscale, which will set the

placeholder once its compute-array phase is completed. This provides reduceArray with its

function argument before the actual future for computeNscale returns finally with the value of

d. The top-level structure of the completed brigade is shown below.

(doall-segment ... ) ;; step through computeArray partition

(set-placeholder a local-a) ;; ''return'' a
(jref flag 0) ;; wait for reduceArray

(doall-segment ... ) ;; step through scaleArray partition

As in the previous case, the arrangement of the steal points here is also not ideal for the oldest-first

load-stealing policy of the runtime scheduler, although it is much less problematic than that of the

partially-dependent loop iterations. Note that while a processor is working through iterations in its

assigned computeArray partition, the oldest continuation in its lazy future queue is the top-most

pending recursive call of the f tree. Another processor stealing it would take the iterations in the

second tree branch rooted at that node, along with the entire latter part of the brigade, including all

of its assigned scaleArray partition. This, of course, is not the intended load-stealing behavior.

Placing a future declaration, annotated so its future queue entry is marked as anchored "local",

before entering the top-most ftree will force the stealer to take the stack frames between it and

the next entry in the lazy future queue. The stealable continuation will then extend only up to the

end of the scaleArray partition. The runtime scheduler's stealing function has to be modified

9This new function name is created for the purpose of exposition only.



Figure 4-14: Proper Synchronization in Chaining Data-parallel Loops



to recognize the queue entry annotation and to skip those that are restricted to be the local stealing

points.

The static scheduling to chain multiple partitions of threads into brigades does not in general

always increase the run length10. At worst, the brigades will all block at each synchronization point

and later resumed, resulting in run lengths just as long as if individual tasks are created for each

of the loop partitions. Under other conditions, some task scheduling overhead is avoided. But the

formation of larger brigade has several more advantages:

" Independent tasks need not be created for the scaleArray partitions, so they will not appear

in the scheduler task queues before the corresponding a elements are actually computed by

computeArray. Since the runtime scheduler does not know about the control and data

dependencies between tasks, if those tasks were in the task queues, they may be randomly

scheduled out of that order. In addition to the task scheduler thrashing that this may cause,

early start of a task not ready for execution may also cause resources to be allocated long

before they are actually required. Example initializations that scaleArray may do include

memory allocations and the spawning of yet more tasks.

* Locality of reference can be better maintained within each task when loop partitions operating

on the same data are chained into brigades. When a task running a brigade is migrated, the

compiler-imposed partition alignment is maintained through the migration. Since the producer

and the consumer of a data array segment, as well as the allocation of that segment, can all

be relocated together by any such global load-balancing operation, locality is much better

preserved.

* When there is no intervening code between the partitioned loops to be chained, a direct

chaining, without any explicit or implicit synchronization at their boundary, will suffice. The

run length is then effectively increased by the formation of these brigades.

The intra-detachment thread scheduling transformations of the types proposed here are certainly too

complex to perform when using the runtime mechanisms of the lazy future alone, which is only able

to affect thread integration locally at each fork-join interface. Only compiler-directed scheduling

can coordinate these transformations effectively.

10The number of instructions executed between synchronization points.



4.4 Policies for Loop and Array Partitioning

We identified three major places in the proposed compilation framework where some external policy

decisions are needed to proceed: the granularity of static partitions the compiler assumes and the

amount and which parcel of work each load stealing from the detachment will take. We will focus

here on the primary issue of determining the appropriate static partition granularity. The other

issues have already been taken up in discussions on static thread scheduling.

The independent policy for controlling granularity of static partitions is a set of heuristics that

allows the choice to be progressively "more optimal" when more runtime information is known

at compile time (e.g., system and problem size). Throughout, a minimum task granularity should

be maintained based on the cost structure of communication and the cost of process creation. The

following suggests some heuristics, in increasing complexity order:

* Each partition consists of some small fixed number of iterations. This enforces the minimum

task granularity requirement in the absence of more useful information.

* Each partition consists of k/p-th of the iteration space of a loop, where k = some fractional

constant and p = the number of processors in the system. Partition size is variable as a function

of the loop bounds and the number of processors. Initial partitions can be either distributed

around the system or left as stealable tasks on key processor nodes. With k = 1/n, n initial

partitions are generated initially for each processor nominally. The current implementation

uses this method, choosing k = 1.

* As above, but compile several partition sizes; let the runtime system choose the best matching

case for a given runtime condition.

* Instead of assuming each loop to be distributed across all processors in the system, construct

a static global schedule and use it as a basis for a top-down static partitioning algorithm

such as [41] when all partitioner-relevant program and timing parameters are available to the

compiler. If not, statistically-derived estimates of these runtime parameters (such a tack was

used by [46]) might be substituted. With it we determine statically which loops are possibly

concurrent and thus obtain an estimate for a smaller subset of processors to which those

loops are distributed. The larger, fewer partitions improve locality and reduce the amount

and possibly the distance of the inter-node communication. Feed these partition sizes to the



static partitioner of Section 4.1.4. The compiler partitioned code may synchronize at loop

boundaries using the completion signal mentioned in Section 4.3.1 and generated as shown

in Figure 4-9 to preserve the global static schedule.

The threads of the partitions chosen are, as usual, serialized via lazy futures as given by the various

scenarios described in this chapter, so that they are subject to load stealing by a remote or the local

processor.

4.5 Summary

In this chapter we presented the implementation strategies and the mechanisms for realizing the

compiler phases of the Revocable Thread Serialization framework. Fine-grained parallel programs

are analyzed and statically partitioned, aligned, and scheduled to optimize their data-parallel com-

putations. This process allows compiler-based analysis and optimization strategies developed for a

parallel Fortran-like programming system to be introduced in an asynchronous, applicative function-

based parallel system. The performance results of this implementation will be presented in the next

chapter.



Chapter 5

Performance Characterization and

Benchmark Programs

Thus far we have introduced a framework for integrating compiler analyses and optimizations and

the runtime scheduler to manage the behavior of parallel programs. In the last chapter we saw

how the compiler transforms the input program into explicit packages of code and data allocations,

called brigades, that the runtime scheduler can deposit onto processors, migrate about them, and

even take apart later when there is not enough work for the idle processors. In this chapter we discuss

some performance issues. We will examine the effectiveness of some of the key components of this

framework, realized as described in the last chapter, as compared to existing alternative strategies. Of

the framework's components, the program analysis front-end and the loop/array partitioning are the

most tentative and most highly borrowed from existing work. They exist to complete the processing

chain and can be updated with any suitable state-of-the-art techniques and implementations. The

focus presently is thus on the performance of the serialization and alignment processes.

We devise simple test programs to test particular aspects of the proposed system independently

and to contrast their behaviors with those of some alternative schemes. First, a comparison of several

thread serialization strategies is seen, followed by an examination of the effects of the alignment

process, and then by a demonstration of the impact of the compiler's mistakenly serializing threads

that results in a runtime synchronization fault. Finally, a fairly large scientific benchmark program

is shown to run on this implementation. Again, alternative serialization strategies are tried on it,

and the success of alignment on the large number of loops and arrays are analyzed. These results



Strategy Partition Alignment Serialization
Eager Future no no no
Self-schedule no no no
Lazy Future, Linear no no soft
Lazy Future, Tree runtime-decomposable tree no soft
Static-block compiled blocks no hard
Aligned Static-block compiled blocks yes hard
Guided Self-schedule varying runtime blocks no hard
RTS compiled decomposable blocks yes soft

Table 5.1: Taxonomy of Some Named Parallelism-management Strategies

serve to validate the initial performance claims made in Chapter 1, as well as the applicability of

the proposed framework to real parallel programming scenarios. The simulation results used in

this chapter are all obtained from a very detailed software simulator [6] that models the precise,

cycle-by-cycle behavior of the processor, coherent cache, network router, and memory controller

that are in the Alewife hardware system. Throughout, power-of-two system sizes and array and loop

sizes are chosen so that the much cheaper bit shifts and masks can be substituted for multiplication,

division, and modulo operations (see Section 4.1.3); there is no reason otherwise to insist on them.

Since we will refer to alternative strategies in the literature, and use comparisons with them

in validating the effectiveness of RTS, it is useful to systematize their functions according some

set of bases. Table 5.1 gives a taxonomy of some of them in terms of their particular policy as

mapped onto each of the RTS transformation phases. Under serialization, soft means provisional

and revocable, while hard means the iteration threads, once scheduled at compile-time or runtime,

are irrevocable.

5.1 Performance of the Revocable Thread Serialization

Section 1.3 outlined the particular intentions, structures, and performance characteristics of the

proposed RTS framework. We will verify here one of the principal characteristics of RTS - its

tolerance to variations in execution time and deviations from the schedule the compiler forecast.

Further, it needs to be shown that this is accomplished without incurring a high cost relative to

other simpler schemes even within their optimal operating regions. A synthetic-load program is

used in an experiment to generate a scenario similar to that in Figure 1-4. We need a simple



loop that can be partitioned and whose iteration body execution time can be varied explicitly

over a controlled range. It is then compiled and run using different parallelism management

strategies. The test loop in Figure 5-1 has a sequential counting loop, dotimes, inside its parallel

relaxation loop. Its count is determined by the elements of array len, whose values come from

(nrandom-array nPEs m a ), which returns an nPEs-element array of normally-distributed

random numbers with mean m and standard deviation a. tid is a compiler-generated detachment

identification.

(define a (make-array 2048))
(define len (nrandom-array 16 200.0 50.0)) ;; nPEs mean sigma

(doall (j 0 2047 1)
(set (aref a j) (+ i i j))) ;; initialize array

(doall (i 1 2046 1)
(dotimes (k (aref len tid)) ;; run relaxation

(set (aref a i) (/ (+ (aref a (+ i 1)) (aref a (- i 1))) 2)))))

Figure 5-1: Load-balancing Test Program with Variable Loop Iteration Length

Table 5.2 contains 16- and 64-processor simulation results. With m = 200, each relaxation

loop iteration thread averages 9975 cycles in duration. Due to the random numbers involved in the

experiment setup, multiple trials are run with each parameter tuple and their results averaged in the

graphs of Figure 5-21. Among the strategies tested, the static-block has compiler-partitioned blocks

of arrays and iterations that are in-line serialized. The partitioned lazy linear and RTS, which in this

context is better described as partitioned lazy tree, have compiler-partitioned blocks of arrays and

iterations that are unrolled linearly and branched out in a tree, respectively, through lazy futures.

The lazy linear and lazy tree have unpartitioned loops that are unrolled linearly and branched out

in a tree, respectively, through lazy futures. Lazy linear is what a standard loop with future body

generates in the unaugmented Mul-T system. Being an order of magnitude greater than the rest, its

curve is well outside of the range of the graph.

It can be observed that on 16 processors, a very small system, the various strategies, except

lazy linear, all started fairly evenly, the differences due mostly to those overhead costs of declaring

futures and traversing the trees. As expected, static-block has the lowest runtime overhead. With

'Note that the vertical axes do not start from 0.



m = 200 16 Processors 64 Processors
Strategy a Execution Times Execution Times

Static-block 0 1392017 - - 483617 - -

25 1595034 1670762 1619741 508909 623087 557020
50 1854188 2009874 1893601 596825 764937 684470
75 2120295 2345412 2171146 687211 898652 810777

Partitioned 0 1534614 - - 704468 - -
Lazy Linear 25 1778823 1931938 1915576 766668 668648 707176

50 2131180 2515769 2331488 705700 789501 888280
75 2533539 3056381 2843841 846121 982112 1022862

RTS 0 1548936 - - 519066 - -
(Partitioned 25 1501748 1426756 1545170 502611 525719 554917
Lazy Tree) 50 1546579 1580752 1749395 555750 556129 553783

75 1448073 1520807 1892771 718742 610831 710175

Lazy Linear 0 19229731 - - 7841420 - -
25 18472668 18298400 20066170 7759946 7539042 7855315
50 17404961 16968201 20530348 7541988 7171750 7786662
75 16264287 15335747 20566577 7334738 6611877 7410600

Lazy Tree 0 1711577 - - 749606 - -
25 1538486 1594866 1703929 838091 751480 730029
50 1491956 1540442 1839930 724190 695636 727814
75 1442679 1455353 1923084 709193 767791 783361

Table 5.2: Simulation Results: Varying a of Thread Size, m = 200

the introduction of thread-size variations, however, the completion time of static-block becomes

directly dependent on the slowest (i.e., the largest) partition, which is exactly linearly proportional

to the standard deviation of the normally-distributed thread size random variable. The graph shows

a nearly linear curve for it. Lazy linear fares similarly poorly as thread sizes vary and load stealings

increase, since each steal takes the continuation to all the iterations remaining in the partition -

not a very efficient load-redistribution scheme. Both lazy tree and RTS show good immunity to

thread-size variation, while lazy linear has the worst results throughout. Switching to the larger

64 processor system, the lazy tree shows a marked lag behind RTS, because it is initially an

unpartitioned tree. The partitioned brigades initially distribute work more efficiently and evenly.

This is much more critical on a larger system where the communication delays and, actually even

more important in this case, the runtime manager cost in searching for available work, is much

greater. This is because the runtime manager on each idle processor blindly polls the task queue of

every processor, in round-robin order. A runtime manager that searches tasks hierarchically, such as

proposed in [35], might yield a better asymptotic behavior at the cost of complicating the manager
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operation. Such a scheme consolidates multiple task searchers in the system through a hierarchy

tree of middle-level managers to avoid duplication of efforts and to improve the worst-case time to

find work anywhere in the system from a linear search to a logarithm of the number of processor

nodes. Both graphs incidentally show that RTS starts to outperform static-block when a is above

the teens. This, of course, is dependent on a host of factors such as task granularity and runtime

cost of each strategy.

With m = 40, each relaxation loop iteration thread averages only 1970 cycles in duration. In

comparison, once a stealable task is located, an interprocessor load steal takes approximately 150

to 350 cycles for the futures in this program. The same experiment is repeated with the new setting;

Table 5.3 and Figure 5-3 plots the results. Similar trends in the data as before is seen. The crossover

between RTS and static-block now occurs at approximately 9 on 16 processors but not in the range

tested at all on 64 processors. The thread granularity is simply too fine here to overcome the

baseline runtime cost of dynamic load balancing on 64 processors for these test parameters. Again,

the lazy linear results, ranging 2918137 - 3568461 on 64 processors and 4122152 - 5117163 on

16 processors, are an order magnitude slower than the rest. So its curves do not show up inside the
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graphs.

m = 40 16 Processors 64 Processors
Strategy a Execution Times Execution Times

Static-block 0 291628 - - 118813 -
5 331185 342927 337096 123343 125598 136205

10 380166 410773 386520 142634 145326 152955
15 429481 472220 441617 161736 165292 170543

Partitioned 0 404659 - - 175462 - -
Lazy Linear 5 475176 412714 399923 183910 179971 229439

10 535960 505328 506342 217523 184165 199653
15 565279 684341 657973 250904 256444 232079

RTS 0 362460 - - 176491 - -
(Partitioned 5 361999 366300 395155 161895 170955 176555
Lazy Tree) 10 373855 362098 410969 182663 165579 172445

15 343891 363800 423812 186988 187065 173854

Lazy Linear 0 4891687 - - 3073282 - -
5 4706215 4681352 5053293 3093825 3649347 3060321

10 4581033 4402304 5065143 3045613 3017529 3085214
15 4275738 4122152 5117163 2985252 2918137 3568461

Lazy Tree 0 395455 - - 197560 - -
5 409379 383936 404764 210570 220494 258367
10 355863 368598 416430 184389 222366 228942
15 359647 364301 444615 213125 217313 223890

Table 5.3: Simulation Results: Varying a of Thread Size, m = 40

Chapter 1 mentioned that dynamic load variations can come from asynchronous hardware

operation, cache or page misses, or network routing. Another source of dynamic load variation is

purely algorithm-induced. We examined GAMTEB, a photon-neutron transport program using the

Monte Carlo technique. In it, each particle is fired randomly down a cylinder and its interaction

with the field traced and its final exit condition recorded. The variations in compute cycles spent for

each particle of a run on a uniprocessor are summarized in the table below. The standard deviation,

a, of the samples is normalized such that the mean, m, is 200, for comparison with the earlier

test suite. When the particles are evenly distributed on the nodes of a multiprocessor, the dynamic

load variations among the nodes will gradually diminish when more particles are allocated to each

processor. This behavior is deducible from the central limit theorem [17], which states that the

sum of a series of independent random variables has a decreasing variance when an increasing

number of random variables in the series are summed. So we can expect the dynamic load variation
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induced purely by the random nature of the GAMTEB program algorithm to be less than the nominal

single-particle-per-processor statistical variations cite when many more particles are simulated on

relatively few processors.

GAMTEB(n=32) : min 22.1 max 98.6 m 200.0 a 90.0

GAMTEB(n=128) : min 23.0 max 127.8 m 200.0 a 87.5

We see from this set of experiments that the proposed RTS has performance that is competitive

with alternative strategies. Even compared to the statically partitioned and aligned blocks, which

has very low runtime overhead, under uniform runtime loads, RTS ranks a fairly close second with

only fractionally worse speed. Under a wide variety of system sizes and runtime load variations,

RTS has the distinction of having consistently performed very well against the others.

5.2 Impact of Partition Alignment

We set forth here to examine the contribution of the alignment phase to the performance of the

compiled code. Alignment of task and data has shown in cases to be an important gain in SIMD
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and systolic systems [26, 43] where the computation at the nodes is fairly lean in comparison with

the internode data movement costs. The close lockstep operation also makes impromptu remote

fetches expensive since they hold up all the nodes. On the other hand, when most nodes fetch

during the cycle, very bursty network activity results, causing excess congestion and delay. In a

shared-memory MIMD system, the cost structures and functionalities are significantly different to

require a re-assessment. The outcome is useful for deciding whether a more complex compile-time

strategy is warranted.

The code in Figure 5-4 transposes array a into b, four elements at a time. The alignment process

places partitions of the loop and array b, and the transpose-located partitions of array a into the same

detachment, so that the array copying is entirely internal to each node. When it is bypassed, the

default detachments are formed from the naturally-overlaid (i.e., non-transposed) partitions of the

loop and arrays, thus causing interprocessor data movement during the array copy. Each iteration

copies four elements because of the four-word cache line size; thus an average of one extra network

data fetch per iteration is required when alignment is bypassed. In either case the detachments are

then serialized using compile-time static-block and RTS, or the runtime self-scheduling methods

commonly seen in SPMD systems.

(define a (array (1024 256) 9))
(define b (array (256 1024) 0))

(doall (x 0 255 2) ;; loop for tiles of 2
(doall (y 0 1023 2) ;; by 2

(set (aref b x y) (aref a y x))
(set (aref b (+ x 1) y) (aref a y (+ x 1)))
(set (aref b x (+ y 1)) (aref a (+ y 1) x))
(set (aref b (+ x 1) (+ y 1)) (aref a (+ y 1) (+ x 1))))))

Figure 5-4: Alignment Test Program

Table 5.4 contains 16- and 64-processor simulation results on the effect of alignment. To

distinguish better the contributions from a multiple of underlying factors, a set of runs are done in

which the simulator is put into a "perfect memory" (PM) mode. In it, all memory fetches, whether

local or remote, hit in the cache and thus take exactly one cycle to complete. It represents an absolute

lower-bound on program execution time attainable by any alignment. In fact, it is even better than

the best partition alignment since an optimal alignment puts all data required by a node into its local



memory, which still takes 11 more cycles to access than a hit in the cache. But as we shall see, the

PM data still reveals much. Data for compile-time aligned and unaligned runs are tabulated along

with their ratios to the PM data. The ratio of unaligned to aligned runs are tabulated in the last

column. The runtime thread scheduling methods are not amenable to alignment. The independent

loop iterations are dispatched from a central site one at a time to requesting processors under self-

scheduling [49], or a block of iterations at a time under guided self-scheduling [40], whose iteration

block size is a constant fraction of the number of iterations remaining to be dispatched. Plots of the

data are in Figure 5-5.

16 Processors
Strategy Perfect Mem. Aligned % of PM Non-aligned % of PM % of Aligned

Static-block 809109 918105 88.1 1070887 75.6 85.7
RTS 1092877 1420555 76.9 1503399 72.7 94.5

Self-schedule 865458 11 7942880 10.9
Guided S-S 870111 1702002 51.1

1 64 Processors
Strategy

Static-block
RTS

Perfect Mem.

203745
283447

Aligned % of PM 11 Non-aligned

216606 94.1 301643
337924 83.9 398227

% of PM % of Aligned

67.5 71.8
71.2 84.9

Self-schedule
Guided S-S

309258
221733

27004075
2552842

1.1
8.7

Table 5.4: Simulation Results: Loop/Array Partition Alignment

We observe that alignment is more effective (i.e., the aligned partitions achieve a higher per-

centage of PM's performance) with the static-block than with RTS, in spite of the higher baseline

overhead of RTS that tends to reduce the numerical percentage of similar effects. This is due to the

interference of the runtime load stealing on the optimally aligned detachments. In the non-aligned

runs, static-block shows a similar percentage reduction as RTS from that of PM's performance,

because for both cases almost every array a fetch missing in the cache is remote. The greater perfor-

mance degradation of non-aligned runs from the aligned runs (i.e., "% of aligned") for static-block

vis. RTS shows that it is more sensitive to, and also benefits more from, proper alignment. But the

most notable observation is that, even in this very memory-intensive loop, the difference between

good and poor alignment is not manifold, but rather a small fraction. This conclusion, drawn from

performance comparisons of PM to the non-aligned, should not be casually generalized beyond

tii IIII-" '
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the 16- to 64-node Alewife machine. In Alewife, the computation and supporting (e.g., coherent

caching and network) operations on each node typically is much more complex than those of a SIMD

machine, such that the internode data movement does not add a significant cost. Other overheads

contributing to the high baseline cost per iteration include the full index coordinate translation that

each array reference now undergoes, as per Section 4.1.3. The randomly staggered network accesses

from relaxing the lockstep SIMD operation further alleviates network congestion and reduces the

delay of network-bound memory accesses, as mentioned earlier.

The runtime strategies of self-scheduling and guided self-scheduling already show a high-degree

of congestion at the central iteration dispatch site with 16 processors. With the expansion from

16 to 64 processors, they both exhibit a marked slow down in completion time. In order for these

runtime schedulers to function properly in the Alewife system, either the thread granularity must be

increased much more than we use here or the thread dispatch site must be distributed much more

finely, thus incurring another layer of load-balancing protocol between the dispatching sites. In the

extreme, a dispatch site is set up at each processor node and the load-balancing protocol may consist

of an initial partition and alignment by the compiler as we have described and some kind of runtime
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negotiated trading of a single or a block of iteration indices between the sites. In other words,

we have a strategy that is just like the RTS except for its lack of a fully revocable serialization: a

thread is still not allowed to block in midstream and another one started. But this last point can be

overcome with a conventional multi-tasking scheduler. The next section will focus on the runtime

behavior for revoking intractable thread serializations.

5.3 Cost of Undoing Intractable Serialization

We demonstrate here another claim made in Section 1.3, that the system performance gradually

degrades when the compiler has mistakenly serialized parallel threads against actual data depen-

dencies. Unlike some of the other strategies used in our comparisons, it will neither deadlock

nor produce the wrong results. Since unsynchronized data accesses between parallel threads are

not guaranteed to occur in any specified order by the language semantics, they never raise any

problems. The concern lies only in the synchronized data accesses (e.g., J-structure references or

future touches) in which a synchronization fault causes the task to be suspended and another task

started that will eventually cause the original blocking condition to be removed.

The code in Figure 5-6 simulates such a scenario. Here, the i-th loop iteration sets the J-

structure element ai and reads either ai, which succeeds, or ai+l, which fails until iteration i + 1 has

completed. The decision function looks up a list to determine if the current iteration should break.

It is produced by (nrandom-lists index-range), which returns a list2 of randomly-generated

iterations each processor will break on. The thread serialization applied is RTS.

(define breakons (nrandom-lists 1024)) ;; index-range
(define a (jstruct (1024)))
(doall (i 0 1023 1)

(set (jref a i) 0)
(jref a (if (break? i breakons tid) (+ i 1) i))))

Figure 5-6: Runtime Serialization Revocation Test Loop

Figure 5-7 shows run time with the test loop partitioned for four and 16 processors. Dashed linear

regression lines are plotted for each, which show close fit. The axis intercept is the non-blocking

2Actually a processor ID-indexed array of lists - to eliminate list-reading contention among the processors.
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completion time, where the compiler has serialized the parallel threads in an order consistent with the

runtime dependence relations, while the slope is the penalty for each required runtime revocation.

The four-processor runs have intercept at 90220 and slope of 3867; the 16-processor runs have

intercept at 34618 and slope of 2337. These figures are, of course, dependent on the system

configurations, program structures, and runtime states. This scenario represents a concern from

those trying to serialize parallel programs: without the revocability of serialization, parallel threads

that are not dependence-free must be executed as independent tasks. But this revocability is also

useful for parallelizing iterations that are mostly independent except at a few unforeseeable points.

Revocation allows the runtime scheduler to bypass the threads blocked by dependence constraints

without incurring the cost of requiring all threads to become independently scheduled tasks.
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Figure 5-7: Incremental Cost of Revoking Compile-time Serialization

5.4 The SIMPLE Benchmark Program

We present a fairly large scientific benchmark program, SIMPLE, and describe its compilation and

running results on this implementation, along with results using a few other alternative schemes. The
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SIMPLE code [9] solves a two-dimensional hydrodynamics and heat conduction problem. It has

become one of the standards for benchmarking high-performance computers, so performance data

from many commercial and research systems exist. Its top-level structure, major subcomponents,

and dataflow dependencies are depicted in Figure 5-8.

With the exception of procedures world and generate, which set up the program constants

and the initial conditions, the entire program is iterated once for each simulated time step. Each

iteration starts by calculating the positions of the border zones surrounding the grid boundary by

reflecting the adjacent interior point across the boundary, and by calculating their physical attributes

(i.e., mass density, viscosity, and pressure.) The problem is then divided into a hydrodynamics

and a heat conduction phase. During the first phase, the velocity and position of the nodes are

incremented based on the acceleration vector at each node. Then, new values of area, volume,

and density at the new positions of the nodes are computed along with their intermediate values of

pressure and temperature. The second phase transfers energy between adjacent zones to account for

the heat conduction. This involves solving a system of linear difference equations by the alternating

direction implicit (ADI) method to determine the final pressure and temperature of each zone.

For a grid size of n x n, both of the major phases consist of some doubly nested loops generating

O(n 2) work for each simulated time step. But many others are one dimensional, such as the code for

grid boundary handling, and the ADI code, whose inner loop is sequential; these cannot scale beyond

n. Some of the loop iteration bodies perform table lookups that have loops with data-dependent

termination, making vectorization and SIMD execution difficult. Scepter gives up on determining

repetition counts for them; rather, it relies on runtime load balancing if needed.

We also encounter several reduction functions (e.g., computing the extremum or summation

over an array). Their fully associative and commutative properties could in principle be exploited

in automating the partitioning so that their partial results are computed on each processor, before

the final value is assembled via a fan-in tree among the processors. In our version, atomic updates

to designated "accumulator" locations are used to compute these functions. Table 5.5 summarizes

the looping and procedure call structures of SIMPLE. The "Sizes" field indicates the loop iteration

count when running SIMPLE (k x 1), specifying the grid size of the program.
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5.4.1 Static Alignment of Loop/Array Partitions in SIMPLE

Since a loop partition communicates only with data partitions and vice versa, by examining the

number of edges (see Section 4.2) emanating from each loop partition and the fraction of those

that enter data partitions that are aligned to the loop partition, we can assess the effectiveness of

the alignment phase in localizing memory accesses. Table 5.6 displays the figures, as recorded by

the compiler, for each partitioned loop of SIMPLE (64 x 64). When partitioning for increasing

numbers of processors, we observe that the rate of successfully localizing accesses decreases as

expected. The total figures are tabulated at the bottom. The lower-than-expected alignment rate is

due to the partitions being chosen at first, with the intent of optimizing cache hit rate and without

concern for the later alignment stage. So, in attempting to align square and strip partitions, there is

a certain failure rate in localizing data accesses that increases when the system is scaled. But as we

have already noted, the actual performance impact of aligning partitions seem be relatively small

on the current version of Alewife system under construction. 3

5.4.2 Speedup of SIMPLE

Table 5.7 and Figure 5-9 show the execution time of SIMPLE (64 x 64), for one time step iteration, on

varying numbers of processors and under several parallelism management strategies. The sequential

run is a completely serial version, while the single-processor static-block has the loops and arrays

"partitioned" for one processor, i.e., with the loop/array address translations of Section 4.1.3. They

all use the same baseline system: Scepter and Orbit compiler, Alewife machine, and runtime library.

The speedup figures are all normalized to the fully serial version. The static-block and RTS show

good gains up to 16 processors, but quickly level off beyond that machine size. The serial sections

and many one-dimensional loops do not provide enough parallelism to keep the machine busy with

the chosen grid size - at around 2 million cycles for a 16 processor run using static-block or RTS,

the run time on a real processor is about 1/20 of a second. RTS operates with the runtime scheduler,

while static-block has its runtime scheduler turned off. But as we had encountered earlier in the

synthetic benchmark analyses, this scheduler, because of its round-robin task querying, becomes

less effective, and more a burden, with increasing number of processors. We note once again that the

3Initial tests of the recently assembled working hardware prototype showed the network has several cycles higher
latency than the expected delay assumed in the simulator. The effect of alignment is therefore underestimated in our
simulation results.
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entirely runtime managed self-scheduling shows a high-degree of congestion at the central iteration

dispatch site with only 16 processors, and that even the guided self-scheduling loses much of its

performance beyond 16 processors.
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Figure 5-9: Speedup Curve of SIMPLE (64 x 64)

5.5 Summary

Through the set of synthetic benchmark programs and a scientific application, we tested the char-

acteristic behaviors of the RTS framework integrating compile-time and runtime parallelism man-

agement. These results validate the expected behaviors initially described only qualitatively in

Chapter 1. We saw that by paying a small additional overhead to the static-block, RTS is able

to achieve flexible runtime load balance and deadlock avoidance, and that by admitting compile-

time pre-partitioning, pre-alignment, and pre-serialization, it is able to accommodate massively

data-parallel computations that often overwhelm the runtime-managed self-scheduling, guided self-

scheduling methods, and the future-based Mul-T programming paradigm.
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In Procedure Loops Calls Remarks
Simple t BoundaryNodeReflection, Sequential loop: time steps

BoundaryZoneReflection,
VelocityPosition,
HydroWorkOnBoundary,
HydroEnergy, Conduction

BoundaryNodeReflection k ReflectNode Boundary top/bottom rows
1 ReflectNode Boundary left/right columns

ReflectNode
BoundaryZoneReflection k Boundary top/bottom rows

1 Boundary left/right columns
VelocityPosition k x l Allocate matrices

k xl Over all points in parallel
HydroWorkOnBoundary k Boundary top/bottom rows

1 Boundary left/right columns
k Sequential sum reduction

HydroEnergy k x 1 Allocate matrices
k x 1 ArtificialViscosity, TableLookup Over all points in parallel

InvertEnergyTheta, PressurePoly
k Sequential reductions

ArtificialViscosity
Conduction k x l Allocate matrices

k Initialize boundary columns in parallel
k x l Over all points in parallel
k x l Over all points in parallel
1 Initialize boundary rows in parallel
k Initialize boundary columns in parallel
k xl Parallel columns, sequential rows
k xl Parallel columns, sequential rows backwards
1 Initialize boundary rows in parallel
k x Parallel rows, sequential columns
k x I Parallel rows, sequential columns backwards
k x I TableLookup, EnergyPoly, Over all points in parallel

PressurePoly
k Sequential reductions
1 Sequential reductions

InvertEnergyTheta "while" TableLookup, EnergyPoly Data dependent iteration count
EnergyPoly
PressurePoly
TableLookup "while" Data dependent iteration count
Generate k x l Array initializations in parallel

k xl Array initializations in parallel
k xl Array initializations in parallel

Table 5.5: Loop and Call Structure in SIMPLE
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Memory Accesses Made Local through Alignment
In Procedure Loop 4 PEs 16 PEs 64 PEs

BoundaryNodeReflection k 548/1220 272/1220 132/1220
1 548/1220 162/1220 80/1220

BoundaryZoneReflection k 1200/1200 1200/1200 1180/1200
1 290/1200 50/1200 20/1200

VelocityPosition k x 1l 104874/128374 91654/128374 82170/128374
HydroWorkOnBoundary k 722/2190 462/2190 168/2190
HydroEnergy k x 1l 100849/113400 93346/113400 87200/113400
Conduction k 30/60 15/60 8/60

k x 1 19204/19470 18679/19470 17653/19470
k x 1l 19204/19470 18679/19470 17653/19470
1 59/120 19/120 12/120
k 62/90 46/90 38/90
k x 1 5220/12600 2700/12600 1260/12600
k xl 5520/7200 4560/7200 4080/7200
1 102/150 82/150 72/150
k x 1l 960/12600 2460/12600 1440/12600
k x 1l 3660/7200 1740/7200 960/7200
k x 1l 27893/34200 24746/34200 23192/34200

Generate k x 1 5581/5581 5581/5581 5581/5581
k xl 47878/52200 44656/52200 40968/52200
k x 1 1800/1800 1800/1800 1800/1800

Total 346285/422205 312909/422205 285667/422205
82.01% 74.11% 67.66%

Table 5.6: Localizing Memory Accesses in the Parallel Loops of SIMPLE (64 x 64) through
Alignment

Strategies
Sequential
Static-block
RTS
Guided Self-schedule
Self-schedule

1 4 16 64
18944862 1.000
23205369 0.816 6699269 2.828 2207309 8.583 1673348 11.322

6705150 2.825 2258634 8.388 2106327 8.994
6866618 2.759 3051180 6.209 34563411 0.548
9848378 1.9236 17200908 1.101 168002657 0.1127

Table 5.7: Speedup of SIMPLE (64 x 64)
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Chapter 6

Conclusion

We have presented here work on the design and construction of a framework to integrate compile-

time and runtime parallelism management for MIMD multiprocessors. Under the Revocable Thread

Serialization (RTS) framework, the compiler is given the duty to partition, align, and then provi-

sionally serialize the fine-grained parallel threads specified in the input program to run on a known

number of processor nodes. Under an ideal scenario, all these decisions will, in fact, be correct and

will lead to an optimized execution as does a statically-scheduled system with a perfect compile-

time accounting of all runtime timings. There would only be the addition of the small overhead of

the provisional serialization cost in the RTS runs. But when the number of runtime processors is

changed from the expected number, when the amount of work assigned to each processor is changed

due to data-dependent conditionals, when the timing of various machine operations are changed by

unanticipated network congestions or cache activities, or when the scheduled thread execution order

is inconsistent with the actual data dependencies, the RTS framework allows the runtime scheduler

to re-balance the processor loads or to rectify the impending deadlock by migrating or reordering

the threads.

We saw evidence in Chapter 5 that the individual characteristics of RTS, verified through various

synthetic programs and finally through an actual scientific benchmark program, appears as claimed

in comparison with alternative strategies. The central observation is its unique ability to adapt to

various runtime uncertainties through gradual performance degradation, starting from a point very

close to the optimally statically-scheduled management strategy with a totally-anticipated runtime

scenario. We also saw the effects and the effectiveness of thread and data alignment in the context

of the Alewife machine.
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Functionally, the work on RTS provides a seamless way to merge the programming paradigms

and the operating mechanisms that support efficient control-parallel and data-parallel computations.

Programmers do not need to resort to different programming models and methods to write these

distinct classes of application programs.

6.1 Future Work

There are several major areas of immediate extensions to the current work: adding a sequential

language front-end to Scepter, updating the analysis and transformation modules with better or

newer techniques, implementing and introducing controlling policies for the RTS framework, and

improving the scalability of the runtime manager.

Scepter accepts parallel programs in Mul-T as input. It should be somewhat trivial adapting it for

other parallel programming languages. An interesting proposition is to target Mul-T as the output

language of a parallelizing compiler for a sequential language such as Fortran. The parallelizing

compiler would be charged with the task of discovering as much parallelism as possible, while

Scepter would fold the excess parallelism onto available processors.

The analysis modules in place now are adequate for handling the input programs we have used.

Their repertoire of functions can be enlarged by substituting newer or more complex methods for

any of the modules. Of the transformation modules described in Chapter 4, the partitioning module

is the most studied in the literature and it would be of interest to adapt one of the more general

schemes (the existing one produces rectangular partitions) and examine the implications to code

generation and to compare the performances. Other refinements such as decomposing reduction

functions along partitions are useful. This occurs when, for example, in summing the elements of

a partitioned array. When the array is partitioned, an accumulator should be established on each

processor for the values in the subregion of the array mapped to the processor. Only when the final

sum for each accumulator is obtained should interprocessor communication be used to merge the

total value from among the processors. This two-level distributed reduction function optimization

cannot be programmed from the input program and should therefore be generated by the compiler.

The currently implemented controlling policy for determining the static partitioning granularity

is a very simple one - all loops and arrays are distributed evenly onto all the configured processors.

There are several other alternative policies described in Section 4.4; some can make use of partition
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sizes determined by a top-down partitioner such as [41]. Feeding from such a program a select

subset of processors to use for a particular loop or array object into Scepter's partitioning phase will

direct it to allocate only those processors for the object, leaving the rest for concurrent execution

of other loops. This space-sharing arrangement moves the operating point further to the left on the

speedup curve for each of the loops to improve overall efficiency as explained in Section 1.1. The

RTS framework is thus able to incorporate the decision choices from a hierarchical static partitioning

and scheduling algorithm.

The current version of the runtime scheduler has seen its limitation on performance scalability in

those results in Chapter 5 where it was used. A more scalable way to search for and distribute work

such as [35] may be substituted. There are also ready reasons, given in Sections 4.3.2 and 4.3.3 to

support the thread scheduling scenarios described therein, for using multiple priority-levels of task

and future queues for the runtime scheduler. If the machine is partitioned for space sharing as in

the above paragraph, the runtime scheduler may do well to steal preferentially from the processors

in its own machine partition, before going outside it for work.

The use of the lazy future to serialize threads provisionally serves two main purposes: for load

balancing and for resolving deadlocks. When the deadlocking possibility can be fully disproven

by the compiler, the load balancing effect can still be achieved if very small threads are joined

together through hard in-lining. This may require parallel loops be unrolled several iterations first,

for example, before the expanded body is turned into a future. This transformation helps to amortize

the cost of very fine-grained future calls.

Finally, the alignment results from simulation need to be re-evaluated on the Alewife hardware

prototype and on other machine platforms. As we have pointed out, initial tests on the hardware

prototype showed the network to be slower than had been assumed by the simulator. This has the

effect of understating the performance impact of aligning threads and data.
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Appendix A

Program Analyses in Scepter

Scepter is a source-to-source parallelism restructuring package that implements the compiler phases

of the Revocable Thread Serialization (RTS) framework. Scepter (structural diagram in Figure 3-

1) generates and maintains an internal hierarchical graphical representation of the source Mul-T

program called WAIF, a recursive acronym for WAIF is Alewife's Intermediate Form. WAIF has

two abstraction levels: a program graph with data access edges (WAIF-PG) and, overlaid on it,

an abstracted thread/data communication graph (WAIF-CG). WAIF-PG is a custom version of a

conventional program dependence graph. From a series of scalar, alias, dynamic, index, and escape

analyses on WAIF-PG, Scepter produces WAIF-CG to summarize the runtime interaction of threads

and data objects implied by the underlying program graph. This appendix briefly explains the

approaches taken in these program analyses to produce the WAIF-CG, whose purpose is to support

the later transformations for thread/data partitioning, alignment, and serialization.

From a Mul-T source program, alpha conversions assign bound variables unique names and

expands constants and macros. The de-syntax-sugared code, consisting of only around a dozen

different forms, is translated into a WAIF-PG graph, with each node representing an expression

list. In addition, in the WAIF-CG graph, a thread node is created to represent each future, and a

data node for each data object. After the conversion and the initial WAIF node generation, two

classes of analysis and transformation modules are successively applied to the WAIF graph. Class

One modules analyze WAIF-PG to discover and refine communication relationships implied in the

program and build the WAIF-CG to store this information:

* Static scalar alias and dataflow analyses on variable references provide the static data depen-
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dence edges for the program graph and communication edges for the thread/data communi-

cation graph.

* Dynamic analysis differentiates invocations of the same textual code. This treatment applies

for loops, recursions, function calls, etc., and data structures dynamically allocated inside

these replicating program structures. Thread and data nodes are annotated with nesting-level

information when available. Non-inlined calls (i.e., calls that have a symbol referring to

an external function, instead of a lambda form at its first, functional, position) may cause

subgraphs containing dynamic sections to be replicated.

* Index analysis refines dependence relations on data nodes down to index subranges or indi-

vidual elements of arrays. Here each initial data node is split into as many subnodes as it has

distinct subranges.

* Escaping references analysis detects, for unknown calls, references passed into or out of an

analyzed region. The unknown calls arise from cases such as incremental compilation or

indirect calls. References escaping from a region is assumed to be used somewhere outside.

A data array that has been partitioned must have its address translation function passed out

at runtime, and references to elements of an externally-defined array must check for such an

addressing function in case it has been partitioned.

Class Two modules analyze the WAIF-CG graph produced by Class One modules and, along with

some system specifications, restructure the WAIF-PG graph. These are described in depth in

Chapters 3 and 4. Finally, the code generator translates the restructured WAIF program graph into

a restructured Mul-T program.

A.1 Static Scalar Alias and Dataflow Analyses

This section describes the static scalar dataflow analysis that traverses a WAIF-PG graph and

deduces the possible communication relationships. Static signifies that the bodies of loops (and

recursions) are not unrolled or otherwise considered to be multiple-instanced, and the branches

of conditionals are both considered to be executed. Scalar implies that the analysis does not

distinguish dependences and aliases beyond their object identity. All data structures are treated as

atomic entities (i.e., references to distinct elements of an array are only recognized as references to
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the same array; distinguishing indices values in these cases will be addressed by the index analyzer).

The determination of these relationships is conservative. Some of the communications identified

here will in fact not be necessary. These may be identified and refined or removed later by more

specific analyses. In the rest of this section, the notion of freevars of an expression is introduced

first, followed by the propagation of freevar values in constructing alias sets of variables. Finally,

we show how communication edges are inferred from the collected information.

A.1.1 The Freevars

Associated with each WAIF-PG node is a list of freevars,1 which are the variables referenced

within an expression but not bound in it. These freevars are significant to our analyses because

they constitute the external communications required to evaluate the expression. Each entry in the

freevars list keeps a record of the number and type of references made of the variable by the node

and its descendants. Variable references can only appear in a ref or a set ! node, which reads or

writes the variable value, respectively. Based on the type of access of these nodes, we further make

a distinction between referencing the variable value itself (i.e., a scalar or an entire data structure)

and referencing through the variable value (i.e., for an element of an array or a selector, such as the

car, of a cons or a structure). There are thus four access types: read, write, read dereferenced, and

write dereferenced. At each internal (non-leaf) WAIF node, the freevars list is computed as a union

of the freevars of all its descendant nodes, with the freevar access counters summed whenever the

freevars merged in the union refer to the same variable. At we traverse up the WAIF-PG, all those

freevars which become bound at a node are dropped from the list propagated furthur upwards, but

their freevar access counters are first summed into the bound variable's access counters.

A different freevar propagation procedure applies in regards to future nodes - the parent node

of a future should not see any references made by the body of the future expression, since that is

not a part of its thread. So the freevars of a future node, as seen by its parent node, is always null;

although the freevars list kept at the node still reflects the references external to the future, plus the

references needed to create the future closure.

'The definition of the structures of WAIF nodes are documented in [32].
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A.1.2 Constructing Alias Sets

Concurrently to recording and propagating the freevars, we also record variable definitions and

assignments to track the propagation of values. This would not be of immediate interest in a static

analysis, but since data structures are passed and assigned by reference in Mul-T, several different

names could refer to the same array or structure. By noting the transfer of variables' values, which

occurs at a set ! or a call node where formals are bound to actuals, a complete set of alias names

to a given data structure-containing variable can be traced. In the absence of further information, we

must assume that an access dereferenced through any one of these variables constitutes a possible

communication link with accesses dereferenced through all other variables in its alias set.

We cross record for each variable binding or assignment the left (destination) and right (source)

variables involved in their respective raliases and laliases WAIF-PG node fields. For non-inlined

function calls, the same is done for bindings of actuals to formals; however, if the function symbol's

value cannot be found statically (due to separate compilation, runtime binding, etc.), then all the

actual arguments are marked as escaping values and later handled by the escape analysis.

The alias set, A(v), for variable v can be computed from the simple raliases and laliases relations

by forming a set, R(v), of an raliases-transitive closure on the variable, and then forming the set

A(v) = £((R(v)), of laliases-transitive closure over the set R. Consider the set of bindings in the

following code fragment:

(f t)

(f s)

(define (f v)

(g v)

(define (g u)

Figure A-1 illustrates the alias set for v in an alias-relation lattice as the shaded region. The alias

set of a variable cannot be computed incrementally from its lalias or ralias neighbors'. The alias

set of s does not include t, for example, but may contain others that are not in v's alias set. In
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this construction, all rightmost variable nodes in the figure are associated with a data node, since

that must be where the data values are either created or their references first passed into the code

fragment under analysis. In particular, these include all places where calls such as make-array

are made. The data nodes a and b are thus the only data structures that an write dereferenced through

v can possibly alter. We shall refer to this set of data nodes as the reachable set of variable v. Note

that we do assume these rightmost nodes are not aliased further, unless told explicitly otherwise.

Also, v in fact is never bound to both the values of s and t; this is only an artifact of the static

analysis. The dynamic analyzer has an opportunity to rectify this, for example, by replicating 2 (i.e.,

inlining) the function body of f.

lalias " 0 ralias dnodes

Figure A-1: The Alias Set of Variable v within the Alias-relation Lattice

A.1.3 Deriving Communication Edges

The static scalar communication edges can now be computed from the freevars list and the alias set

given above. We create, for each thread node, a communication edge for each of the following:

* Freevars of the future expression of the thread (to and from the thread node one of whose

lambdas binds the freevar),

* Indirect reference through the freevars of the future expression of the thread (to and from

each data node in the reachable set of the freevar),

2This replication may be either physical or just logically annotated to distinguish the actual instances.
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* Freevars of each non-inlined lambdas called by the future expression (to and from the thread

node one of whose lambdas binds the freevar),

* Indirect references through the freevars of each non-inlined lambda called by the future

expression (to and from each data node in the reachable set of the freevar),

* Return values of the future expression (to and from the thread node which called it),

* Indirect references through the bound variables of each lambda (inlined and non-inlined)

called by the future expression (to and from each data node in the reachable set of those

bound variables).

In the first and third conditions above, we implicitly assumed that lambda-bound variables (i.e.,

the "local stack frame") are allocated on the processor executing the lambda 3. The width of each

edge corresponding to each variable reference is the sum of all the freevar counters found in the

above search for that variable4 . This should be scaled by the size of each variable access, which is

otherwise assumed to be the normalized unity.

A.2 Dynamic Analysis

One textual piece of code may in fact be executed a number of times or perhaps not at all, as dictated

by the control structures of the program: non-inlined calls, conditionals, loops, and recursions.

The dynamic analysis highlights the multiple-instance aspects of some subgraphs. As we shall see,

WAIF graph components can be annotated to indicate their instance space if they occur in a regular

structure (e.g., simple loops), or entire subgraphs can be replicated if there are a few sufficiently

irregular instances (e.g., for non-inlined calls).

A.2.1 Annotating Dynamic Instances

We use annotations to denote multiple-instantiations of a subgraph when the control structure is

simple and regular, such as for loops with constant-stride induction variables. This is logically

equivalent to an actual replication of the graph and may be viewed as a short-hand notation for it.

3This is consistent with the Mul-T compiler's code generator.
4Except indirect structure references are kept as individual edges, because they may really be for distinct locations,

once the index analyzer examines them.
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The annotation syntax offers an extra benefit over replication in that the number of instances need

not be a constant determinable at compile-time.

The thread node's enclosing-loops field contains a list of (logically) enclosing loop

nodes, derived from a traversal of the call graph and the program graph. From this information the

instances list is created by visiting each loop node, extracting its induction variable (ivar), range

(low and high), and stride specifications. The permissible range and stride values are expressions

consisting of constants and basic arithmetic functions of other variables. When they are all reducible

to constants at compile-time, an exact number of instances for this subgraph can be determined.

Analogously, when a data structure is dynamically allocated within an iterated code block, we

can identify the distinct instances of the data node, all of which are textually represented by the

same identifier, by similarly annotating its enclosing-loops and instances fields. With

multiple-instanced thread and data nodes come the multiple-instanced edges. The instances list

on an edge restricts the validity of the edge to those instances of the thread node.

This allows instances of threads with slightly different communication patterns to be jointly

represented in our notation. The instance-map function specifies the mapping from the instance

tuple of the from object to that of the to object:

(ivar t , ivar2t , ., ivar t) = instance-map (ivar , ivarf,..., ivarf f)

for a communication edge from the n f-tupled instance of the WAIF-CG from node to the n t-tupled

instance of the to node.

The importance of the extra information gained from the dynamic analysis is seen in the example

code below, in which we shall concentrate on the inter-iteration data dependences of the outermost

loop.5 The code computes tsteps of the relaxation

aij = (aij + aij-1 + ai,j+l + ai-,j + ai+,3j)/5

For now ignore the array indices and simply treat them as scalar references. We shall take up

analysis and treatment of the array indices in the two inner loops in the next section.
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(define (loop t a)
(if (< t tsteps)

(let ((newa (make-jstruct n n)))
(future

(doall (i 1 n 1)
(doall (j 1 n 1)
(set (aref a i j)

(/ (+ (aref a i j) (aref newa i (- j 1))
(aref a i (+ j 1)) (aref newa (- i 1) j)
(aref a (+ i 1) j))

5)))))
(loop (+ t 1) newa))

newa))

(loop 0 aO)

There are in fact tsteps logical copies of the n x n array, each with a lifetime lasting two consecutive

outer iterations. Dynamic analysis labels each reference through a in the innermost loop as an access

of the data node of the make - j struc t from iteration t - 16, and each reference through newa as

an access to the data node of the current outer iteration's make-j s truct. For our example, the

two communication edges in WAIF-CG corresponding to each a reference would be

[from: aO, to: thread#foo, instances: (), instance-map: (0, i, j), count: 1, ... ]

and

[from: newa, to: thread#foo, instances: (t, 1, tsteps - 1, 1), instance-map: (t + 1, i, j),

count: tstep - 1, ... ].

Knowing this is useful for the domain decomposition process, as well as for future compile-time

storage management and reclamation. In contrast, without the analysis, we would still have a valid,

albeit less exact, graph in which all a's and newa's are aliased to the single data node created for

the single textual make-j struct found by the static analyzer. The simpler representation would

force a single partitioning strategy on all instances of the data structure and preclude a lifetime

analysis to reuse storage.

Our notation breaks down with call graphs that are not trees, e.g., if the thread is inside a

loop which is called from a few locations. This may cause the thread to have several different

6Except for those in the first iteration, which access the data node of the external variable aO.
7thread#foo is the thread-id assigned to the innermost loop's body.

120



enclosing-loops lists, one for each path up the call and program graphs. There are two ready

solutions, one of which is to permit a regular-expression-like syntax for enclosing- loops and

instances. At a branch along the path, alternates ( [ A I B 1) can be specified. The Kleene

star notation can be modified to specify complex enclosing loops (i.e., A * n for n iterations of

path A). We have opted to adopt the simpler solution of replicating the subgraph and permitting only

simple enclosing-loops lists.

A.2.2 Replicating Subgraphs of Dynamic Instances

When the total number of instances is known, replicating subgraphs is the most general way

to represent dynamic instances 8. Whole loops and recursions may be "unrolled" this way; but

the much more likely use for this procedure is for non-inlined calls. As mentioned above, the

complications resulting from having to maintain loop nesting structure information across non-

inlined calls probably justifies the brute force in graph replication. Replicating a subgraph is

straightforward, and requires no special support or modifications in the WAIF specification.

A.3 Index Analysis

Index analysis refines the communication relationship involving arrays discovered earlier in scalar

analysis. For the WAIF graph, it resolves references of an array data node to index subranges9 or

individual elements of that node. Given an un-indexed edge of an array data node produced by

the scalar analyzer, which would be interpreted as meaning a dependence on the whole array itself,

the index analyzer annotates it with the most-specific indices range it could find. This may then

result in a splitting of the data node itself, which we will describe later. The functional mapping of

induction variables to array indices extracted from the WAIF-PG is kept in the WAIF-CG edges. It

appears in the form of a multi-valued function:

(indexl, index2 ,.. ., inded) = indices-map (ivarl, ivar2, , . ivarn)

describes a set of edges denoting a d-dimension array accessed from an nth-level loop, where the

index's are ordered as the indices field of the corresponding data node and the ivars's as the

8Again, ignoring space considerations for now.
9In current implementation specification, an index subrange for an n-dimensional array reference is a subset of the

valid indices that can be denoted by the linear expression co + clil + c2i2 + ... + cin, where ik I 1 _< k < n are the n
indices and Ck I 0 < k < n are integers.
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instances field of the thread node. The illustration in Figure A-2 shows the instance space to

indices space mapping for the inner loops of the example in the last section:

(doall (i 1 n 1)
(doall (j 1 n 1)

(set (aref a i j)
(/ (+ (aref a i j) (aref newa i (- j 1))

(aref a i (+ j 1)) (aref newa (- i 1) j)
(aref a (+ i 1) j))

5))))

Each of the five edges in the figure is actually an (i x j)-instanced object, as are the data nodes and

the thread node. The edges are labeled with their 2-valued indices-map functions. The actual

WAIF-CG graph is shown just below.

A.3.1 Splitting Data Nodes

A common operation on the WAIF-CG data nodes is, what are all the communication edges with

respect to a particular element, or a subrange of indices, of an array? To permit efficient lookup of

such queries, a hierarchical structure is used to store interval information. When the index analyzer

determines that two edges of a data node have indices ranges that never overlap each other, the data

node is split into two subnodes covering those ranges. 10 The edges are then moved to the subnodes

to indicate their relative independence. An edge whose indices range spans across both subnodes

will point to the parent node. As more edges are added, the hierarchy expands in depth and breadth.

Any internal node of the hierarchy not having an edge is redundant and removed, therefore the

resulting tree is neither binary nor balanced. This construction preserves the inclusion property

on the hierarchy: the indices range of a parent node always covers the indices ranges of all of its

children nodes. To find all the edges which may reference a certain subrange, we look for edges of

the leaf node(s) covering that subrange and all those of their ancestral nodes.

A.4 Escaping References Analysis

The only contribution of the escaping references analyzer to the definition of WAIF is the data

node's escaped? field. This field is set if a reference to the data structure is ever passed into

'oThese non-overlapping subnodes must completely cover the indices range of the original node.
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or out of the scope of Scepter's analyses. When an array is distributed on to multiple processors

by Scepter, the escaping data handling described in Section 4.1.3 is needed to insure the data's

accessibility for both the program been analyzed and the external functions uniformly.
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