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ABSTRACT

The interaction of two dimensional waves with a two dimensional
surface current was studied experimentally by J.T.Evans (Ref,1) and
theoretically by G.I.Taylor (Ref. 2). They found that as waves entered
an opposing current, their speed was reduced and their height was in-
creased. This effect increased with current strength until the waves
became high enough tobecome unstable and break. Beyond the breaking
region there was calm water. This calming effect was the prime moti-
vation for the works of Evans and Taylor as their interest was in the.
use of hydrodynamic breakwaters.

It was desired to find the effects of the interaction of water
waves with a non-uniform surface current and to compare the results
with those of Evans and Taylor. The principal difference between the
three dimensional results and the two dimensional results is that with
the non-uniform surface current the wave power propagation became
spatially varient. With flow directed towards the sides of the tank in
which the experiment was run, the waves which were two dimensional
before entering the current became highest and showed the largest
power density near the walls of the tank. The measured wave velocity
was compared with the theoretical wave velocity, and the power propa-
gation through various cross-sections was compared. The difference
between measured wave velocity and the theoretical value is attributed
to the fact that the current was not infinitely thick. Variations in the
power through various cross-sections are attributed to uncertainty in
calculating the speed of energy propagation due to the variation of the
current with depth. , :

Itis recommended that the experiment be repeated with a current
variable in the free surface plane but uniform with depth. It is the
contention of the author - that in such an experiment,tie measured wave
speed relative tothe current will be equal to the theoretical wave speed
for waves of the same wavelength moving in undisturbed water and that
the power propagation through a cross-section of the tank will be in-
varient with the cross-section chosen. :

Thesis Supervisor: Martin A. Abkowitz, Ph.D
Title: Professor of Naval Architecture
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CHAPTER I

INTRODUCTION

The effects of the interaction of waves with surféce currents has
been of interest for the past fifty years. These effects were first ob-
served when it was found that waves could be calmed by a curtain of
bubbles risizig from a submerged perforated pipe. The mechanism by
which the bubbles calmed the waves remained unexplained until 1942
when Sir Geoffrey Taylor and C.M. White put forward the suggestion
that the bubbles induced a surface current and that this current is what
stopped the waves. Taylor (1943) did a mathematical analysis of the
effect of a uniform surface current of finite depth, with motionless
water beneath it, upon waves. This analysis remained unpublished
until 1955 when it as well as Taylor's analysis of the effects of a
current whose speed varied linearly with depth were published in Ref. 1.
Also in 1955, J.T. Evans performed an experiment to determine the
effects on waves of both water jets and rising bubbles. Both the works
of Taylor and Evans are for the two dimensional case (no variation .
across the width of the tank).

In his paper, Evans gives a simple analysis which brings out
salient features of the interaction effects for infinitely deep currents.
To familiarize the reader with these effects, Evans' analysis is re-
peated here in slightly modified form. Calling the wave velocity in

still water (before the waves reach the current) Vj ,

1/2 1/2
Vi =Nn o (SR o - (1-1)

After the waves have entered the uniform surface current they have a

velocity relative to the moving current. This velocity is denoted by Vr

1/2
Vo= f;] (1-2)



\2 is a new wavelength.

Calling the wave velocity relative to the ground V, ,

Vo =V 4V (1-3)

where the current velocity Vc is defined such that it is positive when
it is directed in the same direction as the direction of wave propagation.
The period of the waves must be the same both in and out of the current

for the wave crests to retain their identity,

=M A2 - N ' _
R A A LA -4
V,r + VC v
A2 =\ v (I-5)

The rate of transmission of wave energy in the still water is 1/2V, .,
The rate of wave energy transmission in the moving current is,
] :
2z Vr * Ve _
The total power propagation through a cross-section of the
tank must remain constant unless turbulence or another form of wave
energy dissipation occurs. The average energy of a region in which

waves exist is proportional to the wave height squared.

Denoting wave height by H,

[1/2 v, + vc] H,2 =1/2 Vv, Hf (1-6)
Solving for H, ,
| 1/2 v 1/2
H =H [1 TV ] (-7
r (o4

combining (I-1) (I-2), (I-3) and (I-4), we obtain

v | v -
r -1 1. < I-8
i Tzt v (I-8)



If v—c-:l- = - 1/4, the travel of wave energy relative to the moving
water becomes equal and opposite to the current velocity and there

is no movement of energy relative to the ground. Energy piles up at
one place and the waves break causing the energy to be dissipated in
turbulence. For positive Vc’ H, < H; and V, >V; . For negative VC R
H, >H; and V, <V, until breaking occurs. The interaction of a

non uniform surface current with waves has recently come of interest
in connection with a number of effects. The purpose of the experiment
described on the following pages was to determine what some of these
intéraction effects are and how they differ from the effects in the two
dimensional case.

When a surface current, whose velocity (magnitude and direction)
varies with position, interacts with waves which are initially two dimen-
sional, a redistribution of wave energy results. The relation between
current speed and wave height derived for the two dimensional case
(Eq. I-7) does not hold locally in the three dimensional case, but the
general picture of waves getting higher and movmg more slowly in
opposing currents, lower and faster in similarly directed currents is vahd
for the most part. The most striking single difference is that the effects
on the waves seem to occur further downstream than predicted by two

dimensional theory (see Fig. 2).



CHAPTER II

DESCRIPTION OF TERMINOLOGY AND SYMBOLS
USED FOR DIRECTION

For the following description refer to Figure 1.

The positive x direction is referred to as "upstream?

The general term referring to the positive or negative x
direction is longitudinal direction.

The general term referring to the y or y' direction is
ftransverse direction.”

The general term referring to the directions into or out of

the free surface plane is "vertical direction."
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FIGURE 2

THE CHANGE IN HEIGHT OF A WAVE AS IT PASSES THROUGH

Figure 2a

Figure 2b

Figure 2c

Figure 2d

THE SURFACE CURRENT

The wave just after it is formed by the wavemaker.

The wave passing the flow pipe. Notice the increased

height.

The wave as it appears fifteen feet downstream from the
flow pipe. This is the region of smallest wave height.

By two dimensional theory the region of smallest wave-
height is expected to occur much nearer to the flow pipe

than is the observed region of smallest wave height.

The wave far downstream. The region shown is fifty
feet from the flow pipe. Notice that the wave height
has increased. Since there is no breaking of the wave
the effect of height increase downstream is expected,
but two dimensional theory predicts that the height

increases much nearer the flow pipe than is observed.
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CHAPTER I

PRODUCING THE NON-UNIFORM FLOW FIELD

The first meyhod attempted for the production of a non-uniform
flow field was to rotate a vertical cylinder located at the center of the
tank. This cylinder extended from the bottom of the tank to a point well
above the free surface. The cylinder was made out of a six inch outside
diameter aluminum pipe with a one-quarter inch wall thickness. A
cylindrical plate was fastened to the bottom of the pipe and a one inch
.diame.ter, 2 inch long bronze shaft was fastened to the plate. This
short shaft fit into a plastic lined bearing at the bottom of the tank, A
plate and shaft were affixed at theAupper end of the cylinder. The cylinder
was driven in rotation by a zero to 100 rpm variable speed drive (Fig. 3).
A four to one speed increase as well as a right angle turn between the
variable épeed drive unit and the shaft was accomplished by the use of
a rear axle drive unit from an automobile, In this unit only the gear
action from the ring and pinion gears were utilized. The differential
gears were welded together.

It was hoped that this device would cause a two dimensional ro-
tating type of flow field with the flow pattern near the pipe 'a.pproximating
that of a vortex. But, such a flow was not obtained. In fact, the only
flow which was observed at the surface moved very slowly and was direct-
ed radially away from the pipe. One possible explanation for this is that
it was related to viscous forces, varying along the length of the pipe and
strongly influenced by the proximity of the bottom of the tank, Because
of the dynamical restrictions of no fluid motion at the bottom of the tank
no fluid motion with respéct to the rotating pipe at the pipe surface and
a spatially continuous velocity distribution; the fluid velocity near the
pipe increased with distance from the bottom of the tank., Since the only
possible deviation in pressure from hydrostatic pressure was due to the
fluid motion itself, the tendency of fluid particles to move radially away

from the pipe increased with distance from the bottom of the tank. This
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resulted in a reduction in pressure from the hydrostatic value, which in-
creased with distance from the bottom of the tank. Hence, fluid par-
ticles were accelerated upwards along the pipe by pressure forces. To
keep continuity of flow, the vertically moving fluid assumed é_. radial
motion upon reaching the surface.

In an attempt to overcome this effect, longitudinal vanes were
attached to the lower fourteen inches of the pipe. The only effect of
these vanes was to increase the production of turbulence.

To be assured that the failure of obtaining a circulating flow
field was not caused by insufficient time allowed for the flow field to
form, the pipe was rotated continuously for 15 hours without satisfactory
results. It is unfortunate that this experiment could not be run with
stationary circulating flow because the results of the interaction of sur-
face waves with such a flow may have shed some light on the problem
of the interaction of surface waves with turbulence.

Then it was decided to run the experiment with a radially directed
flow. Since Evans (Ref. 1) used a thin surface current in his experimenﬁ
and the use of a thin surface current facilitated drawing water in the
bottom of the tank and thus preserving symmetry, the use of a surface
current was decided upon. -

The same aluminum tube was used as before. It was partitioned
at its center and a row of holes was drilled around the pipe just below the
water surface from which the outward flow would originate, Water was
pumped into the upper portion of the pipe and drawn from the lower
end through a second row of holes drilled near the bottom of the pipe.
The two sections were separated by the aformentioned partition. With
this arrangement too lérge a pres sure drop occurred before the suction
side of th‘evpump for efficient operation, so water was drawn from a
four inch pipe located at the center of the tank about 18 feet from the
discharge pipe on the side toward which the waves would progress
(Fig. 4).

Three pumps were tested each of larger capacity than the previous
one; the third being the only one which produced a satisfactory flow
field. (Fig. 5b).

12
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Figure 5. Some of the equipment used in this experiment

Figure 5(a). Electronic data recording equipment

Figure 5(b). The Pump  The purpose of the fan was to
~ cool the pump motor,

15



CHAPTER IV

MEASUREMENTS

The parameters measured were wave height and wave speed.

A continuous record of the wave height taken approximately 20 feet
from the wavemaker was made by use of a sonic type wave height
transducer and one Sanborn Recorder Channel. This transducer and
its associated circuitry transmitted a voltage which was proportional
to the distance from the transducer to the water surface. The signal
which the device sensed was the sound caused by a spark in the trans-
ducer and then was reflected from the water surface to a microphone.
No part of the device penetrated the surface of the water.

The wave height and wave speed in the region of the surface
current were measured at one point at a time. To facilitate taking
measurements at many points in a reasonable length of time, four
sensing units were constructed. FEach unit consisted of one piece of
phenolic plastic 1" x 1 1/2" x 14" and four brass rods each 1/4"
in diameter and 14" long (Fig. 6). The rods were threaded at one end
over two inches of length and were screwed into tapped holes in the
plastic. The direction of the longest dimension on the bar of plastic
will be referred to as the longitudinal direction. Near each end of the -
plastic bar were two of the holes spaced one inch apart on a line
perpendicular to the longitudinal direction. The longitudinal spacing of
the two sets of holes was twelve inches. The two bars in each set of
holes formed a capacitor. There was also some conductance between
the bars due to impurities in the water. When the bars were partially
immersed, the capacitance was dependent upon the depth of immersion,
the relative permitivity of water being about 80. When the depth of
immersion was somewhat greater than one inch, it could be expected
that the capacitance would vary linearly with the depth of immersion.,
The four measuring units were mounted on a beam such that when the
beam was placed across the tank the longitudinal direction of the units

was parallel to the longest axis of the tank (Fig. 6). The distance
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between units was 1 foot, Units were wired so that the two capacitors
‘on any one unit were connected respectively to two cables running from
the sensing device to the operating station, The unit to which the cables
were connected was determined by the position of a switch mounted on the
beam. Each of the two cables was connected to a separate bridge circuit
which was excited by alternating current, The bridge was balanced in the
calm water condition. Then, when waves existed, a voltage output was
obtained from the bridge which was proportional to the water wave dis-
turbance, The output voltage as a function of time was recorded on a
Sanborn recorder. By simultaneously recording the imbalances of the two
 bridges, information sufficient to determine the wave shape, wave height
‘and wave velocity éldng the longitudinal direction of the tank was obtained.
The measuring units were numbered one, two, three and four respectively,
number one 'being the unit centered in the tank and number four being the
unit nearest.the wall, The sensitivity of the recording instrument was
set so that the recording stylii deflected one centimeter per inch ché.nge
of bar immersion on unit number one. Then, testing the other units |
showed that they all gave the same sensitivity within one part in one
hundred. In making an experimental run, the signal from each capacitor
was recorded for fifteen wave pei‘iods, the two on each unit being re-
corded simultaneously., Then the beam position was altered and the
process was repeated in numerous beam postions. In this way the
character of the waves over the region of the surface current was
observed at a number of points. Observations over only one half of
- the tank were required since the effects on the opposite half must have
been identical due to the symmetry of the flow field,
Various methods were attempted for measuring the velocity of
the sur:‘:ace current in the absence of waves. The method which was
:eventué.lly used to obtain information was to measure the time for a
small floating cork to travel a given distance at various positions on
the surface (Fig. 7). The direction was obtained by setting a small
rod parallel to the direction of motion of the cork. This rod was con-
nected to a shaft on which a pointer was mounted. The direction of

the pointer was shown on a protractor. Although this method of
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determining the flow field seems to somewhat primitive, fairly repeat-
able data was obtained. A chart showing lines of constant velocity
was made (Fig. 9). |

The pump speed was measured with a "Strobotac," this being a
commercial instrument made for measuring rotational speed. The
speed was adjusted by means of a valve in the piping system and was

kept constant at 1575 rpm.

18
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CHAPTER V

PLOTTING THE FLOW FIELD

For this experiment, the pump speed was held constant at
1575 revolutions per minute. Measurements of the surface current
were taken twice on successive days and are described under "measure-
ments."” In the first set of measurements, data at each point was taken
once. In the second set of measurements, data at each point was taken
many times, until a repeatable result was obtained. Therefore, data
recorded in the secoﬁd»measurement is considered to be more accurate
than data recorded in the first measurement.

A chart was made which shows coordinates of the tank (Fig. 8).
At each point of this chart corresponding to a point in the tank where
current measurements were taken, the current data was recorded.
Then lines of constant velocity were drawn. These lines were based
updn the measured data, the boundary conditions at the wall of the tank;
and the physical conditions of straight line flow down the center of the
tank due to symmetry, and the fact that the flow velocity must be a
continuous function of space. The streamlines were based upon the
measured current direction and the physical fact that the streamlines
should make angles of approximately 90 ° to the constant velocity lines.
For irrotational flow the angle between streamlines and constant ve-
lbcity_ lines is exactly 90°. For the flow field in question, the vorticity
" normal to the surface was as.sumed small because the veldcity associated
with this vorticity was small compared to the velocity associated with
the sourte flow., Therefore, the angle between streamlines and constant
velocity lines was é.pproxima.tely 90°. It should be noted that the com-~
ponent of vorticity parallel to the surface was very large compared to
the component normal to the surface. To facilitate using data concerning
the flow field, a chart showing only streamlines and constant velocity

lines was drawn (Fig. 9).
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CHAPTER VI

DATA REDUCTION AND ACCURACY

Data was recorded for a number of different wave periods. The
data for three different wave periods was reduced to tabular form and
comprises the "data" section of this report.

At each point of measurement, the surface level as a function of
time was recorded for six or more wave periods with only one of the two
channels of the measuring unit in operation. Then the surface level was
recorded for an additional six wave periods with both channels in operation.
The reason for this procedure is that there was mutual electromagnetic
coupling between the two measuring elements on each unit and when both
channels were 6perating there was a beat frequency signal caused since
the carrier frequencies of the two preamplifiers were unequal. To obtain
an accurate record of the wave shé,pe some data was recorded at each
point with only one channel operating. The only need for having two
channels operating was to determine the wave speed. From the number
of preamplifiers available the two chosen for use were those which gave
the highest beat frequency. Since this frequency was considerably higher
than the fundamental wave frequencies, it was possible to ascertain the
time at which a wave crest passed each measuring probe. From the one
channel record at each point the time interval for six wave crests to pass
the point was determined and dividing by six gave the wave period. For
one particular unit data was recorded at fifty-six points and the calculation
of the wave period at each point gave the same result accurate to one part
in-one hundred. Similar accuracy in determining the wave period was
experienced in the other runs. The wave period for each run is printed
at the head of the corresponding table in the data section. Also printed
there é.re the dial setting and the crank setting for each run. These
refer to the settings on the wavemaker which determine wave period
and wave amplitude respectively, These settings are included to facili-
tate repeating part of the experiment if this is ever necessary. From

the recordings with both channels operating the time for a wave crest
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to traverse the distance between the two measuring probes on each
unit was ascertained. The distance between probes was one foot and
the time was determined in seconds. The reciprocal of this number
gave the apparent longitudinal wave velocity in feet per second. The
velocity for each of the six crests recorded with both channels operating
was determined and the numerical average of these velocities is listed
in the data tables. The maximum deviation of the recorded wave
velocities from the numerical averages given in the tables was 10 per-
cent, and in most cases was not more than 5 percent, Any value
differing by more than 10 percent from the average was not included
in computing the average. This accuracy does not apply to regions
within one foot of a pla.ce where waves are stopped: a point where the
waves are stopped is denoted by the words "Waves Stopped,! in the
Data Tables. |

The accuracy of the wave height data is limited to one part in
ten by the readability of the recorded data. In many instances the
wave heights at a point varied slowly with time. At such points at least
fifteen wave periods were recorded. The wave height recorded in the
tables is the largest repeatable wave height observed. Occasionally
a solitary wave considerably larger than most was observed but the

heights of such waves are not considered repeatable.
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CHAPTER VII

DATA ANALYSIS

One of the parameters measured in this experiment was the
interval between the time when a wave crest was under a measuring
probe and the time when the same crest was under the second probe
on the same unit; this probe being displaced from the first one foot
in the longitudinal direction. This time interval is called t. zl- is
called the longitudinal wave speed.

" The angle between the negative x direction and the direction of
flow is called ¢. (Fig. 10) and the angle between the negative x direction
and the direction of wave propagation is called 6, (Fig. 10) The wave
velocity in the direction of wave propagation is calleden. The wave-

length is called \ and the wave period is called T.

V. = % cos © (VII-1)

A=V T . (VII-2)

Substitution of Eq. (VIIZ1) in.Eq. (VII-2)

A= % cos © (VII-3)
It is desired to find the relationship between wavelength and wave speed.
One difficulty encountered in this respect is the determination of what
frame of reference should be used in measuring the wave speed. If the
current were infinitely thin, it would be advantageous to measure wave
speed relative to the fixed tank. If the current were more than one half
of a wavelength thick and uniform, it would be advantageous to measure
‘wave speed relative to the current.

For this experiment, the surface current distribution as a
function of depth was not determined quantitatively. Only the velocity
on the surface was measured, To obtain a qualitative knowledge of the

variation of the surface current with depth, small air bubbles were
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released from a deeply submerged tube and the path of these bubbles
was observed through a window in the side of the tank. The current
was very thin near the flow pipe and was less than 3 inches thick

- three feet from the flow pipe. Also the velocity distribution in the
current was very non-linear with depth. I'or this experiment, the
wave speed was referred to the moving current at the surface. The
current velocity at the surface is called \{: and the wave velocity re-

lative to the moving current is called Vr.

V =V =V (VII-4)

The V's are taken in the vector sense.

The angle 8 was not measured in this experiment, but qualitative
observation showed it was always smaller than 20°, Cos 20° = 0.94.
The approximation '
| v zlt-vc cos b - (VI-5)

introduces an error in Vr of less than 10 percent if Vc < th which is
a relation always true for the data which was anlayzed., The approxi-

mation

A

n

= (VII-6)
introduces an error in \ of less than 6 percent,

All the data for T =0, 76 seconds was analyzed as well as some
of the data for T = 0,42 seconds, The numerical values calculated in
this analysis are shown in Table I, It was desired to determine whether
or not the three dimensional waves on a non-uniform current satisfied

the familiar relationship,

V= NghZr (VII-7)
A glance at Table I shows the difference quotient
(1~ vV, cos) = Ngh/2w

D = t (V1I-8)

1 .
- Vccos¢
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is in most instances less than 0,08 in magnitude and often negative
near the side of the tank, Proceding from the side of the tank toward
the center of the tank, the value of the difference quotient increases to
as much as 0,18, The difference quotient is the fractional increase of
the measured wave speed ( —:':- - Vc cos 8) over the theoretical value
( Ng\/27), this being based on the measured wavelength, It seems
reasonable to conclude that the theoretical value (N gh/2m is either the
actual wave speed or a very good approximation to the wave speed for |
waves on a current with variable velocity in the surface plane, but
uniform with respect to depth at each point (x, y).

In this experiment and method of data a.na.lysis' there are two
" effects which cause the quantity [( —}? - Vc cos 8) - \/E)\_]'ZF] to be
non-zero, One is due to the approximation used in computing values
of the difference quotient listed in Table I, This approximated difference
quofient is designated by D, The difference quotient computed without

approximation is designated by D'
1

. - ‘ 1
[%z cos?® @ - VC2 —ZVC -]é cos B cos (¢ - G)J?_ [( 5_2'1%%)_8_9_)]2‘
1

1 2 2 _ 2 | 5
[—tz cos® §+ V' - thcosecos»(cb-e)]Z

(VII-9)
(See appendix for derivation)

The second effeqt which causes D to non-zero is that Vr is referred to
the current motion at the free surface, The equation Vr = Ngh/2n (VII-7}
applies to waves on a fluid whose velocity is spatially constant, If the
relation were to be valid at a point on the surface then there would have
to be no variation of current velocity with depth at this point, A detailed
calculation of waves on a current whose velocity is constant in x and y
but linearly decreasing to a depth h and is zero for depths greater than
h can be found in Ref, 2, This solution, though complicated; is con-
ceptually straightforward because in the moving current the vorticity

is constant, For the flow distributions in this experiment an exact
prediction of the effects of current depth upon the wave speed would be

éxtremely difficult, if not impossible, However, one can make the
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qualitative prediction that the thicker the current is, the smaller will
be the deviation of Vr from Ng\/2m due to non-infinite depth of current,
This is readily observed in Table I where it is seen that the numerical
values of the difference quotient decrease with distance from the flow
pipe. The thickness of the surface current increases with distance
from the flow pipe,

The next quantity to be considered is the energy propagation,
For waves in deep water (depth greater than 1/2\) the speed at which
the energy propagates relative to the water is one half of the wave
speed, If the surface current were deep, the speed of energy propagation
in the longitudinal direction relative to the current would be ¥ cos 8,
Denoting the rate of energy propagation in the longitudinal dir—ezgt:ion
relative to the ground by P(x; y) {(for power) we know:

\s
P(x, y) ( _Zicos 8 + V_cos ¢) h? (VII-10)

H is the wave height,
The units of power here are not those conventionally used due to the
absence of a constant, but the units do not concern as so long as con-
sistancy of units is maintained,

Again we make the approximation 6 = 0 and éa.y':

v
Pz (_,Zr_ +V_ cos ¢) h? (ViI-11)

Substituting Eq{VII-5)in Eq{VII-11) there results:

P(x-,y) = h? [:f"l(_lz_vc cos ¢) + Vc cos ¢J (VII-12)

Values of P(x; y) at various points for T =0, 76 are shown in Table I,
We see at once that the energy propagation is not spatially constant as
it is in two dimensional waves,

Unless wave energy is lost through viscous sheer forces at the
tank walls or through turbulence in the fluid, the total wave power

through each cross section of the tank must be the same., Denote the
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total power through a crossection by Pt and the half width of the tank by a

a :
P = S‘ P(x, 6 y)dy (VII-13)

0

We take the sum of the values of P(x; y) at the four measurement
stations for each value of x as a measure of the integral in Eq, (VII-13)
and call this sum Pt (x). Values of Pt(x) as well as Ptm (x) are shown
in Table I, The variation of P'i'n (x) with (x) is rpuch greater than can be
accounted for by turbulence, The cause of this variation is that the
formulation for P was based upon surface current deeper than one half
a wavelength, As was previously stated, this was not the case for this
experiment, The values of Ptm (x) increase with (x), The reason for a
reduction in Ptr'n (x) near the pipe is that the current is thinner there
than elsewhere and the approximation to the speed of energy propagation
used is more inaccurate for thin currents than thick currents. Since
the current velocity in the region under consideration opposes the
wave motion the term in the energy propagation spéed due to the moving
current subtracts from the term due to the wave speed. Since thin
currents have less effect on the waves than thick currents, the term
subtracted near the flow pipe is larger than it should be for an exact
answer., This gives the result that Ptm (x) decreases as we approach
the flow pipe,

Observations of the waves in the vicinity of the flow pipe show
that wave breaking occurs on the upstream side of the pipe a.s' expected,
The relation that the stopping velocity is one fourth of the wave velocity
which is valid for the two-dimentional case with a deep current does
not hold for the three dimensional case in a thin current, However, this
relationship does yield the order of magnitude of the current speed

needed to cause the waves to break,
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CHAPTER VIIL

CONCLUSIONS

For waves on a non-uniform surface current we ﬁngi that:

V. =1(c) [ gh (VIII-1)
2w

where the term f(c) takes into account the variation of the current with
depth. For a current varying on the surface plane but constant with

depth there is considerable evidence that

V. =4 /%\_ ~ (VII-2)

Also, the wave power density does not remain constant in space
when the waves pass over a non-uniform surface current so that the
two-dimensional results of Evans (Ref. 1) and Taylor (Ref.2) cannot be ap-
plied to obtain quantitative answers. The general form of the two dimen-
sional results does give a qualitative picture of the effects as shown in
Fig. (2). It is noted here that the correlation between wave height and
surface current speed for the results of this experiment does not agree with
the results of Evans (Ref. 1) and Taylor (Ref.2) which are valid for the two-
dimensional case, As the waves approach the opposing surface current
the wave height increases to a maximum which occurs after the waves
pass through the strongest of:posing current (Fig, 2b), Then if the
current is sufficiently strong, considerable attenuation occurs (Fig, 2c),
The return of waves far downstream (Fig. 2d) is not explained by the
results of Evans(Ref,l ) and Taylor (Ref, 2),

It seems reasonable to conclude that until breaking and the re-
sulting turbulence occurs that the total wave energy propagated through
a cross-section of the tank per unit time is constant, In fact, the
difference between P, (x) far from the current and Pt (x) in the
current is a measure of the reduced effect of the current due to its
limited .depth.
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CHAPTER IX

RECOMMENDATIONS FOR FURTHER RESEARCH

It is highly recommended that this experimenﬁ be repeated for
waves with a period of 0, 76 seconds with a deep surface current, To
obtain such a current the flow pipe must have holes over its full depth,
The suction pipe should be identical with the flow pipe so that the fluid
is removed in a two-dimensional manner. The pump needed for such an
experiment will have to ra.fed at 20 H, P, or more,

The flow field for such an experiment can be calculated from a
mathematical model, Let the outlet pipe and suction pipe be set verti-
cally along the center line of the tank with the distance between the two
pipes equal to four feet, (Fig, 10) The width of the tank is 8, 6 ft, The
outlet pipe and suction pipe can be approicima.ted by a two-dimensional
source and a two-dimensional sink respectively, Using the directions

and dimensions shown in Fig, 10, we obtain;
w=m [log sinh —T-'(-g-z—'l-é-i?'-)-— log sinh —"-%_12—)—] (IX-1)

where w is the complex potential ¢ + iy andz =x +1ivy,
Denoting the x directed velocity by u and the y directed velocity by

v, we obtain:

m .z +2) T oz - 2)
u_ivzd_LN.:m 8f6’cosh——.8—:-_6—_ mCOSh ——8—:?_
(IX-2)
w-iv = P [oan A cian T2=p) ]
0= Rw=mlog sion HEED_og st Ue=Rl ] (1x-3)
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Lines of ¢ = constant are lines on which the speed is constant, The

value of the speed on each line is %:-vr and can be calculated from

Eq. (14).
For the flow proposed there is sufficient theoretical information
to plot the flow field very accurately except in the immediate vicinity
of the flow pipe, In this experiment the angle (8) which the wave normal
makes with the negative x direction should be measured, This can be
accomplished by taking a series of photographs from different positions
above the tank, N
It is the opinion of the author that the results of the proposed
experiment will show that the wave velocity relative to the current will
be 4f g\ and that taking the speed of energy propagation as one half -
the wa%r‘é velocity plus the current velocity, , will show that the power .

propagation through any cross-section is constant,
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Figure 10. Top view of pipes for producing a two

dimensional flow which is variable in

the surface plane.
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APPENDIX A

Calculation of the exact difference quotient,

Refer to Fig, (11)

To find Vr , we apply the law of cosines,

2 _ y2 2 - -
Vr -Va + V. —ZVcVncos(¢ 0) (A-1)

<
I
o+

cos 0 (VII-1)

Substituting (1) in (A-1) and then taking the square root yields;

1

I N S 2 1 z
Vr = [? cos® 8+ V2 -2V = cos 8 cos (¢—9)]. (A-2)
A= _T_
T cos 8 (VII-3)
_l_ 1
1 . 2 1 2_[gTcos® 2
\A —«]T_g;):__ [—t-z cos® §+VZ -2V_—cos 8 cos (¢—9)] Vel
D= — =
r

1
1 1 =
[-? cos? 0 + VC2 - ZVC < cos 6 cos (¢—9)] 2
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Figure 11, Definitions of Velocities and Angles
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APPENDIX B

DISCUSSION OF A MATHEMATICAL SOLUTION

To find even a linearized mathematical solution for the experi-
ment performed would be quite impossible. The simplest model which
would bring forth the salient points of this experiment is described
below,

Consider a body of water infinite in its transverse dimensions
and infinite in depth. We set-up a coordinai;e system at a point on the
surface with the x and y axis lying in the suffa.cie and the z axis oriented
downwards. A two dimensional source is situated on the line x= 0,

y =0, z is positive, Two dimemensional waves originate at x = o
and propagate in the negative x direct'ion. As these waves approach the
source there will be an interaction between them and the source current.

To find a solution for this problem we make the assumptions
that the flow is irrotational an inviscid. For these assumptions we

can define a velocity potential, the Laplacian of which is zero, i.e.
vié=0 (A-3)
velocity = q =V ¢ (A-4)

The boundary conditions are:

1. dynamic and kinematic conditions at the free surface

2, atz = o the only motion is that due to the source

3. at y = * o the waves are not affected by the source
4. the boundary condition at x = - wis not determined.
It is possible that there is no affect from the source at x = - 'éo,
but I know of no reason why the source cannot affect the wave phase at
X = =,
Assuming the boundary condition at x = — ® can be found, the
task of finding the solution for ¢ is difficult indeed because the solution
is one in which the variables do not separate. For separation of

variables to exist we find two types of spatial dependence for ¢.
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They are:
1. exponential dependence

2. sinusoidal dependence

For the problem at hand, we obtain a variation in wave height
along the same direction where the spatial dependence is oscillatary
in nature. Hence, the form of the solution is one in which the variables
do not separate. Techniques for solving Laplace's equation where the
variables do not separate exist for some cases., The possibility that
one of these techniques can be used for the problem at hand is worthy

of investigation.
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TABLE I

J‘"VCos
t
saron | & | Vo | B |[Veosgp-vesdx T |JB [ |
X =7 T =Q.76
1 3.79 | 0.10 | 180 0.10 | 3.89 | 2.88 | 3.86| 0.03
2 3.68 | 0.10 | 180 0.10| 3.78 | 2.80 | 3.79 | -0.01
3 3.24 | 0,09 | 175 | 0.09 | 3.33 | 2.46 | 3.56 |-0.23
4 3.62 | 0.07 | 120 0.04 | 3.66| 2.75| 3.75 | -0.11
X=6
1 3.57 | 0.25 | 180 0.25| 3.82 | 2.71 | 3.74 | 0.08
2 3.52 | 0.24 | 175 0.24 | 3.96 | 2.68 | 3.72| 0.24
3 3.57 | 0.20 | 160 0.17 | 3.74 | 2.71 | 3.74| 0.00
4 3.52 | -.10 | 115 0.04| 3.56 | 2.70 | 3.73 |-0.17
X=5 _
1 3.33 | 0.33 | 180 0.33 | 3.66 | 2.53 | 3,52 | 0.14
2 3.52 | 0.32 | 173 0.32 | 3.84 | 2.68 | 3.72| 0.12
3 3.68 | 0.31 | 160 0.29 | 3.97 | 2.80 | 3.79 | 0.18
4 3.91 | 0.17 | 130 0.11} 4.02} 2.97 | 3.89 | 0.13
X=4 '
1 3.47 | 0.47 | 180 0.47 | 3.94 | 2.64 | 3.68 | 0.26
2 3.91 | 0.44 | 162 0.42 | 4.33 | 2.97| 3.90 | 0.43
3 3.57 | 0.37 | 150 0.32 | 3.89 | 2.71 | 3.74 | 0.15
4 3.38 | 0.25 | 115 0.11 | 3.49 | 2.57 | 3.53 | -0.04
X=3
1 3.85 | 0.65 | 180 0.65 | 4.50 | 2.92 | 3.86| 0.64
2 3.21 | 0.59 | 143 0.47 | 3.68 | 2.44 | 3.54 | 0.14
3 3.42 ] 0.44 | 120 0.22 | 3.44 | 2.60 | 3.65|-0.21
4 3.47 | 0.28 96 0.03 | 3.50 | 2.64 | 3.68 |-0.18
X=2
1 1 3.21 | 1.00 | 180 1.00 | 4.21 | 2.44 | 3.54 | 0.75
2 3.79 | 0.72 | 140 0.55 | 4.34 | 2.88 | 3.95| 0.39
3 3.52 | 0.50 | 115 0.22 | 3.74 | 2.68 | 3.72 | 0.02
4 3.57 | 0.30 94 0.02| 3.59 | 2.71 | 3.73 |-0.14
X=1
Wave$ very donfused for station one. Waves stopped for |station
3 3.57 | 0.51 95 0.05 | 3.62| 2.71 | 3.73 |-0.11
4 3.75 | Flow pelocity not determinegd.
X=a
Waves stoppedd for sfations ¢ne and|two.
3 T 5.00 | 0.51 85 (-0.05| 4.95 | 3.80 | 4.40 | 0.55
4 Flpw velogity not|determjined.
X =- ‘
14 _|5.00] 030 86 |-0.02] 4.98 | 3.80 | 4,40 | 0,58 |
T=0.42
X=7
1 1.82 | 0.10 | 180 0.10 | 1.92 [0.765 | 1.98 |-0.08
-2 1.97 | 0.10 | 180 0.10 | 2.07 |0.826 | 1.93 | 0.14
3 1.61 | 0.09 | 175 0.09 | 1.70 |0.676 | 1.46 |-0.14
X=5
2 1,33 ° 0.32 173 0.32 1.65 0.559 1.69 -0.04
3 1.70  0.31 160 0.24 1,94 0.713 1.91 0.03
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TABLE I (Continued)

42

. ot 2 iVaeesf
ramon | V3 et ) g V)| P | P
X=7 T =0.76
1 1.70 |0.0077| 1.69 | 1.95 | 1.85 | 3.12
2 | 1.68 [0.0026| 1.69 | 1.89 | 1.79 | 3.02 13. 80
3 1.57 }+0.069 1.69 | 1.67 | 1.68 | 2.84
4 1.66 -0.030 |2.89 | 1.83 | 1.79 | 4.82
X=6
1 1.65 |0.021 1.69 | 1.91 | 1.76 | 2.98
2 1.64 [0.063 1.69 | 1.98 | 1.74 | 2.94 12.70
3 1.65 {(0.000 |1.95 | 1.87 | 1.70 | 2.33 |
% 5 1.65 '0-048 2. 56 1.78 1.74 4.45
1 1.59 {0.038 1.69 | 1.83 | 1.50 | 2.54
2 1.64 |0.031 1.69 1.92 | 1.60 | 2.71 11.42
3 1.67 |0.045 1.44 | 1.99 | 1.70 | 2.44 )
3}(4 1.73 }0.032 |1.96 | 2.01 | 1.90 | 3.73
1 1.62 |0.066 |1.44 |1.97 | 1.50 | 2.16
2 1.72 10.099 1.44 | 2.17 | 1.75 | 2.52 | 10.52
3 1.65 [0.039 |[1.00 | 2.95 | 2.65 | 2.63
4 1.60 +0.011 1.96 | 1.75 | 1.64 | 3.21
X=3 '
1 1.71 10,140 1.44 | 2.25 | 1,40 | 2.02
2 1,56 |0.038 1.44 [1.84 | 1.36 | 1.96 14.85
3 1.61 10.061 1.69 (1.72 | 1.52 | 2.57
;1{ 1.63 {0.051 |4.84 |1.75 | 1.72 | 8.30
=2
1 . |1.56 |0,180 |[1.44 |2.11 [ 1.11 {1.60
2 1.70 |0.090 |1.21 |2.17 | 1.62 |1.96 | 10.46
3 1.64 |0.0053 | 1.44 |1.87 | 1.65 |2.37 |
4 ) 1.65 40.039 |2.56 |1.79 | 1.77 |[4.53
X=
' Waves [very canfused for statign one.| Waves st0ppe? for stat
3 1.65 10.030
4 Flow velocity not djtermined.
X=-1
Wavei stog:ped for stations one and fwo.
3 . 11.9 0.140
4 Flow veldcity not fletermined.
X==2 :
4 1.95 |0.150
B T=0.42
X=7 o
1 10.875 | -0.031
2 0.851 | 0.067
3 0'821 -0-082
X=5 -
2 0.747 | 0.024
3. 0.844 | 0.015
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TABLE II
Wave Period = 0.76 Seconds

Dial Setting= 1805 Crank Setting = 25

Wave Wave
Y in |[Wave Height Velocity ? ‘;9 Wave Heighy Velocity
feet in {nches in ft. /sec es in inches |in ft./sec,
X =10 Ft, X =2 Ft.
1 1.2 4, 24 1 1.2 3.21
2 1.4 4,03 2 1.1 3.79
3 1.3 4,10 3 1.2 3.52
4 1.3 3,73 4 1.6 3.57
X =9 Ft. X =1Ft.
1 1.3 3.68 1 0,9 3. 12
2 1.2 3.21 2 Waves Stogped. 0.7 in{ height
3 1.2 3.57 3 . 1.5 . variation,
4 1.6 3,47 4 1.6 3.57
X =8 Ft, X = -1 Ft,
1 1.2 3.73 1 Almost all] Waves Stopped
2 1.4 4,81 2 Waves Stppped
3 1.2 4. 71 3 1.5 - 5,00
4 1.3 3.91 4 1.7 3.12
X =17Ft. A X =-2Ft,
1 1.3 3.79 1 Waves Stopped
2 .3 3.68 2 Waves Stopped-
3 1.3 3.24 3 1.0 6,24
4 1.7 3,62 4 1.3 5.00
X =6Ft, X = -3 Ft
1 1.3 3.57 1 Waves Stopped
2 1.3 3.52 2 Waves Stopped
3 1.4 3.57 3 1.1 3.33
4 1.6 3.52 T4 2,2 3,68
X =5Ft, X = -8 Ft.
1 1.3 3,33 1 1.1 3,62
2 1.3 3.52 2 0.8 4,16
3 1.2 3.68 3 0.8 4,16
4 1.4 3.91 4 1.2 4,81
X =4 F¢t.
1 1.2 3.47
2 1.2 3.91
3 1.0 3,57
4 1.4 3,38
: X =3 Ft,
1 1.2 3.85
2 1.2 3.21
3 1.3 3.42
4 2,2 3.47
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Wave Period = 0.52 Seconds.

TABLE III

Dial Setting = 1700 Crank Setting = 10

Wave Lox;gityginal

Y in . Hfﬂgﬁt Speed in
feet 10 INCAReS |eeet/ Second

X =5 Ft.
1 0.9 1.92
2 0.9 2.27
3 1.0 1.92
4 0.7 2.50

X = 4 Ft.
1 0.7" 2.08
2 0.8 2.08.
3 0.9 1.92
4 1.0 3.12

X = 3 Ft.
1 0.7 1.66
2 1.2 1.66
3 1.5 *
4 1.7 2.27
. X=2Ft
1 1.0 *
2 Waves Stopped Randomn Looking Signal
3 1.8 2.50 Remains.
4 1.4 3.57

X =1 Ft.
1 Waves Stgpped
2 1.1 Tk
3 1.1 *
4 1.1 %

X =-8 Ft.
1 Waves Stopped
2 1.2 3.38
3 0.8 3.33
4 0.6 2.78

= -2 Ft.
1 Waves Sfopped
2 Waves Sflopped
3 1.0 3.97
4 1.2 3.56 * indicates that this
data was unobtainable.
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TABLE IV

Wave Period = 0.42 Seconds. Dial Setting = 1633 Crank Setting = 10

Wave Longitudinal
. Height Wave
g
¥ee”£n in inches Speedin
feet/ Second
X =11 Ft.| (This data ftaken with Pump off.)
1 0.9 2.17
g 83 ; i; Height as recorded on
2 0.8 2.17 Sonic Wave Transducer
= 0. 85 inches.
X =9 Ft.
1 0.8 2.00
2 0.8 *
3 1.1 2.00
4 1.2 *
X = 7 Ft.
1 2.1 1.82
2 2.0 1.97
3 2.0 1.61
4 2.1 *
X =5 Ft.
1 1.4 *
2 1.6 1.33
3 1.2 1.70
4 0.9 1.64
X = -8Ft.
1 Waves Stopped
2 0.7 : 2.50
3 0.6 *
4 0.6 3.12
X = -5 Ft.
)1 0.5 *
2 Waves Stopped with|occasional variations
3 of as mjich as 0.5 ipches in the remaining
4 random|like signal.

At X ={l and X = 2,| the waves yere stopped, but the
amplitude of the rerhaining random like signal was
somewhht more thap in theno Wave’case. Variations of
as much as 0.5 incHes were obgderved.

* indicates that this
data was unobtainable.
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