Simulations of Nanoscale Spatial Disorder
by
Ethan Gabriel Greif Howe

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2006

(© Massachusetts Institute of Technology 2006. All rights reserved.

/
Author L~ BT LT L ep it e e e
Department of Electrical Engineering and Computer Science
May 26, 2006
Certified by g e DT
/ d hl Vladimir Bulovié

Associate Professor
Thesis Supervisor

Accepted by </ g a2 T
| Arthur C. Smith
Chairman, Department Committee on Graduate Students

SETTS E
OF TECHNOLOGY

AUG 1 & 2006 ARCHIVES

LIBRARIES

Simulations of Nanoscale Spatial Disorder
by
Ethan Gabriel Greif Howe

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we detail the design, implementation, and testing of two simulations of
nanometer scale disorder phenomena important for electronic device fabrication. We
created a kinetic simulator for the surface assembly of quantum dots into ordered or
disordered monolayers. We utilized a platform for high-precision motion and collision
resolution and implemented the behavior of quantum dots on a surface. The simu-
lation demonstrated experimentally observed behavior and offers insights into future
device design. We also created a material simulation of the electrochemical oxidation
of a metal surface with nanoscale roughness. We demonstrated that by preserving
the amount of metal and making the oxide coating conformal, anodization can highly
planarize the metal surface. We verify the convergence of our results as we increase
the accuracy of our model. We demonstrate differences in the rate of planarization
between additive and subtractive surface features which could not be observed by ex-
periment and make predictions about the planarization of metals with different oxide
expansion coefficients.

Thesis Supervisor: Vladimir Bulovi¢
Title: Associate Professor

Acknowledgments

I would first like to thank all my friends and coworkers in the Laboratory of Organic
Optics and Electronics. I have learned so much from all of you even though I was
usually coding away at my desk while you all were in the lab. I gained so much
knowledge and enthusiasm about organic electronics through your presentations and
impromptu discussions. Thank you Vladimir for giving me the opportunity to work
with you this year, for guiding my research, and for being the most supportive and
good-humored advisor. I would like to thank my family for their encouragement even
though they do not quite understand what I have been working on. Thanks to my
friends who were always there to distract me in between my work. I would like to
specially thank my 6.170 group from a few years ago who built some of the code that
I used to pursue my quantum dot simulation. I would also like to specially thank
Peter Mardilovich our visiting expert from HP whose experimental data is the basis
for my planarization simulation and with whom I worked in its creation. I would
finally like to thank MIT for being a home to me for the past five years and for being

a great environment in which to succeed academically.

Contents

1 Introduction 17
2 Quantum Dot Packing Simulation 19
2.1 Theory and Background 0L 20
2.2 Simulation Algorithm and Design 24
2.3 Simulation Results00 0oL 29
2.3.1 Dot Packing o 30

2.3.2 Luminescence Efficiency 32

2.3.3 Model Properties oo 35

3 Planarization Simulation 39
3.1 Planarizing Anodization Theory 39
3.2 Description of Key Calculations 46
3.2.1 Volume Change in Piecewise Linear Surface 46

3.2.2 Distance Measurements 50

3.2.3 Surface Roughness 51

3.3 Simulation Algorithm L. 52
3.4 Planarization Results 55

4 Conclusion 67
A Quantum Dot Packing Code 69
B Planarization Code 115

C Physics Package Copyright Notice 123

List of Figures

2-1

2-2

2-3

A schematic representation of two dots colliding. R; and R; are the
radii of dots i and j, respectively. 7; and 7; are the dot positions. @

and v; are the velocities and #; is the relative velocity of the dots. . .

a) Shows the results of our simulation for 300 uniform sized quantum
dots. The packing is hexagonally close-packed except for a few de-
fects and grain boundaries. b) Shows the results of our simulation for
300 quantum dots whose diameters are determined by a Gaussian dis-
tribution with standard deviation equal to 15% of the mean radius.
The dots are colored such that larger dots are more red, mean sized
dots are green, and small dots are more blue. The dots do not form

close-packing and there are several small clusters.

a) Shows the results of our simulation for 150 uniform sized quantum
dots confined in a grating. The packing is hexagonally close-packed
except for a few defects and grain boundaries. b) Shows the results of
our simulation for 150 quantum dots whose diameters are determined
by a Gaussian distribution with standard deviation equal to 15% of
the mean radius confined in a grating. The dots are colored such that
larger dots are more red, mean sized dots are green, and small dots

are more blue. The dots are more cohesive because confining them

22

31

increases the number of collisions and reduces the average kinetic energy. 32

9

2-4

2-5

3-1

a) Shows the proportion of dots that are “interior” for a given size
distribution. Circular markers give the data for unconfined dots and
the square makers give the data for dots confined along one dimension
to 6 lattice spacings (called a grating.). A dot is considered interior
if it has 5 or more neighbors (dots separated by less than a mean
radius). b) Shows the mean number of neighbors for interior dots. For
a circular or monolayer uniform-sized hexagonally close-packed sample,

this quantity would be 6.

a) and b) show the simulation spatial results for 5%, and 10% size
distributions. c¢) shows the dependence of the luminescence quantum
efficiency (LQE) in thin-film on the solution LQE for the uniform-sized
dot simulation with different Forster radii. The Forster radii are given
in units of the mean dot radius. d) shows the dependence of the LQE
on size distribution when 1/3 of the dots are designated traps, and the
Forster radius equals the mean dot diameter. The lower dashed line
shows the LQE (= 0.2) for a close-packed monolayer. The upper doted
line shows the LQE for solution, which is 2/3, since we assume a dilute

solution allows no energy transfer.

a) Compares the proportion of interior dots for equal dot masses to
dot masses scaled with dot surface area. We find a much stronger
degradation in monolayer stability when dot masses scale correctly
with size. The difference in the first data point is due to random
variations in the sample. b) Shows packing of uniform sized dots with
half the dots having twice the mass of the other dots. Table 2.1 gives

the packing calculations for this sample.

Figure comparing the conformal oxidation of a metal surface to an
equal consumption of metal at the oxide growth interface. a) Shows a

peak surface feature and b) shows a valley surface feature.

10

33

37

38

3-2

3-3

3-4

Experimental data from reference [1] detailing the progress of anodiza-
tion on a 1000nm thick sample of Ta. Left column: AFM images of
a 2um by 2um portion of the metal sample that clearly shows the
progress towards planarization of the oxide surface as oxide thickness
increases from = 0 — 350nm. Right column: SEM images of sample
cross-sections for the same set of oxide thicknesses. Shows similar pla-
narization in the metal surface as observed on the top oxide surface.
Reprinted with permission from Nano Letters 2005, 5 (10), 1899-1904.
Copyright 2005 American Chemical Society.

Experimental data from reference [2] detailing the progress of anodiza-
tion on a 200nm thick sample of Ta. The dimensions of the roughness
are much smaller than that observed for the 1000nm sample. Left col-
umn: AFM images of a 2um by 2um portion of the metal sample that
clearly shows the progress towards planarization of the oxide surface
as oxide thickness increases from ~ 0 — 100nm. Right column: SEM
images of sample cross-sections for the same set of oxide thicknesses.
Shows similar planarization in the metal surface as observed on the top

oxide surface.

Graphs of RMS and z-range (maximum to minimum) for the oxide
AFM data shown in Figures3-2 and 3-3 on the top and bottom row,
respectively. The top row shows the higher roughness occuring in the
1000nm sample compared to the 200nm sample on the bottom row.

Both sets of data show the clear planarization of the oxide surface. . .

Depiction of a piece of our surface grid having equally spaced x and
y coordinates and floating-point precision values in z. The figure also
shows how the grid is linearly interpolated to give an analytically con-

tinuous surface for calculations.

43

44

45

3-6

3-7

3-9

a) The volume under of a single triangular face. b) For calculation we
split the volume into a triangular prism and a pyramid. The z values
of the vertices are labeled by z’s, side lengths are labeled by c¢’s and

areas are shaded and labeled by A.

The figure shows the three distances (represented by arrows) calculated
in our simulation. In point to line distances, the distance vectors meet

the lines at right angles. 0oL,

a) Shows the effects of oxidation on a hill with height 0.5nm after a
1.0nm oxide has been electrochemically grown. b) Shows the effects of
oxidation on a depression with depth 0.5nm after a 1.0nm oxide has
been electrochemically grown. In both figures, we have taken a slice
through the center of the 3-dimensional surface. The empty symbols
represent the original surface, and the solid symbols represent the final

surface. The squares are for metal and the circles are for oxide.

a) Shows the RMS values of both the metal and oxide as a hill feature
is anodized. b) Shows the z-range (maximum to minimum z value) of
both the metal and oxide as a hill feature is anodized. The error bars
show the standard deviation in the metal to oxide distances. ¢) Shows
the RMS values as in a) but for a depression instead of a hill. d) Shows
the z-range as in b) but for a depression instead of a hill. The error

bars show the standard deviation in the metal to oxide distances.

12

48

51

o7

58

3-10

3-11

3-12

This figure demonstrates the convergence of the simulation as we de-
crease grid spacing and step size. a) Shows the RMS of the metal and
oxide surfaces for increasingly fine grids and a step size of 0.01. We
start with a 5 by 5 grid and halve the spacing between grid points for
the next simulation. Thus for the first simulation the hill feature is
a single grid point, for the second simulation the hill is 3 grid points,
then 7 points, and 15 points. b) Shows the z-range for the same set of
grids ¢) Shows the RMS of the metal and oxide surfaces for decreasing
step sizes and a 17 by 17 grid corresponding to 7 points for the hill.
We start with a step size of 0.1, which is only 1/5 the height of the
hill, and go to 0.005, which is 1/100 of the hill height. d) The z-range

for the same set of step sizes.o

Shows the results of our simulation on a computer-generated, 1000nm
thick TayO5 sample. Compare with results in Figure 3-2. We show
the oxide surface at 5 oxide thicknesses, t,, = 0,50, 100, 150, 200nm,
from left to right, top to bottom. We have kept the color and z scales

constant across the figures and shifted the z-axis.

The top line shows the RMS and z-range of our simulation on a computer-

generated, 1000nm thick TayO5 sample. We observe a generally expo-
nential decay in RMS and z-range with a finite asymptote determined
by the stability of the model (step size and grid spacing). Along the
bottom row, we reproduce these calculations for the experimental data

from Figure 3-2 on the same axes as our simulation results.

13

39

65

3-13 a) and b) show the RMS and z-range, respectively, of a single hill with
an oxide expansion coefficient k.., = 1.8 (see Figure 3-9 a) and b) for
comparison with ke, = 2.3). We used a 129 x 129 grid of points and
an oxide step size of 0.005 to minimize inaccuracies from the small
Kexp. ¢) and d) show the RMS and z-range, respectively, of a single hill
with Kepp = 2.8. We used the same grid and step size as we did for
kewp = 2.3, 17 x 17 grid and an oxide step of 0.01 because no added

accuracy was needed.o 66

14

List of Tables

2.1 Comparison of packing in uniform-size, uniform-mass dots and uniform-
size bimodal-mass dots. In the bimodal-mass dots, half of the dots have
twice the mass of the other dots. We show the proportion of interior
dots and the mean number of neighbors for interior dots. The data

shows that the bimodal dots actually pack better than the uniform dots. 36

15

16

Chapter 1

Introduction

We, as scientists and engineers, are everyday pushing the boundaries of understanding
and application. In electrical engineering, there is a long-standing trend towards being
able to accurately manipulate increasingly minute systems. By controlling nanoscale
structures, we are increasing the possibilities of our systems from the ever increasing
computing power of silicon, to the amazing prospect of quantum computing, to the
possibility of printing any electronic device quickly and cheaply. Today, systems exist
that can not only image single atoms but manipulate them on a surface. We are also
able to process increasing numbers of these atomic scale features. At the same time,
the increasing speed of computers is allowing us to build more intricate models of the
physical processes we seek to probe. Simulation has become an indispensable part
of almost all areas of scientific research and engineering. Simulation allows the re-
searcher to test his or her hypotheses in a controlled environment. Modeling can also
bridge the gap between individual phenomena and large complex systems, guiding ex-
periments by predicting new observations. My thesis focuses on two simulations that
I have created to describe nanoscale spatial disorder. The first simulation describes a
novel technique for creating extremely flat metal surfaces through anodization. Our
model reproduces all aspects of the experiments it describes. We have shown through
the simulation an understanding of the detailed mechanism for this surface planariza-
tion. In addition, we have made predictions of how this method anodization could

work to planarize other metals. We developed a second simulation to describe the

17

formation of an ordered monolayer of quantum dots. Several simulations of nanocrys-
tallite motion on surfaces already exist. Most of these models describe the system
as a lattice of points that can be occupied by the crystallite or some other species
and describe their motion as a probability of transferring to an adjacent lattice site.
Other simulations exist for how a large number of three-dimensional spheres rear-
range themselves into a stable bulk solid. Our simulation blends the ideas of packing
and nanoparticle motion, adding definite crystallite shape to surface simulations and
adding a description of realistic motion to sphere packing simulations. Our primary
objective was to examine how packing changes with the distribution of dot diameters.
We created a broad framework model that can act as a tool for examining almost in-
finite configurations of surface composition, device features, and dot types. We hope
that this simulation can be used as a tool for further experimentation and under-
standing. These two simulations are only a small sampling of all the possibilities in
simulating spatial disorder on the nanoscale. As we improve our descriptions of these
tiny phenomena in simulation, we will increase our understanding of these systems

and skill in manipulating them.

18

Chapter 2

Quantum Dot Packing Simulation

We have created a simulation of the packing of monolayer of quantum dots on a
surface. The basis for our model is kinetic motion and partially inelastic collision of
the dots with surface-mediated thermal motion and van der Waals interactions be-
tween dots. The position and velocity of the dots are represented with floating-point
accuracy, as is the boundary of the dots. The dots are represented as perfect circles
moving in a plane. In addition to dots, our simulation includes stationary objects
such as hard walls and regions with differing surface properties. The simulation is
intended not only for this work but also as a tool that other researchers and designers
can easily use and extend. We have included an extensive graphical user interface
(GUI) and a visual representation of the progress of a simulation in real-time. We
have also written our code in an easily understandable and extensible manner, using
object-oriented programming and a well designed object hierarchy. We have simu-
lated several experiments. Our first goal was to reproduce experimental observations
that increasing the diameter distribution first caused quantum dot monolayers to
become less well packed and then caused the monolayer order to break down. We
were able to reproduce this phenomenon and we were then able to use the freedom
available in our simulation to examine possible causes for this breakdown, including
differences in dot effective mass and insufficient kinetic damping. We also included
several calculations important for assessing both the results of our simulations and

measurable characteristics of quantum dots in the lab.

19

2.1 Theory and Background

A large amount of research has been done on sphere packing along many different
avenues. In two dimensions, Gauss proved that hexagonal packing is the densest of all
plane lattice circle packings, but not until 1940 did L. Fejes T'6th prove that it is also
the densest possible packing overall for same sized circles [3]. In three dimensions,
the problem took even longer to solve conclusively. The assertion that the densest
packing of identical spheres was so-called close packing, either in a face-centered
cubic or hexagonal lattice, was called the Kepler conjecture after Johannes Kepler
who posed it in 1611 [4]. Gauss was also able to show that face-centered cubic was
the densest lattice packing of spheres. While few people doubted Kepler’s conjecture,
the final proof by Thomas C. Hales did not come until 1998, and it involved breaking
down the problem into a large system of linear equations solved by computer [5].
There are a number of such geometric problems still under investigation, including
random packing, sphere packing in different dimensions, random loose packing, and
ellipsoid packings. The formation and motions of spherical structures has also been

intensely researched [4].

Quantum dots are inorganic semiconductor nanoparticles having diameters smaller
than the Bohr radius of excitons in the bulk material. This property confines elec-
trons and holes to particular lattice excitations and quantizes the possible energy
levels in the dot. This arrangement makes quantum dots of the same size highly ho-
mogeneous light emitters. Because of this property, quantum dots are being used in
optical communications [6], lasers [7], light detectors [8], and even as tags in biologi-
cal research [9]. There exist several types of quantum dots, including lithographically
etched, epitaxially grown, and colloidal. Our simulation focuses on colloidal quantum
dots that are deposited on a surface [10]. This type of quantum dot is synthesized in
solution by chemical and heating processes. The quantum dot core is usually coated
by a protective shell of higher bandgap semiconductor with matching lattice constant
such as CdSe covered by CdS or ZnSe [11] [12]. The shell passivates the core as well

as protects and physically separates the core from its surroundings. This setup also

20

enhances the properties of the quantum confinement by making it less prone to vari-
ations due to local environment. Finally, to allow the dots to remain easily soluble
and to allow incorporation into a number of structures including organic electronic
devices or biological systems, the dots can by overcoated with many types of organic

molecules [13].

A large portion of the literature on packing and granular flow focuses on the
packing of glass microspheres with radii between 1 — 1000um or charge-stabilized
polystyrene microspheres with radii smaller than 1um. Experimental studies and
simulations of three-dimensional structures of these nanospheres has also been ac-
complished in air, vacuum, and liquid [14] [15]. We are interested in the subset of
this theory which will apply at the smaller scale of dots. Also, since we are investigat-
ing the behavior of the dots on a surface, we can realistically ignore most interactions
with the liquid, including buoyancy, and Magnus lift [15], and factor them into the
random thermal motion parameter. The two remaining most important forces are
collision and van der Waals interactions. The nonlinear Hertz model collision force
on particle i from particle j with radii R;, R;, positions 73, 7, and relative velocity @;;
is given in Equation 2.1 where Y is Young’s modulus and v is the Poisson ratio [16]

(see Figure 2-1).

2Y 'Y'nY € g o 7
By = Gaom VB - 1o VR 6l -l

et _ MU
& R4+Rj
§n = Ri+R;—(|7i —73)) (2.1)

The first term in the equation is an elastic force that accounts for the distortion
and restoration of the particles. The second term is a dissipative component due to
energy loss in the center of the particle from the deformation. The constant 7, in
this term is the normal damping constant that is related to the normal coefficient of
restitution [14]. This component is dependent upon the rate at which the deformation
occurs because it relates to shearing energies and the rate at which energy must be

dissipated [16]. This force will be the main source of energy loss in our simulation.

21

Figure 2-1: A schematic representation of two dots colliding. R; and R; are the radii
of dots i and j, respectively. 7; and 7; are the dot positions. #; and ¥; are the velocities
and #j; is the relative velocity of the dots.

We will ignore tangential forces between dots during collisions because the small size
of the dots make these frictional-type forces minimal as well as hard to calculate
without accounting for molecular orientations and interactions. Thus the tangential

component of dot collisions will be taken to be purely reflective.

The van der Waals force, core to core, is the main attractive force between quan-
tum dots [17]. Other important forces include short-range atomic interactions and
long-range electrostatic forces. The short-range atomic forces mainly serve to keep
the dots separate and do not add significantly to attraction. Thus we can model these
forces as a nearly-hard dot radius. The long-range electrostatic forces are negligible
for uncharged dots in solution because the liquid dielectric screens this effect. The

van der Waals force between two spheres, i and j, with non-negligible radii, R; and

22

R;, and a separation of h between the spheres is given in Equation 2.2 [14] [18].

H, 64R?Rj’?(h + R + R)j) .
[=—— X n;J (2.2)
6 (h?+2R;h+2R;h)*(h% + 2R;h + 2R;h + 4R, R;)?

The Hamaker constant, H,, of CdSe is 0.388 [19]. The van der Waals force is ex-
erted mainly between the cores of the quantum dots [17] so we can use this equation
reasonably accurately for CdSe/ZnSe or CdSe/CdS core/shell dots coated with or-
ganic molecules. With this theory, we can build a good model of quantum dots being

deposited in a monolayer on a surface.

Once we simulate a stable monolayer of quantum dots, we would like to examine
some properties of that monolayer, which are strongly affected by the packing. Since
quantum dots are generally used for their optical properties, exciton transfer and
relaxation in the dots is particularly important. Exciton transfer in quantum dots
takes place through long-range dipole-dipole interactions described by Forster theory
[20]. We are concerned with singlet exciton transfer between individual dots. For this

case, the transfer rate between two dots, W, is given in Equation 2.3 [21].

W = Xx(R)P(Eq E,)
X(R) = %(%)

—(E, — E)\/kgT] E,> E,.
P(Es.E,) = eopl=(o/ksT] Eo> Ea (2.3)

1 otherwise

where £, and E, are the energies of the acceptor and donor molecules, respectively,
kg is Boltzmann’s constant, T is temperature, 7 is the radiative lifetime, Rp is the
Forster radius, and R is the distance between dots. If a dot contains an exciton,
then the transfer rates of all of the surrounding dots compete to determine, to which
site the exciton will hop. Generally, the Forster radius for quantum dots is small
enough such that excitons only hop to their nearest-neighbors. The exciton can
also radiatively decay with probability 1/7 at any time. Similarly, there exist non-

radiative decay pathways that allow excitons to recombine without emitting light.

23

These pathways generally involve interaction with the media surrounding the dots
but can originate from defects in the dot structure or the excitation of a charged dot.
The fraction of excitons introduced into the system that decay radiatively is known
as the luminescence quantum efficiency (LQE). This figure can be used to compare
the efficiency of different lumophores for a given device structure if exciton formation
is separate from luminescence. In our case, we want to compare the LQE of different
dot packing and assess any performance degradation from poor monolayer coverage
separately.

The formation of monolayers is important for the creation of efficient quantum dot
light-emitting devices (QD-LEDs) [22]. We can create such a layer by spin-casting a
solution of QDs and organics having the correct chemistry such that the QDs phase-
separate out of the organics after deposition. Then, with the correct concentration of
QDs, a complete, low-defect monolayer of QDs can be formed on top of the organic
layer. The distribution of sizes in the QD sample has been shown to affect the
formation and quality of the monolayer [23]. For highly monodisperse QDs having
a standard deviation, o, less than 5%, the monolayer on a particular substrate was
shown to have nearly perfect hexagonal close-packed structure. Moving to broader
size distributions, with o = 5 — 10%, the monolayer showed significant point and line
defects, but it retained good surface coverage. For QD samples where o > 10%, the
monolayer broke down completely, forming aggregates with no periodicity and large
uncovered areas. While QD samples with 0 < 5% can readily be synthesized [24],
larger size distributions as well as mixtures of different dots sizes could be useful for

some applications such as white light QD-LEDs.

2.2 Simulation Algorithm and Design

The code for this project was built on a program for user-reconfigurable computer
games including pinball and breakout [25]. To adapt this code for our simulation,
we greatly improved the accuracy of collisions, implemented new methods of interac-

tion to describe our nanoscale model, added new analysis and output features, and

24

augmented the user interface. The simulation is based on a finite time step, colli-
sion look-ahead, and resolution. It includes collisions between two moving circles, a
moving circle and a stationary circle or polygon, and a moving circle and a moving,
non-recoiling circle or polygon. The simulation enforces a hard wall boundary be-
tween all objects and can apply a constant force to all moving objects or interaction
forces between pairs of objects. The code is written exclusively in Java and is inter-
operable on many platforms. The simulation runs in real-time or nearly real-time on
modern single-processor computers and as such is viable as a design tool.

Our main algorithm for moving forward one time step is (for relevant code excerpts

see Appendix A):

1. Add random thermal velocities to all dots if the preset time has elapsed since

the last randomization.

2. Update the data structure that allows us to find dots that are close to each

other.

3. Add any interparticle forces by updating the velocities of pairs of dots that are

within a minimum distance of each other.
4. Start loop that resolves all collisions in a given time step.

5. If there are no more collisions or a maximum number of iterations has been

reached then end the loop.

6. Calculate and save the time until the first collision for each dot that needs to

be updated (on the first loop all dots need to be updated).
7. Find the first collision that will occur within the remainder of the time step.

8. If no collisions will occur, then move all dots along their velocity vectors for the
amount of time left in the step, and signal that there are no more collisions to

look for.

25

9. If there is a collision then update the position of all non-colliding dots along
their velocity vectors for the amount of time until the collision. Also subtract

this amount of time from the saved time until collision for each dot.

10. Resolve the single collision and mark any dots involved as needing their next
collision to be calculated. Subtract the time needed for this collision from the

time left in the time step.
11. If the time left in the time step is greater than zero, return to step 5.

We created this algorithm as the core of all the behavior in our simulation. Before
running this code, dots are introduced to the surface either through the GUI or inside
other functions. The dots have several core characteristics including position, velocity,
radius, mass, and color. For our later observations, we have also added secondary
characteristics such as whether the dot is in an excited state and how efficiently the
dot luminesses. Stationary objects are added in the same way with their own internal
variables including position, rotation, and color. We can access the simulation either
through the GUI or a programmatic interface. In both cases, the simulation proceeds
in its own thread, which activates the above routine at the time intervals equal to
the simulation time step. This time step can be adjusted, as can all of the model
parameters. If the computation time of the algorithm stays below the amount of
time represented, then the simulation will proceed in real time. The computational
complexity of this algorithm is given in Equation 2.4 using asymptotic notation where

n is the number of dots and At is the length of the time step.

n2

f(n, &) = O(%3) (2.4)

The computation time depends on 1/At because shorter time steps require more
calculations to check for collisions. The collision detection algorithm provided in the
physics package is n? because it must check pairwise collisions. Also our algorithm is
n? itself because we advance all n dots for each collision and the number of collisions

grows approximately as the number of dots grows.

26

Particular details of our outlined algorithm are important for correct operation.
Our difficulties arise from having to ensure that the dots behave correctly over small
collision distances with many surrounding dots, as in the case of close-packing. We
have chosen to advance all the dots together for each collision up to the time of that
collision; that way, all non-accelerative motions of the dots can be exactly correct. Our
collision detection considers only the position and velocity of the dots. Acceleration,
either from attraction or thermal motion, is added only at the beginning of each time
step as a change in velocity. Thus as we make our time steps increasingly small, our
acceleration and forces become more accurate. In this way, we can easily calculate
if and when a collision will occur between two objects, either two dots or a dot and
a stationary or non-recoiling surface. If we advance time by moving all dots to just
before the first calculated collision, then no other collisions should have happened
and no overlap should occur. Also since we move all the dots together, each dot is at
the same point in time. If we moved only the dot or dots that were colliding, then we
would be advancing their times farther than the others. Then when we checked for
collisions, we would have to account for the differences in time. Our method simplifies
these considerations and guarantees that all collisions happen at the correct times and
places. Our next concern is computational. Consider the case in which we collide two
dots by placing them directly next to each other; a third dot may also be about to
collide in a small distance. Since we represent positions with floating point numbers,
it we continue this process many times, for instance if the dots are being pressed
together, then the round-off error on the positions accumulate, and the dots may
overlap, causing our model to fail. Note that when overlaps occur collisions can no
longer be calculated correctly, and if dots are well packed then correcting for the
overlap can be difficult without disturbing our simulation. To avoid this problem, we
enforce a minimum distance around all dots. When calculating the time to collision,
we increase the radius of each dot by one millionth of the average radius. Then
when we find the new velocities after collisions, the dots are always a finite distance
away from the other object. Once we resolve this single collision, we need to update

the collisions we previously calculated. The data for the dots that just collided is

27

obviously invalid because their velocities have changed. Thus we need to recalculate
the collisions for these one or two dots. All of the other dots still have the same
velocities and have only moved forward in time. Therefore their next collision is still
valid unless that next collision is with one of the dots that just collided. We first
subtract the amount of time that all the dots moved forward from their saved next
collision time. Second, when recalculating the collisions for previously collided dots,
if the dot will collide with another dot we check if the time is less then the collision
time already saved, and if so we update the other dot as well. Using this procedure,

we can continue indefinitely in our simulation.

In our collision resolution procedure, we have incorporated inelastic collisions. All
objects in our simulation are defined by a set of line segments and circles. Our collision
detection specifies the first line segment, circle, or other dot, with which each dot will
collide. We have not implemented inelastic collisions with stationary objects. When a
dot collides with a line segment or circle, we simply utilize the geometric calculations
of our physics package. When two dots collide, we want to approximate the forces
described in Section 2.1. We have simplified the force of collisions (Equation 2.1) into
a model parameter that determines the amount of elasticity in dot-dot collisions. We
have not implemented inelastic collisions with stationary objects. When a dot collides
with another dot, we calculate the new velocities of the dots, v] and v3. We separate
the parallel and perpendicular components of this velocity, v and ', relative to the

direction of the collision. Then we apply the following equations to these components:

J n n
mivj; + MaV|jy

vﬁtl = e +(1—¢)

mi + mo
v{ = vﬁcl + v{l
mlv" + mgv"
f o _ n _ 1B |2
Viy = €U+ (1—c¢) e,
v = v{z +of, (2.5)

where € is the elasticity parameter that ranges from 0 to 1 and m; and mq are the
masses of the dots. We note that if e = 1 then the final velocities of the dots parallel

to the collision will be equal, and a large amount of energy will be lost.

28

We apply forces between dots at the beginning of each time step. For our sim-
ulation, the main force is a van der Waals attraction between all pairs of dots. To
save computational time, we only apply the force between dots that are within some
distance of each other. This optimization is minimal because the van der Waals inter-
action fall off as h® where h is the separation of the dots. To find these pairs in linear
time, we created a data structure that hashes the x and y locations of the dots and
determines which dots from adjacent bins are within the maximum distance cutoff.
Once the dots have been located, we can simply apply Equation 2.2 and change the
velocities of each pair of dots. This force creates a cohesion between all the dots that
tends to create one large mass of dots. The thermal velocities of the dots counter
this cohesion. At some given frequency, each dot has a small velocity with a set mag-
nitude and uniformly distributed direction added to it. This frequency of random
velocity addition is related to the time taken to thermalize the dots on the surface.
The magnitude of this thermal energy is the last parameter of our model, and it
determines the average velocity of a non-interacting dot on the particular surface in
the particular solution.

To represent the phase-separation method of monolayer creation described in Sec-
tion 2.1, we add dots to the surface sequentially. We select diameters from a Gaussian
distribution with the set standard deviation. We select positions uniformly over the
simulation area. We then check for any overlaps between the introduced dot and
existing dots. If an overlap occurs, we start over with a new random diameter and
position. We wait a short time between each dot addition and we wait a longer time
at the end for the sample to get closer to equilibrium. After this time has elapsed,

we make our measurements.

2.3 Simulation Results

As described in the previous section, our simulation contains four model parameters,
the collision inelasticity, the strength of dot to dot van der Waals interactions, the

average thermal velocity on the surface, and the rate at which thermal velocities

29

are added to the dots (thermalization rate). While we described calculations for the
first two of these quantities in Section 2.1, their accuracy, particularly in solution,
is limited. The last two parameters contain information about how the quantum
dots interact with the substrate and so they are not easy to calculate. These surface
parameters could be resolved from observations of the motion of quantum dots on a
surface. For the purposes of this thesis, the values of these parameters were estimated
and then tuned using phenomenological observations. In particular, we were hoping
to observe the size distribution dependence of monolayer formation. Thus we chose
parameters that gave roughly the desired effects over the correct size distributions.
As such, our model is still qualitative regarding packing fractions and stability across
different samples. Notwithstanding these difficulties, we believe that our simulation

is a good tool for understanding quantum dot monolayers.

2.3.1 Dot Packing

We demonstrated close-packing of monodisperse quantum dots on a surface and how
instability arises with increasing dot size distribution. We randomly deposited a set
of 300 dots into a large area with fixed boundaries. The results of the simulation
are shown in Figure 2-2 for uniform-sized dots and for dots with standard deviation
equal to 15% of the mean size. We observe that the uniform sample exhibits strong
hexagonal packing in three distinct grains. The large distribution sample exhibits no
defined lattice structure and there exist many small clusters. In addition, when we
observe the motion of this sample, the dots are much less well bound to each other as
the small clusters suggest. This instability translates to a physical sample that will
not energetically favor a monolayer formation. Since the dots are not well-bound in
the two dimensional formation, we expect the dots to decompose in three dimensions
or move off the sample area.

We examined the efficacy of confining the dots in order to increase packing and
reduce instability. We created a wall at 6 lattice spacings (6dg:v/3/2) from the
perimeter along one direction. We also reduced the number of dots to 150 so that

they had some freedom in the structure. In the uniform sample, we observed no

30

Uniform Sized Dots 15% Standard Deviation

' a;‘g

Figure 2-2: a) Shows the results of our simulation for 300 uniform sized quantum
dots. The packing is hexagonally close-packed except for a few defects and grain
boundaries. b) Shows the results of our simulation for 300 quantum dots whose
diameters are determined by a Gaussian distribution with standard deviation equal
to 15% of the mean radius. The dots are colored such that larger dots are more
red, mean sized dots are green, and small dots are more blue. The dots do not form
close-packing and there are several small clusters.

decrease in lattice order except for a slight increase in grain boundaries per dot (see
Figure 2-3). Single dot vacancy defects were reduced. We did see however difficulty
filling towards the sides of the structure due to the tight binding between the dots.
This difficulty would most likely be resolved in a three dimensional situation where
dots could settle into place from above. When created in this confined structure, the
15% size distribution saw significant improvement in its stability and packing. The
dots formed a cohesive single aggregate and the distances between dots in aggregate
form were reduced. This effect originates from a reduction in the average kinetic
energy of the dots. Confining the dots increases the number of dot-dot collisions and
thus increases the energy loss due to the inelasticity of those collisions.

We quantify packing quality by measuring the number of dots on the inside of
a cluster. The lowest energy formation of dots would be a close-packed circle. This

arrangement is also the lowest surface area configuration of dots. All interior dots

31

Uniform Sized Dots 15% Standard Deviation

Figure 2-3: a) Shows the results of our simulation for 150 uniform sized quantum dots
confined in a grating. The packing is hexagonally close-packed except for a few defects
and grain boundaries. b) Shows the results of our simulation for 150 quantum dots
whose diameters are determined by a Gaussian distribution with standard deviation
equal to 15% of the mean radius confined in a grating. The dots are colored such that
larger dots are more red, mean sized dots are green, and small dots are more blue.
The dots are more cohesive because confining them increases the number of collisions
and reduces the average kinetic energy.

would have 6 neighbors and only a small fraction (proportional to the perimeter of the
circle over the area) would be on the exterior. For unstable packing, dots form smaller
clusters with amorphous shape and thus decrease the number of internal dots. This
measurement gives a good idea of the stability of the monolayer. We determine which
dots are internal from the number of neighboring dots. A pair of dots are neighbors if
they are separated by less than a mean radius and a dot is considered internal if it has
five or more neighbors. The number of neighbors for each internal dot measures the
density of packing within each cluster. Figure 2-4 compares free and confined dots
on the proportion of interior dots and the mean number of neighbors for a number
of size distributions. We observe the expected trends. Increasingly polydisperse dot
samples show decreased stability and packing, which is mitigated by confining the

dots along one dimension.

2.3.2 Luminescence Efficiency

We calculate the luminescence quantum efficiency of our dots similarly. We have opted
for a simple model of non-radiative decay to demonstrate our simulations capabilities.
In particular, we designated a fraction of the dots (1/3 for the cases below) to be traps
that recombine excitons non-radiatively. We set all dot energies to be equal and used
the transfer probabilities defined by Forster transfer with a Forster radius equal to

the mean dot diameter. This model is simplistic because the size of the dots shifts

32

0.75+

” L4 '\, E 5751 o —ml— Grating
£ 0.70] -\ \. g smq \ —@— Free Floating
0 s = S ses e
|6 P4
= 060- S *
8° u = L} |
[= 2 By \
- 0557 £]
5] e
s 050 8 5481
e —m— Different Masses .8 540 °
O %49 | _—@— Same Masses E
4 S i
e vl ("] > 5.35 \\ PY
n- - % 5.30 4
000 002 004 006 008 010 012 014 016 g 000 002 004 008 008 010 012 014 048
Std. Dev. of Size Distribution Std. Dev. of Size Distribution

Figure 2-4: a) Shows the proportion of dots that are “interior” for a given size dis-
tribution. Circular markers give the data for unconfined dots and the square makers
give the data for dots confined along one dimension to 6 lattice spacings (called a
grating.). A dot is considered interior if it has 5 or more neighbors (dots separated
by less than a mean radius). b) Shows the mean number of neighbors for interior
dots. For a circular or monolayer uniform-sized hexagonally close-packed sample,
this quantity would be 6.

their spectra and the Forster radius is a function of the spectral overlap between
acceptor and donor states. We have made the approximation that all spectra are the
same with the same Stokes shift in the excited state and thus have the same Forster
radius. We set our time step as one hundredth of the dot radiative lifetime (note that
the probability of radiating in each time step is then nearly 0.01). We start by adding
an exciton to a random quantum dot. In each time step, we calculate the Forster
transfer rate between the exciton and all other dots and multiply that rate by the
time step to get the transfer probability. We determine if each transfer could occur
by getting a random number between 0 and 1 and checking whether that number is
less than the probability of the transfer. We perform the same test to determine if
the dot could radiate in a time step. If we have more than one possible change in the
exciton, we weight the outcomes by their probabilities and randomly determine which
one occurs. If we find no possible transfers and no radiation then the exciton remains
on the same dot. Otherwise, we either move the exciton to the next dot and calculate

new probabilities or we note that the exciton radiated and start a new exciton on a

33

randomly chosen dot. If an exciton is ever on a non-radiative dot (including when it
is first added), we discard the exciton and we try a new one. After a large number of
random excitations, we simply divide the number of radiated excitons to the number

introduced and we have a good estimate of the luminescence quantum efficiency.

Using this method, we measured the luminescence quantum efficiency (LQE) of
dot packings with each size distribution. We use a simple model where a fixed fraction
of the dots are quenching sites. In a disperse medium, such as in solution, where no
exciton transfer occurs, the LQE would equal to the number of non-quenching dots.
In Figure 2-5 ¢), we show the dependence of the thin-film LQE on the solution LQE.
We examined this effect on the dot-packing from our uniform-sized dot simulation.
The thin-film LQE is strongly dependent on the Forster radius because the more
likely transfer becomes the more likely the exciton will reach a quenching site. For
small Forster radii, the thin film LQE is equal to that in solution and for large
Forster radii nearly all excitons are quenched. When the Forster radius equals the
mean dot radius, we observe an exponential increase in the thin-film LQE as the
smaller number on quenching sites has an exponential effect on how many excitons
are quenched. We then examined the case with the solution LQE equal to 2/3 for
our different size distribution simulations. In Figure 2-5 d), we observe that the LQE
actually drops, going from the uniform sample to 5% standard deviation and then
increases monotonically. This trend reflects two competing effects. First, as the size
distribution increase, some dots have smaller size but their Forster radii remain the
same (by our assumptions). Since the Forster transfer rate goes as RS, we expect
significant increase of exciton transfer to and from these dots. The probability that
excitons will move into the smaller dots more than outweighs lower probabilities that
excitons will move out of large dots. This change causes the decrease in LQE because
dots are likely to move to quenching sights. We also note that the shape of our
clusters affects the LQE. The bottom line on the plot in Figure 2-5 d) gives the LQE
found in a large hexagonally close-packed lattice, which is significantly lower than the
uniform-sized sample because even though the packing is not significantly different,

all the dots have six neighbors. On the other hand, the effect that improves the LQE

34

as we continue to larger size distributions is the decrease in packing. From the 5%
sample on, the distances between dots increase both inside aggregates and as the dots
form smaller clusters. The LQE is just one of the measurements that are strongly

affected by quantum dot packing that we can probe using this simulation.

2.3.3 Model Properties

We found that one of the characteristics important to our model was the effective
masses of the dots. The effective mass originates from the dot to surface interactions
that affect the motion of the dot. These effects can be chemical interactions between
the organic caps and the substrate molecules, electronic effects involving the dot core,
and drag due to the liquid. The larger dots should have larger effective mass due to
increased surface area, increasing both substrate and liquid interactions. The effective
masses factor into the inelastic collision calculations. The transfer of momentum
between objects with different masses is less efficient and so the energy lost during
inelastic collisions is also smaller. We see in Figure 2-6 a) that if we give all the dots
the same mass instead of scaling the mass with the surface area of the dots then
the degradation in stability is much slower. We do still observe a loss of stability
with size distribution because of the difficulty in forming a good packing with dots
of different sizes. To illustrate that both these effects are important in our model,
we created a sample with uniform sized dots but we doubled the mass of half of the
dots. We found that this configuration actually improved the packing and stability
of the dot monolayer (see Table 2.1). In Figure 2-6 b), the two dot clusters have
less defects and are closer to circular because they are slightly less stable than the
completely uniform dots. This instability allows more freedom to find low energy
configurations while keeping the dots from breaking up completely. These two effects
combine when looking a large size distributions. The differences in size cause the
dots to be continually in motion as finding a perfect packing is unlikely and the
differences in mass keep this extra motion from being reduced. These observations
have implications for trying to create a monolayer of dots with different emmissive

properties. To make a close-packed monolayer of dots using this method, this analysis

35

suggests that it would be better to change the material composing the dots rather than
changing their size in order to get a number of emission frequencies. Alternatively,
the organic cap material could be changed for different dot sizes to compensate for

the differences in effective mass.

Table 2.1: Comparison of packing in uniform-size, uniform-mass dots and uniform-
size bimodal-mass dots. In the bimodal-mass dots, half of the dots have twice the
mass of the other dots. We show the proportion of interior dots and the mean number
of neighbors for interior dots. The data shows that the bimodal dots actually pack
better than the uniform dots.

| Uniform Mass | Bimodal Mass |

Interior Proportion 0.697 0.747
Mean Interior Neighbors 5.737 5.857

36

0.8 4

0.6

0.4 4

0.2

Thin Film LQE

0.0

e
b
)

e
o
1

=4
o
I

—m— Simulation Data
----- Solution
- - = Uniform Hexagonal

e
>
1

o
w
1

o
N
1

~f~s-u-w-8-8-2-5--8-8-8-n-n-u-u-u-0

Figure 2-5: a) and b) show the simulation spatial results for 5%, and 10% size dis-
tributions. c) shows the dependence of the luminescence quantum efficiency (LQE)
in thin-film on the solution LQE for the uniform-sized dot simulation with different
Forster radii. The Forster radii are given in units of the mean dot radius. d) shows
the dependence of the LQE on size distribution when 1/3 of the dots are designated
traps, and the Forster radius equals the mean dot diameter. The lower dashed line
0.2) for a close-packed monolayer. The upper doted line shows the
LQE for solution, which is 2/3, since we assume a dilute solution allows no energy

shows the LQE (=~

transfer.

Internal Quantum Efficiency

Solutlon LQE

-002 000 002 004 008 000 010 012 014 013

Std. Dev. of Size Distribution

0.75

0.70 4
0.65 \
0.60

0.55 4

0.50

—m— Different Masses

0451 | —@— Same Masses

Proportion of Interior Dots

0.40

T T T T T T T T T
002 000 002 004 006 008 010 012 014 0.16

Std. Dev. of Size Distribution

Figure 2-6: a) Compares the proportion of interior dots for equal dot masses to
dot masses scaled with dot surface area. We find a much stronger degradation in
monolayer stability when dot masses scale correctly with size. The difference in the
first data point is due to random variations in the sample. b) Shows packing of uniform
sized dots with half the dots having twice the mass of the other dots. Table 2.1 gives
the packing calculations for this sample.

38

Chapter 3

Planarization Simulation

Our simulation of rough metal anodization is based on a discretization of the surface
both in-plane and perpendicular to the surface. We create an evenly-spaced grid of
points to represent an arbitrary surface topology. As the simulation progresses, each
grid point can be raised or lowered only by a small step size. To simulate electro-
chemical oxidation, we create one surface describing the oxide and one describing the
metal. Then we reduce one grid point on the metal and increase some number of oxide
points so as to retain the same amount of metal, taking into account the expansion
coefficient due to the incorporation of oxygen. To determine which points to modify,
we find the metal point which is closest to the oxide and all its equidistant oxide
points. Thus the oxide growth is conformal to the metal surface to within twice the
step size used in changing the height of the metal. With this procedure we observe

the same planarization of the metal surface observed in experiment [1].

3.1 Planarizing Anodization Theory

There exist few references in the literature on utilizing electrochemical oxidation (an-
odization) to planarize thin metal films [1] [26]. To our knowledge, there has yet to
be a detailed theory of how this planarization occurs, and there does not exist a nu-
merical simulation of the phenomenon. We believe that the reason for this oversight

is that this type of planarization can be difficult to observe in many metals due to

39

defects that can arise during anodization and due to other process constraints. There
are a large number of models and simulations for other types of oxidation, mostly for
silicon [27]. The methods employed in these simulators range from the continuous
approximations used in commercial process simulators such as SUPREM IV [28] to
Monte Carlo bond-based simulators such as OXYSIM [29]. These challenges notwith-
standing, the applications of this type of planarization are myriad. Reference [26]
describes using this technique to fabricate high-quality nanodimensional inductors
and capacitors. Using photoresist and etching, one of these planarized surfaces could
create templates for nanoimprinting or microcontact printing. In addition, since
the metal and oxide can vary in conductivity, novel fabrication techniques could be
possible, for example, edge electroplating [1]. Due to the low roughness, layers of
planarized metal and oxide can be deposited one on top of the other to form nearly
perfect multilayer films [1]. These multilayer films could be used as exceptional x-ray

defraction gratings.

Aluminum (Al) with alumina (AlO) and tantalum with TayOs are the systems
where anodization has been shown to planarize the oxide surface and the oxide-metal
interface. The properties of these two metal-oxide pairs are significantly different.
First, the volume expansion coefficient (the factor by which the oxide volume is
larger than volume of metal consumed) for AlO from Al is low at approximately
1.3. For Ta, the expansion coefficient is much higher, between 2.3 and 2.47. This
difference makes Ta much easier to planarize than Al because Al does not move as
easily away from the initial metal surface. Another property that could be important
for applications is tailoring of the dielectric constants of metals and their oxides.
Alumina has a moderate dielectric constant ¢ = 9 — 11, but TayOs is known as a
“high-k” dielectric € ~ 25 which makes it useful in capacitive and refractive devices

such as MOS structures and the above mentioned multilayer film.

The general method followed to achieve the planarized surfaces through electro-
chemical oxidation is as follows [1]. DC sputter deposition is used to deposit a thin
film of metal onto a flat substrate. The sample is placed in an electrolytic solution

containing oxygen. The metal is used as an anode and a voltage is applied from a

40

platinum cathode. The electric potential drives the oxidization by inducing the diffu-
sion of the charged oxygen species through the existing oxide to the metal surface. As
the oxide grows, any area of the oxide that is thinner than another will have a larger
voltage drop and a stronger electric field (V/cm). Then since the oxygen current is
driven by the electric field, more oxygen will flow to the metal in this area. This
process will happen quickly because the oxide is thin and the voltage is high, causing
large current changes even for small defects. Consequently, oxide tends to grow at
the same rate over the entire surface and self-heals any defects. This process creates
a conformal coating of oxide with nearly the same thickness over the entire metal.
This property is also the driving force behind the planarization of a rough starting

metal surface.

To explain how planarization takes place, we examine the cases where a metal
hill and a metal depression are anodized in two dimensions. Figure 3-1 compares
the oxidation of a metal hill feature conformally with the consumption of an equal
amount of metal at all points on the metal-oxide interface. In conformal oxidation,
the distance between metal and oxide perpendicular to both surfaces must be equal
at all points. Thus, any sharp edges become concentric circular sectors on both the
metal and oxide surfaces. There is a larger area at the peak that needs to be filled
by oxide. More metal will need to be oxidized where the surface has been bent away
from itself than where the surface is flat. Since this type of roughness increases the
rate at which metal is oxidized, the conformal oxidation drives the surface to lower
roughness. If we examine the case of a depression in the metal, shown in Figure 3-1,
we observe analogous results. At the bottom of the depression, we have a larger
area of metal and a smaller area for the oxide to expand into. If the metal were
oxidized at a constant rate, the oxide would become thickest above the bottom of the
depression. To generate a conformal coating of oxide, little of the metal at the bottom
is oxidized, and instead, the metal and oxide form the same concentric circles such
that the perpendicular distance between the surfaces is equal at all points. Because
less metal is oxidized where the metal is bent towards itself than where the metal is

flat, the sides of the depression will eventually reach the level of the bottom, and the

41

------ Original Metal

------ Original Metal —— Conformal Oxide Area
— Conformal Oxide Area [__1Non-Conformal Oxide

[1 Non-Conformal Oxide

Figure 3-1: Figure comparing the conformal oxidation of a metal surface to an equal
consumption of metal at the oxide growth interface. a) Shows a peak surface feature
and b) shows a valley surface feature.

oxide will conform to that flat surface. Therefore, conformal oxidation decreases both
types of roughness on a surface, and after a sufficient thickness of oxide is grown, the

metal and oxide will both have low roughness.

Experiment shows some other interesting properties of the planarization. Fig-
ures 3-2 and 3-3 from references [1] and [2], respectively, show the progress of an-
odization experimentally at different oxide thicknesses. The researchers used atomic
force microscopy to measure the oxide surface. They also created cross-sections of
their samples using special coatings over the oxide to avoid damage and observed
the metal and oxide surfaces using scanning electron microscopy. They used their
AFM data to analyze the root mean squared and maximum to minimum values for
different amounts of oxidation. A more detailed explanation of the importance of
each of these measures can be found in Section 3.2.3. We can easily extract a number

of key characteristics from this data. First, the roughness of the films increases with

42

Figure 3-2: Experimental data from reference [1] detailing the progress of anodization
on a 1000nm thick sample of Ta. Left column: AFM images of a 2um by 2um portion
of the metal sample that clearly shows the progress towards planarization of the oxide
surface as oxide thickness increases from = 0 — 350nm. Right column: SEM images
of sample cross-sections for the same set of oxide thicknesses. Shows similar pla-
narization in the metal surface as observed on the top oxide surface. Reprinted with
permission from Nano Letters 2005, 5 (10), 1899-1904. Copyright 2005 American
Chemical Society.

43

x 0500 un/div
Z 10,000 /iy

X 9.500 un/aty
= 10,000 re/ai

X 0,500 pm/div
2 10,000 saydiv

< 0.500 unidiv
2 10,000 mm/div

Figure 3-3: Experimental data from reference [2] detailing the progress of anodization
on a 200nm thick sample of Ta. The dimensions of the roughness are much smaller
than that observed for the 1000nm sample. Left column: AFM images of a 2um by
24m portion of the metal sample that clearly shows the progress towards planarization
of the oxide surface as oxide thickness increases from ~ 0 — 100nm. Right column:
SEM images of sample cross-sections for the same set of oxide thicknesses. Shows
similar planarization in the metal surface as observed on the top oxide surface.

44

KN = :
50 o--
5, ¢ E
- S40: ¢
g4 R
€ ?.’ 30
>3 : N ;
x . :)
2 g% .
L 3 "0 - .
{ e 3 -
n L o
b} 00 200 300 400 0 100 200 300 400
Oxide thickness. r Oxicde thickness. nm
12 2
[3
19 ® e R 3
£ .
08 = 3 .
=
z >
w03 § &
= [N & *
%14 5 4
32 hd 2
J .:] — o - s e SV
8] 20 A0 80 30 100 [H] 20 40 60 80 100
Coade thickness, nm Oxide trickress, nm

Figure 3-4: Graphs of RMS and z-range (maximum to minimum) for the oxide AFM
data shown in Figures3-2 and 3-3 on the top and bottom row, respectively. The top
row shows the higher roughness occuring in the 1000nm sample compared to the
200nm sample on the bottom row. Both sets of data show the clear planarization of
the oxide surface.

the amount of Ta deposited. Second, the 1000nm thick sample contains roughness
on two different scales, one larger around 200nm and another smaller around 30nm.
The thinner sample contains only the small-sized roughness. The contention is that
the larger features result from formation of crystallite islands during deposition, and
that a certain thickness of metal is necessary before the surface chemistry becomes
favorable for their formation. The smaller roughness is likely a product of the sput-
tered deposition process, appearing unchanged at all thicknesses. Next, we should
note the particular trends in ronghness during the process of anodization. For a suffi-
ciently thick oxide, both the RMS and the z-range show an exponential decrease with
the amount of oxide grown. The roughness approaches an asymptote determined by
the roughness of the substrate. For the lower roughness film, the experiments were

able to resolve a region where the decrease in roughness is linear instead of exponen-

45

tial. We will discuss this effect in greater detail in Section 3.4, but in general, this
results from the fact that, until the thickness of the oxide reaches some percentage
of a particular feature size, those features are hard to planarize. This characteristic
can also be observed in the AFM images for 1000nm thick Ta at oxide thickness 3 in
Figure 3-2. At that thickness of oxide (= 100nm), only the small-sized roughness has
been planarized, leaving the large-sized roughness nearly unchanged. These are some
of the aspects of this type of anodization that we hope to observe in our simulated
process model. Additionally, we hope to observe other properties that are difficult to
measure by experiment. In particular, observing the metal-oxide interface is trouble-
some in Ta because the etches that select for TayO5 also tend to etch some fraction
of the Ta. We would also like to predict how different oxide expansion coefficients

affect the planarization.

3.2 Description of Key Calculations

In implementing this simulation, a few key calculations must be made correctly. First,
we must determine how to change the positions of the metal and oxide surfaces so
that we preserve the total mass of metal. We find that the volume change in our
discretized surface is linearly proportional to the amount each point in the grid is
moved up or down. Then we need to calculate the minimum distance between the
two surfaces. We considered the distances between any pair of points in the metal
and oxide surfaces, as well as the distance between a point in one surface and a line
connecting two points in the other. Finally, we need some numerical measures of the
progress made toward planarization of our sample. Our figures of merit will be the

z-axis range and RMS.

3.2.1 Volume Change in Piecewise Linear Surface

In our simulation, we create a grid of points in the x-y plane with equal separation
in each direction and with arbitrary z values. Between each grid point the z-axis

surface values are linearly interpolated (Figure 3-5). Thus if we only have two grid

46

Figure 3-5: Depiction of a piece of our surface grid having equally spaced x and y
coordinates and floating-point precision values in z. The figure also shows how the
grid is linearly interpolated to give an analytically continuous surface for calculations.

points at (z,y,2) = (0,0,0.5) and (0, 1,1), evaluating the height of the surface at
(x,y) = (0,0.5) gives z = 0.75. Likewise, at the center of each square of points, the z
value is the average of the four surrounding points. Between this center point and two
points on the corners of the square, we define the surface as the section of the plane
that passes through those three points. Thus our surface consists of tiled triangular
facets defined by points of the grid with 4 facets for each point. This parameterization
is as accurate as possible for an arbitrary surface with a set number of data points.
To consider how the amount of metal changes with the adjustment of a single grid
point, we first calculate the volume contained under a single facet (Figure 3-6). We
split the volume into two sections: a lower triangular prism and an upper pyramid.

The prism extends from the x-y plane to the minimum z value (z,,) where the original

47

ZI‘Zm

Figure 3-6: a) The volume under of a single triangular face. b) For calculation we
split the volume into a triangular prism and a pyramid. The z values of the vertices
are labeled by z’s, side lengths are labeled by c’s and areas are shaded and labeled
by A.

volume has been cut. The pyramid is the rest of the volume, with the pyramid base
opposite z,. In the figure, we show z,, as one of the grid points, but it could equally

well be the center point. The volume of the prism is calculated by Equation 3.1.
2m (3.1)

For the pyramid, the base may either be a right trapezoid or a triangle in the limiting

48

case where 2, = 2,, OT 2] = 2p,. In either case, the volume of the pyramid is given by:

Voyr = %Abh = écb [(ze — 2m) + (21 — 2m)] b
= ECQ [(ze + 21) — 22m)
where
¢ if z, is at the center point,
v % otherwise.
Ay = %Cb [(zc — 2Zm) + (21 — zc)]

£ if z, is at the center point,
ho={° " (3.2)

c .
7 otherwise.

The volume of the combined solid is shown in Equation 3.3. We show that each vertex
contributes linearly and equally to the volume. We must also make sure that the
center point does not somehow affect the contribution to the volume under the overall
surface. Equation 3.4 consists of all four volumes from Figure 3-5 added together and
shows that all points on the surface contribute linearly and independently to the total
volume. In fact, the volume under the entire surface as we have defined it is simply
the area of the grid times the mean of all z values. Thus we have proved that when
we move one point on the surface down by a certain amount, and then we move a
different point on the surface up by the same amount, we retain the same volume

under the surface.

1 1 1
Vi = VotV = =2+ = [(2e + 21) — 22 =

e+ 21+ 2 .
4 12 EC [~c+~1+ m] (33)
1
2, = Z(Zl.+22+23+24)
1.
vV = Vl+V2+V3+V;=Ec2[231+222+223+224+4zc]
1) 4 2,
= ﬁ62[321+322+323+324]=022 Zn (34)

n=0

49

3.2.2 Distance Measurements

Our simulation of anodization planarization depends heavily on measuring the dis-
tances between the metal surface and the oxide surface. These calculations also take
up the bulk of the computation time, forcing us to strike a balance between accu-
racy and computational complexity. We also must remember that our discretization
of the surface reduces the final accuracy we want to achieve, so working harder on
some calculations will not noticeably improve the outcome. There are a number of
distances we can consider between our metal and oxide surfaces, namely: point to
point, point to line, line to line, point to plane, line to plane, and plane to plane.
The line to line and plane to plane measurements would be redundant. For line to
line, the grid precludes any line segment from being any closer to another line than
its end points. For plane to plane, in three dimensions each plane piece can only be
as close to another plane as one of its sides or one of its vertices. We have chosen
to omit point to plane and line to plane calculations for our current simulation. The
point to point and point to line calculations will be correct to first-order because the
omitted calculations can only serve to slightly shorten the distance found between
metal and oxide. The point to line measurement adds a good deal of accuracy, which
can particularly be seen when the oxide thickness is small. With only point to point
distances, only the oxide and metal points at the same x-y coordinates can possibly
be closest to each other until the oxide height reaches the distance between points.
When we additionally consider the point to line measure, the oxide or metal point
will most likely be closer to the line connecting the point directly above or below and
an adjacent point. This change means that we have to move more than two points to
increase the metal-oxide distance correctly, and this contributes greatly to how much

we expect rough spots to spread.

The equations themselves are simple Euclidean geometry. Figure 3-7 depicts the
three situations for which we account. The point to point distance is given in Equa-

tion 3.5, and the oxide point to metal line distance is given in Equation 3.6. The

50

(X I’YI’Z l)ox (X l’yl’zl)ox (Xl’yl’zl)ox
(XZ’Y2’72)ox
e

(XY 2)m

XpYpZpm (XpYpZmy (XpYpZPm

Figure 3-7: The figure shows the three distances (represented by arrows) calculated
in our simulation. In point to line distances, the distance vectors meet the lines at
right angles.

metal point to oxide line case is analogous.

dpp = |26z — Zml| (3.5)
dp—l ”('2722 - ZT;!'}) X (i”’_f;]- B z;fl?)“ (36)
|lzm2 — zml|

3.2.3 Surface Roughness

The surface roughness has to do with both local variations in the height of the surface
as well as the long range slope of our material. The simplest way to assess overall
variations in the surface is to use the root mean squared (RMS) of the z values
deviation from the mean (Equation 3.8). This measure reflects discrepancies between
all heights, whether they are close together or far apart. A small RMS means we have
a mostly flat surface. Small defects in our surface, however, could have a large impact
for many applications, and these defects could be masked by a simple RMS. The total

z-range of the surface shows how the outlying points in our sample approach each

ol

other. This measure gives us an idea of the worst-case roughness that we can expect.

z-range = max 2z, — min 2, (3.7)
ne{l...N} ne{l...N}
N
(2 — p2)?
MS = _ .
RMS ; ~ (38)

3.3 Simulation Algorithm

We used the Matlab numerical analysis platform as the basis for our current imple-
mentation of this simulation. To begin, our simulation is given an arbitrary surface
described by a grid of x-y points with equal spacing along both directions and a set
of z-axis values. Then, depending upon the accuracy we are looking to achieve, we
increase the number of points on the grid in both directions by some integer and
linearly interpolate the z values from the original set. This data describes the metal
surface. We assume that the oxide starts with minimal thickness such that the oxide
surface is a simple copy of the metal surface data. Also important for accuracy is the

step size by which we will increase the oxide surface and decrease the metal surface.

The three main data structures at the heart of our simulation are a set of oxide
points, a set of metal points, and a set of distances. The set of oxide points is a
matrix of variable-length arrays containing the indices of the oxide point or points
that are the minimum distance away from the metal point at that index in the matrix.
This matrix has the same indices as the x, y, and z data sets, which store the grid
point positions. The set of metal points is a convenience structure that duplicates
the oxide points data but indexing instead on the oxide point to which several metal
points may be closest. This metal point set does not necessarily contain only the
metal point or points equally close to a particular oxide point, but instead has any
metal point that does not have any other oxide points that are closer. The set of
distances is a matrix giving the minimum distance between a particular metal point
and the closest oxide point and is indexed by the metal point. In other words, these

are the distances associated with the set of metal to oxide points. The oxide points

52

set and metal points set are initialized to their own indices, and the distances are all
Z€ero.
After initializing the surface and the various data structures, our simulation pro-

ceeds through the following steps:

1. If smallest distance is greater than the desired final oxide thickness, end the

simulation.

2. Find minimum distance in the set of distances. This is the index of the metal

point to change.
3. Save the indices of the oxide points for that metal point.

4. Increment the z values of these oxide points by the expansion coefficient minus

one times a fraction of the oxide step.

5. Decrement the z value of the metal point by the sum of all the increment

fractions.
6. Recalculate the distance to the oxide for the updated metal point.

7. Recalculate the distance to the oxide for all the metal points that were previ-

ously closest to the updated oxide points.

8. Determine if the distance from the updated oxide points to any metal point is

smaller than the metal point’s current minimum distance.
9. Go to step 1.

Most of these steps are straightforward, but a few require further explanation.
The termination condition for our simulation is fulfilled when the smallest distance
between metal and oxide is greater than the goal thickness. We could alternatively
do some kind of smoothing of our distances so that all distances get very close to the
correct oxide thickness by reducing the oxide step size as we approach our goal. We do
not believe this procedure would add much to our accuracy, however, because the step

size throughout the simulation is a limit on our accuracy. Reducing it near completion

53

would do little for overall accuracy. In addition, if we wanted to compare the final
oxide to intermediate oxides we would want to use the same procedure before taking
those measurements. That would add to our computational time and make separate
runs different based on the number of measurements because measuring would reduce

the oxide step size temporarily.

Next we should specify which fraction we are using to increment each of the oxide
points. We use the fraction that will ensure that over the entire surface at one point
in time no metal point will be reduced by more than one oxide step and no oxide
point will be increased by more than the expansion coefficient minus one times the

oxide step. Equation 3.9 shows the calculation of that fraction.

1

(length of oxide point set) x (length of metal point set for this oxide point)
(3.9)

or

The first term ensures that if this metal point is equidistant to multiple oxide points
then the total of the oxide fractions will be less than or equal to one. The second
term ensures that, if, for instance, two metal points have the same oxide point as
their closest oxide point, then each point will only contribute half of an oxide step to

that oxide point.

Once we have changed the metal point and the set of oxide points, any distances
that refer to those points are out of date. We must therefore recalculate any distances
that may have been affected by these changes. For the metal point, we have to find
the closest oxide point or points, and as stated in Section 3.2.2, we consider the metal
point to oxide point distances, the metal point to oxide line distances, and the metal
line to oxide distances. For the metal line to oxide point calculation, we consider the
four line segments with the changed point as a vertex (two along x and two along y)
in this calculation. To optimize our algorithm, we start by looking at oxide points
directly above the metal point and move outwards only as far in x and y directions as
the minimum distance to the oxide found so far. This cutoff is a simple application
of the triangle inequality because the distance between a metal point and an oxide

point can at minimum be the x-y distance between the points. We then look at the

o4

metal point lists for each of the oxide points that we changed. These lists give metal
points which used to be closest to the updated oxide points, and we follow the same
procedure with these metal points as with the updated metal point to correct their
minimum distances. Finally, we must find any other metal points, which, after the
update of the oxide, are now closest to one of the changed oxide points. Thus we
follow analogous procedures, searching around each oxide point for any metal points
that could be close to it. In this case, the cutoff in the number of metal points that we
must consider surrounding each oxide point is slightly different. Since the minimum
distances are different at each metal point, we do not have a straightforward minimum
distance from the oxide point to all of the metal points. Thus we need a different
measure to see how far the oxide point could possibly be from the metal surface.
We remember, however, that we are conformally coating the metal surface by only
incrementing the smallest distance by a small value. Thus the maximum distance we
can expect to find is the current oxide thickness plus the expansion coefficient times
the oxide step, since we change the metal to oxide distances by less than that amount
each time. Then we only have to consider the metal points around each oxide point
that are less than this distance in the x and y directions. After we have completed
updating the distances, we are ready to return to the beginning of our loop to test

for termination.

3.4 Planarization Results

We started testing the simulation by considering the progress of anodization on a
single hill and a single depression. To create the hill we started with a 5x5 grid with
the distance between grid points equal to 1nm and initial metal thickness of 4nm.
We then incremented the center point to 4.5nm and increased the sampling of the
surface by four times so that the distance between grid points equaled 0.25nm. After
the interpolation, we are left with a pyramid with a base width of 2nm or 8 grid
points. Having created the structure, we proceeded to oxidize the surface up to 1nm

using 0.01nm oxide steps. Figure 3-8 compares the initial and final metal and oxide

95

surfaces for both the hill and the depression created by making the original center
point 3.5nm instead of 4.5nm. First of all, we observe significant planarization of
both types of surface feature in both the oxide and metal surfaces. We also observe
spreading of the features over adjacent grid points in both surfaces as we would expect
to allow for planarization. The total amount of planarization is the same for the hill

and the depression as can be seen in Figure 3-9.

In Figure 3-9, we observe a number of interesting phenomena that are observed
experimentally (see Section 3.1). First, the metal and oxide surfaces do not planarize
at exactly the same rate. For the hill feature, the metal surface RMS and z-range
drop faster than the oxide RMS and z-range. Whereas for the depression feature, this
trend is reversed. As the oxidation progresses, this discrepancy is reduced until both
surfaces are planarized the same amount within simulation accuracy. The root of the
discrepancy is a linear region in the calculations at the beginning of the planarization
that appears in both RMS and z-range. The linear region is followed by an exponential
region. The linear region is stronger (flatter slope) in the oxide for the hill and is
stronger in the metal for the depression. Until the oxide thickness gets close to the
defect height some of the metal and oxide points that should planarize each other
do not have a straight line distance through the oxide. Thus planarization is slower
(linear) until each metal point can see most oxide points it needs to oxidize or until
each oxide point can see most metal points that need to oxide it. Now we can
understand the discrepancy between the hill and valley oxidation. In the hill, the
metal is closer to many oxide points at the peak of the feature, which is where the
most planarization is needed. Thus the metal planarization proceeds more quickly
at the beginning for the hill. The oxide catches up since it has a wider view at
the peak for thicker oxides and since the rate of planarization is higher for rougher
surfaces. In the depression case, the roles of metal and oxide are reversed with the
oxide initially having many points contributing to it near the lowest point and the
metal having less points to contribute to near the lowest point. Finally, if we were
to examine the case where we have a random assortment of hills and depressions, we

would observe the same, linear followed by exponential, characteristics. On the other

56

Comparison of Initial to Final Metal/Oxide Surface Cut

8 T T T T T T T
O Initial metal
7L O Initial oxide | |
B Final metal
® Final oxide
6 4
5 - 4
© 00 0 0 0 0 9% 0 0 4 4 4 940
(7] (o] (o]
= o © % o
© g O-:0 Q Q- 09O @ ©
N " = = m ®E 8 B B ®m g 5 . 5 5 n
3r]
er 4
1+ 4
0 1 1 1 1 1 1 1
-2 -15 -1 -0.5 0 0.5 1 15 2
X axis
Comparison of Initial to Final Metal/Oxide Surface Cut
8 T T T T T T ——
O Initial metal
7L O Initial oxide | |
B Final metal
® Final oxide
6]
5r 4
- e o o o © 0o 0 0 0 0 0 0 o
] 0 0 0 0 g4 5 g B 0O 0 o
N I o Q " = =
" m @ @ & s = °®
3 = <
2r]
il = o
O 1 1 i 1 1 1 1
-2 -15 -1 -0.5 0 0.5 1 1.5 2
X axis

Figure 3-8: a) Shows the effects of oxidation on a hill with height 0.5nm after a
1.0nm oxide has been electrochemically grown. b) Shows the effects of oxidation on a
depression with depth 0.5nm after a 1.0nm oxide has been electrochemically grown.
In both figures, we have taken a slice through the center of the 3-dimensional surface.
The empty symbols represent the original surface, and the solid symbols represent
the final surface. The squares are for metal and the circles are for oxide.

o7

= Metal/Oxide RMS Metal/Oxide Z-Range

0.6
—=#— Metal RMS
—&— Metal Z-Range
\\\‘\\ —~@— Oxide RMS 055 —&— Oxide Z-Range| 4

_. 005 1 L
3 0.4
=
@ 0.045 351
z
0.04 1 Y 03
0.0351 1 0.25
0.03f 0.2

02

Z-Range (nm)
=3
&

04 06 08 1 : 0 02 0.4 0.6 08 1
Oxide Thickness (nm) Oxide Thickness (nm)

Metal/Oxide Z-Range
—&— Metal Z-Range
0.07, 0.55F —=@— Oxide Z-Range|
—=— Metal RMS
0.065 —=@— Oxide RMS 05}

0.06

Metal/Oxide RMS

0.0551

3
oo0sf \

0.04

RMS (nm)
o
3
o
Z-Range (nm)
o
© ©
w o

o
I
a

0.035

o
N

0.03

o
o

0.025F

o

0.02

0 02 0.4 06 08 1 0 0.2 04 0.6 0.8 1
Oxide Thickness (nm) Oxide Thickness (nm)

Figure 3-9: a) Shows the RMS values of both the metal and oxide as a hill feature is
anodized. b) Shows the z-range (maximum to minimum z value) of both the metal
and oxide as a hill feature is anodized. The error bars show the standard deviation in
the metal to oxide distances. ¢) Shows the RMS values as in a) but for a depression
instead of a hill. d) Shows the z-range as in b) but for a depression instead of a hill.
The error bars show the standard deviation in the metal to oxide distances.

hand, because we would have an approximately equal number of hills and depressions,
the metal and oxide progress would be nearly identical (see Figure 3-12). Although
these characteristics can be theorized without the help of numerical methods, it is

encouraging that our simulation exhibits the desired behavior.

We also must be concerned with the accuracy of the simulations, based on our
choice of discretization. The two parameters that affect our accuracy (as well as our
computation time) are the distance between grid points and the size of the steps
made between the oxide and the metal. Figure 3-10 shows data for progressively
smaller grid spacing and smaller step size. The progression shows that in order to

achieve relatively consistent results that we must use a grid spacing that is four times

o8

Metal/Oxide RMS with Different Gridding Metal/Oxide Z-Range with Different Gridding

0.1 0. T
—=a&— Metal — No Interpolation 51 —a&— Metal - No Interpolation
0.09 —=— Metal - 2x Interpolation |] 0.45F —&— Metal - 2x Interpolation
—&— Metal — 4x Interpolation —&— Metal — 4x Interpolation
—=— Metal - 8x Interpolation 04} ~m— Metal - 8x Interpolation |{
0-03" —a&— Oxide - No Interpolation| | —@— Oxide - No Interpolation
—@— Oxide — 2x Interpolation 0.35F —@— Oxide — 2x Interpolation |
0.07-1 g\ —=@— Oxide - 4x Interpolation | —@— Oxide — 4x Interpolation
-®— Oxide - 8x Interpolation € oaf ~#— Oxide — 8x Interpolation | |
E 006 o =
é‘ L g 0.25
Z 0.05f .. - [+
2 . N 02f
= - L ¥
0.04 = b - el
0.03 ' 01f
0.02f 0.05F
0.01 0
02 0.4 0.6 08 1 0 02 0. 0.6 0.8 1
Oxide Thickness (nm) Oxide Thickness (nm)
Metal/Oxide RMS with Different Step Size Metal/Oxide Z-Range with Different Step Size
0.09 T T T 08 T
K —&— Metal - 0.1 Step —=a— Metal - 0.1 Step
—=— Metal - 0.05 Step —&— Metal - 0.05 Step
0.08} / —=— Metal - 0.01 Step |{ 07t —=— Metal - 0.01 Step |{
- Metal — 0.005 Step = Metal - 0.005 Step
/s —e— Oxide - 0.1 Step /\-—\lk —e— Oxide - 0.1 Step
0.07. —e— Oxide - 0.05 Step { 06l /g W —e— Oxide - 0.05 Step 1
§ —a@— Oxide - 0.01 Step —@— Oxide - 0.01 Step
- Oxide - 0.005 Step! — & Oxide - 0.005 Step

Z-Range (nm)
o
'S

o
w

o
S

o

0.6 08 1

02 0.4 06 08 1 0 0.2 0.4
Oxide Thickness (nm)

Oxide Thickness (nm)

Figure 3-10: This figure demonstrates the convergence of the simulation as we de-
crease grid spacing and step size. a) Shows the RMS of the metal and oxide surfaces
for increasingly fine grids and a step size of 0.01. We start with a 5 by 5 grid and
halve the spacing between grid points for the next simulation. Thus for the first
simulation the hill feature is a single grid point, for the second simulation the hill is
3 grid points, then 7 points, and 15 points. b) Shows the z-range for the same set of
grids ¢) Shows the RMS of the metal and oxide surfaces for decreasing step sizes and
a 17 by 17 grid corresponding to 7 points for the hill. We start with a step size of
0.1, which is only 1/5 the height of the hill, and go to 0.005, which is 1 /100 of the
hill height. d) The z-range for the same set of step sizes.

smaller than our smallest surface feature (4 times interpolation) and a step size that
is approximately 1/50 of the height of our largest feature (0.01 steps for a 0.5 feature
size). This data verifies that the increase in accuracy beyond these values for RMS
and step size is negligible (keeping other variable constant such as the expansion
coefficient) and the increase in computation time is substantial. That is why we used
4 times interpolation and 0.01 step size in our examples up to this point. Now we can
continue to more complicated surfaces and have a good idea that our results would

be approximately the same if we increased our accuracy.

39

For our simulation, we have recreated a 0.5um by 0.5um section of a sputtered
tantalum (Ta) surface with 1000nm thickness. As explained in Section 3.1, for this
thickness of Ta, two scales of roughness were observed, wider and slightly higher
crystallite roughness and a smaller roughness due to non-uniform deposition. The
larger roughness had widths of approximately 200nm and heights of about 30nm and
the smaller roughness has widths of 40nm and heights of 20nm. To recreate this type

of roughness we used the following procedure:

1. Create a grid with spacing equal to half the width of your largest defect size
(100nm spacing).

2. Set all z values to the average initial metal thickness (1000nm).

3. Add a random number with constant distribution with zero mean and range

equal to your largest defect height (random numbers from —15nm to 15nm).

4. Decrease the grid spacing until it reaches half the width of the next defect size
(20mm spacing).

5. Add the same type of random numbers with the new defect height (from —10nm
to 10mm).

6. Continue until all defects are added.

7. After adding the last defects, decrease the grid spacing by four times to ensure

accuracy.

We use a grid spacing of half the desired defect width because that allows for the
random numbers to be high and then low on the correct scale. These values are
then interpolated to get a smooth surface. This method does not best reproduce the
experimental surface because the large crystallite structures should not be entirely
random. They should instead be distinct islands pushing into each other such that
the angle at the boundary between the islands is relatively sharp. The smaller defects
from deposition are closer to this random configuration, having a set maximum and

minimum possible addition with all heights between those two values equally likely.

60

We see in Figure 3-11 that we have RMS and z-range values that begin close to the
experimentally observed values. Since we have this agreement in the original surfaces,

we hope to see moderate agreement between our simulations and experiment.

Figure 3-11 shows our results for the simulated Ta surface described above. We
observe clear planarization of the surface as the oxide thickness increases. As in ex-
periment, the small, deposition-type roughness planarizes first. The RMS and z-range
are compared to their experimental values in Figure 3-12. These measurements show
reasonable agreement. We note that although the initial z-range values match well,
the initial RMS is 2nm higher for our simulation. This fact hints that our description
of the oxide surface needs to be improved to better represent the larger crystallite
roughness. Our model demonstrates the expected exponential character of the pla-
narization. As expected, the oxide and metal surfaces planarize at near exactly the
same rate. In Section 3.1, we described the difficulty in experimentally measuring the
metal surface when it is covered by oxide, with our model we predict that the metal
planarization will correspond directly to that of the oxide. Our simulation results
contain two discrepancies with the experimental data, however. First, the exponen-
tial decrease proceeds slower in our simulation. We attribute this error to the finite
boundary of our simulated sample. The oxide and metal points cut off at the edges
making less points to oxidize and making the planarization proceed slower. We can
alleviate this error by simulating larger samples. Second, our model does not show
the strong linear region at the beginning of oxidization. Two possible sources of this
error are the differences in initial surfaces discussed previously and the discretization
of the initial surface. The initial surface morphology affects the linear region be-
cause of differences in the oxide distances needed to get efficient planarization. OQur
linear interpolation of initial features could also cause this disagreement. Linear in-
terpolation creates a jagged initial surface. Since the rate of planarization is directly
proportional to roughness, the interpolation may be artificially increasing the initial
planarization and suppressing the expected linear region. We can use quadratic or
cubic interpolation to eliminate this effect. Overall, we conclude that our model does

a good job of reproducing important experimental results.

61

We also studied the effects that different expansion coefficients (kez,) have on the
planarization process. This data can help us anticipate the planarization of different
metals, which will all have different k.,,. We expect that for smaller k.,, the oxide
surface will be more difficult to planarize because the surface will move up less and
the metal surface will move down more. We noted some difficulty in our calculations
for low kezp due to the fact that the oxide surface moves only slightly for each step.
We had to increase the number of grid points to get an accurate measurement. In
fact, for ke, = 1.8, we had to increase the gridding by 32 times instead of the 4
times for keg,, = 2.3. We hope in future versions we can improve this factor by
slight improvements to our algorithm. Figure 3-13 shows the RMS and z-range for
kezp = 1.8 and key, = 2.8 on a hill surface feature. The most obvious difference is
that the smaller expansion coefficient increases the disparity of planarization between
the oxide and metal surfaces. For low ke, the oxide surface moves less and we need
to oxidize more metal to get the desired oxide thickness. This observation explains
why the difference between oxide and metal RMS should be larger for lower k..,. Of
course, this observation also implies that for larger k..p, the gap between metal and
oxide RMS should be closed and could reverse in favor of the oxide RMS decreasing
faster. The RMS of both surfaces also shows a slight dependence on kegp. Both sets
of data in Figure 3-13 have higher RMS for each surface respectively than the data
in Figure 3-9 where kezp = 2.3. Going to even higher k.., we see a continued trend
in increasing overall RMS. We have found that the lowest overall RMS is achieved
when keg, = 2.0. At this value, both surfaces change the same amount at each
step, which may help keep the two surfaces conformal and minimize overall RMS. Of
course, the changes are so slight that a more thorough investigation of accuracy is
required to make sure this dependency is not a side-effect of the simulation. We can
also predict the trends for depression features as a function of k.;,. We expect the
gap between metal and oxide RMS (with the oxide RMS decreasing faster) to widen
for larger ke, as the oxide grows faster and the metal takes longer to be consumed.
On the other hand, smaller k., should decrease the gap for a depression. We now

have a good idea of how our planarization by anodization process would work for ideal

62

metals with different oxide expansion coeflicients. This data would be hard to observe
experimentally because the physical process must be fine-tuned for the chemistry of
each metal. With our simulation, we can give a good indication of what to expect for

different metals and whether that experimentation would be warranted.

63

Planarized Oxide Surface

Planarized Oxide Surface

10504
1035

;

1030

z axis (nm)

1025

1020

1015

200 ;
200 1010

y axis (nm) U X axis (nm) y axis (nm) 0 o X axis (nm)

Planarized Oxide Surface Planarized Oxide Surface

1075
1 s ® 1100
0% 1070
1080 : = 1095
5 e il 1065
10704 L T _
£ : g 1090
£ it 1060 £
2 1060 - 2 i
3 |z 3 1
N 10504 1055 N
o 1080
10404 - 1050
10305 1075
400 1045
5 1070
200 1040
1065
. 1035 X
y axis (nm) 00 x axis (nm) y axis (nm) 00 x axis (nm)
Planarized Oxide Surface
1135
1130
1125
- 1120
£
£
2 1115
3
= 1110
1105
1100
1095

y axis (nm) 0 0 x axis (nm)

Figure 3-11: Shows the results of our simulation on a computer-generated, 1000nm
thick TasO5 sample. Compare with results in Figure 3-2. We show the oxide surface
at 5 oxide thicknesses, t,, = 0,50, 100, 150, 200nm, from left to right, top to bottom.
We have kept the color and z scales constant across the figures and shifted the z-axis.

64

Metal/Oxide RMS Metal/Oxide Z-Range

50
—&— Metal RMS —=— Metal Z-Range
7k —@— Oxide RMS 45¢ —~@— Oxide Z-Range| 4

RMS (nm)
>
Z-Range (nm)
n
o

0 50 100 150 200 [50 100 150 200

Oxide Thickness (nm) Oxide Thickness (nm)
Experimental Oxide RMS Experimental Oxide Z-Range

6\

T "\

RMS (nm)
»
Z-Range (nm)

0 50 100 150 200 0 50 100 150 200
Oxide Thickness (nm) Oxide Thickness (nm)

Figure 3-12: The top line shows the RMS and z-range of our simulation on a computer-
generated, 1000nm thick TayO5 sample. We observe a generally exponential decay in
RMS and z-range with a finite asymptote determined by the stability of the model
(step size and grid spacing). Along the bottom row, we reproduce these calculations
for the experimental data from Figure 3-2 on the same axes as our simulation results.

65

Metal/Oxide RMS Metal/Oxide Z-Range

0.07, T
—&— Metal RMS 0.5 —&— Metal Z-Range | 4
0.065 —@— Oxide RMS |4 —@— Oxide Z-Range|
0.06 0451 4
0.055 ol
_. 005 3
£ £
£ o 0.35F
2 0.045 2
«
T 004 & osf
0.035 ?
- 0.25
0.03
02F
0.025F
0.02 = . L + i L
0 02 04 06 038 1 0 0.2 0.4 0.6 08 1
Oxide Thickness (nm) Oxide Thickness (nm)

Metal/Oxide RMS
T T T 0.5

—&— Metal RMS
0065 W —— Oxide RMS | { ek
.06 1
{ ‘\I\‘\ 0.45F
0.055 1

g o
£
& 0.045
g
0.04f

Metal/Oxide Z-Range

—&— Metal Z-Range
—=&— Oxide Z-Range| |

o
>

Z-Range (nm)
o
w
o

e 03f
0.035 e 1
0.25
0.03 3
0.025 1 i
0.02 . s " e " n s " -
[¢] 02 0.4 0.6 0.8 1 0 02 04 0.6 0.8 1
Oxide Thickness (nm) Oxide Thickness (nm)

Figure 3-13: a) and b) show the RMS and z-range, respectively, of a single hill with
an oxide expansion coefficient k.., = 1.8 (see Figure 3-9 a) and b) for comparison
with kezp = 2.3). We used a 129 x 129 grid of points and an oxide step size of 0.005
to minimize inaccuracies from the small k.;p.) and d) show the RMS and z-range,
respectively, of a single hill with k., = 2.8. We used the same grid and step size
as we did for k.yp = 2.3, 17 x 17 grid and an oxide step of 0.01 because no added
accuracy was needed.

66

Chapter 4

Conclusion

This thesis detailed two simulations based on models of experimental observations.
We showed that these models were able to reproduce experimental behavior with a
small set of assumptions. We then applied these models to novel device structures
and materials, and presented simulated measurements that are difficult to make ex-
perimentally. We have also noted avenues for improvement in both our computations
and models.

Our simulation of quantum dot packing showed the significance of size distribution
in monolayer formation. Our model assumed hard-sphere inelastic collisions between
dots, van der Waals attractions, and random thermal motion, based on the substrate
properties. For monodisperse samples, we observed stable, hexagonal close-packing of
the dots. As we increased the size distribution of the dots, we observed a decrease in
packing and cluster stability. We were able to mitigate these effects by confining the
dots along one dimension. We investigated the effective mass as a cause of the size
distribution-related packing breakdown. We also reported a simple calculation for the
luminescence quantum efliciency of the dots. We plan on extending our simulation
interface to make it more useful to other researchers and implement new packing-
related calculations.

We demonstrated a model of planarization through electrochemical oxidization.
Motivated by experimental evidence, we created a fundamental model of this process

with only two assumptions: conformal oxidation and metal conservation. We demon-

67

strated that this model reproduces planarization of large surface defects on both the
metal and oxide surfaces. We verified an expected difference in the planarization
of the metal and oxide surfaces for individual additive and subtractive defects. We
showed the convergence of our simulation results as we increased the accuracy of
our computations. We simulated the anodization of a realistic Ta sample and found
close agreement with experimental data. We also noted some discrepancies in our
simulation and gave our explanation of their origins. We then reported the effect
that different oxide expansion coeflicients have on planarization. This data shows
that other metals could be planarized by these methods. In the future, we hope to
increase the accuracy and efficiency of our simulation and use it as a tool for the

investigation of this type of planarization in other metals.

68

10

20

25

30

35

Appendix A

Quantum Dot Packing Code

Listing A.1: Quantum dot simulation main class containing time update algorithm.

package sel02 .gb;

import sel02.gb.gobjects.Ball;

import sel02.gb.gobjects.Gizmo;

import sel02.gb.util.Reflector;

import sel02.gb util.BallBunch;

import sel02.gb.util. BallLocalizer;

import sel02.gb util.Pair.

import physics.x=;

import javax.swing.x*:

import java.awt *:

import java.awt.event.x;

import java.awt.geom.x:

import java.util. List;

import java.util.Iterator;

import java.util . Map;

import java.util.HashMap;

import java.util. ArrayList;

import java.util Random;

/Ex

This class drives the updates of the game arca during play.
*

x @specfield bhoard | Board // updated periodically by this runner
« Gspecfield timer | Tumer // calls updates to go through the
* @specfreld currentDelay | time // the delay between update
+ @Dapecfreld updater | physics loop // for debugging . this is the
*/

public class Runner {

private

private

private

private

Timer timer;

GraphArea board;

int currentDelay;

Updater updater;

69

physics loop

manually

manipulatable

Updater

40

45

50

55

60

65

70

75

80

85

90

95

private boolean debug;

private int maxIterations;

private Random random = new Random(205);

BallLocalizer bl;

// Constructors

VAL

* Main constructor for making a running physics loop on the board with

of milliDelay
*
* @requires board = null
* @effecets imnitializes the fields
*/
public Runner(GraphArea board, int milliDelay) {
// this.board = board;
// this.timer = new Timer(milliDelay , new Updater()):
// this.currentDelay = milliDelay;
// this.epsilon = milliDelay / 8;
// this.timer. start():
this(board, milliDelay , false):

VAL

* Debugging constructor that allows updates to be done sequencially

*
* @requires board != null
* @effects wnitializes all fields czcept timer
*/
public Runner(GraphArea board, int milliDelay , boolean debug) {
this.board = board:
this.currentDelay = milliDelay:
// this.epsilon = 0; // milliDelay / 8;
Geometry .setForesight (2 * currentDelay);
if (debug) {
this.updater = new Updater();
} else {
this.timer = new Timer(milliDelay , new Updater());
this.timer.start();
}
this.debug = debug; // true if no visuwalization is wused
maxIterations = 2500;
bl = new BallLocalizer (board.getSizeX (), board.getSizeY (), 15.0);

// Getters and Setters
public double getEpsilonSpace() {
return updater.getEpsilonSpace();
// Modrficrs
VAT
* Changes the delay between ecach update of the hoard

*

* @modifics timer

70

[

delay between

updates

* @effects changes update delay
100 */
public void changeDelay(int milliDelay) {
timer.setDelay(milliDelay);

currentDelay = milliDelay;
// epsilon = 0: //milliDelay / 8;
105 Geometry . setForesight (2 * milliDelay);
}
VAR
* Stops updates of the board but remains ready to start again.
110 *

* @modifies timer
* @effeets stops the timer temporarily
*/
public void pause() {
115 timer .stop ()

VEE)
* Restarts uwpdates of the board ofter it had been previously stopped
120 *
* @reguires this.pause() had heen previously called since the last construction or this.
restart () call
* QDmodifies timcr
* @effeets restarts the timer after it had been paused
*/
125 public void restart () {

timer.restart ();

Vi r
130 = For debugging purposcs only . runs one update cycle of the wupdater
ok
* @modifics this.updater
* @throws RuntimeErception
* if this Runner is not in debug mode
135 *,/
public void runUpdate() {
if (updater !'= null) {
updater .actionPerformed (new ActionEvent(this, 0, "update”));
} else {

140 throw new RuntimeException(”Not.in._.debug.mode”):

public void setMaxIterations(int iterations) {

145 maxlterations = iterations;

S x

* Updates the stute of the board throuwgh periodic calls to actionPerformed by the timer
150 *

~/

class Updater implements ActionListener {

private double epsilonTime = le—6;
155 private double epsilonSpace = le—6;
private double epsilonVelocity = le—1;

71

160

165

170

175

180

185

190

195

200

205

210

7

7/
/7
//
/7

private double epsilonPrecision = 1e—10;

public double getEpsilonSpace() {

return epsilonSpace;

double timeSinceRandomizeVelocities = 0.0;

Jxx
* The method called be the actionPerformed method to do the updates of all the balls on the

board to account for gravity and friction and for collision with other gizmos and balls.

* @requires ballArray !'= null, reflecctorArray = null, and for all i, ballArray[i] = null.
reflectorArrayfi] 1= null

* @modifics all balls in ballArray

* @effects Uses the PhysicsSimulator to update the welocity of each ball with the current
gravity and friction. Then uscs the Geometry class in the physics package to find the
closcst

* colliston for cach ball. Moves cach ball to the point of collision and then wuses

the Geometry reflect methods to collide. The method loops wuntil all balls have performed

all the
* collisions that should occur in this period.
*/
private void arrayLoopOverlapProofMutualAttraction(Ball[] ballArray , Reflector []
reflectorArray) {
int loopNum = 0;
System . out. printin (" attraction”);
bl.clear ();
bl.addBalls(ballArray);
boolean[] activeBalls = new boolean[ballArray.length];
java.util.Arrays. fill (activeBalls , true);
double delayLeft = currentDelay /1000.0;
double deltaDelay = 0;
Reflector [|] closestReflectors = new Reflector{ballArray.length];
Ball{] closerBalls = new Ball[ballArray.length];
int [|] closerBallsIndex = new int[ballArray.length];
double[] shortestTimes = new double[ballArray.length];
java. util . Arrays. fill (shortestTimes , Double . MAX_VALUE) ;
java.util.Arrays. fill (closestReflectors . null):
java . utrl. Arrays. fill (closerBalls , null):
java . util . Arrays. fill (closerBallsInder , 0);
Rectangle origBallBounds;
Circle ballPerimeter;
double collisionTime;
Vect collisionDistance:
double[] timeSinceVelocityUpdate = new double{ballArray.length];
java.util.Arrays. fill (timeSinceVelocityUpdate, 0.0} ;

//add random welocities
timeSinceRandomizeVelocities += delayLeft;
if(timeSinceRandomizeVelocities >= PhysicsSimulator.getRandomVelocityDelay()) {
for(int i = 0; i < ballArray.length; i++) {
Vect randVect = new Vect(new Angle(2xMath.PIxrandom.nextDouble()),PhysicsSimulator.
getRandomVelocityMagnitude (ballArray [i].getMass()));
ballArray{i].setVelocity (ballArray[i). getVelocity().plus{randVect));

}

timeSinceRandomizeVelocities = 0.0;

bl.updateBalls();

72

215

220

225

230

235

240

245

250

255

260

V4
Vs
74
7
’/

/7
/7
/7
//
//

ArrayList<Pair<Pair<Ball ,Integer >,Pair<Ball ,Integer >>> pairs = bl.getAllPairsSeperatedBy (

PhysicsSimulator.getMaximumForceDistanceThresh());

// c¢hange the ball velocities based on their mutual attractions

lterator <Pair<Pair<Ball ,Integer >,Pair<Ball ,Integer >>> pairsiterator = pairs.iterator ();

while(pairsIterator.hasNext()) {

().

().

System . out. println (” found pair”);
Pair<Pair<Ball ,Integer >,Pair<Ball ,Integer >> balls = pairslterator.next();
Ball balll = balls.getFirst().getFirst();
tnt indexl = halls.getFirst().getSecond();
Ball ball2 = balls.getSecond().getFirst ();
tnt index2 = balls.gctSecond () .getSecond ()
Vect diff = balll.getCenter().minus(ball2.getCenter());
double dist = diff.length()—balll.getRadius()—ball2.getRadius();
if(dist > PhysicsSimulator.getMinimumForceDistanceThresh()) { // precludes any negative
dist from owverlaps
//have to update for welocity from the previous times because we’'re changing it s
veloeity
balll.sctVelocity (PhysicsSimulator. updateVelocity(balll.getCenter(),balll.getVelocity
timeSinceVelocityUpdate [indexl |))
hall2. . sectVelocity (PhysicsSimulator. updateVelocity (ball2. . getCoenter (), ball2 . getVelocity
timeSinceVelocityUpdate [index2])):
//add atiraction
System . out. printin ("adding attraction”):
if(balll.getMass() == ball2.getMass()) {
Vect update = diff.unitSize().times(PhysicsSimulator.updateVelocityAttraction (dist .
balll .getMass() ,delayLeft));
balll .setVelocity (balll.getVelocity ().plus(update.neg())):
ball2 .setVelocity (ball2.getVelocity ().plus(update));
1 else {
// the updates made seperately for ecach ball
Vect updatel = diff.unitSize().times(—PhysicsSimulator.updateVelocityAttraction(dist ,
balll.getMass() ,delayLeft));
Vect update2 = diff.unitSize().times(PhysicsSimulator.updateVelocityAttraction (dist ,
’ ball2 .getMass () ,delayLeft));
balll .setVelocity(balll.getVelocity().plus(updatel));
ball2 . setVelocity(ball2.getVelocity().plus(update2));

change welocaty update info if not already being updated
if (timeSinc.VelocityUpdate [indexl] > 0.0) {
timeSinceVeloertyUpdate [indexl] = 0.0;
updatelndercs fupdatelnder] = indezl:
updateInder++;
}
if(timeSinceVelocityUpdate [index2] > 0.0) {
timeSinceVelocityUpdate [indez2] = 0.0:
updatelnderes [updatelndez| = indez2:

updatelndcr++;

int [| updatelndexes = new int[ballArray.lengthl];

int updatelndex = O0;

//inetialize updatelInderes

for (:updatelndex < updatelndexes.length; updatelndex++) {

updatelndexes [updatelndex| = updatelndex;

// System.out.printin(”At while loop”);

boolean noMoreCollisions = false;

while (delayLeft > epsilonTime) {

73

265

270

275

280

285

290

295

300

305

310

315

320

ved

Vs

Vs
/7
1/
//

/7

loopNum++;

// System.out.printin(”in while loop?”);
// closestReflectors = new Reflector [ballArray.length];
// closerBalls = new Ball{ballArray.length|;
// closerBallsIndez = new int[ballArray.length];
// shortestTimes = new double [ballArray.length];
// java.util.Arrays. fill (shortestTimes , Double MAX.VALUE) ;
// update all wvelocitics
boolean noActive = true;
for (int i = 0; i < activeBalls.length; i++) {
if (activeBalls[i] == false) {
System.out.printin ("activeBalls["+i+"] is false”);
continue;
} else {
noActive = false;
break;

}

// System.out.printin(”loop
// return

»

+ loopnum) ;

to the top loop if all balls are null

if (noActive || noMoreCollisions || loopNum > maxIterations) {

for (int

System . out. println ("loop number is ” + loopNum) ;

if (loopNum > maxIterations)

System .out. println (”Number_of_iterations .went_over._maximum_of.” 4+ maxIterations + "o

iterations”);

return;

java.
java .
java .
java.

// resct
for (int

int

util
wtil
util

wtil

.Arrays. fill (shortestTimes, Double MAXVALUE) ;
.Arrays. fill (closestReflectors , null);

.Arrays. fill (closerBalls , null);

Arrays. fill (¢closerBallsIndex , 0):

collision parameters for balls about to be updated

index = 0; index < updateIndex; index++) {

i = updatelndexes[index];
shortestTimes|[i] = Double . MAXVALUE;

closestReflectors|i|] = null; //not necessary

closerBalls[i] = null; // not necessary

closerBallsIndex|[i] = 0; // not necessary

gizmo

collision dcetection

index = 0; index < updatelndex; index++) {

// if (activeBalls[i] == false) {

// continue ;

/7 }
int i = updatelndexes[index];
//erpand size slightly to keep balls seperate for reflecction step

ballPerimeter = new Circle(ballArray{i].getCenter(),ballArray[i].getRadius()+

epsilonSpace);

for (int j = 0; j < reflectorArray.length; j++) {
// reflector = (Reflector) reflectors . next():
if (reflectorArray|[j].isCircle()) {

if (reflectorArray|[j].isTranslating()) {
if (reflectorArray|[j].isHoriz()) {

collisionTime = Geometry.timeUntilCircleCollision(reflectorArray[j]. getCircle ()

, ballPerimeter , ballArray|i].getVelocity().minus(
new Vect(reflectorArray[j].getTransVelocity(), 0.0)));

} else {

collisionTime = Geometry.timeUntilCircleCollision{reflectorArray[j]. getCircle()

, ballPerimeter , ballArray[i].getVelocity ().minus(
new Vect (0.0, reflectorArray|[j].getTransVelocity())));

74

325

330

335

340

345

350

355

360

365

370

}

}
} else if (reflectorArray|[j].getAngularVelocity() == 0.0) {
collisionTime = Geometry.timeUntilCircleCollision(reflectorArray[j]. getCircle() ,
ballPerimeter , ballArray[i].getVelocity());
} else {
collisionTime = Geometry.timeUntilRotatingCircleCollision(reflectorArray|[j].
getCircle () , reflectorArray|[j].getCenter () , Math.toRadians(reflectorArray|j]
.getAngularVelocity ()), ballPerimeter , ballArray[i]. getVelocity ());
}
} else {
if (reflectorArray[j].isTranslating()) {
if (reflectorArray|[j].isHoriz()) {
collisionTime = Geometry.timeUntilWallCollision(reflectorArray|[j].
getLineSegment () , ballPerimeter , ballArray[i].getVelocity ().minus(
new Vect(reflectorArray[j].getTransVelocity(), 0.0)));
} else {
collisionTime = Geometry.timeUntilWallCollision(reflectorArray[j].
getLineSegment () , ballPerimeter , ballArray[i].getVelocity().minus(
new Vect (0.0, reflectorArray|[j].getTransVelocity())));

}
} else if (reflectorArray|j].getAngularVelocity () == 0.0) {
collisionTime = Geometry. timeUntilWallCollision(reflectorArray|[j].getLineSegment

(), ballPerimeter , ballArray[i].getVelocity());
} else {
collisionTime = Geometry.timeUntilRotatingWallCollision(reflectorArray|[j].
getLineSegment () , reflectorArray[j].getCenter (), Math. toRadians(
reflectorArray|[j|
.getAngularVelocity ()), ballPerimeter , ballArray|i]. getVelocity()):

}

}

if (collisionTime < shortestTimes[i]) {
shortestTimes|[i] = collisionTime;
closestReflectors|[i] = reflectorArray|[j|:
closerBalls[i] = null;
closerBallsIndex[i] = 0;

// collisionDistance =

/7 bhallArray/li]. getVelocity (). times(collistonTime):
// wfteollisionDistance . length () < ecpsilonSpace €364
// collisionTime > otherCloseCollisionTime [i]) |
// wtherCloseCollisionTime [i] = collisionTime

/7%

for (int j = 0; j < ballArray .length, j++) {

/7

/'/

Ved

if (j==1i){
continue
}
Circle otherBallPerimeter = new Circle(ballArray[j].getCenter() ballArray|[j].
getRadius () +tepsilonSpace);
collisionTime = Geometry.timeUntilBaliBallCollision(ballPerimeter . ballArray[i].
getVelocity () , otherBallPerimeter , ballArray|[j].getVelocity());
if (collisionTime < shortestTimes[i]) {

// System.out.printin(”collides with ball”);:

shortestTimes[i| = collisionTime;
closerBalls[i] = ballArray[j|;
closerBallslndex[i] = j;
closestReflectors[i] = null;

}
if(collisionTime < shortestTimes[j]) {
shortestTimes|[j] = collisionTime;

closerBalls[j] = ballArray[i]:

75

closerBallsIndex[j] = i;
375 closestReflectors{j] = null;

380 updateIndex = O0;

// collision resolution

/*
double closeTimes[] = new double [ballArray.length];
385 // find dt for all balls

for(int i = 0; i < ballArray.length; i++) {
if(closcrBalls[i] = null) {
double curDist = ballArray[i]. getCenter (). minus(closerBalls[i]. getCenter()). . length();
if(curDist < ballArray/[i].getRadius ()+closcrBalls[i]. getRadius ()~4*xepsilonSpace) {

390 closeTimes[i] = 0.0;

continuce;

}

double dt = 4xepsilonSpace/(ballArray[i].getVelocity().minus(closcrBalls[i].

getVelocity ()).length());
closeTimes[i] = shortestTimes [i]—dt;
395 } oelse {

if(closestReflectors[i]. isCircle()) {
double dt = 2xepsilonSpace/(ballArray[1]. getVelocity (). .length());
closeTimes [i] = shortestTimes [i]—dt;

} oelse {

400 double dt = 2+ cpsilonSpace/(ballArray/[i]. getVelocity (). times(Math. sin(
closcstReflectors[i]. getLineSegment (). angle (). radians ()+ballArray(i].
getVelocity (). angle (). radians())).length());

closeTimes [i] = shortestTimes[i]—dt:
}
if(closeTimes (o] < 0.0) {
closeTimes[i] = 0.0; //too close alrcady

405 }
}
}
*/
410 int firstCollisionIndex = —1;
int otherBalllndex = —1;

double firstCollisionTime = delayLeft:// Double MAX.-VALUE;
// boolean ballCollision = false;

for (int i = 0; i < shortestTimes.length; i+4) {
415 if (shortestTimes|i] < firstCollisionTime && activeBalls[i] != false) {
firstCollisionIndex = i:
firstCollisionTime = shortestTimes|[i];
if (closerBalls[i] = null)
otherBalllndex = closerBallsIndex|[i];
420 else
otherBalllndex = —1;
}
}
425 // if (firstCollisionTime == 0.0) {
// System.out.printin ("hall ” + firstCollisionIndexr + 7 overlaps with ball ” +
otherBalllnder) ;
// throw new RuntimeEzception(” Created overlap of number ” + firstCollisionIndex

+ 7 7 + ballArray[firstCollisionIndex] + (otherBalllndexr != —1 7 7 with number ” +
otherBalllndexr + ” 7 + ballArray[otherBalllndex] : ""));
/! }

76

430 // update all balls other than the next collision
for (int i = 0; i < ballArray.length; i++4) {
origBallBounds = ballArray|[i].getBounds();
ballPerimeter = ballArray[i].getCircle();
if (firstCollisionIndex == —-1) {
435 if (activeBalls[i] == false)
continue;
Vect endDistance = ballArray[i]. getVelocity().times(delayLeft);
// collisionDistance = ballArray[i]. getVelocity().times(shortestTimes [i]):
// collisionDistance.length () is necessarily > endDistance.length () since no
collision within delayLeft;
440 // if (eollisionDistance.minus(endDistance).length () > minDistance — epsilonPrecision
|| endDistunce.length () == 0.0) {
// move complcte distance to the end of the delay period
// never have to worry about other balls actually having closer collision than
epsilon space
ballArray [i|.setPosition(ballArray[i].getPosition().plus(endDistance));
ballArray[i].setVelocity (PhysicsSimulator.updateVelocity(ballArray|[i]. getCenter ().
ballArray[i].getVelocity (), delayLeft+timeSinceVelocityUpdate[i]));

45 // }
/xelse {
if(eloserBalls (1] == null) {

activeBalls [i] = resolveCollisionInelastic(ballArray(i], closerBalls[i],
closcstReflectors [i] . shortestTimes[i]. timeSinceVelocityUpdate[i], 0.0):
} else if(e > closerBallsIndex[i]) {

450 activeBalls [i] = resolveCollisionInelastic (ballArray (i), closerBalls[if,
closcstReflectors[i], shortestTimes[i]. timeSinceVelocwtyUpdate[i].
temeSinceVelocityUpdate [closerBallsIndez [i]]) :

activeBalls [closerBallsIndex [i]] = activeBalls[i]:

}
455 x/
// don 't bother sctting timeSinceVelocityUpdate to 0.0 for all balls since ecxiting
anyway
} else {
if (i == firstCollisionIndex || i == otherBalllndex || activeBalls[i] == false)
continue;

460 if(closerBalls[i] !'= null && ballArray[i|. getPosition().plus(ballArray[i].getVelocity
() times(shortestTimes[firstCollisionIndex])).minus(closerBalls[i]. getPosition ().
plus(closerBalls[i]. getVelocity ().times(shortestTimes|[firstCollisionIndex]))).
length() < 0.0) {

System .out. printin(” Balls.will..overlap”):

}

Vect firstCollisionDistance = ballArray|i]|. getVelocity ().times(shortestTimes
firstCollisionIndex]):
’/ collisionDistance = hallArray[i]. getVelosity () times(shortestTimes[4]):
465 // anly mowve the boll to within epsilonSpace of a collision

// collistonDistance . length () > firstCollisionDistance . length () beocause
firstCollision twime s shortest
/7 if (collisionDistance.minus(firstCollisronDistance).length () > minDistance —
epsilonPrecision || firstCollisionDistance . length() == 0.0) {
// move complete distance as colliding object
ballArray|i].setPosition(ballArray|[i].getPosition().plus(firstCollisionDistance)):
470 // haltArray [i]. setVelocity (PhysicsSimulator. updateVelocity(bhallArray[+] getCenter()

vhallArray[1]. getVelocity (), shortestTimes [firstCollisionIndex]));

timeSinceVelocityUpdate[i] += shortestTimes|firstCollisionIndex].

shortestTimes[i] —= shortestTimes|firstCollisionIndex]:
7’/ }
/xelse {
475 /7 move to within epsilonSpace of closcst collision

7

// make sure that only one of the balls resolves the collision
if(closerBalls[if == null) {
activeBalls [i] = resolveCollisionInelastic(ballArray[i], closerBalls[i],
closestReflectors[i], shortestTimes[i], timeSinceVelocityUpdate[i], 0.0);
timeSinceVelocityUpdate[i] = 0.0;
480 updatelIndezes fupdatelnder] = i;
updatelndex++;
} else if(i > closerBallsIndexz[i]) {
activeBalls [i] = resolveCollisionlInelastic(ballArray[i], closerBalls[i],
closcstReflectors[if, shortestTimes[i], timeSinceVelocityUpdate[i],
timeSinceVelocityUpdate [closerBallsIndex [i]]) ;
activeBalls [closerBallsIndez [i]] = activeBalls[i];
485 timeSince VelocityUpdate [i] = 0.0;
timeSince VelocityUpdate [closerBallsIndex [i]] = 0.0;
updateIndezes [updatelndex] = i;
wpdatelInder++; // could combine the lines but don't want to
updateInderes [updatelnder] = closerBallsIndex[i];
490 updateInder++;
}
}/
// update welocity
// ballArray[i]. sctVelocity (PhysicsSimulator. updateVelocity (ballArray/i]. getVelocity
(). shortestTimes[firstCollisionIndex])):
495 }
if (!debug) {
board.repaint (origBallBounds);
board.repaint (ballArray[i]. getBounds());

}
500 }
if (firstCollisionIndex == —-1) {
// System . out. printin ("No closest collision so loop has ended”);
noMoreCollisions = true;
505
deltaDelay = delayLeft;
delayLeft = 0;
// return;
// continue ;
510 } else {
// replaced long portion with function call
activeBalls[firstCollisionIndex] = resolveCollisionInelasticNoOverlapCheck2(ballArray |
firstCollisionIndex], closerBalls|[firstCollisionIndex], closestReflectors |
firstCollisionIndex],
shortestTimes [firstCollisionIndex |, timeSinceVelocityUpdate|firstCollisionIndex],
closerBalls[firstCollisionIndex]| == null ? 0.0 : timeSinceVelocityUpdate]
closerBallsIndex [firstCollisionIndex]]);
timeSinceVelocityUpdate[firstCollisionIndex] = 0.0;
515 updatelndexes[updatelndex] = firstCollisionIndex;
updatelndex++;
if (closerBalls[firstCollisionIndex]| != null) {
activeBalls|[closerBallsIndex [firstCollisionIndex)] = activeBalls|[firstCollisionIndex
1:
timeSinceVelocityUpdate[closerBallsIndex |[firstCollisionIndex]| = 0.0;
520 updateIndexes [updateIndex| = closerBallsIndex[firstCollisionIndex|;
updatelndex++;
} else {
closestReflectors[firstCollisionIndex |.getGizmo().specialAction(ballArray|
firstCollisionIndex]);
closestReflectors[firstCollisionIndex |.getGizmo() . notifyTriggerListeners();
525 }

78

deltaDelay = shortestTimes|[firstCollisionIndex];
delayLeft —= deltaDelay;

530
/*
bi.updateBalls ();
ArrayList<Pair<Pair<Ball, Integer>,Pair<Ball , Integer>>> pairs = bl.getAllPairsSeperatedBy(
PhysicsSimulator. getMarimumPForceDistance Thresh ()) :
// change the ball velocities based on their mutual attractions
535 Iterator <Pair<Pair<Ball, Integer >,Pair<Ball , Integer>>> pairslterator = pairs. iterator ();
while (pairslterator.hasNext()) {
/7 System . out. printin (” found pair”):
Pair<Pair<Ball , Integer >, Pair<Ball , Integer>> balls = pairslterator.next();
Ball balll = balls.getFirst().getFirst();
540 int inderl = bhalls.getFirst().getSeccond();
Ball ball2 = balls.getSccond (). getFirst();
int inder2 = halls.gectSecond().getSecond () :
Veet diff = balll . getCenter (). minus(ball2.getCenter()):
double dist = diff.length ()=balll.getRadius ()—ball2.gctRadius ()
545 if(dist > PhysicsSimulator.getMinimumForceDistanceThresh()) {
//have to update for welocity from the previous times becaunse we're changing it 's
velocity
balll . setVelocity (PhysicsSimulator. updateVelocity(balll . getCenter (), balll.getVelocrty
(), tameSinceVelocityUpdate [index1]));
hall2.setVelocity (PhysicsSimulator. updateVelocity(ball2. getCenter (), ball2. getVelocity
(). timeSinceVelocityUpdate [index2]))
//add attraction

55¢ // System . out . println ("adding attraction”):
if (balll.getMass() == ball2.getMass()) |
Veet update = diff.unitSize (). times(PhysicsSimulator. updateVelocityAttraction (dist,

halll .getMass () ,deltaDelay));
balll .sctVelocity(halll.getVelocity (). plus(update. neg())):
ball2 . sctVelocity (ball2.getVelocity (). plus(update)):
555 }oeise {
// the updates made seperately for cach ball
Veet updatel = diff.unitSize (). times(— PhysicsSimulator. updateVelocityAttraction (
dist . balll . gectMass () ,deltaDelay)):
Veet updatez = diff.unitSize (). tames(PhysicsSimulator. updateVelocityAttraction (dist
sbhall2 . getMass (), deltaDelay));
balll.setVelocity(balll . getVelocity (). plus(updatel));
560 ball2 . sctVelocity(ball2. getVelocity (). plus(update2));

/s change velocity update info if not already being updated

sf(timeSinceVelocityUpdate [indexl] > 0.0) {

timeSince VelocityUpdate [indexl] = 0.0:
565 aupdatelndcres fupdatelInder] = indexl;

updatelnder+-+;

}

if(timeSinceVelocityUpdate [indez2] > 0.0) {
timeSinceVelocityUpdate [index2] = 0.0;

570 updatelnderes fupdatelnder] = index2;
wpdatelnder ++:
}
}
575 ny
// for(int i = 0: i < ballArray.length; i++) {
/7 if(ballArray[i]. getPosition ().y() > 585) {
/7 System . out. println (”ball fell through?);
/7 }
580 // }

79

private boolean resolveCollisionInelasticNoOverlapCheck2(Ball ball, Ball closerBall,
Reflector reflector , double collisionTime) {
585 return resolveCollisionInelasticNoOverlapCheck2(ball ,closerBall ,reflector ,collisionTime
,0,0)

private boolean resolveCollisionInelasticNoOverlapCheck2(Ball ball, Ball closerBall,
Reflector reflector , double collisionTime , double velocityUpdateTime , double
closerBallVelocityUpdateTime) {
Rectangle origBallBounds = ball.getBounds();
590 Circle ballPerimeter = ball.getCircle();
if (closerBall != null) {
ball.setPosition(ball.getPosition().plus(ball.getVelocity().times(collisionTime)));
if (!debug) {
board.repaint (origBallBounds);
595 board.repaint(ball.getBounds());
}
origBallBounds = closerBall.getBounds();
closerBalil.setPosition(closerBall.getPosition().plus(closerBall.getVelocity ().times(
collisionTime)));
if (!debug) {
600 board . repaint (origBallBounds);
board.repaint(closerBall.getBounds());
}
/*
if (PhysicsSimulator. isInclastic () 66 ball.getVelocity (). minus(closerBall.getVelocity()).
length () <= PhysicsSimulator. getBallStickThresh ()) {
605 // perform totally inelastic collision
System . out. printin ("inclastic collision”):
BallBunch ballBunch = bunches.get(ball):
BallBunch closerBallBunch = bunches. get(closerBall);
if (ballBunch == null) {
610 ballBunch = new BallBunch(ball);
bunches . put(ball , ballBunch);
}
if (¢loserBallBunch == null) {
closcrBallBunch = new BallBunch(closcerBall):
615 bunches.put(closerBall , closerBallBunch);
}
double ballMass = ballBunch.getMass():
double closcrBallMass = closerBallBunch . getMass();
Vect ballMuassVel = ball.getVelocity (). times(bhallMass);
620 Vect closcrBallMassVel = closerBall. getVelocity (). times(closerBallMass);
Vect finalVelocity = ballMassVel. plus(closerBallMassVel) . times(1/(ballMass+
closerBallMass)) :

// ball . sctVelocity(finalVeloeity);
// closerBall. setVelocity (finalVelocity):
// BeallBunch newBunch;
625 if (ballBunch. getSize () > closerBallBunch.getSize ()) {

// currently impossible for same bunch to collide with itself
ballBunch . addBalls (closerBallBunch) ;
Iterator<Ball> iter = closerBallBunch.getBalls (). iterator ()
while (iter . hasNext()) {
630 bunches.put(iter.nest(),ballBunch);
}
//update all wvelocities of new bunch
iter = ballBunch.gctBalls (). iterator ():
while (iter . hasNext()) {

80

635

640

645

650

655

660

665

670

680

685

//

/7

/7

/7

/7
/7
Ve

/7

iter.next().setVelocity(finalVelocity);
}
} else {
closerBallBunch . addBalls (ballBunch);
Iterator<Ball> iter = ballBunch.getBalls (). iterator();
while (iter.hasNezt()) {
bunches.put(iter.nezt(),closerBallBunch):

wpdate all wvelocities of new bunch
iter = closerBallBunch . getBalls (). iterator():
while (iter . hasNezt()) {

iter.next (). setVelocity(finalVelocity):

}
// add all balls to larger ball bunch and then wupdate map for all balls in other bunch
} else {

Geometry. VectPawr wvelocities = Grometry. reflectBalls (ball.getCenter (), ball.getMass() ,
hall.getVelocity (), closerBall.getCenter (), closerBall.getMass (), closerBall.
getVelocity()):

if (PhysicsSimulator. isInclastic ()) {

ball. setVelocity(velocities.vl. times(PhysicsSimulator. getElasticity())).
closerBall. setVelocity(velocities . v2. times(PhysicsSimulator. getElasticity ()));
if (bunches . get(ball) = null) {
bunches.get(ball). removeBall(ball);
bunches.put(ball . null);
bunches.remove(ball);
}
if (bunches.get(closerBall) != null) {
bunches.get(closerBall) . removeBall(ball);
bunches. put(closerBall , null);
bunches.remove(closerBall);
}
} oelse {
ball.setVeloewty(velocities. vl);
closcrBall setVelocity(velocities . v2):

}

*/

Geometry . VectPair velocities = Geometry.reflectBalls(ball.getCenter(), ball.getMass() .,
ball.getVelocity () , closerBall.getCenter(), closerBall.getMass(), closerBall.
getVelocity () };

if(PhysicsSimulator.isInelastic (}) {

// only change the wvelocity alomg the direction that the balls touch

Vect diff = closerBall.getCenter().minus(ball.getCenter()).unitSize(); // vector from
closerBall to ball

Vect vellpara = diff.times(velocities.vl.dot(diff));

Vect vellperp = velocities.vl.minus(vellpara):

Vect vel2para = diff.times(velocities.v2.dot(diff));

Vect vel2perp = velocities.v2. minus(vel2para);

stop ball from getting arbitrarily close to zero velocity so that it doesn 't keep

houncing straight into ball

if(vellpura . length () < PhysicsSimulator. getCompletelyIneclasticThresh ())
vellpara = Veet.ZERO;

else
nellpara = wellpara.times(PhysicsSimulator. getElasticity ()):
Vect vellnelasticPara = vellpara.times(ball.getMass()).plus(vel2para.times(closerBall.
getMass())).times(1/(ball.getMass()+closerBall.getMass()));
vellpara = vellpara.times(PhysicsSimulator.getElasticity ()).plus(vellnelasticPara.times

(1-PhysicsSimulator. getElasticity ()));
ball.setVelocity (vellpara.plus(vellperp));
if(vel2para.length() < PhysicsSimulator. getCompletelylInelasticThresh ())

81

/7

VZ4
690 //
//
//
695
700
705 //
//
710 /)
715
720
725
730
//

vel2pare = Vect.ZERO;
else
vel2para = vel2para.times(PhysicsSimulator. getElasticity ());
vel2para = vel2para.times{PhysicsSimulator.getElasticity ()).plus(vellnelasticPara.times
(1—-PhysicsSimulator. getElasticity ()));
closerBall.setVelocity (vel2para.plus(vel2perp));
ball.setVelocity(velocities . vl.times(PhysicsSimulator. getElasticity()));
closerBall. setVelocity(wvelocities . v2. times(PhysicsSimulator. getElasticity()));
} else {
ball.setVelocity(velocities.vl);
closerBall .setVelocity (velocities.v2);
}
if (ball.getVelocity().minus(closerBall.getVelocity()).length() < epsilonVelocity && ball
.getVelocity ().length() < epsilonVelocity && closerBall.getVelocity().length() <
epsilonVelocity) {
return false;
// activeBalls [firstCollisionIndex| = false;
} else {
ball.setVelocity (PhysicsSimulator.updateVelocity(ball.getCenter(),ball.getVelocity (),
collisionTime+velocityUpdateTime));
closerBall.setVelocity (PhysicsSimulator.updateVelocity(closerBall.getCenter (),
closerBall.getVelocity (), collisionTime+closerBallVelocityUpdateTime));
ball. sctVelocity (PhysicsSimulator. updateVelocity(ball.getCenter (). .ball.getVelocity()

actualTime));

return true;

return truc;

} else if (reflector.isCircle()) {

ball.sctPosition (ball.getPosition().plus(ball.getVelocity (). unitSize (). times(

collisionDistance .length () — epsilonSpace)));

ball.setPosition(ball.getPosition().plus(ball.getVelocity().times(collisionTime)));
// repaint the original and new position of the ball
if (!debug) {
board.repaint (origBallBounds);
board.repaint(ball.getBounds());
}
if (reflector.isTranslating()) {
if (reflector.isHoriz()) {
ball.setVelocity (Geometry.reflectCircle(reflector . getCircle().getCenter(), ball.
getCenter () , ball.getVelocity (). minus(new Vect(reflector.getTransVelocity(), 0.0)
). reflector
.getGizmo () . getReflection ())):
} else {
ball.setVelocity (Geometry.reflectCircle(reflector.getCircle().getCenter()}, ball.
getCenter (), ball.getVelocity (). minus(new Vect(0.0, reflector.getTransVelocity ())
), reflector
.getGizmo () . getReflection ()));
}
} else if (reflector.getAngularVelocity () == 0.0) {
ball.setVelocity (Geometry.reflectCircle(reflector.getCircle().getCenter (), ball.
getCenter () , ball.getVelocity (), reflector.getGizmo().getReflection()));
} else {
ball.setVelocity (Geometry.reflectRotatingCircle(reflector.getCircle(), reflector.
getCenter () , Math.toRadians(reflector.getAngularVelocity()), ballPerimeter , ball.
getVelocity (),
reflector .getGizmo () . getReflection ()));

if(PhysicsSimulator.isInelastic () && bunches.get(ball) != null) {
bunches.get(ball).removeBall(ball);
bunches.put(ball , null);

82

735

740

745

750

755

760

765

770

775

780

785

bunches.remove(ball);

if (ball.getVelocity().length() < epsilonVelocity) {
return false;
// activeBalls [firstCollisionInder] = false;
} else {
ball.setVelocity (PhysicsSimulator.updateVelocity(ball.getCenter() . .ball.getVelocity () .
collisionTime+velocityUpdateTime));
return true;
}
} else {
/7 ball.setPosition(ball.getPosition ().plus(hall. getVelocity (). unitSize (). times(
collisionDistance . length () — epsilonSpace)));
ball .setPosition(ball.getPosition().plus(ball.getVelocity().times(collisionTime))):
// repaint the original and new position of the ball
if (!debug) {
board.repaint (origBallBounds);
board.repaint(ball.getBounds());
}
if (reflector.isTranslating()) {
if (reflector.isHoriz()) {
ball .setVelocity (Geometry. reflectWall(reflector .getLineSegment (), ball.getVelocity ().
minus (new Vect(reflector.getTransVelocity (), 0.0)), reflector .getGizmo() .
getReflection()));
} else {
ball.setVelocity (Geometry.reflectWall(reflector .getLineSegment (), ball.getVelocity ().
minus (new Vect (0.0, reflector.getTransVelocity())), reflector .getGizmo().
getReflection ()));
}
} else if (reflector.getAngularVelocity() == 0.0) {
ball.setVelocity (Geometry.reflectWall(reflector . getLineSegment (), ball.getVelocity (),
reflector .getGizmo () . getReflection ()));
} else {
ball.setVelocity (Geometry . reflectRotatingWall(reflector .getLineSegment{) , reflector .
getCenter () . Math.toRadians(reflector.getAngularVelocity()). ballPerimeter , ball.
getVelocity (),
reflector .getGizmo () . getReflection ()));

if(PhysicsSimulator.isInelastic () && bunches.get(ball) != null) {
bunches.get(ball).removeBall(ball):
7/ hunches.put(hall , null):

bunches.remove(ball);

if (ball getVelocity().length() < epsilonVelocity) {
return false;
7/ activeBalls [firstCollisionInder] = false;
} else {
ball setVelocity (PhysicsSimulator.updateVelocity(ball.getCenter(),ball. getVelocity (),
collisionTime+velocityUpdateTime));

return true.

VEE:
* Stops the translating components of the reflectorList such as Jezzmos and Paddles
>

* @requires rveflectorlist !'= null

83

* @ecffect Determines whether uny of the translating reflectors intersect or will intersect

with any of the gizmos (or balls) on the board and calls the proper method to stop

further
* translation .
*/
private void stopMovers(java.util.List reflectorList) {
790 Iterator reflectors = reflectorList.iterator ();
while (reflectors.hasNext()) {
Reflector reflector = (Reflector) reflectors.next();

if (reflector.isTranslating()) {
Rectangle rect = null;
795 // System.out.printin("transVel 7 +
// reflector.getTransVelocity()):
if (!reflector.isCircle()) {
// Rectangle rect = null;
LineSegment ls = reflector.getLineSegment () ;
300 if (reflector.isHoriz ()) {
if (reflector.getTransVelocity () > 0) {
rect = new Rectangle((int) ls.pl().x() ., (int) ls.pl().y(), (int) (reflector.
getTransVelocity () * currentDelay / 1000.0), (int) (ls.p2().y() — 1s.pl{).y{()
))s
} else {
rect = new Rectangle((int) (ls.pl().x() + (int) (reflector.getTransVelocity () =
currentDelay / 1000.0)), (int) 1s.pl().y(), —(int) (reflector.
getTransVelocity ()
805 * currentDelay / 1000.0), (int) (ls.p2().y() — Is.p1().y{(})));
}
// if(board.overlaps(rect)) {
// ((8c102.gb.gobjects. Jezzmo) reflector . getGizmo ()). stopGrowing(reflector);
/7 }
810 } else {
if (reflector.getTransVelocity () > 0) {
rect = new Rectangle({(int) ls.pl().x(), (int) Is.p1().y{(}, (int) (ls.p2().x() —
Is.pl().x()), (int) (reflector . .getTransVelocity() = currentDelay / 1000.0));
} else {
rect = new Rectangle((int) Is.pl().x(), (int) (ls.pl().y() + (int) (reflector.
getTransVelocity () * currentDelay / 1000.0)), (int) (ls.p2().x() — ls.pl().x

),
815 —(int) (reflector.getTransVelocity() * currentDelay / 1000.0));

}
// if(board. overlaps(rect)) {
/7 ((sel102.4b.gobjects. . Jezzmo)reflector.getGizmo ()). stopGrowing(reflector);
820 /7
} else {
// Rectangle rect = null:
// System.out.printin ("transVel 7 +
// reflector.getTransVelocity());
825 Circle ¢ = reflector.getCircle();
// System.out.printin ("center is " + c.getCenter() + °
// and radius is " + c¢.getRadius()):
if (reflector.isHoriz()) {
if (reflector.getTransVelocity{() > 0) {
830 rect = new Rectangle((int) (c.getCenter () .x() + c.getRadius()), (int) (c.
getCenter () .y () — c.getRadius()),
(int) (reflector.getTransVelocity() * currentDelay / 1000.0), (int) c.
getRadius () = 2);
// System.out.printin ("rectangle 13 ” + rect});
} else {
rect = new Rectangle ({(int) (c.getCenter().x() — c.getRadius() + reflector.
getTransVelocity () * currentDelay / 1000.0), (int) (c.getCenter().y() — c.

84

835

840

845

850

355

860

865

870

875

380

getRadius()) .,
—(int) (reflector.getTransVelocity() * currentDelay / 1000.0), (int) c.
getRadius () = 2);
}
} else {
if (reflector.getTransVelocity () > 0) {
rect = new Rectangle((int) (c.getCenter().x{() — c.getRadius()), (int) (c.
getCenter () .y() + c.getRadius()),
(int) (reflector.getTransVelocity() * currentDelay / 1000.0), (int) c.
getRadius () = 2);
} else {
rect = new Rectangle((int) (c.getCenter().x() — c.getRadius()), (int) (c.
getCenter () .y() — c.getRadius() + (reflector.getTransVelocity () =
currentDelay / 1000.0)),
(int) (reflector.getTransVelocity() * currentDelay / 1000 0), (int) c.
getRadius () = 2);

}
if ('rect.intersects(reflector.getGizmo().getBounds())) { // to
// protect
// from
/7 fualse
// positive
Y
// owerlapping
// wtself
List rectOverlaps = board.overlapsReturnList(rect, —1, board.getMode() != GraphArea.
JEZZMODE & & !(reflector .getGizmo() instanceof sel02.gb.gobjects.Paddle));
if (rectOverlaps.size() > 0) {
// System.out.printin("overlaps are ” +
// rectOuverlaps);
if (reflector.getGizmo() instanceof sel02.gb.gobjects.Jezzmo) {
({sel02.gb.gobjects.Jezzmo) reflector .getGizmo()).stopGrowing(reflector .
rectOverlaps);
} else if (reflector.getGizmo() instanceof sel02.gb.gobjects.Paddle) {
({sel02.gb.gobjects.Paddle) reflector .getGizmo()).stopMoving(reflector ,

rectOverlaps);

// save these arrays so new one don 't have to be allocated
Ball || lastBallArray = new Ball[0];
Reflector [] lastReflectorArray = new Reflector [0];

VAT

* Each time the timer goes off this method is called te update the hboard

*

* @modifics board. theGizmos, board.theBalls

* Qeffects Determancs of any of the gizmos needs a repaint and calls such on the correct
portion of the board. Compiles a lList of all reflectors of all the gizmos and stops any
translating

* gizmos if they will overlap another gizmo in this period. Calls the loop the
performs physics updates.

*/

public void actionPerformed (ActionEvent evt) {

List <Gizmo:> gizmoList = board.getGizmos();

85

885

890

895

900

905

910

10

20

25

List<Ball> ballList = board.getBalls();

Iterator <Gizmo> gizmos = gizmoList.iterator ();

Gizmo gizmo;

List<Reflector > reflectorList = new ArrayList<Reflector >();

Rectangle bounds;
while (gizmos.hasNext()) {
gizmo = gizmos.next();

if (gizmo.needsRepaint()) {

bounds = new Rectangle(gizmo.getBounds());

bounds.grow (1, 1);
board.repaint (bounds):

}

reflectorList .addAll(gizmo.getPerimeter (currentDelay));

}

stopMovers(reflectorList);

if(ballList.size () != lastBallArray.length) {
lastBallArray = new Ball[ballList.size()];

}

if(reflectorList.size() !'= lastReflectorArray.length) {

lastReflectorArray = new Reflector[reflectorList.size()];

arrayLoopOverlapProofMutualAttraction(ballList.toArray(lastBallArray),

toArray (lastReflectorArray));

reflectorList .

Listing A.2: Quantum dot simulation initialization and measurement class.

package sel02.gb;

import java.util.x;

import java.awt.x;

import java.awt.geom.x;
import physics .x*:

import sel02.gb. util .*;
import sel02.gb.gobjects .*;

import java.io.BufferedWriter;
import java.io.FileWriter;

import java.io.IOException;

import java.text.NumberFormat;

public class FileDepositer {
private GraphArea board;
private Runner runner:

private int milliFrameDelay = 20;

private int milliMovieFrameDelay = 40;

private int movieFrameRate = 1000/ milliMovieFrameDelay;

private double baseMass = 1.0; // mominally measured in kg but

to other parameters
private Random random;
private double boardDimension = 600;
// private FileRecaderWriter rw;
private double[] diameterArray;

86

8

actually

arbitrary relative

30

40

45

50

55

60

65

70

75

80

85

private BoardToMovie.ImageSourceStream movieSource;

public FileDepositer (boolean centerGravity) {

board = new GraphArea((int)boardDimension,(int)boardDimension,

PhysicsSimulator.setGravity (25);

PhysicsSimulator.setFriction (0.025, 0.025);

runner = new Runner(board, milliFrameDelay , true);
random = new Random(154);
// rw = new FileReaderWriter ()

public void reset(boolean centerGravity) {

reset (centerGravity , false);

public void reset (boolean centerGravity , boolean resetRandom) {

board = new GraphArea((int)boardDimension,(int)boardDimension,

PhysicsSimulator.setGravity (25);
PhysicsSimulator.setFriction (0.025, 0.025);

runner = new Runner(board, milliFrameDelay . true);

if(resetRandom) {

random = new Random(154);

public void startMovie(String filename) {

BoardToMovie movie

centerGravity);

centerGravity):

= new BoardToMovie((int)boardDimension,(int)boardDimension, (float)

movieFrameRate , BoardToMovie.createMediaLocator(filename));

new Thread(movie).start ();

BoardToMovie. ImageDataSource dataSource = movie.getIlmageDataSource():
while(dataSource == null) {
Thread . yield () :
dataSource = movie.getImageDataSource();
}
movieSource = dataSource.getImageSourceStream () ;
try {

synchronized (movie) {

while (! movie.isReadyToReceive()) {

movie. wait ()

}

} catch (InterruptedException ex) {

}

System .out . println{("movie.is.ready.to.receive.images”);

public void stopMovie() {

movieSource .setEnded (true);

/*

* Qparam time: time

in milliseconds that we want to step the bhoard forward

* @returns actual time stepped

*/

public int advance(int time) {

int timeSoFar = 0;

while(timeSoFar < time) {

runner . runUpdate () ;

if(movieSource !

null && timeSoFar % milliMovieFrameDelay == 0) {

movieSource.consumeNewImage(board . getBoardImage ({ int) boardDimension ,

)i

87

(int)boardDimension)

90

95

100

105

110

115

120

125

130

135

ved

/7

*

*

*

//movieSource. notify ();
System . out.printin ("sent new mowvie frame”);
}
timeSoFar += milliFrameDelay;

}

return timeSoFar;

Adds a ball to the board at y = 100 and z chosen cvenly from 100 to boardDimension—100

@param meanDiameter : The mean ball size to be added

@param stddev : the standard deviation in ball size in units of the meanSize i.e. 0.05 is
0.05= meanSize

@requires : meanDiamecter > 2xrunner. getEpsilonSpace () which should be extremely small

@returns : actual diameter of the ball added

/

public double addRandomBallAtTop(double meanDiameter, double stddev, boolean colorize) {

*

*

*

Vect pos = new Vect((boardDimension —200)*random.nextDouble() +100,100);
Vect vel = new Vect(0,0):

double diameter;

if(stddev == 0) {
diameter = meanDiameter —2xrunner . getEpsilonSpace();
} else {
diameter = meanDiameter+meanDiameter*random.nextGaussian ()*stddev —2xrunner.getEpsilonSpace
)
}

if(colorize) {
Color color = Color .GREEN;
if(stddev !'= 0.0)
color = new Color((float)Math. min(1.0,Math.exp((diameter—meanDiameter~stddev*xmeanDiameter
)/(stddev+*meanDiameter))) ,(float)Math.exp(—Math.abs(diameter—meanDiameter) /(stddev =
meanDiameter)) ,(float)Math.min (1.0 ,Math.exp(—(diameter—meanDiameter+stddev
meanDiameter) /(stddevxmeanDiameter))));
board.addBall(new Ball(pos,vel ,diameter ,baseMass, color));
} else {
board. addBall (new Ball(pos,vel ,diameter, baseMass*Math. pow(diameter /2,3)/Math. pow(
meanDiameter /2,3)));
board.addBall (new Ball(pos,vel ,diameter ,baseMass));

}

return diameter;

Adds o bhall to the board at a distance radius from the point center

@param meanDiameter @ The mean ball size to be added

@param stddev : the standard dewviation in ball size in units of the meanSize i.e. 0.05 is
0.05« meanSize

@requires : meanDiameter > Zxrunncer.getEpsilonSpace () which should be extremely small

@returns : actual diameter of the ball added

/

public double addRandomBallAtRadius(double meanDiameter, double stddev, Vect center , double

radius , boolean colorize) {
if(radius > center.x() || radius > center.y{() || radius > boardDimension—center.x() || radius
> boardDimension—center.y()) {
System.out. println (” Radius_.too.large_for_specified._center..Could_attempt_to_add.a_ball._off.
of_board”);
}
Vect pos = new Vect(new Angle(random.nextDouble()*2xMath.PI),radius);
pos = pos.plus(center);
Vect vel = new Vect(0,0);

double diameter;

88

140

145

150

155

160

165

170

175

180

185

/7

if(stddev === 0) {
diameter = meanDiameter —2+«runner.getEpsilonSpace();
} else {
diameter = meanDiameter+meanDiameter+xrandom.nextGaussian ()*stddev —2*runner.getEpsilonSpace
()
}
board.addBall (new Ball(pos,vcl,diameter , haseMass*Math.pow(diameter /2,3)/Math. pow(
meanDiameter/2.3)))
if(colorize) {
Color color = Color .GREEN;
if{stddev != 0.0)
color = new Color ((float)Math. min{(1.0,Math.exp((diameter -meanDiameter—stddev*meanDiameter
)/(stddev+meanDiameter))) ,(float)Math.exp(—Math.abs(diameter—meanDiameter) /(stddevx*
meanDiameter)) .(float)Math.min (1.0 ,Math.exp(—(diameter—meanDiameter+stddev*
meanDiameter) /(stddevxmeanDiameter))));
board .addBall (new Ball(pos,vel,diameter ,baseMass,color));
} else {
board.addBall(new Ball(pos,vel ,diameter ,baseMass)):
}
return diameter:
}

public double addRandomBalllnRect(Vect topLeft , Vect bottomRight, double meanDiameter, double
stddev , boolean colorize , boolean relativeMasses) {
return addRandomBalllnRect(topLeft , bottomRight, meanDiameter, stddev, colorize .

relativeMasses , baseMass);

/*

* @returns The diamceter of the ball that was added or 0.0 of the ball would have overlapped
with another ball

* or been off of the board

*/

public double addRandomBalllnRect(Vect topLeft , Vect bottomRight, double meanDiameter, double

stddev, boolean colorize , boolean relativeMasses , double mass) {

Vect vel = new Vect(0,0);
double diameter:
if (stddev == 0) {
diameter = meanDiameter —2«xrunner.getEpsilonSpace();
} else {
diameter = meanDiameter{meanDiameter*random.nextGaussian () «xstddev —2«runner.getEpsilonSpace
(@
}

Vect diff = bottomRight.minus(topLeft);
if(diff.x()-diameter < 0 || diff.y()—diameter < 0) {
System.out . println (" Use.a.larger_grating_.balls_.with_diameter_=." 4+ diameter + "_can’'t.fit.”
)
}
Vect pos = topLeft.plus(new Vect((diff.x()—diameter)*random.nextDouble(), (diff.y()~diameter)
*random . nextDouble ()));
if(overlapsBall (pos,diameter /2.0)}) {

return 0.0;

}
if(pos.x() < topLeft.x() || pos.x()+diameter > bottomRight.x() || pos.y() < topLeft.y() ||
pos.y()+diameter > bottomRight.y()) {
System .out.println(” Position.somehow.fell _outside_of_prescribed_area”);
return 0.0:
}

//doublc mass = baseMass;
if(relativeMasses) {

mass = baseMass*Math.pow(diameter/2,3)/Math.pow(meanDiameter/2,3);

89

}

if(colorize) {
Color color = Color .GREEN;
if(stddev != 0.0)

190 color = new Color ((float)Math.min(1.0,Math.exp({(diameter—meanDiameter—stddevxmeanDiameter
)/(stddevsmeanDiameter))) ,(float)Math.exp(~Math.abs(diameter —-meanDiameter) /(stddev=*
meanDiameter)) ,(float)Math. min(1.0 ,Math.exp(—(diameter—meanDiameter+stddev *
meanDiameter) /(stddevxmeanDiameter))));

board.addBall (new Ball(pos,vel,6diameter ,mass, color));
} else {
board.addBall(new Ball{(pos,vel,diameter ,mass));

}
195 return diameter;
}
public boolean overlapsBall(Vect position, double radius) {
// ArrayList<Ball> balls = board. getBalls () ;
200 Iterator<Ball> iter = board.getBalls().iterator();

while(iter . hasNext()) {
Ball otherBall = iter.next();
if(otherBall. getPosition (). minus({position).length() < otherBall.getRadius()+radius+2*runner
.getEpsilonSpace()) {

return true;

205 }
}
return false;
}
210 public void makeSingleCluster () {
int numballsxeven = 2;
int numballsxodd = 3;
double rowdistance = 15.0xMath.sin(Math.PI1/3.0);
int numballsy = 3;
215 for(int i = 0; i < numballsy; i++) {
for(int j = 0; i % 2 == 07?7 j < numballsxeven : j < numballsxodd; j++) {
board.addBall(new Ball (new Vect(j*15.0+(i%2==077.5:0),rowdistancexi), new Vect(0,0),15.0,
baseMass)) ;
}
}
220 }

public void makeHexagonalLattice() {

int numballsxeven = (int)(boardDimension/15.0);

int numballsxodd = numballsxeven —1;
225 double rowdistance = 15.0xMath.sin(Math.PI/3.0);

int numballsy = (int)(boardDimension/rowdistance);

for(int i = 0; i < numballsy; i++) {

for(int j = 0; i % 2 == 07?7 j < numballsxeven : j < numballsxodd; j++) {
board.addBall (new Ball(new Vect(j*15.04+(i%2==070:7.5),rowdistance*i), new Vect(0,0),15.0,
baseMass)) ;

230 }

public void changeSomeBalls(double fractionBad) {
235 ArrayList<Ball> balls = board.getBalls();
for(int i = 0; i < balls.size(); i++) {
Ball b = balls.get(i);
if (random . nextDouble() < fractionBad) {
b.setMass (2.0); // denotes bad balls
240 //leave ball black for non—radiating

90

245

250

255

265

270

275

280

285

290

} else {
b.setColor (Color .GREEN) ;

public double findRadiativeFraction () {
ArrayList<Ball> balls = board.getBalls ();

int numRad = 0;

int numlInterior = 0;

int numballsxeven = (int)(boardDimension/15.0);
int numballsxodd = numballsxeven —1;

double rowdistance = 15.0%Math.sin(Math.PI/3.0);

int numballsy = (int)(boardDimension/rowdistance)};
//System . out. printin ("numballsy = 7 + numballsy);
int rowNum = 0;

int ballNum = 0;
for(int i = 0: i < balls.size(): i++) {
if (rowNum > 0 && ballNum > 0 && rowNum < numballsy —1 && ballNum < ((rowNum%2==0)7
numballsxeven —1:numballsxodd —1)) {

numlInterior++:

if(balls.get(i).getMass() != 2.0 && balls.get(i—1).getMass() != 2.0 && balls.get(i+1).
getMass () !'= 2.0) {
//calculate the position of other neighbors
if(balls.get(i—numballsxeven).getMass() != 2.0 && balls.get(i—numballsxeven+1).getMass
() 1= 2.0 &&
balls.get(i+numballsxeven —1). getMass() != 2.0 && balls.get(i+numballsxeven).getMass
() 1= 2.0) {
numRad++;
}
}
}
// keep track of row and column
ballNum++;
if(rowNum % 2 == 0) {
if(ballNum == numballsxeven) {
ballNum = 0;
cowNum }-+;
//8ystem . out . printin ("rowNum = " + rowNum + ", + = 7 + i):
}
} else {
if(ballNum == numballsxodd) {
ballNum = 0;
rowNum-++;
//System . out. println ("rowNum = " + rowNum + ", i = " + i):
}
}
}
return (double)numRad/(double)numlInterior;

public void refillDiameterArray () {
ArrayList balls = board.getBalls();
diameterArray = new double[balls.size()]:
for(int i = 0; i < balls.size(); i++) {
I

diameterArray[i] = 2x((Ball)balls.get(i)).getRadius();

public void colorizeBalls (double meanDiameter, double stddev) {
ArrayList balls = board.getBalls();

91

300

305

310

315

320

325

330

335

340

345

350

/7

Iterator balllter = balls.iterator ();
Ball ball;
if (stddev > 0.0) {
while(balllter .hasNext()) {
ball = (Ball)balllter .next();
ball.setColor(new Color ((float)Math. cxp(~Math.abs (2% ball.getRadius ()—meanDiameter—
stddevxmeanDiameter) /(stddevxmeanDiameter)) ,(float)Math. exp(—Math. abs (2« ball. getRadius ()—
meanDiameter) /(stddevxmeanDiameter)) ,(float) Math. exp(—Math. abs (2x ball . getRadius ()—
meanDiameter+stddevxmeanDiameter) /(stddevxmeanDiameter)))) ;
ball.setColor (new Color((float)Math. min(1.0,Math.exp((2*ball.getRadius()—meanDiameter—
stddevxmeanDiameter) /(stddev«meanDiameter))) ,(float) Math. exp(—Math.abs(2xball .
getRadius ()—meanDiameter) /(stddevxmeanDiameter)) ,{(float)Math.min(1.0,Math.exp(—(2=*
ball .getRadius()—meanDiameter+stddevxmeanDiameter) /{stddevxmeanDiameter)))));
}
} else {
while(balllter . hasNext ()) {
ball = (Ball)balllter .next();
ball .setColor (Color .GREEN) ;

public void saveBoard(String filename) {

FileReaderWriter.saveFile(filename ,board ,true);

public void loadBoard(String filename) {
board .loadGraphArea(FileReaderWriter.loadFile(filename));

public void saveBoardImage(String filename) {
try {
board .saveBoardImage(filename ,(int)boardDimension ,(int)boardDimension);
} catch (IOException ex) {

System .out. println (” Saving_.board.image-failed :.” + ex.getMessage());

/%
* Writes all the values in array to the file filename seperated by spaces and ending with a
new line
* or prints failure message to std output.
./
public void saveArray(String filename , String linePrefix , double[] array) {
try {
FileWriter writ = new FileWriter(filename ,true); // append to current file
BufferedWriter writer = new BufferedWriter(writ);
if(linePrefix != null && linePrefix.length() > 0) {
writer . write(linePrefix);
writer.write(’'.");
}
for(int i = 0; i < array.length; i++) {
writer. write (Double. toString (array[i]));
if(i < array.length — 1) {

writer . write(’'=");

}

writer .newLine();
writer.close ();
} catch (IOException ex) {

System .out.println (”"Saving_double_array_in_file.” + filename + ".failed.”);

92

355

360

365

370

375

380

385

39C

395

400

405

J*
* Writes all the values in array to the file filename scperated by spaces and ending with
new line
* or prints failure message to std output.
*/
public void saveArrayLineSepOverwrite(String filename , double[] array) {
try {
FileWriter writ = new FileWriter(filename); // overwrite current file
BufferedWriter writer = new BufferedWriter (writ);
for(int i = 0: i < array.length; i++4) {
writer. write(Double.toString (array[i]));
writer . newLine();
}
writer.close ()
} catch (IOException ex) {

System .out.println(”Saving.doublecarray.in.file.” + filename + "_failed.”):

/*
* Prints the elements of arrayl and array?2 side by side to file filnmame with 2 columns
delimited by a space
* Drequires arrayl.length == array2. length
* @effects overwrites cxisting file
x/
public void saveArraysAsColumns(String filename , double[] arrayl, double{] array2) {
try {
FileWriter writ = new FileWriter(filename); // overwrite current file
BufferedWriter writer = new BufferedWriter (writ);
for(int i = 0; i < arrayl.length; i++) {
writer . write (Double. toString (arrayl[i]));
writer . write('=");
writer . write(Double.toString (array2[i])),
writer .newLine ()}
}
writer . close ()
} catech ([OException ex) {

System.out.println(”Saving.double_array.in_file.” + filename + "_failed.”);

/*

* Caleculates the packing parameters of the board in file filename in the layers that are
distanceFromBottom

* @param filename : name of file that contains ball information in full hoard format

* @param distancceFromBottom : distence in prrels from the bottom that should be considered
the pack:ng calculations

* @modifics board

w/

public double|| determinePacking(String filename . double distanceFromBottom , double depth,
double distanceFromSides) {

loadBoard (filename):

return determinePacking(distanceFromBottom , depth, distanceFromSides);

public double|| determinePacking(double distanceFromBottom , double depth, double
distanceFromSides) {

return determinePacking(new Rectangle2D.Double(distanceFromSides ,boardDimension—

93

a

n

410

415

420

425

430

435

440

445

450

455

/7
//
//

//
7/

/7

/7
/7

//

distanceFromBottom ,boardDimension —2xdistanceFromSides ,depth));

public double|[] determinePacking(Vect center, double radius) {
return determinePacking(new Ellipse2D .Double(center.x()—radius,center.y()—radius,2*radius ,2x*

radius));

public double[] determinePacking(String filename , Vect center, double radius) {
loadBoard (filename);
return determinePacking(new Ellipse2D .Double(center.x()—radius ,center.y()—radius,2xradius ,2%*

radius));

public double[] determinePacking(Shape bounds) {
ArrayList balls = board.getBalls();
double excessSeparation = O0;
double averageSpace = 0;
double averageNeighbors = 0;
double totalBalls = 0;
Iterator currentBalls = balls.iterator ();
while{currentBalls.hasNext()) {
Ball ball = (Ball)currentBalls.next();
if (!bounds.contains(ball.getCenter().toPoint2D())})
continue;
if(ball.getCenter().y() < boardDimension—distanceFromBottom)
continue ;
if(ball.getCenter().y() > boardDimension—distanceFromBottom+depth) // if depth >
distanceFromBottom all balls arc in
continue ;
if(ball.getCenter().z() < distanceFromSides || ball.getCenter().z() > boardDimension—
distanceFromSides)
continue ;
totalBalls++;
Iterator otherBalls = balls.iterator ();
int neighbors = 0;:
while(otherBalls.hasNext (}) {
Ball otherBall = (Ball)otherBalls.next();
if(ball.equals(otherBall))
continue;
Vect separation = ball.getCenter (). minus(otherBall getCenter());
// only works for reasonable size distributions (if some radiv are more than twice others
then 4t as incorrect)
if(separation.length{) > ball.getRadius()+2+xotherBall.getRadius())
continue;
neighbors++4;
excessSeparation += Math.pow(separation.length()—(ball.getRadius()+otherBall.getRadius())
12) 5
averageSpace += separation.length()—(ball.getRadius()+otherBall getRadius());
if (scparation.length ()—(ball.getRadius ()+otherBall. getRadius()) > ball.getRadius()) {

System. out. println ("Error: Two balls thought to be neighbors is morec than the radius
of a ball away.”);
}
}
averageNeighbors += neighbors;

}

double rmsPerBall = Math.sqrt(excessSeparation/(averageNeighbors)); // dividing by
averageNeighbors hecause we're over counting

averageSpace /= averageNeighbors; // again averageNeighbors was the number of times we summed
the distances

averageNeighbors /= totalBalls;

94

460

465

470

475

480

485

490

495

500

505

//
’/
//
7/
//

/7
//

7
/7

//
Vs

7/

System .out.println (”"The_.RMS_.spacing.per_ball_.is." + rmsPerBall + "_and_the_average_spacing.

per.ball.is.” + averageSpace + ".on.” 4 totalBalls + ".balls.each_having.” +

averageNeighbors + "_neighbors_on_average.”);

return new double[] {rmsPerBall, averageSpace, totalBalls , averageNeighbors};

public double[| determinePackinglnterior () {
ArrayList balls = board.getBalls();

double excessSeparation = 0;

double averageSpace = 0;

double averageNeighbors = 0;
double totalBalls = 0;

Iterator currentBalls = balls.iterator();
while(currentBalls.hasNext()) {
Ball ball = (Ball)currentBalls.next();

}

if ('hounds. contains(ball.getCenter(). . toPoint2D()))
continuwe ;

if(bhall.getCenter().y() < boardDimension—distanceFromBottom)
continuwe ;

if (hall . getCenter().y() > boardDimension—distanceFromBottom+depth) // if depth >

distanceFromBottom all balls arec in

continue ;

if(ball.getCenter().z() < distanceFromSides || ball.getCenter().x() > boardDimension—

distanceFromSides)

continuwe :

totalBalls ++;

Iterator otherBalls = balls.iterator ();
int neighbors = 0;
double excessSeparationTemp = 0;

double averageSpaceTemp = 0;
while(otherBalls.hasNext()) {

Ball otherBall = (Ball)otherBalls.next():
if(ball.equals{(otherBall))
continue;
Vect separation = ball.getCenter().minus(otherBall.getCenter());
// vonly works for reasonable size distributions (if some radiiv are more than twice
then 1t 18 incorrecct)
if(separation.length() > ball.getRadius()-+1.5%xotherBall.getRadius())
continue;
neighbors++4;
excessSeparationTemp += Math.pow(separation.length()—(ball.getRadius()4+otherBall.
getRadius ()) .2);
averageSpaceTemp += separation. length()—(ball.getRadius()+otherBall.getRadius());

others

if (separation . length ()—(ball.getRadius()+otherBall. getRadius()) > ball.getRadius()) {

System . out. printin (? Error: Two balls thought to be neighbors is more than the

of a ball away.”):

}

}

if(neighbors > 4) {

totalBalls++;
averageNeighbors += neighbors;
excessSeparation += excessSeparationTemp;

averageSpace += averageSpaceTemp:

double rmsPerBall = Math.sqrt(excessSeparation/(averageNeighbors)); // dividing by

averageNeighbors because we’'re over counting

averageSpace /= averageNeighbors; // again averageNeighbors was the number of times we

the distances

averageNeighbors /= totalBalls;

radius

summed

System.out.println(”The_.RMS_spacing.per_.ball_.is.” + rmsPerBall + ”"._.and.the_average_spacing.

95

510

515

520

525

530

535

540

545

550

555

560

565

//

/7

Vs

//
/7

/7

//

//

per.ball_is.”

+ averageSpace + ".on.” + totalBalls + ”"_balls.each_having.” +
averageNeighbors + ”_neighbors_on_average.”);

return new double[] {rmsPerBall, averageSpace, totalBalls , averageNeighbors};

/*
* Method to determine the amount of space filled by balls within a certain radius of
* the center of the board.
*/
public double determineFill (double radius) {
int num = 1000000;
int withinRadius = 0;
int inBall = 0;
Random rand = new Random(83);
Object [] balls = board.getBalls().toArray();
for(int i = 0; i < num; i++4) {
double x = radius*(2+rand. nextDouble()—-1);
double y = radius*(2xrand.nextDouble()—1);
if (x*x+y*y < radius*radius) {
withinRadius++4;
x += boardDimension /2;
y += boardDimension /2;
System.out.printin ("x = " + x);
System.out.printin ("y = " + y):
for(int j = 0; j < balls.length; j++) {
Vect center = ((Ball)balls[j]).getCenter();
System . out. printin (" Ball center = 7 + center);
double ballRadius = ((Ball)balls[j]).getRadius();
System . out. printin (" Ball radius = " + ballRadius);
System.out. printin ("distance from center squared = " + (Math.pow(center.z()—z,2)+Math
.pow(center.y()—y,2)));
System.out. printin (” ball radius squared = ” + ballRadiusxballRadius);
if ((Math.pow(center.x()—x,2)+Math.pow(center.y()-y,2)) < ballRadiusx*ballRadius) {
System.out. printin ("incrementing in ball”);
inBall+4++;
break;

System.out.println (" found fill ” + inBall/withinRadius + 7 with " + withinRadius + ” inside
the radius?”);

return (double)inBall/(double)withinRadius;

/*
* Method to determine the amount of space filled by balls within a certain radius of
* the center of the board.
* @param : sorted array of wnecreasing radii. The fill will be calculated within ecach radius
and rcturned
x/
public double[] determineFillWithinRadius(double|] radii) {
int num = 1000000;
int [| withinRadius = new int[radii.length];
int [| inBall = new int{radii.length];
Random rand = new Random(83);
Object [] balls = board.getBalls().toArray();
double radius = radii|[radii.length —1];
for(int i = 0; i < num; i+4) {
double x = radius*(2xrand.nextDouble() -1);
double y = radius*(2xrand.nextDouble() —1);

96

int firstIndex = Arrays.binarySearch(radii ,Math.sqrt{(x*xx+y*y));
if (firstIndex < 0) { // wunless 724y "2 eractly matches one of the elements it will be lcss
than zero
firstIndex = —(firstIndex+1);
}
570 if(firstIndex != radii.length) {
for(int k = firstIndex; k < radii.length; k++) {
withinRadius [k]|++;

}
x += boardDimension /2;
575 y += boardDimension /2;
// System.. out. printin("z = " + x);
/7 System . out.printin ("y = " + y):

for(int j = 0; j < balls.length; j++4) {
Vect center = ((Ball)balls[j]).getCenter();

580 // System . out. printin (" Ball ccnter = 7 + center):
double ballRadius = ({(Ball)balls[j]).getRadius();
// System . out . printin (" Ball radius = " + ballRadius);
/S System . out.printin (" distance from center squared = 7 + (Math.pow(center.x()—z,2)+Math
.pow(center.y()—y,2)));:
// System . out. printin (" ball radius squared = ” + ballRadiusxballRadins):
585 if ((Math.pow(center.x()—x,2)+Math.pow(center.y()—y,2)) < ballRadius*ballRadius) {
// System . out. println (" incrementing in ball”);

for(int k = firstIndex: k < radii.length: k4++) {
inBall [k]|++;
}
590 break;

595 // System.out . printin (" found firll " + inBall/with:inRadius + 7 with 7 + withinRadius + 7 inside
the radius’);
double[] ret = new double[radii.length];
for(int i = 0; i < radii.length; i++) {
ret[i] = (double)inBall[{i]/(double)withinRadius[i]:
}

600 return ret;

public void testDetermineFill () {
board.addBall(new Ball(new Vect(boardDimension/2-15.0/2.0,boardDimension/2—-15.0/2.0), new
Vect (0,0),15,1));
605 if(determineFill(3) !'= 1.0) {
System .out . println ("Found.points_that_weren’'t_inside_.a_.ball _when_all_should_have_been_

within_oradius.3.”);

return:
}
if(determineFill(7.5) '= 1.0) {
610 System .out. println ("Found_points_.that_weren’'t_inside_a_ball_when.all_should_have_been.
within_radius .7.5.7);
return;
}

double area30 = determineFill(15);
double actualArea30 = Math.PI*15%x7.5/(Math.PIx30%15);
615 System .out.printin(” Area.calculated .by_determine.fill .for_one_ball.with_radius_l5.in.area.

with_radjus .30.=." + area30 + "_analytically .the_area_.=." + actualArea30);

public void testDetermineFillWithinRadius () {
board . addBall (new Ball(new Vect(boardDimension/2—-15.0/2.0,boardDimension/2—15.0/2.0), new

97

620

625

630

635

640

645

650

655

660

665

670

675

Vect(0,0) ,15,1));
double [] dummy = {3};
// dummy[0] = 3;
if(determineFillWithinRadius (dummy) [0] !'= 1.0) {
System .out.println ("Found_points.that_weren’'t_inside-a.ball_when_all_should_-have_been_
within_radius.3.”);
return;
}
dummy [0] = 7.5;
if(determineFillWithinRadius (dummy) [0] != 1.0) {
System.out.println ("Found_points_.that_weren’'t._inside.a.ball_.when_all_should_.have_been.
withinuradius .7.5.");
return;
}
dummy = new double[}{3, 7.5, 15, 30};
double[] area = determineFillWithinRadius(dummy);

double [] actualArea = {1,1,Math.PI*7.5%7.5/(Math.PI*15x15), Math.PI*«7.5%7.5/(Math.PI+30%30)};

// double actualAreals5 = Math. PI«7.5+x7.5/(Math. PIx15%15);
// double actualArea30 = Math.PIx7.5%x7.5/(Math. PIx30%30);
for(int i = 0; i < dummy.length; i++) {
System .out.println (" Using.determineFillWithinRadius_for_.one_ball_with_radius.7.5.inside—

"

radiuse=-" 4 dummy[i] + ".area.calculated.=." + area[i] + "~analytically-the.area_=."

+ actualArea[i]);

public double determinePearsonSpatialCorrelation() {
Object [] balls = (Object[]) board.getBalls().toArray();

double xsum = 0;
double ysum = O0;
double xxsum = 0;
double xysum = 0;

double yysum = 0;
int numdata = 0;
double {| xs new double[(balls.lengthxballs.length—balls.length) /2];
double [] ys = new double[(balls.lengthxballs.length—balls.length)/2];
for(int i = 0; i < balls.length: i++4) {
Vect centerl = ({Ball)balls[i]).getCenter();
double radiusl = ({Ball)balls{i]).getRadius();
for(int j = 0; j < i; j++) {
Vect center2 = ((Ball)balls|j]).getCenter();
double radius2 = ((Ball)balls[j]).getRadius();
double x = centerl.minus(center2).length()—(radiusl4radius2);
double y = Math.abs(radiusl—radius2);

I

xs [numdata] = x:
ys [numdata] = y;
numdata++;

xsum += x:

ysum += y;

XxXsum += X*X;
xysum += X*y;

yysum += y*y;

// if (numdata == 1) {
// System . out. println ("z[0] = " + I);
// System. out. printin ("zrrsum (0] = 7 + zrsum);
// }
}

}

System.out.println(”numdata.=." + numdata);
// System . out. printin (" average distance = ” + zsum/numdata);
// System.out. printin (" average radius differcnce = 7 + ysum/numdata);

98

680

685

690

695

700

705

710

715

720

725

730

//

”

System .out. println(”ro=." 4+ xysum/Math.sqrt (xxsum=*yysum));

System .out. println (" matlab.p.=." + (xysum-—1.0/numdataxxsum#*ysum) /(Math.sqrt ((xxsum—xsum=*xsum/
numdata) *(yysum—ysum*ysum/numdata))));

//System . out. printin (" other mathworld r = 7 + (rysum—numdataxcsumxysum)/Math. sqrt ((czsum—
numdatax csum*zsum) * (yysum—numdatax ysumxysum))) ; wrong

saveArraysAsColumns (7" zydata . dat”, s, ys);
double matlabValue = 0;
for(int i = 0; i < numdata; i++) {

double x0 = (xs[i] — xsum/numdata)/Math.sqrt (xxsum—xsumxxsum/numdata) ;
double y0 = (ys|i] — ysum/numdata)/Math.sqrt (yysum—ysum*ysum/numdata);
matlabValue += x0xy0;

}
System .out.println("other.computation.of_.matlab.value.=." 4+ matlabValue);
return (numdata*xysum—xsumxysum)}/Math.sqrt ((numdata*xxsum—xsum#*xsum) x{numdataxyysum—ysum=*ysum

Y

public double determineLuminosity (double fractionBad , int totalExcitons) {

ArrayList<Ball> balls = board.getBalls();
Iterator<Ball> iterator = balls.iterator ();
ArrayList <QuantumDot> dots = new ArrayList<QuantumDot>(balls .size());
while(iterator.hasNext()) {
Ball ball = iterator.next();
boolean goodness = true;
if (random.nextDouble() < fractionBad) {
goodness = false: // denotes bad balls
//set ball black for non—radiating
ball.setColor (Color .BLACK) ;
} else {
/7 i} balls uncolored previously set good ones to green
if(ball.getCurrColor().equals(Color .BLACK))
ball.setColor (Color .GREEN) ;

}
dots add(new QuantumDot(ball ,goodness, false));

}

int numRadiated = 0;

for(int i = 0; i < totalExcitons; i-++) {
int excitelndex = (int)Math. floor(balls.size()*random.nextDouble());
dots.get(excitelndex).setExcited (true);
boolean radiated = determineRadiated(dots, exciteIndex);
if(radiated) numRadiated++;

}

return (double)numRadiated /(double)totalExcitons;

/*

* Advances time for an czeiton at inder using forster transfer
* @returns o ktrue if the crciton radiatively relared , false if not
*/
ublic boolean determineRadiated(ArrayList <QuantumDot> dots, int intialIndex) {
int index = intiallndex;
double radLife = 26.0; // in nanoscconds
double timestep = radLife/100.0;
double radProb = timestep/radLife: // per step
//System . out. prantin ("rad prob = " + radProb);
double forsterRadius = 15.0;//4.0; //in manometers
while{true) {
QuantumDot currentDot = dots.get(index);
if (!currentDot.isGood()) {

return false:

99

735

740

745

750

755

760

765

770

775

780

785

790

/7

//

}
// mow check if it transfers to another dot
System . out. printin (" total transfer prob = 7 + totalTransferProb + 7 choose
)i
double runningTotal = 0.0;
iterator = possibleTransfers.iterator();
Iterator <Double> problterator = transferProbabilities.iterator();
while(iterator.hasNext()) {
QuantumDot transferDot = iterator.next();
runningTotal += problterator.next():
if(choose < runningTotal)} {
// then transfer to transferDot
currentDot.setExcited (false);
transferDot.setExcited (true);
//if(transferDot. isGood()) {
index = dots.indexOf(transferDot);
break;
//Y else {
// return false;
//}
}
}
}

ArrayList<QuantumDot> possibleTransfers = new ArrayList<QuantumDot>();
ArrayList<Double> transferProbabilities = new ArrayList<Double>();
double totalTransferProb = 0;

Iterator <QuantumDot> iterator = dots.iterator ();
while(iterator . .hasNext()) {

QuantumDot otherDot = iterator .next();

double dist = currentDot.getBali().getCenter().minus(otherDot.getBall().getCenter()).

length ();
if(dist == 0.0) {
continue;
}
double transRate = (1/radLife)*Math.pow(forsterRadius/dist ,6.0);
double probTrans = timestepxtransRate;

if (random.nextDouble() < probTrans) {
// transfer can occur
possibleTransfers.add(otherDot);
transferProbabilities.add(probTrans);
totalTransferProb += probTrans;

}

//System . out. printin (" total transfer prob without radiate = ” + totaelTransferProb);

boolean radiatePossible = false;

if(random.nextDouble() < radProb) {
//System . out. printin ("here”);
totalTransferProb += radProb: // add probuability of radiation
radiatePossible = true;

}

if(totalTransferProb > 0) {
double choose = random.nextDouble()*totalTransferProb;

check if should radiate: if we get to end of transfer list without

// transfering and totalTransferProb has been incremented by radProb
if(radiatePossible && choose > totalTransferProb-radProb) {

return true;

public double[][] runLinearGraphFillWithinRadius(double maxRadius, int numPoints) {

double incr = maxRadius/(double)numPoints:

100

"+

choose

double|[] radialAxis = new double[numPoints];
for(int i = 0; i < numPoints; i++) {
795 radialAxis|i] = incrx(i+1);
}
double [] values = determineFillWithinRadius(radialAxis);

return new double][] { radialAxis, values};

}
800
public void runUniform(double mean, int numLines) {
// double mean = 15:
// double dev = 0:
/7 int nuemBalls = (int) (numLinesx600/mean—Math. floor (numLines /2)) :
805 // for(int i = 0; i < numBalls; i++) {
/7 addRandomBallAtTop (mean, dewv) ;
// advance(10000); // advance for 10 seconds
/7 }
/7 advance (160000) : // advance for 100 scconds at the end to secttle balls
810 // System . out. println (determinePacking (mean* (numLines—1))) ;
runRandom(mean. 0, numLines);
}
public double[] runRandom(double meanDiameter, double stddev, int numLines) {
8185 int numBalls = (int)(numLinesxboardDimension/meanDiameter—Math. floor (numLines/2)):
System .out. println ("numBallse=." + numBalls);
for(int i = 0; i < numBalls; i++) {
addRandomBallAtTop(meanDiameter ,stddev ,true);
advance(5000); // adwvance for 10 scconds
820 }
System .out. println (”Done~introducing_balls._Now_running_till _settled .”);
advance (100000); // adwvance for 100 seconds at the end to scttle balls
return determinePacking(meanDiameter*{numLines 1) ,meanDiameter*(numLines~2),2*xmeanDiameter) ;
!
825
/o
* @requires depositer must be crcated as center of gravity to be correct
*/

public double || runRandomCenterGravity (double meanDiameter, double stddev, int numBalls) {
830 /x
PhysicsSimulator. sctFriction (0.1.,0.1);
double packingInPlane = 1.0/6.0%xMath. PIxMath. sqrt(3)://0.74://Math.P1/4.0:

douwble radius = Math. sqrt(packingInPlancxnumBalls)xmeanDiameter/2.0; // average radius filled
by hep
System . out . println (7 final radius = 7 + radius):
835 diometerArray = new double [numBalls [;
for(int & = 0: i < numBalls; i++) {

radius = Math. sqrt(packingInPlancxi)xmeanDiameter /2.0;
deamecterAeray[i] = addRendomBallAtRadius (meanDwametor, stddev , PhysicsSimulator.
getCenterOfGravity () . radius+3xmeanDiameter+stddevsmeanDiameter, true):
advance (500);: // advance 1/2 second
34C }
System . out. printin (" Done introducing balls. Now running till settled.”);
advance (15000); // advance for 100 secconds at the end to scttle balls

return determanePacking (PhysicsSimulator. getCenterOfGravity (), radius —2+meanDiameter) :

*,
845 PhysicsSimulator . setFriction (0.1,0.1):
return runRandomCenter(meanDiameter ,stddev ,numBalls, PhysicsSimulator.getCenterOfGravity ());
}
/*
850 * @requires depositer must be created as center of grawvity to be correct
*/

101

855

860

865

870

875

880

885

890

895

900

//
//

//
/7
//
7/

/7

//
Ve

public double []
{

runRandomCenter (double meanDiameter,

double

stddev , int numBalls, Vect center)

double packingInPlane = 1.0/6.0xMath.PIxMath.sqrt(3);//0.74;//Math.PI/4.0;
double radius = Math.sqrt(packingInPlanexnumBalls)*meanDiameter /2.0; // average radius filled

by hep
System.out.prin
diameterArray =

for(int i = 0;

tln(”final_radius_=." 4+ radius);

new double[numBalls];
i < numBalls; i++) {

radius = Math.sqrt(packingInPlanexi)*meanDiameter /2.0;

diameterArray|[i] = addRandomBallAtRadius(meanDiameter,stddev ,center ,radius+3*meanDiameter+

stddev*meanDiameter, true);

advance (500) ;
}

// advance 1/2 sccond

System.out.println (" Done~introducing.balls._.Now_running_till_settled.”);

advance(15000) ;

// adwance for 100 scconds

at the

end to

return determinePacking(center ,radius —2«meanDiameter) ;

public double|| runRandomAttraction(double meanDiameter,

relativeMasses) {

Vect center =

double stddev,

settle balls

new Vect(boardDimension /2, boardDimension/2);

double packingInPlane = 1.0/6.0% Math. PIxMath.sqrt (3);//0.74;//Math.PI/4.0;

//double radius

= 3xMath. sqrt (packingInPlancxnumBalls)*meanDiameter /2.0;

// place all balls uniformly on the board (addBallAt doesn 't allow ball—ball

of board)
diameterArray =
int numAdded =

new double[numBalls];
0;

while (numAdded < numBalls) {

double z = random.neztDouble ()*radius;

double y =
double = =
board

double y =

random . nextDouble (Jxradius

random. nextDouble ()x(boardDimension); // could try to

random . neztDouble ()= (boardDimension) ;

//if(xxz+yxy < radiuvsxradius) {

Vect pos = new Veet(r,y):

//pos = pos.p
diameterArray

if(diameterAr

numAdded++;

lus (center) :

int numBalls, boolean

overlaps or off

evoid adding off of

[numAdded] = addRandomBalllnRect(Vect.ZERO, new Vect(boardDimension,

boardDimension) ,meanDiameter ,stddev ,true,relativeMasses);

ray [numAdded| > 0) { // if ball

advance(1000);

}
7/}
}

actually added

System.out.println ("Done-introducing.balls ..Now_running_.till_settled.”);

advance (100000)

i // advance for 100 scconds

at the

end to

return determinePacking (center , radius —2xmeanDiameter) ;

settle bhalls

return determinelPacking (new Vect(boardDimension /2, boardDimension /2) , boardDimension };

return determinePackingInterior();

public double|[] runRandomAttractionGrating (double meanDiameter, double stddev,

double gratingWidth ,

// add grating

boolean relativeMasses) {

wall first using a GencralGizmo

ArrayList list = new ArrayList(2);

ArrayList<Reflector > perimeter = new ArrayList<Reflector >(1);

perimeter .add(new Reflector (new LineSegment(0,0,bocardDimension ,0) ,null));

list .add(perime

ter);

list .add(new Rectangle(0,0,(int)Math.floor (boardDimension) ,0));

board .addGizmo(new GeneralGizmo(new Vect(0,gratingWidth) ,

diameterArray =

new double[numBalls];

102

list));

int numBalls,

905 int numAdded = 0;
while (numAdded < numBalls) {

// double r = random.neztDouble ()xradius;
// double y = random.neztDouble ()*xradius;
// double © = random.nezstDouble ()*(boardDimension); // could try to avoid adding off of
board
910 // double y = random.nextDouble ()*(hoardDimension) ;
/7 if(exxt+yxy < radius*radius) {
// Veet pos = new Veet(z,y):

//pos = pos.plus(center);
diameterArray [numAdded] = addRandomBalllnRect(Vect.ZERO, new Vect({boardDimension ,
gratingWidth) ,meanDiameter ,stddev ,true,relativeMasses);
915 if(diameterArray [numAdded] > 0) { // if ball actually added
numAdded++4;
advance(1000);
}
/7Y
920 }
System.out.println {(”Done.introducing.balls..Now.running_till_.settled.”):
advance(100000); // advance for 100 scconds at the end to scttle balls

// return determinePacking (center , radius —2«xmeanDiemeter) ;
// return determinePacking (new Veet(boardDimension /2, boardDimension /2) ,boardDimension):
925 return determinePackingInterior():
'

public double|] runRandomAttractionBimodal(double meanDiameterl , double stddevl, double

meanDiameter2 , double stddev2, double meanMass2, int numBalls, boolean relativeMasses) {

/7 Veet center = new Vect(boardDimension /2, boardDimension/2):
930 // double packingInPlane = 1.0/6.0xMath.PIxMath.sqrt(3);//0.74://Math.PI1/4.0:
//double radius = 3+ Math. sqrt(packingInPlanexnumBalls)* meanDiameter /2.0,

// vlace all balls wuniformly on the board (addBallAt doecsn’t allow ball—ball overlaps or off
of board)
boolean typel;
diameterArray = new double[numBalls]:
935 int numAdded = O0;
int numtypel = 0;
int numtype2 = 0;
while (numAdded < numBalls) {

/7 double r = random. nextDouble ()*xradius;
940 J/ double y = random. necrtDouble ()xradius;
/7 double r = random.nertDouble () x(boardDimension); // could try to wvord adding off of
board
V74 double y = vandom.nextDouble ()*(hoardDimension):

/7 if (pxa+yxy < radiusxradius) {

/7 Vect pos = new Vect(zr.,y):
945 //pos = pos.plus(center);
typel = random.nextBoolean();

if(typel) {
diameterArray [numAdded] = addRandomBalllnRect(Vect .ZERO, new Vect{boardDimension,
boardDimension) ,meanDiameterl ,stddevl ,true,relativeMasses);
} else {
950 diameterArray [numAdded] = addRandomBallInRect{Vect .ZERO, new Vect{boardDimension,
boardDimension) .meanDiameter2,stddev2, false ,relativeMasses ,meanMass2);
}
if(diameterArray [numAdded] > 0) { // if hatl actuwally added
numAdded++;
if{typel)
955 numtypel ++;
else
numtype2++;
advance(1000);

103

}
960 //}
}

System.out.println ("Done_introducing.balls..Now_running-.till_.settled.”);
System .out.println(”Added.” + numtypel 4+ "_balls_of_type_l_and.” + numtype2 + "_balls_.of.type
<27
advance (100000); // advance for 100 secconds at the end to scttle balls
965 // return determinePacking (center , radius —2xmeanDiameter);
// return determinePacking (new Vect(boardDimension/2,boardDimension /2),boardDimension) ;

return determinePackinglnterior();

}
970 public void runCentralSuite(int number) {
System.out.println(” Starting._.central_suite”);
reset (true};
975 System .out.printin (” Running.uniform ,.gravity.at_center_test”);

double |] packingArray = runRandomCenterGravity (15,0 ,number};
saveArray(”centralpacking.txt”, "0.0” , packingArray);

// saveArrayLincSepOverwrite ("uniformdiameters. tzt”, diameterArray);
saveBoard ("uniformcentral”);

980 saveBoardImage (" uniformcentral . jpg”);

reset (true);

System.out.println ("Running.15%-std .dev_gravity_.at_center_test”);

985 packingArray = runRandomCenterGravity (15,0.15,number);
saveArray(” centralpacking.txt” , 70.15” , packingArray);
saveArrayLineSepOverwrite(”randoml5percentdiameters. txt” , diameterArray);
saveBoard ("randoml5percentcentral”);

saveBoardImage(”"randoml5percentcentral.jpg”);

990
reset (true);

System.out. println (" Running.5%.std .dev ,_gravity._.at.center.test”);
packingArray = runRandomCenterGravity (15,0.05 ,number);

995 saveArray(” centralpacking.txt” , 70.05” , packingArray);
saveArrayLineSepOverwrite(”"random5percentdiameters. txt” , diameterArray);
saveBoard("random5percentcentral”);
saveBoardImage("random5percentcentral.jpg”);

1000 reset (true);

System .out. println (" Running.10%-std —.dev ,-gravity_at_center_test”);
packingArray = runRandomCenterGravity(15,0.10,number);
saveArray(” centralpacking.txt” , 70.10” , packingArray);

1005 saveArrayLineSepOverwrite(”randomlOpercentdiameters.txt” , diameterArray);
saveBoard ("randoml0percentcentral™);
saveBoardImage(”"randoml0percentcentral.jpg”);

}

1010 public void colorizeCentralSuite () {
loadBoard (" uniformcentral”);
colorizeBalls (15,0);
saveBoard (" uniformcentralcolor”);
saveBoardImage(” uniformcentral .jpg”);

1015 refillDiameterArray ();

saveArrayLineSepOverwrite (" uniformdiameters.txt” , diameterArray);

loadBoard ("randomb5percentcentral”};

104

1020

1025

1030

103%

1040

1045

1050

1055

1060

1065

1070

1075

colorizeBalls (15,0.05) ;
saveBoard("random5percentcentralcolor”);
saveBoardImage(”"randomSpercentcentral . jpg”);

refillDiameterArray () ;

saveArrayLineSepOverwrite(”"random5percentdiameters. txt” , diameterArray);

loadBoard ("randoml0Opercentcentral”);
colorizeBalls (15,0.10);

saveBoard ("randomlOpercentcentralcolor”);
saveBoardImage("random10percentcentral.jpg”);

refillDiameterArray () :

saveArrayLineSepOverwrite(”"randoml0Opercentdiameters.txt” , diameterArray);

loadBoard ("random15percentcentral”);
colorizeBalls (15,0.15);

saveBoard (" randoml5percentcentralcolor”);
saveBoardImage("randoml5percentcentral .jpg”);

refillDiameterArray () ;

saveArrayLineSepOverwrite("randoml5percentdiameters.txt” , diameterArray);

public void calculateCentralSuiteFill () {
loadBoard (" uniformcentral”);

double fill = determineFill(100);

System.out. println (" Fill-factor_.for._.uniform.size.balls_.=." + fill

loadBoard(”"random5percentcentral” };

fill = determineFill{100);

System .out. println (” Fill .factor_for_random._distribution.with.5%.standard.deviation.=._"

)

loadBoard("random10percentcentral”);
fill = determineFill(100);

System .out.println(” Fill.factor_for_random_distribution _with_10%.standard-deviation.=."

fill):

loadBoard("randoml!5percentcentral”™);
fill = determineFill (100):

System .out.println(” Fill .factor_for_random._distribution_with-15%_standard_deviation_=."

fill);

public void calculateCentralSuiteFillWithinRadius (} {
loadBoard (" uniformcentral”);
double [][] function = runLinearGraphFillWithinRadius(

100,20);

saveArraysAsColumns(” uniformcentralfillradius.txt” , function[O],

loadBoard("random5percentcentral™);

function = runLinearGraphFillWithinRadius(100,20);

saveArraysAsColumns(”random5percentfillradius.txt” , function[O],

loadBoard ("random1l0percentcentral”);
function = runLinearGraphFillWithinRadius(100,20);

saveArraysAsColumns("randomlOpercentfillradius. txt” ,

loadBoard("randoml15percentcentral”);
function = runLinearGraphFillWithinRadius(100,20);

saveArraysAsColumns(”"randoml5percentfillradius. txt” ,

public void calculateCentralSuiteSpatialCorrelation () {

105

function [0] ,

function [O] ,

)5

function [1]),

function [11]);

function[1]);

function[1]);

+ fill

+

+

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

loadBoard (" uniformcentral”);
double corrcoeff = determinePearsonSpatialCorrelation();

System .out.println ("The_correlation_coefficient .for.a_uniform.distribution.=." + corrcoeff);

loadBoard ("random5percentcentral”);
corrcoeff = determinePearsonSpatialCorrelation();
System.out. println (" The_correlation_.coefficient_for.a.5%.std.dev_distribution.=." + corrcoeff

)i

loadBoard ("randoml0Opercentcentral”);
corrcoeff = determinePearsonSpatialCorrelation();
System.out.println ("The_correlation.coefficient —for.a.l0%.std-dev.distribution_.=." +

corrcoeff);

loadBoard(”"randoml5percentcentral”);
corrcoeff = determinePearsonSpatialCorrelation();
System .out.println(”The.correlation.coefficient .for.acl5%_std.dev.distribution.=." +

corrcoeff);

public void testMovie() {

reset (true);

System.out.println (" Running.uniform ,.gravity.at.center_.test _.with.movie”);
startMovie(”randoml5percentmovie2.mov”);

runRandomCenterGravity (15,0.15,100) ;

stopMovie() ;

// saveArray (” centralpacking . tzt”, "0.0”, packingArray);
/777 saveArrayLineSepOuerwrite ("uniformdiameters. tet”, diameterArray):
/7 saveBoard (" uniformcentral”):
// saveBoardImage (" uniformecentral. jpg”);
}

public void makeCentralSuiteMovies(int number) {

reset (true);

System.out. printin (” Running_uniform ,.gravity_-at_center_.test_with_movie”);
startMovie (" uniformmovie .mov”) ;
runRandomCenterGravity (15,0 ,number);

stopMovie () ;
reset (true) ;

System .out.println (” Running.uniform ,.gravity_.at.center_test_.with_movie”
startMovie ("randomS5percentmovie.mov”) ;

runRandomCenterGravity (15,0.05 ,number) ;

stopMovie() ;

reset (true);

System.out.println (" Running.uniform ,.gravity.at.center.test.with.movie”);
startMovie (”randomlOpercentmovie .mov”) ;
runRandomCenterGravity (15,0.10 ,number) ;

stopMovie();

reset (true) ;

System .out.println (" Running.uniform ,.gravity.at.center_test.with.movie”);
startMovie (" randoml5percentmovie .mov”) ;

runRandomCenterGravity (15,0.15 ,number) ;
stopMovie () ;

106

1135 }

public void runAttractionComparison() {

reset (false);

1140 PhysicsSimulator.setGravity (0.0) ;
PhysicsSimulator.setFriction (0.0, 0.0);

System .out.println (" Running.attraction.test.1”);

startMovie (" uniformattract .mov”) ;

1145 double|] packingArray = runRandomAttraction(15,0.0,300, false);
stopMovie():
/7 depositer. saveArray (" centralpacking . tzt”, "0.07, packingArray);
// savcArraylineSepQuerwrite ("uniformdiameters. txt”, diameterArray):

saveBoard (" uniformattract”);

1150 saveBoardImage(” uniformattract.jpg”);

reset (false);

PhysicsSimulator.setGravity (0.0);
1155 PhysicsSimulator.setFriction (0.0, 0.0);

System .out.println (” Running_attraction_test.2");
startMovie("randoml5percentattract.mov”);
packingArray = runRandomAttraction(15,0.15,300, false);

1160 stopMovie() :
/7 depositer. saveArray(” centralpacking . txt?”, "0.07, packingArray):
// savcArrayLineSepOuerwrite (" uniformdiameters. txt”, diameterArray);

saveBoard("random1l5percentattract”™);
saveBoardImage(®randoml5percentattract.jpg”):
1165 }

public void runAttractionPacking() {

reset (false):

1170 PhysicsSimulator.setGravity (0.0) ;
PhysicsSimulator.setFriction (0.0, 0.0):

System.out.println (" Running_attraction_packing.of_5%.random_balls”);

// startMovie ("randomlOpercentattractmasses .mov”)
1175 double || packingArray = runRandomAttraction(15,0.05,300, false):
/7 stopMowvie () :
/7 savcArrayLlineSepOQuerwrite ("uniformdiameters. tet” . diameterArray):

saveArray (" attractpacking.txt”, "0.05" , packingArray);
/7 saveBoard (" attractpackingrandomlIfimasses ™)

1180 // saveBoardImage (" attractpackingrandom1Omasscs. jpg ") :

public void runAttractionGrating () {

reset (false):

1185
PhysicsSimulator.setGravity (0.0):
PhysicsSimulator.setFriction (0.0, 0.0) :
System .out.printin (” Running_.attraction.packing_of_uniform.balls_in_a_.grating”);
1190 startMovie(”" uniformgratingmasses .mov”);
double|] packingArray = runRandomAttractionGrating(15,0.0,150,6+15*Math.sin(Math.PI/3.0) .true
)

stopMovie () ;
/7 seavecArrayLlineScpQuerwrite ("uniformgratingdiameters. trt”, diameterArray),

saveArray (" attractgrating .txt” , "0.0_masses” , packingArray);

107

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

/7

/7
/7

saveBoard (" attractgratinguniformmasses”);

saveBoardImage(” attractgratinguniformmasses.jpg”);

public void runAttractionPackingBimodal() {

reset (false);

PhysicsSimulator.setGravity (0.0) ;
PhysicsSimulator.setFriction (0.0, 0.0);

System.out.println(”Running_attraction.packing.of_balls_.with_two_different._.masses”);

startMowie ("randomlipercentattractmasses . .mov”);

double[] packingArray = runRandomAttractionBimodal(15,0.0,15,0.0,2.0,300, false);

stopMowie () ;

saveArrayLineSepOuerwrite (" uniformdiameters. toct”,

saveArray(” attractpacking.txt” , "uniform_bimodal” ,

saveBoard (" attractpackinguniformbimodal”);

saveBoardImage(” attractpackinguniformbimodal. jpg”);

public void testLuminosity () {
double luminosity;

NumberFormat format = NumberFormat.getInstance ();

format .setMinimumFractionDigits(2);

makeHexagonalLattice () ;
//makeSingleCluster () ;

luminosity = determineLuminosity(1.0,10);

System.out.println(” for_all_bad-dots_.luminosity.=.

luminosity = determineLuminosity (0.0,10);

»

diameterArray) ;

packingArray):

+ format . format(luminosity));

System .out.println (”for.all.good.dots_.luminosity.=."

luminosity = determineLuminosity(1.0/3.0,150);

System.out. println(” for.2/3_.good_.dots_.luminosity.=.

public void calculateLuminosityPrevious () {

double luminosity;

NumberFormat format = NumberFormat. getInstance () ;

format.setMinimumFractionDigits(3);

loadBoard (" attractpackinguniformmasses”);

luminosity = determineLuminosity(1.0/3.0,1000);

System .out.println (” for_uniform.masses.luminosity.=_

loadBoard (" attractpackingrandom5masses”);

luminosity = determineLuminosity(1.0/3.0,1000);

System .out. printin (” for5%.random_masses.luminosity.=o

loadBoard (" attractpackingrandom1l0masses”);

luminosity = determineLuminosity (1.0/3.0,1000);

System.out.println (" for_.10%.random_-masses.luminosity .=.

loadBoard (" attractpackingrandoml5masses”);

luminosity = determineLuminosity(1.0/3.0,1000);

»

”

+ format.format(luminosity)):

+ format.format(luminosity));

+ format.format(luminosity));

”

”

+ format.format(luminosity));

+ format.format(luminosity));

System.out.println (” for_15%.random.masses.luminosity-=." + format.format(luminosity));

public void hexagonalTestTest () {

108

makeSingleCluster () ;

saveBoard (" singlecluster”);

1260 public void hexagonalTest () {
makeHexagonalLattice();
changeSomeBalls (1.0/3.0);
double radFrac = findRadiativeFraction();
System .out. println(radFrac + ".fraction_of.sites_radiate”);

1265 saveBoard(” hexagonallattice”);

SHx
* Qparam args
1270 %4
public static void main(String|{| args) {
/7 FileDepositer depositer = new FileDepositer(false);
/7 System . oul - printin (" Running wuniform test”):
// depositer. runUniform (15,6)
127 // depositer. saveBoard (" uniformélayers”);
// System . out . printin (" Running random test with 5% standard deviation”);
// depositer . runRandom (15,0.05,3) :
// depositer. saveBoard (" randoml1 7).
1280
/7 System . out . printlne (7 Running random test with 10% standard deviation”);
// depositer. runRandom (15.0.10,3) :
// depositer. savcBoard (" randomlOpercent”);
1285 // System . out. printin (” Running random tcst with 15% standard deviation”):
// depositer . runRandom (15.0.15.,.3);
// depositer . saveBoard (" randomliSpercent”):
/7 System . out . printin(” Recading random tcst with 10% standard deviation”):
1200 // System . out.printin(depositer.determinePacking ("random2” ,5x15 ,4%15,2%15))
Yas System . out . priniln (" Reading uniform1”):
24 System . oul . printin (depositer.determinePacking ("uniforml1” 2«15, 1%15,2«15));
1295 // FileDepositer depositer = new FileDepositer (true);
a4 System . out. println (” Running random 2.5% std dev, gravity at center test™):
/7 depositer . runRandomCoenterGrawity (15.0.025,100) :
Ve depositer saveBooard ("random2.5percentcentral ")
1300
Vs deposeter. runCentralSuite (500);
Y System . out. prantin(depositer. determinePacking (" randomiSpercentcentralquickfrecze ”,
PhysicsSimulator. getCenter OfGravity () . Math. sqrt (0.74«100)%15.0/2.0-15.0)) ;
1305 // System.out. println (" Running uwniform size . grawvity at center test”),
/7 double [|] puckingArray = depositer . runRandomCenterGravity (15,0,50) ;
/7 depositer. saveArray (" packingtest. tzt”, "0.0", packingArray):
// depositer . saveBoard (" uniformeentraltest”),
/7 depositer. saveBourdImage ("uniformeentral. jpg”);
1310
Ve depositer. loadBoard (" randoml0percent ™) ;
ra depositer. colorizeBalls (15,0.10) ;
Va4 depositer. saveBoard ("rendomlOpercent”) :
1315 // System . out println (" Running 5% std dev, gravity at center, coloration tost”);

109

1320

1325

1330

1335

1340

1345

1350

10

15

20

// double [] packingArray = depositer.runRandomCenterGravity (15,0.15,50) ;

// depositer.saveArray (" packingtest. tzt”, "0.0”, packingArray);
// depositer.saveBoard(” colortest”);
// depositer . saveBoardImage(” colortest.jpg”);
// depositer. colorizeCentralSuite ()
// depositer. testDetermineFill () ;
// depositer. calculateCentralSuiteFill();
// depositer.testDetermincFillWithinRadius () :
// depositer. calculateCentralSuite FillWithinRadius () ;
// depositer.testMowie () ;
// depositer. calculateCentralSuiteSpatialCorrelation ()
// depositer. hexagonalTestTest ()
FileDepositer depositer = new FileDepositer(false);
// depositer. runAttractionComparison () ;
// depositer. runAttractionPacking ()
// depositer. runAttractionGrating () ;
V4 depositer. runAttractionPackingBimodal () ;
// depositer. testLuminosity ()

depositer.calculateLuminosityPrevious();

Listing A.3: Class containing important physics information.

package sel02.gb:

import physics.x:

import java.util.Random;

the

acceleration

VAL
* Central function library for applying the physics defined for the gizmoball environment
*
* @specfield gravity | number // acceleration in pizels/sceond "2 representing
of gravity in this physics context
* @Qspecficld frictionl | number // representing the constant change of friction

* @Qspecficld friction?2 | number // representing the lincar change

sx)/

public class PhysicsSimulator {
private static int lengthToPixels = 30;
private static double gravity;// = 25 » lengthToPizels: [/ L/sec
private static double frictionl;// = 0.025; // 1/ see

of friction

"2

private static double friction2;// = 0.025 / lengthToPizxels; // 1/L

private static Vect centerOfGravity = null: // null then wertical

110

gravity

25

30

35

40

45

50

55

60

65

70

public static double getGravity() {

return gravity;

public static double getFrictionl () {

return frictionl;

public static double getFriction2() {

return friction2;

/*

* @rcturn designated point for gravity or null if default gravity
*/

public static Vect getCenterOfGravity () {

return centerOfGravity;

J**

* @requires gravity s in L/sece "2

* @cffects sets this.gravity to gravity

* %/

public static void setGravity (double gravity) {
PhysicsSimulator. gravity = gravity * lengthToPixels;

Jx*

* @requires frietionl 48 din l/sec and friction2 is in L

* @effects scts this.gravity to grawvity

**/

public static void setFriction(double frictionl , double friction2) {
PhysicsSimulator. frictionl = frictionl;

PhysicsSimulator. friction2 = friction2 / lengthToPixels;

}
public static void setCenterOfGravity(Vect gravityPoint) {
centerOfGravity = gravityPoint;
}
VeSS

* Returns the welocity updated for the time period deltaT in scconds

* @requircs veloewty = null

* Qreturn new velocity wector in L/seconds with the coffect of gravity
it for

* the specificd time period

+x/

public static Vect updateVelocity(Vect center, Vect velocity , double deltaT)

if(centerOfGravity == null) {
velocity = velocity . plus(new Vect(0, gravityxdeltaT)):
} else {

velocity = velocity.plus(centerOfGravity . minus{center).unitSize().times(gravityxdeltaT)):
}
velocity = velocity .times(Math.max(1—frictionl+deltaT—friction2x*velocity.length()xdeltaT ,0.0)
)
return velocity;
}
VA TS

* Returns the wvelocity updated for the time period deltaT in malliseconds

* @requires oclocity !'= null

111

and friction

80 * @return new velocity wvector with the effect of gravity and friction applied to it for
* the specified time period
*4/
public static Vect updateVel(Vect velocity , double deltaT) {
double deltaSeconds = deltaT /1000;
85 Vect velFrict = velocity.times(l—frictionl*deltaSeconds—friction2xvelocity.length()=*
deltaSeconds);
Vect velGrav = velFrict.plus(new Vect(0, gravityxdeltaSeconds));

return velGrav;

90 VAT
* Returns the position updated for the time period deltaT in milliscconds
* @requires position != null 86 velocity = null
* @return new position wvector wupdated with the effeets of welocity, gravity and
* friction for the specified time period
95 *x/
public static Vect updatePos(Vect position, Vect velocity , double deltaT) {
return position.plus(velocity .times(deltaT /1000));

}
100 public static Geometry.VectPair updateVelandPos(Vect position, Vect velocity , double deltaT) {
double deltaSeconds = deltaT /1000;
Vect velFrict = velocity.times(l—frictionlxdeltaSeconds—friction2x*velocity.length ()=
deltaSeconds);
Vect newVel = velFrict.plus(new Vect(0, gravityxdeltaSeconds));
// use only the welocity corrected for friction to find the lincar component of the position
update
105 Vect posFrict = velFrict.times(deltaSeconds);
// grawity is a quadratic term
Vect posGrav = new Vect(0,gravity *(deltaSeconds+*deltaSeconds));
Vect newPos = position.plus(posFrict.plus(posGrav));
return new Geometry. VectPair(newPos, newVel);
110 }

// new seection for microscopic physics

private static boolean inelastic = true;
115 private static double fractionElastic = 0.8;
private static double elasticDeviation = Math.min((1-fractionElastic)/2,fractionElastic/2);

private static double ballStickThresh = 2%30;
private static double reflectorStickThresh = 1x30;

private static double completelylnelasticThresh = 1. // welocity below which balls should stop
completely upon colliding
120 private static Random collisionVelocityRandom = new Random(913):
private static double forceDistanceThresh = 0.1; // halls closer than this distance feel no
force

private static double RO = 15.0;//15.0x Math. sqrt(1/2);
private static double b = forceDistanceThresh —ROxMath.pow(forceDistanceThresh /(1.0=
completelyInelasticThreshxcompletelyInelasticThresh /0.01) ,1.0/7.0);

125
private static double randomVelocityDelay = 1/50.0;
private static double T = 297.0;
private static double kb = 1.38e-20; // Boltzmann’s constant in m"2 g s =2 K'—1
private static double avgMass = 5.24e~18; // muass of awerage ball in g
130

public static boolean islnelastic () {

return inelastic;

112

135

140

145

150

15%

160

170

180

185

190

public static void setBallStickThresh (double bst) {
ballStickThresh = bst:

public static double getBallStickThresh () {
return ballStickThresh:

public static void setReflectorStickThresh (double rst) {
reflectorStickThresh = rst;

public static double getReflectorStickThresh() {

return reflectorStickThresh;

public static void setCompletelylnelasticThresh{double cit

completelylnelasticThresh = cit;

public static double getCompletelyInelasticThresh() {

return completelyInelasticThresh;

private static void updateB() {

) {

b = forceDistanceThresh -ROxMath.pow(forceDistanceThresh /(1.0xcompletelyInelasticThresh=

completelylnelasticThresh) ,1.0/7.0);

public static void setForceDistanceThresh(double thresh) {
forceDistanceThresh = thresh:
updateB () :

public static double getMinimumForceDistanceThresh() {

return forceDistanceThresh;

public static double getMaximumForceDistanceThresh() {
return RO*=2: // force will be 1/2°7 times less than its

public static void setVanDerWaalCoeff(double coeff) {
RO = coeff;
updateB () ;

public static double getVanDerWallCoeff() {
return RO;

In

* ©Wreturns the magnitude of the velocity change in the direction

*/
public static double updateVelocityAttraction(double dist ,
if(dist < forceDistanceThresh || dist > RO*2) {

return 0.0;
} else {
double a = Math.pow(RO/(dist—b) ,7.0)/mass;
return Math.min(a*time/2.0,Math.sqrt(distxa)/2.0);

113

strongest i.e.

double mass,

completely minuscule

between two balls

double time) {

195

200

205

210

215

220

225

/*

x @param inel : The fraction ineclasticity on average over many collisions. 1.0 = elastic

*/
public static void setElasticity (double el) {

fractionElastic = el;

elasticDeviation = Math.min((1—el)/2,el/2); // set std deviation of distribution so that 0

ineclasticity is 2 std devs away from mean

public static double getElasticity () {

return fractionElastic;

/*

* @returns a fraction of o balls current wvclocity lost in a particular collision

*/
public static double getFractionVelocityLoss () {

return collisionVelocityRandom .nextGaussian ()*elasticDeviationt+fractionElastic;

public static double getRandomVelocityDelay () {

return randomVelocityDelay;

/*
* @param mass : Mass of the ball in the units of the average ball mass
* @returns The magnitude to be used for the average thermal energy to
ball
-/
public static double getRandomVelocityMagnitude (double mass) {
return 1.5xMath.sqrt (2+xkb*T/(massxavgMass));

114

be

randomly added to

a

Appendix B

Planarization Code

Listing B.1: Oxide smoothing main script.

%function oxidesmoothing6 ()

warning off MATLAB:divideByZero

% script to describe the electrochemical oxidized smoothing of a ruff

% surface

global samplingx samplingy lengthx lengthy xorig yorig zorig x y z xox yox zox sampleincrfinal

plotstep analysisstep
%global sample

%samplingx = —-2'1:2;
%samplingy = —2:1:2;
%samplingx = 0:100:2000:
%samplingy = 0:100:2000;
samplingx = 0:100:400;
samplingy = 0:100:400;

lengthx = length(samplingx);

lengthy = length(samplingy);

[x,y] = meshgrid(samplingx ,samplingy);
7{

z = zeros(lengthx ,lengthy) +4;

z(3.3) = 1.5;

ZOX = 2

axis2D = |min(samplingx) max(samplingx) 0 3];

axis3D = |min(samplingx) max(samplingx) min(samplingy) max(samplingy) 0 3|;
increaseSampling (4);

%increaseSampling (sample);

%}

z = zeros(lengthx ,lengthy)+1000; %now measured in nanometers

z = z+30/2x(2*xrand(lengthx ,lengthy)—1);

axis2D = |min(samplingx) max(samplingx) 0 2000];

axis3D == [min(samplingx) max(samplingx) min(samplingy) max(samplingy) 800 1200];

increaseSampling (5) :
z = z+20/2+(2xrand (lengthx .lengthy)—1);
ZOX = zZ,

increaseSampling (4);

115

40

45

50

55

60

65

70

75

80

85

90

95

xorig = x;

yorig

zorig = z;

Yy

plotstep = 50;%0.25;%50
analysisstep = 10;%0.05;%10
lastplot = 0;

lastanalysis = 0;

centerindex = floor ((length(x)+1)/2);

slicehandle = figure;

plot(x(centerindex ,:) ,z(centerindex ,:) ,’0");
hold on;

plot(xox(centerindex ,:) ,zox(centerindex ,:) ,'*’);

axis (axis2D);

figure;

mesh (xox , yox ,zox) ;

xlabel('x.axis-(nm)’);

ylabel (y.axis(nm) ’);
zlabel{’z.axis.(nm)’);
title(’Planarized _Oxide_Surface’);

coloraxis = caxis;

twosurfhandle = figure;

handlesl = plot3(x,y,z,'o’);

hold on;

handles2 = plot3(xox,yox,zox, '*’);

axis (axis3D);

xlabel ('x_.axis '};

ylabel ('y-axis');

zlabel ('z.axis’);
title(’Final.Metal_and_.Oxide_Surfaces’);
legend ([handles1 (1) handles2(1})], ' Metal_.surface’', 'Oxideosurface’,1);
hold off;

%add to the oxide according to the slope at that point

global oxidestep maxruffness expansion finaloxide distance2ox oxpoints metpoints smallestdist

oxidestep = 0.5;%0.01;
expansion = 2.3;

%maxruffness should just be expansionx*oxidestep but added 1.5 to be safe

maxruffness = 1.5x(expansion)*oxidestep; %only applies for perfect beginning substrate

finaloxide = 200;%1;
smallestdist = O:
count = O0:
%all minimum distances start as zero for this simulation
distance20x = zeros(lengthx ,lengthy);
%points to a single oxide point
oxpoints = cell(size(distance2o0x)); % place to store oxide points equally
%close to each point in the metal.
metpoints = cell(size(distance2o0x)): % auxilliary data structure to store all the
Y%metal points close to this oxide point
%for starting with no oxide initialize oxpoints
for i=1l:length(oxpoints (:))
oxpoints{i} = [i];
metpoints{i} = [i];

end

oxideanalysis (1);

116

while(smallestdist < finaloxide) %loop for each local oxide change

100 [smallestdist smallestind] = min(distance2o0x(:));
count = count+1;
oxpointlist = oxpoints{smallestind};

%oxpointlist should be a (1 by n) matrix of oxide indices
totalchange = 0;
105 for k=1:length(oxpointlist)
zox(oxpointlist (k)) = zox(oxpointlist(k))+(expansion—1)xoxidestep/(length(oxpointlist)x*...
length(metpoints{oxpointlist(k)}));
totalchange = totalchange+1/(length(oxpointlist)*length(metpoints{oxpointlist(k)}));
end
if(totalchange > 1)
110 smallestind
distance2met (oxpointlist (k))
metpoints{oxpointlist (k)}
distance2ox (smallestind)
oxpoints{smallestind}
115 oxpointlist
return

'should.not_.happen

end
z{smallestind) = z(smallestind)~oxidestep*totalchange;

120 %done updating points, now calculate new distances for these points
points2change = metpoints(oxpointlist);

Ymow consider the metal point
updatemetalpoint3(smallestind);
% TBA —-—— oxide point to metal plane distance
125 % now we need to update points changed in the oxide
for k=1:length(oxpointlist)
for i=points2change{k}
%use the metpoints list to find the metal points that need
%to be changed because the oxide has changed
130 %the following test didn’t account for changing lists from
%abcve updatemetalpoint call
%make sure we haven't already updated this metal point
if(i "= smallestind)
updatemetalpoint3(i);
135 end
end

updateoxidepoint{ oxpointlist (k)):

end
if (mod(count .length(x(:)))==0)%(std(distances (:))<=oxidestep/1000)
140 %plot animation of progress
count
figure(twosurfhandle);
handlesl = plot3(x.y.z, 'o’):
hold on;
145 handles2 = plot3(xox,yox.,zox, '*'):

axis(axis3D);
xlabel ("x_.axis ')
ylabel(‘y.axis’):

zlabel ('z_axis ") :

150 title('Final_Metal_and_Oxide_Surfaces');
legend ([handles1(1) handles2(1)], 'Metal_surface’,'Oxide_surface ' ,1):
hold off;
end
155 if(smallestdist > analysisstep+lastanalysis)
lastanalysis = floor(smallestdist/analysisstep)*xanalysisstep;

oxideanalysis (0),

end

117

160 if(smallestdist > plotstep+lastplot)
lastplot = floor(smallestdist/plotstep)*plotstep;

figure;
mesh(xox,yox,zox);
165 xlabel ('x.axis<(nm)’);
ylabel ('y.axis.(nm) ')
zlabel(’z.axis_(nm)’);
caxis(coloraxis{(mean(zox (:))—mean(coloraxis (:)))}}:
title('Planarized _Oxide_.Surface ') ;
170 end

end

figure(slicehandle);
plot(x(centerindex ,:} ,z(centerindex ,:) , ’or'};
175 plot(xox(centerindex ,:) ,zox(centerindex ,:) , *r’);
axis(axis2D);
xlabel('x.axis),
ylabel(’z_.axis ");
title(’'Comparison.of.Initial.to.Final.Metal/Oxide.Surface.Cut');

180 legend(’'Initial._.metal’,'Initial.oxide’, Finalometal’',’Finalioxide’,1);

Listing B.2: Function to update a metal point.

function updatemetalpoint3(index)

global samplingx samplingy lengthx lengthy x y z xox yox zox

global oxidestep wmaxruffness expansion finaloxide distance20x oxpoints distance2met metpoints

prevdist = distanceZox(index);
clearMetalPoint (index ,oxpoints{index});
%reset its list and distance
distance2o0x(index) = Inf;

10 oxpoints{index} = [];

maxdistindex = max(floor ((prevdist+maxruffness)/(x(1,2)—x(1,1))),floor((prevdist4+maxruffness) /(y...
(2,1)-y(1.1))));
pointset = allpoints2dist (index , maxdistindex ,lengthx ,lengthy);
distset = sqrt((xox(pointset)—x{index)). "2+ (yox(pointset)—y(index)). "2+ (zox(pointset)-z(index))...
LT2);
15 dist = min(distset (:));

minind = find(distset==dist);

points2add = pointset (minind);
if(dist==distance20x{index))
oxpoints{index} = union(oxpoints{index},points2add);
20 for i=points2add
metpoints{i} = union(metpoints{i}, index);
end

end
if(dist < distance2ox(index))
25 clearMetalPoint (index ,oxpoints{index});
distance2o0x(index) = dist:
oxpoints{index} = points2add;
for i=points2add
metpoints{i} = union(metpoints{i}, index);
30 end
end
%next consider 4 lines from the metal point to find if any oxide
%point is closest to one of those lines
for 1=1:4

118

35 point2ind = pointaround(index,!l,lengthx ,lengthy);
if(point2ind==0)

continue
end
vectl = [x(index) y(index) z(index)];
40 vect2 = [x(point2ind) y(point2ind) z(point2ind)]:

diffl2 = vect2—vectl;
dist12 = sum(diffl2."2);
maxdistindex = max(floor(distance2ox(index)/(x(1,2)-x(1,1))),floor(distance2ox(index)/(y(2,1)...
=y(1,1)})):
pointset = union(allpoints2dist(index, maxdistindex ,lengthx ,lengthy),allpoints2dist(point2ind,...
maxdistindex ,lengthx ,lengthy));
45 vectOset = [xox(pointset(:)) yox(pointset (:)) zox(pointset(:))];
vectlset = repmat(vectl, length(pointset) , 1);
vect2set = repmat(vect2, length(pointset),1);
diffl2set = repmat(diffl2 ,length(pointset), 1);
distset = sum((cross(diffl2set ,vectlset—vectOset)). 2,2)/distl2;
50 %check if actually on correct segment
distOlset = sum((vectlset—vectOset). 2,2);
dist02set = sum((vect2set —vectOset). 2,2);
segind = find(distOlset < (distset+distl2) & dist02set < (distset+distl2));
if (segind)

55 dist = min(distset (segind));
minind = find(distset==dist); %find the indices of all minimum values in distset
%note: distset has the same incides as pointset
minind = intersect (minind,segind); % keeps only indices in minind that are also in segind

dist = sqrt(dist);
60 points2add = pointset(minind);
if(dist==distance2o0x(index))
oxpoints{index} = union(oxpoints{index},points2add);
for i=points2add
metpoints{i} = union(metpoints{i}, index);
65 end
end
if(dist < distance2ox(index))

clearMetalPoint (index ,oxpoints{index});

distance2ox (index) = dist;
70 oxpceints{index} = points2add;
for i=points2add;
metpoints{i} = union(metpoints{i}, index);
end
end
75 if(dist==distance2ox(point2ind))

origlength = length(oxpoints{point2ind});
oxpoints{point2ind} = union(oxpoints{point2ind},points2add);
for i=points2add
metpoints{i} = union(metpoints{i}, point2ind);
80 end

end

if(dist < distance2ox(point2ind))
clearMetalPoint (point2ind , oxpoints{point2ind});

distance2o0x(point2ind) = dist;
85 oxpoints{point2ind} = points2add;
for i=points2add
metpoints{i} = union(metpoints{i}, point2ind);
end
end
90 end
end

%next consider 4 lines from each oxide point to find if the metal

119

%point is closest to one of those lines

95
vect0 = [x(index) y(index) z(index)];
maxdistindex = max(floor(distance2ox(index) /(x(1,2)-x(1,1))),floor(distance2ox(index)/(y(2,1)-~y...
(1,1))));
pointset = allpoints2distpairs(index ,maxdistindex ,lengthx ,lengthy);
vectOset = repmat(vect0O ,length(pointset) , 1);
100 vectlset = [xox(pointset(:,1)) yox(pointset(:,1)) zox(pointset(:,1))];

vect2set = [xox(pointset (:,2)) yox(pointset(:,2)) zox(pointset (:,2))];
%now we have all pairs of points in pointset between vectlset and vect2set
diff0lset = vectlset—vectOset;
diffl2set = vect2set—vectlset;
105 distl12set = sum(diffl2set."2,2);
Y%will generate NaN for point same in both vectlset and vect2set but those
%indices will be excluded from segind
distset = sum((cross(diffl2set ,diffOlset))."2,2)./dist12set;
distOlset = sum(diffOlset."2,2);
110 dist02set = sum((vect2set—vectOset)."2,2);
segind = find(distOlset < (distset+distl2set) & distO2set < (distset+distl2set));
if(segind)
dist = min(distset (segind));

minind = find(distset==dist); %find the indices of all minimum values in distset
115 Y%note: distset has the same incides as pointset
minind = intersect(minind,segind); %keeps only indices in minind that are also in segind

dist = sqrt(dist);
points2change = pointset(minind,:);
points2change = unique(points2change(:) ’);
120 if(dist==distance20x(index))
oxpoints{index} = union(oxpoints{index},points2change);
for j=1l:length(points2change)
metpoints{points2change(j)} = union{metpoints{points2change(j)},index);
end
125 end
if(dist < distance2ox(index))
clearMetalPoint (index ,oxpoints{index});
distance2ox (index) = dist;
oxpoints{index} = points2change;
130 for j=1l:length(points2change)
metpoints{points2change(j)} = union{metpoints{points2change(j)},index);
end
end

end

Listing B.3: Function to update an oxide point.
function updateoxidepoint{index)
global samplingx samplingy lengthx lengthy x y z xox yox zox

global oxidestep maxruffness expansion finaloxide distance20x oxpoints distance2met metpoints
smallestdist

maxdistindex = max(floor ((smallestdist+maxruffness)/(x(1,2)-x(1,1))),floor((smallestdist+...
maxruffness) /(y(2,1)—y(1,1))));

pointset = allpoints2dist (index ,maxdistindex ,lengthx ,lengthy);
distset = sqrt((x(pointset)—xox(index)). 24+ (y(pointset)—yox(index)). "2+ (z(pointset)—zox(index))...
.T2);

%indices in distset of the points to change
10 points2change = find(distset <= distance2ox(pointset));
if (points2change)
for i=points2change

metindex = pointset(i);

120

&

dist = distset (i);:
if(dist:

oxpoints{metindex} = union(oxpoints{metindex},index);

=distance2o0x (metindex))

metpoints{index} = union(metpoints{index}, metindex):
end
if(dist < distance2ox(metindex))
clearMetalPoint (metindex ,oxpoints{metindex});
distance2o0x {metindex) = dist;
oxpoints {metindex} = index;
metpoints{index} = union(metpoints{index}, metindex);
end
end
end
%next consider 4 lines from the oxide point to find if any metal
%point is closest to one of those lines
for 1=1:4
point2ind = pointaround(index,l,lengthx ,lengthy);
if(point2ind==0)

continue

end
vectl = [xox(index) yox(index) zox(index) |;
vect2 = [xox(point2ind) yox(point2ind) zox(point2ind)|;

diffl2 = vect2—vectl;
distl2 = sum(diffl2. 2);

maxdistindex = max(floor ((smallestdist+maxruffness)/(x(1,2)—x(1.1))),floor({smallestdist+...
maxruffness)/(y(2,1)—y(1,1)))):

pointset = union(allpoints2dist(index , maxdistindex ,lengthx ,lengthy),allpoints2dist(point2ind ,...
maxdistindex ,lengthx .lengthy));

vectUset = [x(pointset (:)) y(pointset(:)) z(pointset (:))];

vectlset = repmat(vectl, length(pointset) ,1);

vect2set = repmat(vect2, length(pointset), 1);

diffl2set = repmat(diffl2 ,length(pointset) ,1);
distset = sum((cross(diffl2set ,vectlset—vectOset)). 2,2)/distl2;
%check if actually on correct segment
distOlset = sum((vectlset—vectOset). 2,2):
dist02set = sum{(vect2set—vectOset). 2.2):
segind = find(distOlset < (distset4+distl2) & distO0O2set < (distset+distl12));
if(segind)
distset = sqrt(distset) ’;
%list of indicies in segind of the points that need to change
points2change = find(distset(segind) <= distance2ox(pointset(segind)));
%allchanged = union(allchanged , pointset(segind (points2change))):
%now indexed by their position in pointset
points2change = segind(points2change) ’;
if(points2change)
for i=points2change
metindex = pointset(i);
dist = distset (i);

if(dist==distance2ox (metindex))

oxpoints{metindex} = union(oxpoints{metindex},[index point2ind]);
metpoints{index} = union(metpoints{index}, metindex);
metpoints{point2ind} = union(metpoints{point2ind}, metindex);

end
if(dist < distance2o0x(metindex))

clearMetalPoint (metindex ,oxpoints{metindex});

distance2ox (metindex) = dist ;
oxpoints{metindex} = [index point2ind];
metpoints{index} = union(metpoints{index}, metindex);
metpoints{point2ind} = union{metpoints{point2ind}, metindex);
end
end

121

75

80

85

90

95

100

105

110

115

end
end
end
%next consider 4 lines from each metal point to find if the oxide
Y%point is closest to one of those lines
vect0 = [xox(index) yox(index) zox(index)]:
maxdistindex = max(floor ((smallestdist+maxruffness)/(x(1,2)-x(1,1))),floor((smallestdist+...
maxruffness)/(y(2,1)-y(1,1))));
pointset = allpoints2distpairs(index ,maxdistindex ,lengthx ,lengthy);
vectOset = repmat{vectO ,length(pointset) ,1);
vectlset = [x(pointset(:,1)) y(pointset(:,1)) z(pointset (:,1))];
vect2set = [x(pointset(:,2)) y(pointset (:,2)) z(pointset(:,2))];
Ymow we have all pairs of points in pointset between vectlset and vect2set
diff0lset = vectlset—vectOset;
diffl2set = vect2set—vectlset;
distl12set = sum(diffl2set.”2,2);
%will generate NaN for point same in both vectlset and vect2set but those
%indices will be excluded from segind
distset = sum((cross(diffl2set ,diffOlset))."2,2)./distl2set;
distOlset = sum(diffOlset. 2,2);
dist02set = sum((vect2set—vectOset)." 2,2);
segind = find (distOlset < (distset+distl2set) & dist02set < (distset+distl2set));
if (segind)
distset = sqrt(distset);
%list of indicies in segind of the points that need to change
points2changel = find(distset(segind) <= distance2ox(pointset (segind ,1)));
points2change2 = find(distset(segind) <= distance2ox(pointset (segind ,2)));
Y%now indexed by their positions in global arrays

points2change = union(pointset(segind(points2changel),1)’,pointset(segind(points2change2) ,2)...

Y
if (points2change)
for metindex=points2change
allmetind = find(pointset (:,1)==metindex | pointset (:,2)=—metindex);
dist = min(distset(allmetind));
if(dist==distance2ox (metindex))
oxpoints{metindex} = union(oxpoints{metindex},index);
metpoints{index} = union(metpoints{index},metindex);
end
if(dist < distance2ox(metindex))
clearMetalPoint (metindex ,oxpoints{metindex});
distance2o0x (metindex) = dist:
oxpoints{metindex} = index;
metpoints{index} = union{metpoints{index},metindex);
end
end
end

end

122

Appendix C

Physics Package Copyright Notice

Copyright (C) 1999-2001 by the Massachusetts Institute of Technology,

Cambridge, Massachusetts.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that MIT’s name not
be used in advertising or publicity pertaining to distribution of

the software without specific, written prior permission.

THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. 1IN NO EVENT SHALL THE MASSACHUSETTS
INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

123

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

@author:

@author:

@author:

@author:

Matt Frank, MIT Laboratory for Computer Science,
mfrank@lcs.mit.edu

1999-Apr-03

Rob Pinder, Phil Sarin, Lik Mui
Spring 2000

Exception handling and argument type refinemnt

Jeffrey Sheldon (jeffshel@mit.edu)
Fall 2000, Spring 2001

Major rewrites and improvements to iterative solving
Jeremy Nimmer (jwnimmer@alum.mit.edu)

Fall 2000, Spring 2001

Editorial role (testing and specification editing)

124

Bibliography

[1] P. MARDILOVICH and P. KORNILOVITCH, Nano Letters 5, 1899 (2005).

[2] P. MARDILOVICH and P. KORNILOVITCH, Unpublished, Hewlett-Packard Com-

pany, Imaging and Printing Group. Corvalis, Oregon, 2005.

[3] D. WELLS, editor, The Penguin Dictionary of Curious and Interesting Numbers,
p- 30, Penguin Books, Middlesex, England, 1986.

[4] J. H. CoNnwAYy and N. J. A. SLOANE, Sphere Packings, Lattices, and Groups,
Springer-Verlag, New York, second edition, 1993.

[5] N. J. A. SLOANE, Nature 395, 435 (1998), Editorial review.

[6] D. BIMBERG, M. KUNTZ, and M. LAEMMLIN, Microelectronics Journal 36,
175 (2005).

[7] P. CAROFF and C. P. ET AL., Applied Physics Letters 87 (2005), Art. No.
243107.

[8] S. A. McDoNALD and G. K. ET AL., Nature Materials 4, 138 (2005).

9] J. F. WENG and J. C. REN, Current Medicinal Chemistry 13, 897 (2006).
[10] T. V. ET AL., Journal of Physical Chemistry 98, 7665 (1994).

[11] C. F. H. ET AL., Journal of Physical Chemistry 96, 3812 (1992).

[12] X. G. PENG, M. C. ScHLAMP, and A. V. K. ET AL., Journal of American
Chemical Society 119, 7019 (1997).

125

[13] M. L. STEIGERWALD and A. P. A. ET AL., Journal of American Chemical
Society 110, 3046 (1988).

[14] R. Y. Y. ET AL., Physical Review E 62, 3900 (2000).

[15] K. J. DoNG and R. Y. Y. ET AL., Physical Review Letters 96 (2006).
[16] N. V. B. ET AL., Physical Review E 53, 5382 (1996).

[17]) H. MaTTOUSSI and A. W. C. ET AL., Physical Review B 58, 7850 (1998).
[18] H. C. HAMAKER, Physica (Amsterdam) 4 (1937).

[19] E. RABANI, Journal of Chemical Physics 116, 258 (2002).

[20] C. R. KAcaAN, C. B. MURRAY, and M. G. BAWENDI, Physical Review B 54,
8633 (1996).

[21] B. M. ET AL., Physical Review B 33, 5545 (1986).
[22] S. CoE, W. K. W00, M. BAWENDI, and V. BUuLovIC, Nature 420, 800 (2002).

[23] S. CoE, J. S. STECKEL, and W. K. W. ET AL., Advanced Functional Materials
15, 1117 (2005).

[24] C. B. MURRAY, C. R. KAGAN, and M. G. BAWENDI, Annual Review of
Materials Science 30, 545 (2000).

[25] E. HOWE, J. YING, S. STRANSKY, and K. RUBRITZ, Unpublished, 6.170
Gizmoball, 2003.

[26] V. SurGANOV, IEEFE Transactions on Components Packaging and Manufactur-
ing Technology Part B-Advanced Packaging 17, 197 (1994).

[27] N. F. MoTtT, Philosophical Magazine B-Physics of Condensed Matter Statistical
Mechanics Electronic Optical and Magnetic Properties 55, 117 (1987).

(28] M. E. Law, C. S. RAFFERTY, and R. W. DuTTON, SUPREM 1V, Software
package, Stanford University, 1991.

126

[29] N. G. WRIGHT, C. M. JOHNSON, and A. G. O’NEILL, Materials Science and
Engineering B-Solid State Materials for Advanced Technology 61-62, 468 (1999).

127

