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Abstract

In this thesis, we detail the design, implementation, and testing of two simulations of
nanometer scale disorder phenomena important for electronic device fabrication. We
created a kinetic simulator for the surface assembly of quantum dots into ordered or
disordered monolayers. We utilized a platform for high-precision motion and collision
resolution and implemented the behavior of quantum dots on a surface. The simu-
lation demonstrated experimentally observed behavior and offers insights into future
device design. We also created a material simulation of the electrochemical oxidation
of a metal surface with nanoscale roughness. We demonstrated that by preserving
the amount of metal and making the oxide coating conformal, anodization can highly
planarize the metal surface. We verify the convergence of our results as we increase
the accuracy of our model. We demonstrate differences in the rate of planarization
between additive and subtractive surface features which could not be observed by ex-
periment and make predictions about the planarization of metals with different oxide
expansion coefficients.

Thesis Supervisor: Vladimir Bulovid
Title: Associate Professor





Acknowledgments

I would first like to thank all my friends and coworkers in the Laboratory of Organic

Optics and Electronics. I have learned so much from all of you even though I was

usually coding away at my desk while you all were in the lab. I gained so much

knowledge and enthusiasm about organic electronics through your presentations and

impromptu discussions. Thank you Vladimir for giving me the opportunity to work

with you this year, for guiding my research, and for being the most supportive and

good-humored advisor. I would like to thank my family for their encouragement even

though they do not quite understand what I have been working on. Thanks to my

friends who were always there to distract me in between my work. I would like to

specially thank my 6.170 group from a few years ago who built some of the code that

I used to pursue my quantum dot simulation. I would also like to specially thank

Peter Mardilovich our visiting expert from HP whose experimental data is the basis

for my planarization simulation and with whom I worked in its creation. I would

finally like to thank MIT for being a home to me for the past five years and for being

a great environment in which to succeed academically.





Contents

1 Introduction

2 Quantum Dot Packing Simulation

2.1 Theory and Background ......

2.2 Simulation Algorithm and Design .

2.3 Simulation Results . . . . . . ...

2.3.1 Dot Packing . . . . . . . ..

2.3.2 Luminescence Efficiency . .

2.3.3 Model Properties . . . . . .

3 Planarization Simulation

3.1 Planarizing Anodization Theory

3.2 Description of Key Calculations

3.2.1 Volume Change in Piecewise

3.2.2 Distance Measurements . . .

3.2.3 Surface Roughness . . . . .

3.3 Simulation Algorithm . . . . . . . .

3.4 Planarization Results . . . . . . ..

4 Conclusion

A Quantum Dot Packing Code

B Planarization Code

Linear Surface

19

20

24

29

30

32

35

39

39

46

46

50

51

52

55

67

69

115



C Physics Package Copyright Notice 123



List of Figures

2-1 A schematic representation of two dots colliding. Ri and Rj are the

radii of dots i and j, respectively. 'i and r-j are the dot positions. Evi

and T;j are the velocities and Uij is the relative velocity of the dots. . . 22

2-2 a) Shows the results of our simulation for 300 uniform sized quantum

dots. The packing is hexagonally close-packed except for a few de-

fects and grain boundaries. b) Shows the results of our simulation for

300 quantum dots whose diameters are determined by a Gaussian dis-

tribution with standard deviation equal to 15% of the mean radius.

The dots are colored such that larger dots are more red, mean sized

(dots are green, and small dots are more blue. The dots do not form

close-packing and there are several small clusters. ....... ..... 31

2-3 a) Shows the results of our simulation for 150 uniform sized quantum

dots confined in a grating. The packing is hexagonally close-packed

except for a few defects and grain boundaries. b) Shows the results of

our simulation for 150 quantum dots whose diameters are determined

by a Gaussian distribution with standard deviation equal to 15% of

the mean radius confined in a grating. The dots are colored such that

larger dots are more red, mean sized dots are green, and small dots

are more blue. The dots are more cohesive because confining them

increases the number of collisions and reduces the average kinetic energy. 32



2-4 a) Shows the proportion of dots that are "interior" for a given size

distribution. Circular markers give the data for unconfined dots and

the square makers give the data for dots confined along one dimension

to 6 lattice spacings (called a grating.). A dot is considered interior

if it has 5 or more neighbors (dots separated by less than a mean

radius). b) Shows the mean number of neighbors for interior dots. For

a circular or monolayer uniform-sized hexagonally close-packed sample,

this quantity would be 6........................... 33

2-5 a) and b) show the simulation spatial results for 5%, and 10% size

distributions. c) shows the dependence of the luminescence quantum

efficiency (LQE) in thin-film on the solution LQE for the uniform-sized

dot simulation with different Forster radii. The F6rster radii are given

in units of the mean dot radius. d) shows the dependence of the LQE

on size distribution when 1/3 of the dots are designated traps, and the

F6rster radius equals the mean dot diameter. The lower dashed line

shows the LQE (e 0.2) for a close-packed monolayer. The upper doted

line shows the LQE for solution, which is 2/3, since we assume a dilute

solution allows no energy transfer ..................... 37

2-6 a) Compares the proportion of interior dots for equal dot masses to

dot masses scaled with dot surface area. We find a much stronger

degradation in monolayer stability when dot masses scale correctly

with size. The difference in the first data point is due to random

variations in the sample. b) Shows packing of uniform sized dots with

half the dots having twice the mass of the other dots. Table 2.1 gives

the packing calculations for this sample. . ................ 38

3-1 Figure comparing the conformal oxidation of a metal surface to an

equal consumption of metal at the oxide growth interface. a) Shows a

peak surface feature and b) shows a valley surface feature. ...... . 42



3-2 Experimental data from reference [1] detailing the progress of anodiza-

tion on a 1000nm thick sample of Ta. Left column: AFM images of

a 21pm by 2/pm portion of the metal sample that clearly shows the

progress towards planarization of the oxide surface as oxide thickness

increases from r0 - 350nm. Right column: SEM images of sample

cross-sections for the same set of oxide thicknesses. Shows similar pla-

narization in the metal surface as observed on the top oxide surface.

Reprinted with permission from Nano Letters 2005, 5 (10), 1899-1904.

Copyright 2005 American Chemical Society. . .............. 43

3-3 Experimental data from reference [2] detailing the progress of anodiza-

tion on a 200nm thick sample of Ta. The dimensions of the roughness

are much smaller than that observed for the 1000nm sample. Left col-

umn: AFM images of a 2pm by 2pm, portion of the metal sample that

clearly shows the progress towards planarization of the oxide surface

as oxide thickness increases from - 0 - 100nrm. Right column: SEM

images of sample cross-sections for the same set of oxide thicknesses.

Shows similar planarization in the metal surface as observed on the top

oxide surface. ................... ............ 44

3-4 Graphs of RMS and z-range (maximum to minimum) for the oxide

AFM data shown in Figures3-2 and 3-3 on the top and bottom row,

respectively. The top row shows the higher roughness occuring in the

1000nm sample compared to the 200nm sample on the bottom row.

Both sets of data show the clear planarization of the oxide surface. . . 45

3-5 Depiction of a piece of our surface grid having equally spaced x and

y coordinates and floating-point precision values in z. The figure also

shows how the grid is linearly interpolated to give an analytically con-

tinuous surface for calculations ....... . ... .. ...... . 47



3-6 a) The volume under of a single triangular face. b) For calculation we

split the volume into a triangular prism and a pyramid. The z values

of the vertices are labeled by z's, side lengths are labeled by c's and

areas are shaded and labeled by A. . ................ . . 48

3-7 The figure shows the three distances (represented by arrows) calculated

in our simulation. In point to line distances, the distance vectors meet

the lines at right angles. ......................... 51

3-8 a) Shows the effects of oxidation on a hill with height 0.5nm after a

1.Onm oxide has been electrochemically grown. b) Shows the effects of

oxidation on a depression with depth 0.5nm after a 1.0nm oxide has

been electrochemically grown. In both figures, we have taken a slice

through the center of the 3-dimensional surface. The empty symbols

represent the original surface, and the solid symbols represent the final

surface. The squares are for metal and the circles are for oxide. . . . 57

3-9 a) Shows the RMS values of both the metal and oxide as a hill feature

is anodized. b) Shows the z-range (maximum to minimum z value) of

both the metal and oxide as a hill feature is anodized. The error bars

show the standard deviation in the metal to oxide distances. c) Shows

the RMS values as in a) but for a depression instead of a hill. d) Shows

the z-range as in b) but for a depression instead of a hill. The error

bars show the standard deviation in the metal to oxide distances. . . 58



3-10 This figure demonstrates the convergence of the simulation as we de--

crease grid spacing and step size. a) Shows the RMS of the metal and

oxide surfaces for increasingly fine grids and a step size of 0.01. We

start with a 5 by 5 grid and halve the spacing between grid points for

the next simulation. Thus for the first simulation the hill feature is

a single grid point, for the second simulation the hill is 3 grid points,

then 7 points, and 15 points. b) Shows the z-range for the same set of

grids c) Shows the RMS of the metal and oxide surfaces for decreasing

step sizes and a 17 by 17 grid corresponding to 7 points for the hill.

We start with a step size of 0.1, which is only 1/5 the height of the

hill, and go to 0.005, which is 1/100 of the hill height. d) The z-range

for the same set of step sizes . ........ ......... ..... 59

3-11 Shows the results of our simulation on a computer-generated, 1000nm

thick Ta205 sample. Compare with results in Figure 3-2. We show

the oxide surface at 5 oxide thicknesses, tox = 0, 50, 100, 150, 200nm,

from left to right, top to bottom. We have kept the color and z scales

constant across the figures and shifted the z-axis. . ........ . . 64

3-12 The top line shows the RMS and z-range of our simulation on a computer-

generated, 1000nm thick Ta20 5 sample. We observe a generally expo-

nential decay in RMS and z-range with a finite asymptote determined

by the stability of the model (step size and grid spacing). Along the

bottom row, we reproduce these calculations for the experimental data

from Figure 3-2 on the same axes as our simulation results. ...... . 65



3-13 a) and b) show the RMS and z-range, respectively, of a single hill with

an oxide expansion coefficient kexp = 1.8 (see Figure 3-9 a) and b) for

comparison with kexp = 2.3). We used a 129 x 129 grid of points and

an oxide step size of 0.005 to minimize inaccuracies from the small

kexp. c) and d) show the RMS and z-range, respectively, of a single hill

with kexp = 2.8. We used the same grid and step size as we did for

kexp = 2.3, 17 x 17 grid and an oxide step of 0.01 because no added

accuracy was needed. ....... .......... ........ 66



List of Tables

2.1 Comparison of packing in uniform-size, uniform-mass dots and uniform-

size bimodal-mass dots. In the bimodal-mass dots, half of the dots have

twice the mass of the other dots. We show the proportion of interior

dots and the mean number of neighbors for interior dots. The data

shows that the bimodal dots actually pack better than the uniform dots. 36





Chapter 1

Introduction

We, as scientists and engineers, are everyday pushing the boundaries of understanding

and application. In electrical engineering, there is a long-standing trend towards being

able to accurately manipulate increasingly minute systems. By controlling nanoscale

structures, we are increasing the possibilities of our systems from the ever increasing

computing power of silicon, to the amazing prospect of quantum computing, to the

possibility of printing any electronic device quickly and cheaply. Today, systems exist

that can not only image single atoms but manipulate them on a surface. We are also

able to process increasing numbers of these atomic scale features. At the same time,

the increasing speed of computers is allowing us to build more intricate models of the

physical processes we seek to probe. Simulation has become an indispensable part

of almost all areas of scientific research and engineering. Simulation allows the re-

searcher to test his or her hypotheses in a controlled environment. Modeling can also

bridge the gap between individual phenomena and large complex systems, guiding ex-

periments by predicting new observations. My thesis focuses on two simulations that

I have created to describe nanoscale spatial disorder. The first simulation describes a

novel technique for creating extremely flat metal surfaces through anodization. Our

model reproduces all aspects of the experiments it describes. We have shown through

the simulation an understanding of the detailed mechanism for this surface planariza-

tion. In addition, we have made predictions of how this method anodization could

work to planarize other metals. We developed a second simulation to describe the



formation of an ordered monolayer of quantum dots. Several simulations of nanocrys-

tallite motion on surfaces already exist. Most of these models describe the system

as a lattice of points that can be occupied by the crystallite or some other species

and describe their motion as a probability of transferring to an adjacent lattice site.

Other simulations exist for how a large number of three-dimensional spheres rear-

range themselves into a stable bulk solid. Our simulation blends the ideas of packing

and nanoparticle motion, adding definite crystallite shape to surface simulations and

adding a description of realistic motion to sphere packing simulations. Our primary

objective was to examine how packing changes with the distribution of dot diameters.

We created a broad framework model that can act as a tool for examining almost in-

finite configurations of surface composition, device features, and dot types. We hope

that this simulation can be used as a tool for further experimentation and under-

standing. These two simulations are only a small sampling of all the possibilities in

simulating spatial disorder on the nanoscale. As we improve our descriptions of these

tiny phenomena, in simulation, we will increase our understanding of these systems

and skill in manipulating them.



Chapter 2

Quantum Dot Packing Simulation

We have created a simulation of the packing of monolayer of quantum dots on a

surface. The basis for our model is kinetic motion and partially inelastic collision of

the dots with surface-mediated thermal motion and van der Waals interactions be-

tween dots. The position and velocity of the dots are represented with floating-point

accuracy, as is the boundary of the dots. The dots are represented as perfect circles

moving in a plane. In addition to dots, our simulation includes stationary objects

such as hard walls and regions with differing surface properties. The simulation is

intended not only for this work but also as a tool that other researchers and designers

can easily use and extend. We have included an extensive graphical user interface

(GUI) and a visual representation of the progress of a simulation in real-time. We

have also written our code in an easily understandable and extensible manner, using

object-oriented programming and a well designed object hierarchy. We have simu-

lated several experiments. Our first goal was to reproduce experimental observations

that increasing the diameter distribution first caused quantum dot monolayers to

become less well packed and then caused the monolayer order to break down. We

were able to reproduce this phenomenon and we were then able to use the freedom

available in our simulation to examine possible causes for this breakdown, including

differences in dot effective mass and insufficient kinetic damping. We also included

several calculations important for assessing both the results of our simulations and

measurable characteristics of quantum dots in the lab.



2.1 Theory and Background

A large amount of research has been done on sphere packing along many different

avenues. In two dimensions, Gauss proved that hexagonal packing is the densest of all

plane lattice circle packings, but not until 1940 did L. Fejes T6th prove that it is also

the densest possible packing overall for same sized circles [3]. In three dimensions,

the problem took even longer to solve conclusively. The assertion that the densest

packing of identical spheres was so-called close packing, either in a face-centered

cubic or hexagonal lattice, was called the Kepler conjecture after Johannes Kepler

who posed it in 1611 [4]. Gauss was also able to show that face-centered cubic was

the densest lattice packing of spheres. While few people doubted Kepler's conjecture,

the final proof by Thomas C. Hales did not come until 1998, and it involved breaking

down the problem into a large system of linear equations solved by computer [5].

There are a number of such geometric problems still under investigation, including

random packing, sphere packing in different dimensions, random loose packing, and

ellipsoid packings. The formation and motions of spherical structures has also been

intensely researched [4].

Quantum dots are inorganic semiconductor nanoparticles having diameters smaller

than the Bohr radius of excitons in the bulk material. This property confines elec-

trons and holes to particular lattice excitations and quantizes the possible energy

levels in the dot. This arrangement makes quantum dots of the same size highly ho-

mogeneous light emitters. Because of this property, quantum dots are being used in

optical communications [6], lasers [7], light detectors [8], and even as tags in biologi-

cal research [9]. There exist several types of quantum dots, including lithographically

etched, epitaxially grown, and colloidal. Our simulation focuses on colloidal quantum

dots that are deposited on a surface [10]. This type of quantum dot is synthesized in

solution by chemical and heating processes. The quantum dot core is usually coated

by a protective shell of higher bandgap semiconductor with matching lattice constant

such as CdSe covered by CdS or ZnSe [11] [12]. The shell passivates the core as well

as protects and physically separates the core from its surroundings. This setup also



enhances the properties of the quantum confinement by making it less prone to vari-

ations due to local environment. Finally, to allow the dots to remain easily soluble

and to allow incorporation into a number of structures including organic electronic

devices or biological systems, the dots can by overcoated with many types of organic

molecules [13].

A large portion of the literature on packing and granular flow focuses on the

packing of glass microspheres with radii between 1 - 1000Ipm or charge-stabilized

polystyrene microspheres with radii smaller than Ipm. Experimental studies and

simulations of three-dimensional structures of these nanospheres has also been ac-

complished in air, vacuum, and liquid [14] [15]. We are interested in the subset of

this theory which will apply at the smaller scale of dots. Also, since we are investigat-

ing the behavior of the dots on a surface, we can realistically ignore most interactions

with the liquid, including buoyancy, and Magnus lift [15], and factor them into the

random thermal motion parameter. The two remaining most important forces are

collision and van der Waals interactions. The nonlinear Hertz model collision force

on particle i from particle j with radii Ri, Rj, positions r-j, rj, and relative velocity i'ij

is given in Equation 2.1 where Y is Young's modulus and v is the Poisson ratio [16]

(see Figure 2-1).

r 2Y Reff3/2 - ,Y ef j
j [3(1- V2) j /2 1 - 2

eýf _ Ri RjiRe Ri + Rj

S= Ri +Rj -( r-j) (2.1)

The first term in the equation is an elastic force that accounts for the distortion

and restoration of the particles. The second term is a dissipative component due to

energy loss in the center of the particle from the deformation. The constant -r, in

this term is the normal damping constant that is related to the normal coefficient of

restitution [14]. This component is dependent upon the rate at which the deformation

occurs because it relates to shearing energies and the rate at which energy must be

dissipated [16]. This force will be the main source of energy loss in our simulation.



V.
1

Figure 2-1: A schematic representation of two dots colliding. R, and Rj are the radii
of dots i and j, respectively. r'- and ' are the dot positions. v'i and 'i7 are the velocities
and f'ij is the relative velocity of the dots.

We will ignore tangential forces between dots during collisions because the small size

of the dots make these frictional-type forces minimal as well as hard to calculate

without accounting for molecular orientations and interactions. Thus the tangential

component of dot collisions will be taken to be purely reflective.

The van der Waals force, core to core, is the main attractive force between quan-

tum dots [17]. Other important forces include short-range atomic interactions and

long-range electrostatic forces. The short-range atomic forces mainly serve to keep

the dots separate and do not add significantly to attraction. Thus we can model these

forces as a nearly-hard dot radius. The long-range electrostatic forces are negligible

for uncharged dots in solution because the liquid dielectric screens this effect. The

van der Waals force between two spheres, i and j, with non-negligible radii, Ri and



Rj, and a separation of h between the spheres is given in Equation 2.2 [14] [18].

Ha 64Rf Rý(h + R2 + Rj)
Fi - -- x nJ (2.2)"i 6 (h2 + 2Rjh + 2Rjh)2(h2 + 2Rh + 2Rjh + 4RiRj)2

The Hamaker constant, Ha, of CdSe is 0.388 [19]. The van der Waals force is ex-

erted mainly between the cores of the quantum dots [17] so we can use this equation

reasonably accurately for CdSe/ZnSe or CdSe/CdS core/shell dots coated with or-

ganic molecules. With this theory, we can build a good model of quantum dots being

deposited in a monolayer on a surface.

Once we simulate a stable monolayer of quantum dots, we would like to examine

some properties of that monolayer, which are strongly affected by the packing. Since

quantum dots are generally used for their optical properties, exciton transfer and

relaxation in the dots is particularly important. Exciton transfer in quantum dots

takes place through long-range dipole-dipole interactions described by F6rster theory

[20]. We are concerned with singlet exciton transfer between individual dots. For this

case, the transfer rate between two dots, W, is given in Equation 2.3 [21].

W = x(R)P(Ed, Ea)

X (R) = 1 (RF) 6

P (Ed, Ea) = exp [- (Ea - Ed)/kBT] Ea > Ed, (2.3)
1 otherwise

where Ea and Ed are the energies of the acceptor and donor molecules, respectively,

kB is Boltzmann's constant, T is temperature, T is the radiative lifetime, RF is the

Forster radius, and R is the distance between dots. If a dot contains an exciton,

then the transfer rates of all of the surrounding dots compete to determine, to which

site the exciton will hop. Generally, the F6rster radius for quantum dots is small

enough such that excitons only hop to their nearest-neighbors. The exciton can

also radiatively decay with probability 1/T at any time. Similarly, there exist non-

radiative decay pathways that allow excitons to recombine without emitting light.



These pathways generally involve interaction with the media surrounding the dots

but can originate from defects in the dot structure or the excitation of a charged dot.

The fraction of excitons introduced into the system that decay radiatively is known

as the luminescence quantum efficiency (LQE). This figure can be used to compare

the efficiency of different lumophores for a given device structure if exciton formation

is separate from luminescence. In our case, we want to compare the LQE of different

dot packing and assess any performance degradation from poor monolayer coverage

separately.

The formation of monolayers is important for the creation of efficient quantum dot

light-emitting devices (QD-LEDs) [22]. We can create such a layer by spin-casting a

solution of QDs and organics having the correct chemistry such that the QDs phase-

separate out of the organics after deposition. Then, with the correct concentration of

QDs, a complete, low-defect monolayer of QDs can be formed on top of the organic

layer. The distribution of sizes in the QD sample has been shown to affect the

formation and quality of the monolayer [23]. For highly monodisperse QDs having

a standard deviation, a, less than 5%, the monolayer on a particular substrate was

shown to have nearly perfect hexagonal close-packed structure. Moving to broader

size distributions, with a = 5 - 10%, the monolayer showed significant point and line

defects, but it retained good surface coverage. For QD samples where a > 10%, the

monolayer broke down completely, forming aggregates with no periodicity and large

uncovered areas. While QD samples with a < 5% can readily be synthesized [24],

larger size distributions as well as mixtures of different dots sizes could be useful for

some applications such as white light QD-LEDs.

2.2 Simulation Algorithm and Design

The code for this project was built on a program for user-reconfigurable computer

games including pinball and breakout [25]. To adapt this code for our simulation,

we greatly improved the accuracy of collisions, implemented new methods of interac-

tion to describe our nanoscale model, added new analysis and output features, and



augmented the user interface. The simulation is based on a finite time step, colli-

sion look-ahead, and resolution. It includes collisions between two moving circles, a

moving circle and a stationary circle or polygon, and a moving circle and a moving,

non-recoiling circle or polygon. The simulation enforces a hard wall boundary be-

tween all objects and can apply a constant force to all moving objects or interaction

forces between pairs of objects. The code is written exclusively in Java and is inter-

operable on many platforms. The simulation runs in real-time or nearly real-time on

modern single-processor computers and as such is viable as a design tool.

Our main algorithm for moving forward one time step is (for relevant code excerpts

see Appendix A):

1. Add random thermal velocities to all dots if the preset time has elapsed since

the last randomization.

2. Update the data structure that allows us to find dots that are close to each

other.

3. Add any interparticle forces by updating the velocities of pairs of dots that are

within a minimum distance of each other.

4. Start loop that resolves all collisions in a given time step.

5. If there are no more collisions or a maximum number of iterations has been

reached then end the loop.

6. Calculate and save the time until the first collision for each dot that needs to

be updated (on the first loop all dots need to be updated).

7. Find the first collision that will occur within the remainder of the time step.

8. If no collisions will occur, then move all dots along their velocity vectors for the

amount of time left in the step, and signal that there are no more collisions to

look for.



9. If there is a collision then update the position of all non-colliding dots along

their velocity vectors for the amount of time until the collision. Also subtract

this amount of time from the saved time until collision for each dot.

10. Resolve the single collision and mark any dots involved as needing their next

collision to be calculated. Subtract the time needed for this collision from the

time left in the time step.

11. If the time left in the time step is greater than zero, return to step 5.

We created this algorithm as the core of all the behavior in our simulation. Before

running this code, dots are introduced to the surface either through the GUI or inside

other functions. The dots have several core characteristics including position, velocity,

radius, mass, and color. For our later observations, we have also added secondary

characteristics such as whether the dot is in an excited state and how efficiently the

dot luminesses. Stationary objects are added in the same way with their own internal

variables including position, rotation, and color. We can access the simulation either

through the GUI or a programmatic interface. In both cases, the simulation proceeds

in its own thread, which activates the above routine at the time intervals equal to

the simulation time step. This time step can be adjusted, as can all of the model

parameters. If the computation time of the algorithm stays below the amount of

time represented, then the simulation will proceed in real time. The computational

complexity of this algorithm is given in Equation 2.4 using asymptotic notation where

n is the number of dots and At is the length of the time step.

2
f(n, At) = O(-) (2.4)

The computation time depends on 1/At because shorter time steps require more

calculations to check for collisions. The collision detection algorithm provided in the

physics package is n2 because it must check pairwise collisions. Also our algorithm is

n2 itself because we advance all n dots for each collision and the number of collisions

grows approximately as the number of dots grows.



Particular details of our outlined algorithm are important for correct operation.

Our difficulties arise from having to ensure that the dots behave correctly over small

collision distances with many surrounding dots, as in the case of close-packing. We

have chosen to advance all the dots together for each collision up to the time of that

collision; that way, all non-accelerative motions of the dots can be exactly correct. Our

collision detection considers only the position and velocity of the dots. Acceleration,

either from attraction or thermal motion, is added only at the beginning of each time

step as a change in velocity. Thus as we make our time steps increasingly small, our

acceleration and forces become more accurate. In this way, we can easily calculate

if and when a collision will occur between two objects, either two dots or a dot and

a stationary or non-recoiling surface. If we advance time by moving all dots to just

before the first calculated collision, then no other collisions should have happened

and no overlap should occur. Also since we move all the dots together, each dot is at

the same point in time. If we moved only the dot or dots that were colliding, then we

would be advancing their times farther than the others. Then when we checked for

collisions, we would have to account for the differences in time. Our method simplifies

these considerations and guarantees that all collisions happen at the correct times and

places. Our next concern is computational. Consider the case in which we collide two

dots by placing them directly next to each other; a third dot may also be about to

collide in a small distance. Since we represent positions with floating point numbers,

if we continue this process many times, for instance if the dots are being pressed

together, then the round-off error on the positions accumulate, and the dots may

overlap, causing our model to fail. Note that when overlaps occur collisions can no

longer be calculated correctly, and if dots are well packed then correcting for the

overlap can be difficult without disturbing our simulation. To avoid this problem, we

enforce a minimum distance around all dots. When calculating the time to collision,

we increase the radius of each dot by one millionth of the average radius. Then

when we find the new velocities after collisions, the dots are always a finite distance

away from the other object. Once we resolve this single collision, we need to update

the collisions we previously calculated. The data for the dots that just collided is



obviously invalid because their velocities have changed. Thus we need to recalculate

the collisions for these one or two dots. All of the other dots still have the same

velocities and have only moved forward in time. Therefore their next collision is still

valid unless that next collision is with one of the dots that just collided. We first

subtract the amount of time that all the dots moved forward from their saved next

collision time. Second, when recalculating the collisions for previously collided dots,

if the dot will collide with another dot we check if the time is less then the collision

time already saved, and if so we update the other dot as well. Using this procedure,

we can continue indefinitely in our simulation.

In our collision resolution procedure, we have incorporated inelastic collisions. All

objects in our simulation are defined by a set of line segments and circles. Our collision

detection specifies the first line segment, circle, or other dot, with which each dot will

collide. We have not implemented inelastic collisions with stationary objects. When a

dot collides with a line segment or circle, we simply utilize the geometric calculations

of our physics package. When two dots collide, we want to approximate the forces

described in Section 2.1. We have simplified the force of collisions (Equation 2.1) into

a model parameter that determines the amount of elasticity in dot-dot collisions. We

have not implemented inelastic collisions with stationary objects. When a dot collides

with another dot, we calculate the new velocities of the dots, v' and v'. We separate

the parallel and perpendicular components of this velocity, v0 and v0, relative to the

direction of the collision. Then we apply the following equations to these components:

mni + m201 2

v 6 = -v) + (1- 1)
Sm + m 2

'vi = /v1 + ii

v = evn + (1 - l  v
II2 12 l + m 2

v2 = vi2 + 2 (2.5)

where E is the elasticity parameter that ranges from 0 to 1 and mi and m 2 are the

masses of the dots. We note that if e = 1 then the final velocities of the dots parallel

to the collision will be equal, and a large amount of energy will be lost.



We apply forces between dots at the beginning of each time step. For our sim-

ulation, the main force is a van der Waals attraction between all pairs of dots. To

save computational time, we only apply the force between dots that are within some

distance of each other. This optimization is minimal because the van der Waals inter-

action fall off as h6 where h is the separation of the dots. To find these pairs in linear

time, we created a data structure that hashes the x and y locations of the dots and

determines which dots from adjacent bins are within the maximum distance cutoff.

Once the dots have been located, we can simply apply Equation 2.2 and change the

velocities of each pair of dots. This force creates a cohesion between all the dots that

tends to create one large mass of dots. The thermal velocities of the dots counter

this cohesion. At some given frequency, each dot has a, small velocity with a set mag-

nitude and uniformly distributed direction added to it. This frequency of random

velocity addition is related to the time taken to thermalize the dots on the surface.

The magnitude of this thermal energy is the last parameter of our model, and it

determines the average velocity of a non-interacting dot on the particular surface in

the particular solution.

To represent the phase-separation method of monolayer creation described in Sec-

tion 2.1, we add dots to the surface sequentially. We select diameters from a Gaussian

distribution with the set standard deviation. We select positions uniformly over the

simulation area. We then check for any overlaps between the introduced dot and

existing dots. If an overlap occurs, we start over with a, new random diameter and

position. We wait a short time between each dot addition and we wait a longer time

at the end for the sample to get closer to equilibrium. After this time has elapsed,

we make our measurements.

2.3 Simulation Results

As described in the previous section, our simulation contains four model parameters,

the collision inelasticity, the strength of dot to dot van der Waals interactions, the

average thermal velocity on the surface, and the rate at which thermal velocities



are added to the dots (thermalization rate). While we described calculations for the

first two of these quantities in Section 2.1, their accuracy, particularly in solution,

is limited. The last two parameters contain information about how the quantum

dots interact with the substrate and so they are not easy to calculate. These surface

parameters could be resolved from observations of the motion of quantum dots on a

surface. For the purposes of this thesis, the values of these parameters were estimated

and then tuned using phenomenological observations. In particular, we were hoping

to observe the size distribution dependence of monolayer formation. Thus we chose

parameters that gave roughly the desired effects over the correct size distributions.

As such, our model is still qualitative regarding packing fractions and stability across

different samples. Notwithstanding these difficulties, we believe that our simulation

is a good tool for understanding quantum dot monolayers.

2.3.1 Dot Packing

We demonstrated close-packing of monodisperse quantum dots on a surface and how

instability arises with increasing dot size distribution. We randomly deposited a set

of 300 dots into a large area with fixed boundaries. The results of the simulation

are shown in Figure 2-2 for uniform-sized dots and for dots with standard deviation

equal to 15% of the mean size. We observe that the uniform sample exhibits strong

hexagonal packing in three distinct grains. The large distribution sample exhibits no

defined lattice structure and there exist many small clusters. In addition, when we

observe the motion of this sample, the dots are much less well bound to each other as

the small clusters suggest. This instability translates to a physical sample that will

not energetically favor a monolayer formation. Since the dots are not well-bound in

the two dimensional formation, we expect the dots to decompose in three dimensions

or move off the sample area.

We examined the efficacy of confining the dots in order to increase packing and

reduce instability. We created a wall at 6 lattice spacings (6ddotV/3/2) from the

perimeter along one direction. We also reduced the number of dots to 150 so that

they had some freedom in the structure. In the uniform sample, we observed no



15% Standard Deviation

Figure 2-2: a) Shows the results of our simulation for 300 uniform sized quantum
dots. The packing is hexagonally close-packed except for a few defects and grain
boundaries. b) Shows the results of our simulation for 300 quantum dots whose
diameters are determined by a Gaussian distribution with standard deviation equal
to 15% of the mean radius. The dots are colored such that larger dots are more
red, mean sized dots are green, and small dots are more blue. The dots do not form
close-packing and there are several small clusters.

decrease in lattice order except for a slight increase in grain boundaries per dot (see

Figure 2-3). Single dot vacancy defects were reduced. We did see however difficulty

filling towards the sides of the structure due to the tight binding between the dots.

This difficulty would most likely be resolved in a three dimensional situation where

dots could settle into place from above. When created in this confined structure, the

15% size distribution saw significant improvement in its stability and packing. The

dots formed a cohesive single aggregate and the distances between dots in aggregate

form were reduced. This effect originates from a reduction in the average kinetic

energy of the dots. Confining the dots increases the number of dot-dot collisions and

thus increases the energy loss due to the inelasticity of those collisions.

We quantify packing quality by measuring the number of dots on the inside of

a cluster. The lowest energy formation of dots would be a close-packed circle. This

arrangement is also the lowest surface area configuration of dots. All interior dots
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Uniform Sized Dots 15% Standard Deviation

Figure 2-3: a) Shows the results of our simulation for 150 uniform sized quantum dots
confined in a grating. The packing is hexagonally close-packed except for a few defects
and grain boundaries. b) Shows the results of our simulation for 150 quantum dots
whose diameters are determined by a Gaussian distribution with standard deviation
equal to 15% of the mean radius confined in a grating. The dots are colored such that
larger dots are more red, mean sized dots are green, and small dots are more blue.
The dots are more cohesive because confining them increases the number of collisions
and reduces the average kinetic energy.

would have 6 neighbors and only a small fraction (proportional to the perimeter of the

circle over the area) would be on the exterior. For unstable packing,. dots form smaller

clusters with amorphous shape and thus decrease the number of internal dots. This

measurement gives a good idea of the stability of the monolayer. We determine which

dots are internal from the number of neighboring dots. A pair of dots are neighbors if

they are separated by less than a mean radius and a dot is considered internal if it has

five or more neighbors. The number of neighbors for each internal dot measures the

density of packing within each cluster. Figure 2-4 compares free and confined dots

on the proportion of interior dots and the mean number of neighbors for a number

of size distributions. We observe the expected trends. Increasingly polydisperse dot

samples show decreased stability and packing, which is mitigated by confining the

dots along one dimension.

2.3.2 Luminescence Efficiency

We calculate the luminescence quantum efficiency of our dots similarly. We have opted

for a simple model of non-radiative decay to demonstrate our simulations capabilities.

In particular, we designated a fraction of the dots (1/3 for the cases below) to be traps

that recombine excitons non-radiatively. We set all dot energies to be equal and used

the transfer probabilities defined by Forster transfer with a Forster radius equal to

the mean dot diameter. This model is simplistic because the size of the dots shifts
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Figure 2-4: a) Shows the proportion of dots that are "interior" for a given size dis-
tribution. Circular markers give the data for unconfined dots and the square makers
give the data for dots confined along one dimension to 6 lattice spacings (called a
grating.). A dot is considered interior if it has 5 or more neighbors (dots separated
by less than a mean radius). b) Shows the mean number of neighbors for interior
dots. For a circular or monolayer uniform-sized hexagonally close-packed sample,
this quantity would be 6.

their spectra and the Forster radius is a function of the spectral overlap between

acceptor and donor states. We have made the approximation that all spectra are the

same with the same Stokes shift in the excited state and thus have the same Forster

radius. We set our time step as one hundredth of the dot radiative lifetime (note that

the probability of radiating in each time step is then nearly 0.01). We start by adding

an exciton to a random quantum dot. In each time step, we calculate the Forster

transfer rate between the exciton and all other dots and multiply that rate by the

time step to get the transfer probability. We determine if each transfer could occur

by getting a random number between 0 and 1 and checking whether that number is

less than the probability of the transfer. We perform the same test to determine if

the dot could radiate in a time step. If we have more than one possible change in the

exciton, we weight the outcomes by their probabilities and randomly determine which

one occurs. If we find no possible transfers and no radiation then the exciton remains

on the same dot. Otherwise, we either move the exciton to the next dot and calculate

new probabilities or we note that the exciton radiated and start a new exciton on a
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randomly chosen dot. If an exciton is ever on a non-radiative dot (including when it

is first added), we discard the exciton and we try a new one. After a large number of

random excitations, we simply divide the number of radiated excitons to the number

introduced and we have a good estimate of the luminescence quantum efficiency.

Using this method, we measured the luminescence quantum efficiency (LQE) of

dot packings with each size distribution. We use a simple model where a fixed fraction

of the dots are quenching sites. In a disperse medium, such as in solution, where no

exciton transfer occurs, the LQE would equal to the number of non-quenching dots.

In Figure 2-5 c), we show the dependence of the thin-film LQE on the solution LQE.

We examined this effect on the dot-packing from our uniform-sized dot simulation.

The thin-film LQE is strongly dependent on the F6rster radius because the more

likely transfer becomes the more likely the exciton will reach a quenching site. For

small F6rster radii, the thin film LQE is equal to that in solution and for large

F6rster radii nearly all excitons are quenched. When the F6rster radius equals the

mean dot radius, we observe an exponential increase in the thin-film LQE as the

smaller number on quenching sites has an exponential effect on how many excitons

are quenched. We then examined the case with the solution LQE equal to 2/3 for

our different size distribution simulations. In Figure 2-5 d), we observe that the LQE

actually drops, going from the uniform sample to 5% standard deviation and then

increases monotonically. This trend reflects two competing effects. First, as the size

distribution increase, some dots have smaller size but their Forster radii remain the

same (by our assumptions). Since the F6rster transfer rate goes as R6 , we expect

significant increase of exciton transfer to and from these dots. The probability that

excitons will move into the smaller dots more than outweighs lower probabilities that

excitons will move out of large dots. This change causes the decrease in LQE because

dots are likely to move to quenching sights. We also note that the shape of our

clusters affects the LQE. The bottom line on the plot in Figure 2-5 d) gives the LQE

found in a large hexagonally close-packed lattice, which is significantly lower than the

uniform-sized sample because even though the packing is not significantly different,

all the dots have six neighbors. On the other hand, the effect that improves the LQE



as we continue to larger size distributions is the decrease in packing. From the 5%

sample on, the distances between dots increase both inside aggregates and as the dots

form smaller clusters. The LQE is just one of the measurements that are strongly

affected by quantum dot packing that we can probe using this simulation.

2.3.3 Model Properties

We found that one of the characteristics important to our model was the effective

masses of the dots. The effective mass originates from the dot to surface interactions

that affect the motion of the dot. These effects can be chemical interactions between

the organic caps and the substrate molecules, electronic effects involving the dot core,

and drag due to the liquid. The larger dots should have larger effective mass due to

increased surface area, increasing both substrate and liquid interactions. The effective

masses factor into the inelastic collision calculations. The transfer of momentum

between objects with different masses is less efficient and so the energy lost during

inelastic collisions is also smaller. We see in Figure 2-6 a) that if we give all the dots

the same mass instead of scaling the mass with the surface area of the dots then

the degradation in stability is much slower. We do still observe a loss of stability

with size distribution because of the difficulty in forming a good packing with dots

of different sizes. To illustrate that both these effects are important in our model,

we created a sample with uniform sized dots but we doubled the mass of half of the

clots. We found that this configuration actually improved the packing and stability

of the dot monolayer (see Table 2.1). In Figure 2-6 b), the two dot clusters have

less defects and are closer to circular because they are slightly less stable than the

completely uniform dots. This instability allows more freedom to find low energy

configurations while keeping the dots from breaking up completely. These two effects

combine when looking a large size distributions. The differences in size cause the

dots to be continually in motion as finding a perfect packing is unlikely and the

differences in mass keep this extra motion from being reduced. These observations

have implications for trying to create a monolayer of dots with different emmissive

properties. To make a close-packed monolayer of dots using this method, this analysis



suggests that it would be better to change the material composing the dots rather than

changing their size in order to get a number of emission frequencies. Alternatively,

the organic cap material could be changed for different dot sizes to compensate for

the differences in effective mass.

Table 2.1: Comparison of packing in uniform-size, uniform-mass dots and uniform-
size bimodal-mass dots. In the bimodal-mass dots, half of the dots have twice the
mass of the other dots. We show the proportion of interior dots and the mean number
of neighbors for interior dots. The data shows that the bimodal dots actually pack
better than the uniform dots.

Uniform Mass Bimodal Mass

Interior Proportion 0.697 0.747
Mean Interior Neighbors 5.737 5.857
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Figure 2-5: a) and b) show the simulation spatial results for 5%, and 10% size dis-
tributions. c) shows the dependence of the luminescence quantum efficiency (LQE)
in thin-film on the solution LQE for the uniform-sized dot simulation with different
Forster radii. The F6rster radii are given in units of the mean dot radius. d) shows
the dependence of the LQE on size distribution when 1/3 of the dots are designated
traps, and the F6rster radius equals the mean dot diameter. The lower dashed line
shows the LQE (a 0.2) for a close-packed monolayer. The upper doted line shows the
LQE for solution, which is 2/3, since we assume a dilute solution allows no energy
transfer.
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Figure 2-6: a) Compares the proportion of interior dots for equal dot masses to
dot masses scaled with dot surface area. We find a much stronger degradation in
monolayer stability when dot masses scale correctly with size. The difference in the
first data point is due to random variations in the sample. b) Shows packing of uniform
sized dots with half the dots having twice the mass of the other dots. Table 2.1 gives
the packing calculations for this sample.



Chapter 3

Planarization Simulation

Our simulation of rough metal anodization is based on a discretization of the surface

both in-plane and perpendicular to the surface. We create an evenly-spaced grid of

points to represent an arbitrary surface topology. As the simulation progresses, each

grid point can be raised or lowered only by a small step size. To simulate electro-

chemical oxidation, we create one surface describing the oxide and one describing the

metal. Then we reduce one grid point on the metal and increase some number of oxide

points so as to retain the same amount of metal, taking into account the expansion

coefficient due to the incorporation of oxygen. To determine which points to modify,

we find the metal point which is closest to the oxide and all its equidistant oxide

points. Thus the oxide growth is conformal to the metal surface to within twice the

step size used in changing the height of the metal. With this procedure we observe

the same planarization of the metal surface observed in experiment [1].

3.1 Planarizing Anodization Theory

There exist few references in the literature on utilizing electrochemical oxidation (an-

odization) to planarize thin metal films [1] [26]. To our knowledge, there has yet to

be a detailed theory of how this planarization occurs, and there does not exist a nu-

merical simulation of the phenomenon. We believe that the reason for this oversight

is that this type of planarization can be difficult to observe in many metals due to



defects that can arise during anodization and due to other process constraints. There

are a large number of models and simulations for other types of oxidation, mostly for

silicon [27]. The methods employed in these simulators range from the continuous

approximations used in commercial process simulators such as SUPREM IV [28] to

Monte Carlo bond-based simulators such as OXYSIM [29]. These challenges notwith-

standing, the applications of this type of planarization are myriad. Reference [26]

describes using this technique to fabricate high-quality nanodimensional inductors

and capacitors. Using photoresist and etching, one of these planarized surfaces could

create templates for nanoimprinting or microcontact printing. In addition, since

the metal and oxide can vary in conductivity, novel fabrication techniques could be

possible, for example, edge electroplating [1]. Due to the low roughness, layers of

planarized metal and oxide can be deposited one on top of the other to form nearly

perfect multilayer films [1]. These multilayer films could be used as exceptional x-ray

defraction gratings.

Aluminum (Al) with alumina (AlO) and tantalum with Ta205 are the systems

where anodization has been shown to planarize the oxide surface and the oxide-metal

interface. The properties of these two metal-oxide pairs are significantly different.

First, the volume expansion coefficient (the factor by which the oxide volume is

larger than volume of metal consumed) for AlO from Al is low at approximately

1.3. For Ta, the expansion coefficient is much higher, between 2.3 and 2.47. This

difference makes Ta much easier to planarize than Al because Al does not move as

easily away from the initial metal surface. Another property that could be important

for applications is tailoring of the dielectric constants of metals and their oxides.

Alumina has a moderate dielectric constant c = 9 - 11, but Ta2 0 5 is known as a

"high-k" dielectric e . 25 which makes it useful in capacitive and refractive devices

such as MOS structures and the above mentioned multilayer film.

The general method followed to achieve the planarized surfaces through electro-

chemical oxidation is as follows [1]. DC sputter deposition is used to deposit a thin

film of metal onto a flat substrate. The sample is placed in an electrolytic solution

containing oxygen. The metal is used as an anode and a voltage is applied from a



platinum cathode. The electric potential drives the oxidization by inducing the diffu-

sion of the charged oxygen species through the existing oxide to the metal surface. As

the oxide grows, any area of the oxide that is thinner than another will have a larger

voltage drop and a stronger electric field (V/cm). Then since the oxygen current is

driven by the electric field, more oxygen will flow to the metal in this area. This

process will happen quickly because the oxide is thin and the voltage is high, causing

large current changes even for small defects. Consequently, oxide tends to grow at

the same rate over the entire surface and self-heals any defects. This process creates

a conformal coating of oxide with nearly the same thickness over the entire metal.

This property is also the driving force behind the planarization of a rough starting

metal surface.

To explain how planarization takes place, we examine the cases where a metal

hill and a metal depression are anodized in two dimensions. Figure 3-1 compares

the oxidation of a metal hill feature conformally with the consumption of an equal

amount of metal at all points on the metal-oxide interface. In conformal oxidation,

the distance between metal and oxide perpendicular to both surfaces must be equal

at all points. Thus, any sharp edges become concentric circular sectors on both the

metal and oxide surfaces. There is a larger area, at the peak that needs to be filled

by oxide. More metal will need to be oxidized where the surface has been bent away

from itself than where the surface is flat. Since this type of roughness increases the

rate at which metal is oxidized, the conformal oxidation drives the surface to lower

roughness. If we examine the case of a depression in the metal, shown in Figure 3-1,

we observe analogous results. At the bottom of the depression, we have a larger

area of metal and a smaller area for the oxide to expand into. If the metal were

oxidized at a constant rate, the oxide would become thickest above the bottom of the

depression. To generate a conformal coating of oxide, little of the metal at the bottom

is oxidized, and instead, the metal and oxide form the same concentric circles such

that the perpendicular distance between the surfaces is equal at all points. Because

less metal is oxidized where the metal is bent towards itself than where the metal is

flat, the sides of the depression will eventually reach the level of the bottom, and the
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Figure 3-1: Figure comparing the conformal oxidation of a metal surface to an equal
consumption of metal at the oxide growth interface. a) Shows a peak surface feature
and b) shows a valley surface feature.

oxide will conform to that flat surface. Therefore, conformal oxidation decreases both

types of roughness on a surface, and after a sufficient thickness of oxide is grown, the

metal and oxide will both have low roughness.

Experiment shows some other interesting properties of the planarization. Fig-

ures 3-2 and 3-3 from references [1] and [2], respectively, show the progress of an-

odization experimentally at different oxide thicknesses. The researchers used atomic

force microscopy to measure the oxide surface. They also created cross-sections of

their samples using special coatings over the oxide to avoid damage and observed

the metal and oxide surfaces using scanning electron microscopy. They used their

AFM data to analyze the root mean squared and maximum to minimum values for

different amounts of oxidation. A more detailed explanation of the importance of

each of these measures can be found in Section 3.2.3. We can easily extract a number

of key characteristics from this data. First, the roughness of the films increases with
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Figure 3-2: Experimental data from reference [1] detailing the progress of anodization

on a 1000nm thick sample of Ta. Left column: AFM images of a 2pm by 2[im portion

of the metal sample that clearly shows the progress towards planarization of the oxide

surface as oxide thickness increases from a 0 - 350nm. Right column: SEM images

of sample cross-sections for the same set of oxide thicknesses. Shows similar pla-

narization in the metal surface as observed on the top oxide surface. Reprinted with

permission from Nano Letters 2005, 5 (10), 1899-1904. Copyright 2005 American

Chemical Society.
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Figure 3-3: Experimental data from reference [2] detailing the progress of anodization

on a 200nm thick sample of Ta. The dimensions of the roughness are much smaller

than that observed for the 1000nm sample. Left column: AFM images of a 2pm by

2pm portion of the metal sample that clearly shows the progress towards planarization

of the oxide surface as oxide thickness increases from e 0 - 100nm. Right column:

SEM images of sample cross-sections for the same set of oxide thicknesses. Shows

similar planarization in the metal surface as observed on the top oxide surface.
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Figure 3-4: Graphs of RMS and z-range (maximum to minimum) for the oxide AFM
data shown in Figures3-2 and 3-3 on the top and bottom row, respectively. The top
row shows the higher roughness occuring in the 1000nm sample compared to the
200nmr sample on the bottom row. Both sets of data show the clear planarization of
the oxide surface.

the amount of Ta deposited. Second, the 1000nrm thick sample contains roughness

on two different scales, one larger around 200nm and another smaller around 30nm.

The thinner sample contains only the small-sized roughness. The contention is that

the larger features result from formation of crystallite islands during deposition, and

that a certain thickness of metal is necessary before the surface chemistry becomes

favorable for their formation. The smaller roughness is likely a product of the sput-

tered deposition process, appearing unchanged at all thicknesses. Next, we should

note the particular trends in roughness during the process of anodization. For a. suffi-

ciently thick oxide, both the RMS and the z-range show an exponential decrease with

the amount of oxide grown. The roughness approaches an asymptote determined by

the roughness of the substrate. For the lower roughness film, the experiments were

able to resolve a region where the decrease in roughness is linear instead of exponen-
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tial. We will discuss this effect in greater detail in Section 3.4, but in general, this

results from the fact that, until the thickness of the oxide reaches some percentage

of a particular feature size, those features are hard to planarize. This characteristic

can also be observed in the AFM images for 1000nm thick Ta at oxide thickness 3 in

Figure 3-2. At that thickness of oxide (- 100nm), only the small-sized roughness has

been planarized, leaving the large-sized roughness nearly unchanged. These are some

of the aspects of this type of anodization that we hope to observe in our simulated

process model. Additionally, we hope to observe other properties that are difficult to

measure by experiment. In particular, observing the metal-oxide interface is trouble-

some in Ta because the etches that select for Ta205 also tend to etch some fraction

of the Ta. We would also like to predict how different oxide expansion coefficients

affect the planarization.

3.2 Description of Key Calculations

In implementing this simulation, a few key calculations must be made correctly. First,

we must determine how to change the positions of the metal and oxide surfaces so

that we preserve the total mass of metal. We find that the volume change in our

discretized surface is linearly proportional to the amount each point in the grid is

moved up or down. Then we need to calculate the minimum distance between the

two surfaces. We considered the distances between any pair of points in the metal

and oxide surfaces, as well as the distance between a point in one surface and a line

connecting two points in the other. Finally, we need some numerical measures of the

progress made toward planarization of our sample. Our figures of merit will be the

z-axis range and RMS.

3.2.1 Volume Change in Piecewise Linear Surface

In our simulation, we create a grid of points in the x-y plane with equal separation

in each direction and with arbitrary z values. Between each grid point the z-axis

surface values are linearly interpolated (Figure 3-5). Thus if we only have two grid



Figure 3-5: Depiction of a piece of our surface grid having equally spaced x and y
coordinates and floating-point precision values in z. The figure also shows how the
grid is linearly interpolated to give an analytically continuous surface for calculations.

points at (x, y, z) = (0, 0, 0.5) and (0, 1, 1), evaluating the height of the surface at

(x, y) = (0, 0.5) gives z = 0.75. Likewise, at the center of each square of points, the z

value is the average of the four surrounding points. Between this center point and two

points on the corners of the square, we define the surface as the section of the plane

that passes through those three points. Thus our surface consists of tiled triangular

facets defined by points of the grid with 4 facets for each point. This parameterization

is as accurate as possible for an arbitrary surface with a set number of data points.

To consider how the amount of metal changes with the adjustment of a single grid

point, we first calculate the volume contained under a single facet (Figure 3-6). We

split the volume into two sections: a lower triangular prism and an upper pyramid.

The prism extends from the x-y plane to the minimum z value (zm) where the original
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Figure 3-6: a) The volume under of a single triangular face. b) For calculation we
split the volume into a triangular prism and a pyramid. The z values of the vertices
are labeled by z's, side lengths are labeled by c's and areas are shaded and labeled
by A.

volume has been cut. The pyramid is the rest of the volume, with the pyramid base

opposite Zm. In the figure, we show Zm as one of the grid points, but it could equally

well be the center point. The volume of the prism is calculated by Equation 3.1.

(3.1)1
V, = Ah = c2z z4

For the pyramid, the base may either be a right trapezoid or a triangle in the limiting

F2C C

A
M M

• |J.|



case where Z, = zm or zl = zm. In either case, the volume of the pyramid is given by:

1 1
Vyr= Abh = c•b [(zc - Zm) + (zl - Zm)] h

12

where

c if Zm is at the center point,
Cb

c otherwise.
1

Ab = -Cb [(c - Zm)+ (1 - Z)]

h 2 if zm is at the center point, (3.2)h = 2 (3.2)
Sotherwise.

The volume of the combined solid is shown in Equation 3.3. We show that each vertex

contributes linearly and equally to the volume. We must also make sure that the

center point does not somehow affect the contribution to the volume under the overall

surface. Equation 3.4 consists of all four volumes from Figure 3-5 added together and

shows that all points on the surface contribute linearly and independently to the total

volume. In fact, the volume under the entire surface as we have defined it is simply

the area of the grid times the mean of all z values. Thus we have proved that when

we move one point on the surface down by a certain amount, and then we move a

different point on the surface up by the same amount, we retain the same volume

under the surface.

1 1 1
Vt = +Vpyr= m + -c [(c + 1) - 2Zm] = 2 [zC+z +m] (3.3)

4 12 12
1

Zc = -(Z 1 + 2 Z3 Z4)4

V = V1  + V + V+V 3 V4 = C2 [2z +2z2 +2z+2z4+4zc]

4
4 2EZn (3.4)

12 C2 [31 + 3z2 + 323 + 34] = C2  (3.4)
n=O



3.2.2 Distance Measurements

Our simulation of anodization planarization depends heavily on measuring the dis-

tances between the metal surface and the oxide surface. These calculations also take

up the bulk of the computation time, forcing us to strike a balance between accu-

racy and computational complexity. We also must remember that our discretization

of the surface reduces the final accuracy we want to achieve, so working harder on

some calculations will not noticeably improve the outcome. There are a number of

distances we can consider between our metal and oxide surfaces, namely: point to

point, point to line, line to line, point to plane, line to plane, and plane to plane.

The line to line and plane to plane measurements would be redundant. For line to

line, the grid precludes any line segment from being any closer to another line than

its end points. For plane to plane, in three dimensions each plane piece can only be

as close to another plane as one of its sides or one of its vertices. We have chosen

to omit point to plane and line to plane calculations for our current simulation. The

point to point and point to line calculations will be correct to first-order because the

omitted calculations can only serve to slightly shorten the distance found between

metal and oxide. The point to line measurement adds a good deal of accuracy, which

can particularly be seen when the oxide thickness is small. With only point to point

distances, only the oxide and metal points at the same x-y coordinates can possibly

be closest to each other until the oxide height reaches the distance between points.

When we additionally consider the point to line measure, the oxide or metal point

will most likely be closer to the line connecting the point directly above or below and

an adjacent point. This change means that we have to move more than two points to

increase the metal-oxide distance correctly, and this contributes greatly to how much

we expect rough spots to spread.

The equations themselves are simple Euclidean geometry. Figure 3-7 depicts the

three situations for which we account. The point to point distance is given in Equa-

tion 3.5, and the oxide point to metal line distance is given in Equation 3.6. The
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Figure 3-7: The figure shows the three distances (represented by arrows) calculated
in our simulation. In point to line distances, the distance vectors meet the lines at
right angles.

metal point to oxide line case is analogous.

dp_p = |Zo| - zm|| (3.5)S = (3.5)

dp- II(z2 - zrn) X (Zml - Zo')I (3.6)
IIz - Z mlll

3.2.3 Surface Roughness

The surface roughness has to do with both local variations in the height of the surface

as well as the long range slope of our material. The simplest way to assess overall

variations in the surface is to use the root mean squared (RMS) of the z values

deviation from the mean (Equation 3.8). This measure reflects discrepancies between

all heights, whether they are close together or far apart. A small RMS means we have

a, mostly flat surface. Small defects in our surface, however, could have a large impact

for many applications, and these defects could be masked by a simple RMS. The total

z-range of the surface shows how the outlying points in our sample approach each



other. This measure gives us an idea of the worst-case roughness that we can expect.

z-range = max zn - min zn (3.7)
nE(1...N} n {1...N}

RMS = ( - )2 (3.8)
n=1

3.3 Simulation Algorithm

We used the Matlab numerical analysis platform as the basis for our current imple-

mentation of this simulation. To begin, our simulation is given an arbitrary surface

described by a grid of x-y points with equal spacing along both directions and a set

of z-axis values. Then, depending upon the accuracy we are looking to achieve, we

increase the number of points on the grid in both directions by some integer and

linearly interpolate the z values from the original set. This data describes the metal

surface. We assume that the oxide starts with minimal thickness such that the oxide

surface is a simple copy of the metal surface data. Also important for accuracy is the

step size by which we will increase the oxide surface and decrease the metal surface.

The three main data structures at the heart of our simulation are a set of oxide

points, a set of metal points, and a set of distances. The set of oxide points is a

matrix of variable-length arrays containing the indices of the oxide point or points

that are the minimum distance away from the metal point at that index in the matrix.

This matrix has the same indices as the x, y, and z data sets, which store the grid

point positions. The set of metal points is a convenience structure that duplicates

the oxide points data but indexing instead on the oxide point to which several metal

points may be closest. This metal point set does not necessarily contain only the

metal point or points equally close to a particular oxide point, but instead has any

metal point that does not have any other oxide points that are closer. The set of

distances is a matrix giving the minimum distance between a particular metal point

and the closest oxide point and is indexed by the metal point. In other words, these

are the distances associated with the set of metal to oxide points. The oxide points



set and metal points set are initialized to their own indices, and the distances are all

zero.

After initializing the surface and the various data structures, our simulation pro-

ceeds through the following steps:

1. If smallest distance is greater than the desired final oxide thickness, end the

simulation.

2. Find minimum distance in the set of distances. This is the index of the metal

point to change.

3. Save the indices of the oxide points for that metal point.

4. Increment the z values of these oxide points by the expansion coefficient minus

one times a fraction of the oxide step.

5. Decrement the z value of the metal point by the sum of all the increment

fractions.

6. Recalculate the distance to the oxide for the updated metal point.

7. Recalculate the distance to the oxide for all the metal points that were previ-

ously closest to the updated oxide points.

8. Determine if the distance from the updated oxide points to any metal point is

smaller than the metal point's current minimum distance.

9. Go to step 1.

Most of these steps are straightforward, but a few require further explanation.

The termination condition for our simulation is fulfilled when the smallest distance

between metal and oxide is greater than the goal thickness. We could alternatively

do some kind of smoothing of our distances so that all distances get very close to the

correct oxide thickness by reducing the oxide step size as we approach our goal. We do

not believe this procedure would add much to our accuracy, however, because the step

size throughout the simulation is a limit on our accuracy. Reducing it near completion



would do little for overall accuracy. In addition, if we wanted to compare the final

oxide to intermediate oxides we would want to use the same procedure before taking

those measurements. That would add to our computational time and make separate

runs different based on the number of measurements because measuring would reduce

the oxide step size temporarily.

Next we should specify which fraction we are using to increment each of the oxide

points. We use the fraction that will ensure that over the entire surface at one point

in time no metal point will be reduced by more than one oxide step and no oxide

point will be increased by more than the expansion coefficient minus one times the

oxide step. Equation 3.9 shows the calculation of that fraction.

1
Fo=

(length of oxide point set) x (length of metal point set for this oxide point)
(3.9)

The first term ensures that if this metal point is equidistant to multiple oxide points

then the total of the oxide fractions will be less than or equal to one. The second

term ensures that, if, for instance, two metal points have the same oxide point as

their closest oxide point, then each point will only contribute half of an oxide step to

that oxide point.

Once we have changed the metal point and the set of oxide points, any distances

that refer to those points are out of date. We must therefore recalculate any distances

that may have been affected by these changes. For the metal point, we have to find

the closest oxide point or points, and as stated in Section 3.2.2, we consider the metal

point to oxide point distances, the metal point to oxide line distances, and the metal

line to oxide distances. For the metal line to oxide point calculation, we consider the

four line segments with the changed point as a vertex (two along x and two along y)

in this calculation. To optimize our algorithm, we start by looking at oxide points

directly above the metal point and move outwards only as far in x and y directions as

the minimum distance to the oxide found so far. This cutoff is a simple application

of the triangle inequality because the distance between a metal point and an oxide

point can at minimum be the x-y distance between the points. We then look at the



metal point lists for each of the oxide points that we changed. These lists give metal

points which used to be closest to the updated oxide points, and we follow the same

procedure with these metal points as with the updated metal point to correct their

minimum distances. Finally, we must find any other metal points, which, after the

update of the oxide, are now closest to one of the changed oxide points. Thus we

follow analogous procedures, searching around each oxide point for any metal points

that could be close to it. In this case, the cutoff in the number of metal points that we

must consider surrounding each oxide point is slightly different. Since the minimum

distances are different at each metal point, we do not have a straightforward minimum

distance from the oxide point to all of the metal points. Thus we need a different

measure to see how far the oxide point could possibly be from the metal surface.

We remember, however, that we are conformally coating the metal surface by only

incrementing the smallest distance by a small value. Thus the maximum distance we

can expect to find is the current oxide thickness plus the expansion coefficient times

the oxide step, since we change the metal to oxide distances by less than that amount

each time. Then we only have to consider the metal points around each oxide point

that are less than this distance in the x and y directions. After we have completed

updating the distances, we are ready to return to the beginning of our loop to test

for termination.

3.4 Planarization Results

We started testing the simulation by considering the progress of anodization on a

single hill and a single depression. To create the hill we started with a 5x5 grid with

the distance between grid points equal to Inm and initial metal thickness of 4nm.

We then incremented the center point to 4.5nm and increased the sampling of the

surface by four times so that the distance between grid points equaled 0.25nm. After

the interpolation, we are left with a pyramid with a base width of 2nm or 8 grid

points. Having created the structure, we proceeded to oxidize the surface up to Inm

using 0.01nm oxide steps. Figure 3-8 compares the initial and final metal and oxide



surfaces for both the hill and the depression created by making the original center

point 3.5nm instead of 4.5nm. First of all, we observe significant planarization of

both types of surface feature in both the oxide and metal surfaces. We also observe

spreading of the features over adjacent grid points in both surfaces as we would expect

to allow for planarization. The total amount of planarization is the same for the hill

and the depression as can be seen in Figure 3-9.

In Figure 3-9, we observe a number of interesting phenomena that are observed

experimentally (see Section 3.1). First, the metal and oxide surfaces do not planarize

at exactly the same rate. For the hill feature, the metal surface RMS and z-range

drop faster than the oxide RMS and z-range. Whereas for the depression feature, this

trend is reversed. As the oxidation progresses, this discrepancy is reduced until both

surfaces are planarized the same amount within simulation accuracy. The root of the

discrepancy is a linear region in the calculations at the beginning of the planarization

that appears in both RMS and z-range. The linear region is followed by an exponential

region. The linear region is stronger (flatter slope) in the oxide for the hill and is

stronger in the metal for the depression. Until the oxide thickness gets close to the

defect height some of the metal and oxide points that should planarize each other

do not have a straight line distance through the oxide. Thus planarization is slower

(linear) until each metal point can see most oxide points it needs to oxidize or until

each oxide point can see most metal points that need to oxide it. Now we can

understand the discrepancy between the hill and valley oxidation. In the hill, the

metal is closer to many oxide points at the peak of the feature, which is where the

most planarization is needed. Thus the metal planarization proceeds more quickly

at the beginning for the hill. The oxide catches up since it has a wider view at

the peak for thicker oxides and since the rate of planarization is higher for rougher

surfaces. In the depression case, the roles of metal and oxide are reversed with the

oxide initially having many points contributing to it near the lowest point and the

metal having less points to contribute to near the lowest point. Finally, if we were

to examine the case where we have a random assortment of hills and depressions, we

would observe the same, linear followed by exponential, characteristics. On the other
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Figure 3-8: a) Shows the effects of oxidation on a hill with height 0.5nm after a
1.0nm oxide has been electrochemically grown. b) Shows the effects of oxidation on a
depression with depth 0.5nm after a 1.0nm oxide has been electrochemically grown.
In both figures, we have taken a slice through the center of the 3-dimensional surface.
The empty symbols represent the original surface, and the solid symbols represent
the final surface. The squares are for metal and the circles are for oxide.

u

7

6

5

44

3

2

1

U Initial metal
O Initial oxide
m Final metal
* Final oxide

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• • g • • • • • • •

x.Tcd
N

8

7

6

5

A
94(

N

3

2

1



0.6
I -- Metal Z-Range

0.55 I- Oxide Z-Range -

0.5

0.45

S0.4

0.35

S0 3m I0.3-
0.25

0.2

0.15

MetaVOxide Z-Range

MetalOxide RMS I - - Metal Z-Range
0.55 I - Oxide Z-Range

0.5

0.45

0.4

0.35

N 0.3

0.25

0.2

0.15

0 0.2 0.4 0.6 0.8
Oxide Thickness (nm)

Figure 3-9: a) Shows the RMS values of both the metal and oxide as a hill feature is
anodized. b) Shows the z-range (maximum to minimum z value) of both the metal
and oxide as a hill feature is anodized. The error bars show the standard deviation in
the metal to oxide distances. c) Shows the RMS values as in a) but for a depression
instead of a hill. d) Shows the z-range as in b) but for a depression instead of a hill.
The error bars show the standard deviation in the metal to oxide distances.

hand, because we would have an approximately equal number of hills and depressions,

the metal and oxide progress would be nearly identical (see Figure 3-12). Although

these characteristics can be theorized without the help of numerical methods, it is

encouraging that our simulation exhibits the desired behavior.

We also must be concerned with the accuracy of the simulations, based on our

choice of discretization. The two parameters that affect our accuracy (as well as our

computation time) are the distance between grid points and the size of the steps

made between the oxide and the metal. Figure 3-10 shows data for progressively

smaller grid spacing and smaller step size. The progression shows that in order to

achieve relatively consistent results that we must use a grid spacing that is four times
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Figure 3-10: This figure demonstrates the convergence of the simulation as we de-

crease grid spacing and step size. a) Shows the RMS of the metal and oxide surfaces

for increasingly fine grids and a step size of 0.01. We start with a 5 by 5 grid and

halve the spacing between grid points for the next simulation. Thus for the first

simulation the hill feature is a single grid point, for the second simulation the hill is

3 grid points, then 7 points, and 15 points. b) Shows the z-range for the same set of

grids c) Shows the RMS of the metal and oxide surfaces for decreasing step sizes and

a 17 by 17 grid corresponding to 7 points for the hill. We start with a step size of

0.1, which is only 1/5 the height of the hill, and go to 0.005, which is 1/100 of the

hill height. d) The z-range for the same set of step sizes.

smaller than our smallest surface feature (4 times interpolation) and a step size that

is approximately 1/50 of the height of our largest feature (0.01 steps for a 0.5 feature

size). This data verifies that the increase in accuracy beyond these values for RMS

and step size is negligible (keeping other variable constant such as the expansion

coefficient) and the increase in computation time is substantial. That is why we used

4 times interpolation and 0.01 step size in our examples up to this point. Now we can

continue to more complicated surfaces and have a good idea that our results would

be approximately the same if we increased our accuracy.
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For our simulation, we have recreated a 0.5pm by 0.51am section of a sputtered

tantalum (Ta) surface with 1000nm thickness. As explained in Section 3.1, for this

thickness of Ta, two scales of roughness were observed, wider and slightly higher

crystallite roughness and a smaller roughness due to non-uniform deposition. The

larger roughness had widths of approximately 200nm and heights of about 30nm and

the smaller roughness has widths of 40nm and heights of 20nm. To recreate this type

of roughness we used the following procedure:

1. Create a grid with spacing equal to half the width of your largest defect size

(100nm spacing).

2. Set all z values to the average initial metal thickness (1000nm).

3. Add a random number with constant distribution with zero mean and range

equal to your largest defect height (random numbers from -15nm to 15nm).

4. Decrease the grid spacing until it reaches half the width of the next defect size

(20nim spacing).

5. Add the same type of random numbers with the new defect height (from -10nm

to 10nm).

6. Continue until all defects are added.

7. After adding the last defects, decrease the grid spacing by four times to ensure

accuracy.

We use a grid spacing of half the desired defect width because that allows for the

random numbers to be high and then low on the correct scale. These values are

then interpolated to get a smooth surface. This method does not best reproduce the

experimental surface because the large crystallite structures should not be entirely

random. They should instead be distinct islands pushing into each other such that

the angle at the boundary between the islands is relatively sharp. The smaller defects

from deposition are closer to this random configuration, having a set maximum and

minimum possible addition with all heights between those two values equally likely.



We see in Figure 3-11 that we have RMS and z-range values that begin close to the

experimentally observed values. Since we have this agreement in the original surfaces,

we hope to see moderate agreement between our simulations and experiment.

Figure 3-11 shows our results for the simulated Ta surface described above. We

observe clear planarization of the surface as the oxide thickness increases. As in ex-

periment, the small, deposition-type roughness planarizes first. The RMS and z-range

are compared to their experimental values in Figure 3-12. These measurements show

reasonable agreement. We note that although the initial z-range values match well,

the initial RMS is 2nm higher for our simulation. This fact hints that our description

of the oxide surface needs to be improved to better represent the larger crystallite

roughness. Our model demonstrates the expected exponential character of the pla-

narization. As expected, the oxide and metal surfaces planarize at near exactly the

same rate. In Section 3.1, we described the difficulty in experimentally measuring the

metal surface when it is covered by oxide, with our model we predict that the metal

planarization will correspond directly to that of the oxide. Our simulation results

contain two discrepancies with the experimental data, however. First, the exponen-

tial decrease proceeds slower in our simulation. We attribute this error to the finite

boundary of our simulated sample. The oxide and metal points cut off at the edges

making less points to oxidize and making the planarization proceed slower. We can

alleviate this error by simulating larger samples. Second, our model does not show

the strong linear region at the beginning of oxidization. Two possible sources of this

error are the differences in initial surfaces discussed previously and the discretization

of the initial surface. The initial surface morphology affects the linear region be-

cause of differences in the oxide distances needed to get efficient planarization. Our

linear interpolation of initial features could also cause this disagreement. Linear in-

terpolation creates a jagged initial surface. Since the rate of planarization is directly

proportional to roughness, the interpolation may be artificially increasing the initial

planarization and suppressing the expected linear region. We can use quadratic or

cubic interpolation to eliminate this effect. Overall, we conclude that our model does

a good job of reproducing important experimental results.



We also studied the effects that different expansion coefficients (kexp) have on the

planarization process. This data can help us anticipate the planarization of different

metals, which will all have different kexp. We expect that for smaller kexp the oxide

surface will be more difficult to planarize because the surface will move up less and

the metal surface will move down more. We noted some difficulty in our calculations

for low kexp due to the fact that the oxide surface moves only slightly for each step.

We had to increase the number of grid points to get an accurate measurement. In

fact, for kep = 1.8, we had to increase the gridding by 32 times instead of the 4

times for kXp = 2.3. We hope in future versions we can improve this factor by

slight improvements to our algorithm. Figure 3-13 shows the RMS and z-range for

kexp = 1.8 and kxp = 2.8 on a hill surface feature. The most obvious difference is

that the smaller expansion coefficient increases the disparity of planarization between

the oxide and metal surfaces. For low kex the oxide surface moves less and we need

to oxidize more metal to get the desired oxide thickness. This observation explains

why the difference between oxide and metal RMS should be larger for lower kexp. Of

course, this observation also implies that for larger keXp, the gap between metal and

oxide RMS should be closed and could reverse in favor of the oxide RMS decreasing

faster. The RMS of both surfaces also shows a slight dependence on kexp. Both sets

of data in Figure 3-13 have higher RMS for each surface respectively than the data

in Figure 3-9 where kexp = 2.3. Going to even higher keXp we see a continued trend

in increasing overall RMS. We have found that the lowest overall RMS is achieved

when kep = 2.0. At this value, both surfaces change the same amount at each

step, which may help keep the two surfaces conformal and minimize overall RMS. Of

course, the changes are so slight that a more thorough investigation of accuracy is

required to make sure this dependency is not a side-effect of the simulation. We can

also predict the trends for depression features as a function of kexp. We expect the

gap between metal and oxide RMS (with the oxide RMS decreasing faster) to widen

for larger kexp as the oxide grows faster and the metal takes longer to be consumed.

On the other hand, smaller kexp should decrease the gap for a depression. We now

have a good idea of how our planarization by anodization process would work for ideal



metals with different oxide expansion coefficients. This data would be hard to observe

experimentally because the physical process must be fine-tuned for the chemistry of

each metal. With our simulation, we can give a good indication of what to expect for

different metals and whether that experimentation would be warranted.
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Figure 3-12: The top line shows the RMS and z-range of our simulation on a computer-
generated, 1000nm thick Ta205 sample. We observe a generally exponential decay in
RMS and z-range with a finite asymptote determined by the stability of the model
(step size and grid spacing). Along the bottom row, we reproduce these calculations
for the experimental data from Figure 3-2 on the same axes as our simulation results.
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Figure 3-13: a) and b) show the RMS and z-range, respectively, of a single hill with
an oxide expansion coefficient kexp = 1.8 (see Figure 3-9 a) and b) for comparison
with kexp = 2.3). We used a 129 x 129 grid of points and an oxide step size of 0.005
to minimize inaccuracies from the small kep. c) and d) show the RMS and z-range,
respectively, of a single hill with kexp = 2.8. We used the same grid and step size
as we did for kexp = 2.3, 17 x 17 grid and an oxide step of 0.01 because no added
accuracy was needed.
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Chapter 4

Conclusion

This thesis detailed two simulations based on models of experimental observations.

We showed that these models were able to reproduce experimental behavior with a

small set of assumptions. We then applied these models to novel device structures

and materials, and presented simulated measurements that are difficult to make ex-

perimentally. We have also noted avenues for improvement in both our computations

and models.

Our simulation of quantum dot packing showed the significance of size distribution

in monolayer formation. Our model assumed hard-sphere inelastic collisions between

dots, van der Waals attractions, and random thermal motion, based on the substrate

properties. For monodisperse samples, we observed stable, hexagonal close-packing of

the dots. As we increased the size distribution of the dots, we observed a decrease in

packing and cluster stability. We were able to mitigate these effects by confining the

dots along one dimension. We investigated the effective mass as a cause of the size

distribution-related packing breakdown. We also reported a simple calculation for the

luminescence quantum efficiency of the dots. We plan on extending our simulation

interface to make it more useful to other researchers and implement new packing-

related calculations.

We demonstrated a model of planarization through electrochemical oxidization.

Motivated by experimental evidence, we created a fundamental model of this process

with only two assumptions: conformal oxidation and metal conservation. We demon-



strated that this model reproduces planarization of large surface defects on both the

metal and oxide surfaces. We verified an expected difference in the planarization

of the metal and oxide surfaces for individual additive and subtractive defects. We

showed the convergence of our simulation results as we increased the accuracy of

our computations. We simulated the anodization of a realistic Ta sample and found

close agreement with experimental data. We also noted some discrepancies in our

simulation and gave our explanation of their origins. We then reported the effect

that different oxide expansion coefficients have on planarization. This data shows

that other metals could be planarized by these methods. In the future, we hope to

increase the accuracy and efficiency of our simulation and use it as a tool for the

investigation of this type of planarization in other metals.



Appendix A

Quantum Dot Packing Code

Listing A. 1: Quantum dot simulation main class containing time update algorithm.
package se02 .gb;

import sel02.gb.gobjects. Ball;

import sel02.gb.gobjects.Gizmo;

5 import sel02.gb. util .Reflector;

import selO2.gb util.BallBunch;

import sel02.gb. util. BallLocalizer;

import sel02.gb util Pair,

import physics. ;

10

import javax.swing.*;

import java.awt *;

import java.awt.event.*;

import java.awt.geom.*:

15 import java. util .List;

import java. util . Iterator;

import java.util.Map;

import java. util .HashMap;

import java.util.ArrayList;

20 import java. util Random;

/*+

• This class drivcs the updatcs of the garrme area during play.

25 * prspccfelld board I Board // updatrd pcrtodically by this runner

0 s spCrfic.eld tirnmr Timcr // calls updates to go through the: physics loop

* p. spc:.foc Id curr:entDclay I timer // th: delay bh:twc:cn update

* • cspcf:cl d (updatcr I physics loop // for d:b'uqgging , this is th,: manually r.anipulatabl: Updatcr

*./

30

public class Runner {

private GraphArea board;

private Timer timer;

35

private int currentDelay;

private Updater updater;



40 private boolean debug;

private int maxIterations;

private Random random = new Random(205);

45

BallLocalizer bl;

// Constructors

50 /**

* Main constructor for making a running physics loop on the board with a delay betwe:en updates

of milliDelay

* t$requaires board != null

* Oeffects initializes the: fields

55 */
public Runner(GraphArea board, int milliDelay) {

// this .board = board ;

// this. timer = neww Time:r( milliDelay , new Updater ()) :

// this . currentDclay = milliDclay ;

60 // this. epsilon = milliDelay / 8;

// this. timer. start () :

this(board , milliDelay , false);

65 /**

* Debugging constructor that allows updates to hbe done seqe.cncially

* _requires board .!= null

•* effects initialize:s all fields except timer

70 s/
public Runner(GraphArea board, int milliDelay , boolean debug) [

this. board = board :

this. currentDelay = milliDelay

// this. epsilon = 0; // milliDe:lay / 8;

75 Geometry. setForesight (2 * currentDelay);

if (debug) {

this. updater = new Updater();

} else {

this. timer = new Timer(milliDelay , new Updater());

80 this .timer . start();

}
this.debug = debug; // true if no visualization is ucsefd

maxIterations = 2500;

bl = new BallLocalizer(board.getSizeX() , board.getSizeY(), 15.0);

85 }

// Gettc'rs and Setters

public double getEpsilonSpace() {

90 return updater. getEpsilonSpace () ;

}

// Modtfiers

95 /**

* Changes the delay between each update of the. board

* (-modifies timer



* (•effrcts changes update delay

100 */

public void changeDelay(int milliDelay) {

timer. setDelay(milliDelay );

currentDelay = milliDelay;

// epsilon = 0(: //milliDelay / 8;

105 Geometry. setForesight (2 * milliDelay);

/**

* Stops updates of the board but remains ready to start aqain.

110 *

* (•mrodtfies timr;er

* @,:ffe'e::ts stops the tim er temporarily

*/
public void pause() {

115 timer. stop ( ;

* RI:starts ur•dates of the board aftcr it had been prceviously stopped

120 *

* O4requi.rcs this.pause () had bccn pre.viously called stnce the last construection or this.

restart (.) all

* orrmodifi:es trim:r

* •,cr:ffe': cts rstarts the tzrncr after it had be:en paused

* /

125 public void restart() {

timer. restart();

/**

130 * For de bauggi.ng pu'rposcs only . runs one update cycle of the updater

* @nmodifies this . updatrfr

* sth7rowis Runtumc:Exceeption

* if this Runner is not in debug mode

135 */

public void runUpdate() (

if (updater != null) {

updater. ac tionPerformed (new ActionEvent(this , 0 , "update"));

else {

140 throw new RuntimeException("Not-in-debug-mode" ):

public void setMaxlterations(int iterations) {

145 maxlterations = iterations;

* Updates th,. state of the board through periodic calls to actionPerformed by the timer

150 *

class Updater implements ActionListener {

private double epsilonTime = le-6;

155 private double epsilonSpace = le-6;

private double epsilonVelocity = le-1;



private double epsilonPrecision = le-10;

160

public double getEpsilonSpace() {

return epsilonSpace;

}
165

double timeSinceRandomizeVelocities = 0.0;

/**

* The method called be the actionPerformed method to do the updates of all the balls on the

board to account for graivity and friction and for collision with other gizmos and balls

170 *

* Orcquircs ballArray != nll torArray != null reflct to rray ! Il, and for all i, ballArray[i] != null

recflectorArray[i] != null

• @modifies all balls in ballArray

* @effects Uses the PhysicsSimulator to update the velocity of each ball with the current

gravity and friction . Then uases the Geo-metry class in the physics package to find the

closest

* colliszon for each ball. Moves each ball to the point of collision and then uses

the Geometry reflect tmrethods to colltde . Thie method loops until all balls have performed

all the

175 * collisions that should occur in thi s period.

*/
private void arrayLoopOverlapProofMutualAttraction (Ball [( ballArray, Reflector []

reflectorArray) {

int loopNum = 0;

// System. out. printin (" attraction ") ;

180 bl. clear ();

bl . addBalls ( ballArray);

boolean[] activeBalls = new boolean[ballArray. length];

java. util. Arrays. fill (activeBalls , true);

double delayLeft = currentDelay/1000.0;

185 double deltaDelay = 0;

Reflector [I closestReflectors = new Reflector [ballArray .length];

Ball[] closerBalls = new Ball[ballArray. length];

int [] closerBallsIndex = new int [ ballArray . length I

double[] shortestTimes = new double[ballArray.length];

190 // java. util . Arrays. fill (shortcstTi-ms , Double.MAXVALUE) :

// java. util . Arrays. fill (closestReflectors , null) :

// java. utl. Arrays. fill (closcrBalls , null):

// java. util . Arrays. fill (closerBallsIndex . 0) ;

Rectangle origBallBounds;

195 Circle ballPerimeter;

double collisionTime;

Vect collisionDistance;

double[] timeSinceVelocityUpdate = new double[ballArray. length ];

java. util .Arrays. fill (timeSinceVelocityUpdate . 0.0);

200

//add randoLm vclocities

timeSinceRandomizeVelocities += delayLeft;

if( timeSinceRandomizeVelocities >= PhysicsSimulator. getRandomVelocityDelay () {

for(int i = 0; i < ballArray.length; i++) {

205 Vect randVect = new Vect(new Angle(2* Math. PI*random. nextDouble()) ,PhysicsSimulator.

getRandomVelocityMagnitude ( ballArray [i] . getMass () ));

ballArray i]. setVelocity(ballArray [i. getVelocity () .plus(randVect));

}
timeSinceRandomizeVelocities = 0.0;

210

bl . updateBalls();



ArrayList<:Pair<Pair<Ball , Integer >,Pair<Ball ,Integer >>> pairs = bl. getAllPairsSeperatedBy (

PhysicsSimulator . getMaximumForceDistanceThresh () );

// chang the ball velocities based on their mutual attractions

Iterator<Pair<Pair<Ball ,Integer >,Pair<Ball ,Integer>>> pairsiterator = pairs. iterator ()

215 while( pairsIterator . hasNext () {

System . out . println ("found pair ") ;

Pair<Pair<Ball , Integer >,Pair<Ball ,Integer >> balls = pairsIterator .next ();

Ball ball1 = balls . getFirst () . getFirst();

i// t inde:rl = balls . getFirst () . gctSccond () ;

220 Ball ball2 = balls .getSecond (). getFirst();

// nt index2 = balls . egtSecond () . ygtSecond ()

Vect diff = balll .getCenter(). minus(ball2 .getCenter());

double (list =- diff.length()-balll .getRadius()-ball2.getRadius();

if(dist > PhysicsSimulator .getMinimumForceDistanceThresh()) { // precludes any negativc

dist from overlaps

225 //hav.: to update for velocity from the previous times because wr: 're changing it 's

vclocity

bal.I . set Velocity (PhysicsSimulator. update Velocity ( balll . etCcntcr () , ball . get Velocity

() , time:Sinc V:locity iUpdate: [ indc:zl /) ) :

// ball2. set Velocity (PhysicsSimulator. update Veloctty( ball . gctCcntr () , ball2 . get Velocity

() . timetSin. ccrVelo cityUpdatet [index2])) :

//add attraction

// System. out . pirtntln (" adding attraction "):

230 if( ball] .getMass() == ball2.getMass() {

Vect update = diff . unitSize () . times( PhysicsSimulator. updateVelocityAttraction (dist

balli .getMass() ,delayLeft));

bal 1 . set Velocity ( ball 1 getVelocity () . plus (update. neg () ) )

ball2 .setVelocity ( ball2 . getVelocity () .plus (update));

} else {

235 // the updates made seperatcly for each ball

Vect updatel = diff . unitSize () . times(-PhysicsSimulator . updateVelocityAttraction (dist ,

ball .getMass() ,delayLeft));

Vect update2 = diff . unitSize () . times( PhysicsSimulator. updateVelocityAttraction (dist ,

ba112.getMass() ,delayLeft));

balll . setVelocity (ball . getVelocity ().plus (updatel) );

ball2 . setVelocity ( ball2 . getVelocity() . plus (update2));

240

// change vcloctty update info if not already being updated

// if ( t imeSinci. Velocity Update [index > 0. 0) {

// tire Sine(:: VclocrtyUpdate [ ndc:del = 0.0;

// apdate•:ndef:xs (updatelnd'erI = inde:xl

245 // updatcIndtx++;

// if (timeSince: Velocity Updat. /[inde:2] > 0.0) {

// timeSince VelocityUpdate [indcx2 I = 0.0.:

// .pdatclIdc.r::s [updatcIndex] = index2:

250 // updatclndc:r+-4-;

// }

255 int [] updateIndexes = new int ballArray . length I;
int updateIndex = 0;

//in tialize updatcIndiexe.s

for(;updateIndex < updateIndexes. length; updateIndex+4) {

updatelndexes [updateIndex] = updateIndex;

260 }

// System. out. prtntln ("At while loop ");

boolean noMoreCollisions = false;

while (delayLeft > epsilonTime) {



265 loopNum++;

// System. out. println("in while loop");

// closestReflectors = new Reflector[ ballArray . length];

// closerBalls = new Ball[ballArray. length];

// closerBallsIndex = new int[ballArray . length];

270 // shortestTimes = new double [ballArray .length ];

// java. util . Arrays. fill (shortestTirnmes , Double .MAX-VALUE) ;

// update all velocities

boolean noActive = true;

for ( int i = 0; i < activeBalls .length; i++) {

275 if (activeBalls[i] == false) {

// System. out. printin (" activeBalls["+ i +"j is false ");

continue;

} else {

noActive = false;

280 break;

}
}
// System. out. printin ("loop " + loopnum) ;

// return to the top loop if all balls are null

285 if (noActive II noMoreCollisions II loopNum > maxIterations) {

// System. out . println (" loop number is " 4- loopNum);

if(loopNum > maxIterations)

System.out.println("Number-of -iterations -went-over-maximum-of." + maxIterations + "

iterations");

return;

290

// java . util . Arrays. fill (shortcstTimes , Double .MAXVALUE) ;

// java. util . Arrays. fill (closestfReflectors , null);

// java. util. Arrays. fill (closerBalls , null);

295 // java. util . Arrays. fill (closcrBallsIndex , 1 ) :

// reset collision pararmeters for balls about to be updated

for ( int index = 0; index < updateIndex; index++) {

int i = updateIndexes (index];

shortestTimes[i] = Double.MAX.VALUE;

300 closestReflectors i] = null ; //not necessary

closerBalls [ i ] = null; // not ncccssary

closer BallsIndex [ i] = 0; // not necessary

}
// gizmo collision detection

305 for ( int index = 0; index < updateIndex; index++) {

// if (activcBalls[i] == false) (

// continue;

// }
int i = updateIndexes [index ]

310 //expand size slightly to keep balls sepcratc for reflection step

ballPerimeter = new Circle(ballArray [ i ]. getCenter() ,ballArray [ i . getRadius()+

epsilonSpace) ;

for (int j = 0; j < reflectorArray. length; j++) {

// reflector = (Reflector) reflectors.noext):

if (reflectorArray[j]. isCircle()) {

315 if ( reflectorArray j ]. isTranslating ())

if (reflectorArray [j . isHoriz ()) (

collisionTime = Geometry. timeUntilCircleCollision (reflectorArray [j . getCircle()

, ballPerimeter , ballArray i ]. getVelocity() .minus(

new Vect(reflectorArray [j J.getTransVelocity() , 0.0)));

} else {

320 collisionTime = Geometry. timeUntilCircleCollision ( reflectorArray [j ]. getCircle ()

, ballPerimeter , ballArray [ i ]. getVelocity() .minus(

new Vect (0.0 , reflectorArray [ j ]. getTransVelocity () ) )) ;



}
} else if ( reflectorArray [j ]. getAngularVelocity () == 0.0) {

collisionTime = Geometry. timeUntilCircleCollision ( reflectorArray [j I. getCircle () ,

ballPerimeter , ballArray [ i ].getVelocity());

325 } else {

collisionTime = Geometry. timeUntilRotatingCircleCollision( reflectorArray [ j

getCircle () , reflectorArray [j ]. getCenter () , Math. toRadians( reflectorArray [j

getAngularVelocity () ) , ballPerimeter , ballArray [ i ]. getVelocity ());

} else {

330 if ( reflectorArray [j ]. isTranslating () {

if (reflectorArray j J. isHoriz()) {

collisionTime = Geometry. timeUntilWallCollision (reflectorArray [ j .

getLineSegment() , ballPerimeter , ballArray[i].getVelocity () .minus(

new Vect(reflectorArray [j . getTransVelocity () , 0.0)));

} else {

335 collisionTime = Geometry. timeUntilWallCollision (reflectorArray [j ].

getLineSegment() , ballPerimeter , ballArray[i]. getVelocity() .minus(

new Vect(0.0, reflectorArray[j]. getTransVelocity())));

} else if ( reflectorArray j ]. getAngularVelocity () == 0.0) {

collisionTime - Geometry. timeUntilWallCollision(reflectorArray [j I.getLineSegment

() , ballPerimeter , ballArray [i . getVelocity ())

340 } else f

collisionTime = Geometry. timeUntilRotatingWallCollision ( reflectorArray [j I

getLineSegment() , reflectorArray [j ].getCenter() , Math. toRadians(

reflectorArray[j]

getAngularVelocity ( ) , ballPerimeter , ballArray [i . getVelocity())

345 if ( collisionTime < shortestTimes [i) {

shortestTimes[i] = collisionTime;

closestReflectors [i] = reflectorArray[j];

closerBalls [i] = null;

closerBallsIndex [i = 0;

350 }

// ollision Di.tancc =

// hallArray / i . cyt Velocity () . times (collision Timc)

// if( collisionDistanci: . le:.ngth () < cpsilon.Space (FP4

// rollision'Ti'rrc > otherClos. CollisionTirrmc [i) {

355 // itl•.erClos:cCollis.ionTimrn.[ i/ = rcolltsionTirmc:

// }

for ( int j = 0; j < ballArray.length; j++) {

// if (j == i) {

360 // cont •nne

i/ }
Circle otherBallPerimeter = new Circle ( ballArray [j ].getCenter() .ballArray[j j.

get Radius ( ) -epsilonSpace ) ;

collisionTime = Geometry.timeU ntilBallBallCollision (ballPerimeter . ballArray[i].

getVelocity () , otherBallPerimeter , ballArray [jl . getVelocity());

if (collisionTime < shortestTimes [i) {

365 // Syst:em. o at. pri itln ( " coll ides with ball ")

shortestTimes [i = collisionTime;

closerBalls [] = ballArray [j I

closerBallslndex [ i] = j;

closestReflectors [i =- null;

370 }

if(collision Time < shortestTimes [j ]) {

shortestTimes [j] = collisionTime;

closerBalls [j] = ballArray[i];



closerBallsIndex[j] =i;

375 closestReflectors [j] = null;

}

380 updateIndex = 0;

// collision resolution

/.
double closc Tirmes[] = new double :[ballArray. l:ngth ];

385 // find dt for all balls

for(int i = 0; i < ballArray . length ; i++) {

if (closerBalls [fi != null) {

doubile curDist = ballArra• /i /. gctCcnt:r () . minus(clos ErBalls [i . etCenter () ) . length () ;

if (curDist < ballArray / i]. gctRadvus ()+closc rBalls [i i. gctRadius ()-4* epsilonSpace) {

390 close Times[ i] = 0.0;

c(:o•ltt u ;

}
double dt = 4* ep.ilonSpace/(ballArray [ i ]. get Velocity () . mrinus (closcrBalls [i ].

g t Velocity ()) . length ()) ;

closcTimecs[i] = shortestTim:es[i]- dt;

395 } ls c {

f (closes t R efle c to rs /i] isCircle ()) {

do-uble dt = 2* psilonSp a c e /( b allArray [ J/. g Ct Veoity () . length () ;

closeTimcs[i] = shortcstTimes ii]-dt;

} :Ls: {
400 double dt = 2* cpsilonSpacc/(ballArray [ i]. get Ve locity () . times (Math. sin(

closestR efle ctors [ i i. gCtLineSv.:yment () . angle () . radians ()+ballArray [ i .

get Vetlocity () . angle () . radians ())) . ltength ()) ;

closcTimrnes [i] = shortc:stTim:.s [ ij- dt:

if(closTTimrtes[z] < 0.0) {

close:Timecs[i] = 0.0; //too close alrecady

405 }
}

./

410 int firstCollisionIndex = -1;

int otherBallIndex = -1;

double firstCollisionTime = delayLeft:// Double.MAX-.VALUE;

// boolean ballCollision = false;

for (int i = 0; i < shortestTimes.length ; i++) {

415 if (shortestTimest[i < firstCollisionTime && activeBalls[i] != false) {

firstCollisionIndex = i:

firstCollisionTime = shortestTimes [i];

if (closerBalls(i] != null)

otherBallIndex = closerBallsIndex [i ];

420 else

otherBallIndex = -1;

425 // if (firstCollisionTim: == 0.0) {

// Systcvm. out. println (" ball " + firstCollisionIndcx + " oveCrlaps with ball " +

otherBallIndex) ;

// throw ncvw Runtimc:Exce:ption("Cr:att:d ovevrlap of numbcr " + firstColltsionIndex

+ " " + ballArray•g[firstCollision Index / + (otherBallIndv::r != -1 ? " with number " +

othv:rBalllndcx + v" "+ bvallArray [ othvrBallIndex ] : "" )):

// I



430 // update all balls other than the next collision

for ( int i = 0; i < ballArray.length; i--+) {

origBallBounds = ballArray[i]. getBounds()

ballPerimeter = ballArray[i]. getCircle();

if ( firstCollisionIndex == -1) {

435 if (activeBalls[ij == false)

continue;

Vect endDistance = ballArray [i . getVelocity () .times ( delayLeft) ;

// c llis.ionDistance: = ballArray i ]. ge:t Velocity () . timrcs ( short.stTne [ i )

// collisionDistance . le:ngth () is necessarily > endDistance . length() since: no

collision within delayLeft;

440 // if ( coll.tsionDistance: . minus(,endDistance) . length () > minDistanci: - epstlonPrecision
I I c:' dDistncr. Ic:nlth () == 0.0) {

// move cornplctc distance, to the: end of the delay period

// ntevr have to worry about other balls actually having closer collision than

cpsilon spaCt:

ballArray[i [. setPosition (ballArray[i ]. getPosition () plus (endDistance));

ballArray [i]. set Velocity ( PhysicsSimulator . updateVelocity ( ballArray f i j . getCenter ()

ballArray[i]. getVelocity (), delayLeft+timeSinceVelocityUpdate [i]) );

445 // }
/*e:lse: {

if ( closerBalls [] == null) (

ac:tiv B a lls [iI = r: solvcCollisioniIn clasti c(ballArrayf i] , clos:rBallsfi].

: los:st R:fl: ctors [i] . shorte:st Tirncs[ i ] time,:Sin, cr::V e:loc:it yUpdaSte: f ]. I0.) :

} :lse: i.f( > close:rBallsIn decx. [i]) {

450 active:Balls fi] = resolvcCollisionlnelasltec (ballArray[i] j , clos,:rBalls[i /

r:loses tReJfle:ctors[i/, sho'rt:stTirmre:si/ 1. timreSinc:eIVeclo rityUpdatc:i].

tImcSin cc Ve:locity Update: clos c rBallsInd c x [ i I] ) :

actitve DBalls [closcrBallslnde: [i] ] = activec Balls I: j

}

455 */

// don't bothc:r se:tting timrc:Since:Ve:locityUpdeate: to 0.1) for all balls since e:xiting

else {

if (i == firstCollisionlndex II i =-- otherBallIndex I| activeBalls[i] -== false)

continue;

460 if(closerBalls [i != null && ballArray[ i . getPosition() . plus(ballArray[i]. getVelocity

() .times ( shortestTimes [ firstCollisionlndex ] ) . minus( closer Balls [ i ]. getPosition ()

plus (closer Balls [i ]. getVelocity () . times( shortestTimes [ firstCollisionIndex]) )) .

length() < 0.0) {

System .out. printin (" Balls..will.overlap")

Vect firstCollisionDistance = ballArray [i. get Velocity(). times(shortestTimes

firstCollisionTndex ]);

// collision Distanc:e: - ballArray[i j. getVc:lo:ily () tinme:s(shorte:stTirme.s/s]) :

465 // rinly rmovme the: ball to wivthtn epsilonSpace of a collision

// .ollistonrDistan ce . le.ngqth () > f irstCollts.tonrDistan ie: . le7ngth () bh:caase

firstCollts ion tmrre: is shortest

// i ( collision Distance . minuas(firstColliissonD-istance) . length () > mnrnDistance. -

cpstlonPre:cision 11 f irstCollisionDistance: . length () == 0.0) {

// nmove: complte: distance as colliding object

ballA rray [i . setPosition (ballArray [ . getPosition () . plius(firstCollisionDistance));

470 // bhliArray iJ . se:t Ve:locity (PhysicsSi mulator. update: Ve:loecity (b allArragy ft] yetCcent:rf()

,ballArray[] ,. gy:tVeClocity () . shortestTimrres[firstCollisionrilndrx)) ;

timeSinceVelocityUpdate [i] += shortestTimes[ firstCollisionIndex ],

shortestTimes [ i] -= shortestTimes [ firstCollisionIndex ]:

475 // / to

475 // move to within cpsilonSpace of closest collision



// make sure that only one of the balls resolves the collision

if(closcrBalls[i] == null) {

activeBalls[i] = resolveCollisionInelastic (ballArray[ i], closerBalls[i],

closestReflectors [i], shortcstTimesi [ , time Since VelocityUpdate/[i], 0.0) ;

timerSince Velocity Updatc[ i] = 0.0;

480 updatelndexes [updatcndex / = i;

updatclndezx ++;

e} lse if(i > closerBallsIndexzi•]) {

active Balls[ i = resolvcCollisionlne.lastic (ballArray i], closerBalls[i],

closcstReflectors [i , shortestTime:s[i , timeSince:VeloityUpdate[ if ,

time:Sinc VelocityUpdat: [ clos erBallslnde, [ i]]) ;

active Balls[ closcrBallslndex/[il] = active Balls[i];

485 timeSince VelocityUpdate [ i] = 0.0;

timeSinceVelocityUpdate[closer'BallsIndcx[ i]] = 0.0;

updateln dexes[ /updat:elndcx] = i;

updatcIlndcx++; // could cormbine the lines but don't want to

updatclndexcs [updatclndc:] = closer'BallslndeI x i j;

490 updatelndez:++;

}./

// update velocity

// ballArray i . se:t Velocity ( Physic:sSim ulator . update Velocity (ballArray fi 1. yet Velocity

() , shortestTimes ['firstCollision dIndxj) ) ;

495 }
if(!debug) {

board. repaint (origBallBounds);

board, repaint(ballArray[i].getBounds());

500 }

if (firstCollisionIndex == -1) {

// System. out. println ("No closest collision so loop has ended ")

noMoreCollisions = true;

505

deltaDelay = delayLeft;

delayLeft = 0;

// rcturn ;

// continue ;

510 } else {

// replaced long portion with function call

activeBalls[ firstCollisionIndex ] = resolveCollisionInelasticNoOverlapCheck2 (ballArray

firstCollisionIndex I , closerBalls [ firstCollisionIndex ] , closestReflectors

firstCollisionIndex],

shortestTimes [ firstCollisionIndex ] , timeSinceVelocityUpdate [ firstCollisionIndex ] ,

closerBalls[ firstCollisionIndex] -= null ? 0.0 : timeSinceVelocityUpdate

closerBallsIndex [ firstCollisionIndex ] );

timeSinceVelocityUpdate I firstCollisionIndex I = 0.0;

515 updateIndexes [updatelndex] = firstCollisionIndex ;

updatelndex++;

if ( closerBalls [ firstCollisionIndex] != null) {

activeBalls I closerBallsIndex [ firstCollisionIndex I] = activeBalls I firstCollisionIndex

1;
timeSinceVelocityUpdate [closerBallsIndex [ firstCollisionIndex ] = 0.0;

520 updatelndexes [updateIndex] = closer BallsIndex [ firstCollisionIndex i;
updateIndex++;

} else {

closestReflectors [ firstCollisionIndex I . getGizmo() . specialAction ( ballArray [

firstCollisionlndex ]);

closestReflectors [ firstCollisionIndex . getGizmo() . notifyTriggerListeners ()

525 }



deltaDelay = shortestTimes [ firstCollisionIndex i;

delayLeft -= deltaDelay;

530

/.
hi .updateBalls () ;

ArrayList<<Pair<Pair<Ball , Integtr >,Pair<Ball , Integer>>> pairs = bl . getAllPairsSeperatcdBy (

PhysicsSimulator. gyetMaximumForccDistanct: Thrsh ()) :

// change the ball velocities based on their mutual attractions

535 It erator'<Pair<Pair<Ball , Integer > Pair<Ball , Integcr>>> pairs Itcrator = pairs. iterator () ;

• while (paicrsIter'ator . hasNext () {

S// si:stm. out. println ("foeund pair ") :

Pair<Pair<Ball . Inte:gr >, Pair<Ball , Intee r >> balls = pairs Iterator . next () ;

Ball balli = balls. gctFirst () . getFirst ();

540 int indcrc 1 = halls. ygetFirst () .getSccond();

Ball ball2 = balls. gc:tSccond () . getFirst ();

int index:r2 = balls. gy:tSc:ond () . gctSecond () :

Vect diff = ball1. getCenter () . minus(ball2. getCenter() )

double dist = diff.l lngth()-balll.g etRadius()-ball2 . gtRadius ()

545 if ( dist > Physic:sSimulator . getMinirmumForc:Distancc: Thre:sh ( {

//,:have to update for ve locity from the previous timres because. we 're changing it 's

bIal 1 . sC:t Velocity ( Physie:sSimulator. up datt: Ve:lociety ( ball . e:tCC'nte:r () , ball 1. ye:t Veloc ty

() , tzmecSince: Velocity Update inderxl ));

ball2 . se:t Vc:lot:ity ( PhysicsSirnulator. updatc Velo. i ty ( ball2 . :tCente:r () , ball . et Ve:lo r: ity

() , timcn: S ince: Ve:locity Updat c [ ind :r ]) ) ;

//add attractioe n

550 // Systcmr. ou t . println (" adding attraction ") :

if (b all. getMass() == ball2. gqetMass())

Vect update = diff. unitSize () . time(s(PhysicsSimrnulactor. updatc:Ve:locityAttracrtion (dcst,

ball I . gy:tMass () , dcltaD clay)) ;

beell1 . sett Velocity (ball 1 . get Velocity () . plus (updatc . neg () )) :

btzll .set Velocity (ball2 . get Vtlocity () . plus(update)) :

555 } c:is' {

// the. updates made seperately for each ball

Vcct updatel = diff. ,anitSize () . temes(-Physie:sSimulator'. updatt: Ve:loc:ityAttraction (

dist . ball1 .gctMass () , dcltaD clay)) ;

Vt:ct ucpdatc = diff . uenitSizet () . trnc:s (Physic:sSirulator. p ldate : Vc:locttyAttrac:tton ( dest

, b d ll2 . ettMass() ,d eltaDc'lay)) ;

beall1 . sct Velocity (ball . g:et Vc:loecity () . plus (updcate: l));

560 ball2 .set Veloec:ty (ball2 . get Velocity () . plus (update2)) ;

// change vclocity update info if not already bring "updated

tfJ(ti'meSrcne: cVelocityUpdfate [indrexl ] > 0.0) (

ticmcSincec Velocity Updatei: iindexl ] = 0.0:

565 LupdatceIr:ndc:rc es /updatclnde:v] = indcxl :

"updateIrndex-+.-;

if(trimeSincceVclocityUpdate/ indez2] > 0.0) {

tirameSinc: VelocityUpdate irdcx2/ = 0.0

570 updatndelre:dxe:s /updatc:lndcex] = index2 :

update Inde: r t+:

575 ./

for(int i = 0: i < ballArray.len!th ; i -f) {

if (ballArray i ]. gyetPosition () .y () > 585) {

Sy.temn. out. println ("ball fell through") ;

// }
580 // }



}

private boolean resolveCollisionInelasticNoOverlapCheck2 (Ball ball , Ball closerBall,

Reflector reflector, double collisionTime) {

585 return resolveCollisionInelasticNoOverlapCheck2 ( ball , closerBall , reflector , collisionTime

,0 ,0);

}

private boolean resolveCollisionInelasticNoOverlapCheck2 ( Ball ball, Ball closerBall,

Reflector reflector, double collisionTime, double velocityUpdateTime, double

closerBallVelocityUpdateTime) {

Rectangle origBallBounds = ball .getBounds();

590 Circle ballPerimeter = ball .getCircle ()

if (closerBall != null) {

ball . set Position ( ball . getPosition () . plus( ball . getVelocity () . times( collisionTime ) ) ) ;

if(!debug) {

board. repaint (origBallBounds);

595 board.repaint(ball.getBounds());

I
origBallBounds = closerBall .getBounds();

closerBall . setPosition ( closerBall . getPosition () . plus( closerBall . getVelocity () . times(

collisionTime ) ) )

if(!debug) {

600 board. repaint(origBallBounds);

board . repaint( closerBall. getBounds());

/.
if ( PhysicsSimulator. isInclastic () 1404 ball . qct Vcloc ity () . minus ( closc rBall . ye t Velocity ()

length () <= PhysicsSitmualator. gctBallStickThrcsh (,) {

605 // performn totally inclastic collision

System. out. printin (" inclastic collision ") :

BallBunch ballBunch = bunche:s. ct (ball):

BallBunch closcrBallBunch = bunchcs. yelt (clostrrBall)

if(ballBunch == null) {

610 ballBunch = new BallBunch.(ball);

bunchcs . put (ball , ballBunch) ;

}
if(closerBallBunch == null) {

c loscrBallBunch = new BallBunch (closcrBall) :

615 bunches . put ( closc-rBall , closerBallBunch) ;

double ballMass = ballBunch. gctMass () :

double closcrBallMass = closcrBallBunch . getMass () ;

Vcct ballMassVetl = ball . getVclocity () . timcs(ballMass)

620 Vcct clos crBallMassVel = clos cr1Ball. g c tVelocity (). tim rcs (closerBallMass);

Vect finalVelocity = ballMassVtl . plus (closerBallMassVcl) . times (1/(ballMass+

closcrBallMass) :

// ball . set Velocity (final V lo city) ;

// closcrBall . sct Velocity (final Vtlocity) :

// BallBunclh newBunch;

625 if (ballBunch. ge tSize () > closerBallBunch . gtejtSize () ){
// currently impossible for satmc bunch to collide with itself

ballBunch . addBalls ( closcrBallBunch) ;

Iterator<Ball> itcr = closcrBallBunch. yctBalls () itcrator ();

while(iter. hasNcxt()) {

630 bu'nchs . put ( iter . net() , ballBunch);

//updatc all velocities of new bunch

iter = ballBunch. yctBalls (). itcrator () :

whilc ( itcr . hasNext ()) {



iter . next () . set Velocity (final Velocity) ;

} else {

clos:rB all Bunch .addBalls (ballBunch) ;

Iterator<Ball> iter = ballBunch. yct Balls () . it erator ) ;

640 whil r ( itr: . hasNext () {

bunches . put ( iter. next () , closecrBallBunch) :

// 'updatc all velocities of new bunch

iter = close:rBallButnch . getBalls () . iter ator () :

645 while(iter.hasNcxt()) {

iter . r:xt ( set Ve:lo ity (final Velocity ) :

// add all balls to larger ball bunch and then -update map for all balls in other bunch

650 } Ils: {

Ge:ormcetry. V:ctPa ir velociti:s = Gcomectry. reflect Balls (ball. ge tCcnter () , ball . gtMass () ,

bitll. gct Velocity () , close rBall . getCenter () , closerBall . gctMass () . closeerBall.

get Velocity ()) ;

if(PhysicsSirmulator. isInc:lastic ()) {

ball .sct Vclocity (veloc'itics . l . times (PhysicsSimulator . get Elasticity ())) ,

clos: rBall .s t Velocity ( veclocities . cv2. timre s( Physic:sSi'mualator. gctElasticity () ) ;

655 if(bunch:s. get(ball) != null) {

bunches. get ( ball) . rcmoveBall ( ball) :

// bunchcs . put( ball . null) ;

bu n ches . rrmove( ball) ;

660 if(bunches. get(closerBall) != null) {

bunches. gct(clos r Ball) .rermoet:Ball (b all);

// Ibunches .put (closer Ball , n ll) ;

bunches . rcrmovte: ( clos erB all) ;

665 } Alse {

ball .set Vclocty (veloc:ities . vl)

clos,:r Ball .s:t V loc ity(v locitt . v2):

670 */
Geometry. VectPair velocities = Geometry. reflectBalls(ball.getCenter() , ball.getMass(),

ball. getVelocity() , closerBall . getCenter() , closerBall .getMass() , closerBall.

getVelocity () );

if( PhysicsSimulator. isInelastic ()) {

// only change the velocity along the: direction that the balls touch

Vect diff = closerBall . getCenter ().minus(ball .getCenter ()).unitSize() ; // vector efromrn

clos :rBall to ball

675 Vect vellpara -= diff.times(velocities.vl.dot(diff));

Vect vellperp = velocities.vl.minus(vellpara);

Vect vel2para = diff.times(velocities .v2.dot(diff));

Vect vel2perp = velocities.v2.minus(vel2para);

stop ball front. getting arbitrarily close to zero velocity so that it doesn 't keep

bouncin9 straight into ball

680 // if ( eel:lpaera . le:ngth() < PhysicsSimulator. !ge:tComple:te.lyInclasticThresh())

7c,' :lIpara = Vect.ZERO;

// c:lIpara = vcllpara . tirnimcs(PhysicSimrrulator. ge:tElasticita ()) :

Vect velInelasticPara = vellpara . times( ball .getMass() ) . plus( vel2para . times( closerBall

getMass( ))). times(1/(ball. getMass()+closerBall.getMass()));

685 vellpara = vellpara . times ( PhysicsSimulator . get Elasticity () ) . plus ( vellnelasticPara . times

(1-- PhysicsSimulator . getElasticity ()));

ball. setVelocity ( vellpara. plus ( vellperp ) ) ;

// if (fc l2p ara . length () < PhUys• csSim ulator. ygtCo mplet clyIn: lastic Thre: h ())



// vel2para = Vect.ZERO;

// else

690 // vel2para = vel2para. times (PhysicsSimulator. ge tElasticity ());

vel2para = vel2para. times(PhysicsSimulator. getElasticity()). plus(vellnelasticPara times

(1-PhysicsSimulator . getElasticity ()) );

closerBall . setVelocity (vel2para. plus( vel2perp));

// ball .set Velocity (v e locities . vl . times (PhysicsSimulator. e tElasticity () ;

// closerBall . set Velocity (ovelocities . .o2. timcs ( PhysicsSimulator. getElasticity ())) ;

695 } else {

ball . setVelocity ( velocities .vl);

closerBall . setVelocity ( velocities .v2);

}
if ( ball . getVelocity () . minus( closerBall . getVelocity ()) . length () < epsilonVelocity && ball

.getVelocity () .length () < epsilonVelocity && closerBall . getVelocity () .length () <

epsilonVelocity) {

700 return false;

// activeBalls [firstCollisionIndex] = false:;

} else {

ball . set Velocity ( PhysicsSimulator . updateVelocity ( ball . getCenter () , ball . getVelocity () ,

collisionTime+velocityUpdateTime));

closerBall . setVelocity ( PhysicsSimulator . updateVelocity ( closerBall . getCenter () ,

closerBall . getVelocity () , collisionTime+closerBallVelocityUpdateTime ))

705 // ball . set Velocity (PhysicsSimulator. update Vclocity (ball . getCcnter () , ball . gye t Velocity ()

actualTime)) )

return true;

}
// retturn true;

} else if (reflector. isCircle()) {

710 // ball . sctPosition (ball . gEtPosition () . plus (ball . yet Velocity () . unitSize () . times(

collisionDistancc . le'ngth () - cpsilonSpace:))) ;

ball . setPosition ( ball . getPosition () . plus ( ball . get Velocity () . times( collisionTime)));

// repaint the original and new position of the ball

if(!debug) {

board. repaint (origBallBounds);

715 board.repaint(ball.getBounds());

}
if ( reflector. isTranslating()) {

if ( reflector .isHoriz ()) {

ball . set Velocity(Geometry. reflectCircle (reflector. getCircle ().getCenter (), ball.

getCenter () , ball. getVelocity ().minus(new Vect( reflector .getTransVelocity (), 0.0)

) , reflector

720 .getGizmo() . getReflection())):

} else f

ball. set Velocity (Geometry. reflect Circle ( reflector .getCircle () . getCenter () , ball.

getCenter (), ball .getVelocity() .minus(new Vect(0.0, reflector. getTransVelocity())

) , reflector

.getGizmo (). getReflection ()));

725 } else if (reflector. getAngularVelocity() == 0.0) {

ball. set Velocity (Geometry. reflectCircle ( reflector . getCircle () . getCenter (), ball

getCenter (), ball.getVelocity (), reflector .getGizmo() . getReflection()));

} else {

ball .setVelocity (Geometry. reflectRotatingCircle ( reflector . getCircle() , reflector.

getCenter() , Math.toRadians(reflector.getAngularVelocity() , ballPerimeter , ball.

getVelocity () ,

reflector .getGizmo() . getReflection ())

730 }

if(PhysicsSimulator.isInelastic() && bunches.get(ball) != null) {

bunches, get ( ball) . removeBall ( ball);

// bunches .put (ball , null);



735 bunches. remove( ball) ;

if (ball. getVelocity () .length() < epsilonVelocity) {

return false;

740 // ac:tiivBalls /ftrstCollisionIndcr] = fals:;

} else {

ball . setVelocity( PhysicsSimulator . updateVelocity ( ball . getCenter () ,ball . getVelocity () ,

collisionTime+velocityUpdateTime));

return true;

745 } else {

// ball . setPosition (ball .( Cta Position () . pllus (baull. 9 t V:glocity () . unintSiz () timnrs (

collisionDi.itancc . length () - epsilonSpacc )));

ball . set Position ( ball . getPosition () . plus( ball . getVelocity () . times( collisionTime ) )

// repaint thc: or ginal and new position of the ball

if(!debug) {

750 board. repaint (origBallBounds);

board. repaint (ball .getBounds () );

if ( reflector . isTranslating () {

if ( reflector. isHoriz ()) )

755 ball . setVelocity (Geometry. reflectWall ( reflector . getLineSegment () , ball . getVelocity () .

minus(new Vect(reflector. getTransVelocity() , 0.0) , reflector .getGizmo()

getReflection () ));

} else {

ball. setVelocity (Geometry. reflectWall (reflector .getLineSegment() , ball. getVelocity().

minus(new Vect(0.0, reflector. getTransVelocity())), reflector.getGizmo().

get Reflection () ));

} else if ( reflector . getAngularVelocity () == 0.0) {

760 ball.setVelocity (Geometry. reflectWall( reflector . getLineSegment() , ball. getVelocity()

reflector . getGizmo () . getReflection ( ) ) ) ;

} else {

ball . setVelocity( Geometry . reflectRotatingWall ( reflector . getLineSegment() , reflector.

getCenter () . Math. toRadians( reflector. getAngularVelocity ()), ballPerimeter, ball.

getVelocity () ,

reflec tor . getGizmo () . get Reflection ()) )

765

if(PhysicsSimulator.islnelastic() && bunches.get(ball) != null) (

bunches. get ( ball) . removeBall ( ball )

/ unch es . put ( ball , null) ;

bunches. remove( ball)

770 1

if ( ball getVelocity () .length () < epsilonVelocity ) (

return false:

,// activer Balls / firstCollisionlnd r/ = false;

775 ) else {

ball setVelocity ( PhysicsSimulator . updateVelocity( ball. getCenter( , ball. getVelocity() ,

collisionTime+velocityUpdateTime)) ;

return true.

}

780 }

* Stops thes tratnslating components of the relflec torList such as Jczzmos and Paddles

785 * (rc,:qaurryc s rcefl:ctorLst !t = nIlI



* rcffect Determines whether any of the translating reflectors intersect or will intersect

with any of the gizmos (or balls) on the board and calls the proper method to stop

further

* translation

private void stopMovers(java. util. List reflectorList) {

790 Iterator reflectors = reflectorList.iterator();

while (reflectors .hasNext() ) {

Reflector reflector = (Reflector) reflectors.next();

if (reflector. isTranslating()) {

Rectangle rect = null;

795 // System . out. println (" trans Vel " +

/// reflector. gtetTrans Velocity ()) :

if (! reflector. isCircle()) {

// Rectanglc rcct = null;

LineSegment Is = reflector. getLineSegment ()

800 if (reflector .isHoriz ())

if ( reflector .getTransVelocity () > 0) {

rect = new Rectangle((int) Is.pl().x() , (int) Is.pl().y(), (int) (reflector.

getTransVelocity() * currentDelay / 1000.0) , (int) (Is.p2().y() - Is.pl().y()

} else {

rect = new Rectangle((int) (Is.pl().x() + (int) (reflector .getTransVelocity() *

currentDelay / 1000.0)), (int) is.pl().y(), -(int) (reflector.

getTransVelocity ()

805 * currentDelay / 1000.0), (int) (ls.p2).y() - Is.pl().y()));

// if(board.o'eorlaps(rect)) {

// ((sc02. gb . gobjects . Jezzenmo) reflector . getGizmo()) . stopGrowing (reflector);

// }
810 } else {

if ( reflector .getTransVelocity() > 0) {

rect = new Rectangle((int) Is.pl().x(), (int) Is.pl().y(), (int) (ls.p2().x() -

is. pl().x()) (int) ( reflector .getTransVelocity() * currentDelay / 1000.0));

} else {

rect = new Rectangle((int) Is .pl().x() , (int) (s .pl().y() + (int) (reflector

getTransVelocity() * currentDelay / 1000.0)), (int) (Is.p2().x() - Is.pl().x

815 -(int) ( reflector. getTransVelocity() * currentDelay / 1000.0));

}

// if(board. o'oerlaps ( rcct)) {

// (( se• 12. gb . go je c ts . .Iczzmo) refl ctor. getGizrno ()) . stopGrowi• ( refl c tor);

820 // }
} else {

// Rectangle rect = null:

// System . out. printIn ("trans Vel " +

// reflcctor . get Trans Velocity () ) ;

825 Circle c = reflector.getCircle();

// System. out. printin (" ccntcr is " + c. gctCcntcr () t "

// and radius is " - c. gtRadius ()) :

if (reflector .isHoriz ()) {

if (reflector.getTransVelocity() > 0) {

830 rect = new Rectangle((int) (c.getCenter().x() + c.getRadius()), (int) (c.

getCenter() . y() - c.getRadius()) ,

(int) (reflector. getTransVelocity() * currentDelay / 1000.0) , (int) c.

getRadius() * 2);

// System. out. printin (" rectangle is " + re:ct);

} else {

rect = new Rectangle((int) (c.getCenter().x() - c.getRadius() + reflector.

getTransVelocity() * currentDelay / 1000.0) , (int) (c.getCenter().y() - c.



getRadius()),

835 -(int) ( reflector. getTransVelocity() * currentDelay / 1000.0), (int) c.

getRadius() * 2);

}
} else {

if ( reflector. getTransVelocity() > 0) {

rect = new Rectangle((int) (c.getCenter().x() - c.getRadius()), (int) (c.

getCenter() .y() + c.getRadius()),

840 (int) ( reflector. getTransVelocity() * currentDelay / 1000.0) , (int) c.

getRadius() * 2);

} else {

rect = new Rectangle((int) (c.getCenter().x() - c.getRadius()o, (int) (c.

getCenter().y() - c.getRadius() + (reflector.getTransVelocity() *

currentDelay / 1000.0)),

(int ( reflector .getTransVelocity() * currentDelay / 1000 0), (int) c.

getRadius() * 2);

845 }

if (!rect.intersects(reflector.getGizmo().getBounds)) { // to

// protect

// from

850 // false

// pos i't t:

// of
// overlapping

// itself
855 List rectOverlaps = board.overlapsReturnList(rect, -1, board.getMode() != GraphArea.

JEZZJIODE && !(reflector.getGizmo() instanceof sel02.gb.gobjects.Paddle));

if (rectOverlaps.size() > 0) {

// System. out. println ("' overlaps art. +"

// re:ctOerlaps);

if (reflector.getGizmo() instanceof sel02.gb.gobjects.Jezzmo) {

860 ((se102.gb.gobjects. Jezzmo) reflector.getGizmo()).stopGrowing(reflector

rectOverlaps );

} else if (reflector.getGizmo() instanceof sel02.gb.gobjects. Paddle) {

((se102.gb.gobjects. Paddle) reflector .getGizmo()).stopMIoving(reflector ,

rectOverlaps);

}
}

865

870 // savc thIes, arrays s, new one don 't haove to be allocated

Ball [I lastBallArray = new Ball [0];

Reflector [] lastReflectorArray = new Reflector 10];

/**

875 * Each timr:e the timecr goes off this method is called to update the board

* QOmodifics board . thcGizmos , board. therBalls

* .c:ffe;cts D:terminc:s if any of the: gizmos needs a repaint and calls such on the: corrEct

Iportion of the board. Compiles a list of all re:flcctors of all the gizmos and stops any

translating

* gizmos if they will overlap another gizmo in this period. Calls the loop the

performs physirs updates.

880 ./

public void actionPerformed(ActionEvent evt) {

List<Gizmo> gizmoList = board.getGizmos() ;



List<Ball> ballList = board.getBalls ();

Iterator<Gizmo> gizmos = gizmoList . iterator ();

885 Gizmo gizmo;

List<Reflector > reflectorList = new ArrayList<Reflector >();

Rectangle bounds;

while (gizmos . hasNext()) {

gizmo = gizmos. next ();

890 if (gizmo. needsRepaint () {

bounds = new Rectangle (gizmo. getBounds()) ;

bounds. grow(1, 1);

board. repaint (bounds);

895 reflectorList . addAll(gizmo . getPerimeter( currentDelay));

}
stopMovers( reflectorList)

if(ballList.size() != lastBallArray.length) {

900 lastBallArray = new Ball [ ballList . size () ]

I
if( reflectorList .size() != lastReflectorArray .length) {

lastReflectorArray = new Reflector [ reflectorList . size ()];

905

arrayLoopOverlapProofMutualAttraction ( ballList . toArray( lastBallArray) , reflectorList

toArray( last ReflectorArray)

910 }

Listing A.2: Quantum dot simulation initialization and measurement class.
package sel02.gb;

import java.util.*;

import java.awt.*;

5 import java.awt.geom.•;

import physics.*;

import sel02.gb.util.*;

import sel02.gb.gobjects.*;

10 import java. io. BufferedWriter;

import java. io .FileWriter;

import java. io . IOException;

import java text . NumberFormat;

15

public class FileDepositer {

private GraphArea board;

private Runner runner:

20 private int milliFrameDelay = 20;

private int milliMovieFrameDelay = 40;

private int movieFrameRate = 1000/milliMovieFrameDelay;

private double baseMass = 1.0; // nominally measured in kg but is actually arbitrary relative

to other paramretcrs

private Random random;

25 private double boardDimension = 600;

// privatt FillcRcaderWriter rw;

private double[] diameterArray;



private BoardToMovie. ImageSourceStream movieSource;

30 public FileDepositer(boolean centerGravity) {

board = new GraphArea((int )boardDimension ,( int)boardDimension , centerGravity);

PhysicsSimulator .setGravity (25) ;

PhysicsSimulator .setFriction (0.025 , 0.025);

runner = new Runner(board , milliFrameDelay , true);

35 random = new Random(154);

// rwu = ncwu FilcR:adcrWritcer() ;

public void reset (boolean centerGravity) {

40 reset ( centerGravity , false) ;

public void reset (boolean centerGravity, boolean resetRandom) {

board = new GraphArea (( int ) boardDimension , (int) boardDimension , centerGravity):

45 PhysicsSimulator . setGravity (25) ;

PhysicsSimulator . setFriction (0.025 , 0.025);

runner = new Runner(board, milliFrameDelay , true);

if(resetRandom) {

random = new Random(154);

50 }

public void startMovie(String filename) {

BoardToMovie movie = new BoardToMovie (( int ) boardDimension , ( int ) boardDimension , ( float )

movieFrameRate , BoardToMovie. createMediaLocator ( filename ));

55 new Thread(movie) .start () ;

BoardToMovie. ImageDataSource dataSource = movie. getlmageDataSource ()

while(dataSource == null) {

Thread. yield ()

dataSource = movie . getImageDataSource () ;

60 }

movieSource = dataSource . getImageSourceStream()

try I

synchronized (movie) {

while (! movie. isReadyToReceive () {

65 movie .wait () ;

} catch ( InterruptedException ex) (

70 System .out. println ("movie-is-ready-to-receive-images"

public void stopMovie() {

movieSource . set Ended (true) ;

75 }

* iparam tirm:: t imt;rl in maill•seconds that .we want to st ep thf: board forward

* O.ret.Lurns actual tim: stepped

80 */

public int advance(int time) {

int timeSoFar = 0;

while(timeSoFar < time) {

runner . runUpdate () ;

85 if(movieSource != null && timeSoFar % milliMovieFrameDelay == 0) {

movieSource . consumeNewlmage( board . getBoardImage (( int ) boardDimension , ( int) boardDimension)



//movieSource. notify () ;

// System. out. printin (" sent new movie frame");

90 timeSoFar += milliFrameDelay;

}
return timeSoFar;

95 /*

* Adds a ball to the board at y = 100 and z chosen evenly from 100 to boardDimension-100

* @param meanDiameter : The mean ball size to be added

* Oparam stddev : the standard deviation in ball size in units of the meanSize i.e. 0.05 is

0.05* meanSize

* rcquires : meanDiamcter > 2*runner. gc tEp silo nSpact: () which should be cxtremely small

100 * @rcturns : actual diameter of the ball added

public double addRandomBallAtTop(double meanDiameter, double stddev, boolean colorize) {

Vect pos = new Vect (( boardDimension -200)*random. nextDouble () +100,100)

Vect vel = new Vect(0,0);

105 double diameter;

if(stddev == 0) {

diameter = meanDiameter -2*runner . getEpsilonSpace ( ) ;

} else {

diameter = meanDiameter+meanDiameter*random. nextGaussian ()*stddev -2*runner . getEpsilonSpace

110 }
if(colorize) {

Color color = Color.GREEN;

if(stddev != 0.0)

color = new Color((float )Math.min(1.0 ,Math.exp((diameter--meanDiameter-stddev * meanDiameter

)/(stddev*meanDiameter))) ,( float )Math. exp(-Math. abs( diameter-meanDiameter) /(stddev*

meanDiameter)) ,( float )Math. min(1.0 ,Math. exp(-(diameter-meanDiameter+stddev.

meanDiameter) /(stddev*meanDiameter) ) ) ) ;

115 board . addBall (new Ball (pos , vel , diameter , baseMass , color));

} else {

// board. addBall (new Ball (pos , vcl , darnmeter , bascMass*Math. pow(diameter/2,3)/Math. pow(

meanDiametcr/2 , 3)));

board. addBall (new Ball (pos , vel , diameter , baseMass));

}
120 return diameter;

* Adds a ball to the board at a distance radius from the point center

125 * ;e.param meanDiameter : Tht: .mean ball size to be added

* Oparam stddt:e : the standard deviation in ball size in units of the meanSize i.e. 0. 05 is

0. 05* meanSize

* requaires : nmeanDiarneter > 2* runner. getEpsilon Space () which should be extreme ly small

* (ireturns : actual diameter of the ball added

*/
130 public double addRandomBallAtRadius(double meanDiameter, double stddev, Vect center , double

radius, boolean colorize) {

if(radius > center.x() II radius > center.y() II radius > boardDimension-center.x() II radius

> boardDimension-center .y()) {

System. out . print n (" Radius..too. large-for -s pecified .. center .- Could-attempt -to-add-a-bal 1 .. off-

of-board");

}
Vect pos = new Vect(new Angle(random. nextDouble()*2*Math. PI) ,radius);

135 pos = pos.plus(center);

Vect vel = new Vect(0,0);

double diameter;



if(stddev =.. 0) {

diameter = meanDiameter--2*runner . getEpsilonSpace ( ) ;

140 } else {

diameter =: meanDiameter+meanDiameter*random. next Gaussian ()*stddev -2*runner . getEpsilonSpace

// board. add Ball (new Ball (pos , vcl , diamcetr , baseMass*Math. pow(da'ameter/2,3)/Math. pow(

mceanDiam:tcr/2 3)) :

if(colorize) {

145 Color color = Color.GREEN;

if(stddev != 0.0)

color = new Color (( float )Math. min( 1.0 ,Math. exp ( ( diameter -meanDiameter-stddev *meanDiameter

) /(stddev* meanDiameter)) ) , (float ) Math. exp(-Math. abs( diameter-meanDiameter) /(stddev*

meanDiameter) ) , (float )Math. min (1.0 Math. exp( -(diameter-meanDiameter+stddev*

meanDiameter) /( stddev* meanDiameter) ) ) ) ;

board. addBall (new Ball ( pos , vel, diameter ,baseMass , color ) )

} else {

150 board. addBall (new Ball (pos , vel, diameter ,baseMass ));

return diameter

155 public double addRandomBallInRect(Vect topLeft, Vect bottomRight, double meanDiameter, double

stddev , boolean colorize , boolean relativeMasses ) {

return addRandomBalllInRect (topLeft , bottomRight , meanDiameter , stddev , colorize

relativeMasses , baseMass);

/.
160 * 0-rctuarns The diam iterr of th.r ball that was added or 0.0 if the ball would have overlapped

wrth another ball

* or been off of the board

*/
public double addRandomBallInRect(Vect topLeft, Vect bottomRight, double meanDiameter, double

stddev, boolean colorize , boolean relativeMasses , double mass) {

Vect vel = new Vect(O,0);

165 double diameter

if(stddev -=: 0) {

diameter = meanDiameter -2*runner .getEpsilonSpace ( ) ;

}-else (

diameter = meanDiameter+meanDiameter*random. next Gaussian () ,stddev -2* runner . getEpsilonSpace

170 }
Vect diff - bottomRight.minus( topLeft);

if( diff. x()-diameter < 0 II diff .y()-diameter < 0) {

System.out. println ("Use a-larger-grating -balls-with -diameter-=-" + diameter + "-can 't.fit."

175 Vect pos = topLeft . plus (new Vect (( di ff .x ()-diameter) *random. nextDouble () , ( di ff .y ( )-diameter)

* random nextDouble ( ) ) ) ;

if( overlapsBall (pos, diameter /2.0)) {

return 0.0;

if(pos.x() < topLeft.x() I pos.x()+diameter > bottomRight.x() IF pos.y() < topLeft.y() 1

pos.y()+diameter > bottomRight.y() ) {

180 System. out. println (" Position-somehow- fel 1 -outside-of-prescribed-area" ) ;

return 0.0;

//doublt. mas.s = bascMass;

if(relativeMasses) {

185 mass - baseMass*Math.pow(diameter/2,3)/Math.pow(meanDiameter/2,3);



if(colorize) {

Color color = Color .GREEN;

if(stddev != 0.0)

190 color = new Color((float)Math. min(1.0,Math. exp((diameter-meanDiameter-stddev*meanDiameter

) /(stddev*meanDiameter))) (float )Math. exp(-Math. abs (diameter -meanDiameter) /(stddev*

meanDiameter)) ,( float )Math. min (1.0 ,Math. exp(-(diameter-meanDiameter+stddev*

meanDiameter) /(stddev*meanDiameter))));

board. addBall (new Ball (pos, vel ,diameter ,mass, color));

} else {

board . addBall (new Ball (pos , vel, diameter ,mass));

195 return diameter;

I

public boolean overlapsBall(Vect position, double radius) {

// ArrayLtst<Ball> balls = board. gctBalls () ;

200 Iterator<Ball> iter = board. getBalls () .iterator();

while(iter.hasNext()) {

Ball otherBall = iter.next();

if (other Ball . get Position () . minus( position ) . length () < other Ball .getRadius ()+radius+2*runner

.getEpsilonSpace ()) {

return true;

205 }

return false;

}

210 public void makeSingleCluster () {

int numballsxeven = 2;

int numballsxodd = 3;

double rowdistance = 15.0*Math. sin(Math. PI/3.0);

int numballsy = 3;

215 for(int i = 0; i < numballsy; i++) (

for(int j = 0; i % 2 == 0 ? j < numballsxeven : j < numballsxodd; j++) {

board.addBall(new Ball(new Vect(j*15.0+(i%2==0?7.5:0) ,rowdistancesi) , new Vect(0,0) ,15.0,

baseMass )

}

220

public void makeHexagonalLattice () {

int numballsxeven = (int)( boardDimension /15.0);

int numballsxodd = numballsxeven -1;

225 double rowdistance = 15.0*Math.sin(Math.PI/3.0);

int numballsy = (int)(boardDimension/rowdistance);

for(int i = 0; i < numballsy; i++) {

for(int j = 0; i % 2 == 0 ? j < numballsxeven : j < numballsxodd; j++) {

board.addBall (new Ball(new Vect(j 15.0+(i%2==0?0:7.5) ,rowdistance* i ) new Vect(0,0) ,15.0,

baseMass)) ;

230 }

public void changeSomeBalls(double fractionBad) {

235 ArrayList<Ball> balls = board.getBalls();

for(int i = 0; i < balls.size(); i-++) {

Ball b= balls.get(i);

i f(random. nextDouble ( ) < fractionBad) {

b.setMass(2.0); // dcnotes bad balls

240 //leave ball black for non-radiatzng



} else {

b. setColor (Color .GREEN);

}

245

public double findRadiativeFraction () {

ArrayList<Ball> balls = board. getBalls ();

int numRad =: 0;

250 int numInterior = 0;

int numballsxeven = (int)(boardDimension/15.0);

int numballsxodd = numballsxeven -1;

double rowdistance = 15.0*Math. sin (Math. PI/3.0);

int numballsy = (int)(boardDimension/rowdistance);

255 ///Systr:m. out . printin. (" nurmballsy = " + numballsy);

int rowNum =: 0;

int ballNum = 0;

for(int i = 0; i < balls.size(); i++) {

if(rowNum :> 0 && ballNum > 0 && rowNum < numballsy -1 && ballNum < ((rowNum%2==0)?

numballsxeven -: numballsxodd -1)) {

260 numInterior-++:

if(balls.get(i).getMass() != 2.0 && balls.get(i-1).getMass() != 2.0 && balls.get(i+-l).

getMass() != 2.0) {

//calclttate the position of other nciighbors

if( balls.get( i-numballsxeven) .getMass() != 2.0 && balls.get( i-numballsxeven+l).getMass

() != 2.0 &&

balls .get( i+numballsxeven-1). getMass() !=- 2.0 && balls .get( i4-numballsxeven) .get Mass

() != 2.0) {

265 numRad-++;
}

// ki:p triack of row anid colu'mn

270 ballNum++;

if(rowNum % 2 == 0) {

if (ballNum == numballsxeven) {

ballNum = 0;

rowNum --+;

275 //Syst" rm.. o ut . p r'in tin ( "rowN'urn

} else {

if(ballNum =-= numballsxodd) {

ballNum = 0;

rowNum-++;

//S y s t im. o itt . p r in t I n (i" rowNum

- " I ro.wNIum - "4 , I = " .- i )

= " - rowNr 4- ", i = " 4 i0)

285 return (double)numRad/(double) numlnterior ;

public void refillDiameterArray () {

ArrayList balls = board. getBalls();

290 diameterArray = new double[ balls . size () ];

for(int i = 0: i < balls.size(); i++) {

diameterArray[ i = 2*(( Ball) balls .get( i )).getRadius ( ) ;

I

public void colorizeBalls (double meanDiameter,

ArrayList balls = board.getBalls();

double stddev) {



Iterator ballIter = balls. iterator ();

Ball ball;

300 if(stddev > 0.0) {

while(ballIter .hasNext()) {

ball = (Ball)balllter .next() ;

// b all . sctColor (new Color ((flo at )Math. exp(-Math. abs (2* ball . getRadius ()-meanDiarmeter-

stddev * acanDiamneter) /(stdden * meanDiam•:ter)) , (flo at )Math. czxp(-Math. abs (2* ball . getRadius ()-

Smer:anDiametter) /(stddetv* meanDiamctter)) ,(float)Math. exp(-Math. abs (2* ball . getRadius ()-

meanDiamreter+stdde'e* mtan Diameter) /( stddev* meanDiameter ) ) ) ;

ball . setColor (new Color(( float )Math. min (1.0 ,Math. exp((2* ball. getRadius ()-meanDiameter-

stddev*meanDiameter)/(stddev*meanDiameter ))) ,(float )Math. exp(-Math. abs(2* ball.

getRadius() -meanDiameter)/(stddev*meanDiameter)) ,(float )Math. min(1.0 ,Math. exp(-(2*

ball . getRadius ( )-meanDiameter+stddev*meanDiameter) /( stddev*meanDiameter )))));

305 }
} else {

while(balllIter .hasNext ()) {

ball = (Ball) balllIter. next ();

ball . setColor (Color .GREEN);

310 }

public void saveBoard( String filename) {

315 FileReaderWriter. saveFile(filename , board ,true);

}

public void loadBoard ( String filename ) {

board . loadGraphArea ( FileReaderWriter . loadFile ( filename) );

320 }

public void saveBoardlmage( String filename) {

try {

board . saveBoardImage ( filename , ( int) boardDimension , ( int) boardDimension );

325 } catch (IOException ex) {

System .out. print In (" Saving-board-image-.failed :-" + ex . getMessage () );

330 /*

* Writes all the values in array to the file filcname seperated by spaces and ending iwith a

new linc:

* or prints failuart mecssage to std output.

public void saveArray(String filename , String linePrefix , double[] array) {

335 try (

FileWriter writ = new FileWriter(filename ,true); // append to currcnt file

BufferedWriter writer = new BufferedWriter (writ);

if(linePrefix != null && linePrefix.length() > 0) {

writer . write (linePrefix);

340 writer .write ( ' ');

for(int i = 0; i < array.length; i++) {

writer . write(Double. toString (array i]) );

if(i < array.length - 1) {

345 writer . write( '-');

writer .newLine();

writer, close();

350 } catch (IOException ex) (

System. out. println ("Saving.double-array.in- file-" ±- filename + "-failed." ) ;



}

355 /*

* Writes all the values in array to the file filcname scperated by spaces and ending 'with a

* or prints failuare messag
c 

to std output.

public void saveArrayLineSepOverwrite(String filename, double[] array) {

360 try {

FileWriter writ = new FileWriter(filename); // overwrite current file

BufferedWriter writer = new BufferedWriter(writ);

for(int i = 0; i < array.length; i++) {

writer. write(Double. toString(array [ i ));

365 writer . newLine() ;

}
writer. close();

} catch (IOException ex) {

System. out. println ( " Saving-double.array-in .. fi le " + filename + ".-failed." )

370 }

/.
* Prints th :e elemc:nts of arrayl and array2 side by side to file filnaime: with 2 columns

delimnitcd by a space.

375 * 4*re.quaires arrayl . length == array2. length

* r•rff:cts overwritcs crzi.stineg file

public void saveArraysAsColumns(String filename , double[] arrayl, double[] array2) {

try {
380 FileWriter writ = new FileWriter(filename); // ot:erwrite curr:ent file

BufferedWriter writer = new BufferedWriter(writ);

for(int i = 0; i < arrayl.length ; i++) {

writer, write(Double. toString (arrayl [i ));

writer, write( '_');

385 writer. write (Double. toString (array2 [i])),

writer .newLine()

}
writer. close ();

} catch (IO•Exception ex) {

390 System. out. printn ("Saving-double-array infi le" -+ filename - "-fai led.");

395 * Calculatets thte packing pararmctcrs of the board in file filenamne in the layers that are

d ist ancc:: From ,Botto nm

" pt6paramr filename. : ntame of file that contains ball inforrntatton in full board formeat

* OtLpalram distanctrFo roBottom : dtstanc : in p z:rls from the bottoimr thait should be ctonsid c :rtd in

the. packitng calculations

* Winmodifies board

400 public double[l determinePacking(String filename. double distanceFromBottom, double depth,

double distanceFromSides) (

loadBoard( filename):

return determinePacking(distanceFromBottom, depth, distanceFromSides);

405 public double [ determinePacking(double distanceFromBottom, double depth, double

distanceFromSides )

return determinePacking (new Rectangle2D . Double ( distanceFromSides , boardDimension-



distanceFromBottom , boardDimension -2*distanceFromSides ,depth) ) ;

}

public double[] determinePacking(Vect center , double radius) {

410 return determinePacking (new Ellipse2D .Double( center .x()-radius ,center .y()-radius ,2* radius ,2*

radius));

public double[] determinePacking(String filename, Vect center, double radius) {

loadBoard ( filename) ;

415 return determinePacking(new Ellipse2D .Double(center .x()-radius ,center y()-radius ,2*radius ,2*

radius));

}

public double[] determinePacking(Shape bounds) {

ArrayList balls = board.getBalls()

420 double excessSeparation = 0;

double averageSpace = 0;

double averageNeighbors = 0;

double totalBalls = 0;

Iterator currentBalls = balls. iterator();

425 while(currentBalls .hasNext()) {

Ball ball = (Ball) currentBalls . next();

if (!bounds. contains (ball .getCenter (). toPoint2D()))

continue;

// if (ball . getCente:r () . y () < boardDimnension-distance:FromBottom )

430 // co n t in c ;

// if ( ball . gtCcnte r() .y () > boardDimrnnsion-distance:FromBottom+d;:pth) // f depth >

distance:FromBottom, all balls are in

// con tinue: :

// if (ball . getCenterr() .r() < distanceFromSides II ball . gctCentr () .() > boardDimension-

distancc FromSides )

// continue :

435 totalBalls-±-+;

Iterator otherBalls = balls. iterator();

int neighbors = 0;

while (otherBalls .hasNext () {

Ball otherBall = (Ball)otherBalls. next();

440 if( ball . equals(otherBall )

continue;

Vect separation = ball.getCenter(). minus(otherBall getCenter());

// only works for reasonable size distributions (if some radit are: more: than twice others

the:n it is incorrect)

if(separation. length() > ball.getRadius )+2*otherBall .getRadius())

445 continue;

neighbors+-+;

excessSeparation += Math.pow( separation .length ()-( ball .getRadius ()+otherBall .getRadius())

,2) ;

averageSpace += separation.length ()-(ball .getRadius ()-+otherBall getRadius());

// if (separation . length () -(ball .getRadius ()+othcrBall . getRadius () ) > ball . getRadius ()) {

450 // System. out. printin ("Error: Two balls thought to bie neighbors is more, than the radius

of a ball away.");

// }
}
averageNeighbors += neighbors;

}
455 double rmsPerBall = Math.sqrt( excessSeparation/( averageNeighbors)); // dzvatding by

averagcNeighbors because; we 're over counting

averageSpace /= averageNeighbors; // again a-eerageNe:ighbors was the number of times we summed

the distanc'es

averageNeighbors /= totalBalls;



System.out. printin("TheJRMS-spacing-.perball-is." + rmsPerBall + "-and-the-average-spacing,

per-ball-is." + averageSpace + "-on-" + totalBalls + "-balls-each-having." +

averageNeighbors + "-neighbors-on-average.");

return new double[] { rmsPerBall , averageSpace , totalBalls , averageNeighbors };

460 }

public double[] determinePackingInterior () {

ArrayList balls = board. getBalls();

double excessSeparation = 0;

465 double averageSpace = 0;

double averageNeighbors = 0;

double totalBalls = 0;

Iterator currentBalls = balls. iterator()

while(currentBalls .hasNext ()) {

470 Ball ball = (Ball)currentBalls .next();

// if (! hounlLds . contains ( ball . g tCt Cintcr () . toPoint2D () )

// o n t i 1:

if (ball . gctCcnt:cr () .y () < boardDinmtension-distanccFromBottom)

// ciontini, ;

475 // if (b all . getCnter () .y () > boardDimi.nsion-distanctFromBottom+--dtpth) // if depth >

dis ta'nct:FromrrnBottomn (all balls arc in

// conti n a : ;

// if b all .getCentcr () .x() < distance FromSides II ball . gtCCntcr () .:r() > boardDimncnsion-

distancc Fro LSides )

// : o L t, in i: :

// to taalBalls +.;

480 Iterator otherBalls = balls . iterator();

int neighbors = 0;

double excessSeparationTemp = 0;

double averageSpaceTemp = 0;

while(otherBalls .hasNext() ){

485 Ball otherBall = ( Ball) otherBalls. next ()

if( ball .equals( otherBall))

continue;

Vect separation = ball.getCenter ().minus(otherBall .getCenter())

// only works for reasonable size distribations (if somrr: radiL arc. mrore than twice others

th 'n it is irncorrc: t )

490 if(separation. length () > ball.getRadius()--1.5*otherBall.getRadius()

continue;

neighbors+f+;

excessSeparationTemp += Math.pow( separation .length()--(ball . getRadius ()+otherBall.

getR adius()) ,2);

averageSpaceTemp += separation .length ()-(ball .getRadius()+otherBall .getRadius() ;

495 // if ( stparat ton111 . len!th () -(ball .gctR adis ()+othc rBall . gctRadiLs ()) > ball . getRadus ( ) ) {

// Systr:m. out. println ("Error: Two balls thought to be ncighbors is more thain the radlaus

of a ball away. ?")

if(neighbors > 4) {

500 totalBalls++;

averageNeighbors += neighbors;

excessSeparation += excessSeparationTemp;

averageSpace += averageSpaceTemp;

505
double rmsPerBall = Math. sqrt(excessSeparation/(averageNeighbors) ; // dividing by

averagLI Ncighbors ber:cause "we 're over counting

averageSpace /= averageNeighbors; // again averayeNe ighbors was the nurmber of tmrrics we summcd
th:c dtstanccs

averageNeighbors /= totalBalls;

System.out. println("The-RMS-spacing-per-ball-is'" + rmsPerBall + "-and-the-average-spacing.



per-ball-is." + averageSpace + "-on-" + totalBalls + ".balls -each-having." +

averageNeighbors + "- neighbors -on-average. " ) ;

510 return new double[] {rmsPerBall, averageSpace , totalBalls , averageNeighbors};

/*
* Method to determine the amount of space filled by balls within a certain radius of

515 * the center of the board.

*/
public double determineFill(double radius) {

int num = 1000000;

int withinRadius = 0;

520 int inBall = 0;

Random rand = new Random(83);

Object[] balls = board.getBalls().toArray();

for(int i = 0; i < num; i++) {

double x = radius *(2* rand. nextDouble () -1);

525 double y = radius*(2*rand. nextDouble()-1);

if(x*x+y*y < radius*radius) {

withinRadius++;

x += boardDimension/2;

y += boardDimension/2;

530 // System. out. println(". = " - :);

// System. out. println ("y = " + y):

for(int j = 0: j < balls.length; j++) {

Vect center = ((Ball)balls[j ). getCenter();

// bSystcm. out. println (" Ball center = " + center);

535 double ballRadius = ((Ball)balls [j]). getRadius ();

// Syst:em. out . println (" Ball radius = " + ballRadius) ;

// System. out. printin("distance from center squared = +" (Math. pow(center. x ()--x,2)+Math

.pow(centcr.y ()--y,2)));

// System. out. println (" ball radius squared = " + ballRadius* ballRadius) ;

if((Math.pow(center.x()-x,2)+Math.pow(center.y()-y,2)) < ballRadius*ballRadius) {

540 // Systcrem. out. p rintin (" incremcnting in ball");

inBall++;

break;

}

545 }

// System.r.out.printin ("found fill " + inBall/withinRadius + " with " 4- withinRadius + " inside

the radius ");

return (double) inBall /(double) withinRadius;

550

/.
* Method to determine the amount of spacc filled by balls within a certain radius of

* the ccnter of the board.

* (4param : sorted array of iLnc:reasing radii. The fill will be calculated within each radius

and returned

555 */

public double[] determineFillWithinRadius(double [] radii) {

int num = 1000000;

int [] withinRadius = new int [radii . length];

int [] inBall = new int [radii .length ;

560 Random rand = new Random(83);

Object [] balls = board.getBalls().toArray();

double radius = radii [ radii. length --1);

for(int i = 0; i < num; i++) {

double x = radius *(2* rand. nextDouble()-1);

565 double y = radius*(2*rand.nextDouble()-1);



int firstIndex = Arrays.binarySearch(radii ,Math.sqrt(x*x+y*y));

if ( firstIndex < 0) { // unless xz^2+y ^2 eactly matches onc of the elcrnements it will be lcss

than zcro

firstIndex = -(firstIndex+1);

}
570 if(firstIndex != radii. length) {

for(int k = firstIndex; k < radii.length; k++) {

withinRadius [kl++;

}
x t= boardDimension/2;

575 y += boardDimension/2;

// Systrrim. out. prinl (n"x = " + x);

// Systtem. out. println ("y = " + y) :

for(int j = 0; j < balls.length; j++) {

Vect center = ((Ball)balls[j]) .getCenter();

580 // Systc:nm. out . printin ("Ball center = " + ccnter):

double ballRadius = ((Ball) balls [j]). getRadius ();

Systim. out. printin (" Ball radius = " + ballRadius)

Systcrm.onut. printin ("distance from center squartcd = " - (Math. pow( ccntc:r.x ()-x ,2) 4-Math

.pow( cctntr.y( ()-y,2)));

// Systcm. out . printin (" ball radius squared =" 4- ballRadius* ballRadis )

585 if((Math.pow(center.x()-x,2)+Math.pow(center.y()-y,2)) < ballRadius*ballRadius) {

// Syst7tm. out. pr7intln (" incrcrenting in b all ") ;

for( int k = firstIndex: k < radii.length; k++) {

inBall [kl++;

590 break;

595 // System.. ou.t. printin("found fill " + inBall/with.unRadius -+ " with " + withinRadius 4- " inside

the radius ');

double[] ret = new double[radii.length];

for(int i = 0; i < radii.length; i++) {

ret[i] = (double)inBall[i]/(double)withinRadius[i j

}
600 return ret;

public void testDetermineFill() {

board.addBall(new Ball(new Vect ( boardDimension/2-15.0/2.0, boardDimension/2-15.0/2.0) , new

Vect(0,0) ,15 ,1));

605 if(determineFill(3) != 1.0) {

System.out. printin ("Found-points-that-weren 't-inside-a-ball-when-all-should-have-been-

within -radius -3.")

return;

}
if(determineFill(7.5) != 1.0) {

610 System. out. println ("Found-points-that-weren 't-inside-a- ball-when-all -should-have-been-

within -radius .7.5.");

return;

double area30 = determineFill(15);

double actualArea30 = Math.PI*15*7.5/(Math. PI*30*15);

615 System. out. print in(" Area.calculated -by-determine, fi II -for-one-ball with-radius s-15-in-area.

with-radlius_30--=_" + area30 + "-analytically-thearea-=-" + actualArea30);

public void testDetermineFillWithinRadius() {

board. addBall(new Ball(new Vect(boardDimension/2 - 15.0/2.0, boardDimension/2 -- 15.0/2.0) , new



Vect(0,0) ,15,1));

620 double [( dummy = {3};

// dunmmy[0] = 3;

if(determineFillWithinRadius (dummy) [0] != 1.0) {

System. out. println("Found-points-that-weren ' tinside-a, ball.when.-all -should.-have-been-

within-radius_3.");

return;

625 }

dummy[0] = 7.5;

if( determineFillWithinRadius(dummy) [0] != 1.0) {

System .out. println ("Found-points that-weren 't-inside -a-ball when-all should have-been,

within-radius -7.5." );

return;

630 }
dummy = new double[]{3, 7.5, 15, 30};

double [] area = determineFillWithinRadius(dummy);

double[] actualArea = {1,1,Math.PI*7.5*7.5/(Math. PI*15*15) , Math.PI*7.5*7.5/(Math. PI*30*30)};

// double actualAreal5 = Math. PI*7.5*7.5/(Math. PI*15*15);

635 // double actualArea30 = Math. PI*7.5*7.5/(Math. PI*30*30)

for(int i = 0; i < dummy.length; i++) {

System. out. printn (" Using-determineFillWithinRadius-for -one-ball-with-radius-7.5- inside_

radius.=-" + dummy[ i ] + "-area.calculated-=-" + area[i] + "-analytically-thearea-=-"

+ actualArea[i]);

}

640

public double determinePearsonSpatialCorrelation() (

Object[] balls = (Object[])board.getBalls().toArray();

double xsum = 0;

double ysum = 0;

645 double xxsum = 0;

double xysum = 0;

double yysum = 0;

int numdata = 0;

double]] xs = new double[( balls.length*balls.length-balls.length)/2];

650 double[] ys = new double[(balls.length*balls.length-balls.length)/2];

for(int i = 0; i < balls.length; i++) {

Vect centerl = ((Ball)balls i ) .getCenter();

double radiusl =- ((Ball)balls[i]). getRadius();

for(int j = 0; j < i; j++) {

655 Vect center2 = ((Ball)balls j]).getCenter();

double radius2 = ((Ball)balls[j]). getRadius() ;

double x = centerl .minus(center2) . length ( ) -(radiusl+radius2 ) ;

double y = Math.abs(radiusl -radius2);

xs[numdata] - x;

660 ys[numdata] = y;

numdata++;

xsum -+= x:

ysum += y;

xxsum += x*x;

665 xysum += x*y;

yysum += y*y;

// if (nmrdata == 1) {

// Syste'rn. out. println ("x[0] = " + ) ;

// System. out. println ("xxsum[O] = " + xxsum);

670 // }

System. out. println ("numdata.=." + numdata);

// Systrm. out. printin (" average distance = " + xsum/numdata);
675 // System. out. prantin (" anerage radius difference = " 4 ysum/nu-mdata) ;



System.out. println(" r-=-" + xysum/Math. sqrt(xxsum*yysum)) ;

System . out . printin ("matlab.p_-=" + (xysum- 1.0/numdata*xsum*ysum) /(Math. sqrt ((xxsum-xsum*xsum/

numdata) *(yysum-ysum*ysum/numdata)))) ;

//Systcem. out. printin (" other math'world r = " + ('rysum-numdata*xsum* ysum)/Math. sqrt ((rxsum-

nmitdata* zsumt* xsum) * (yysum-numdata* ysam* ysum) )) ; wrong

// saecArraysAsColumns ( " xydata . dat " , :rs , ys) ;

680 double matlabValue = 0;

for(int i = 0; i < numdata; i++) {

double xO = (xs[il - xsum/numdata)/Math. sqrt (xxsum-xsum*xsum/numdata);

double yO - (ys[i] - ysum/numdata)/Math. sqrt (yysum-ysum*ysum/numdata);

matlabValue += xO*y0;

685 }

System. out. println ("other..computation-of.-matlab-value..=" + matlabValue);

return ( numdata*xysum-xsum*ysum) /Math. sqrt ((numdata*xxsum-xsum*xsum) *( numdata*yysum-ysum*ysum

690 public double determineLuminosity(double fractionBad, int totalExcitons) {

ArrayList<Ball> balls = board.getBalls();

Iterator<Ball> iterator = balls. iterator();

ArrayList <QuantumDot> dots = new ArrayList <QuantumDot>(balls .size ());

while( iterator . hasNext () ) {

695 Ball ball -= iterator. next();

boolean goodness = true;

if(random.nextDouble() < fractionBad) {

goodness = false: // dcnotes bad balls

//set ball black for non-radiating

700 ball . setColor ( Color .BLACK);

} else {

// if balls uncolored previously set good ones to grcen

if(ball .getCurrColor(). equals(Color.BLACK))

ball. sevtColor(Color.GREEN);

705 }
dots add(new QuantumDot( ball ,goodness ,false) );

}
int numRadiated = 0;

for(int i = 0; i < totalExcitons; i++) {

710 int exciteIndex - (int )Math.floor( balls. size ()*random.nextDouble())

dots. get ( exciteIndex ) . setExcited (true) ;

boolean radiated = determineRadiated( dots , exciteIndex);

if ( radiated ) numRadiated++;

715 return (double)numRadiated/(double) totalExcitons;

* Advances time: f'or an c:rciton at index: .si.tsng fJorst: r transfe:r

720 * iOrcturns : trua if the c.citon. radiatively r.laxed , false: if not

public boolean determineRadiated(ArrayList<QuantumDot> dots, int intialIndex) {

int index = intialIndex;

double radLife = 26.0; // in nanose:conds

725 double timestep = radLife/100.0;

double radProb = timestep/radLife; // per step

//Systet:m. out. prtpntln("crad prob =- " 4 radProb):

double forsterRadius = 15.0;//4.0; //in nanorertcrs

while(true) I

730 QuantumDot currentDot = dots.get(index):

if(!currentDot.isGood()) {

return false

}



ArrayList<QuantumDot> possibleTransfers = new ArrayList<QuantumDot>() ;

735 ArrayList<Double> transferProbabilities = new ArrayList<Double>() ;

double totalTransferProb = 0;

Iterator<QuantumDot> iterator = dots.iterator() ;

while(iterator .hasNext()) (

QuantumDot otherDot = iterator.next();

740 double dist = currentDot . getBall() .getCenter() .minus(otherDot . getBall() .getCenter())

length ();

if(dist == 0.0) {

continue;

}
double transRate = (1/radLife)*Math.pow(forsterRadius/dist ,6.0);

745 double probTrans = timestepstransRate;

if(random. nextDouble() < probTrans) {

// transferr can occur

possibleTransfers .add(otherDot);

transferProbabilities .add( probTrans ) ;

750 totalTransferProb += probTrans;

}

//Systernm.out. println (" total transfer prob without radiate = " + total Transfe rProb );

boolean radiatePossible = false;

755 if(random. nextDouble() < radProb) {

//System . out. p rintIn ("here ") ;

totalTransferProb += radProb; // add probability of radiation

radiatePossible = true;

760 if(totalTransferProb > 0) {

double choose = random. nextDouble()*totalTransferProb;

// check if should radiate: if we get to end of transfer list without

// transfering and total TransfcrProb has been increymnented by radProb

if(radiatePossible && choose > totalTransferProb-radProb) {

765 return true;

// now check if it tran sfe rs to another dot

// System. out. p'rin tnl (" total transfer prob = " + totalT.ransfrProb + " choose = " + choose

double runningTotal = 0.0;

770 iterator = possibleTransfers. iterator() ;

Iterator<Double> problterator = transferProbabilities . iterator ();

while(iterator . hasNext()) {

QuantumDot transferDot = iterator.next();

runningTotal += probIterator. next ()

775 if(choose < runningTotal) {

// then transfer to transferDot

currentDot.setExcited( false);

transferDot.setExcited(true);

//if(transferDot . isGood ()) {

780 index = dots. indexOf(transferDot)

break;

//} else
// return false ;

785 }

790

public double [([ runLinearGraphFillWithinRadius(double maxRadius, int numPoints) {

double incr = maxRadius/(double) numPoints;
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double [] radialAxis = new double[numPoints];

for(int i = 0; i < numPoints; i++) {

795 radialAxisli] = incr*(i+l);

double[] values = determineFillWithinRadius(radialAxis);

return new double[][] { radialAxis , values);

800

public void runUniform(double mean, int numLines) {

// douabl, rnc:an = 15:

// double dcv = 0:

// int nrumrBalls = (int.) (netrmrcLines* 600/rrme:an--Math. floor (n-wamLincs/2) :

805 // for(int i = ; i < numBalls; i-t+) {

// addRandecmBallA t.Top (me:an, dev) :

// advance (.10000) : // advance for 10 se:conds

// }
// iadvancr:(100000) : / advance: for 100 seconds at the end to set:tlc balls

810 // Systcem. o)t . printlnr (i de:tc:rminte:Packing (mcean* (numLine.s-1))) ;

runRandom(mean. 0, numLines);

public double[] runRandom(double meanDiameter , double stddev , int numLines) {

815 int numBalls = (int)(numLines*boardDimension/meanDiameter-Math. floor (numLines/2)):

System . out. println ("numBalls-=-" 4- numBalls);

for(int i = 0; i < numBalls; i++) {

addRandomBallAtTop( meanDiameter , stddev , true);

advance(5000); // advance for 10 seconds

820 }

System. out. println ("Done-introducing-balls .. Now-running- till -settled .");

advance(100000) ; // advance for 100 se:conds at the e:nd to settle balls

return deter minePacking ( meanDiameter *( numLines -1) , meanDiameter *( numLines -2) ,2* meanDiameter )

825

/*

* i'req:q'uoc re: c.• poset, cr raust be: created as cc:nit:r of gracctty to b : c:orrcct

*/

public double[] runRandomCenterGravity(double meanDiameter, double stddev, int numBalls) {

830 /*

h'/ .csir rSi, rn lattor . s e:tFric:t ionr (0.1, . 1 ) ;

dou bl I pack rlnPlane = 1.0/ 6.O* Math. PI* Math. sqr t 3) /0.74:// Math. P1/4 . 0:

double radic.s = Maith. sqrt (packinrgr!lPlarncc:*r.ernumBalls )*mteaenDiamrrte-r/2. 0: // average radias feli : lc

Syste•.m . ou -t . pr s. ti ('"final radius = "' radiucs):

835 diame.-tc:rA r1 = new:c dou blt [nurrBalls ];

for(rint i = 0: i < nrumBalls; itf-) (

radieus = Matht. srt(packrtngnl-Plaacc *i)*mrr:anDiame:te:r/2.0;

dt.mcctecrA :rra [ i. - addRcianrdomrrBallAtRadiRus (metanDarnmetc:r, s tdd.:v , Physic:sSimul ator-.

yetC:rnte:-rtOfGr-a.vcity () . r-adius- +3*rrc:manDicamcte:r-+-stcitddev*mec:rLanDiamrcter , Itrue: ) :

advancc:c(500) : // advanc. 1/2 s:econd

840C

Systemrr. out. pr-ntln ("Done introducing balls . Now ruannngy till se:tled .") ;

adcvanc(lcO(1500(0) ; // ad-vancc for 100 seconds at thc e'nd to se:ttlc balls

return de tc:rmrcncrPacking (PhysicsSimula tor . g etCe nte rO.fGrave ty () , radieus -2*,reranDiacm:tet:r)

*/

845 PhysicsSimulator set Friction (0.1 ,0.1);

return runRandomCenter ( meanDiameter , stddev , numBalls , PhysicsSimulator . getCenterOfGravity () );

850 * ,#.rcc.cqu'ircs de:positcr rmust bh: creatr:d as c:rnte:r of gravity to be: cor.rr:ct

*/
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public double[] runRandomCenter(double meanDiameter, double stddev, int numBalls, Vect center)

{
double packingInPlane = 1.0/6.0* Math. PI*Math. sqrt (3) ;//0.74;//Math. PI/4. 0;

double radius = Math.sqrt(packingInPlane*numBalls)*meanDiameter/2.0; // average radius filled

by hcp

855 System. out . println ("final -radius-=-" + radius);

diameterArray = new double [numBalls];

for(int i = 0; i < numBalls; i++) {

radius = Math. sqrt ( packingInPlanes i)*meanDiameter/2.0;

diameterArray [ i ] = addRandomBallAtRadius (meanDiameter ,stddev , center , radi us+3*meanDiameter+

stddev*meanDiameter , true);

860 advance(500) ; // advance 1/2 second

}
System. out . println (" Done-introducing -balls .. Now-running-t ill -isettled ." ) ;

advance(15000) ; // advance for 100 seconds at the end to settle balls

return determinePacking ( center , radius -2*meanDiameter) ;

865 }

public double (j runRandomAttraction (double meanDiameter , double stddev , int numBalls , boolean

relativeMasses) {

// Vect center: = new Vect( boardDimension/2, boardDimcnsion/2) ;

// double packinglnPlanc = 1.0/6.0* Math. PI* Math. sq rt (3) ;//0.74;//Math. PI1/4. 0;

870 //double radius = 3* Math. s qrt (packinglInPlanc * numBalls)* me.anDiamneter/2. 0;

// place all balls uniformly on the: board (addBallAt doesn 't allow ball-ball overlaps or off

of board)

diameterArray = new double [ numBalls ;

int numAdded = 0;

while(numAdded < numBalls) {

875 // double x -= random. nertDouble ()* radius ;

// double y = random. ne:xtDouble ()* radius :

// double: x = random. n:xtDoubl ()*(boardDime•nsion) : // could try to avoid adding off of

board

// double: y = random. nextDoublc ) *(boardDimcnsion) ;

//if (.* x-* y < radius*radius) {

880 // Vec:t pos = new V,:ctt(:r,y):

//pos = pos. plus (c:ntcr) :

diameterArray [numAdded] = addRandomBalllnRect (Vect .ZERO, new Vect(boardDimension,

boardDimension) ,meanDiameter , stddev , true, relativeMasses) ;

if(diameterArray [numAddedj > 0) ( // if ball actually added

numAdded++;

885 advance(1000);

}

System. out. println ("Done-introducing..balls .. Now-running-till -settled .");

890 advance(100000) ; // advance: for 100 seconds at the e:nd to settle balls

// return de:tcerminePacking (cent er , radius -2*mecanDiam:ctcr)

// return dAr te:rrrmincrPaicking (ne:w Ve:c t (boarddDirra :n sion /2, hoardDim e:ns ion/2) , boardDzmetnsion)

return determinePackingInterior ();

895

public double[] runRandomAttractionGrating (double meanDiameter, double stddev, int numBalls,

double gratingWidth, boolean relativeMasses) (

// add grating wall first Using a Ge:ne:ralGizmo

ArrayList list = new ArrayList(2);

ArrayList<Reflector > perimeter = new ArrayList<Reflector >(1);

900 perimeter .add(new Reflector(new LineSegment(0,0,boardDimension,0) ,null));

list .add( perimeter);

list .add(new Rectangle (0,0,(int )Math. floor (boardDimension) ,0));

board.addGizmo(new GeneralGizmo(new Vect(0,gratingWidth) , list));

diameterArray = new double[ numBallsJ;

102



905 int numAdded = 0;

while(numAdded < numBalls) {

// doubly: j = random. neatDouble ()*radius;

// double y = random. nextDouble ()*radius;

// double :r = random. ncxtDouble ()*(boardDimension) ; // could try to avoid adding off of

board

910 // double: y = random. nextDouble () *(boardDimension) ;

//if(zr*x+v*y < radius*radius) {

// Vrct pos = new Vert(x,y):

//pos = pos. plus (rc:nter) ;

diameterArray[numAdded] = addRandomBallInRect (Vect.ZERO, new Vect(boardDimension,

gratingWidth) ,meanDiameter ,stddev ,true, relativeMasses);

915 if(diameterArray [numAdded] > 0) { // if ball actually added

numAdded++;

advance( L000) ;

920 }

System. out. println ("Done-introducing-balls .. Now-running till -settled.");

advance( 100000); // advance for 100 seconds at the end to scttlet balls

// return de tcrmincPackrnvg (center , radius -2*rnmanDiamete:r) ;

// ret''aurn dc:ie t,:rnine Packing (nCew V:ct (boardDim rension /2, boardDimcension/2) , boa rdDimvnsion) :

925 return determinePackingInterior ()

public double[] runRandomAttractionBimodal(double meanDiameterl, double stddevl, double

meanDiameter2, double stddev2, double meanMass2, int numBalls, boolean relativeMasses) {

// Vcct center = new Vrct( boardDimens.ion/2, boardDimension/2) :

930 // doable pac kinlInPlane = 1.0/6.0* Math. Pl*Math. sq rt (3) ;//tJ. 74;//Math. P1/4. 0:

//do able ra"dius = 3* Math. sqrt (packing9lnPlant:* numBalls)*mrnanDzameter/2.0;

// place all ball blls uniformly on the board ( addBallAt docsn 't allow ball-ball ovecrlaps or off

of boarld)

boolean typel;

diameterArray = new double[ numBalls];

935 int numAdded = 0;

int numtypel = 0;

int numtype
2 

= 0;

while(numAdded < numBalls) {

/ double .r = random. ne:xtDouble () *radius ;

940 // doauble U = randomr n,:.xtDo'uble ()*radius;

// double . = ranrdorrm. rnxtDouablt:() *(boar dDim insion) ; // could try to a.void adding off of

// doubl. y = randorr. n;:rtDoublv: () * (boardDirmcnsion.) :

//if (.:*:Vr+y*y < radvuas* radivus ) {

// Veit pos = ,c':w Vect (. y);

945 //ppos = po. . plus (: : t: r);

type = random. nextBoolean ();

if(typel) I

diameterArray [numAdded] = addRandomBallInRect (Vect .ZERO, new Vect (boaIdDimension ,

boardDimension) ,meanDiameterl , stddevl ,true, relativeMasses) ;

} else {

950 diameterArray [numAdded] addRandomBallInRect(Vect .ZERO, new Vect(boardDimension,

boardDimension) , meanDiameter2 , stddev2 , false , relative Masses , meanMass2);

if(diameterArray [numAdded] > 0) { // if bull actually added

numAdded-+;

if(typel)

955 numtypel f+;

else

numtype2 + +;

advance (1000);
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}
960 //

}
System. out. println ("Done.introducing- balls .. Now.running. till -settled .");

System.out. println("Added-" + numtypel + ".balls..of-typel-.and-" + numtype2 + ".balls-of.type

-2");

advance(100000); // advance for 100 seconds at the end to settle balls

965 // return deterrninePacking (center , radius -2*meanDiameter) ;

// return determninePacking (new Vect (boardDimnrnsion/2, boardDimennsion/2) , boardDimn nsion)

return determinePackingInterior();

}

970 public void runCentralSuite(int number) {

System. out. println (" Starting..central -suite");

reset (true);

975 System.out .println("Running.uniform ,- gravity -at-center -test");

double [] packingArray = runRandomCenterGravity(15,0 ,number);

saveArray(" centralpacking. txt" , "0.0" , packingArray);

// saveArrayLinecSbpOar•verwrite (" unifordiameters . trt " , dianmeterA rray) ;

saveBoard (" uniformcentral" );

980 saveBoardImage(" uniformcentral .jpg" ) ;

reset(true) ;

System. out . printIn ( " Running-15%-std -dev.gravity at-center test " )

985 packingArray = runRandomCenterGravity(15,0.15,number);

saveArray(" centralpacking . txt" , "0.15" , packingArray);

saveArrayLineSepOverwrite (" randoml5percentdiameters. txt" , diameterArray) ;

saveBoard (" random l5percentcentral" ) ;

saveBoardlmage(" random 15percenteentral . jpg")

990

reset (true);

System. out .printin (" Running-5%std..dev ,. gravity atcentertest " ) ;

packingArray = runRandomCenterGravity( 15,0.05 ,number);

995 saveArray(" centralpacking .txt" , " 0.05" , packingArray )

saveArrayLineSepOverwrite (" random5percentdiameters .txt" , diameterArray );

saveBoard(" random5percentcentral");

saveBoardImage (" random5percentcentral . jpg" );

1000 reset(true);

System. out .printin ("Running10%-std-dev ,-gravity-at-centertest" ) ;

packingArray = runRandomCenterGravity (15 ,0.10 ,number);

saveArray(" centralpacking . txt" , "0.10" , packingArray);

1005 saveArrayLineSepOverwrite (" randoml0percentdiameters. txt" , diameterArray) ;

saveBoard (" randoml0percentcentral" );

saveBoardImage(" random l0percentcentral . jpg");

1010 public void colorizeCentralSuite () {

loadBoard (" uniformcentral " ) ;

colorizeBalls (15,0);

saveBoard (" uniformcentralcolor" ) ;

saveBoardImage(" uniformcentral .jpg" ) ;

1015 refillDiameterArray ();

saveArrayLineSepOverwrite (" uniformdiameters . txt" , diameterArray)

loadBoard (" random5percentcentral" );
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colorizeBalls (15.0.05);

1020 saveBoard (" random5percentcentralcolor");

saveBoardmage (" random5percentcentral .jpg");

refillDiameterArray ( )

saveArrayLineSepOverwrite(" random5percentdiameters. txt" , diameterArray)

1025 loadBoard (" random l0percentcentral") ;

colorizeBalls (15,0.10);

saveBoard (" randomlOpercentcentralcolor" ) ;

saveBoardlmage( "random l0percentcentral . jpg");

refillDiameterArray () ;

1030 saveArrayLineSepOverwrite (" randoml0percentdiameters. txt" , diameterArray)

load Board (" random 15percentcentral" ) ;

colorizeBalls (15 ,0.15) ;

saveBoard ( " random 15percentcentralcolor" ) ;

1035 saveBoardImage ( " randoml5percentcentral. jpg");

refillDiameterArray ();

saveArrayLineSepOverwrite (" randoml5percentdiameters. txt" , diameterArray)

1040 public void calculateCentralSuiteFill() {

loadBoard (" uniformcentral");

double fill = determineFill(100);

System.out. println (" Fil l-factor -for -uniform-.size -balls-.=- " + fill );

1045 loadBoard (" random5percentcentral" )

fill = determineFill (100);

System.out.printn (" Fill -factor-for-randomdistrib u t ion-with-5%-standard-.deviation-=-" + fill

loadBoard ( " random 1 Opercentcentral" ) ;

1050 fill = determineFill(100);

System. out. println (" Fillfactor-for-random-distribution _with_10%-standard-deviation-=-" +

fill);

loadBoard (" random 15percentcentral")

fill =- determineFill (100);

1055 System. out. println (" Fill -factor for-random distribution-with-15%.standard -deviation _-. " +

fill);

public void calculateCentralSuiteFillWithinRadius() (

loadBoard(" uniformcentral");

1060 double [] [] function = runLinearGraphFillWithinRadius(100,20);

saveArraysAsColumns("uniformcentralfillradius.txt" , function[0] , function[l) ),

loadBoard(" random5percentcentral");

function = runLinearGraphFillWithinRadius (100,20);

1065 saveArraysAs(Columns("random5percentfillradius.txt" , function [0] , function []) ;

loadBoard (" random 10percentcentral");

function = runLinearGraphFillWithinRadius(100,20);

saveArraysAsColumns(" random 10percentfillradius .txt" function [0] , function [1]) ;

1070

load Board (" random I 5percentcentral" ) ;

function = runLinearGraphFillWithinRadius (100,20);

saveArraysAsColumns("randoml5percentfillradius. txt" , function [O] , function [11);

1075

public void calculateCentralSuiteSpatialCorrelation () {
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loadBoard(" uniformcentral");

double corrcoeff = determinePearsonSpatialCorrelation();

System.out.printin ("The-correlation-.coefficient -for-a-uniform-distribution-=-" + corrcoeff);

1080
loadBoard (" random5percentcentral" )

corrcoeff = determinePearsonSpatialCorrelation();

System.out. println("The-correlation.coefficient -for-a-55%-std-dev-distribution-=-" + corrcoeff

1085 loadBoard(" random 10percentcentral") ;

corrcoeff = determinePearsonSpatialCorrelation()

System. out. printin ("The-correlation -coefficient -for-a-10%-std -dev-dist ribution-=-" +

corrcoeff);

loadBoard ("randoml5percentcentral" )

1090 corrcoeff = determinePearsonSpatialCorrelation();

System. out. println ("The-correlation..coefficient -for -a-15%-std-dev-dist ribution-.=" -+

corrcoeff);

public void testMovie() {

1095 reset(true);

System. out. printin ("Running-uniform ,-gravity-at-center.-test -with-movie") ;

startMovie("random 15percentmovie2. mov") ;

runRandomCenterGravity (15,0.15,100);

1100 stopMovie();

// saveA rray (" c ntralpacking . t t " , "0.0" , packingArray ) ;

//// savcA rrayLineScp Ovcrwrite: (" uniformd'iamet:trs . tt " , diamretcrArray) :

// savncBoard (" aniformcetl:ntral ") :

// sav•eBoardlmagte (" uniforme entral . jpg ") ;

1105 1

public void makeCentralSuiteMovies(int number) {

reset(true);

1110 System. out. printin ("Running-uniform ,-gravity-at...center -test -with -movie");

start Movie (" uniformmovie . mov" ) ;

runRandomCenterGravity (15,0 ,number);

stopMovie ();

1115 reset(true);

System. out. printiln(" Running.uniform ,...gravity-at-center-.test-with-movie") ;

start Movie (" random5percentmovie . mov" ) ;

runRandomCenterGravity (15 ,0.05 ,number);

1120 stopMovie () ;

reset(true);

System. out. printIn ("Running-uniform ,- gravity at -center -test -with-movie") ;

1125 startMovie("random l0percentmovie . mov") ;

runRandomCenterGravity (15,0.10 ,number);

stopMovie () ;

reset(true) ;

1130

System. out. printin ("Running-uniform , gravity-at-center-.test...with-movie") ;

startMovie (" randoml5percentmovie . mov") ;

runRandomCenterGravity (15,0.15 ,number);

stopMovie () ;
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1135 }

public void runAttractionComparison () {

reset ( false ) ;

1140 PhysicsSimulator . setGravity (0.0);

PhysicsSimulator. setFriction (0.0 , 0.0);

System. out . printin ( " Running-attraction -test -1 " ) ;

startMovie (" uniformattract .mov") ;

1145 double[] packingArray = runRandomAttraction(15,0.0,300,false);

stopMovie ()

// dcposit: r. sanA rray ( " c:ntralpac king . tZt " "0.0" , packingArray) ;

/'/ .salit .Ar.ragyL in I:St:p OTlrwritt: (" .uniformd iamnters . t.t " , diamrctti:rAr ray) ;

saveBoard(" uniformattract");

1150 saveBoardlmage(" uniformattract . jpg" ) ;

reset ( false ) ;

PhysicsSimulator. setGravity (0.0);

1155 PhysicsSimulator. setFriction (0.0 , 0.0);

System. out. printIn ( " Running-attraction -test _2" ) ;

start Movie (" random 15percentattract . mov" ) ;

packingArray = runRandomAttraction (15,0.15,300, false) ;

1160 stopMovie ():

// dcposit.tr . savecArrtay ( ccntralpacking . tt " . "0.O" , packinyArray) :

// santcArrayLinS:SepOv't:rwrsit.: (" uniformdiam:tt:ers . t:t " , diamc:tcrArray) ;

saveBoard ("randoml5percentattract") ;

saveBoardImage (" random 15percentattract. jpg");

1165

public void runAttractionPacking() {

reset ( false ) ;

1170 PhysicsSimulator. setGravity (0.0);

PhysicsSimulator. setFriction (0.0, 0.0):

System . out . printin (" Running-attract ion -packing-of -5%.random.b alls ")

// startMovAit. (" ratndom Opn:rr:i:ntattractmnassfs . mov"') :

1175 double[] packingArray = runRandomAttraction(15,0.05,300, false);

// stopMor.: (p :

// sa•,rA rraytLgLtnt:Snep ,rwrit: ( '" ni:ormdiam•t:rs . tnrt " . diam,:t:rArrai) :

saveArray("a ttractpacking .txt" , "0.05" , packingArray) ;

/ sa.v .Board ( " attractpackingrandotmr l0masscs ") :

1180 // saw•Bioardinmiag c (" attractpackingrando ml UOmasst:s . jpy ") :

public void runAttractionGrating() {

reset ( false)

1185

PhysicsSimulator. setGravity (0.0);

PhysicsSimulator .setFriction (0.0 , 0.0):

System. out. printin ("Running-attraction -packing-of.-uniform..balls-in-a-grating" );

1190 start Movie (" uniformgratingmasses .mov" ) ;

double[] packingArray - runRandomAttractionGrating(15 ,0.0,150 ,6s15* Math. sin (Math.PI/3.0) true

stopMovie();

// san't cA4rrayLt.ncScp(C)v urwritctn (" Uan for'mgratgtingdiamn:tfirs . tzt " , damcnetrArray) ;

saveArray(" attractgrating. txt" , " .0-masses" , packingArray);
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1195 saveBoard (" attractgratinguniformmasses" );

saveBoardImage (" attractgratinguniformmasses . jpg") ;

}

public void runAttractionPackingBimodal () {

1200 reset(false);

PhysicsSimulator . setGravity (0. 0);

PhysicsSimulator . setFriction (0.0 , 0.0)

1205 System. out . println (" Running-attraction-packing-of-balls .with-two-different -masses" ) ;

// startMovie (" random1 I)perc7ntattractmrass,:s . mov") ;

double[] packingArray = runRandomAttractionBimodal(15 ,0.0 ,15 ,0.0,2.0 ,300, false);

// stopMovi () ;

// savncArrayLincS'pOvC)uc rwritc (" uniformdiarmrctcrs . txt " . diamretcrA rray) ;

1210 saveArray(" attractpacking . txt" , " uniform..bimodal" , packingArray )

saveBoard (" attractpackinguniformbimodal" );

saveBoardImage(" attractpackinguniformbimodal. jpg");

1215 public void testLuminosity() (

double luminosity;

NumberFormat format = NumberFormat. getlnstance ();

format . setMinimumFractionDigits (2);

1220 makeHexagonalLattice () ;

//imak eSinglcCl ust.er () ;

luminosity = determineLuminosity (1.0 ,10);

System. out. println ("for-all -bad-dots-luminosity-=-" + format. format( luminosity));

1225

luminosity = determineLuminosity(0.0,10),

System. out. println (" for all -good.dots-luminosity-=-" + format. format (luminosity));

luminosity = determineLuminosity (1.0/3.0 ,150);

1230 System.out . println ("for -2/3good.dots-luminosity-=-" + format . format ( luminosity));

public void calculateLuminosityPrevious () (

double luminosity;

1235 NumberFormat format = NumberFormat. getInstance();

format. setMinimumFractionDigits (3);

loadBoard (" attract packinguniformmasses" ) ;

luminosity = determineLuminosity(1.0/3.0,1000);

1240 System. out. println (" for-uniform -masses-luminosity.-=-" + format. format( luminosity));

loadBoard (" attractpackingrandom5masses" );

luminosity = determineLuminosity (1.0/3.0,1000);

System . out. println (" for 55%.-random-masses-luminosity-=-" + format . format (luminosity));

1245

loadBoard(" attractpackingrandom l0masses") ;

luminosity = determineLuminosity (1.0/3.0,1000);

System. out. println (" for -10%-random.masses-luminosity-=.." + format . format ( luminosity));

1250 loadBoard(" attractpackingrandom 15masses");

luminosity = determineLuminosity (1.0/3.0,1000);

System. out. println (" for..15%.random-masses-luminosity.-=." + format . format ( luminosity));

1255 public void hexagonalTestTest() {
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makeSingleCluster ();

saveBoard("singlecluster");

1260 public void hexagonalTest ()

makeHexagonalLattice () ;

changeSomeBalls (1. 0/3. 0);

double radFrac = findRadiativeFraction ();

System. out .printin ( radFrac + "-fraction -of-sites -radiate");

1265 saveBoard(" hexagonallattice" ) ;

/,*

* tlparam arg.Ly

1270 */

public static void main(String j args) {

// Ftl,:Dcpositcr depositc.r = ne:w FileDcposit:.r(false);

// Sy.stnt . out . printin (" Runn~ing tuniform,, t:st ") :

// dcposit,'rt . r'unUni.fo'rm (15,6) ;

1275 // d :posi t,:r . sa'tveBoard(" un iformi 6ayrs ") ;

// Syst:rr. out .printin (" R.nning random tes t -with 5% standard deviation. ") ;

// d t p,, s t r: r. runRandomr (15 ,0. 0.5,3):

// d p o s i t (.r. s a Board ( " randoml ") :

1280

// Systr .otit .printl tn (" Running ranrdomrn t est with 10% standard deviation ") ;

// d :p osit r: r. runRandom( 15 , . ) 10,3) ;

// dr p o s i t .i r. satc: Board ( "' random 1 Op e rc n t ");

1285 // Systm. out .println ("Running random test with 15% standard detviation " :

// d po site r . runRtandom (15 , 0. 15 , 3) ;

// dt.pposi tr . ac:Board ( " "random15perce:nt ") :

// Systcm. out .print/n (" Rt:ading random t.est with 10% standard d.vctation ") :

1290 // System.r. out. pri.ntln ( d posit r . dtcrmrnttParcking("'ran'dom2",5*15,4*15,2*15)) ;

// Syst :mn. out. print n (" R.e.ading anfo.rml "i ) :

// System.. out. p'rintn ( d: positr. d t trmttPacking ( "uniforrrml "2*15, * 15,2* 15) ;

1295 // Fil,:Dtpositti dp.eposttcr -= new FilcD: posttcr(tru;e);

/ Syst:m. . out . print tin (' Running random 2.5% std d.t'v , grav'ityt at crnt:r tt:st "')

// d. po'sitvt . runRandomCcnte'rG-raivity (15. 0. 025, 10() :

d p posis, tte r savi,.BoardT ( "random2.5 p rcrcntr Cntral ":

1300

// d p ri s tt r: r. ru nC:rn tritIlS' it,: (500) ;

S/ Ststr mr . out .pr t I n ( dcpos it:r . d tt:rmninitPackin (" random 1 5pric. itcntcitntralqutcrkfre-c.zr " c

Ihys icsS tm ulantoir . g: tC:cntrt ()f Gravity ( ) . Math . s qrt (0. 74 * 100) 15. 0/2.0- 1 5.0 ) 0)

1305 /,/ Syst m. outt . p'rintin (" Running uniform sizt: . gravity at ccente r ttest ") .

// do'ubl,: [I pIa•ckingAr'r'ay = depositer . runRandiomn CnterrGratait. y(15,10,50);

// dcpositr r. satcAriray (" packingtest. tzt ", "O.' " . pac:kngAArray )

/,/ dr:posit'r .;aeBoartd ("' unifo'rme:ntrait:st ") ,

// d: post t : r. .savt.Boardllmatar: ( " niformn: tral . jpg ")

1310

/' tdlpostt~r .load Boatrd("randomlOpercrentt") ;

S dc:postt lt r. :olorizcBalls (15,0.10 );

depost rt .r sa•, RBoard (" randomlrn Opterccnt "):

1315 / Syst :rm. oatt . printn ("Runninig 5% stdi dt:v, gIravit!l at crntirr, coloration t vt ");
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//
//
//
//

1320

//

//

1325 //

//

//
1330

//

//

1335 //

//
1340

//

//

1345 //

//

1350 }

}

Listing A.3: Class containing important physics information.
package sel02.gb:

import physics.*;

import java.util.Random;

5

/**

* Central function library for applying the physics defined for the gizmnoball environment

• @specftcld gravity I number // acceleration in pirels/sccond 2 reprcsentAng the acceleration

of gravity in this physics context

10 * vspecfield frictionl I nurnber // re.presentAn the constant change of friction

* @spe cficld friction2 I numbe.r // representing the Alncar change of friction

**/

public class PhysicsSimulator {

15 private static int lengthToPixels = 30;

private static double gravity;// = 25 * lengthToPixels; // L/sec ^2

private static double frictionl ;// = 0.025; // l/sec

private static double friction2;// = 0.025 / lengthToPixels; // 1/L

private static Vect centerOfGravity = null; // null then Avertical gravity

20

110

double [] packingArray = d epositer .runRandomCefnte.rGravity (15 ,0.15 ,50);

depositer save.Array(" packingtcst . txt ", "0." , packingArray);

depositer .saveBoard(" colortest ") ;

dep ositer . saveBoardImage (" c ol o rt te st . jpg ") ;

d epos'iter . colorizeCentralSuite ()

depositer. testDetermincFill () ;

depositer. calculate CentralSuiteFill () :

deposite r. tcstDetermnin cFillWithinRadias () :

depositetr. caleulate.CentralSuiteFill WithinRadius () ;

depositer. testMovic () ;

dcposite r . calculatCCefntralSuAit eSpatialCorrelation () ;

depositer. hcragonalTestTest () ;

FileDepositer depositer = new FileDepositer (false);

depositer runA ttractionComparison () ;

deposit er runAttrae tionPacking () :

depositer. runA ttractionGrating () ;

depositer. .runAttractionPackingBimodal () :

depositer. tcstLumrinosity () ;

depositer .calculateLuminosityPrevious();



public static double

return gravity;

25 public static double

return frictionl ;

public static double

30 return friction2;

getGravity() {

getFrictionl () {

getFriction2() {

* .rt:turn designated point for gravity or null if default gravnity

35 /
public static Vect getCenterOfGravity() {

return centerOfGravity;

40 /*

* (rcq.uircs g.ravity is in L/scc : 2

* (*#ff:cts sets this. gravnity to gravity

public static void setGravity(double gravity) {

45 PhysicsSimulator . gravity = gravity * lengthToPixels;

* F4irtcquircs frictionI is in l/st:c and friction2 is in L

50 * Ot:tfftcts sets this . gravity to gravity

**/

public static void setFriction(double frictionl , double friction2) {

PhysicsSimulator. friction = friction].;

PhysicsSimulator. friction2 = friction2 / lengthToPixels;

55

public static void setCenterOfGravity(Vect gravityPoint) {

centerOfGravity = gravityPoint;

I

* Returns the: ncloc:itg uipdiated for tht: tirme period dftlttT in seconds and vcloctty in L/stconds

* •lr:qugirt: s v:loc ity != nut ll

* •ir:rturn nt:w ctlority victor in L/stconds with the cfft:ct of qravity and friction applte:d to

it .for

65 * thfr sprrifi d ttatt: period

public static Vect updateVelocity(Vect center , Vect velocity, double deltaT) {

If(centerOfGravity == null) {

velocity = velocity.plus(new Vect(0, gravity*deltaT));

70 } else {

velocity -= velocity . plus ( centerOfGravity . minus( center) . unitSize(). times (gravity *deltaT)):

velocity = velocity. times(Math.max(1- frictionl*deltaT-friction2 *velocity. length()*deltaT 0.0)

return velocity;

75 }

* Returns thte velocty tupdatcd for thc time

* (4rcq uircs C vlocity != tnIull

pcriod dcltaT tn mnilliscronds
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80 * @return new velocity vector with the effect of gravity and friction applied to it for

* the specified time period

public static Vect updateVel(Vect velocity , double deltaT) {

double deltaSeconds = deltaT/1000;

85 Vect velFrict = velocity .times(1-friction 1 *deltaSeconds-friction2*velocity .length()*

deltaSeconds);

Vect velGrav = velFrict .plus(new Vect(O, gravity*deltaSeconds))

return velGrav;

}

90 /**

* Returns the position updated for the time period dcltaT in milliseconds

* @requires position != null &4 velocity != null

* Oreturn new position vector updated with the effects of velocity , gravity and

* friction for the specifiCd time period

95 **/

public static Vect updatePos(Vect position , Vect velocity , double deltaT) {

return position . plus( velocity . times (deltaT/1000)) ;

I

100 public static Geometry.VectPair updateVelandPos(Vect position , Vect velocity , double deltaT) {

double deltaSeconds = deltaT/1000;

Vect velFrict = velocity. times(1-frictionl*deltaSeconds-friction2*velocity .length()*

deltaSeconds);

Vect newVel = velFrict.plus(new Vect(O, gravity*deltaSeconds));

// use only the eclocity correctcd for friction to find the linear component of the position

update

105 Vect posFrict = velFrict.times(deltaSeconds);

// gravity is a quadratic term

Vect posGrav = new Vect(O, gravity *(deltaSeconds*deltaSeconds));

Vect newPos = position.plus( posFrict .plus(posGrav));

return new Geometry. VectPair (newPos , newVel);

110 }

// new sectioin for microscopic physics

private static boolean inelastic = true;

115 private static double fractionElastic = 0.8;

private static double elasticDeviation = Math.min((1-fractionElastic)/2, fractionElastic/2);

private static double ballStickThresh = 2*30;

private static double reflectorStickThresh = 1*30;

private static double completelyInelasticThresh = 1; // velocity below which balls should stop

comnpletely upon colliding

120 private static Random collisionVelocityRandom = new Random(913);

private static double forceDistanceThresh = 0.1; // balls closer than this distance feel no

fo rc e

private static double RO = 15.0;//15.0*Math. sqrt(1/2);

private static double b = forceDistanceThresh-RO*Math.pow( forceDistanceThresh /(1.0*

completelyInelasticThresh*completelylnelasticThresh/0.01) ,1.0/7.0);

125

private static double randomVelocityDelay = 1/50.0;

private static double T = 297.0;

private static double kb = 1.38e-20; // Boltzmann 's constant in rn^2 q s -- 2 K--I

private static double avgMass = 5.24e--18; // mass of average ball in g

130

public static boolean isInelastic() {

return inelastic;

}
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135 public static void setBallStickThresh(double bst) {

ballStickThresh = bst:

}

public static double getBallStickThresh () {

140 return ballStickThresh;

}

public static void setReflectorStickThresh (double rst) (

reflectorStickThresh = rst;

14,5 }

public static double getReflectorStickThresh () {

return reflectorStickThresh;

}

public static void setCompletelyInelasticThresh (double cit) {

completelyInelasticThresh = cit;

155 public static double getCompletelyInelasticThresh () {

return completelyInelasticThresh

}

private static void updateB() {

160 b = forceDistanceThresh-RO*Math. pow( forceDistanceThresh /( 1.0* completelyInelasticThresh

completelylnelasticThresh) ,1.0/7.0);

}

public static void setForceDistanceThresh (double thresh) {

forceDistanceThresh = thresh;

165 updateB ()

public static double getMinimumForceDistanceThresh () {

return force DistanceThresh;

170 }

public static double getMaximumForceDistanceThresh() {

return RO*2: // force will be 1/2^7 times less than its strongest i.e. complctely minuscalte

175

public static void setVanDerWaalCoeff(double coeff) {

RO = coeff;

updateB() ;

180

public static double getVanDerWallCoeff() {

return RO;

185 /*

* iSre:turn th,e magnit ude, of the ivelocity change in the dircr:tion be.twccn ttwo balls

*/

public static double updateVelocityAttraction (double dist , double mass, double time) {

if(dist < forceDistanceThresh Ii dist > RO*2) {

190 return 0.0;

} else {

double a = Math.pow(RO/(dist-b) ,7.0)/mass;

return Math.min(a-time/2.0,Math. sqrt (dist*a)/2.0);
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195 }

* Oparam inel : The fraction inclasticity on average over many collisions. 1.0 = elastic

200 public static void setElasticity(double el) {

fractionElastic = el;

elasticDeviation = Math.min((1-el)/2,el/2); // set std dtviation of distribution so that 0

inelasticity is 2 std devs away from mean

}

205 public static double getElasticity() {

return fractionElastic;

}

210 * tOreturns a fraction of a balls current velocity lost in a particular collision

public static double getFractionVelocityLoss() {

return collisionVelocityRandom . nextGaussian () *elasticDeviation+fractionElastic ;

}

public static double getRandomVelocityDelay () {

return randomVelocityDelay ;

220 /*

* (@param mass : Mass of the ball in the units of the avL.rage ball -mass

* Oreturns The magnitude to be used for the arieragec thcrmal ene:rgy to be randomly added to a

ball

public static double getRandomVelocityMagnitude (double mass) {

225 return 1.5sMath. sqrt (2*kb*T/(mass*avgMass));

I
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Appendix B

Planarization Code

Listing B.1: Oxide smoothing main script.
%function oxidesmoothing6 ()

warning off MATLAB: divideByZero

% script to describe the electrochemical oxidized smoothing of a ruff

% surface

5 global samplingx samplingy lengthx lengthy xorig yorig zorig x y z xox yox zox sampleincrfinal

plotstep analysisstep

%global sample

%samplingx = -2 1:2;

10 %samplingy = -- 2:1:2;

%samplingx = 0:100:2000;

%samplingy - 0:100:2000;

samplingx = 0:100:400;

samplingy = 0:100:400;

15

lengthx - length( samplingx);

lengthy = length(samplingy);

[x, y = meshgrid(samplingx, samplingy);

20 =- zeros(lengthx ,lengthy)+4;

z (3 .3) = 4.5;

zox = z;
axis2D -= (min(samplingx) max(samplingx) 0 8];

25 axis3D = Imin(samplingx) max(samplingx) min(samplingy) max(samplingy) 0 8];
increaseSampling (4);

%increaseSampling (sample ) ;

z = zeros(lengthx lengthy)+1000; %now measured in nanometers

30 a z+30/2*(2*rand(lengthx ,lengthy)-1);

axis2D = Imin(sarnplingx) max(samplingx) 0 2000];

axis3D == [min(samplingx) max(samplingx) min(samplingy) max(samplingy) 800 1200];

increaseSampling (5)

za = +20/2*(2*rand( lengthx .lengthy) -1);

35 zox = z;

increaseSampling (4)
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xorig = x;

yorig = y;

40 zorig = z;

plotstep = 50;%0.25;%50

analysisstep = 10;%0.05;%10

lastplot = 0;

45 lastanalysis = 0;

centerindex = floor((length(x)+1)/2);

slicehandle = figure;

50 plot(x(centerindex ,:) ,z(centerindex ,:) ,'o');

hold on;

plot (xox( centerindex , :) ,zox(centerindex , :) ,' ');

axis (axis2D) ;

55 figure;

mesh(xox,yox,zox)

xlabel( 'x-axis-(nm)');

ylabel( 'y.axis .(nm)');

slabel ('z-axis (nm) ');

60 title (' Planarized.Oxide.Surface ');

coloraxis = caxis;

twosurfhandle = figure;

handles1 = plot3(x,y,z, 'o');

65 hold on;

handles2 = plot3(xox,yox,zox, '*');

axis (axis3D);

xlabel('x-axis ')

ylabel ('y-axis ');

70 zlabel( 'z-axis ');

title( 'Final..Metal-and-Oxide.Surfaces ');

legend([handlesl(1) handles2(1)] , 'Metal-surface ','Oxide-surface' ,1);

hold off;

75 %add to the oxide according to the slope at that point

global oxidestep maxruffness expansion finaloxide distance2ox oxpoints metpoints smallestdist

oxidestep = 0.5;%0.01;

expansion = 2.3;

%maxruffness should just be expansion*oxidestep but added 1.5 to be safe

80 maxruffness = 1.5*(expansion)*oxidestep; %only applies for perfect beginning substrate

finaloxide = 200;%1;

smallestdist = 0:

count = 0;

%all minimum distances start as zero for this simulation

85 distance2ox = zeros(lengthx ,lengthy);

%points to a single oxide point

oxpoints = cell(size( distance2ox)); %place to store oxide points equally

%close to each point in the metal.

metpoints = cell (size(distance2ox)); %auxilliary data structure to store all the

90 %metal points close to this oxide point

%for starting with no oxide initialize oxpoints

for i=1l:length(oxpoints(:))

oxpoints{i} = [i ;

metpoints{i} = [il;

95 end

oxideanalysis (1)
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while(smallestdist < finaloxide) %loop for each local oxide change

100 f smallestdist smallestind] = min(distance2ox(:));

count = count+-l;

oxpointlist - oxpoints{smallestind };

%oxpointlist should be a (1 by n) matrix of oxide indices

totalchange = 0;

105 for k=l:length( oxpointlist)

zox( oxpointlist (k)) = zox( oxpointlist (k) )+(expansion -1.)*oxidestep/(length( oxpointlist )...

length( metpoints{oxpointlist (k) }) ) ;

totalchange - totalchange I-l/(length( oxpointlist )*length( metpoints{oxpointlist(k)}));

end

if(totalchange > 1)

110 smallestind

distance2met ( oxpointlist (k))

metpoints{ oxpointlist (k)}

distance2ox ( smallestind )

oxpoints { smallestind}

115 oxpointlist

return

'should-not-happen'

end

z(smallestind) = z(smallestind )-oxidestep*totalchange;

120 %done updating points , now calculate new distances for these points

points2change = metpoints(oxpointlist )

%now consider the metal point

updatemetalpoint3 ( smallestind) ;

% TBA---- oxide point to metal plane distance

125 % now we need to update points changed in the oxide

for k=l:length( oxpointlist)

for i=points2change{k}

%use the metpoints list to find the metal points that need

%to be changed because the oxide has changed

130 %the following test didn't account for changing lists from

%above updatemetalpoint call

%make sure we haven't already updated this metal point

if(i -= smallestind)

updatemetalpoint3( i )

135 end

end

updateoxidepoint(oxpointlist(k)):

end

if (mod( count .length ( (( : ) ) )==O)%(std( distances ( : ) )<=oxidestep /1000)

140 %plot animation of progress

count

figure( twosurfhandle);

handles1 = plot3(x,yz,'o'):

hold on;

145 handles2 = plot3(xox,yox,zox, '*');

axis(axis3D) ;

xlabel 'x-. axis );

ylabel( y-axis '):

zlabel ' z axis ')

150 title( Final-Metal-and-Oxide-Surfaces ');

legend([ handlesl (1) handles2(1)] , 'Metal-surface ' , 'Oxide-surface ' ,1)

hold off;

end

155 if(smallestdist > analysisstep+lastanalysis)

lastanalysis = floor ( smallestdist/analysisstep )*analysisstep

oxideanalysis (0),

end

117



160 if(smallestdist > plotstep+lastplot)

lastplot = floor( smallestdist/plotstep )*plotstep;

figure;

mesh(xox, yox ,zox);

165 xlabel( 'xaxis (nm) ');

ylabel('yaxis_(nm) ');

zlabel( 'z..axis...(nm) ');

caxis(coloraxis+(mean(zox (:))-mean( coloraxis ( :) ))

title ( 'Planarized.Oxide-Surface');

170 end

end

figure( slicehandle)

plot(x(centerindex , : ) ,z(centerindex ,:) , 'or ');

175 plot(xox(centerindex ,:) ,zox(centerindex ,:) , '*r');

axis(axis2D) ;

xlabel( 'x-axis ');

ylabel ( 'z-axis ');

title( 'Comparison.of.Initial-to-Final-Metal/Oxide-Surface.Cut ');

180 legend( ' Initial -metal',' Initial..oxide',' Final. metal ' , 'Final. oxide ',1);

Listing B.2: Function to update a metal point.
function updatemetalpoint3(index)

global samplingx samplingy lengthx lengthy x y z xox yox zox

global oxidestep maxruffness expansion finaloxide distance2ox oxpoints distance2met metpoints

5

prevdist = distance2ox(index);

clearMetalPoint (index , oxpoints {index });

%reset its list and distance

distance2ox(index) = Inf;

10 oxpoints{index } = [];

maxdistindex = max( floor (( prevdist+maxruffness) /(x( 1 ,2)-x ( 1,1 ) ), floor (( prevdist+maxruffness ) /(y...

(2,1)-y(1,1))));

pointset = allpoints2dist (index ,maxdistindex ,lengthx ,lengthy);

distset = sqrt (( xox( pointset )-x( index)) ).^ 2 (yox( pointset )-y( index)).^ 2+(zox( pointset )--z( index) )...

.^2);

15 dist = min(distset (:));

minind = find( distset- dist);

points2add = pointset(minind);

if( dist==distance2ox index))

oxpoints{index} = union( oxpoints{index } ,points2add )

20 for i=points2add

metpoints{ i } = union( metpoints{ i } , index);

end

end

if(dist < distance2ox(index))

25 clearMetalPoint (index ,oxpoints{index});

distance2ox(index) = dist;

oxpoints{index} - points2add;

for i=points2add

metpoints{ i = union (metpoints{ i} , index);

30 end

end

%next consider 4 lines from the metal point to find if any oxide

%point is closest to one of those lines

for 1=1:4
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35 point2ind = pointaround(index,1 ,lengthx ,lengthy);

if( point2ind==0)

continue

end

vectl -= [x(index) y(index) z(index)];

40 vect2 = [x(point2ind) y(point2ind) z(point2ind) I;
diffl2 = vect2-vectl;

distl2 = sum(diffl2.^2);

maxdistindex = max( floor( distance2ox (index)/(x( 1 ,2)-x ( 1 1 )) ,floor (distance2ox( index ) /(y(
2 

1 ) ...

-y(1,1))))

pointset = union( allpoints2dist (index , maxdistindex , lengthx ,lengthy) , allpoints2dist (point2ind ...

maxdistindex , lengthx , lengthy));

45 vectOset = [xox(pointset(:)) yox(pointset(:)) zox(pointset(:))];

vectlset = repmat(vectl , length(pointset),1);

vect2set = repmat(vect2 , length(pointset),1);

diffl2set = repmat(diff12 ,length(pointset) ,1);

distset = sum(( cross( diffl2set ,vectlset-vectOset ) ) .2,2)/distl2;

50 %check if actually on correct segment

distOlset = sum(( vect1set-vectOset ) . 2 ,2) ;

dist02set = sum(( vect2set-vectOset ) .2 ,2);

segind = find(distOlset < (distset+distl2) & distO2set < (distset+dist 12));

if(segind)

55 dist = min( distset (segind));

minind = find(distset==dist); %find the indices of all minimum values in distset

%note: distset has the same incides as pointset

minind = intersect(minind,segind); %keeps only indices in minind that are also in segind

dist - sqrt(dist);

60 points2add = pointset (minind);

if( dist==distance2ox (index))

oxpoints{index} = union(oxpoints{index}, points2add);

for i=points2add

metpoints{i} = union(metpoints{i }, index);

65 end

end

if(dist < distance2ox(index))

clear MetalPoint (index , oxpoints { index });

distance2ox (index) = dist;

70 oxpoints{index} = points2add;

for i-points2add;

metpoints{i} = union(metpoints{i }, index);

end

end

75 i f( dist-:-distance2ox (point2ind ) )

origlength = length( oxpoints{point2ind});

oxpoints{point2ind } - union(oxpoints{ point2ind } ,points2add );

for i=points2add

metpoints(i = union (metpoints{ i} , point2ind);

80 end

end

if(dist ,< distance2ox(point2ind))

clearMetalPoint (point2ind , oxpoints{point2ind });

distance2ox(point2ind) = dist;

85 oxpoints{point2ind} = points2add;

for i=points2add

metpoints{i } = union(metpoints{i } , point2ind);

end

end

90 end

end

%next consider 4 lines from each oxide point to find if the metal
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%point is closest to one of those lines

95

vectO = [x(index) y(index) z(index)];

maxdistindex = max( floor(distance2ox(index)/(x(l ,2)-x(1 ,1))) ,floor(distance2ox(index)/(y(2,1)-y...

(1,1))));

pointset = allpoints2distpairs (index ,maxdistindex ,lengthx ,lengthy);

vectOset = repmat(vectO ,length(pointset) ,1);

100 vect1set = [xox(pointset(:,l)) yox(pointset(:,1)) zox(pointset(:,1))];

vect2set = [xox(pointset(:,2)) yox(pointset(:,2)) zox(pointset(:,2))];

%S•now we have all pairs of points in pointset between vect1set and vect2set

diffOlset = vectlset-vectOset;

diffl2set = vect2set-vectlset;

105 distl2set = sum(diffl2set.'2,2);

%will generate NaN for point same in both vect1set and vect2set but those

%indices will be excluded from segind

distset = sum(( cross( diffl2set , diff01lset)).2 ,2)./distl2set;

dist01lset = sum(diff01lset. ^2 ,2);

110 dist02set = sum((vect2set-vect0set ).^2 ,2);

segind = find(dist01lset < (distset+distl2set) & dist02set < (distset+distl2set));

if(segind)

dist = min(distset(segind));

minind = find(distset==dist); %find the indices of all minimum values in distset

115 %note: distset has the same incides as pointset

minind = intersect(minind,segind); %keeps only indices in minind that are also in segind

dist = sqrt(dist);

points2change = pointset(minind ,:);

points2change = unique( points2change(:) ');

120 if( dist=distance2ox( index))

oxpoints{index} = union(oxpoints{index},points2change);

for j=1:length(points2change)

metpoints{points2change(j ) } -= union(metpoints{points2change(j ) } ,index)

end

125 end

if(dist < distance2ox(index))

clearMetalPoint(index ,oxpoints{index});

distance2ox(index) = dist;

oxpoints{index} = points2change;

130 for j =1:length( points2change)

metpoints{points2change(j) = union(metpoints{points2change(j)} ,index);

end

end

end

Listing B.3: Function to update an oxide point.
function updateoxidepoint ( index)

global samplingx samplingy lengthx lengthy x y z xox yox zox

global oxidestep maxruffness expansion finaloxide distance2ox oxpoints distance2met metpoints .

smallestdist

5

maxdistindex = max( floor (( smallestdist+maxruffness)/(x( 1 ,2)-x(1 ,1) )) ,floor (( smallestdist -...

maxruffness )/(y(2,1)--y(1,1))));

pointset = allpoints2dist (index ,maxdistindex ,lengthx ,lengthy);

distset = sqrt ((x( pointset )-xox(index) ).^2+(y( pointset )-yox( index)).^ 2+(z( pointset )-zox (index))...

.- 2);

%indices in distset of the points to change

10 points2change = find(distset <= distance2ox(pointset));

if(points2change)

for i=points2change

metindex = pointset(i);
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dist = distset(i);

15 if( dist==distance2ox ( metindex))

oxpoints{metindex} = union (oxpoints {metindex } ,index);

metpoints{index} = union(metpoints{index }, metindex) ;

end

if(dist < distance2ox(metindex))

20 clearMetalPoint (metindex ,oxpoints{metindex });

distance2ox(metindex) = dist;

oxpoints{metindex} = index;

metpoints{index} = union(metpoints{index } , metindex);

end

25 end

end

%next consider 4 lines from the oxide point to find if any metal

%point is closest to one of those lines

for 1=1:4

30 point2ind = pointaround(index ,1 ,lengthx ,lengthy);

if(point2ind==0)

continue

end

vectl = [xox(index) yox(index) zox(index)];

35 vect2 = [xox(point2ind) yox(point2ind) zox(point2ind) ;

diffl2 = vect2-vectl;

distl2 = sum( diffl2 . 2);

maxdistindex = max( floor (( smallestdist-+maxruffness) /(x(1 ,2)-x(1 .1) )) ,floor (( smallestdist+...

maxruffness )/(y(2,1)-y(1 ,1)))):

pointset - union( allpoints2dist (index ,maxdistindex lengthx ,lengthy ),allpoints2dist (point2ind ,.

maxdistindex , lengthx , lengthy ));

40 vectOset = [x(pointset(:)) y(pointset(:)) z(pointset(:))[;

vectlset - repmat(vectl , length(pointset) ,1);

vect2set = repmat(vect2, length(pointset),l);

diff. 2set = repmat(diffl2 ,length(pointset) ,1);

distset = sum(( cross( diffl2set ,vectlset-vectOset ) ) .^2 ,2)/distl2

45 %check if actually on correct segment

distOlset = sum((vectlset-vectOset ). 2 ,2):

dist02set = sum(( vect2set-vectOset) .2 ' 2) :

segind = find(distOlset < (distset+distl2) & dist02set < (distset+dist12));

if(segind)

50 distset = sqrt(distset) '

%list of indicies in segind of the points that need to change

points2change = find( distset (segind) <= distance2ox( pointset(segind)));

%allchanged - union(allchanged , pointset(segind(points2change)));

%now indexed by their position in pointset

55 points2change = segind( points2change) '

if(points2change)

for i=points2change

metindex = pointset(i);

dist = distset(i);

60 if(dist==distance2ox (metindex))

oxpoints{metindex} = union (oxpoints{metindex I ,[index point2ind ) ;

metpoints{ index} = union( metpoints{ index } , metindex);

metpoints{point2ind} = union(metpoints{point2ind , metindex);

end

65 if(dist < distance2ox(metindex))

clearMetalPoint (metindex ,oxpoints{metindex });

distance2ox(metindex) = dist;

oxpoints{metindex} = [index point2ind];

metpoints{index} = union( metpoints{ index} , metindex);

70 metpoints{point2ind} = union( metpoints{point2ind I, metindex).

end

end
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end

end

75 end

%next consider 4 lines from each metal point to find if the oxide

%point is closest to one of those lines

vect0 = [xox(index) yox(index) zox(index)];

maxdistindex = max( floor (( smallestdist+maxruffness )/(x(1 ,2)-x(1 , 1))) ,floor (( smallestdist+...

maxruffness)/(y(2,1)-y(1 ,1))));

80 pointset = allpoints2distpairs (index ,maxdistindex , lengthx ,lengthy);

vectOset = repmat(vect0 ,length(pointset) ,1);

vectiset = [x(pointset(:,l)) y(pointset(:,l)) z(pointset(:,1))];

vect2set = [x(pointset(:,2)) y(pointset(:,2)) z(pointset(:,2))];

%now we have all pairs of points in pointset between vect1set and vect2set

85 diff01lset = vectlset-vect0set;

diffl2set = vect2set-vectlset;

distl2set = sum(diffl2set.^2 ,2);

%will generate NaN for point same in both vectlset and vect2set but those

%indices will be excluded from segind

90 distset = sum((cross(diffl2set ,diff01lset)).'2,2)./distl2set;

dist01lset = sum( diff0lset. 2 ,2);

dist02set = sum(( vect2set-vect0set ) .2 ,2)

segind = find(dist01lset < (distset+distl2set) & dist02set < (distset+distl2set));

if(segind)

95 distset = sqrt(distset);

%list of indicies in segind of the points that need to change

points2changel = find( distset (segind ) <= distance2ox( pointset (segind ,1)));

points2change2 = find( distset (segind ) <= distance2ox ( pointset (segind ,2) ));

%Yonow indexed by their positions in global arrays

100 points2change = union ( pointset( segind ( points2changel) ,1)', pointset (segind( points2change2) ,2)...

if (points2change)

for metindex=points2change

allmetind = find(pointset(:,1l)==metindex I pointset (:,2)=metindex);

dist = min(distset(allmetind)) ;

105 if(dist=-distance2ox (metindex))

oxpoints{metindex} = union(oxpoints{metindex} ,index);

metpoints { index } = union( metpoints ( index , metindex) ;

end

if(dist < distance2ox(metindex))

110 clearMetalPoint (metindex , oxpoints {metindex });

distance2ox(metindex) = dist:

oxpoints{metindex} = index;

metpoints{index} - union( metpoints{index},metindex);

end

115 end

end

end
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Appendix C

Physics Package Copyright Notice

Copyright (C) 1999-2001 by the Massachusetts Institute of Technology,

Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that MIT's name not

be used in advertising or publicity pertaining to distribution of

the software without specific, written prior permission.

THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY DISCLAIMS ALL WARRANTIES

WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE MASSACHUSETTS

INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
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NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

@author: Matt Frank, MIT Laboratory for Computer Science,

mfrank@lcs.mit.edu

1999-Apr-03

@author: Rob Pinder, Phil Sarin, Lik Mui

Spring 2000

Exception handling and argument type refinemnt

@author: Jeffrey Sheldon (jeffshel@mit.edu)

Fall 2000, Spring 2001

Major rewrites and improvements to iterative solving

@author: Jeremy Nimmer (jwnimmer@alum.mit.edu)

Fall 2000, Spring 2001

Editorial role (testing and specification editing)
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