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Abstract

This thesis discusses a series of studies that investigate the effects of interaction -
essentially the s-wave scattering - in the various properties of Bose-Einstein conden-
sates (BEC).

The phonon wavefunction in a BEC was measured using Bragg spectroscopy and
compared with the well-known Bogoliubov theory. Phonons were first excited in a
BEC of 3 x 107 condensed 23Na atoms via small-angle two-photon Bragg scattering.
Large angle Bragg scattering was then used to probe the momentum distribution.
We found reasonable agreement with the theory.

With the same technique of Bragg diffraction, we studied the four-wave mixing
process for matter waves. The BEC was split into two strong source waves and a
weak seed wave. The s-wave scattering coherently mixed pairs of atoms from the
sources into the seed and its conjugate wave, creating a pair-correlated atomic beams
with "squeezed" number difference.

A Feshbach resonance was used to produce ultracold Na 2 molecules with initial
phase-space density in excess of 20. Starting from an atomic BEC, a magnetic field
ramp shifted a bound state from above the threshold of the unbound continuum to
below, creating a molecular population with almost zero center-of-mass motion. A
reverse field ramp dissociated the cold molecules into free atom pairs carrying kinetic
energy dependent on the ramp speed. This dependence provided a measure of the
coupling strength between the bound state and the continuum.

Condensates were loaded into optical lattices formed with retro-reflected single fre-
quency lasers. Quantum phase transition from the superfluid state to Mott-insulator
state was observed in a three dimensional lattice. The increased interaction and flat-
tened dispersion relation led to strongly enhanced quantum depletion in the superfluid
state.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacAurthur Professor of Physics
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Notations

kB : Boltzmann constant

h, h : Planck constant h = 27rh

M : atomic mass

as : s-wave scattering length

N : total number of particles

p : atomic density p = N/V

E : diluteness factor E = pa3

p, P : single particle or total momentum

k, K : single particle or total momentum divided by h

x, X : single particle or center of mass position

V : quantization volume

L : length of quantization volume in each dimension

d : number of dimensions

at, a: atomic field operator

bt, b : quasiparticle field operator

S: many-body wavefunction

X : condensate wavefunction

S: order parameter

g : coupling constant 4a

w, wXy,z : harmonic trap frequency



RTF : Thomas-Fermi radius

p: chemical potential

cs : speed of sound in a condensate p = Mc,

AL : optical lattice wavelength

ER : photon recoil energy at AL

aL : optical lattice periodicity aL = AL/2

kL : recoil momentum (wavenumber) kL = 27/AL

q : quasi-momentum (wavenumber)

q: dimensionless quasi-momentum q = q/kL

UL : optical lattice depth in units of ER

IL : laser peak intensity

PL : laser power

WL :laser 1/e 2 beam waist

WL : laser frequency (rad/s)

Wa : atomic transition frequency (rad/s)

Aa : atomic transition wavelength

wlh : local harmonic frequency at the bottom of each lattice site

Wtr : harmonic trap frequency

Wodt : additional trap frequency due to the gaussian profile of the lattice beam

Qe : electron charge

Me : electron mass



c : speed of light

Eo : vacuum permittivity in SI units (8.85 x 10-12 F/m)

Fa : natural linewidth of the atom (rad/s)

s,, : spontaneous Rayleigh scattering rate

navg : coarse-grained atomic density

npeak : peak atomic density at the lattice potential minima

K3 : three-body decay coefficient

F3 : peak three-body decay rate K3n2eak
pea



Chapter 1

Introduction

It has been a decade since the first observation of Bose-Einstein condensation (BEC)

in a dilute gas of alkali atoms in 1995 [1, 2, 3]. Over the intervening years, the

phenomenal growth of ultracold atomic research has contributed a tremendous wealth

of knowledge to our understanding about quantum degenerate many-body systems

[4, 5, 6]. BEC's have been achieved in many atomic species including 87Rb [1], 23Na

[3], 7Li [2], 1H [7], 85Rb [8], 4He* [9, 10], 41K [11], 133 Cs [12], 174 Yb [13] and 52Cr [14].

In addition, quantum degeneracy has also been observed in two species of Fermions:

40K [15] and 6Li [16], which is now the subject of very active research.

Given the abundance of good introduction materials today, including the theses

by the previous members of our group, I have decided to limit my own introduction

mainly to the aspects relevant to this thesis. For a full primer and the history of BEC

as well as the development of cooling and trapping techniques in general, I refer to

those earlier works [17, 18].

1.1 BEC - a macroscopic quantum phenomenon

The concept of Bose-Einstein condensation predates the modern quantum mechanics

[19, 20]. Since Einstein's original work in 1924, the physical significance of BEC

seemed to rise and fall and rise again as a consistent quantum theory was developed

and BEC's connection with superfluidity was made clear. This intertwined history



of BEC and quantum mechanics is a fascinating tale of how profound ideas lead to

the discovery of new theories but the significance of the original ideas cannot be fully

appreciated until the theories reach certain maturity.

After the initial success in the studies of superfluid liquid helium and supercon-

ductivity, the strong interaction of the conventional condensed matter systems made

it prohibitively difficult to study Bose-Einsteain condensation in details. The quest

for gaseous BEC started in 1980's when new techniques for cooling and trapping

neutral atoms were being developed. The first attempts were made with polarized

hydrogen atoms on the grounds that the recombination rate into molecules could be

made extremely low and the system would remain gaseous all the way down to zero

temperature [21, 22]. The success in the laser cooling of alkali atoms prompted the

alternative efforts in 1990's to search for BEC in metastable systems where recombi-

nation rate is low but finite [23, 24, 25]. In 1995, the confluence of laser cooling and

evaporative cooling techniques led to the first observation of BEC in 87Rb, 7Li and

23Na [1, 2, 3]. Three years later, hydrogen condensate was also achieved [7].

In a gaseous BEC, the condensate fraction typically exceeds 90 % and the sys-

tem is essentially a giant matter wave of millions of particles'. As a result, quantum

mechanical effects become highly pronounced. Interesting phenomena such as con-

densate interference [26], super-radiance [27] and matter wave amplification [28, 29]

were reported shortly after the realization of BEC. In many of these early discoveries.

the (weak) atomic interaction did not play the central role and was either neglected

or treated as a small correction to the main effect. The results discussed in this the-

sis, however, are among the experiments which investigated the effects of the atomic

interaction.

ICondensate size varies for different atomic species. Sodium condensate typically has several
millions of atoms (up to a few tens of millions).



1.2 No interaction no fun

For experimentalists, the so called "good collisions" - elastic collisions preserving the

internal states of the colliding particles - were crucial for realizing runaway evapo-

rative cooling that ultimately made BEC a reality [30]. However, the effects of the

interaction go far beyond the production of BEC. Despite the extremely low density

of a gaseous condensate, the apparently tenuous interaction is responsible for many

of its salient features.

1.2.1 Thomas-Fermi profile

The first signature of Bose-Einstein condensation was the absorption images taken

during the ballistic expansion after the cloud was released from the magnetic trap.

The bimodal density distribution consisting of a sharp parabola and a broader gaus-

sian indicated the co-existence of the condensate and the thermal component [1, 3].

The condensate profile in time-of-flight comes from a rescaling of the parabolic

Thomas-Fermi profile in the harmonic trap potential [31]. This is in contrast to the

ground state of a non-interacting system: all atoms have a gaussian wavefunction, the

size of which is determined by the balance between kinetic energy (delocalization) and

potential energy (localization). At the typical BEC density, however, the meanfield

interaction energy (divided by h) is much greater than the trap frequency - this is

called the Thomas-Fermi regime [see equation (2.69)]. As such, the spatial extent

of the condensate wavefunction is much greater than the harmonic oscillator length,

and the delocalization comes mainly from the repulsive interaction while the kinetic

energy can be neglected 2

1.2.2 Atom optics

One of the great promises of BEC is making possible the kind of atom optics analogous

to and even beyond what can be done with lasers, potentially at greater precisions
2Here we assume a repulsive interaction. In case of an attractive interaction, the condensate is

further localized and the kinetic energy is the only delocalizing source and must be of the same
magnitude as the interaction energy.



[26, 32, 33, 34, 35, 36, 37]. Indeed, "atom laser" is now in the standard nomenclature of

atomic physics. Beyond the apparent similarities, however, BEC's differ from optical

lasers in a number of important ways. Unlike photons, massive particles cannot

be created or annihilated under the normal conditions of low energy experiments,

and one cannot as easily crank up the intensity of matter waves as one would an

optical laser. Furthermore, photons are for the most part non-interacting even at

high intensities whereas atoms are almost always interacting. At high densities, the

decoherence effect due to the interaction is a thorny issue in achieving high precision

measurement 3.

On the other hand, the interaction in a BEC can be thought of as an inherent non-

linearity, which for photons would require special non-linear optical media. Therefore

wave mixing experiments can be performed with BECs in vacuum [38, 39], which could

be used to realize various squeezed states. Novel schemes have been proposed to take

advantage of such non-classical states and achieve Heisenberg limited spectroscopy,

massive quantum entanglement, etc. [40, 41, 42, 43, 44].

1.2.3 Superfluid dynamics and quantum phase transition

The experimental observation of superfluidity in liquid 4He almost coincided with the

realization [45, 46, 47] that Bose-Einstein condensation was behind the A-transition

discovered earlier from the specific heat measurement [48]. Over the years, the con-

nection between BEC and superfluidity gained further support from both experimen-

tal evidences and theoretical studies [49, 50, 51, 52, 53, 54, 55], and is now widely

accepted as one of the great triumphs of quantum statistical mechanics.

In today's literature, BEC is quite often called "superfluid" almost interchange-

ably, but one would be remiss to take "superfluid" as a synonym for BEC. In fact,

BEC of non-interacting particles does not possess superfluidity. It is because of the

interaction that the low-lying excitation spectrum of the BEC exhibits a linear dis-

persion relation, which leads to a non-vanishing critical velocity and superfluid flow

(see discussion in Section 2.2).
3At higher still densities, inelastic three-body collisions cause atom losses.

19.



What makes the gaseous BEC more interesting is the possibility to manipulate the

interaction strength using Feshbach resonances [56, 57] or optical lattices. The strong

inelastic collision loss near a Feshbach resonance limited its usefulness in experiments

that required long coherent time [58]. Optical lattices have proven to be a viable tool

that has enabled the observations of many intriguing phenomena such as quantum

phase transition [59, 60], massively entangled state [61], Tonks-Girardeau gas [62, 63],

long-lived Feshbach molecules [64, 65, 66], and enhanced quantum depletion [67]. In

addition, Mott-insulator state of less than three atoms per lattice site provided a way

to circumvent the collision loss problem near a Feshbach resonance.

1.3 Experiment setup

In this section, I briefly describe the laboratory in which I spent my five plus years

as a graduate student. A detailed technical account of machine construction can be

found in the thesis by the former graduate student Dallin Durfee [68].

All the experiments discussed in this thesis were performed on the second-generation

BEC machine here at MIT, nicknamed "New Lab" despite the fact that the first gen-

eration machine ("Old Lab") has long been upgraded to a dual-species system (now

called "Lithium Lab"). In the past year or so, our lab also underwent a similar ren-

ovation to become the new 6Li lab. The work discussed here, however, involved only

a single species of 23 Na.

The machine itself is of a classic design featuring a (horizontal) Zeeman slower

and an Ioffe-Pritchard magnetic trap. Our machine differs from the three other BEC

labs at MIT in that the BEC is produced in a glass cell that by design should provide

improved optical access. As it turns out, the modest gain in optical access comes

at a price. The fragility of the system, especially in times when we had to repair

the vacuum system or water cooling circuits, proved a source for endless fear and

distress. Thankfully, the glass junction was strong enough to survive the replacement

of gate-valve, and later the complete overhaul of the oven chamber, both of which

required applying considerable force and torque - of course, care was taken to avoid



direct impact on the glass cell.

Through much of my time in the lab, I have worked closely with two dye laser

systems. A Coherent 899 model pumped by a Millennia Xs (Spectra-Physics)

produced all the light necessary for BEC production and detection. An older Co-

herent 699 model pumped by a Coherent Innova 110 argon-ion laser was first

used for Bragg spectroscopy and later used in the initial attempts at setting up an

optical lattice. The long hours spent in the lab cajoling the pair of lasers into stable

performance were a significant part of my PhD career. Over the years, I have prob-

ably fiddled with, and in many cases, replaced every single part of the laser system

- eventually I decided if nothing else, I could become a competent laser technician

for a living! To me, this particular aspect of my lab life is also a microcosm of my

personal development as an experimental physicist, i.e., learning to combine problem

solving skills with an audacity to try different "knobs".

1.4 Outline of this thesis

Chapter 2 reviews in some details the basic theories relevant to the experiments

discussed in this thesis. These results are referred to throughout the thesis. The

subsequent chapters discuss in chronological order a series of experiments to which

I have made significant contribution. Chapter 3 discusses the experiments using

Bragg spectroscopy as both excitation and detection tools to study the dynamics

of the condensate in momentum space. These are two early experiments led by the

former postdoc, Johnny Vogels, with whom I collaborated closely as a junior graduate

student. Chapter 4 discusses the experiments on molecule formation using Feshbach

resonances. The first experiment realized at the time the first quantum degenerate

molecular sample, albeit with milliseconds lifetime. I played the leading role in this

experiment. The second experiment led by the former postdoc, Takashi Mukaiyama,

studied the dissociation behavior of the ultracold molecules as well as the inelastic

collision losses. My contribution was developing the theoretical model connecting

the dissociation energy with the atom-molecule coupling responsible for the Feshbach



resonance. Chapter 5 discusses our effort in setting up an optical lattice which became

a technical challenge due to various practical issues. I first started this effort with

the former graduate student Jamil Abo-Shaeer in late 2002, and later Takashi also

joined the project. We were able to make some progress with a red-detuned dye

laser but eventually switched to a high power infrared laser. The IR system was set

up in collaboration with the postdoc Yingmei Liu. Chapter 6 concludes this thesis

with some retrospection and future outlook. Appendices A-F include the reprints

of the publications resultant from the work discussed in this thesis. Wherever it is

possible, the discussion in the Chapters avoids repeating what is already covered in

the publications.



Chapter 2

Basic theory

This chapter discusses some basic theories that are referred to throughout the subse-

quent chapters.

Exact solutions are few and far between when it comes to dealing with interacting

many-body systems. In order to make some progress, approximate theories must

be developed to focus on some aspects of the problems while ignoring others. A

big reason why gaseous BEC is interesting to theorists is that because of the weak

interaction, the approximate theories are often good enough to get quite close in

predicting the experimental observations. In this chapter, I will present (and try to

justify as much as possible) the series of approximations that led to the theoretical

tools most used in my studies. Parts of the following discussion could be found in

various textbooks (e.g. [69, 70, 71, 72]), but I made a conscious attempt to derive

everything in a coherent manner, which hopefully helps elucidate key concepts that,

from my own experience, are often talked about yet prone to misunderstandings.

Emphasis is placed on consistency rather than mathematical rigor.

2.1 Two body collision

Much of this thesis is concerned with the role of atomic interaction in a Bose-Einstein

condensate. In particular, we consider two-body interaction that is a conservative

function of the separation between pairs of particles. This is well justified given the



low density of the typical gaseous condensate - about 100000 times thinner than

the air. More than two-body encounters are much rarer and can be ignored. The

non-relativistic Hamiltonian of N identical particles is therefore:

Jjr P? J (2.1)H =• Pi+ - U(xi-xj) (2.1)
i=1 i,j=l

where pi and xi are the momentum and position of the ith particle, M the particle

mass and U(x) is the two-body interaction potential. Sometimes it is more convenient

to work in the notations of second quantization:

H =E -aapa +- A(p - p3)apaP4ata1 2  (2.2)
P P1+P2

=P3+P4

where the sum over momenta p becomes an integral in the limit of infinite quantization

volume. Throughout this thesis, unless otherwise noted, I choose to use an explicit

quantization volume V = Ld and periodic boundary condition for a d-dimensional

system, but always assume the thermodynamic limit unless otherwise noted:

N,V -V o0 (2.3)

N/V = n (2.4)

where n is the (constant) finite density.

In addition, the low temperature (<1 pK) justifies accounting for only the low-

lying momentum states. Stated more precisely, if the effective range of interaction

is Re (the interaction strength is assumed to decrease faster than r - 3 where r is

inter-particle distance), the density n satisfies

nR3 < 1 (2.5)

.24



and the temperature T satisfies:

kBT < h (2.6)
MRe

It is then reasonable to argue that the many-body wavefunction X1(xl, x 2, ..., XN) is

significant mostly for:

Ixi- xjI >> Re (2.7)

and one does not care about the exact details of U within Re, as long as the asymptotic

scattering behavior at large distances is adequately reproduced for low momentum

(hk) collisions:
1k < (2.8)

Re

Further approximations are based on an asymptotic analysis of the two-body scat-

tering problem in the low momentum collision regime, starting with the Sch6dinger's

equation in the center-of-mass frame:

- 2(  V2 + U(x)] 0(x) = Eb(x) (2.9)

where M/2 is the reduced mass. U(x) is assumed to approach 0 as x -- oo and

treated as a perturbation. We look for eigenstates corresponding to an incident plane

wave Ik):
eik.x

(xlk) = e (2.10)
II/V

with kinetic energy - = E. The perturbation U couples this plane wave to other

states of the system and create a scattered wave IJ) with asymptotic form:

(xIp) = f(0, 0)-- (2.11)
r

where r, 0 and q are the spherical coordinates of x.

For convenience, define the "reduced" potential:

u(x) = 2 U(x) (2.12)
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and rewrite Eq. (2.13) as:

(k2 - V2 ) (X) = U(X)O(x) (2.13)

1b) = 1k) + l(p) (2.14)

The first order perturbation gives:

V dk/ k') (k'u(k'l k)
() = a kdk' 2  ±iO +  (2.15)

where V/(2w)3 is the density of states as we have defined plane waves with a quanti-

zation volume V that goes to infinity in the continuum limit [see Eq. (2.10)]. The 0+

ensures only outward scattering wave exists.

Eq. (2.15) evaluates to the following:

1 eiklx-x'l  1
( X -dx' u(x')eik 'x' (2.16)

which is the first order Born expansion and can also be obtained with the Green

Function approach [71]. We are only concerned with asymptotic behavior at large x

and Eq. (2.16) reduces to:

(x) = eikx ( dx'u(x')eiAkx') (2.17)

where:

Ak = k - k- (2.18)
x

In general, the integral involving u is a function of scattering direction (0, q). However,

as Ak satisfies the low momentum criterion (2.8). Eq. (2.17) further reduces to:

(x) = -a ikx (2.19)

a. = dx'u(x')
4 rjx

M /dx'U(x') (2.20)
47h 2



where the constant as has the dimension of length and is defined as the scattering

length.

2.1.1 Partial wave analysis

Another way of analyzing the asymptotic scattering behavior is to use the partial

waves that have well-defined angular momenta - conventionally labeled as 1l, m).

This is possible so long as the pair potential U(x) is spherically symmetric hence

the Hamiltonian is rotation-invariant. For a given momentum |1, m), the Schodinger

equation (2.13) reduces to the radial equation:

1 Orp(r) + k 2p(r) = 1) + 7) P1(r) (2.21)

In absence of interaction (u = 0), pl(r) is the spherical Bessel function j,(kr), which

has the following asymptotic behavior:

j (k)r) (2.22)
(21 + 1)!!

when r -+ 0, and:

j 1(kr) sin(kr - l ) (2.23)
kr 2

when r - oo00.

Since the right hand side of Eq. (2.21) vanishes at large r, p1(r) is asymptotically:

1 r
pl(r) oc - sin(kr -l + +J) (2.24)

r 2

where 51 captures the effect of the interaction as a phase shift for the partial wave of

angular momentum 1.

To connect the partial waves with the scattered wave I<p) above in (2.11), first

expand the free particle plane wave eikz in terms of the free partial waves:

00

eikz V1 47r(21 + 1)j,(kr)Y10 () (2.25)
1=0



where Y1o is the spherical harmonic function. Notice that ji consists of equal amount

of incoming wave e-ikr/r and outgoing wave e-ikr/r, and the effect of the interaction

should therefore only modify the outgoing wave part, so as to create the scattered

wave 1(P) - eikr/r. From (2.24), it means adding a phase shift of 261 to the outgoing

wave part of jl(kr), and we have:

ikr c

i(x) = _ E 4ir(21 + 1)e'iJ sin 6ioY(0) (2.26)
1=0

Ignoring the angle dependence of the integral of u in (2.17) is equivalent to saying

only the s-wave (1 = 0) gets a significant phase shift 60. This is justified for small

k, because ji(kr) is only significant when kr > Vl(1 + 1) [Eq. (2.22)] and therefore

within the interaction range Re, only the s-wave is significantly affected and accu-

mulates a phase shift. It can be shown that as k --+ 0, 60 -* -ka, where a, is the

scattering length defined above.

2.1.2 Pseudo potential

The above analysis made clear the earlier statement that the details of U(r) could be

ignored at the low density and low temperature limit. A single parameter - s-wave

scattering length a, - captures for the most part the effect of the interaction as far as

the "bulk" properties of the many-body wavefunction I(x 1, X2 , ..., XN) are concerned.

Eq. (2.20) implies that one may replace U(r) with any short-range function whose

spatial integration is equal to g:

4irh2 a8
g M (2.27)

in particular:

U'(x) = g6(x) (2.28)

where 6(x) is the Dirac 6-function. A more stringent form of contact pseudo-potential

contains a regularization operator 'r, which can usually be left out as long as the

wavefunction behaves "regularly" at small particle separations (see [70]).



Finally, the second quantization Hamiltonian (2.2) can be simplified with the

coupling coefficients:

A(Ap) = dx U(x)e'ia (2.29)

being replaced by a constant g/V.

2.1.3 Resonant scattering

Normally the first order results obtained above are quite sufficient for describing the

effects of interaction in a condensate. A notable exception occurs when a bound

state is energetically close to the continuum of unbound states and it couples to

the continuum. Such situation causes resonant scattering phenomena including the

magnetic Feshbach resonances discussed in Chapter 4 [56, 57].

Suppose the bound state 10) has energy Ep and the coupling between the bound

state and the continuum is W. One must then include the second order terms related

to the bound state in the scattered wave |9):

V I Wk') (k' W|0) (k1 (M) W|k)
(2)) (27) 3  (k2 - k'2 + i0+)(k 2 - ME/h 2) (2.0)

To be more specific, consider the typical situation for a magnetic Feshbach reso-

nance. The bound state energy is:

EP = ApL(B - Bo) (2.31)

where Ap is the magnetic moment difference between the bound state and the con-

tinuum state, B is the magnetic field strength and the bound state is degenerate with

the continuum threshold at B = B 0. In the strong field regime of our experiments,

W is the V h f part of the hyperfine interaction as defined in [73]. Eq. (2.30) evaluated

in Ix) basis becomes:

( eikx MV (kIW l!)(/|WWIk) eikx
(X~pl) I (e'fV-(B - BO) -Aa.

V 47rh2 h2 k2



where:

MV (kxIW /3)(p|Wk)
Aa X (2.32)S 47rh2 h2k2 Ap(B- Bo)

- M V(IOW ) (2.33)
47h 2 Aa(B - Bo)

where Aa8 is the modification to the scattering length due to the bound state and

the last approximate equality holds for k - 0. (2.33) is the often quoted dispersive

form of the scattering length near a Feshbach resonance [74, 73, 75, 76, 77, 78, 79]. It

should be pointed out that the above result (2.32) only holds when the bound state

is close to being degenerate with the colliding state but not exactly. Otherwise the

scattering amplitude diverges and the perturbative approach fails. In this case, one

should treat the problem exactly [69].

2.2 Bogoliubov theory

2.2.1 BEC with two-body interaction

At temperature T in thermal equilibrium, the density matrix of the system a is given

by [72]:
exp(- E)
Sexp(I) Ti i (2.34)

where i, j index the eigenstates of the many-body system and IlJi) is the eigenstate

of energy Ei. I i) is either symmetric (boson) or anti-symmetric (fermion) under the

exchange of any pair of particles. Bose-Einstein condensation occurs when at a finite

temperature T > 0, the reduced single particle density matrix ,1:

(p oI p") = ap, ap,) (2.35)

has one (or more) eigenvalue(s) nM that satisfies [54]:

lim n = Finite Constant (2.36)
N--oo N



An order parameter / can be defined as:

S\= vnMXo (2.37)

where Xo is the eigenstate of al corresponding to the eigenvalue nM - sometimes

referred to as the condensate wavefunction.

2.2.2 Bogoliubov transformation

In absence of other external potentials, the Hamiltonian in (2.1) and (2.2) is invariant

under spatial translation, which means the total momentum P is a good quantum

number for the eigenstates of the system. It immediately follows that the single parti-

cle density matrix al is diagonal with respect to the momentum basis Ip). Therefore,

Bose-Einstein condensation occurs when there is a macroscopic occupation of a single

momentum state.

N. N. Bogoliubov was the first to study in details the ground state properties of

weakly interacting Bosons [80]. In deriving the theory, one first assumes the many

body wavefunction contains No - N atoms in the zero momentum state and only

small population in other momentum states - called "quantum depletion". As a

result, the field operators of zero momentum state a, a0o can be treated as complex

numbers r IN~ in solving the Heisenberg equations of motion for the field operators.

Using a canonical transformation now named after Bogoliubov, one can diagonalize

the equations and obtain the energy spectrum.

Bogoliubov started from the Hamiltonian (2.2), replacing the coupling factor

A(Ap) with the constant g/V [see (2.27)], and made the further assumption that

the population in the zero momentum state No - N > 1 1 which led to (1) operators

ao and ao can be treated as complex numbers; (2) only interaction terms containing

1For consistency, the notations here differ slightly from Bogoliubov's original work [80].



at least two ao or ao need to be retained:

p2 at + 1 g

2 Ma P P 2 V
(ataaoao + 2 atat Paoao + 2 aa0aP_, + 4a  aoaoap a

p 0  P 0  p •0

(2.38)
where the multiplicities of the interaction terms account for the commutativity of the

field operators.

With the approximate Hamiltonian, one obtains the Heisenberg equations of mo-

tion for the field operators:

dao
dt

a dap
ih p0dt

9 t= -aatoao
V

=T(p)a, + yaoaoa-p +2V 0 0 p

(2.39)

(2.40)

where T(p = is the kinetic energy. Replacing aoao with No and p being the

meanfield energy gNo/V, one gets from (2.39):

ao(t) = ao(0)e- i t = Noe- i t

Substituting (2.41) and ,p = ape-iqt into (2.40), one gets:

ih = ((p) & + patdt

where:

To diagonalize equation (2.42), we employ canonical transformation:

(2.44)

(2.45)

bp = Upp + va-p

bt = upa,^t + vp pp p P p

where up and v, satisfy:

lup -1 2I12 = 1

p

(2.41)

(2.42)

(2.43)((p) = T(p) + p

(2.46)



in order for the commutation relation:

[bp, b ] = 1 (2.47)

to hold. From Eq. (2.42) and its complex conjugate replacing p with -p, one gets:

ih = (up((p) - vp) p + (up - V((p)) a (2.48)

One then forces the right hand side of (2.48) to be proportional to bp, and solves for

up and vp subject to (2.46) and obtain:

UP = ( (2.49)
2 - p) -( (p) 2

Vp = ~ (2.50)

where:

E(p) = /T 2(p) + 2T(p)u (2.51)

is the eigenenergy corresponding to quasiparticle bp (bp). Eqs. (2.44) and (2.45) along

with (2.49) and (2.50) are the famed Bogoliubov transformation.

2.2.3 Sign of interaction

It should be noted that T(p), 1L and C(p) are generally real, and the above Bogoliubov

transformation only works if e(p) is real as well, in which case Eqs. (2.49) and (2.50)



reduce to the more commonly used forms:

T(p) + p + E(p)
UP = 2c(p)

E(p) + T(p) (2.52)
2/T(p)E(p)

T(p) + p - c(p)
VP 

=Vp = 2e(p)
= (p) - T(p) (2.53)
2 T(p)E(p)

If e(p) becomes imaginary, i.e. T2(p) + 2T(p)p < 0, then there is no u and v that

can achieve the aforementioned diagonalization [the denominators of Eqs. (2.49) and

(2.50) vanishes]. This is no surprise as the original Hamiltonian is Hermitian and

cannot have imaginary eigenvalues.

Note that as T(p) is continuous starting from zero, the sign of the interaction g

determines whether c(p) is ever imaginary for certain (small enough) momenta p.

In case of repulsive interaction (g > 0), E(p) is always real and the Bogoliubov

transformation gives the low-lying excitation spectrum of a stable condensate. The

quasiparticle operators bp (bt ) correspond to the eigenmodes of the system, called

phonons. The ground state wavefunction I|o) can be obtained by requiring:

bp Io) = 0 (2.54)

for all p and turns out to be:

00 - n Nnp = j, np = j) (2.55)I ~o) o = N) lH, E
p 0 j=0

where n, is the number of particles in (single particle) momentum state Ip). Note

that in (2.55) the total number of particles N is not conserved, which is a result

of treating ao and ao as complex numbers. The number conserving version can be

obtained by subtracting the quantum depletion - population in non-zero momentum



states - from N for no.

In case of attractive interaction (g < 0), for sufficiently small (pl, no phonon

operators can be constructed with the Bogoliubov transformation. Physically, this

means no stationary condensate wavefunction as described, above exists, where No .

N particles are in the zero-momentum state. If one starts with a stable condensate

with repulsive interaction and suddenly switches the sign of interaction, the particles

in the zero-momentum state will collide into the low-lying momentum states. The

so-called "quantum evaporation" corresponds to such a situation [81].

2.2.4 Superfluid flow

Eq. (2.51) gives the dispersion relation for the low-lying excitations of the condensate

- here I shall only consider the case of repulsive interaction and stable condensate.

It is often convenient to define a natural momentum unit for a condensate p, = Mc,

where c, is the speed of sound given by:

Mc2 = p (2.56)

There are two momentum regimes depending on the magnitude of the momentum as

compared to p,, as shown in Fig. 2-1:

Phonon regime when Ipl < ps;

Free-particle regime when IpI > ps.

In the phonon regime, the dispersion relation becomes linear:

E(p) = cjpl (2.57)

and in the free-particle regime, the dispersion relation becomes the usual quadratic

form plus a meanfield offset:
2

e(p) = + A (2.58)2M
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Figure 2-1: Dispersion relation of a BEC: The momentum is in units of p, = mnc,
where c, is the speed of sound. p, separates the two regimes in which the dispersion
relation is either linear or quadratic.

It is exactly the linear dispersion near zero-momentum that gives rise to superflu-

idity. To see this [70], consider a condensate having a massive velocity of V that is

interacting with a stationary obstacle. In the rest frame of the condensate, a quan-

tum of excitation at momentum p corresponds to energy c,lpl. In the rest frame of

the obstacle, this excitation causes AE = cslp| + V -p. Since the obstacle remains

stationary and does no work, AE must be zero, and we have:

clpl = -V p < IVllpl (2.59)

This inequality cannot be satisfied if IV I < c,. Therefore, when the massive flow speed

is less than the speed of sound, the stationary obstacle cannot excite the condensate

and cause its flow to slow down. c, is the critical velocity of the superfluid flow

[82, 83, 84, 85, 86], and was observed in a gaseous condensate as one of the first

proofs of superfluidity [87, 88, 89].

r



In contrast, for a BEC of non-interacting particles, the dispersion relation re-

mains quadratic at zero momentum and there is no finite critical velocity, hence no

superfluidity.

2.3 Gross-Pitaevskii equation

A related but somewhat different approach to deriving the condensate wavefunction is

based on the Hartree-Fock method [71], which is especially useful when it is necessary

to account for the trapping potential. This approach leads to the well-known Gross-

Pitaevskii (GP) equation [4, 5]. The time-dependent form of GP equation is often used

for direct (in other words, brute-force) simulation of condensate dynamics, sometimes

with modifications such as rotating reference frame and phenomenological damping

factor [90, 91, 92].

Briefly, by taking the many-body wavefunction as a multiplication of N identical

single particle wavefunctions (x1,x 2, ... , XN) = X(x1)X(x2)...X(XN), and minimizing

the functional: (I ' N(N -1)
i(x) = N JdxX*(x) 2 + Ue(x) x () + g dx x(x)14 (2.60)

subject to the normalization constraint:

Sdx x(x)12 = 1 (2.61)

leads to the GP equation:

_ 2
V 2X + UexX + g(N - 1) IX12 X = (2.62)

2M N

where Uex(x) is the external trapping potential and A is the Lagrangian multiplier.

A cleaner form is obtained by using the order parameter defined as O(x) = -NX(x)



and the chemical potential p = A/N, also noting N - 1 ý N for large N:

- V 2 b + Uex + 9 12 0 = PC (2.63)
2M

Incidentally, to see why p is the called the chemical potential, one can rewrite the

constrained functional minimization problem in terms of 0. Noting that N is the

"target" value for the constraint, it immediately follows that the minimized 7-t* and

the corresponding p* (i.e. the ground state energy) satisfies: p* = -Nl*/DN.

In the Thomas-Fermi regime, the meanfield energy:

42 4rh2an
g 1M12  (2.64)

dominates over the kinetic energy, ignoring the kinetic energy term in 2.63 altogether

leads to the equation for the Thomas-Fermi profile of the condensate:

Ue + g9 12 = t (2.65)

which for a harmonic trap Ue(x) = 1M(w2X2 2 + wY22 2+ w2 2) gives the density profile

n(x, y, z):

n(x, y, z) = g ( - M(Wx2 + 2 + 2) (2.66)

Therefore a trapped condensate has an inverse-parabolic density distribution with

Thomas-Fermi radii:

RT-F,i 2pW (2.67)

where i = x, y, z. This is a very good approximation and the small deviation is at

the edge of the condensate where the density is rounded off instead of abruptly going

to zero [4]. For a given N, p is determined by the normalization condition that

N = fdxn(x):

t(N) = 15Na, (2.68)

where & = (wxwywz) 1/3 is the geometric-mean trap frequency and ~HO = is the



mean harmonic oscillator length.

Finally note that in the Thomas-Fermi regime:

S= L M 2 4F >> hW (2.69)

which is equivalent to:

RTF > M aHO (2.70)

which means the condensate wavefunction has a spatial extension much greater than

the single particle ground state in the harmonic trap.



Chapter 3

Momentum analysis using Bragg

spectroscopy

This chapter discusses two experiments using the technique of two-photon Bragg scat-

tering to both prepare (excite) and probe the condensates:

* J.M. Vogels, K. Xu, C. Raman, J.R. Abo-Shaeer, and W. Ketterle, Experimental

Observation of the Bogoliubov Transformation for a Bose-Einstein Condensed

Gas, Phys. Rev. Lett. 88, 060402 (2002). Included in Appendix A.

* J.M. Vogels, K. Xu, and W. Ketterle, Generation of Macroscopic Pair-Correlated

Atomic Beams by Four- Wave Mixing in Bose-Einstein Condensates, Phys. Rev.

Lett. 89, 020401 (2002). Included in Appendix B.

The experiments always deal with condensates of finite size confined in a (usually)

harmonic trapping potential, whereas the Bogoliubov theory derived in Section 2.2

assumes a homogeneous system with translational symmetry whose eigenstates have

well defined momenta. Nevertheless, the main results of the theory work quite well

for understanding many processes in a trapped condensate, including some of the

experiments described in this thesis. Oftentimes, a local density approximation is

sufficient to account for the inhomogeneity, and as long as the dynamics in question

occurs on timescales much faster than the trap period, the presence of the trap can

be largely ignored.



Both experiments described in this chapter used Bragg spectroscopy to analyze

the "momentum" distribution of condensate wavefunctions, whose static and dynamic

properties were directly related to the atomic interaction. The momentum states in

the following discussion should be understood as wavepackets of the condensate size

AR ~ RTF, and have a momentum "uncertainty" AP ,,- h/RTF. In addition, mo-

mentum states different by more than AP are approximately orthogonal - sometimes

called "quasimodes" [93, 44, 94].

3.1 Bragg spectroscopy - a "Swiss army knife"

Despite its name, Bragg spectroscopy is more than just a spectroscopic technique. It

has proven an extremely versatile tool in the studies of ultracold atomic systems. Since

1988, two-photon Bragg diffraction of atoms from a moving optical lattice has been

used as a coherent beamsplitter for atomic samples much like an optical beamsplitter

for light [95], and was first applied in a Bose-Einstein condensate in 1999 [96, 97].

Subsequently, the Bragg spectroscopy was extensively used both as an exciter and as

a probe to study the condensate dynamics by measuring the momentum distribution

of the condensate or, more precisely, the dynamic structure factor [85, 98, 99].

As a beamsplitter, the two-photon Rabi frequency is typically high and exceeds

the inhomogeneous "linewidth" of the atoms, so that the collective effect (such as the

meanfield) can be ignored and all atoms are coherently split in the momentum space.

Large fraction - 50 % (7r/2-pulse) to 100 % (ir-pulse) - of the atomic population are

routinely transferred between momentum states. As an exciter or a probe, the Bragg

beams are typically operated in the perturbative regime where a linear response theory

provides a good description of the process [99]. For the two experiments discussed

in this Chapter [100, 39], we utilized all three aforementioned functions of Bragg

spectroscopy.

There are various ways to look at the two-photon Bragg scattering process, some

more rigorous and generally applicable than others. Here, I choose to adopt a practical

"experimentalist" view of a scatterer under the influence of two far-detuned laser



beams as illustrated in Fig. 3-11. The scatterer coherently absorbs a photon from the

higher frequency beam and subsequently emits one into the lower frequency beam.

The total energy and momentum must be conserved, and therefore the resonant

condition is given by:

AWres = w(q + Ak) - w(q) (3.1)

O - A( C
k-Ak k

Figure 3-1: Two-photon Bragg scattering: The yellow ball can be a single particle or
a many-body system such as a BEC, that has an initial momentum q. The resonant
condition is satisfied when the frequency difference Aw between the two Bragg beams
exactly matches the energy cost to transfer momentum Ak to the scatterer.

Usually the dispersion relation (w(q)) for the scatterer approaches the quadratic

free-particle asymptote for large momentum q such as in Fig. 2-1. The resonant

condition then becomes (for large Ak):

AWres = h (Ak2 + q - Ak) + 6(q) (3.2)2M

where 6(q) includes w(q), 2 and any other small offset (such as the meanfield shift)

that depends on q. The linear term q Ak should be much greater than 6(q) in order

for the momentum distribution to be (linearly) mapped into the frequency domain.

For this reason, the momentum transfer Ak is typically set to be as large as possible

when measuring the momentum distribution through Bragg spectroscopy.

3.2 Measuring phonon wavefunction

The Bogoliubov theory showed that because of the interaction, the elementary excita-

tions in a BEC are phonons corresponding to the quasi-particle creation/annihilation
1Far-detuned means the two-photon Rabi frequency of the stimulated Bragg scattering process

is much greater than the spontaneous Rayleigh scattering.



operators given in Eqs. (2.44) and (2.45). From the ground state wavefunction (2.55),

it is straightforward to calculate that for I phonons at momentum p (bpti I o)), there

are lu~ + v2 free particles moving with momentum p and (1+ 1)v2 moving with mo-

mentum -p 2. The finite population v2 present in the ground state corresponds to

the quantum depletion and will be further discussed in Chapter 5. Since both up2 and

v2 become > 1 for small momentum p, we expect to see a significant populations in

both the +p and -p directions.

3.2.1 Experimental setup and time sequence

In the first experiment [100], we used the Bragg spectroscopy to excite phonons in

the condensate and subsequently probe the resulted momentum distribution [101].

The setup of the Bragg beams is illustrated in Fig. 3-2. We first turned on a pair

of small angle (30 mrad) Bragg beams 1 and 2 for 3 ms, exciting phonons at low

momentum q/M = 1.9 mm/s (the speed of sound c, for our experiment was at least

twice higher). Subsequently, a pair of large angle Bragg beams were pulsed for 500 ps

to probe the momentum distribution of the system - the large momentum transfer

Q/M = 59 mm/s was at least 10 times greater than cs. The trap was then switched

off and the atoms expanded ballistically for 40 ms before an absorption image was

taken. In the experiment, we actually retro-reflected a laser beam that contained

both w and w - Awp for the large angle Bragg scattering, resulting in out-coupling

of atoms in both direction - a technicality largely out of convenience. All the Bragg

pulses were applied when the condensate was held in a magnetic trap whose radial

and axial trapping frequencies were 37 and 7 Hz respectively.

Fig. 3-3 shows three absorption images taken when the probe frequency was res-

onant with the atoms in +q, 0, -q momentum states with respect to the direction of

the large momentum transfer Q. Note that in the center of the images, aside from

the remnant of the initial condensate, there is a shadow of atoms on one side of the

condensate corresponding to the phonons that were adiabatically converted into free

2 We see from the normalization condition (2.46) that the total momentum is still lp, consistent
with the phonon picture.
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Figure 3-2: (Color) Bragg beams setup for phonon wavefunction measurement: The
small angle beams 1 and 2 were used to excite phonons at q = Ake, while the large
angle beams 3 and 4 were used to measure the momentum distribution Q = Ak,.
Absorption images were taken along the long axis of the condensate.

particles during the ballistic expansion. This is a consequence due to the condensate

being in the Thomas-Fermi regime, where the density drops on a timescale (inverse

radial trap frequency which is 37 Hz) much slower than the inverse of the phonon

energies (about 400 Hz) [102]. Precisely for this reason, we had to use the large angle

Bragg beams to perform in-situ momentum analysis3

3.2.2 Measuring Bogoliubov amplitudes

To measure the Bogoliubov amplitude, we kept the probe frequency Awp fixed at

94 kHz, which was chosen to resonantly detect free atoms with +q momentum (by

kicking them into the -Q + q momentum state). The excitation frequency Awe was

tuned to excite phonons, and the atoms out-coupled to the -Q+q states were counted

as a measure of the phonon amplitude. As shown in Fig. 3-4, two resonances were

found in the scanning of Awe (one positive and one negative) corresponding to the

3This subtlety is revisited in Chapter 5.
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Figure 3-3: Momentum distribution of a condensate with phonons: After the small
angle Bragg beams excited +q phonons into the condensate, the large angle Bragg
beams probed the momentum distribution. Absorption images after 40 ms time of
flight in (a), (b), and (c) show the condensate in the center and outcoupled atoms

to the right and left for probe frequencies of 94, 100, and 107 kHz, respectively. The

small clouds centered at +q are phonons which were converted into free particles. The

size of the images is 25x2.2 mm. (d) The outlined region in (a) - (c) is magnified,
and clearly shows outcoupled atoms with momenta Q + q, which implies that phonons
with wavevector q/h have both +q and -q free particle momentum components.



phonon excitations at two momenta +q and -q that contained 2 and v units of free

atoms in +q state.

The relative heights of the two peaks gives the ratio of a2/v2, which increases

as q/p, = q/(Mc,) is increased. Due to limited optical access, it was difficult for

us to change the phonon momentum q, which required changing the angle between

the small angle Bragg beams. Instead, we performed the same measurement for

condensates at peak densities 1.0 x 1014 cm -3 and 0.5 x 1014 cm -3 , which correspond

to the speed of sound c, = 5 mm/s and 3.5 mm/s respectively. The result is consistent

with the Bogoliubov theory calculation (dashed lines in Fig. 3-4. Somewhat later, a

different group was able to map out the entire excitation spectrum by varying the

angle between the exciting beams [103, 104].

3.3 Coherent collision and four-wave mixing

The long range coherence of BEC in the context of atom optics is analogous to that

of laser, which prompted the term atom laser. In the same context, the interaction

terms in the Hamiltonian (2.2) are identical to the four-wave mixing Hamiltonian in

non-linear optics:

HFwM oc a4aa l a2  (3.3)

This led to the matter-wave mixing experiments with BEC, which was first reported

in 1999 [38]. The second experiment described in this Chapter was the effort by

our lab based on the same idea. Due to the much larger size of our condensate, a

maximum gain in excess of 20 was observed which implied an approximate dual Fock

state [105].

3.3.1 Experimental setup and time sequence

Fig. 3-5 shows the setup of four Bragg beams used as atomic beamsplitters. The

condensate was initially in mode 1 (zero momentum state). The beams 1 and 2 were

pulsed for 20 ps to seed mode 3 with about 1 to 2 % of total atoms. Subsequently,
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Figure 3-4: Bogoliubov amplitudes of phonons in a BEC: The relative height of the
two peaks reflect the ratio of u2/vq, which increases as p/p, increases. (a) and (b)
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the beams 1 and 3 were pulsed for 40 ps to split half of the condensate into mode

2. The three waves then underwent four-wave mixing, during which the seed wave

and its conjugate (mode 4) grew exponentially while the source waves (mode 1 and

2) became depleted. In order to observe the amplification in mode 3 and 4 in-situ, a

40 ps readout pulse was used to couple out a (fixed) fraction of the atoms in mode 3

and 4 at various points during the four-wave mixing. These "read-out" atoms did not

mix with the other waves as phase-matching condition (i.e. energy and momentum

conservation was no longer satisfied. The All Bragg pulses were applied when the

condensate was held in the magnetic trap whose radial and axial trap frequencies are

80 and 20 Hz respectively. After the readout pulse, the magnetic trap was shut off

and absorption images were taken after 43 ms time-of-flight, as shown in Fig. 3-6.

3.3.2 Bogoliubov approach for four-wave mixing

Assuming the initial source waves 1 and 2 remain dominant over the entire process

of the wave mixing, we can adopt a similar approximation as the Bogoliubov theory

and retain in the Hamiltonian (2.2) only terms containing al,2 and a1 ,2:

2+g 2g t t
-.+-- (ataalal + atata2a2) + Vala2ax•2

+ 3 (atataiaj + c.c)
i,j01,2

+ E 2g(ataaa + atata2ai) (3.4)
i#1,2
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Figure 3-5: (Color) Bragg beams setup for four wave mixing: (a) The beam 1 was
paired up with the beams 2, 3 and 4 sequentially to split the atoms into source waves,
seed wave and then read out the growth in the seed and source waves. The detunings
were set to satisfy the resonant Bragg condition. (b) and (c) show the initial waves
and the subsequent four-wave mixing including the readout.
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Figure 3-6: Time-of-flight images of atomic four-wave mixing: (a) Only a 1% seed was
present (barely visible). (b) only the two source waves were created and the collisions
result in a s-wave halo. (c) All three waves were present and the four-wave mixing
greatly enhanced the number of atoms in the seed and its conjugate waves. The white
cross marks the location of the initial condensate. (d) and (e) are examples of the
readout pulses coupling out a small fraction of the seed and its conjugate waves. The
readout pulses were 40 ps in order to take a "snapshot" of the amplification, resulting
in off-resonant out-coupling to other wave packets indicated by the white arrows. Our
signal is in the dashed square boxes. The time of flight is 43 ms.
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where g = 4 2a We further neglect the depletion of the source waves and treat al,2

and at as complex numbers that evolve as:

al (t) = e -i iJtal(0) = e`ILtV/Vj (3.5)

a2 (t) = e-~2ta2 (0) =e-i'2t /2 (3.6)
h2k•

2wk = + pl + 212 (3.7)2M
h2k2

+wz2 2 2 2 + 2pL (3.8)2M
P= gN) i=1,2 (3.9)

where N1 and N2 are the number of atoms in the source modes 1 and 2, assumed to

be constant for the duration of the wave mixing.

The equations of motion for mode 3 and 4 are:

ih da 3  w3 a3 + 2 a 2  (3.10)
dt V

ihda4 = tw4a4  (3.11)
dt V

h2k
2

3,4 3,4 + 2p1 + 2 P2 (3.12)
2M

With a change of variable:

3,4 = ei'4t 3,4 (3.13)

Eqs. (3.10) and (3.11) simplify to:

ihd = 2 -iewt • (3.14)

ih -4 2 /i etawth (3.15)

hAw = h(w3 + w4 - W1 - 2) (3.16)
h2 k32 2 kM h2 kI W h2k +±

1+ +1 + A2 (3.17)2M 2M 2M 2M



which can be solved to give:

() 2e l t Ale A2t ) 2 - t(0) (3.18)
a3(A 2  Al AA 2 ) b3(0) + h(A2  () (3.18)

a4 2eXit l e ( 2 1 120) b +3(0) (3.19)S A2 - A 1 - - 1)
A1,2 = A2 16plP2 Aw2 (3.20)

Since we initially have Nseed atoms in mode 3 and no atoms in mode 4, the above

solutions (3.18) and (3.19) give the time evolution of N3 and N4:

iAw 2 2 2

(N3 (t)) = cosh(At) - i sinh(At) Nseed +- sinh(At) (3.21)
2A hA
[ 2 2

(N4 (t)) 2 sinh(At) (Nseed + 1) (3.22)

Aw2
A = yfrac4p l p 2h 2 - 4 (3.23)

When hAw < 4V p0i 2 , both N3 and N4 grow exponentially together at the growth

rate A; when hAw > 4-~ u1 j 2 , the cosh and sinh functions become cos and sin and N3

and N4 become oscillatory instead. The maximum growth rate A is achieved when

the energy mismatch Aw = 0 as expected.

In our experiment, the Bragg beams were set up to minimize the energy mismatch

(Fig. 3-5). The number of atoms out-coupled by the readout pulse in our experiment

indeed showed an initial exponential growth, which leveled off after a couple of hun-

dred microseconds when the source waves became significantly depleted, as shown in

Fig. 3-7.

3.3.3 Dual Fock state and Heisenberg-limited interferometry

In quantum mechanics, the evolution of any dynamic system can be thought of as

the accumulation of phase differences among various eigenstates. Interferometry is

the class of measurement based on interfering two (or more) alternative dynamic

paths and mapping the cumulative phase difference between the paths into some
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Figure 3-7: The correlated exponential growth of seed wave and its conjugate: The
growth of (a) the seed wave in mode 3 and (b) its conjugate in mode 4. The growth
rate is determined by the meanfield energy [Eq. (3.21) and (3.22)]. The atom counts
(in the dashed square boxes in Fig. 3-6) are normalized by the initial value for the seed
wave. The solid and dashed lines are fits to the initial growth according to Eq. (3.21)
and (3.22), which give growth rates of (170 Ms) - 1 and (100 Ms) - 1 respectively.



sort of time-dependent intensity, thereby obtaining the eigenenergies 4 . The quantum

nature of light or particle waves gives rise to shot noise in the intensity measurement.

Typically, the intensity of a classical wave has a Poisson-type fluctuation:

AN = ' (3.24)

where N is the total counts corresponding to the integrated intensity within the

measurement window5 . Therefore, the accuracy of the phase (and frequency) mea-

surement is also subject to this 1/v-N shot noise.

In principle, if the states involved in the interferometry are squeezed in amplitude

[105], the phase measurement resolution should only be limited by the total number

count N [106]:
1 (3.25)
N

which is called the Heisenberg limit. Various schemes based on such non-classical

squeezed states have been proposed over the year. In particular, one class of schemes

require the use of dual Fock state which is of the form:

1) = Z N IN, N) (3.26)
N

where the occupation in a pair of (input) modes are identical [40, 41, 107, 42].

In our experiment, due to the initial seed Nseed in mode 3, the number difference

between mode 3 and 4 is not exactly zero, but does stay constant - N 3 - N4 commutes

with the Hamiltonian (3.4):

|') = Z clN3 = N,N 4 - N') (3.27)
N,N'

A(N3 - N4) Nseed (3.28)

4It is the energy difference to be exact, as a global energy offset leads to a global phase that is
not physically observable.

5 The inverse of measurement (time) window determines the bandwidth for the measurement of
intensity variation, from which the eigen frequency is calculated.



Therefore, a gain of 20 implies a squeezing factor of V40. However, it should be

noted that such squeezing is only true because we have ignored the secondary terms

in the Hamiltonian (3.4) which correspond to secondary collisions that would degrade

the squeezing factor. This limitation is in principle a technical one - as long as the

meanfield gain factor A1,2 are sufficiently large, the compromising effect of secondary

collisions could be suppressed. In addition, mode selectivity that enhances the gain

in the desired modes would eliminate the need for the initial seed. Mode selectivity

in optics is typically achieved by cavities. In case of atoms, the analog of which for

atoms are atomic waveguides [108, 109, 110, 111, 112]. Similarly, extreme geometries

could also lead to some mode selectivity [94].



Chapter 4

Quantum degenerate molecules

This chapter discusses two experiments studying the formation and decay of ultracold

molecules produced from an atomic condensate using a magnetic Feshbach resonance:

* K. Xu, T. Mukaiyama, J.R. Abo-Shaeer, J.K. Chin, D.E. Miller, and W. Ket-

terle Formation of Quantum-Degnerate Sodium Molecules, Phys. Rev. Lett.

91, 210402 (2003). Included in Appendix C.

* T. Mukaiyama, J.R. Abo-Shaeer, K. Xu, J.K. Chin, and W. Ketterle, Dissoci-

ation and Decay of Ultracold Sodium Molecules, Phys. Rev. Lett. 92, 180402

(2004). Included in Appendix D.

One of the first interesting discoveries about ultracold atomic gases is the observa-

tion of Feshbach resonances [56, 57, 113]. Because of the low temperature and narrow

kinetic energy spread of the cloud, the highest bound states of the two-body poten-

tial could be tuned very close to the unbound colliding states, resulting in resonant

scattering. It was immediately suggested as a way to vary the interaction strength in

BEC, which proved to be more difficult in practice due to the strong inelastic collision

losses near the Feshbach resonance [58]. In past three years, however, much progress

has been made in a different way of using the resonances, namely creating ultracold

molecule samples from an atomic condensate (or a degenerate Fermi gas).

Molecules, due to their complicated internal level structure, are difficult to cool

using the conventional laser cooling techniques, which are typically the precursor to



evaporative cooling in order to reach quantum degeneracy. Alternative techniques

such as buffer gas loading [114], Stark deceleration [115] or cavity cooling [116] have

been successful to some extent, but still fall short of achieving the requisite phase-

space density for BEC. Feshbach resonances provided a solution to convert ultra-

cold atoms into molecules thereby circumventing the problem of directly cooling the

molecules.

This Chapter describes the efforts in our lab to create and study ultracold (quan-

tum degenerate) molecules using a Feshbach resonance. Although such molecules

are short-lived due to inelastic collisions, we were able to use them to experimen-

tally probe the coupling between the atomic and molecular states that underlies the

Feshbach resonance.

4.1 Magnetic feshbach resonance

I start this Chapter by making explicit the general formalism of resonant scattering

phenomena in Chapter 2 as applied to the specific case of inducing a Feshbach reso-

nance with an external magnetic field. Fig. 4-1 illustrates the typical situation. The

collision channel (red) and bound state channel (green) are each labeled by the atom

pair's stretched hyperfine configuration in the far distance limit, denoted as Ic) and Ib)

respectively. At zero field, the continuum thresholds of these channels are separated

according to the atomic hyperfine structure. Each channel has a Born-Oppenheimer

potential associated with it, which gives rise to a discrete set of bound states.

When a magnetic field is applied, the potentials of two channels with different

magnetic moment can be shifted with respect to each other, along with their contin-

uum threshold and bound states. Suppose this is the case for channels Ic) and Ib),

whose magnetic moment difference is:

Ap = Pb - Pc (4.1)

Then it is possible to shift one of the highest bound states of channel Ib) (typically a
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Figure 4-1: (Color) Magnetic feshbach resonance: Color red represents the unbound
collision channel and color green represents the bound state channel. Shaded area
represents the colliding continuum. AE is the energy separation between the bound
state and continuum threshold (in a condensate, atoms lie very close to the threshold),
tunable by the magnetic field B. The bound state is degenerate with the threshold
at Bo. For the purpose of illustration, the potentials are not drawn to actual scale.



couple of gigahertz below the threshold) close to the continuum threshold of channel

Ic). If there is a coupling between the two channels, the resonant scattering behavior

would occur.

Since Ap/h - 1 MHz/G, a magnetic field Bo < 1000 G would be sufficient to

induce such a magnetic Feshbach resonance, which is indeed the case for the Feshbach

resonance experiments in 23Na. For heavier atoms such as 87Rb and 133Cs that have

larger hyperfine splittings, even lower magnetic field is required to induce Feshbach

resonances [113, 117].

Eq. 2.33 is typically rewritten in a dispersive form [73]:

as(B) = abg) 1 B-B 0 ) (4.2)

a(bg)A B  M I(cIWIb)12  (4.3)

4.2 Experimental setup and time sequence

The main components of the experiment is illustrated in Fig. 4-2, along with the time

sequence for creating and detecting the molecules. The optical dipole trap had an

axial trap frequency w, = 2ir x 2.2 Hz and radial trap frequencies w,,, = 2r x 290 Hz,

which gave Thomas-Fermi radii of Rz = 650 pm and R,,, = 5 Mm and a peak density

of 1.7 x 1014 cm - 3 for a condensate of 5 x 106 23Na atoms.

The Feshbach resonance used for molecule formation is at about Bo = 907 G,

corresponding to the resonant collision between atoms in the lowest hyperfine state

Ims = -1/2, mi = +3/2) which connects to the IF = 1, mF = +1) state at zero

field. An adiabatic radio-frequency sweep was applied to transfer all the atoms from

the initial IF = 1, mF = -1) state into the IF = 1, mF = +1) state. Since the true

bound state exists below Bo, we first ramped the field to just under Bo with the small

coils adding about 10 G magnetic field opposite to the high field direction, and then

switched off the small coils to jump across the resonance quickly (,, 1 Its). At this

point, the (quasi) bound state was above the continuum threshold. The magnetic

field was subsequently ramped back down across the resonance. Due to the atom-



molecule coupling, part of the atomic population was transferred into the molecular

state following the Landau-Zener avoided crossing.

A "blast" light pulse (20 ps) was applied in the radial direction to quickly remove

the remnant atoms, in order to minimize the inelastic collision between the molecules

and atoms which would lead to the heating and loss of molecules. The magnetic field

was sufficiently detuned from the resonance so that only the atoms were resonant

with the blast pulse while the molecules were largely transparent due to the small

Frank-Condon factor and remained intact.

After some time of flight, we ramped the magnetic field back up in 100 Ps and

moved the molecular state into the continuum, which again became a quasi-bound

state. The molecules were quickly dissociated into free atoms and then imaged at

the high field. The imaging occurred 500 ps after the dissociation which was short

enough to ensure that the spatial extent of the cloud reflected mostly the momentum

distribution of the molecules, which could be used to define a nominal "temperature".

4.3 Quantum degenerate molecules

The slower the ramp down speed, the more atoms should be converted into molecules.

However, the inelastic collision loss is greatly enhanced near the Feshbach resonance.

In a slow ramp, the molecule atom mixture spends too much time near the resonance

and most of the molecules are lost to relaxation into deeper bound states.

Fig. 4-3 shows the situation for different ramp speeds with or without the "blast"

pulse to remove the remnant atoms. Based on the estimation of Landau-Zener factor,

the "ideal" conversion efficiencies for ramping the magnetic field by 10 G in 50 us,

200 Its, 1 ms and 4 ms are 5 %, 20 %, 60 % and 98 % respectively. However, due to

the inelastic collisions with the atoms, slow ramps did not produce more molecules

than a fast ramp followed by a "blast" pulse, in which case the molecules were also

significant "colder".

In fact, these molecules appeared so cold in time-of-flight that we suspected they

might be quantum degenerate - Fig. 4-4. A quantitative analysis of the phase space
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Figure 4-3: Molecule formation for various ramp speeds of magnetic field: During a
given time, the magnetic field was ramped by 10 G. (a) and (b) are the absorption
images taken after 14 ms time-of-flight. The molecules (bottom) were radially sepa-
rated from the atoms (top) by a field gradient of 2.8 G/cm. (a) Without applying the
"blast" pulse, the atoms remained in the trap. (b) With the "blast" pulse, the atoms
were quickly removed after the field ramp. (c) Number of molecules as a function of
ramp time for (a) (open circles) and (b) (closed circles).



density could be obtained by counting the molecules and calculating the peak density

based on the trap geometry, in addition to fitting the time-of-flight images to obtain

the momentum distribution (see details in [118]). Our analysis confirmed that the

peak phase space density exceeded 20, which is significantly above the critical value

of 2.6 for an ideal Bose gas.

4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms 20 ms

Figure 4-4: Ballistic expansion of a pure molecular cloud: These are the absorption
images of molecular clouds (reconverted into free atoms) taken after various times of
flight. The expansion velocity corresponds to a temperature of ~ 30 nK. The images
were taken along the long weak axis of the optical dipole trap and the field of view is
3.0 mm x 0.7 mm.

Despite the high phase space density which indicated quantum degeneracy, we

stopped short of calling these molecules "molecular BEC" because the high inelastic

collision rate quickly heated the cloud in a few milliseconds even at a density less

than 4 x 1012 cm -3 , as shown in Fig. 4-5. This lifetime is much shorter than the axial

trap frequency of the optical trap, making it impossible to reach any (quasi) thermal

equilibrium, which we believed to be a reasonable requirement for BEC. Somewhat

later, molecular BEC's were realized in ultracold Fermi gases [119, 120, 121]. The
6Li 2 BEC exhibited remarkably long lifetimes near the broad Feshbach resonance



[119, 121], which was attributed to Fermi statistics [122]. In 40K 2 [120], however,

the "BEC" was produced in a few milliseconds and only radial equilibrium could be

achieved, which was similar to our situation. A notable difference is that for Fermi

clouds, the ramp speed of the magnetic field could not have been as short as 50 ps as

the initial atomic cloud had at most unity phase space density. For an atomic BEC,

the molecules simply inherit the initial zero center-of-mass motion of the atom pairs.
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Figure 4-5: Molecular phase space density vs. hold time: (a) The phase space densities
of the molecules decreases significantly after a few milliseconds holding in the optical
trap. (b - c) are the absorption images of the molecular clouds after (b) 0 ms, (c)
2 ms, (d) 5 ms, (e) 10 ms, (f) 20 ms hold time in the trap. The field of view is
0.8 mmx0.8 mm.

4.4 Molecule dissociation

If after the molecule formation and the removal of the remnant atoms, we imme-

diately dissociate the molecules with a reverse field ramp before the time of flight,

the added dissociation energy will appear in addition to the initial kinetic energy of

the molecules. Intuitively, the dissociation rate is proportional to the atom-molecule

coupling strength I(c|Wjb) 2 in Eq. (4.3). For a given coupling strength, the faster
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the ramp speed of the magnetic field, the deeper the quasi-bound state would move

into the continuum before the molecules were fully dissociated. Therefore the (mean)

dissociation energy as a function of the ramp speed can be a direct measure of the

atom-molecule coupling strength.

4.4.1 Fermi's golden rule

More specifically, for the s-wave molecular state involved in the Feshbach resonance,

the coupling is predominantly to the s-wave unbound states. In the low momentum

limit, the coupling strength:

J(cjWIb)12 = 4rh2 Aa\(bg)AB (4.4)
MV 1

is essentially a constant proportional to the Frank-Condon factor between the bound

state and the zero momentum (threshold) state.

The dissociation rate is given by the Fermi's golden rule [71]:

rdis = D(e) I(cIWlb)l2  (4.5)

D(c) = (2 1/ 2  (4.6)

where D(E) is the density of states at the kinetic energy e in the center-of-mass frame,

corresponding to atom pairs with kinetic energy E/2 in the lab frame.

Let m(e) be the molecular population which is unity at c = 0 (at the continuum

threshold). As the magnetic field is ramped up and e increases at the rate A•|IBI,

the molecules dissociate into atoms at a rate given by (4.5):

dm(e) dm(e) (ddt)- dim(e)
dc dt A |lBI

= -CE1/2m(E) (4.7)

2a bg ) AB -M

chfI h2



which can be solved for m(e):

m(e) e- 3

Finally, the mean dissociation energy is given by:

E ) =I I B 2/3
JE = j 0 [-dm(6)] = 0.591 ( M 2a j)B )0 2 (V M 2.S --

(4.8)

(4.9)

Note that Eq. (4.9) shows that the dissociation is proportional to the 2/3-power

of the field ramp speed IBI, and the proportionality constant contains no other free

parameters aside from a), AB. Fig. (4-6) shows our data, from which we obtained

a fit value of a bg)AB = 3.64 G nm. The know theoretical calculations agreed with

our measurement to within 10 % [123, 124].

0 50 100 150

Ramp Rate [G/ms]

200

Figure 4-6: Dissociation energy for different ramp speeds for 23 Na dimers: The solid
line corresponds to the (slightly larger) theory value of a g ) AB for AB = 0.98 G and
a*b ) = 3.4 nm [123, 124]. The dotted line is a fit curve with the fitting parameter
a * bg)A B = 3.64 G nm.

Shortly after the publication of our result, Rempe group in Germany performed the

same measurement of Feshbach resonance widths for 87Rb [125]. Their measurement



was done more carefully for resonances as narrow as 1 mG, as shown in Fig. 4-7 and

Table 4.1. It is worth noting that the field stability for their experiment is 4 mG

(which is in fact excellent for such high magnetic fields), so any static method would

not have the resolution to resolve the narrow Feshbach resonances. In contrast, the

dynamic method based on molecule dissociation maps the resonance width into a

large kinetic energy spread, which corresponds to a large magnetic field range where

the molecules dissociate. This is somewhat analogous to the situation of large Ak

Bragg spectroscopy discussed in Section 3.1.

Br, (G) ABfi (mG) ABth (mG)
632 1.3(2) 1.5
685 6.2(6) 17
912 1.3(2) 1.3
1007 210(20) 170(30)

Table 4.1: Position Bre, and width AB of the Feshbach resonances for 87Rb: ABft is
the best-fit value obtained from the measurement in Fig. 4-7. ABth is the theoretical
prediction from Ref. [117]. This Table is taken from [125].

4.4.2 Shape resonance

For narrow resonances such as in 87Rb, it is possible to ramp the magnetic field fast

enough across the resonance (without significant dissociation in the process) to a par-

ticular value of E and measure the dissociation rate of the molecules at that particular

point in the continuum. This is demonstrated in the ring-shaped dissociated cloud in

[125].

However as mentioned earlier, for s-wave molecules, the dissociation rate is almost

independent of E [Eq. (4.4)] as the quasi-bound state couples mostly to the s-wave free

states which is almost uniform in short distances. The situation changes for rotating

molecules [126, 127] which can couple strongly to the d, g, i, ... -waves (p, f, h, ----

waves are prohibited due to bosonic symmetry). As illustrated in Fig. 4-8, the cen-

trifugal barrier gives rise to quasi-bound d, g, i, - ---waves that have large amplitudes

in short distances. When the molecular state is tuned near these quasi-bound waves,
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Figure 4-7: Dissociation energy for different ramp speeds for s7Rb dimers: The four
Feshbach resonances of 87Rb are much narrower than the one we measured for 23Na,
and could not have been measured accurately with static methods. This figure is
taken from [125].
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the dissociation rate is enhanced and no longer uniform. Such phenomenon is called

a shape resonance and was observed in 8 7 Rb [127].

Continuum Threshold

Figure 4-8: (Color) Magnetic shape resonance: The two-body potential includes
the centrifugal part due to the finite angular momentum. A quasi-bound state has
stronger overlap with the bound state in short distances than the other continuum
states, resulting in a stronger decay rate when the bound state is tuned close to the
quasi-bound state. For the purpose of illustration, the potentials are not drawn to
actual scale.
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Chapter 5

Bose-Einstein condensates in

optical lattices

This chapter discusses two experiments loading condensates into optical lattices:

* K. Xu, Y. Liu, J.R. Abo-Shaeer, T. Mukaiyama, J.K. Chin, D.E. Miller, and W.

Ketterle, Sodium Bose-Einsteain condensates in an optical lattice, Phys. Rev.

A 72, 043604 (2005). Included in Appendix E.

* K. Xu, Y. Liu, D.E. Miller, J.K. Chin, W. Setiawan, and W. Ketterle, Obser-

vation of Strong Quantum Depletion in a Gaseous Bose-Einstein Condensate,

preprint: cond-mat/0601184 (submitted to Phys. Rev. Lett). Included in

Appendix F.

In recent years, optical lattices have become a popular tool in the study of strongly

correlated systems with ultracold atomic gases. The interference of two far-detuned

laser beams forms a periodic optical potential called optical lattice. Simply by chang-

ing the lattice beam intensity, one can vary the interaction strength as well as the

tunneling rate. In addition, the well-developed band theory for condensed matter

systems is readily applicable to BEC in an optical lattice, providing powerful tools

for theoretical investigations.

Earlier experiments usually involved a single lattice beam and observing the time-

of-flight interference pattern and the collective motion of the condensate along the



direction of the lattice beam. The single-particle band structure was manifest as

an enhanced effective mass in small motion [128, 129] and Bloch oscillation in large

motion [130]. For a very deep lattice, some evidence of number squeezing due to

the atomic interaction was observed [59]. Somewhat later, two and three dimensional

lattices were applied which led to the discoveries of more interesting states. The quan-

tum phase transition from a superfluid state to a Mott-insulator was first observed

in a 87Rb condensate [131, 60]. Massive entanglement was achieved via controlled co-

herent collision in a Mott-insulator [61]. Tonk-Girardeau regime was explored in one

dimensional quantum gases confined in a two dimensional lattice [62, 63, 132, 133].

The inelastic collision loss of Feshbach molecules (see Chapter 4) could be suppressed

in a Mott-insulator, enabling the study of coherent molecule formation and dissoci-

ation [64, 65, 66]. Recently, we studied the quantum depletion in an optical lattice,

mapping out the intermediate regime between gaseous BECs and quantum fluids such

as superfluid liquid helium [67].

I start this chapter with a review of some useful results from the band structure

theory relevant to understanding most of the experiments involving ultracold atoms

in an optical lattice. I then proceed to discussing the two published results, mainly

focusing on a few subtleties not fully discussed in the papers. The rest of this Chapter

is devoted to a detailed account of the technical issues encountered in setting up the

optical lattice and the ways in which we worked around them. This is intended as a

future reference for posterity in the lab.

5.1 Bosons in lattice potential

To avoid confusion, d-dimensional lattice refers to having d (orthogonal) standing

waves with the other (3 - d) dimensions free of lattice beams (d = 1, 2, or 3). This

should be differentiated from a d-dimensional gas in an optical lattice which is usually

achieved by having (3-d) very deep lattices to "freeze out" (3-d) degrees of freedom.

For simplicity, all lattice beams are assumed to have the same wavelength AL and to

be orthogonal with respect to each other.



5.1.1 Bose-Hubbard model

Including the lattice potential UL(x), the Hamiltonian (2.1) now reads:

N N

H = Zh +2 Z U(xi -xj) (5.1)
i=O i,j=1

h2h = V + UL (X)(+Ue(X)) (5.2)
2M

where Uez is other slow-varying potentials such as the atom trap. UL(x) is has a

spatial periodicity of aL = AL/2 in each dimension with a lattice beam present.

A natural unit for energies is the photon recoil energy defined as:

h2k2
ER - 2M (5.3)

21M

kL =-

7r (5.4)
aL

The single particle Hamiltonian h (without Uex) is invariant under translation of aL

in the lattice direction - say ^:

UL,z(z) = -ER(1 - cos2kLz) (5.5)
2

where UL is the lattice depth measure in units of ER. It follows from Bloch theorem

that the eigenstates of h can be chosen to have definite quasi-momenta q and form a

band structure:

Cq,n(X + aLn) = eiqaL q,n(x) (5.6)

qq,n(x) is called the Bloch function and n = 0, 1, 2, ... labels the different energy bands

in increasing order. Since exp [i (2) aL] = 1, physically distinct q should span a

range no more than 2kL. Typically this range is defined as [-kL, +kL) - called the

first Brillouin zone. kL defines a natural unit for quasi-momenta.

Once again I choose to work with a quantization volume V with periodic boundary



conditions:

V = (aLNL)d L 3 - d (5.7)

where the lengths along the d lattice dimensions are chosen to be integer multiples of

aL and NL is the number of lattice sites along each lattice dimension.

It is useful to develop an intuitive feel for how the band structure should look like.

Fig. 5-1 shows the band structures for various lattice depths. The free particle case

(UL = 0) is simply obtained from the quadratic kinetic energy:

Eq,nj = ER(2j+ q  (5.8)

21j - 1 ifqj>Oorq=O,j>0
21ji if j = 0 or qj < 0 or q = 0,j < 0

where Eq,n, is the eigenenergy corresponding to the njth band at quasi-momentum

q. The Bloch functions in this case are simply the plane waves I|q,n,) = I2jkL + q).

At finite lattice depths, UL couples only the plane waves at the same quasi-

momentum. In fact, due to its sinusoidal form (5.5), the only non-zero matrix el-

ements due UL are:

UL
(2jkL + qlUL|2jkL + q) = (5.9)

(2(j + 1)kL + q UL|2jkL + q) (5.10)

Gaps open up near the center and the edges of the Brillouin zone where different

bands meet, causing avoided crossings. The deeper the lattice, the flatter the bands.

In the limit of completely flat bands (zero tunneling, see discussion below), the bands

are separated by the local harmonic trap frequency at each lattice site.

In some cases, it is more convenient to work with a different set of orthonormal

basis called Wannier functions [134]:

wS,(x) -= 1 E q,(x)e- aLq  (5.11)
NNLq
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Figure 5-1: Band structure of an optical lattice: The first few energy bands for 0 ER

(solid lines), 5 ER (dashed lines), 10 ER (dotted lines).

ws,n are localized wavepackets at the sth lattice site (s = 0, 1l, ±2, ..., ±NL/2) and

have identical forms except a spatial offset:

w,,n(x + saLk) = wo,n(x) = W,(x) (5.12)

In the limit of very deep lattices, w,n, approach the wavefunctions of a harmonic

oscillator - for the typical experimental conditions, however, w,,n are more delocalized.

The Bloch states can be expanded in w,,n basis:

q,n (x) = E WS,n(x)eisaLq (5.13)

Adopting the second quantization notations, (5.1) can be rewritten as:

H = (S2, n 2 h sl, nl)at, 2a 1, 1lS2,n2 asnl
s 1 a,, anS2,f,2

= + (S3 3, 84, n4 Ulsl,nl, S2, n2 3  81, 82 2 a (5.14)
81,nl1,S2,n2
S3 , n3,S4,n4



Is, n) refers to wo,n. Note that because of (5.12), we have:

(s, nlhls, n) = jdx w (x)hwn(x)

= En (5.15)

(s + As, nhls, n) = jdx w(x + AsaL,)hw,(x)IV
= -Jn(As) (5.16)

(, , s, nlUs, n, s, n) = gf dx lwn(x)I 4

= Un (5.17)

We call E, the offset energy, Jn(As) the tunneling rate between sites separated by As

sites, and Un the onsite interaction energy - for the nth band.

The typical temperature in the BEC experiments is much lower than the gap

between the lowest band and the first excited band E1 - Eo. Therefore one can retain

in (5.14) only the terms involving the lowest band (n = 0). Due to the localized

nature of the Wannier functions, the tunneling rate Jo(As) between non-adjacent

sites for a lattice of a few ER deep is much smaller compared with that between

adjacent sites (see Fig. 5-2). Therefore, one can keep only the tunneling rate between

nearest neighbors Jo = Jo( 1). Finally, because of the small spatial overlap between

the Wannier functions, one can ignore the interaction terms (s3, 0, s4, OIUIsl1 0, S2, 0)

where si's are not the same. The resulted approximate Hamiltonian is called the

Bose-Hubbard model [135, 136, 137, 131]:

H=-J a, ,as + U - 1)n (5.18)
Is-s'l=1 s

where ns = a a, and we have dropped the subscript 0 from Jo and Uo.

Finally, if there is an external trapping potential [UeEq. (5.2)], an extra term:

Hex = Cex•• 8̂ (5.19)
8

Eex = dx w(x)Uex(x)wo(x) (5.20)
JV
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Figure 5-2: Tunneling ratio: The ratio between Jo(1) (nearest neighbors) and Jo(2)

(next nearest neighbors) is plotted as a function of the lattice depth. For lattice depths
greater than 5 ER, the tunneling between nearest neighbors essentially determines the
dispersion curve (see discussion in Section 5.1.3).

should be added to (5.18).

5.1.2 Shallow lattice

For a shallow lattice (UL < 1), the Bloch states can be calculated by treating the

lattice potential as a perturbation. In particular, for the lowest band Oq(x) = Oq,o(x),

only three plane waves Iq), Iq + 2kL), Iq - 2kL) need to be considered:

-2 UL UL

- (q- 2)2 0o
-i 0 (q + 2)2
4/

(5.21)

where q = q/kL is the dimensionless quasi-momentum and we have dropped the

common diagonal term uL/2 in (5.9).

In terms of the Hamiltonian (2.2), the presence of the lattice has two effects,

namely flattening the dispersion relation T(p) and increasing the interaction strength



A(Ap) (in the lattice, p becomes the quasi-momentum q). In the shallow lattice limit

where the population concentrate at the bottom of the lowest band, the change in

dispersion relation can be captured by the effective mass M*:

M*= h2  2 T(q) (5.22)

and the effective interaction strength A(Ap) is approximately constant:

A* = g dx Io(x)|4 (5.23)

By diagonalizing the matrix (5.21) near q = 0, we can get closed form solution for

M and A in a d-dimensional lattice:

(5.24)

(5.24)M* = M 1-

*[1= 1 + 2 2)2 d (5.25)
UL

Eqs. (5.24) and (5.25) work fairly well for lattice depths up to , 5 ER. Fig. 5-3 plots

the above approximate formulas in comparison with the exact band calculations for

a three dimensional lattice (d = 3).

5.1.3 Deep lattice

In the deep lattice regime (> 5 ER), the single particle part of Bose-Hubbard Hamil-

tonian (5.18) has the tridiagonal form:

(s'lhls) = -J(6s,,,8 + + s,,,,-1) (5.26)
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Figure 5-3: Effective mass and interaction: The approximate formulas are accurate
up to - 5 ER. The band structure calculations were done numerically with 20 plane
waves.

where Si, j is the Kronecker delta. Therefore the eigenenergy Eq corresponding to the

Bloch function q,(x) has a closed form:

E,= -2Jcos(qaL) (5.27)

It immediately follows that the width of the lowest energy band (in each lattice

direction) AEo is directly proportional to the tunneling rate J:

AEo = 4J (5.28)

and the effective mass M* (at zero quasi-momentum) is inversely proportional to J:

M*= h 2  -1 (5.29)
2a2

It should be noted that these closed form solutions exist because we have ignored

the tunneling beyond the nearest neighbors. The agreement of (5.27) with the exact

shape of the lowest band provides a test for whether this approximation is justified.

Fig. 5-4 shows such a comparison.

- Approx.
.. . l,, •
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Figure 5-4: The lowest band in deep lattice regime: At 5 ER, J = 0.0658 ER and
the approximate formula (5.27) is close to the exact solution. A constant is added to
account for the omitted energy offset co = 1.95 ER in (5.15).

5.1.4 Mott-insulator transition

As discussed above, for lattice depths greater than 5 ER, the Bose-Hubbard model

(5.18) is a good approximation and the system dynamics is determined by two pa-

rameters - tunneling rate J and on-site interaction U, which are both functions of

the lattice depth UL. The results of J and U from the band structure calculation are

plotted in Fig. 5-5 for 23Na in a three dimensional lattice using 1064 nm laser.

Since both J and U are positive real numbers, it immediately follows from the

Bose-Hubbard model that in order to minimize the energy, the "tunneling terms" (cc

J) tend to delocalize the atoms to create coherence between neighboring sites (a,+las),

whereas the "interaction terms" (oc U) tend to localize the atoms and decrease the

coherence 1. A more detailed meanfield study predicts a quantum phase transition

from a superfluid state (delocalized) to a Mott-insulator state [135, 136, 137, 131], at

1For a given total number of atoms, the minimal interaction energy is achieved for commensurate
fillings.
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the transition point:

()= 2d[2n + 1 + 2n(n+ 1)] (5.30)

where 2d represents the number of nearest neighbors in a d-dimensional optical lattice,

and n denotes the number of atoms per lattice site.

From Fig. 5-5, J decreases exponentially as the lattice depth UL increases :

J ~ e- °.3 uL  (5.31)

while U increases roughly linearly with UL for three dimensional lattice [see Eq. (5.54)

in Section 5.6]:

U ~ 1.3 3 + 0.7UL (5.32)

The Mott-insulator transition occurs for the lattice depth where the two curves cross,

roughly 16.3 ER for 23Na in a 1064 nm three dimensional lattice at unit filling (n = 1).

Note that while U depends linearly on the scattering length as, a factor of 2 increase in

a. only reduces the critical depth by roughly 2 ER. This is because of the exponentially

fast suppression of J. Therefore, unless one can change the scattering length by a

large factor (for example, near a Feshbach resonance), the quantum phase transition

occurs around the same lattice depth between 10 to 20 ER. For the same reason,

the linear dependence of the critical U/J in Eq. (5.30) on the occupancy number per

lattice site n only changes the critical lattice depth by a few ER.

It should be pointed out that a perfectly localized Mott-insulator state can only

be achieved for commensurate filling of integer n if there is no other external potential

Uex present. This is illustrated in Fig. 5-6(a) where there is one extra atom after every

site is occupied by an atom. Since all the states I ... , n_l1 = 1, n, = 2, n, +l = 1, ... )

(s = 1, 2, ... ) are degenerate and coupled by the tunneling matrix element J, the

ground state cannot be the perfectly localized situation. With a smooth trap however

- "smooth" means the energy offset due to the trap between adjacent lattice sites is

small compared to U - the atoms can distribute into shells of Mott-insulator at



different filling factors as in Fig. 5-6(b) [138].

5.2 Experimental Setup

The basic configurations for both the dye laser lattice and the IR lattice were the

same on the BEC machine side. Fig. 5-7 illustrates the positions of the various beams

relative to the condensate. All laser beams were transported through optical fibers

from another laser table, and actively stabilized to computer generated reference

signals through feedback servos. The optics setup before the fibers and the servo

components are illustrated in Fig. 5-15 in Section 5.5.

In our experiments, the condensates were loaded from the magnetic trap into the

nearly spherical crossed optical dipole trap in about a second. The atoms were held

in a tight optical trap for varied amount of time to control the final atom number

through three body collision. The optical trap was then decompressed to the final

trap frequencies, which were chosen such that the intraband excitation was minimized

during the lattice ramping (see Section 5.5.5). A vertical magnetic field gradient was

applied to compensate for gravity and eliminate sagging in the weak optical trap.

The condensate had negligible thermal fraction as the evaporation continued in the

optical trap for a few seconds.

The lattice ramping sequence of both the optical trap and the lattice beams was

controlled by programming the functional form of the computer analog outputs that

were used as the reference signals to servo the optical powers. The feedback servos

for the lattice beams allowed for a ramping time constant Tramp -N, 1 ms.

5.3 Yellow lattice and photoassociative resonances

Our first optical lattice using a red-detuned dye laser eventually proved barely good

enough to observe the superfluid-to-Mott insulator transition, with a lattice ramp

sequence of a few milliseconds [139]. At various points during the ramp-up and

ramp-down of the lattice, we observed the disappearance and re-emergence of the
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Figure 5-6: (Color) Incommensurate filling in a homogenous optical lattice: (a) The
extra atom is free to hop to any lattice site without changing the energy of the system.
(b) With a smooth trapping potential, atoms could distribute such that each lattice
site is filled up to a constant chemical potential, resulting in a Thomas-Fermi profile
in the case of a harmonic trap. Figures are for illustration purposes and not drawn
to scale.

I %

.. ..... ..

11111 11111 1111 1111 -111 1-111 r----

I ..I ......
I



attice (T)

ODT (H)
BEC

R)

DDT (V)

Figure 5-7: (Color) Optical dipole trap (ODT) and lattice beams setup: Three lattice
beams - Left (L), Right (R) and Top (T) are retro-reflected to form standing waves.
Two ODT beams - Horizontal (H) and Vertical (V) are crossed to form a round trap.
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interference pattern in time-of-flight, as shown in Fig. 5-8. The heating of the system

out of the ground state during the lattice ramping process could be characterized by

the fraction of atoms outside the condensate at the end of the ramp sequence, and

turned out to be - 20 % for the parameters of our experiment.

(a)

Tramp = 1 mS

Tramp = 5 ms

(b)

oa)
o

C._

Tramp = 10 ms

20 ER

U Tramp 2 tramp
Time

Figure 5-8: Interference patterns in time-of-flight from a three dimensional lattice:
(a) The images from left to right are for lattice depths 0, 4, 8, 12, 16, 20, 16, 12, 8,
4, 0 ER. The time of flight is 7 ms and the field of view is 1000 pmx 1200 tam. The
peak occupancy here is around 5, which means the Mott-insulator transition should
occur between 14 and 20 ER. (b) The lattice depth is ramped linearly.

The spontaneous scattering (, 20 s- 1) and the three-body collision loss (, 16 s- 1)

placed severe limits on the duration of the experiment. The three-body loss could be

reduced by lowering the total number of atoms, although at the time we were limited

by our imaging and atom counting resolutions - we failed to observe a reproducible

signal in our attempt to create Feshbach molecules at low atom numbers (so as to

have two atoms per lattice site). The time limit also precluded other more conclusive

diagnostic techniques such as the gap measurement [60, 140, 141] or radio-frequency



spectroscopy [142, 143].

In the process of optimizing our yellow (reddish orange to be exact) lattice, we

stumbled upon some lattice wavelengths near which large atom losses were observed.

One of such loss features is shown in Fig. 5-9. With some theoretical help from NIST

scientists Kevin Jones and Eite Tiesinga, we confirmed these losses were due to single-

photon photoassociations. A sequence of previously unobserved resonance peaks due

to (1)'E + state were identified. Detailed discussion can be found in [139].
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Figure 5-9: Atoms loss due to photoassociation resonance: The top row shows the
remaining atom cloud after the lattice was ramped up in 1 ms to peak intensity
280 W/cm 2 in each beam and then ramped down in 1 ms. The zero of the frequency
axis corresponds to lattice wavelength 594.490 nm as measured by a wavemeter ac-
curate - 1 GHz.

5.4 Enhanced quantum depletion

Shortly after Wolfgang was awarded the 2001 Nobel prize in physics for the discovery

of gaseous BEC, Laszlo Tisza gave a commemorating talk at the Center for Ultracold



Atoms entitled "The History of the Two-Fluid Concept and a New Look at the Bose-

Einstein Condensation". It was a popular talk without much technical depth, by

someone who was in the thick of things when the first understandings of superfluid

helium were developed. For me, there were two things from the talk that stood out.

First is the difficulty of understanding the role of Bose-Einstein condensation in the

superfluidity of a strongly interacting system such as liquid helium. This is one of

the main reasons why gaseous BEC has garnered such widespread interest across the

condensed matter physics community. Second is the distinction Tisza emphasized

between superfluid fraction and condensate fraction. Superfluid fraction is related to

finite temperature and typically approaches unity in a superfluid as the temperature

decreases to absolute zero. Condensate fraction is related to interaction and can be

(significantly) less than unity even at zero temperature. In general condensate fraction

is not directly correlated with the superfluid fraction. One extreme (as mentioned in

Chapter 1) is the absence of superfluidity but unity condensate fraction for an ideal gas

of bosons at zero temperature. In the case of superfluid helium, the opposite is true

- at low enough temperature, He II fraction approaches unity while the condensate

fraction is only about 10 % [54, 70].

Gaseous BECs of alkali atoms are superfluid which has been demonstrated theoret-

ically [80] and experimentally [87, 88, 89, 144, 145, 146]. The thermal (non-superfluid)

fraction for the typical experiments can be made extremely small. Due to the weak

interaction, the quantum depleted (non-condensate) fraction is also small. Therefore,

people often use the terms "condensate" and "superfluid" interchangeably, which may

have prompted Tisza's comment on their distinction. In principle, the quantum de-

pletion for gaseous condensates can be increased by increasing the atomic density,

but three body recombination dramatically reduces the lifetime for density above

1015 cm-3 [147]. In our recent work, we showed that the intermediate regime between

quantum gases (low quantum depletion) and He II (high quantum depletion) could

be reached in a optical lattice.



5.4.1 Quantum depletion in a BEC

The quantum depleted fraction in a weakly interacting condensate can be calcu-

lated within the Bogoliubov theory developed in Chapter 2. In particular, from the

Bogoliubov transformation [inverse of Eqs. (2.52) and (2.53)] and the ground state

wavefunction [Eq. (2.55)], the population in momentum state Ip) turns out to be:

2 T(p) 2(p) + 2pT(p) (533)
2 v/T 2(p) + 2,uT(p)

Note that v2 increases as the meanfield energy I increases, or as the kinetic energy

T(p) decreases - in the limit of T(p) -+ 0+, v2 diverges as:1

v 2 (5.34)

and in the limit of T(p) - oo, v2 approaches zero:

v2 (5.35)
" T 2(p)

The total quantum depleted fraction is given by:

Nqd =( 2 ) dp (5.36)

5.4.2 BEC in free space

In free space, the kinetic energy and meanfield energy are given by:

T(p) 2 (5.37)
2M
4Mrh 2 a,

A- M

Mc2 (5.38)



Eq. (5.36) becomes:

3V Mc, 1+ 2 +P
Nqd - (2r)3 dj (4q^2) 2 4 (5.39)

V (4rap)3/287r

S(2ir)
3  3

= 1.505 Vipa3N (5.40)

where 3 = p/(Mc,) is the momentum measured in the natural unit p, = Mc,, p =

N/V is the atomic density.

Fig. 5-10 plots the integrand in (5.39) - quantum depletion density function vs.

dimensionless momentum ^. Due to the diminishing density of states near zero mo-

mentum, the quantum depletion density is actually peaked around p, which makes

physical sense. The total quantum depleted fraction is 1.505 /pv/, where:

S= pa3  (5.41)

is the diluteness factor that characterizes the density and interaction strength of

the condensate. For gaseous condensates, E is normally quite small which leads to

negligible quantum depletion. 23Na BEC at the typical density of 104 cm - 3 , for

instance, has a quantum depletion of merely 0.2 %.

5.4.3 BEC in an optical lattice

As discussed in Sections 5.1.2 and 5.1.3, the presence of an optical lattice effectively

flattens the dispersion curve (kinetic energy) and increases the meanfield interac-

tion. Therefore one expects to see enhanced quantum depletion in non-zero quasi-

momentum states.

For a shallow lattice, the change in the dispersion relation is captured by an

increased effective mass M* as in Eq. (5.22), while the increase in the meanfield is

given by A* as in Eq. (5.23). The quantum depletion can be obtained from the free
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Figure 5-10: Quantum depletion density of a BEC in free space: The quantum deple-
tion peaks around p, = Mc, and mostly distributes at momenta •> p, (greater than
80 %).

space case (5.40) with the scattering length replaced by an effective one:

a* = (/ a) (5.42)

Fig. 5-11 shows the results for two different per lattice site occupancy numbers n = 1

and n = 7 for 23Na IF = 1, mF = -1) condensate (as = 2.75 nm) in a three

dimensional optical lattice of 1064 nm.

For a deep lattice, the quantum depletion starts to populate the entire first Bril-

louin zone, while the large gap between the lowest and the next excited bands prevents

any significant population beyond the lowest band. In this case, the free space for-

mula with an effective scattering length overestimates the quantum depletion as the

available states for the free space result are not limited to the first Brillouin zone.

In addition, the dispersion relation for a deep lattice (UL > 5) is sinusoidal as in

Eq. (5.27). Therefore a single effective mass (at zero quasi-momentum) is insufficient

to capture the shape of the entire first band. For lattice depths between 5 and 20 ER,

Ar2.5
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Figure 5-11: Quantum depletion for a BEC in a three dimensional optical lattice:
Curves (a) and (b) are from the free space formula (5.40) using the effective scattering
length defined in (5.42), where M* and A* are obtained from (a) exact band structure
calculation (b) perturbation calculation Eqs. (5.24) and (5.25). Curve (c) is the deep
lattice calculation with only the first Brillouin zone populated by quantum depletion.
In the regime where the first Brillouin zone is not saturated (UL < 5), the perturbation
result (b) is very close to the band structure calculation (a). All calculations are done
for 23Na BEC in IF = 1, mF = -1) state and lattice wavelength 1064 nm.
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we can numerically integrate Eq. (5.36) using:

T(q)= 4J sin ( (5.43)

p = nU (5.44)

and the result is also shown in Fig. 5-11 which connects smoothly with the shallow

lattice results around 5 ER.

5.4.4 Quantum depletion in time-of-flight

For this experiment, we worked with an infra-red optical lattice at 1064 nm, where

the heating due to the spontaneous light scattering was no longer an issue. Due to

our limited atom counting resolution, the peak occupancy number was set to around

n = 7, which corresponds to three body decay rate < 6 s- 1. The lattice ramp time

was set to Tramp = 50 ms. Fig. 5-12 shows the time-of-flight images after the lattice

and optical trap are switched off (in < 1 ps) at various lattice depths.

We measured the quantum depletion directly from the absorption images taken in

time-of-flight. This is incidentally another effect due to the optical lattice. For bare

condensates in a harmonic trap, the quantum depletion (mostly in momentum states

p > ps, see Fig. 5-10) is adiabatically reabsorbed into the condensate as the density

decreases on the timescale of the trap period which is much longer than the inverse of

the meanfield energy (times h) in the typical Thomas-Fermi regime. In contrast, the

optical lattice on-site trap frequency (for UL > 5) is much greater than the meanfield

energy ("anti" Thomas-Fermi limit) and the time-of-flight image becomes a snapshot

of the momentum distribution of the system at the switch-off of the lattice and trap

potential.

To measure the quantum depletion, we used a "masked two dimensional gaussian

fit" to extract the number of atoms outside the interference peaks in the time-of-flight

images, an example of which is shown in Fig. 5-13. The measurement was done for

one, two and three dimensional lattices, and the results are shown in Fig. 5-14. In a
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Figure 5-12: Time-of-flight images of atoms released from one, two and three dimen-
sional lattices: The lattice depths for the sequence of images are, from left to right:
0, 11, 22, 11, 0 ER. The time-of-flight is 10 ms; the field of view is 1075 m mx861 pm
for the 3-d lattice imaged from the side, and 1185 pmx 1079 pm for the 1-d and 2-d
lattices imaged from the top. Tramp here is 50 ms.



three dimensional lattice, quantum depletion in excess of 50 % was observed. In one

and two dimensional lattices, the dispersion relation is only flattened in the lattice

beam directions:

T(q) = 4J sin 2  4E(5.45)
i=1 i=d

where dimensions 1 through d are assumed to have a lattice beam present. For the

lattice depths in our experiment, the quantum depletion remains small for one and

two dimensional lattices, consistent with our measurement.

Figure 5-13: Masked gaussian fit to extract quantum depletion from time-of-flight
images: In this example, the interference peaks (i.e. the zero quasi-momentum frac-
tion) in the left image are masked off by small rectangles as in the right image, and
then a two dimensional gaussian fit is used to extract the number of atoms outside
the interference peaks which is taken as the quantum depletion (with a small heating
correction [67]).

For three dimensional lattice, the superfluid to Mott-insulator transition is ex-

pected to occur at lattice depths between 16 to 24 ER for occupancy numbers n = 1

to 7. The Mott-insulator fraction is also shown in Fig. 5-14 which shows a much

steeper transition than the gradual increase of quantum depletion (see detailed dis-

cussion in [67]). For one and two dimensional lattices, we do not expect to observe

Mott-insulator transition at these lattice depths.
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Figure 5-14: Quantum depletion of a BEC in a one, two and three dimensional optical
lattice: the data points with statistical error bars are measured from the time-of-
flight images. The three thick curves are the theoretical calculation using Bogoliubov
theory and local density approximation assuming a Thomas-Fermi density profile for
the condensate with peak occupancy number n = 7. For comparison, also shown
are (thin curves): (i) the Mott-insulator fraction and (ii) quantum depletion for a
homogeneous system of occupancy number n = 1 and (iii) n = 7. See detailed
discussion in [67]



5.5 Lattice setup procedure

This section serves as a "working manual" for the setup and calibration of the optical

lattice in our lab. The focus is on the IR lattice which shares the same basic configu-

ration with the earlier dye laser lattice, but presents some additional difficulties due

to the invisibility as well as the high power involved. While the "tricks" discussed

are particular to our machine configuration, they may provide some useful hints for

other situations.

5.5.1 Laser system and optics layout

The procedure for setting up an optical lattice is now fairly standard. Most of the

existing setups use the same "tricks" discussed below. The main difficulty arises from

the limited choices of lasers with appropriate wavelength and adequate power to form

an optical lattice deep enough to achieve quantum phase transition. There are three

factors to consider when choosing the lattice laser:

1. the laser must be sufficiently detuned from the atomic transition to limit the

heating from spontaneous light scattering;

2. the laser must have enough power (at the given detuning) to reach the necessary

lattice depth - this usually means exceeding the critical depth for the quantum

phase transition;

3. the laser linewidth must be sufficiently narrow to achieve a stable interference

pattern.

From the discussion in Section 5.1.4, Compared to heavier atoms like 87Rb, the higher

recoil energy for 23Na requires higher absolute lattice depth to reach the critical

point of the quantum phase transition. In addition, the optical AC stark shift is

proportional to (w2 - W) - 1 - wL is the laser frequency and wa the atomic transition

frequency (rad/s). Commonly available IR options include 850 nm laser diode and

1064 nm Nd:YAG crystal laser. The atomic transition wavelength is 780 nm for 87Rb



compared with 589 nm for 23Na. Therefore 87Rb requires about 10 times less power

than 23Na to achieve the critical lattice depth (about 14 ER for 8 7Rb) with a 1064 nm

lattice laser. Laser diodes (tens of milliwatts) are sufficiently powerful for lattice

experiments with 87Rb 2 but not for 23Na without some kind of power amplifier.

The lack of single-frequency high power IR laser was the major reason for our

initial attempt at using a dye laser several nanometers detuned to set up the optical

lattice. Eventually, IPG Photonics was able to produce a high power IR laser

based on a single frequency seed and a fiber amplifier (Model: YAR-20K-1064-

SF), which outputs 20 W maximum CW power with a linewidth of - 100 kHz. In

addition, IPG also provided us with a small amount of high-power single-mode optical

fibers designed to work with such high powers. This IR laser system enabled us to

obtain enough light from a single source for the three lattice beams and a crossed

optical dipole trap (see below). Fig. 5-15 shows the optics table layout.

The high power optical fiber from IPG is a specially designed fiber that has a light

conducting cladding. Normal single-mode fiber can only conduct light through the

core and any light that leaks into the cladding escapes the fiber after a short distance.

The IPG fiber cladding has a high index of refraction and acts as a multi-mode fiber

for light leaked out of the fiber. This prevents local dissipation of very high laser

power that leads to excessive heating. However, due to this property, we could not

use the usual fiber alignment procedure of maximizing the output power (monitored

with a photo diode) - one almost always gets > 95 % light through but most likely

the light is being conducted through the cladding and the output shows the speckle

pattern typical of a multi-mode fiber. The trick is to use some high index of refraction

material to coat a section of the output end so as to "lead" the multi-mode light out

of the fiber before it hits the end of the fiber and shows up on the photo diode.

To get more than 80 % of single-mode light through proved to be much more

difficult, as expected. We followed a systematic procedure as the following:

1. The fiber has a specified 1/e 2 beam waist 5.3 pm for perfect mode-matching

2Although diode lasers were used for some earlier experiments, Ti:Sapphire lasers are more com-
monly used to achieve deeper lattices.
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Figure 5-15: Optics table layout: The IR laser output is split into five beams with
polarizing beam cubes (PBC) and half waveplates (WP). Three are for the optical
lattice, and two for a crossed optical dipole trap. The acousto-optical modulators
(AOM) shift the frequencies of the beams at least 20 MHz apart to eliminate cross
interference between different beams. An optical diode (Model: OFR 50-3-1064-
VHP) is used to prevent the back-reflected lattice light from damaging the IR laser.
At the output of the fiber, a PBC is used to clean up the polarization after which
a pick-off window sends a few percent of light to a photo diode to monitor the laser
power. The photodiode signal is used for stabilizing the laser power to a reference level
(typically generated by a computer analog output) through a proportional-integral
(PI) feed back servo.
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(independently checked with a beam profiler (Model: BeamOn-VIS (USB2)

CCD from Duma Photonics). We can calculate the size of the collimated

light entering the fiber coupler (F230FC-C from Thorlabs focal length 4.5 mm)

needs to be 288 pm.

2. Using a two-lens telescope (L 1 and L 2 in Fig. 5-15), resize the beam into a slightly

diverging size of - 300 /tm. It is important that the beam is approximately

collimated but not exactly so that we can find the needed size 288 pm over a

couple of centimeters.

3. Place the fiber output coupler near the spot where the beam size is correct, and

add lens L3 as close to the output coupler as possible. L 3 should be a long focal

length convex lens to flatten the wave front of the beam at the desired size.

This part requires swapping several lengths to find the best one. Despite the

discrete selections of focal length, we were able to mode match quite well and

obtain nearly 90 % of single mode light through the fiber.

In addition, the fiber tips are angle-cleaved instead of polished. The surface of a

cleaved fiber tip looks mirror-like under the microscope, and is necessary for achieving

high coupling efficiency. We used a popular version of cleaver York FK12. Cleaved

fiber tips must be handled with great care, and we found it most convenient to work

with the universal fiber connector BFTU in conjunction with the 30126D1 FC

connector, both from Thorlabs, to terminate the cleaved fiber ends.

5.5.2 Lattice beam focusing and alignment

After the fiber (and the PBC in Fig. 5-15), the lattice beams are again resized and

focused at the condensate by a telescope Li and L 2 as in Fig. 5-16. We chose short

focal length for L 1,2 ( Si) compared with the distance between L 2 and the BEC (S2),

such that a small displacement of L 2 (compared to sl) could move S2 over a wide

range. This way, the beam size after L 2 is somewhat decoupled from adjusting its

focus onto the condensate. We chose the beam size at L 2 based on the target lattice



beam waist WL e• 100 pm (see discussion below) at the BEC and the measured

distance s2. Gaussian optics formulas should be used to account for the Rayleigh

range (- 3 cm). The third lens (L 3) is placed at about a focal length away from

the BEC (again accounting for the finite Rayleigh range). The retro-reflection mirror

(M) is immediately after L3 which re-collimates the beam.

.4- S l),: S2 0: S3

! A
BEC

-ILOIý
V

L1 L2 L3  M

Figure 5-16: (Color) Collimation of lattice beam: Telescope lenses L 1 and L 2 have
short focal length (- 25 to 60 mm) and collimate the beam to the desired size (see
text). Due to the short focal length, a small displacement of L 2 further away from L 1

changes focus of the lattice beam over a wide range, covering the location of BEC.

Note that the the measurement of distances si (- 20 to 30 cm) usually has a couple

of centimeters uncertainty, which is comparable to the Rayleigh range for the desired

lattice beam size. Besides, the optics cannot be placed at arbitrary spots due to space

constraint. It is therefore not practical to simply rely on the distance measurement

and calculation. In practice, one of L1 and L 2 is mounted on a translation stage with

micrometer to scan the focus of the lattice beam, and achieve the best spatial mode

overlap between the incident and reflected beams. We then measure the beam waists

equal distance away from the BEC, which is easier as the BEC machine has symmetric

configurations. From the two measured beam waists and the distance between the

two points, we calculate the beam waist at the BEC 3. Typically we would try a few

combinations of L 1 and L 2 before settling on a pair giving the closest to target beam

waist at the condensate.

The spatial mode match between the incident and retro-reflected beam is achieved

3We can also learn from this measurement whether the beam focus is actually on the BEC, which
is not so important as the Rayleigh range is much greater than the size of the condensate.
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by adjusting the position of lens L2 and maximizing the light going back through the

fiber picked off by a 50/50 beam splitter. For each L2 location, the retro mirror

M is tweaked to keep the pointing of the retro beam optimized. During this mode

matching process, the laser power is actively stabilized at a constant level.

Finally, we align the lattice beam with the condensate. The alignment was made

more difficult by the fact that none of our lattice beams were aligned along the imaging

axes due to limited optical access. We could not use the camera to coarse-align the

lattice beam onto the condensate. Given the small size of the beam (. 100 lim at

BEC), it is actually non-trivial to get the beam close enough to the condensate so

that the optical potential starts to affect the atoms, which is the signal for the fine

alignment of the beams. We developed the following procedure to first align the

incident beam to the condensate (one at a time without the retro beam), after which

the above mode matching technique can be used to overlap the retro-reflection with

the incident beam:

1. Some small amount of dye laser light tuned to sodium atomic resonance was

sent through the lattice fiber. The fiber was multi-mode for yellow light and

the IR optics worked poorly, but we only cared about the direction of the light.

With atomic beam shutter open and the camera running in "focusing" mode,

we were able to "see" the beam as the fluorescence from the atomic beam, and

adjust it onto the in-trap BEC location on the camera. We then placed two

irises to mark the beam path on either side of BEC.

2. After the initial step, the lattice beam should be within a couple of millimeters

from the BEC. BEC released from the trap was able to hit the lattice beam in

> 50 ms ballistic expansion and be trapped or deflected by the lattice beam

(increase laser power to enhance the effect if necessary). Note: A magnetic

field gradient was applied during the time of flight to cancel out the gravity, so

that atoms could expand in all directions for a long time without falling out of

the picture (as lattice beam could be anywhere including above the in-trap BEC

location). Eventually, the lattice beam could be tuned to trap all the atoms
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into a tightly squeezed "tube" (< 20 am radially).

3. The beam was further fine tuned with the micrometer mount (SN100-F2M

from Newport) such that the location of the atom "tube" was within 10 the

initial BEC in-trap location on the camera. This step provided very high sen-

sitivity - a quarter of the smallest graduation on the micrometer knob.

4. The two irises were adjusted to mark the updated beam path. Afterwards, as

long as the atom trap does not move too much, we can skip the first two steps,

simply align the beam to the irises and use step 3 for fine adjustment.

5.5.3 Lattice beam calibration

To calibrate the depth of the lattice beam with respect to the lattice power, we

have tried three different methods that complement each other and provide some

consistency check:

* Optical dipole trap frequency measurement,

* Kapitza-Dirac diffraction,

* Intensity modulation spectroscopy (Bragg).

The first method is the easiest to implement but also the most inaccurate. The

idea is that the laser power PL can be measured with a photodiode. If in addition

we have the optical dipole trap frequency Wodt due to the lattice beam (with retro-

reflection blocked), then the beam waist WL can be calculated. However, to get the

lattice depth, we have to figure out the contrast of the standing wave which is difficult

to know accurately - the retro-reflected beam is attenuated by uncoated/dirty optics

(such as our glass cell) and the mode-match could be imperfect. We simply assume

a perfect contrast so that the standing wave AC stark shift is 4 times higher than

the incident wave alone, which usually sets an upper bound for the true lattice depth

4. For trap frequency measurement, with the atoms trapped in the lattice beams
4There is a chance that the retro-reflected beam has a tighter focus at the condensate, but usually

the mode-matching is quite good and the power loss reduces the contrast more.
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(one at a time), we "kick" the atoms radially with a magnetic field gradient pulse to

induce dipole oscillation and record the location after a fixed time of flight - again the

gravity is cancelled out during the entire process (except when applying the vertical

kick) to prevent it from dragging atoms out of the lattice beams (especially for the

vertical beam).
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Figure 5-17: Kapitza-Dirac diffraction in pulsed optical lattice: The population in
central peak shows an oscillation in time, whose frequency corresponds to the gap
between the lowest and the second excited bands (see discussion in text). For this
sequence, the oscillation period - 12 ps which corresponds to UL = 15.6. The time
of flight is 10 ms and the field of view is 1237 pmx 220 pm.

The second method - "Kapitza-Dirac diffraction" [140] - is also very convenient,

and much more reliable. Simply by pulsing on the lattice beam (using AOM as switch)

at a fixed (unknown) depth UL for various length of time (,- ps), one would observe

a time-varying diffraction pattern as in Fig. 5-17. The size of the central peak shows

an oscillation, which is easily understood as following: During the lattice pulse, the

eigenstates of the system are the Bloch functions. The system is initially in the zero

momentum state 10) which can be decomposed into populations in the Bloch states
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of n = 0, 2, 4, ... bands at zero quasi-momentum5 . These bands subsequently evolve

at their own eigen frequencies, so the population in 10) should contain oscillating

terms at various gap frequencies. Fig. 5-18 shows the populations as a function of the

lattice depth, which mostly concentrate in the n = 0 and n = 2 band for UL < 20.

Therefore the population in the 10) state oscillates predominantly at the gap frequency

E0,2 - E0,0. Fig. 5-19 shows Eo, 2 - E0,0 as related to UL and one can infer the lattice

depth from the observed Kapitza-Dirac frequency.

w
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Figure 5-18: Band populations of zero momentum state 10): For lattice depths up
to 20 ER, the populations concentrate largely in the lowest (n = 0) and the second
excited bands (n = 2). Therefore the oscillation frequency corresponds to the energy
gap between the two bands.

Due to the microsecond pulses involved, this method does require a relatively

stable laser power from shot to shot without active stabilization. However, with the

fiber laser system and a duty cycle around 30 seconds, such stability is not hard to

achieve. In addition, one should avoid calibrating at very shallow lattices (< 5 ER)

as the sensitivity to lattice depth becomes lower and longer pulses are required to

observe the oscillation which is susceptible to noise and decoherence effects (due to,

for example, the inhomogeneity of the system). On the other hand, at very deep lattice

5 Symmetry dictates zero population in the n = 1, 3,- - bands.
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Figure 5-19: Energy gap between the lowest and the second excited bands at zero
quasi-momentum: For lattice depths between 10 to 20 ER, the energy gap is almost
a linearly function of lattice depth with a slope - 0.55.

(> 20 ER), the population becomes significant for more than two bands and the signal

contains multiple harmonics and cannot be fit to a single oscillation. A rough range of

10 to 20 ER could be easily obtained with the "trap frequency measurement" method.

The third method is essentially "Bragg spectroscopy" for BEC in the optical

lattice [60, 140]. It was somewhat complicated to set up and in our case, did not

work noticeably better than the second technique. It was seldom used as consistency

check or when laser power was not stable enough (as was often the case with the dye

laser lattice system). Instead of pulsing on the lattice, we adiabatically loaded the

BEC into the zero-quasi-momentum state at some actively stabilized lattice depth,

which is then dithered at various frequencies to excite the atom into the second excited

band6 . We typically dithered at about 5 to 10% total lattice depth7 for about 1 ms,

after which the lattice was adiabatically ramped down instead of being abruptly shut

off. The population in the excited band appeared as ±2hkL momentum peaks in

6 The dithering does not couple to the first excited band for symmetry reasons.
7This corresponds to about a couple of ER modulation depth for UL - 10. The Rabi frequency

of such a dither is about 20 to 30% of the modulation depth for UL < 20.
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time-of-flight when the dithering frequency is near the band gap EO,2 - E0,0. Note

that the ramp-down of the lattice must not be too slow or the trap potential would

distort the momentum distribution and make it difficult to see the signal. We found

1 ms ramp time to be sufficiently slow to allow the lower band Bloch state to convert

adiabatically back to the zero momentum state.

5.5.4 Crossed optical dipole trap

The alignment of the crossed optical dipole trap (ODT) is much easier as both beams

are along the imaging axis. We used the camera in "focusing" mode to coarse align

the light onto the condensate. For fine alignment, we used the phase contrast imaging

[148] (8x magnification) to look at the condensate trapped with the magnetic trap

and one ODT beam on at a time. The ODT provided much tighter confinement and

"sucked" the atoms into a small circle whose location was matched to the condensate

location in the magnetic trap only. The phase contrast imaging does not "see" thermal

component (which is quite optically dense in the trap) and improves the alignment

resolution.

5.5.5 A few subtleties

Lattice beam size : As the lattice depth is proportional to light intensity, a tighter

focus WL would reduce the required laser power. However, the gaussian profile of

the lattice beam adds an extra confining potential which tends to localize the atoms

toward the center. At the same lattice depth UL, the peak density is proportional

to WL 6/5N -2/5 [see Eqs. (5.63) and (5.64) below]. Since many experiments require

relatively low occupancy numbers per lattice site (one or two), we can not reduce

WL too much without having to work with very small number of atoms N (see the

numbers in Table 5.3), which requires very good imaging to have decent signal to

noise ratio.

Adiabatic BEC loading : Because of the large energy gap between the lowest and

the next excited bands, it is relatively easy to maintain "inter-band" adiabaticity
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during the lattice ramp - any ramp time > 1 ms is slow enough. However, the

"intra-band" adiabaticity is not as easy to maintain, especially as the lattice deepens,

the band width actually decreases exponentially. A mismatch between the meanfield

energy and the trapping potential (both of which increase with the lattice depth

as well) would cause a phase to develop across the condensate or, put plainly, the

condensate would tend to "slosh" [138]. This leads to intra-band heating. However,

due to the almost linear dependence of U on the lattice depth [Eq. (5.54)] in a three

dimensional lattice, so long as the initial and final equilibrium condensate sizes are

equal, the meanfield and the trapping potential would remain closely matched during

the entire ramp process. The final trapping potential is mostly due to the lattice

beams and is fairly isotropic. Due to the limited axial trap frequency for our magnetic

trap (< 40 Hz), we could not make the magnetic trap spherical over a wide range

of trap frequencies. This is one of the reasons for us to setup a crossed dipole trap

whose trap frequencies are chosen to match the initial and final condensate sizes.

Lattice beam polarization : Because of the fine structure separation Ahf (about

500 GHz between 23Na D1 and D2 lines), if the lattice laser detuning from the atomic

transition is comparable to Ahf, one cannot consider D1 and D2 lines to be degenerate.

In that case, the optical potential not only depends on the laser intensity but also

the polarization. Such effect was actually used to create moving optical lattice [149]

For example, for atoms in IF = 1, mF = -1) states, the optical potential due to D1

and D2 lines are:

1 5
D1 oc -S_12 + 5 12 (5.46)

6 18

D2 oc 1_ 12+ 12 (5.47)6 18

where E± are the electric field with ua helicity. However, if the polarization is not

purely transverse to the quantization axis of the atoms, there could be non-vanishing

coupling to the other hyperfine states (IF = 2, mF = 0, -2)). This coupling goes to

zero when D1 and D2 lines are degenerate (compared to the laser detuning), or when

the polarization of the light is purely linear. We have used linear polarization for all
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lattice beams (as well as the crossed dipole trap beams) so far in our experiments -

the dye laser lattice system, in particular, operated at a detuning not much greater

(about 10 times) than the D1 and D2 separation.

5.6 Cheatsheet

This section is intended as a quick reference for calculating various quantities relevant

to optical lattice experiments. I first list some useful formulas, and then tabulate some

numbers and scaling relations. The numbers are calculated for the atomic species

(23Na, 87Rb and 6Li) and lattice wavelength (1064 nm) found in the MIT labs. Using

the scaling relations, one can easily obtain relevant quantities for other atomic species

or lattice wavelengths.

Previously undefined symbols used below:

IL : laser peak intensity

PL : laser power

WL : laser I/e 2 gaussian beam waist

Qe : electron charge

Me : electron mass

c : speed of light

O0 : vacuum permittivity in SI units (8.85 x 10-12 F/m)

Fa : natural linewidth of the atom (rad/s)

Aa : atomic transition wavelength

navg : coarse-grained atomic density

npeýk : peak atomic density at the lattice potential minima

K3 : three-body decay coefficient
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F3 peak three-body decay rate K3l 2ak

Wtr : harmonic trap frequency

5.6.1 Useful formulas

* Recoil Energy ER:
h2

ER = 2MA

" Optical AC stark shift (SI units are used):

[ Fa 37rc 2

2 2 W 2

= IL • •  e
= 2MeC_(W - W2)2 M

· [Yl~cu~\a LL

for alkali atoms

(5.49)

(5.50)

Multiply by a factor of 4 for a standing wave with perfect contrast.

* Spontaneous Rayleigh scattering rate (SI units are used):

=
2  67rc 2

rsc = I• 2 •)
WL )3
wa

(5.51)

Multiply by a factor of 4 for a standing wave with perfect contrast.

* Gaussian beam profile (r distance from center):

IL(r) = IL(O)e L e WL

7rWL

* On-site interaction U in Eq. (5.17) as a function of (dimensionless) lattice depth

UL:

U(UL)

U(UL)

ER( 16a, )f(UL)

= a 3dx w,(x) 14

(5.53)

1.3 3 + 0.7 UL for three dimensional lattice.
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U(UL) is a dimensionless number depending only on UL and reflects the en-

hancement of interaction due to the lattice.

* Local harmonic frequency at the bottom of each lattice site:

Wlh=2 ER (5.55)

* Local harmonic oscillator length alh = M

AL
alh = 1/ (5.56)

LI U A

* Optical dipole trap (ODT) frequency due to the gaussian profile of the lattice

beam:

Wodt = Wlh (727.WL) (5.57)

This is due to one lattice beam. Trap frequencies should be added in quadrature.

5.6.2 Some numbers

* Table 5.1 lists some useful atomic constants.

* Table 5.2 lists U and J for three-dimensional cubic lattice 5 to 30 ER deep.

* Table 5.3 lists various quantities for N = 105 atoms in a 20 ER three dimensional

lattice, and the lattice beams have 1/e 2 waist equal to 100 pm.
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23Na 87Rb 6Li
a8 [nm] 2.75 5.45 -

M [amu] 22.9898 86.9092 6.0151
Fa [27r MHz] 10.01 5.98 5.92

Aa [nm] 589 780 671
ER/h [Hz] 7666 2028 29299

K 3 [10- 0 cm 6 S-1] 1.1 5.8 -

Table 5.1: Various constants for 23Na, 87Rb and 6 Li: 1 amu= 1.66053886 x 10-27 kg,
and the lattice wavelength is 1064 nm. Scattering lengths are given for 23Na pair both
in IF = 1, mF = -1) hyperfine state, 87 Rb pair both in IF = 1, mF = -1) or one in
IF =l, mF = -1) and one in IF = 2 , mF = 2) [114]. 6Li scattering length between
IF = 1/2, mF = ±1/2) is highly variable as the experiments typically take place near
the broad Feshbach resonance [150]. The natural linewidths are taken from [151].

5.6.3 Scaling relations

1
ER • X 2 (5.58)

MA,

U ao (5.59)
UA

AUAC O 2 L 2 (5.60)

Pa oc wa2 approximately for alkali atoms (5.61)
ILW 3
Irsc 2 2 L 2)2  (5.62)

(Wa_- WL

Wodt OC (5.63)
MALWL

navg oc M r 6/5 /s (5.64)

(Nas)1/5

RTF o (Na) 1 5  (5.65)
(MWtr) 2/5
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UL U JIER U/ER (23Na) U/ER (87Rb)]
5 4.2173536 0.065767347 0.05551383 0.107192159
6 5.099319748 0.050773027 0.067123319 0.129609026
7 5.96420995 0.039417172 0.078508033 0.151591875
8 6.808026905 0.030799256 0.089615357 0.173039108
9 7.630290247 0.024226709 0.100438966 0.193938513
10 8.432083331 0.019182452 0.110993122 0.214317627
11 9.215050505 0.015284695 0.121299468 0.234218245
12 9.980926877 0.012252082 0.131380845 0.253684467
13 10.73134008 0.009876701 0.141258677 0.272757663
14 11.46774231 0.008004102 0.15095208 0.291474743
15 12.19140073 0.006518816 0.160477734 0.309867915
16 12.90341171 0.005333916 0.16985007 0.327965044
17 13.60472252 0.004383499 0.179081558 0.345790209
18 14.29615382 0.003617253 0.188183 0.363364266
19 14.97841986 0.002996508 0.197163798 0.38070537
20 15.65214588 0.00249135 0.206032182 0.397829414
21 16.31788253 0.002078495 0.214795401 0.414750392
22 16.97611773 0.001739714 0.223459876 0.431480707
23 17.62728641 0.001460653 0.232031334 0.448031412
24 18.2717784 0.001229954 0.240514905 0.464412417
25 18.90994499 0.001038582 0.248915214 0.480632649
26 19.54210425 0.000879316 0.257236447 0.496700193
27 20.16854549 0.000746359 0.265482412 0.512622403
28 20.78953294 0.000635039 0.273656588 0.528405994
29 21.40530887 0.000541571 0.281762164 0.544057125
30 22.01609618 0.000462884 0.289802074 0.55958146

Table 5.2: U and J for 5 to 30 ER three dimensional lattice: U and J are calculated
numerically with 20 plane waves and 10 lattice sites (convergence checked for both
parameters). U for 6Li is not listed because in typical experiments, the scattering
length could be tuned over a wide range with Feshbach resonance.
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PL Coodt navg (-) npeak RTF rsc
[mW] [2- s- '] (number of [1014 cm -3 ] [pm] [s- 1]

atoms per site)
23Na 543 232 5.5 19.2 11.8 0.009
-7Rb 52.2 61.4 3.6 12.7 13.5 0.007

6 Li 1810 888 - - - 0.041

Table 5.3: Various quantities of interest for atoms in a three dimensional lattice:
The ODT frequency includes a factor of Av/ times Eq. 5.57. The scattering rate F,,
is for a single standing wave with perfect contrast. The numbers are calculated for
N = 105 atoms in a 20 ER three dimensional lattice at 1064 nm with 1/e 2 waist equal
to 100 pm. "Li scattering length is variable near the Feshbach resonance, which gives
varied condensate size and density. One can use the scaling relations in this section
to obtain the corresponding quantities for other values of N, WL and UL and different
atomic species.
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Chapter 6

Conclusion

6.1 Reminiscence

This is literally the last chapter of my PhD career. I cannot help but feel a bit

nostalgic about my five plus years at MIT, which for better or worse have led me

into a rather different career path than I had in mind growing up. I suppose a little

reminiscence is in order.

Back in 2000 at the MIT open house, I became pretty excited about the prospect

of getting into a new field which seemed to be growing at an explosive pace. At the

time, the gaseous BEC was barely five years old and only a handful of labs around

the world had a working BEC machine. The development in the ensuing years far

exceeded my (admittedly uninformed) expectations. A Nobel prize was awarded for

the achievement of BEC in 2001 - I was one year into graduate school and still

learning my ways around the lab. I remember thinking to myself then whether the

"best time" had passed, but the field certainly has not slowed down since. New labs

with better designed machines quickly emerged and made possible new experiments

that required more refined technical capabilities and explored previously unattain-

able regimes. According to the latest count on the atom traps online database

(http://www.uibk.ac.at/c/c7/c704/ultracold/atomtraps .html), there are now

about 50 groups worldwide having achieved BEC. The breadth of the research also ex-

panded to quantum degenerate Fermi systems, which at present are the most actively
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researched subjects.

As a junior graduate student, I did my share of grunt work that probably taught

me more about being an experimentalist than working on the scientific projects. In

addition to electronics and laser maintenance, notable undertakings included building

a new magnetic trap and "fiberizing" our laser table. The trap - fully built and bench-

tested - still sits around somewhere in the lab waiting to be called to duty. In the

meantime, it serves as a quiet reminder of the importance to keep a good record of

benchmarks. The "fiberized" laser table made our BEC production almost turn-and-

key.

The field grew fast and became increasingly competitive. Consequently, our ex-

periments also grew in complexity - the difference between our recent work compared

to three years ago in terms of technical difficulty is quite startling. Many parts have

to work simultaneously for an experiment to succeed, and we seemed to be constantly

trying to fix things faster than they broke. Mishaps with key components like the

water chiller (heavy lifting) or the gate-valve (venting the main chamber) provided

extra "excitement". For all the hectic runs and seemingly endless chores, it was a

challenge to keep one's sanity and continue to think about and learn physics. Looking

back, I feel reasonably content with the way I have spent my time and energy. The

few breakthroughs in my studies would not have happened without a conscientious

effort to think through some difficult problems.

In light of the rapid progress of the field in general, my personal success seems

rather modest, which in part contributed to my decision to explore different directions

post-PhD. That said, I'd like to think I have nonetheless done my small part in

contributing to the large body of work on condensate physics. Through this thesis, I

hope to have tied together and put into perspective the few projects to which I made

substantial contributions.
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6.2 Looking ahead

The lab is now entering a new era as the second lab at MIT capable of producing dual-

species quantum gases (23Na and 6Li). As complicated as our previous experiments

eventually became, the added layers of complexity still constituted no more than

incremental improvements to an existing system. In comparison, constructing a new

system with fundamentally different capabilities is much more likely to open up new

regimes and research directions. Adding Fermions 6Li to an optical lattice certainly

presents intriguing possibilities.

6Li has proven to be the most "benign" species for working with Feshbach res-

onances. Most BEC systems suffer from strong inelastic collision losses near a Fes-

hbach resonance which limited the density or the time duration of the experiments

[152, 153, 118, 125, 154, 155, 156]. Fermions are generally longer-lived due to their dif-

ferent quantum statistics [122, 157, 158], but the exact lifetimes are still quite different

- there are only two data points now, namely 40K (a few milliseconds [159, 120, 160])

and 6 Li (hundreds of milliseconds [161, 162, 119, 121, 163]). In addition, the strong

Feshbach resonance for 6Li is - 300 G wide [150], which makes it possible to map

out the details of various interaction regimes with modest magnetic field resolution.

The long lifetime of 6 Li near this resonance allows the system to equilibrate. Unlike

the quantum degenerate 23 Na 2 molecules described in Chapter 4, 6Li 2 can form true

molecular condensates 1

Across the Feshbach resonance, the scattering length changes sign, corresponding

to a bound state being shifted from below the continuum threshold to above. By

slowly ramping the magnetic field, it is possible to adiabatically connect the molec-

ular BEC (positive scattering length) regime to the BCS regime (negative scattering

length) [164, 165, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], where

superfluidity can only arise through Cooper pairing. Observing the BCS-type su-

perfluidity had been the "Holy Grail" in the studies of quantum degenerate Fermi

systems since the very beginning. The recent observation of vortex lattice in 6Li pro-

1In contrast, "condensation" for 40K2 was only achieved in two dimensions [120].
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vided a spectacularly definite proof [176]. Rather than reaching the end of the road,

one can hope to learn much more from these ultracold Fermi gases. In many ways,

they represent the closest thing to the conventional superconductors while (approx-

imate) theories may still be able to model the experiments accurately - much like

when the gaseous BEC was first realized. The critical temperature compared to the

Fermi temperature is much higher for these degenerate Fermi gases 2, which may shed

light on the natures of high-temperature superconductors. Combining different tools

such as optical lattices and Feshbach resonances in addition to having two atomic

species could lead us into even more exotic regimes.

On the other hand, many challenges lie ahead. Like what happened with BEC,

after the initial slew of results brought on by the realization of a new system, the

research becomes more difficult and requires deeper understandings of the physics

and/or more specialized engineering efforts. Oftentimes we started setting up an

experiment with a particular agenda but could not make it work as planned despite

our best effort. As an experimentalist, it is important to keep in mind that failing

to see what one expects to see could very well be interesting physics. Therefore one

should not get too caught up in the original agenda.

2 Tc/TF is - 10- 2 to 10- 1 for 6 Li, similar to high temperature conductors and more than 100
times higher than normal superconductors.
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Appendix A

Experimental Observation of the

Bogoliubov Transfromation for

Bose-Einstein Condesed Gas

This appendix reprints Ref. [100]: J.M. Vogels, K. Xu, C. Raman, J.R. Abo-Shaeer,

and W. Ketterle, Experimental Observation of the Bogoliubov Transfromation for a

Bose-Einstein Condesed Gas, Phys. Rev. Lett. 88, 060402 (2002).
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Experimental Observation of the Bogoliubov Transformation
for a Bose-Einstein Condensed Gas

J. M. Vogels, K. Xu, C. Raman,* J. R. Abo-Shaeer, and W. Ketterlet
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 11 September 2001; published 28 January 2002)

Phonons with wave vector q/h were optically imprinted into a Bose-Einstein condensate. Their mo-
mentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wave
function of the phonons was shown to be a superposition of + q and - q free particle momentum states, in
agreement with the Bogoliubov quasiparticle picture.

DOI: 10.1103/PhysRevLett.88.060402

The pioneering work of Bogoliubov in 1947 constitutes
the first microscopic theory that attributes superfluidity to
Bose-Einstein condensation [1]. As described by Einstein,
noninteracting bosons condense [2], but they are not super-
fluid. However, Bogoliubov showed that with weak in-
teractions the condensate will exhibit superfluidity.
Repulsive interactions change the elementary excitations
at long wavelengths from free particles into phonons
which, according to the Landau criterion, lead to super-
fluidity [3]. The main step in the nonperturbative treat-
ment is the Bogoliubov transformation

b+q := uqa+q + vqa-q,
(1)

b+q:= Uqa+q + vqat q

which expresses the creation and annihilation operators bt
and bq for Bogoliubov quasiparticles in terms of creation
and annihilation operators at and aq for free particles in
momentum states q. This transformation also plays a cru-
cial role in general relativity, where it connects the particle
operators in different reference frames [4]. In this paper
we experimentally verify the Bogoliubov transformation
by generating quasiparticles with momentum +q and ob-
serving that they are a superposition of +q and -q mo-
mentum states of free particles.

Following a recent suggestion of Brunello et al. [5],
we perform an experiment that combines the two regimes
of Bragg spectroscopy, where the momentum imparted
to the atoms is either smaller [6] or larger [7] than the
sound velocity c times the mass m of the atoms. An
optical lattice moving through the condensate at the sound
velocity imprinted phonons with wavelengths equal to the
spatial period of the lattice [6]. This was accomplished
by intersecting two laser beams at a small angle and
choosing their frequency difference to be equal to the
phonon frequency. The momentum analysis of the phonon
wave function was performed by a second Bragg pulse
consisting of counterpropagating laser beams that trans-
ferred a large momentum Q (two photon recoils) to atoms
with initial momentum p. In the limit Q > p, mc, the
resonance frequency v is equal to the kinetic energy

PACS numbers: 05.30.Jp, 03.75.Fi, 32.80.-t, 67.40.Db

transferred: h, = Q2/2m + Qp/m, where the second
term is simply the Doppler shift [7-9]. The resulting
frequency spectrum shows three peaks corresponding to
the three momentum components (0, +q, and -q) of a
condensate with phonons (see Fig. 2 below) [5].

The Bogoliubov spectrum for the energy of elementary
excitations is [10]

e(q) = q2 c2 +
12m/

where c = 4iirri2an/m, a is the scattering length, and
.n is the density. The amplitudes Uq and Vq in Eq. (1) are
given by

E(q) ±_
Uq, vq =- +

4m

The nontrivial aspect of the Bogoliubov transformation
manifests itself only at low momenta (q << mc), where
both amplitudes uq and Vq are significant. In this
regime, the excitations are characterized by u - -v -

mc/2q >> 1 and e(q)- qc. Such excitations are
phonons, each involving many particles moving in both
directions. At high momenta (q > mc), uq - 1, Vq - 0,
and e(q) = q2/2m + mc 2. These excitations are free
particles with an energy shift equal to the chemical
potential A. = mc2.

tThe phonon creation operator b+q [Eq. (1)] is a super-
t

position of the creation operator a+q for particles moving
in the +q direction and the annihilation operator a-q for
particles moving in the -q direction, yet the creation of
a phonon in the condensate implies an increase of par-
ticles moving in both the +q and -q direction. Indeed,
simple operator algebra shows that a condensate with I ex-
citations, b+q/Vt 'I'o), contains lu2 + vq free particles
moving with momentum +q and (1 + 1)v2 free particles
with momentum -q. In its ground state the condensate
contains vq pairs of atoms with momenta +q and -q.
These pairs constitute the quantum depletion in the con-
densate wave function [10]
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I o) = H1 ± _ ( - q = ],f+q P, (4)
q#0 Uq j=0 Uq

where the remaining atoms are in the q = 0 momentum
state. When at+q and a- q act on ~0, terms with large occu-

pation numbers j are enhanced: a +qln-q = j, n+q = j) =
V77Ti"n-_q = j, n+q = i + 1), a-qln-q = j,
n+q = j) = /In-q = j - 1, n+q = j). In addi-
tion, -q and + q atoms occur only in pairs in the ground
state. Together, these two effects cause both a+q and a-q
to increase the number of atoms in both the -q and + q
states.

The experiments were performed with condensates
of 3 x 107 sodium atoms in a magnetic trap with ra-
dial and axial trapping frequencies of 37 and 7 Hz,
respectively [11]. The condensate had a peak density of
1.0 X 1014 cm-3 corresponding to a chemical potential
of pt = h X 1.5 kHz, a sound velocity of c = 5 mm/s,
and a Thomas-Fermi radial radius of 32 Am. The Bragg
beams for the optical lattices were generated from a
common source of laser light 1.7 GHz red-detuned from
the 3S1/ 21F = 1) to 3P3/21F I = 0, 1,2) transitions. The
lattices were moved radially through the cloud. This
was done to avoid the high collisional density along
the axial direction, where outcoupled atoms would have
undergone elastic collisions with the condensate [12].
The Bragg beams for imprinting the phonons were at an
angle of 32 mrad with respect to one another, resulting
in a lattice spacing of -9 Am and a recoil momentum
of q = m X 1.9 mm/s. The beams propagated at an
angle of 0.4 rad with respect to the longitudinal axis of
the condensate and were linearly polarized perpendicular
to it. The frequency difference ("excitation frequency")
between the two beams was chosen to be 400 Hz, corre-
sponding to the frequency of the phonons. The excitation
pulse had to be long enough to ensure sufficient frequency
resolution in order to selectively excite + q phonons, and
no -q phonons (see below). However, the excitation
pulse also had to be shorter than the transit time of
phonons through the condensate, since phonons accelerate
when they move through regions of varying density. We
chose small-angle Bragg beams 3 ms in duration with
intensity 0.05 mW/cm2, corresponding to a two-photon
Rabi frequency of 50 Hz.

The momentum analysis of the phonons was performed
with two counterpropagating beams that imparted a
recoil momentum of Q = m X 59 mm/s onto the out-
coupled atoms. The beams were polarized parallel to the
longitudinal axis of the condensate to suppress super-
radiant emission [13]. A frequency difference ("probe fre-
quency") of 100 kHz between the two beams corresponded
to the kinetic energy needed for atoms initially at rest to
reach this recoil momentum. To gain recoil momentum
+ Q, atoms with initial momentum +q were resonant at
107 kHz (Fig. la). Atoms with momentum - q were reso-

-Q[
I ,+a-Q

+q+Q I
+Q--a+Q - I

0o
+a

FIG. 1. Momentum distribution of a condensate with phonons.
After imprinting +q phonons into the condensate, momentum
analysis via Bragg spectroscopy transfers a momentum ± Q
(two-photon recoil) to the atoms. Absorption images after 40 ms
time of flight in (a), (b), and (c) show the condensate in the center
and outcoupled atoms to the right and left for probe frequencies
of 94, 100, and 107 kHz, respectively. The small clouds centered
at +q are phonons that were converted to free particles. The
size of the images is 25 X 2.2 mm. (d) The outlined region in
(a)-(c) is magnified, and clearly shows outcoupled atoms with
momenta Q ± q, implying that phonons with wave vector q/h
have both +q and -q free particle momentum components.

nant at 94 kHz (Fig. lb). In our experiment, a retro-
reflected beam containing both optical frequencies re-
sulted in two optical lattices moving at the same speed in
opposite directions. This led to simultaneous outcoupling
of +q and -q atoms in opposite directions. These
large-angle Bragg beams were pulsed on for 0.5 ms.
The probe pulse had to be long enough to selectively
excite atoms with ±+q momentum, but also shorter than
h/1A for the mean-field energy to be negligible during
the readout. Each frequency component had an intensity
of 0.7 mW/cm2, corresponding to a two-photon Rabi
frequency of 700 Hz. Subsequently, the trap was turned
off and a resonant absorption image was taken after 40 ms
of ballistic expansion.

Figure 1 shows typical absorption images for various
probe frequencies. The quasiparticle nature of the phonons
was directly evident (see outlined region) in the time-of-
flight distribution through the presence of the peaks at mo-
menta ± q + Q. These peaks had well-defined momentum
because the outcoupled atoms left the condensate quickly
(during this time the atoms' velocity changed by less than
the speed of sound [14]). This "photograph" of the Bo-
goliubov transformation is the central result of this paper.

We now discuss the different momentum components
distinguishable in Fig. 1: (i) The original condensate is
in the center. (ii) The condensate is asymmetrically ex-
tended towards positive momenta. This is due to imprinted
phonons of momentum q that were converted to free par-
ticles during the ballistic expansion. Previously this sig-
nature was used to determine the structure factor of a
condensate [6]. There is no momentum component in the
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opposite direction, because we did not create -q phonons
(see below). The smearing of the observed momentum
distribution may be caused by acceleration due to the in-
homogeneous density distribution of the condensate when
the trap was switched off. (iii) The two components with
momentum + Q and -Q are atoms outcoupled from the
condensate at rest. The symmetry of the Q peaks, as
well as the position of the main condensate, served as
an indicator as to whether the condensate was undergo-
ing dipole oscillation during the experiment. Images that
showed such "sloshing" (caused by technical noise) were
excluded from further analysis. (iv) Atoms at +q + Q
(Fig. Ic) and +q - Q (Fig. la) are coupled out from the
+ q component of the phonons. (v) Atoms at - q - Q
(Fig. Ic) and -q + Q (Fig. la) are coupled out from the
-q component of the phonons.

Quantitative information was obtained by scanning the
probe frequency and measuring the number of outcoupled
atoms in the three peaks around - Q (See Fig. 1). Without
phonons only the condensate peak is observed. The exci-
tation of phonons at wave vector + q creates momentum
sidebands at momentum ± q. The - q peak is expected
to be smaller by a factor vq/Uq. This effect is evident in
Fig. 2, but with a poor signal-to-noise ratio.

The excitation of the phonons was characterized by
scanning the frequency difference of the small-angle Bragg
beams (Fig. 3a) and measuring the number of outcoupled
atoms at +q - Q. The probe frequency was kept at
94 kHz because the momenta of the excited phonons re-
mained fixed. The observation of two distinct peaks (cor-
responding to +q at 400 Hz and -q phonons at -400 Hz)
confirms that there was sufficient resolution to excite only
+q phonons and suppress the off-resonant excitation of
-q phonons. The higher peak represents the u compo-
nent of + q phonons excited at positive excitation frequen-
cies. When the excitation frequency became negative, -q

phonons were excited. This second peak represents the v
component of the phonons.

According to Eq. (3) the ratio of the two peaks, v/u2 2
should be smaller at lower density. This is confirmed in
Fig. 3b, which shows the excitation spectrum at low den-
sity. The density was lowered by a factor of 2 by weak-
ening the axial trap frequency to 4 Hz and reducing the
number of atoms in the condensate by a factor of 3. The
scatter in the data could be due to residual sloshing, shot-
to-shot fluctuations in the size of the condensate, or non-
linear effects (see below).

The dashed line is the theoretical prediction with no free
parameters (except the vertical scale). It was obtained by
integrating Eq. (3) over the inhomogeneous density distri-
bution of the condensate and by accounting for the finite
length of the square excitation pulse, which broadens the
line and causes the extra sidelobes at about 900 Hz. The
theory assumes the validity of a perturbative approach, i.e.,
that the excitation pulse is weak.

Ideally, both Bragg pulses should affect only a few
percent of the atoms, as in previous experiments [6,7].

-1000 -500 0 500
Excitation Frequency [Hz]

1000

o 120

E 100
0S80

-o
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20

0 20

-1000 -500 0 500
Excitation Frequency [Hz]

90 95 100 105
Probe Frequency [kHz]

FIG. 2. Bragg spectrum of a condensate with (0) and without
(0) phonon excitation. The number of outcoupled atoms vs the
probe frequency is shown. The excitation of phonons creates
sidebands on both sides of the central condensate peak. At
about 100 kHz, the absorption images were saturated due to
high optical density.

FIG. 3. Phonon excitation spectrum. Atoms with initial mo-
mentum +q were detected by setting the probe frequency to
94 kHz and measuring the number of atoms with momentum
-Q + q. The two peaks reflect that phonons with +q/li and
-q/i wave vectors have free particle components with mo-
mentum +q. Spectra were taken at (a) high density (1.0 X
1014 cm-3) and (b) low density (0.5 X 1014 cm-3). The solid
line, a fit to the sum of two Gaussians, is intended to guide the
eye. The dashed line is the theoretical prediction.
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However, because our signal was the product of the two
outcoupling efficiencies, we needed to work at much
higher outcoupled fractions. We estimate that the excita-
tion pulse transferred 10% of the condensate atoms into
the phonon state, and that the probe pulse outcoupled 40%
of these atoms on resonance.

Both Bragg processes (stimulated Rayleigh scattering)
should depend only on the product of the two intensities.
Therefore, changing the sign of the excitation frequency
should not affect the number of phonons generated (as-
suming a stationary condensate). However, when the sign
of the excitation frequency was changed in our experi-
ment, the observed number of phonons differed. This is
most likely due to superradiance [13], which is sensitive
to the individual intensities. Therefore, the asymmetry in
phonon number was eliminated by ensuring equal intensi-
ties in the two beams. Additionally, there was a substan-
tial loss (-50%) of condensate atoms due to superradiant
Rayleigh scattering. Both superradiant effects could be
further suppressed using light further detuned from reso-
nance. However, in our case this would have required
an additional laser. Given these experimental limitations,
the agreement between experiment and theory in Fig. 3 is
satisfactory.

In this work we have used large-angle Bragg pulses
to analyze the momentum structure of the phonon wave
function. In principle, this could have also been achieved
by removing the mean-field interaction within a time
h/s(q) and then probing the velocity distribution of the
particles. This is not possible with ordinary ballistic
expansion because the reduction of the interactions is too
slow, taking place on a time scale of the trapping period.
However, the use of a Feshbach resonance [15] would
provide an effective method for suddenly reducing the
mean-field interaction.

In conclusion, we have experimentally analyzed the
phonon wave function in a Bose-Einstein condensate.
Following recent theoretical work [5], the two-component
character of Bogoliubov quasiparticles was observed
in the frequency domain (Fig. 2). In addition, the mo-
mentum components of the phonon wave function were
discriminated by their final momenta after the probe
pulse (Fig. 1). By combining momentum and frequency

selectivity, we were able to directly photograph the
Bogoliubov transformation (Fig. Id), demonstrating the
power of Bragg spectroscopy to analyze nontrivial wave
functions. This method may also be applicable to studying
the many-body and vortex states [8] of dilute atomic
Bose-Einstein condensates.

This work was funded by ONR, NSF, ARO, NASA, and
the David and Lucile Packard Foundation. We are grateful
to A. Brunello and S. Stringari for insightful discussions.
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By colliding two Bose-Einstein condensates, we have observed strong bosonic stimulation of the elastic
scattering process. When a weak input beam was applied as a seed, it was amplified by a factor of 20.
This large gain atomic four-wave mixing resulted
pair-correlated atomic beams.

DOI: 10.1103/PhysRevLett.89.020401

In a gaseous Bose-Einstein condensate (BEC), all the
atoms occupy the ground state of the system [1]. Once
BEC has been achieved, the initial well-defined quantum
state can be transformed into other more complex states by
manipulating it with magnetic and optical fields. This can
result in a variety of time-dependent macroscopic wave
functions [1], including oscillating condensates, multiple
condensates moving relative to each other, an output cou-
pler, and rotating condensates with vortex lattices. Such
macroscopically occupied quantum states represent clas-
sical matter-wave fields in the same way an optical laser
beam is a classical electromagnetic wave. The next ma-
jor step involves engineering nonclassical states of atoms
that feature quantum entanglement and correlations. These
states are important for quantum information processing,
subshot noise precision measurements [2], and tests of
quantum nonlocality.

Quantum correlations in the BEC ground state have been
observed in a BEC held in optical lattices [2-4]. The re-
pulsive interactions between the atoms within each lattice
site force the occupation numbers to equalize, resulting
in a number squeezed state. Alternatively, correlations
in a BEC can be created in a dynamic or transient way
through interatomic collisions. At the low densities typi-
cal of current experiments, binary collisions dominate, cre-
ating correlated pairs of atoms. Because of momentum.
conservation, the pair-correlated atoms scatter into modes
with opposite momenta in the center-of-mass frame, result-
ing in squeezing of the number difference between these
modes [5-7]. Our work is an implementation of the sug-
gestions in Refs. [5,6]. However, we use elastic scattering
processes instead of spin flip collisions to create pair cor-
relations because the elastic collision rate is much higher
than the spin flip rate. This was essential to observe large
amplification before further elastic collisions led to losses.

Elastic scattering between two BEC's produces a colli-
sional halo [8], where the number of atoms moving into op-
posing solid angles is the same, corresponding to number
squeezing. Once these modes are occupied, the scattering
process is further enhanced by bosonic stimulation. The
onset of such an enhancement was observed in Ref. [8].

in the generation of two macroscopically occupied

PACS numbers: 05.30.Jp, 03.75.Fi, 32.80.-t, 67.40.Db

In this paper, we report strong amplification, correspond-
ing to a gain of at least 20. Based on a theoretical predic-
tion [6], which drew an analogy to optical superradiance
[9], we expected to obtain a highly anisotropic gain using
our cigar-shaped condensate. However, this mechanism
of mode selection proved to be irrelevant for our experi-
ment, because atoms do not leave the condensate during
amplification (see below). Instead, we preselected a single
pair-correlated mode by seeding it with a weak third mat-
ter wave, and observed that up to 40% of the atoms scat-
tered into it. Because the scattered atoms are perfectly pair
correlated, the only fluctuations in the number difference
between the two beams stem from number fluctuations in
the initial seed. Therefore, an observed gain of 20 implies
that we have improved upon the shot-noise limit by a fac-
tor of 4"0, although this was not directly observed. Such
a four-wave mixing process with matter waves had only
been observed previously with a gain of 1.5 [10,11].

This experiment was performed with sodium conden-
sates of -30 million atoms in a cigar-shaped magnetic trap
with radial and axial trap frequencies of 80 and 20 Hz, re-
spectively. Such condensates had a mean field energy of
4.4 kHz, a speed of sound of 9 mm/s, and radial and axial
Thomas-Fermi radii of 25 and 100 jam, respectively. The
second condensate and the seed wave were generated by
optical Bragg transitions to other momentum states. Fig-
ure 1 shows the geometry of the Bragg beams. Four laser
beams were derived from the same laser that was 100 GHz
red detuned from the sodium D2 line. The large detun-
ing prevented optical superradiance [9]. All beams propa-
gated at approximately the same angle of -0.35 rad with
respect to the long axis of the condensate, and could be
individually switched on and off to form beam pairs to ex-
cite two-photon Bragg transitions [12] at different recoil
momenta.

The seed wave was created by a weak 20 /s Bragg
pulse of beams with momenta p3 and P2, which cou-
pled 1%-2% of the atoms into the momentum state ks =
P3 - P2, with a velocity --15 mm/s. Subsequently, a
40 /ts 7r/2 pulse of beams pl and P2 splits the conden-
sate into two strong source waves with momenta k = 0
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FIG. 1. Arrangement of laser beams to generate three atomic
wave packets: (a) Four Bragg beams intersected at the conden-
sate. (b) Two source waves and a small seed were created with
Bragg beam pairs. (c) The four-wave mixing process amplified
the seed and created a fourth wave. Both were subsequently
read out with another Bragg pulse. The figures are projections
on a plane perpendicular to the condensate axis. All wave pack-
ets move within this plane.

and k2 = P1 - P2 (see Fig. lb), corresponding to a rela-
tive velocity of -20 mm/s. The four-wave mixing process
involving these three waves led to an exponential growth
of the seed wave, while a fourth conjugate wave at mo-
mentum k4 = k I + k 2 - ks emerged and also grew ex-
ponentially (Fig. Ic). The Bragg beams were arranged in
such a way that the phase matching condition was ful-
filled [the sum of the kinetic energies of the source waves
(-11 kHz) matched the energy of the seed and the fourth
wave]. The effect of any energy mismatch on the process
will be discussed later. The four-wave mixing process was
analyzed by absorption imaging [1]. Figure 2c shows the
key result of this paper qualitatively: A small seed and
its conjugate wave were amplified to a size where a sig-
nificant fraction of the initial condensate atoms had been
transferred into this pair-correlated mode.

To study this process, we applied "readout" beams P2
and p4 for 40 As, interrupting the amplification after a
variable growth period between 0 and 600 ps. {Turn-
ing off the trap after a variable amount of time is insuf-

FIG. 2. High-gain four-wave mixing of matter waves. The
wave packets separated during 43 ms of ballistic expansion. The
absorption images [1] were taken along the axis of the conden-
sate. (a) Only a 1% seed was present (barely visible), (b) only
two source waves were created and no seed, and (c) two source
waves and the seed underwent the four-wave mixing process
where the seed wave and the fourth wave grew to a size compa-
rable to the source waves. The gray circular background consists
of spontaneously emitted atom pairs that were subsequently am-
plified to around 20 atoms per mode. The crosses mark the
center position of the unperturbed condensate. The field of view
is 1.8 mm wide.

020401-2

ficient in this case because the density decreases on the
time scale of the trapping period [1/(80 Hz)], while the
amplification occurs more rapidly. }) The frequency differ-
ence between the two readout beams was selected such
that a fixed fraction of the seed (fourth) wave was coupled
out to a different momentum state kr = ks + P4 - P2
(kr = k4 + P2 - P4) (Fig. lc). kr or kr did not experi-
ence further amplification due to the constraint of energy
conservation and therefore could be used to monitor the
atom number in the seed (fourth) wave during the four-
wave mixing process (Fig. 3).

The growth of the 2% seed and the fourth wave are
shown in Fig. 4. As expected, the growth rates were found
to increase with the mean field energy. Eventually, the am-
plification slowed down and stopped as the source waves
were depleted. This is in contrast to Ref. [10,13], where
the mixing process was slow (due to much lower mean field
energy), and the growth time was limited by the overlap
time of the wave packets. In our experiment, the overlap
time was ; 1.8 ms, whereas the growth stopped already
after s500 As.

A simple model describes the salient features of the
process. The Hamiltonian of a weakly interacting Bose
condensate is given by [11]

h2K 2  27h2 a a ita a
H ftK , I KaK 2 K3 K4 ,

K 2M K mV K+K2K K3+K4
--K3+K4

where K denotes the wave vectors of the plane wave states,
m is the mass, V is the quantization volume, aK,i is the anni-
hilation operator, and a = 2.75 nm is the scattering length.
If two momentum states k and k2 are highly occupied
relative to all other states (with occupation numbers NI and
N2), the initial depletion of k and k2 can be neglected.
Therefore, the only interactions are mean field interac-
tions (self-interactions) and scattering involving ki and
k2. In the Heisenberg picture, the difference between the

FIG. 3. Absorption images after a readout pulse was applied
to (a) the seed wave and (b) the fourth wave. The thick arrows
indicate the readout process. The readout pulse was kept short
(40 p/s), resulting in a large Fourier bandwidth and off-resonant
coupling to other wave packets indicated by the narrow arrows.
However, this did not affect the readout signal (atoms in the
dashed box).
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K1 and K2. One obtains exponential growth for K1 and K2

if 7 > hAw/4, and the growth rate is given by

= ( - ( )2. (3)

For our initial conditions with s atoms in the seed wave
ks and an empty fourth wave k 4, the correlation (ak, k4)
starts to grow as

I(&ksk 4 I
27 4-2 cosh(t)2 -A,

Amplification Time [ps]

X sinh(7rt)(s + 1).

This leads to exponential growth of the occupation num-
bers [10,13]:

,o*S I :

Io

* o

* 0

(k,•k,) = [-sinh(7rt) (s + 1) + s,

(akk 4 ) = [ sinh(nt) 2 (s + 1).

o0 0
0-

o -

Amplification Time [pis]

FIG. 4. Generation of pair-correlated atomic
growth of (a) a 2% seed and (b) its conjugate fc
shown for two different chemical potentials iL.
of the waves were determined by counting ti
atoms in the dashed boxes in Fig. 3 and were nor
intensity of the initial seed. The solid lines an
are fits to the initial growth according to Eq. (4
rates of (170 /s) - 1 and (100 1.s) - 1, respectively

occupations of the mode pairs Ah = alaK,
time independent for any KI + K2 = k +
fore, the fluctuations in the number differel
(Aft) 2 remain constant even though the occu
in time. The result is two-mode number squ
is equivalent to a nondegenerate parametric
Hamiltonians for both systems are identical I

When calculating the occupations (a~1 8,,)
the correlation (a&C K2), the relevant physics
are

r7= I,
41rh 2 a

Ati = MVNimV
A 

2  k2  k2

K, = h K2 Ak, hk2 +
2m 2m 2m 2m

where j! is the (geometric) average mean fi
the two source waves, and hAw is the ener
for the scattering of atoms from states kI an
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Equations (3) and (4) show that, for a large mean field
energy 71, A w can be quite large without suppressing the
four-wave mixing process. When A > 47/./h, one has to
replace the hyperbolic sine functions in Eq. (4) with sine
functions and r in Eq. (3) with i(Aw/2)2 - (27;/fi)2.
The occupations in states ks and k4 still grow initially,
but then they begin to oscillate. The above solution also
applies to initially empty modes with s = 0.

We can estimate the maximum growth rate (271/h) for
our experiment by using the average mean field energy
across the condensate to obtain (53 ps)-1 for high and

beams. The (110 ps)- ' for low mean field energy. The experimental
,urth wave are data exhibit a somewhat slower growth rate of (100 ps)-1
The intensities and (170 As)-', respectively. This discrepancy is not sur-
he number of prising since our theoretical model does not take into ac-
malized to the count depletion and possible decoherence processes due
I dashed lines to the finite size and inhomogeneity of a magnetically
*) with growth

t. trapped condensate. We also observed that the angles of
the Bragg beams and therefore the energy mismatch Aw

- aK2 is could be significantly varied without substantially affect-K2

k 2. There- ing the four-wave mixing process, confirming the robust-
nce (A t2 ) - ness [see Eq. (3)] of four-wave mixing.
pations grow In addition to the four distinct wave packets, Fig. 2
eezing. This also shows a circular background of atoms that are scat-
amplifier; the tered from the source waves k, and k2 into other pairs of
[14]. initially empty modes Kl and K2 (KI + K2 = k1 + k2).
I (•2 a,2) and The scattered atoms lie on a spherical shell in momentum
al parameters space centered at (kl + k2)/2 with a radius Iki close to

Iki - k21/2 and a width IAkl - m/12_r'1/thi3/Ik [13].
As time progresses, the thickness IAki narrows due to the

(i = 1, 2), exponential gain.

(2) Eventually, the population of these background modes
l + /.2 contributes to the depletion of the source waves. One can
+ /i ' estimate the depletion time td of the source waves by com-

eld energy of paring the total population in these modes to the original
gy mismatch number of atoms. This sets a theoretical limit on the gain
d k2 to states G = e4aitd/h/4 given by 4G/lin(4G) = /2'/Ikla. For
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our geometry Ikla = 0.01 and G = 160. In our conden-
sate of 3 X 107 atoms, this maximum gain is achieved
when all the atoms are scattered into the 9 X 104 pair
modes in the momentum shell. With a 1% seed, the source
waves are depleted earlier, leading to a maximum gain of
37, where we measured a gain of 20. For a 2% seed the
measured gain was 10 (see Fig. 4).

In our experiment, we deliberately reduced the veloc-
ity between the two source waves to twice the speed of
sound in order to increase G and also the overlap time be-
tween the two source waves. Under these circumstances,
the thickness of the shell IAk becomes close to its radius,
accounting for the uniform background of scattered atoms
rather than the thin s-wave halo observed in Ref. [8]. For
velocities around or below the speed of sound, the con-
densate will not separate from the other waves in ballistic
expansion.

Once the amplified modes are populated, losses due to
further collisions occur at a rate F - 8'7ra 2nhlkl/m per
atom (n is the number density of atoms). In order to
have net gain, the growth rate 7 should be greater than IF,
which is the case since 7 1/F = 1/Ikla = 100 > 1. Fur-
thermore, we begin to lose squeezing when s + 1 atoms
are lost from the mode pair that occurs approximately at a
gain of e4 -t/nl/4 = 1/Ikla. At this point, the condensate
is already highly depleted. In our experiment, however, the
shell of amplified modes is so thick that it includes many of
the modes into which atoms are scattered and increases the
scattering rate by bosonic stimulation. Ideally, the atomic
beams should separate after maximum gain is achieved.
However, for our condensate size, the waves overlap for
a much longer time and suffer collisional losses. This is
visible in Fig. 2, where 40% of the atoms were transferred
to the seeded mode pair, but only -- 10% survived the bal-
listic expansion.

The collisional amplification process studied here bears
similarities to the superradiant Rayleigh scattering of light
from a Bose condensate [9], where correlated photon-atom
pairs are generated in the end-fire mode for the photons and
the corresponding recoil mode for the atoms. However,
there are significant differences between the two processes.
In optical superradiance, the scattered photons leave the
condensate very quickly, causing only the recoiled atoms
to maintain the coherence and undergo exponential growth.
This physical situation is reflected in the Markov approxi-
mation adopted in Refs. [6,15]. In contrast, the atoms
move slowly in collisional amplification, and the Markov
approximation does not hold (although it was applied in
Ref. [6]). The energy uncertainty AE = hi/At for a pro-
cess of duration At gives a longitudinal momentum width
of AE/v, where v is the speed of light for photons or the
velocity of the scattered atoms. This shows that optical
superradiance is much more momentum selective: The
shell in momentum space is infinitesimally thin, and only
the atomic modes with maximal overlap with this shell are
selected. In contrast, the shell in collisional amplification
is many modes thick and does not lead to strong mode

020401-4

selection. Moreover, in optical superradiance the light is
coherently emitted by the entire condensate, whereas col-
lisional amplification reflects only local properties of the
condensate, because the atoms do not move significantly
compared to the size of the condensate. Therefore, fea-
tures like growth rate, maximum amplification, and even
whether mode pairs stay squeezed do not depend on global
parameters such as size or shape.

In conclusion, we have observed high gain in atomic
four-wave mixing and produced pair-correlated atomic
beams. We have also identified some limitations for using
collisions to create such twin beams, including loss by
subsequent collisions, and competition between other
modes with similar gain.

We thank Michael Moore for useful discussions and for
sending us early drafts of his recent theory paper [16]. The
conclusions of his paper agree with ours. We also thank
James Anglin and Peter Zoller for helpful interactions,
Jamil Abo-Shaeer for experimental assistance, and Jit Kee
Chin for critical reading of the manuscript. This work was
funded by ONR, NSF, ARO, NASA, and the David and
Lucile Packard Foundation.

*Group website: http://cua.mit.edu/ketterle_group/
[1] Bose-Einstein Condensation in Atomic Gases, Proceedings

of the International School of Physics "Enrico Fermi,"
Course CXL, edited by M. Inguscio, S. Stringari, and C. E.
Wieman (IOS Press, Amsterdam, 1999).

[2] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and
M. A. Kasevich, Science 291, 2386 (2001).

[3] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).

[4] M. Greiner, O. Mandel, T. Esslinger, T. W. Hiinsch, and
I. Bloch, Nature (London) 415, 30 (2002).

[5] L.-M. Duan, A. S6rensen, J.I. Cirac, and P. Zoller, Phys.
Rev. Lett. 85, 3991 (2000).

[6] H. Pu and P. Meystre, Phys. Rev. Lett. 85, 3987 (2000).
[7] A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature

(London) 409, 63 (2001).
[8] A. P. Chikkatur, A. Gorlitz, D. M. Stamper-Kurn, S. Inouye,

S. Gupta, and W. Ketterle, Phys. Rev. Lett. 85, 483 (2000).
[9] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kum, J. Stenger,

D. E. Pritchard, and W. Ketterle, Science 285, 571 (1999).
[10] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band,

P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston,
and W. D. Phillips, Nature (London) 398, 218 (1999).

[11] M. Trippenbach, Y. B. Band, and P. S. Julienne, Phys. Rev.
A 62, 023608 (2000).

[12] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn,
D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569
(1999).

[13] V. A. Yurovsky, Phys. Rev. A 65, 033605 (2002).
[14] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-

Verlag, Berlin, 1995).
[15] M. G. Moore and P. Meystre, Phys. Rev. Lett. 83, 5202

(1999).
[16] A. Vardi and M.G. Moore, cond-mat/0201590.

020401-4

VOLUME 89, NUMBER 2 PHYSICAL REVIEW LETTERS 8 JULY 2002



Appendix C

Formation of Quantum-Degenerate

Sodium Molecules

This appendix reprints Ref. [118]: K. Xu, T. Mukaiyama, J.R. Abo-Shaeer, J.K. Chin,

D.E. Miller, and W. Ketterle, Formation of Quantum-Degenerate Sodium Molecules,

Phys. Rev. Lett. 91, 210402 (2003).

128



VOLUME 91, NUMBER 21 PHYSICAL REVIEW LETTERS week ending
21 NOVEMBER 2003

Formation of Quantum-Degenerate Sodium Molecules

K Xu, T. Mukaiyama, J. R Abo-Shaeer, J. K Chin, D. E. Miller, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT,

Cambridge, Massachusetts 02139, USA
(Received 1 October 2003; published 21 November 2003)

Ultracold sodium molecules were produced from an atomic Bose-Einstein condensate by ramping an
applied magnetic field across a Feshbach resonance. More than 105 molecules were generated with a
conversion efficiency of -4%. Using laser light resonant with an atomic transition, the remaining atoms
could be selectively removed, preventing fast collisional relaxation of the molecules. Time-of-flight
analysis of the pure molecular sample yielded an instantaneous phase-space density greater than 20.

DOI: 10.1103/PhysRevLett91.210402

Atomic Bose-Einstein condensates (BEC) provide a
new window into macroscopic quantum phenomena [1].
A molecular condensate could lead to a host of new
scientific explorations. These include quantum gases
with anisotropic dipolar interactions, tests of fundamen-
tal symmetries such as the search for a permanent electric
dipole moment, study of rotational and vibrational energy
transfer processes, and coherent chemistry, where reac-
tants and products are in coherent quantum superposition
states. So far, the highly successful techniques for creat-
ing atomic BEC have not led to success for molecules.
Laser cooling is difficult due to the complicated level
structure of molecules [2], and evaporative cooling re-
quires the preparation of a dense gas of molecules, where
elastic collisions dominate inelastic collisions.

Alternative techniques, such as buffer gas loading [3]
and Stark deceleration [4], have been successful in ob-
taining cold molecules. Yet these methods are still far
from achieving the requisite phase-space density for
BEC. The difficulty in cooling molecules directly can
be circumvented by creating ultracold molecules from
quantum-degenerate atomic samples. This requires mole-
cule formation without release of energy, which can be
accomplished either by photoassociation [5] or by "tun-
ing" a molecular state via a Feshbach resonance [6] to be
degenerate with the atomic state. A Feshbach resonance
occurs when an applied magnetic field Zeeman shifts a
molecular state to zero binding energy. By ramping an
external field across a Feshbach resonance from negative
to positive scattering length, translationally cold mole-
cules in high vibrational states can be created adiabati-
cally [7-9].

The first observation of a Feshbach resonance in ultra-
cold atoms showed a high rate of atom loss [6,10].
Theories accounted for this loss by assuming the forma-
tion of ultracold molecules [7,8,11]. These molecules were
predicted to decay vibrationally in less than 100 As due
to a two-body rate coefficient of order 10-10 cm 3/s.
Because of this, no successful attempt was made to detect
a molecular signature until atom-molecule beats were
observed in 85Rb, lasting about 100 As [12]. Recent fer-
mion experiments using magnetic field sweeps have ob-
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served molecules with lifetimes approaching 1 s [13-16].
Until now, similar experiments with bosons have been
carried out only during ballistic expansion [17,18].
According to theory, the decay of molecules composed
of fermionic atoms is suppressed by Pauli blocking [19],
whereas molecules composed of bosons decay rapidly.
This could explain the low conversion efficiency of about
5% for bosons, compared to > 50% for fermions, where
more adiabatic field ramps are possible.

If highly degenerate atoms (both fermionic and bo-
sonic) are converted adiabatically to molecules, the mole-
cules can be created at a phase-space density exceeding
2.6, the critical value at which a uniform, ideal Bose gas
condenses [20]. Previous experiments [14,18,21] have
measured or estimated conditions close to or around
this critical phase-space density.

Here we report the production of trapped sodium mole-
cules from an atomic BEC. The initial phase-space den-
sity of the molecular sample was measured in excess of
20. High phase-space density could only be achieved by
rapidly removing residual atoms, before atom-molecule
collisions caused trap loss and heating. This was accom-
plished by a new technique for preparing pure molecular
clouds, where light resonant with an atomic transition
selectively "blasted" unpaired atoms from the trap. In
contrast to spatial separation via a Stern-Gerlach method
[17,18], this technique can separate out the molecules
faster and does not require a large difference in the
magnetic moments of the atoms and molecules.

To generate the molecules, sodium condensates in the
IF = 1, mF = - 1) state were prepared in an optical di-
pole trap. The radial and axial trap frequencies of w, =
21r X 290 Hz and wz = 2rT X 2.2 Hz, respectively, gave
Thomas-Fermi radii of Rr = 5 Am and Rz = 650 im,
and a peak density of 1.7 X 1014 cm - 3 for 5 X 106 atoms
atoms. An adiabatic radio frequency sweep was used to
transfer the atoms into the I1, 1) state, which has a 1 G
wide Feshbach resonance at 907 G [6,22].

After 1 s equilibration in the optical trap, the molecules
were generated using the field ramping scheme illustrated
in Fig. l(a). An applied magnetic field was ramped in
-100 ms to 4 G below the 907 G Feshbach resonance.

0031-9007/03/91(21)/210402(4)$20.00 @ 2003 The American Physical Society210402-1 210402-1



VOLUME 91, NUMBER 21
PHYSICAL REVIEW LETTERS week ending

21 NOVEMBER 2003

The field was generated using a pair of large bias and
small antibias coils. Because molecules are only created
when sweeping across the resonance from negative to
positive scattering length, the field was stepped up to
913 G as quickly as possible (-1 As) to jump over the
resonance with minimal atom loss. After allowing 2.5 ms
for transient field fluctuation to damp out, the field was
ramped down in time rdown. Because of atom-molecule
coupling, part of the atomic population was transferred
into the molecular state following the Landau-Zener
avoided crossing. With the given width of the resonance
and the atomic density, we use a simple Landau-Zener
model to calculate a ramp speed of -104 G/s to transfer
roughly half the atoms to the molecular state [7,8,11].
However, inelastic collisions led to fast decay for both
the atoms and the molecules near the resonance. We found
that a faster ramp speed of -10 5 G/s(corresponding to
rdown = 50 sS) gave optimal results. The conversion effi-
ciency of atoms to molecules was -4%. Slower ramp.
speeds resulted in a similar number of molecules, but at
higher temperature [see Fig. 1(e)].

a)B 00
00 000

(------------------- ---- 907G
a>0 (i) _1 iv (v)IV) ------ 903G00 (9

SOptical Tra On 'TOF-+Imaging.1
Time

FIG. 1. (a) Experimental method for producing and detecting
ultracold molecules. (i) Bose condensed atoms in an optical
dipole trap are exposed to a magnetic field just below a
Feshbach resonance. (ii) The field is quickly stepped through
the resonance to minimize atom loss. (iii) The field is then
swept back through the resonance, creating an atom-molecule
mixture. (iv) Unpaired atoms are removed from the trap with
resonant light, yielding a pure molecular sample. (v) The trap is
switched off, allowing the molecules to expand ballistically.
(vi) Finally, the magnetic field is swept back across the reso-
nance to reconvert the molecules to atoms for imaging (vii).,
(b) Image of the atomic sample after ramping the field to
produce molecules; (c) after the resonant light pulse has re-
moved all unpaired atoms; (d) after the molecules (-105) have
been reconverted to atoms. (b),(c) were taken along the weak
axis of the trap after 17 ms ballistic (time-of-flight-TOF)
expansion. (e) An image showing both atomic (top) and mo-
lecular (bottom) clouds after 14 ms ballistic expansion, spa-
tially separated by a magnetic field gradient. With 4 ms field
ramp-down time, some molecules survived even without the
blast pulse, but are much more heated. The field of view of each
image is 1.8 mm X 1.3 mm.
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The blast pulse was applied along the radial axis of the
trap to minimize collisions between the escaping atoms
and the molecules at rest. A 20 As pulse of resonant light
removed all atoms from the optical trap, leaving behind a
pure molecular sample (see Fig. 1). At only 4 G below the
Feshbach resonance, the light was still close to resonance
with molecular photodissociation to low-velocity atoms,
but the overlap matrix element was sufficiently dimin-
ished to leave the molecules unaffected. After a variable
hold time, the optical trap was switched off and the
molecules expanded ballistically for between 4 and
20 ms. The molecules were detected by converting them
back to atoms with field ramp-up in rup = 100 As at the
end of expansion. Varying r,p between 50 Ms and 4 ms did
not affect the recovered atom number, though shorter
rup'S recovered atoms with larger kinetic energy [23].
Thus we assume all molecules are converted back to
atoms. A resonant absorption image was taken after an
additional 500 As, which allowed the imaging field to
settle. The rapid conversion of molecules to atoms after
a long expansion time ensured that the absorption images
accurately depicted the momentum distribution of the
molecular cloud.

Atoms and molecules were separated during the bal-
listic expansion by a Stern-Gerlach technique [Fig. 1(e)].
Because of trap imperfections, the large bias coils pro-
vided an additional radial gradient of the axial field of
-2.8 G/cm in the vicinity of the condensate. This value
was determined from the trajectory of the falling atoms.
Since the molecules have a different magnetic moment,
they separate from the atoms during the ballistic expan-
sion [Fig. l(e)]. From the separation of the atomic and
molecular clouds at different times, we determined the
difference between atomic and molecular magnetic mo-
ments to be 3.2 AB (gB is the Bohr magneton), in good
agreement with theory [11].

For different ramp down times Tdown, the time-of-flight
images of the molecular cloud exhibit drastically differ-
ent momentum distribution. The coldest cloud was ob-
tained with the fastest ramp down time possible,
Tdown = 50 As (Fig. 2). A Gaussian fit was used to deter-
mine the molecular temperature Tm and the phase-space
density. Because of the rapid ramp down, the molecules
had no time to adjust to the external trapping potential or
any mean-field interactions. Therefore, we assume the
molecules were uniformly created with the Thomas-
Fermi profile of the original atomic BEC. The peak
phase-space density is then given by

h 23NmRR'
P SDpeak 3 2R

where h is the Planck constant, kB is the Boltzmann
constant, Mm is the molecular mass, and Nm is the number
of molecules. The second factor in the equation is the
peak density for a Thomas-Fermi profile.

Figure 3(a) shows the phase-space densities obtained
for different holding time in the optical trap. Phase-space
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4 ms 6 ms i ms 10 ms 12 ms 14 ms 16 ms 18 ms 20 ms

FIG. 2. Ballistic expansion of a pure molecular sample.
Absorption images of molecular clouds (after reconversion
to atoms) are shown for increasing expansion time after
switching off the optical trap. The small expansion ve-
locity corresponds to a temperature of -30 nK, characteristic
of high phase-space density. The images are taken along the
weak axis of the trap. The field of view of each image is
3.0 mm X 0.7 mm.

densities in excess of 20 were observed, much larger
than the critical value of 2.6. This demonstrates that a
quantum-degenerate cloud of atoms can be transformed
into a quantum-degenerate molecular gas.

The high initial phase-space density decayed rapidly
(-2 ms), due to molecule loss and heating. For a pure
molecular sample at a peak density of 4 X 1012 cm - 3, the
molecule number dropped by half in 5 ms and the appar-
ent temperature doubled in 2 ms. Since the molecules are
formed in a high vibrational state with quantum number
v = 14, losses are most likely due to vibrational relaxa-
tion. The high loss rate of the molecules is consistent with
theoretically predicted two-body relaxation rate coeffi-
cients of 10- 10 cm 3/s [9,24]. Because the loss of mole-
cules is faster at the high densities near the bottom of the
trap, it is accompanied by heating. This is in contrast to
evaporative cooling, where the losses occur at the top of
the trap. Such antievaporative heating gives a time con-

a) 2'-
•,10
C

4.

2-0 4

0.1

stant 4 times slower than the observed heating rate. We
therefore believe that the rapid increase in the apparent
temperature is due to the inward motion of the molecular
cloud (see below), and possibly transfer of the vibrational
energy of the molecules.

Our calculation of the phase-space density is conserva-
tive, since almost all errors lead to an underestimation of
the value. The most critical quantity is the thermal veloc-
ity Vtherm = V2kB Tm/Mm obtained from the Gaussian fit
of the cloud, since the phase-space density scales with the
third power of vtherm. We determined the velocity by
simply dividing the size of the cloud by the time-of-
flight, without correcting for imaging resolution and
initial cloud size.

Correcting for the imaging resolution of 10 /m com-
pared to the typical cloud size of 50 /.m would increase
the phase-space density measurement by 6%. In addition,
radial excitation of the trapped cloud (shown in Fig. 4)
contributed to the size of the cloud after the ballistic
expansion. From the fits, the smaller of the two Gauss-
ian radii was used to calculate vthem, assuming that the
larger size was caused by radial excitations. Yet since the
radial excitation can occur in two orthogonal directions,
we estimate that the extracted thermal velocities were
still overestimated by -10%. We also considered mag-
netic focusing of the cloud due to residual field inhomo-
geneities. Because we use large coils (-17 cm in diameter
and -4 cm away from the condensate) to produce a
homogeneous magnetic field, any residual radial curva-
ture due to radial fields is calculated to be G 0.1 G/cm2 .
An upper bound for the radial curvature of the axial fields
was obtained from trap frequency measurements and
ballistic expansion measurements as <1 G/cm2. This
can only reduce the size of the cloud by less than 2%
after a typical ballistic expansion time of 17 ms.

We assume resonant absorption in determining the
number of atoms. Any systematic effect such as small
detuning or saturation, would lower both Nm and the
Thomas-Fermi volume (proportional to N3 / 5, where N
is the number of condensed atoms). The net effect is an
underestimate of the phase-space density. In addition,
because the molecular formation process is nonlinear in

I In•. -i P
EU

10
Hold Time (ms)

15 20

FIG. 3. Molecular phase-space density versus hold time.
(a) The phase-space densities of the trapped molecules were
observed to decrease significantly after a few milliseconds in
the optical trap. The open and solid squares are data from two
separate runs on different days. (b),(c) are absorption images
of the molecular clouds after (b) 0 ms, (c) 2 ms, (d) 5 ms,
(e) 10 ms, (f) 20 ms hold time in the trap. The field of view is
0.8 mm X 0.8 mm.

210402-3

FIG. 4. Images of (a) atomic and (b) molecular clouds. These
absorption images were taken after 7 ms ballistic expan-
sion and show the axial extent of the clouds. Radial excita-
tions in the optical trap resulting from the sudden switching
of magnetic fields are manifest as snakelike patterns. Such
excitations blur images (c) taken along the long axis of the
trap (in 17 ms TOF), leading to an underestimate of the phase-
space density. The fields of view are (a),(b) 0.6 mm X 3.2 mm,
(c) 0.6 mm X 0.4 mm.
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atomic density, the assumption of the atomic Thomas-
Fermi volume for molecules is likely an overestimate.
Furthermore, in the absence of strong mean-field repul-
sion (due to the much lower molecular density), the
molecular cloud would not sustain the initial size of
the atomic condensate [used in Eq. (1)], and shrink to
a smaller size within a few milliseconds (- radial trap
period). If we assume radial thermal equilibrium while
keeping the axial length fixed (as the axial trap period.
is 500 ms), the phase-space density would be 2 to 4
times higher than is shown in Fig. 3. To sum up, the ex-
tracted peak phase-space densities are underestimated by

- 30%, and all other critical systematic effects would
raise the value even further.

When a molecular cloud with high phase-space density
equilibrates by elastic collisions, it should form a con-
densate. There is no prediction for the scattering length of
the molecules, which are formed in the Iv = 14, 1 = 0)
state [25]. Assuming a prototypical scattering length of
100ao (ao is the Bohr radius), we estimate the elastic
collision rate between molecules to be 6 s- 1, which is
smaller than our loss rate. Thus, the so-called ratio of
good and bad collisions is smaller than 1.

Recent work on molecules composed of fermionic lith-
ium [14,15] and potassium [26] atoms showed a dramatic
increase in lifetime close to the Feshbach resonance.
Theoretically, the rate of vibrational relaxation should
decrease with the scattering length a, as oc a - 2.55 due to'
Pauli blocking [19]. In contrast, for molecules composed
of bosonic atoms, the rate should increase proportionally
to a, [27]. On the other hand, the elastic collision rate is
proportional to a., so for large a, one would expect the
ratio of good-to-bad collisions to exceed one. However, if
this condition is met at loss rates faster than the trap
frequency, the cloud can only establish local, not global
equilibrium.

Whether our molecular sample is a condensate depends
on one's definition of BEC. If phase-space density in ex-
cess of 2.6 (corresponding to a diagonal matrix element of
the single-particle density matrix larger than 1) is suffi-
cient, then one may regard a short-lived atom-molecule
superposition state [12] as a molecular BEC. However,
following this definition, a small excited state admixture
in an optically trapped BEC would qualify as BEC of
electronically excited atoms. If one asks for the additional
requirement of a pure molecular sample, we have.
achieved that in this work. Another definition would re-
quire phase coherence, which could again be observed
even in short-lived samples. Should one also require a
lifetime of the degenerate sample exceeding the collision
time (to achieve local equilibrium), the trap period (to
achieve global equilibrium), or the inverse mean-field
energy (the typical dynamic timescale)? In our opinion,
BEC requires thermal equilibrium. High phase-space
density is necessary, but not sufficient.

In conclusion, we have created a quantum-degenerate
gas of 10s cold sodium molecules with a phase-space

210402-4

density >20. This was achieved with a fast magnetic
field sweep through a Feshbach resonance, followed by
quick removal of the remnant atoms with resonant light.
This purification was necessary to avoid heating and
decay of the molecules through inelastic collision pro-
cesses. These processes could also be avoided by loading
the atomic BEC into an optical lattice in the Mott-
insulator phase with a filling factor of 2 [28,29] which,
after sweeping the magnetic field through the Feshbach
resonance, would result in a long-lived sample of isolated
molecules.
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Dissociation and Decay of Ultracold Sodium Molecules
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The dissociation of ultracold molecules was studied by ramping an external magnetic field through a
Feshbach resonance. The observed dissociation energies directly yielded the strength of the atom-
molecule coupling. They showed nonlinear dependence on the ramp speed. This was explained by a
Wigner threshold law which predicts that the decay rate of the molecules above threshold increases
with the density of states. In addition, inelastic molecule-molecule and molecule-atom collisions were
characterized.

DOI: 10.1103/PhysRevLett92.180402

Recently, it has become possible to create ultracold
molecular gases from precooled atomic samples [1-11].
Extending the ultralow temperature regime from atoms to
molecules is an important step towards controlling the
motion of more complicated objects. The complex struc-
ture of molecules may lead to new scientific opportunities,
including the search for a permanent electric dipole mo-
ment, with sensitivity much higher than for heavy atoms
[12], and the realization of quantum fluids of bosons and
fermions with anisotropic interactions [13]. Furthermore,
stable mixtures of atomic and molecular condensates are
predicted to show coherent stimulation of atom-molecule
or molecule-atom conversion, constituting quantum-
coherent chemistry [14].

To date, all realizations of ultracold molecules
(< 1 mK) have bypassed the need for direct cooling of
the molecules, which is difficult due to the complicated
rovibrational structure. Rather, molecules were formed
from ultracold atoms using Feshbach resonances [2-11],
where a highly vibrational excited molecular state
is magnetically tuned into resonance with a pair of collid-
ing atoms.

In this Letter, we study the dissociation and decay of
such highly excited molecules. Figure 1 shows a sche-
matic of the dissociation process. For magnetic fields
above the Feshbach resonance, the molecular state crosses
the free atomic states, shown here as discrete states in a
finite quantization volume. The interaction between
atoms and molecules turns these crossing into anticross-
ings. When the magnetic field is swept very slowly
through the resonance, the molecules follow the adiabatic
curve and end up in the lowest energy state of the atoms.
For faster ramps, the molecular populations will partially
cross some of the low-lying states, and the dissociation
products will populate several atomic states. The stronger
the coupling between the molecular state and the atomic
states, the faster the molecules dissociate and the smaller
the energy release in the dissociation. Observing the
atom-molecule coupling in one-body decay (dissociation)
is a new method to experimentally determine the strength

PACS numbers: 03.75.Nt, 32.80.Pj, 33.80.Ps, 34.20.Cf

of a Feshbach resonance. Previous measurements
used two- or three-body processes to characterize the
Feshbach resonance and therefore required accurate
knowledge of the atomic density distribution.

Collisional properties of the molecules were also
studied. Inelastic collisions limit both the production of
molecules and their lifetime. We observed loss of mole-
cules by collisions both with atoms and other molecules.
These two processes were studied by separating atoms
and molecules with a short pulse of laser light [9].

To generate molecules, sodium condensates in the
IF, mF) = I1, - 1) state were prepared in an optical dipole
trap. The trap frequencies of 290 Hz in the radial direction
and 2.2 Hz in the axial direction yielded typical densities
of 1.7 X 1014 cm - 3 for 5 X 106 atoms. Atoms were then
spin-flipped using an adiabatic radio frequency sweep to
the II, 1) state, where a 1 G wide Feshbach resonance
exists at 907 G [15].

C

IL

FIG. 1. Schematic diagram of energy levels for molecules and
atoms. The diabatic energy levels are shown as dashed lines.
The adiabatic curves (solid lines) include the atom-molecule
coupling. When the magnetic field is swept from positive to
negative scattering length, dissociated molecules end up in one
or several atomic states, depending on the ramp rate of the
magnetic field. The spheres represent the distribution of the
population before and after the ramp.
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The magnetic field sequence used to create and detect
Na 2 molecules was identical to our previous work [9].
Briefly, the axial magnetic field was ramped to 903 G in
100 ms using two pairs of bias coils. In order to prepare
the condensate on the negative scattering length side of
the resonance, the field was stepped up to 913 G as quickly
as possible ( - 1 l/s) to jump through the resonance with
minimal atom loss. The field was then ramped back down
to 903 G in 50 us to form molecules. In order to remove
nonpaired atoms from the trap, the sample was irradiated
with a 20 /s pulse of resonant light. Because 903 G is far
from the Feshbach resonance, the mixing between atomic
and molecular states was small and therefore molecules
were transparent to this "blast" pulse. By ramping the
field back to 913 G molecules were converted back to
atoms. Absorption images were taken at high fields (either
at 903 or 913 G) after 10 to 17 ms ballistic expansion, with
the imaging light incident along the axial direction of the
condensate.

To study the momentum distribution of the back-
converted atoms, the magnetic field was ramped up im-
mediately after turning off the optical trap, or for a
reference, at the end of the ballistic expansion. The differ-
ence between the energies of ballistic expansion is the
released dissociation energy. Energies were obtained
from the rms width of the cloud (x2) as E =
3m(x2)/2t2, where t is the ballistic expansion time and
m is the atomic mass. Figure 2 shows that faster field
ramps created hotter atoms.

An earlier theoretical treatment assumes a constant
predissociation lifetime of the molecules and predicts a
linear relation between dissociation energy and field ramp
rate [16]. This theory predicts a much faster dissociation
(and therefore smaller dissociation energy) than was ob-
served. Furthermore, our data show a nonlinear depen-
dence. Linear behavior would be expected if the lifetime
of the molecules was independent of the energy e from
the dissociation threshold. The fact that the slope be-
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FIG. 2. Dissociation energy of molecules as a function of
magnetic field ramp rate. The dashed line represents the linear
relation described in Ref. [16], the solid line shows the result of
our model using a theoretical value for AB = 0.98 G and abg =
3.4 nm, and the dotted line shows a curve with the product
abgAB as a fitting parameter.
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comes smaller for increasing ramp rate indicates that
the lifetime of molecules decreases with the ramp rate.
As we show, this can be explained by an increase of the
density of atomic states, leading to a fre dependence of
the molecular decay rate (Wigner threshold law [17]).

The decay rate TF() follows from Fermi's golden rule
as hF(E) = 27T Vma(E)12 D(E) [18], where Vma is the matrix
element between atomic and molecular states, which to
leading order is independent of E. The density of states
D(E) is given by

D(V) (2m)2 (j /2D(e) T21,7(2f) ýW2
where V is the quantization volume for free atomic states.

An expression for the matrix element Vma is obtained
by comparing the energy shift near a Feshbach resonance
with second-order perturbation theory. Assuming two
atoms in a volume V, the energy shift of the low-lying
continuum states due to the coupling with a bound mo-
lecular state is

(E) Vma 12 Vmal 2

E Ap(B - Bo)'
where AA, is the difference between atomic and molecu-
lar magnetic moments, B is the applied magnetic field,
and B0 is the position of the Feshbach resonance.

The energy shift can also be expressed in terms of the
mean field energy 4w1h2 a/mV, where a = abgAB/(B -
Bo) is the scattering length near the Feshbach resonance
(abg is the background scattering length and AB is the
resonance width [19]):

S4,rh
2 abgAB

mV B - Bo

Comparing Eqs. (2) and (3) yields

47b2
IVmaI 2 = mV abgAAB.mV

If the entire population is initially in the molecular
state, the fraction of molecules, m(E), at energy e follows
the rate equation,

dm(E) _ dm(e) (dE -
de dt dt

27 Vma( E)12 D(e)= A l m(E).

Using Eqs. (1) and (4), we solve the differential equa-
tion for m(E),

m(E)= e -(2/3)Ce 3 /2 2AB ara

aB V 42 '

In the laboratory frame, the atoms have kinetic energy
E/2, and therefore the average energy of an atom after
dissociation is
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BE = [-dm(E)] = 0.591 2. (8)2 ma 2 2AB
Using theoretical values abg = 3.4 nm, AAl/h =

3.65 X 1.4 MHz/G, and AB = 0.98 G [20,21], the data
show good agreement with our model. A fit of the product
abgAB to our data results in abgAB = 3.64 Gnm ±- 2%
(dotted line in Fig. 2). The discrepancy between the
theoretical and fitted values is 4 times bigger than the
statistical error, but within the systematic error of the
measurement of the release energy.

Further experiments with ultracold sodium molecules
will critically depend on their collision properties.
Therefore we also studied heating and inelastic collision
processes. As shown in Fig. 3, we observed monotonic
heating of the pure molecular sample over -30 ms. In
addition, we observed short time scale oscillations (6 ms)
in the fitted temperature (inset of Fig. 3). Such breathing
oscillations were excited because the molecules were
formed over the volume of the atomic condensate and
started oscillations around their equilibrium volume. The
equilibrium volume deduced from the observed released
energy is much smaller than the initial volume. The
absence of damping implies a collision time of at least
6 ms, or a molecular scattering length smaller than 17 nm
(obtained using the expression for the collision rate
8rra2vthnm, where vth is the thermal velocity). It is un-
clear whether the oscillation disappeared due to colli-
sions or limited signal-to-noise ratio.

The temperature of the molecular cloud saturated at
-250 nK after 15 ms. A possible explanation is the
balance between heating due to inelastic molecular decay
and the evaporative cooling caused by the finite trap depth
(1.7 AK). This would imply a collision time of 15 ms.
However, we have no clear evidence that thermalization
has occurred. Clearly, further studies of elastic collisions
between ultracold molecules are necessary.

300

21

200

100
100

0 10
Hold Time (ms)

FIG. 3. Temperature of the molecular cloud. After 15 ms, the
temperature saturates at -250 nK. Error bars represent the
statistical error (standard deviation). The inset shows finer
resolution data for holding times up to 6 ms. The solid line is
a guide to the eye.
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Molecules formed via an s-wave Feshbach resonance
are created in the rotational ground state, but in high
vibrational states. Therefore, one expects vibrational re-
laxation to be a strong, inelastic decay mechanism.

Figure 4(a) shows the decay of a pure molecular
sample. The decay was analyzed with the rate equation

N = -Kmmnm.
Nm

Here Nm, nm is the number and the density of the
molecules, respectively, and Kmm is the molecule-
molecule collision rate coefficient. Because of the chang-
ing size and temperature of the molecular cloud during
the first -•15 ms (Fig. 3), we fit data points only at
later times, assuming a thermal equilibrium volume for
the molecules. The decay at earlier times is slower, con-
sistent with a larger molecular cloud. The fit yields a
molecule-molecule collision coefficient of Kmm - 5.1 X
10-11 cm3/s, about 2 orders of magnitude larger than the
typical values reported for fermions [4,5].

Inelastic collisions between molecules and atoms were
also observed by keeping atoms in the trap [Fig. 4(b)].
The decay was analyzed assuming that the loss of

0 50 100 150 200 250 300
Hold Time (Ps)

FIG. 4. Decay of ultracold molecules trapped alone (a) or
together with atoms (b). The solid lines in (a) and (b) are fits of
Eqs. (9) and (10) to data, which assume vibrational relaxation
in the collision of m olecules (a) or collisions between mole-
cules and atoms (b). The insets illustrate the experimental
sequences.
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FIG. 5. Conversion of atoms to molecules for various ramp
times. During a given time, the magnetic field was swept by
10 G. (a) and (b) show absorption images taken after 14 ms time
of flight. The molecules (bottom) were radially separated from
the atoms (top) by a field gradient of 2.8 G/cm. The molecules
were converted back to atoms only 0.5 ms before imaging by
ramping the magnetic field back across the Feshbach resonance.
This time was chosen to be long enough for any transient field
fluctuations to damp out, but short enough such that the size of
the imaged cloud reflected the molecular temperature, not the
dissociation energy. (a) The atoms remained in the trap. (b) The
atoms were removed by a resonant laser pulse immediately
after the magnetic field ramp. (c) Number of molecules as a
function of ramp time for (a) (open circles) and (b) (closed
circles).

[1]
[2]

molecules occurred mainly due to collisions with atoms, [3]
resulting in an exponential decay: [4]

[5]
=m - -Kamna. (10) [6]

Nm [7]
[8]

Here na is the density of atoms, and Kam is the atom- [9]
molecule collision rate coefficient. From the fit, we ex- [10]
tract a lifetime of 106 As and a rate coefficient Kam - [11]
5.5 x 10-11 cm 3 /s, which agrees well with theoretical [12]
predictions [21,22]. [13]

The inelastic losses determine the maximum conver- [14]
sion efficiency from atoms to molecules. For an adiabatic [15]
ramp, one expects close to 100% conversion efficiency. [16]
Indeed, in experiments with fermionic atoms, efficiencies
up to 85% have been observed [5]. Figure 5 shows the [17][18]
results for magnetic field ramps of different durations. [19]
The two sets of images show that applying the blast pulse [20]
dramatically improved the molecular number and tem- [21]
perature. Without it, a slower ramp time (4 ms) appeared [22]
to be more favorable for molecule formation [open circles

in Fig. 5(c)]. No molecules were observed for a 50 As
ramp time. However, with the blast pulse, a similar num-
ber of molecules was obtained for all ramp times between
50 ps to 4 ms [closed circles in Fig. 5(c)].

We assume that these results reflect the interplay of two
competing processes. The adiabatic condition requires a
relatively slow field ramp for efficient conversion.
However, this means that the atoms and molecules spend
more time near or at the Feshbach resonance, where
inelastic collision rates are enhanced. In contrast to
Fig. 5(b), the absence of a molecular signal in Fig. 5(a)
for 50 .s ramp time reflects that the atomic density
reduction due to the ballistic expansion is too slow for
the molecules to survive the inelastic collisions with
the atoms.

In conclusion, we observed a Wigner threshold behav-
ior in the dissociation of ultracold molecules. We were
able to characterize a Feshbach resonance using a one-
body decay (dissociation) process. The rapid decay of the
molecules due to collisions with atoms and other mole-
cules imposes a severe limit to further evaporative cool-
ing for bosons. This also explains the low conversion
efficiency (- 4%), in contrast to recent experiments
with fermions.
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The phase transition from a superfluid to a Mott insulator has been observed in a "Na Bose-Einstein
condensate. A dye laser detuned -5 nm red of the Na 32S--+3 2pl/2 transition was used to form the three-
dimensional optical lattice. The heating effects of the small detuning as well as the three-body decay processes
constrained the time scale of the experiment. Certain lattice detunings were found to induce a large loss of
atoms. These loss features were shown to be due to photoassociation of atoms to vibrational levels in the
Na2 (1)3Vs state.

DOI: 10.1103/PhysRevA.72.043604 Pj

I. INTRODUCTION

Optical lattices have become a powerful tool to enhance
the effects of the interaction in ultracold atomic systems to
create strong correlations and probe many-body physics be-
yond the mean-field theory [1-7]. Simply through varying
the depth of the lattice potential, one changes the tunneling
rate as well as the on-site interaction energy by changing the
confinement of the atoms. The strength of the atomic inter-
action can be directly tuned with a magnetic Feshbach reso-
nance [8]. In comparison to 87Rb, which has been used in
almost all experiments on optical lattices, 23Na has stronger
and wider Feshbach resonances that are experimentally ac-
cessible [9,10]. One such resonance has been used to pro-
duce quantum degenerate Na2 molecules [11]. Therefore, a
sodium condensate loaded into an optical lattice would be a
rich and flexible system for studying strong correlations.

So far, most optical lattice experiments have been per-
formed with relatively heavy atomic species (e.g., rubidium
and potassium) for which the recoil frequencies are lower
and lasers are readily available to achieve trap depths of
several tens of recoil frequencies at a few tens of milliwatts.
For 23Na, high-power single-mode lasers are necessary for
similar experiments. In this work, we chose to use a dye laser
red-detuned by -5 nm from the D lines of sodium (589 nm).
The spontaneous scattering rate limited the time window of
the experiment to less than 50 ms, but was still sufficient to
satisfy the adiabaticity condition to explore the quantum
phase transition from a superfluid to a Mott insulator. We
also observed strong atom losses at various lattice laser de-
tunings, which were interpreted as photoassociation transi-

*Electronic mail: kwxu@mit.edu
tWebsite: cua.mit.edu/ketterlegroup

ACS number(s): 03.75.Lm, 73.43.Nq, 33.20.Kf, 34.20.Cf

tions. The particular molecular states responsible for these
transitions were identified through theoretical calculations
and previous experimental data.

I. EXPERIMENT SETUP

A 23Na Bose-Einstein condensate containing up to 106
atoms in the IF=I,mF=-1) state was first produced in
a magnetic trap and subsequently loaded into a crossed
optical dipole trap. The optical trap was derived from a
single-mode 1064 nm infrared laser, with the horizontal
and vertical beams detuned by 60 MHz through
acousto-optic modulators. The number of condensed
atoms was varied through three-body decay in a tight trap
(w,,y,,=2wr x 200,328,260 Hz), after which the trap was de-
compressed (,y, =2Xrr 110, 155, 110 Hz) to allow further
evaporation and rethermalization. A vertical magnetic field
gradient was applied to compensate for gravity and avoid
sagging in the weaker trap.

A dye laser operated at 594.710 nm was used to set up a
three-dimensional optical lattice. The three beams were fo-
cused to a 1/e2 waist of --82 /.m at the condensate, and
retroreflected to form standing waves. The two horizontal
beams were orthogonal to each other, while the third beam
was slanted at --200 with respect to the vertical axis due to
limited optical access. The three beams were frequency
shifted by ±30 and 80 MHz to eliminate cross-interference
between different beams.

The Gaussian profile of the lattice beams added an addi-
tional harmonic trapping potential, while the localization of
atoms at the lattice sites increased the repulsive mean field
interaction. At the maximum lattice depth, the trap frequen-
cies due to the combined potentials of the optical dipole trap
and the lattice beams were -510 Hz for all three dimen-
sions. The trap parameters were chosen such that during the
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ramping of the optical lattice potential, the overall size of the
cloud (parametrized by Thomas-Fermi radii) remained ap-
proximately constant in order to minimize intraband excita-
tions (the mean Thomas-Fermi radius is -- 14 •m for 106
atoms). The peak per-lattice-site occupancy numbers
achieved in our experiment were between 3 to 5.

III. QUANTUM PHASE TRANSITION

Atoms held in a shallow optical lattice can tunnel freely
from site to site and form a superfluid phase. As the lattice is
made deeper, the atomic interaction is increased while the
tunneling rate between lattice sites is exponentially sup-
pressed. The system then undergoes a phase transition to an
insulating phase--the Mott-insulator-in which each lattice
site contains a definite fixed number of atoms. According to
the mean-field theory for the homogenous systems of atoms
in the lowest band of an optical lattice, the critical point for
the phase transition from a superfluid to a Mott-insulator
state with n atoms per lattice site is determined by [12-14]

U= z[2n + 1 + 2 ýn(n + 1)]J,

where

U= 4 d2a f d3xlw(x)14  (2)

is the on-site interaction energy;

J= f d3x w*(x- Xat/2) - mV2 + Vlat(x)) w(x) (3)

is the tunneling rate between adjacent lattice sites; z is the
number of nearest neighbors in the lattice (six for a cubic
lattice); m is the atomic mass; as is the s-wave scattering
length (2.75 nm for 23Na); w(x) is the Wannier function; Xrant
is the lattice wavelength; Vtan(x) is the lattice potential.

Figure 1 shows U and J,=z[2n+1+2F n(n+ 1)] J for a
cubic lattice as a function of the lattice depth, obtained
through a band-structure calculation. All energies are ex-
pressed in units of the recoil energy Ereco, = h2ka2 /2m, where
ktau=21'Xan, is the lattice wave number. With this scaling J
is independent of Xan. The peak occupancy number in our
experiment was s5. From Fig. 1, we find that the the critical
points are at a lattice depth of 14.2, 16.2, 17.6, 18.7, and 19.5
(all in units of Er,ecoi) for n= 1, 2, 3, 4, and 5 respectively.
The inset of Fig. 1 shows that the ratio of UIJ increases
rapidly with an increasing lattice depth.

When a weak harmonic trap is present in addition to the
lattice potential, as is the case for the experiment, the atomic
density is not uniform. Nevertheless, Eqs. (1)-(3) can be
used to estimate the lattice depth needed to observe the Mott-
insulator phase transition at any point in the harmonic trap.
Given the local density of the initial condensate, a local
value of n can be estimated, and thus the local critical lattice
depth can be read off from Fig. 1. Since the critical depth
increases with n, one expects that as the lattice depth is in-
creased, shells of different occupancies will undergo the tran-
sition to the Mott-insulator phase, starting from the edge of

8
L 0.6

- 0.4

0.2

0.0

5 10 15 20 25 30
Lattice Depth [Erecoil]

FIG. 1. A determination of the phase transition points: The
phase transition at occupancy number n occurs when J,
=z[2n+l +2 n(nl)]J as given by Eq. (1) equals U. The horizon-
tal location of the crossing point where J,=U gives the critical
lattice depth. The inset shows the ratio of U over J as a function of
the lattice depth.

the density profile and moving in toward the center.
In our experiment, the optical lattice was linearly ramped

up to a maximum potential of 20 Erecoil in a variable time
'ramp (Erecoi= h24.4 kHz for our system). The lattice depth

was calibrated by probing the energy difference between the
first and the third band at zero quasimomentum with small-
amplitude modulation of the lattice beams (see, e.g., [6]).
After reaching the peak value, the lattice was ramped back
down again in Tranmp. The ramp sequence was stopped at dif-
ferent times when both the trap and the lattice were suddenly
switched off (in :s1 ps). Absorption images were then taken
after some time of flight, as shown in Fig. 2. The disappear-
ance of the interference pattern as the lattice depth was in-
creased indicated the loss of phase coherence and a transition
from the superfluid state to the Mott insulator state [3]. The
subsequent revival of the interference patterns as the lattice
depth was reduced ensured that the system remained essen-
tially in the ground state during the ramping process. Differ-
ent rarmp's were used to check the adiabaticity condition. The
peak spontaneous light scattering rate was about 21 s- i at the
maximum intensity. Therefore for Tramp 10 ms, less than
20% of the atoms spontaneously scattered a photon.

After the lattice was fully ramped down, most of the at-
oms (>80%) remained in the condensed fraction while the
rest were heated and distributed across the first Brillouin
zone. Based on the number of atoms that remained in the
condensate after the lattice was fully ramped down, we con-
clude that .rampp 1 ms satisfies the intraband adiabaticity
condition. In the following discussion, all measurements
were performed for r,,,,p= 1,5, 10 ms, but only the data for

ramnp=5 ms are shown as representative of similar results
unless otherwise noted (see Fig. 3).

To characterize the lifetime of the Mott-insulator phase,
we held the lattice depth at the maximum level for various
amounts of time before ramping the lattice down to 8 Erecoil
(below the Mott-insulator transition point) and taking the
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ran = 1 ms

FIG. 2. (a) Observation of the superfluid to
Mott insulator transition: The lattice depths for
the sequence of images are from left to right
0, 4, 8, 12, 16, 20, 16, 12, 8, 4, 0 Erecoil. The
time-of-flight is 7 ms and the field of view is
1000 Am X 1200 /m. The peak occupancy num-
ber n is 5 for these images, and the phase transi-
tion should occur between 14 and 20 Erecoil ac-
cording to the mean-field calculation. (b) Time
dependence of the lattice depth.

time-of-flight image. If the system remains in the ground
state, the contrast of the interference pattern should be recov-
ered, whereas additional heating populates the Brillouin zone
and reduces the interference contrast. A cross section of the
density profile was taken along the horizontal direction
showing the interference peaks on top of a broad background
(see Fig. 3). The five interference peaks and the broad back-
ground were fit by six gaussians. The ratio between the total
integrated area of the peaks and the background was used as
the contrast to quantify the heating of the system. The con-
trast gives a more sensitive measure of the heating compared
to simply counting the recovered condensate atoms. As the
atoms in the interference peaks quickly move apart, they are
not as broadened by the mean-field expansion as a single
condensate.

We performed the same measurement for two different
peak occupancy numbers n 3 and 5. Figure 3 shows the
decay of the contrast and the lifetime 7 was determined using
an exponential fit. The fitting error on the lifetime was less
than 17%. The lifetime was about 50% longer for n=3, im-
plying that inelastic collision processes significantly contrib-
uted to the heating of the system. The three-body decay rate
at the maximum lattice potential for the peak on-site atomic
density (_ 1016 cm - 3 for n=5) is about 100 s-' [15], consis-
tent with the observed lifetimes of - 10 ms. The peak density
of a condensate in a harmonic trap and therefore the peak
occupancy number scales with 2/5 power of the total num-
ber of atoms, and our method for varying the number of
atoms (through three-body decay) was unable to consistently
produce low enough atom numbers for peak occupancy <2.
The signal-to-noise ratio of our current imaging system also
became marginal for such low atom numbers.

IV. PHOTOASSOCIATION RESONANCES

In this experiment, in addition to losses due to three-body
recombination, we observed large losses of atoms for certain
specific tunings of the lattice laser in the range
592 to 595 nm. A sample of such a loss feature is shown in
Fig. 4. For this measurement, the same ramp sequence was
used as before with tramp= 1 ms. The peak intensity is about

280 W/cm 2 in each lattice beam. Due to the intentional fre-
quency shifts between the three lattice beams, the effective
bandwidth of the lattice light as seen by the atoms is
= 100 MHz. For the narrow frequency scan range of Fig. 4,
the relative frequency scale was determined to better than
25 MHz using a Fabry-Perot cavity with a 2 GHz free spec-
tral range.

KJLliLLJLdJL1

Hold Time [ms]

FIG. 3. Lifetime of the Mott insulator state: The top row of
absorption images were taken for hold times 0, 5, 10, 15, 20 ms.
The second row is the horizontal cross section of the atomic density
profile taken at the center of the absorption images. The decay of
the Mott insulator state is observed as the loss of contrast of the
interference peaks. The curves are the simple exponential fits used
to estimate the decay rate. The error bars in the graph are statistical
standard deviation of multiple shots.
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FIG. 4. Photoassociation resonances: Atom loss from the optical
lattice as a function of the lattice laser detuning. The top row of
images shows the remaining atom cloud after the lattice was turned
off and the cloud expanded for 30 ms. The lower graph shows the
remaining number of atoms for these and additional frequency
points. The zero of the x axis corresponds to a laser wavelength of
594.490 nm as determined with a wave meter with accuracy
-1 GHz. The error bars are one standard deviation uncertainty. The
line is only a guide and does not have a theoretical underpinning.

Single-photon photoassociations proved to have caused
these losses. The lattice laser is tuned by -160 cm-1 to the
red of the atomic 32S--+3 3P3/2 transition and thus is in a
spectral region where it might drive photoassociation transi-
tions [16-18] to rovibrational levels in molecular states dis-
sociating to either the 32S+3 2P1/2 or 32S+3 2P3/2 limits.
Such a photoassociation transition, followed by the sponta-
neous radiative decay of the excited molecule into either a
bound ground electronic-state molecule or into "hot" atoms,
results in significant losses of atoms from the lattice. It is
therefore important to identify the locations and strengths of
these resonances and choose the appropriate lattice wave-
length to avoid such losses.

There is an extensive body of knowledge on the photoas-
sociation of ultracold alkali-metal atoms and the behavior of
the molecular potentials dissociating to the 32S+3 2P 1/2 or
32S+3 2P3/ 2 limits [16-18]. Figure 5 shows the relevant ex-
cited molecular potentials as a function of internuclear sepa-
ration R. The ground electronic states of Na2 are the X Y,
and a 3u states and two colliding ground state atoms will be
some mixture of these symmetries. To the extent that the
excited states are well described as I or H states, the g*- u
and AS= 0 selection rules imply that photoassociation transi-
tions are allowed only to the two I states [A 'u+ and
(1)31].

Previous experiments have identified the locations of the
strong transitions to the A Eu+ state [19] and the weak tran-
sitions to the (1) ,1 g(lg) state [20]. These are shown in Fig.
6. We looked for but failed to find any significant losses
attributable to the weak (1) lHg(lg) state resonances. We

R (units of ao)

FIG. 5. Long-range molecular potentials near the Na2
32S+3 2P separated atom limit (1 ao0=0.0529 nm): The zero of the
vertical scale is the 32S+3 2P 3/2 limit; the 32S+3 2p1/2 limit lies
17.2 cm- 1 lower. The hatched region indicates the energy range
explored in the experiment. The potentials are labeled by both
Hund's case (a) state labels of the form 2S+IAg,/ and by Hund's case
(c) labels f•igi given in parentheses after the case (a) label. For
small R the curves labeled by a given case (a) label become degen-
erate, while for larger R, as the effect of spin-orbit coupling be-
comes increasingly important, the degeneracy is lifted.

were able to confirm one of the A-state resonances, indicated
by the dot in Fig. 6. Since the primary goal of the present
work was to avoid photoassociation losses, we did not inves-
tigate known A-state locations further. Our search focused on
the strong resonances due to the (1) I' state that had not
been previously observed in this spectral region. In 0.5 GHz
steps, we scanned through a 30 GHz range around the theo-
retically predicted locations based on the model and auxil-
iary experimental data discussed below. In all but one such
scans, we were able to observe between 1 to 3 dips in the
remaining atom numbers within a range of ! 15 GHz, in-
cluding the loss feature shown in Fig. 4. As shown in Fig. 6
the agreement of the observed locations with the predictions
and auxiliary measurements confirms that these loss features
are due to photoassociation to the (1)3 , state. The locations
of the rovibrational levels of the b 3 -u state are not known in
the current tuning range. Their spacing, however, should be
equal to that of the (1) 1Hg levels and our observations are
not consistent with such spacings.

The potential curves used in the calculation of the (1)31g
vibrational levels were generated from an extended version
of the model developed by Movre and Pichler for calculating
the combined effects of the 1/R 3 resonant dipole interaction
and the atomic spin-orbit interaction. Such models have been
extensively used to interpret photoassociation experiments
[16-18]. To the long-range potentials generated by the
Movre-Pichler-type calculation we append the results of ab
initio calculations on the short-range molecular potentials (in
the chemical bonding region). These short-range potentials
are not sufficiently accurate to allow predictions of absolute
vibrational positions. It is necessary to make slight adjust-
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FIG. 6. A comparison of loss features (pluses and dot) observed
in a Bose condensate trapped in an optical lattice, to known mo-
lecular level positions: The x axis is the binding energy of the
molecular level relative to the 32S(f=2)+32P3/2(f=3) atomic as-
ymptote. If a loss feature, observed at a laser photon energy of
Ephoton, is due to the photoassociation of two 32S(f= 1) Na atoms to
a bound molecular level, then the molecular level is bound by
EO-Ephoton, where Eol(hc)= 16 973.4636 cm- 1. The laser tunings of
observed loss features are plotted in this way (the pluses and the
dot). The lines labeled (1) I,(1,g) are binding energies of the J= 1
rotational levels of vibrational levels in this potential measured in a
magneto-optical trap (MOT) ([20] and unpublished work). The lines
labeled A 1'u(0) are the energies reported in the RKR curve of
[19] (nominally J=0 positions) shifted to agree with the photoasso-
ciation measurement of [21] corrected for rotation. The lines la-
beled (1)3 V are from an extended Movre-Pichler model calculation
calibrated to experimental data (the crosses) from a two-color pho-
toassociation experiment in a MOT. The lines displaced upward
(downward) are the 1g (0,) component of the (1)31, state. The
crosses indicate the three calibration points that lie in this spectral
range and are measurements of the J=0 levels of the 0, component.

ments to these potentials to match experimentally measured
vibrational positions, which were obtained through a sepa-
rate photoassociation spectroscopy experiment in a dark-spot
magneto-optical trap (MOT) containing Na 32S(f= 1) atoms
at about 300 /,m, using a two-color ionization scheme and
an ion detector [22,23]. The photoassociation spectra taken
in the MOT have higher resolution than the loss features in
the lattice experiment.

In the spectral region of interest for the lattice experiment,
three vibrational levels of the (1)331 were identified by mea-
surements in the MOT. The spectra show a 1, component
with a complicated hyperfine/rotational pattern, and, slightly
higher (-0.3 cm - 1) in energy, a 0, component with a sim-
pler nearly rotational pattern. This ordering of the 1, and 0,
components is in agreement with the Movre-Pichler model.

-- --
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For these levels, the J=0 feature of the 0g component
were found to be at 16845.155, 16852.585, and
168 908.201 cm - 1, calibrated to iodine lines with an esti-
mated uncertainty of about 0.004 cm-' and are shown in Fig.
6. This new data on the (1)3£1 was sufficient to calibrate our
extended Movre-Pichler model without any further adjust-
able parameters. The predicted positions shown in Fig. 6
agree well with those of the loss features observed in the
lattice experiment, thus identifying the loss features as pho-
toassociation transitions to levels in the (1)312 state.

Based on this insight, we chose a wavelength of
594.710 nm for our lattice experiment (corresponding to
-158.5 cm - 1 in Fig. 6). This tuning lies >45 GHz from the
closest molecular resonance. Given the observed on-
resonance photoassociation rate of 1 ms- 1 in the lattice, pho-
toassociative decay can be ignored at such detunings as the
rate scales as the square of the ratio of the natural linewidth
to the detuning [24].

V. CONCLUSIONS

In this paper, we explored the possibility of using a dye
laser detuned =5 nm from the Na D lines to study many-
body physics of a sodium BEC in an optical lattice, which
could allow for an independent control of interaction using
magnetic Feshbach resonances. The superfluid to Mott-
insulator transition was observed in a Na Bose-Einstein con-
densate for the first time. The main technical difficulties are
due to the heating from the spontaneous light scattering and
three-body decay processes. In addition, several photoasso-
ciation resonances were observed and identified by means of
auxiliary spectroscopy measurements combined with theoret-
ical modeling. These resonances were avoided by choosing
an appropriate lattice wavelength. In future experiments, we
plan to use a high-power single-mode infrared laser at
1064 nm to eliminate atomic light scattering (Fig. 1 also
shows the transition points for a 1064 nm lattice). Moreover,
heating from three-body recombination can be avoided by
using occupancy numbers less than three.
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We studied quantum depletion in a gaseous Bose-Einstein condensate. An optical lattice enhanced
the atomic interactions and modified the dispersion relation resulting in strong quantum depletion.
The depleted fraction was directly observed as a diffuse background in the time-of-flight images.
Bogoliubov theory provided a semi-quantitative description for our observations of depleted fractions
in excess of 50%.

PACS numbers: PACS 03.75.Hh, 03.75.Lm, 73.43.Nq

The advent of Bose-Einstein condensates (BEC) in
1995 extended the study of quantum fluids from liq-
uid helium to superfluid gases with a 100 million times
lower density. These gaseous condensates featured rela-
tively weak interactions and a condensate fraction close
to 100%, in contrast to liquid helium where the conden-
sate fraction is only 10% [1]. As a result, the gaseous
condensates could be quantitatively described by a sin-
gle macroscopic wave function shared by all atoms which
is the solution of a non-linear Schrodinger equation. This
equation provided a mean-field description of collective
excitations, hydrodynamic expansion, vortices and sound
propagation [2].

The fraction of the many-body wavefunction which
cannot be represented by the macroscopic wavefunction
is called the quantum depletion. In a homogenous BEC,
it consists of admixtures of higher momentum states into
the ground state of the system. The fraction of the quan-
tum depletion iro can be calculated through Bogoliubov
theory: 7ro = 1.505\pV 3 where p is the atomic density
and a, is the s-wave scattering length [3]. For 23Na at
a typical density of 1014 cm - 3 , the quantum depletion is
0.2%.

For the last decade, it has been a major goal of the
field to map out the transition from gaseous condensates
to liquid helium. Beyond-mean-field effects of a few per-
cent were identified in the temperature dependence of
collective excitations in a condensate [4, 5]. The quan-
tum depletion increases for higher densities - however, at
densities approaching 1015 cm- 3 the lifetime of the gas
is dramatically shortened by three-body collisions. At-
tempts to increase the scattering length near a Feshbach
resonance were also limited by losses [6, 7]. Recently, de-
viations from mean-field behavior were seen in collective
excitations of a molecular condensate near a Feshbach
resonance [8, 9], but had a sign opposite to predictions.
Therefore, the transition between a quantum gas and a

*Contact Info: kwxu@mit.edu
tWebsite: cua.mit.edu/ketterle.group

quantum liquid has been largely unexplored. Strongly
correlated systems, which are no longer superfluid, were
studied in 1D systems [10, 11], and in optical lattices
[12, 13].

In this Letter, we report the first quantitative study of
strong quantum depletion in a superfluid gas. Exposing
atoms to an optical lattice enhances quantum depletion
in two ways. First, the lattice localizes the atoms at
the lattice sites and increases the atomic density. The
increased density leads to enhanced interactions (by up
to an order of magnitude in our experiment), ultimately
limited by inelastic collisional losses. The second effect
of the lattice is to modify the dispersion relation T(k),
which for free atoms is simply the kinetic energy T(k) =
h2k2 /2m. The effect of a weak lattice can be accounted
for by an increased effective mass. For a deep lattice,
when the width of the first band becomes comparable or
smaller than the interaction energy, the full dispersion
relation is required for a quantitative description.

In addition to enhancing the quantum depletion, an
optical lattice also enables its direct observation in time-
of-flight. For bare condensates in a harmonic trap, the
quantum depletion cannot be observed during ballistic
expansion in the typical Thomas-Fermi regime. Because
the mean-field energy (divided by h) is much greater than
the trap frequency, the cloud remains locally adiabatic
during the ballistic expansion. The condensate at high
density transforms adiabatically into a condensate at low
density with diminishing quantum depletion. Therefore,
the true momentum distribution of the trapped conden-
sate including quantum depletion and, for the same rea-
son, phonon excitations can only be observed by in-situ
momentum analysis such as Bragg spectroscopy [14, 15].
In an optical lattice, the confinement frequency at each
lattice site far exceeds the interaction energy, and the
time-of-flight images are essentially a snapshot of the
frozen-in momentum distribution of the wavefunction at
the time of the lattice switch-off, thus allowing for a di-
rect observation of the quantum depletion.

The experiment setup is similar to that of our previ-
ous work [16]: A 23Na BEC containing up to 5 x 105

atoms in the IF = 1, mF = -1) state was loaded into a



crossed optical dipole trap. The number of condensed
atoms was controlled through three-body decay in a com-
pressed trap, after which the trap was relaxed to allow
further evaporation and re-thermalization. A vertical
magnetic field gradient was applied to compensate for
gravity and avoid sagging in the weak trap. The final
trap frequencies were wy,z = 2r x 60, 60,85 Hz. The
mean Thomas-Fermi radius was - 12 pm for 1.7 x 105

atoms.
The lattice beams were derived from the same single-

mode infra-red laser at 1064 nm used for the crossed opti-
cal dipole trap. All five beams were frequency-shifted by
at least 20 MHz with respect to each other via acousto-
optical modulator to eliminate cross interference between
different beams. The three lattice beams had a 1/e 2-
waist of - 90 ,am at the condensate, and were retro-
reflected to form standing waves. The two horizontal
beams were orthogonal to each other, while the third
beam was tilted - 200 with respect to the vertical axis
due to limited optical access. One and two dimensional
lattices were formed using either one or both of the hor-
izontal beams. The trap parameters were chosen such
that during the ramping of the optical lattice potential,
the overall Thomas-Fermi radii remained approximately
constant in order to minimize intra-band excitations. All
the measurements were performed at a peak lattice site
occupancy number - 7, as determined by a tradeoff be-
tween small three-body losses and good signal-to-noise
ratio.

The optical lattice was linearly ramped up to a peak
potential of 22 + 2 ER in time Tramp, and then lin-
early ramped back down in the same amount of time.
This ramp sequence was interrupted at various times by
a sudden switch-off of all lattice and trapping potentials
(< 1~s). Absorption images were taken after 10 ms
time-of-flight, reflecting the momentum distribution of
the system at the instant of release (Figure 1). Based on
the number of atoms remaining in the condensate after
the full ramping sequence (> 80%), we concluded that
Tramp > 1 ms satisfies the intra-band adiabaticity condi-
tion. In the following discussion, all measurements were
performed for Tramp = 50 ms.

The loss and revival of the interference contrast, as il-
lustrated in Figure 1, has been associated with the quan-
tum phase transition from a superfluid state to a Mott-
insulator state [12, 13]. The presence of sharp interfer-
ence peaks indicates coherence and superfluid behavior,
whereas the presence of a single broad peak indicates the
insulating phase. However, as we show in this paper,
even before the lattice depth exceeds the critical value
for the phase transition, a diffuse background gradually
emerges as a result of quantum depletion. The interfer-
ence peaks represent the population in the zero quasi-
momentum state, and the diffuse background represents
the population in the rest of the Brillouin zone. We only
account for the lowest energy band as the population in

S 22 ER
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FIG. 1: Interference patterns in time-of-flight: The ramp-
ing sequence was interrupted as the lattice is ramped up
(11, 18, 22 ER) and back down (11, 0 ER). The time-of-flight
was 10 ms; the field of view is 861 pm x 1075 pm.

higher bands remains negligible for our parameters.
In the time-of-flight images, we masked off the sharp

interference peaks and performed a two-dimensional
gaussian fit on the diffuse background peak. After the
lattice was fully ramped down, most of the atoms re-
mained in the condensed fraction while a small fraction
(up to 20%) were heated and distributed across the first
Brillouin zone likely due to the technical noise and imper-
fect adiabaticity of the ramp. A linear interpolation was
used to subtract this small heating contribution (up to
10% at the maximum lattice depth) and obtain the quan-
tum depletion Nqd/N, where Nqd is the number of atoms
in the diffuse background peak (quantum depletion) and
N the total number.

We performed this measurement for one, two and three
dimensional optical lattices, and the main results are
shown in Figure 2. The quantum depletion became sig-
nificant for lattice depths of •> 10 ER for a three dimen-
sional lattice (ER = h2 k att/2m, where klatt = 2 7r/Alatt
is the lattice wavenumber). Note that the Mott-insulator
transition starts to occur only at lattice depths 5> 16 ER
(see below). Nqd/N remained small for one and two di-
mensional lattices.

A theoretical description of quantum depletion can be
derived from the Bogoliubov theory which is the stan-
dard theory to describe the ground state properties of a
weakly interacting system. The population in the (quasi-

) momentum state k is given by [3, 17, 18]:

= T(k) + noU - /2 T(k)noU + T 2(k)
S 2"2T(k)noU + T 2 (k)

where T(k) is the kinetic energy, no is the occupancy
number [per cubic lattice cell of (Alatt/2)3 ] in the zero
momentum state, and U is the on-site interaction en-
ergy [19-22]. Incidentally, vk is one of the coefficients
in the Bogoliubov transformation. The total occupancy
number n is given by the sum of no and the quantum
depletion: n = no + Eko0 v2. For a given density n, the
quantum depletion can be obtained by using Eq. (1) and
the appropriate dispersion relation T(k).
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FIG. 2: Quantum depletion of a 23Na BEC confined in a one,
two and three dimensional optical lattice: the data points
with statistical error bars are measured Nqd/N; the three
thick curves are the theoretical calculation of Nqd/N using
Bogoliubov theory and local density approximation. For com-
parison, also shown are (thin curves): (i) the (smoothed out)
Mott-insulator fraction NMI/N based on a mean-field the-
ory; (ii) the calculated quantum depletion for a homogeneous
system of per-site occupancy number n = 1 and (iii) n = 7.

A band structure calculation was performed to obtain
the on-site interaction U (and also the tunnelling rate
J) as functions of the lattice depths, shown in Figure
3. In calculating U, we use a Wannier density function
along the dimensions with a lattice, and a uniform den-
sity in the ones without. J is independent of the lattice
wavelength or atomic mass for a given lattice depth (all
energies measured in ER).

The quantum depletion for a lattice of uniform occu-
pation is obtained by integrating over the first Brillouin
zone: n = no + f v2 dk. For a sufficiently deep lattice
(> 5 ER), the dispersion relation is given by:

d 3

T(q) = 4J sin 2(qir) + 4ER qi. (2)
i=1 i=d

where dimensions 1 through d are assumed to have a
lattice present and q = k Alatt/ 4 7r.

For an inhomogeneous system such as a harmonically
confined condensate, we apply the result from the homo-
geneous system to shells of different occupancy numbers
using the local density approximation (as the dependence
of the quantum depletion on the occupancy number is
slowly-varying). The calculated quantum depleted frac-
tions are plotted in Figure 2, in reasonable agreement
with the experimental observations. The remaining dis-
crepancies may be due to unaccounted heating, a system-
atic overestimate of the background, and the inadequa-
cies of Bogoliubov theory for large quantum depletion.

FIG. 3: On-site interaction U and tunnelling rate J for a
23Na BEC in an optical lattice at 1064 nm: UdD is for a
d-dimensional lattice. In a three dimensional lattice, the su-
perfluid to Mott-insulator transition for occupancy number n
occurs when J,n = 6(2n + 1 + 2v/n(n+ 1)J equals U3D [see
Eq. (3)]. The horizontal locations of the crossing points where
J, = U3D are the critical lattice depths.

In free space, the dispersion curve is a continuous
parabola. Both the number of populated states and the
population in each state increases with the atomic den-
sity p, and the quantum depletion ro is proportional to

p3 /2. This still holds for shallow lattices (< 5 ER) where
the quantum depletion (77) does not saturate the entire

C 3/2 (EMF and m arefirst Brillouin zone: r = o (EF 3 (MF

the free space mean-field energy and atomic mass; e*4 F
and m* are the lattice-enhanced mean-field energy and
effective mass) [23].

The situation changes for deeper lattices as the inter-
action energy U becomes comparable to the width of the
first energy band (approximately 4J). In this regime, the
quantum depletion starts to saturate the lowest band,
but the higher bands remain virtually empty due to the
large band gap. While the population Nqd in the low-
est band continues to increase with the atomic density
p = n/(A1att/2)3, the quantum depleted fraction Nqd/N
actually decreases with p [see Fig. 2 where the calculated
quantum depletion is bigger for n = 1 than for n = 7 at
large lattice depths (> 9 ER)].

The fact that the observed quantum depletion for one
or two dimensional lattices remained small provides fur-
ther evidence for our interpretation of the diffuse back-
ground as quantum depletion. In the dimension with
a lattice present, the band width is proportional to the
tunneling rate J which decreases exponentially with the
lattice depth. The interaction energy U increases much
slower with the lattice depth. Therefore the flattening of
the dispersion relation contributes more significantly to
the increased quantum depletion. Since this flattening

0.6

I I
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does not occur in the dimension without a lattice, the
quantum depletion for one or two dimensional lattices
is expected to increase much slower compared to three
dimensional lattice, consistent with our observation.

Furthermore, one can show that in our regime, the
observed quantum depletion far exceeds the fraction of
atoms in the Mott-insulator phase. For the three dimen-
sional lattice, the superfluid to Mott-insulator transition
occurs as the lattice depth exceeds certain critical val-
ues. According to the mean-field theory in a homogenous
bosonic lattice system [19-22], the critical value (U/J)c
at which the phase transition occurs for occupancy num-
ber n is given by:

(U/J)C = Z(2n + 1 + 2Vnxf+i 1>)

where z is the number of nearest neighbors (z = 2d for
a d-dimensional cubic lattice). For an inhomogeneous
system such as a trapped condensate, shells of different
occupancy numbers enter the Mott-insulator phase from
outside as the lattice potential is increased and U/J ex-
ceeds the critical values.

In our experiment, the peak occupancy number is - 7.
We could divide the Thomas-Fermi profile of the con-
densate into 7 shells of average occupancy n = 1, 2, ..., 7
and assume each shell enters the Mott-insulator phase as
the lattice depth increases above the corresponding crit-
ical value. From Figure 3, the critical lattice depths in a
three dimensional cubic lattice for n = 1,2, ..., 7 are 16.3,
18.5, 20.0, 21.2, 22.1, 22.9, 23.6 ER respectively. The
integrated Mott-insulator fraction NMI/N as a function
of lattice depths is plotted in Figure 2. Instead of a step
function with jumps at each critical lattice depth, we
use a smooth spline curve for NMI/N, which is more
realistic given the fluctuations associated with the atom
numbers and lattice depths. NMI/N clearly exhibits a
much sharper transition as the lattice depth increases,
in contrast to the gradual increase of the quantum deple-
tion (particularly for lattice depths below the first critical
value 16 ER).

In the case of one and two dimensional lattices, a Mott-
insulator transition would only occur for lattice depths
much larger than those in our experiment. Note that
Eq. (3) is not directly applicable as the dimensions with-
out lattice beams in our system are only loosely confined
and cannot be considered frozen[21]. In addition, n in
Eq. (3) is the number of atoms per lattice site and far
exceeds 7 for the lower-dimensional lattices.

In conclusion, we conducted the first quantitative
study of quantum depletion in a gaseous BEC through
the application of an optical lattice, and found reasonable
agreement with a model based on Bogoliubov theory in
the predominantly superfluid regime. A complementary
study was recently reported by Gerbier et al.. [24, 25] of
the non-vanishing visibility of the interference peaks in a

Mott insulator as a result of the admixture of particle-
hole states. The two works together give a complete de-
scription of the ground state in both the superfluid and
insulating phases. More elaborate theoretical treatments
for the intermediate case have been presented in Refs
[26-28].
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