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Abstract

Microfluidic devices and magnetorheological (MR) fluids have been two areas of intense research
for several years. Traditionally, these two fields have remained separated from one another by
scale. MR fluids are best known for their use in large-scale applications such as seismic dampers
for the foundations of buildings. Recently however, there has been strong interest in utilizing
the micro-structure formed by self-assembled MR fluids as structural components in microfluidic
devices.

MR fluids are composed of micron-sized paramagnetic colloids suspended in a non-magnetic
carrier fluid. When an external magnetic field is applied to the MR fluid it induces dipole moments
in the paramagnetic colloids causing them to interact and self-assemble into solid-like structures. In
the past few years, self-assembled MR fluids have found use as structural components in a variety of
micro-scale applications since their use provides an attractive alternative to traditional lithography
as a means to create micro-scale structures. The advantages of using MR fluids include the ability
to easily and inexpensively create sub-micron structures as well as the ability to create "dynamic
structures" that can be controlled with an external magnetic field. In order for self-assembled
MR fluids to be useful as structural components in microfluidic devices, we must understand the
mechanisms and parameters governing their self-assembly under the confinement induced by the
microfluidic channels.

In this thesis we present a series of studies merging the areas of microfluidics and MR fluids.
The systems we studied are technologically relevant as well as ideal for understanding the funda-
mental processes at work in the self-assembly of MR fluids under confinement. Using the Brownian
dynamics simulation technique as well as experimental studies with microfluidic channels, we have
illuminated many of the governing physical mechanisms involved in the self-assembly of MR fluids
confined in microfluidic channels. In particular, we determined that the channel dimensions play a
crucial role in dictating both the final structure as well as the dynamics of the MR fluid structures
in these systems. We performed a systematic study of the structure and dynamics of MR fluids
confined in two-dimensional (2D) channels with an external magnetic field directed normal to the
channel in order to produce a state-diagram for the system as a function of the channel width
and the magnetic field strength (the two controlling thermodynamic parameters). We further in-
vestigated the effects of the channel height and characterized the behavior of the system in the
transition from quasi-2D to 3D microchannels. The behavior of the MR fluid structures in this
transition region was found to depend heavily upon the volume fraction of the MR fluid and the
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height of the microchannel. We fully characterized the pore-size between clusters for dilute MR
fluids self-assembled in quasi-2D microchannels, as it is an important parameter for microfluidic
DNA mapping devices. Both the 2D and quasi-2D model systems provided valuable insight into
the important mechanisms governing confined self-assembly.

The impact of this work will be two-fold. Our study of the model systems of 2D channels and the
transition from quasi-2D to 3D have made an important contribution to the literature on the physics
of condensed matter systems. In particular, 2D colloidal systems are of great interest as models
for self-assembly and phase transitions. Our work has illustrated how the presence of confining
boundaries affects the behavior of 2D colloidal systems. Furthermore, the study of the quasi-2D
system has shown how the interaction energy between MR fluid clusters dictates the structure that
forms in this geometry. In addition to the fundamental scientific questions we have addressed, our
work will also have a broad impact on the design of microfluidic devices utilizing self-assembled MR
fluids. We have illustrated this design process with two examples but the possibilities for merging
microfluidic device technology with MR fluids will provide many more applications in the years to
come.

Thesis Supervisor: Patrick S. Doyle
Title: Doherty Associate Professor of Chemical Engineering
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CHAPTER 1

Introduction

The work in this thesis represents the intersection of two vibrant areas of research, field-responsive
fluids and microfluidic devices. Individually, these areas have been the subject of intense research
for many years [1, 2] and only recently have they been merged into a new field where the structures
formed by field-responsive fluids have been used as structural components in microfluidic devices [3,
4].

1.1 Magnetorheological Fluids

A magnetorheological fluid, or MR fluid, is a field-responsive fluid that changes it's properties
under the application of an external magnetic field. MR fluids are composed of micron-sized
super-paramagnetic colloidal particles suspended in a non-magnetic carrier fluid (Figure 1.1a).
Paramagnetic materials have no net dipole moment in the absence of magnetic fields but acquire
a dipole moment when subjected to an external magnetic field. Super-paramagnetic colloids are
paramagnetic colloids capable of forming large-scale clusters that overcome the thermal forces try-
ing to break them apart. Therefore, when an external magnetic field is applied to the MR fluid,
the colloids acquire dipole moments aligned with the external field causing them to interact and
form large-scale clusters spanning the size of the entire sample (Figure 1.1b). The formation of
these large-scale clusters causes a change in the rheological properties of the MR fluid, increasing
its apparent viscosity. When the external field is removed, the paramagnetic colloids lose their
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Fig. 1.1: (a) Schematic of a suspension of MR colloids with no external magnetic
field applied. (b) Cluster of MR colloids formed under the application of a
uniform external magnetic field.

magnetization and the MR fluid returns to the simple colloidal suspension state with no more

magnetic interactions between the colloids. MR fluids are distinct from a similar class of magnetic

fluids known as ferrofluids in the following ways. Ferrofluids are composed of nanometer-sized fer-
romagnetic colloidal particles suspended in a non-magnetic carrier fluid. Ferromagnetic materials
have a permanent dipole moment even in the absence of external magnetic fields unlike paramag-

netic materials which only have induced dipoles as mentioned previously. The dipole moments in
ferrofluid colloids are much smaller than in MR colloids and therefore the large aggregates found

in MR fluids under the application of a magnetic field do not occur in ferrofluids. Subsequently
the change in rheological properties is much smaller for ferrofluids than in MR fluids. Ferrofluids

do, however, exhibit some very interesting pattern formation and free surface properties under the

application of a magnetic field and have therefore been studied extensively [5]. Additionally, in

many cases, the theories used to model the behavior and structure of ferrofluids due to external

magnetic fields, can also be applied to MR fluids.

The MR effect was first discovered in 1948 by Jacob Rabinow who immediately recognized the

implications of such field-responsive fluids for use in electro-mechanical devices [1]. Concurrently

however, Willis Winslow published the first detailed report in 1949 on the analogous electrorhe-
ological (ER) phenomenon [6]. Winslow studied suspensions of silica gel particles suspended in

low viscosity oils and he reported the following features of ER fluids. When an external electric
field is applied to the suspension, the colloids cluster into long fibrous structures aligned with the
field and spanning the distance between the electrodes. When the external field is removed, the

clusters dissolve and the system returns to the colloidal suspension state. While the external field
is applied, the ER fluid behaves as a solid at very low shear stresses and the force required to shear
the ER fluid increases proportionally to the square of the magnitude of the external field. Finally,
the ER effect increases with the volume fraction of colloids in the suspension and as the dielectric
constant of the colloids is increased.

I

ir·h
D
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The properties of ER fluids observed by Winslow are generally identical to the properties of
MR fluids. As a class of field-responsive fluids however, MR fluids have proven advantageous over
ER fluids. ER fluids are limited by dielectric breakdown and therefore can not be used under the
application of large magnitude external fields. MR fluids on the other hand can be placed in large
magnitude magnetic fields and are only limited by the saturation magnetization of the paramagnetic
material. This feature means that the yield strengths of MR fluids can be 10-100 times larger than
for ER fluids. Additionally, ER fluids tend to be caustic and therefore not particularly suited for
long-life commercial applications. For these reasons, a number of current commercial applications
utilize MR fluids such as seat suspension systems for cars, tunable resistance aerobic equipment,
and seismic dampers for damping the effects of an earthquake on the foundations of buildings.

1.1.1 Interactions Between MR Colloids

MR colloids are typically composed of a non-magnetic structure or scaffolding in which ferromag-
netic material is embedded in the form of -10 nm particles containing a permanent dipole moment.
The ferromagnetic particles are generally uniformly distributed throughout the volume of the col-
loid and are randomly oriented due to thermal energy. When a magnetic field is applied to an
MR colloid the ferromagnetic particles within that colloid align with the field either by physically
rotating in the direction of the field or by rotating the direction of the permanent dipole in each
particle. This alignment of the ferromagnetic particles causes the MR colloid to become magne-
tized. When the external field is removed the magnetization of the MR colloid disappears by the
same mechanisms, either physical rotation of the ferromagnetic particles or NBel relaxation [7] of
the dipole moment (both mechanisms are due to the thermal energy in the system). The magne-
tization (in SI units) of a single MR colloid is closely represented by an adaptation of Langevin's
classical theory for the magnetization of a gas of paramagnetic molecules [5] and is given by

M 1
= coth a - - (1.1)

bfMf a

where M is the magnetization of the MR colloid, of is the volume fraction of ferromagnetic material
in the MR colloid, and Mf is the saturation magnetization of the ferromagnetic material. The
parameter a is given by

7ir poMfH o d
a = (1.2)

6 kBT

where io is the magnetic permeability of free space, Ho is the magnetic field acting on the MR
colloid, and df is the diameter of a ferromagnetic particle. The Langevin theory assumes negligible
interaction between the ferromagnetic particles embedded in the MR colloid which is true for small
of and Ho. Equations 1.1 and 1.2 indicate that the magnetization of an MR colloid increases
linearly from zero for small applied fields before saturating at large magnitude external fields. The
magnetic susceptibility (X) of an MR colloid is therefore constant for low magnetic field strengths.
A small a expansion of Equation 1.1 combined with Equation 1.2 yields

M 70f/M2d (1.3)
X (1.3)Ho 18kBT

The magnetic field due to a uniformly magnetized sphere (or MR colloid) is identical to that of
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a pure dipole, outside the sphere, with the dipole moment given by

m = d3 M (1.4)
6

where d is the diameter of the colloid. Therefore, the energy of interaction between two MR colloids
can be written as the energy of interaction between two point dipoles

Uij po mi mj - 3 (rij -mi) (rij- mA)Us = 3 (1.5)4 7r rid

where rij is the vector connecting the centers of colloids i and j and rij is the unit vector in
the rij direction. The magnitudes of each dipole moment (mi and mj) are found by combining
Equations 1.3 and 1.4 yielding

mi -~ d Ho,i (1.6)

and the direction of mi is identical to the direction of Ho,i (the magnetic field acting on colloid i).
A common assumption made in the modelling of MR fluids is that all of the MR colloids have

identical dipole moments which are only a function of the external magnetic field. The magnetic
field acting on colloid i is given by

N

Ho,i = Hext + Z H (ri) (1.7)

jii

where Hext is the externally applied magnetic field, Hj (ri) is the magnetic field due to colloid j
acting at the center of colloid i (ri), and N is the number of colloids in the system. When the
magnitude of the external field is large and the distances between MR colloids is large then the
approximation is made that Ho,i - Hext. As a result of this approximation, Equation 1.5 reduces
to

m 2 0 1 - 3 Cos 2 0i j

Uj (rij, Oij) = 2 o 1 - 3cos2  (1.8)
47r r3.

where Oij is the angle made by the vector connecting the centers of colloids i and j (rij) and the
external field vector (Hext) (Figure 1.2). Equation 1.8 is the usual description of the energy of
interaction between two identical MR colloids in a uniform external magnetic field [8). If we were
to consider the effect of the magnetic fields due to the other colloids in the system (Equation 1.7)
then we would have to solve, self-consistently, for the field effects of each colloid in the system
on each other colloid in the system. Fortunately, the approximation Ho,i - Hext works well for
modelling the self-assembly of MR fluids.

Structure formation in MR fluids occurs when the attractive energy between MR colloids is
able to overcome the thermal energy causing them to undergo Brownian motion. The parameter A
is the ratio of the maximum magnetic attraction energy to the thermal energy defined as

-U(d,O) 7rpod3X2 He2x
d (1.9)kBT 72kBT

When A > 1 the magnetic attractions between MR colloids are strong enough to form structures
composed of clusters of MR colloids aligned in the direction of the field. The types of structures that
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He,

Fig. 1.2: Schematic of the coordinate system defined to determine the interaction
between two MR colloids in a uniform external field Hext.

form for A > 1 depend upon the volume fraction of the MR fluid (¢) and the confining geometry
if any [9, 10, 11]. Combining Equations 1.8 and 1.9 yields the final form of the interaction energy
between two identical MR colloids in a uniform external magnetic field, given as

1 - 3 cos 2 •  (
Uij (rij, ij) = 1 Ad3kBT 1 - 32 (1.10)

2r 3

1.2 Microfluidics

We are interested in understanding the factors affecting self-assembly of MR fluids in microfluidic
geometries. Generally, "microfluidic geometries" implies that at least one of the three dimensions
of the fluidic channel has a size of order 1plm to 100jum. The colloids in an MR fluid have a size
of - 1um and therefore the confinement in a microfluidic device can range from a single colloid
diameter to 100's of colloid diameters.

Microfluidic devices have been of general interest for a number of years [2] but recently there has
been an explosion in research related to microfluidics [12]. Much of the research has focused upon
creating a "lab-on-chip" technology whereby procedures which are normally performed on the lab
scale can be miniaturized and performed on the micron (or chip) scale. The idea of a lab-on-chip
has several advantages over the more macro scale processes. Smaller quantities of reagents are
needed for microfluidic devices, a very important consideration when the reagents are expensive
or dangerous. Additionally, experiments performed at the micro scale are more easily reproduced
because of the laminar nature of the fluid flow in such small scale devices. Microfluidic devices
have also been used to perform tasks that are simply impossible on the macro scale such as the
continuous synthesis of anisotropic colloidal particles [13]
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1.2.1 Soft Lithography

To fabricate the microfluidic devices used in this research, we used the technique of soft lithogra-
phy. Soft lithography is a lithographic process where at least one of the elements (mask, stamp, or
mold) used to fabricate a microdevice are made of an elastomer [14]. This technique has proven
advantageous over traditional photolithographic techniques in that it allows for a wide variety of
materials and surface chemistries as well as making three dimensional structures. Additionally,
soft lithography is much less expensive than photolithography and the materials used are easy to
handle experimentally (i.e. they do not require a clean room). Our material of choice for fabri-
cating microfluidic devices using soft lithography is poly(dimethylsiloxane) (PDMS). PDMS is an
elastomer which can be molded on a master template with features as small as several nanometers.
The specific protocol used to create the PDMS microchannels contains three parts; master template
fabrication with photolithography, master template preparation for molding, and PDMS molding.

Master Template Fabrication

Using AutoCAD software, two-dimensional channels are drawn in white on a black background
within a circle of diameter 3.5 inches. The channels are drawn with the dimensions of the final
microfluidic channels to be fabricated. For instance, in order to fabricate a 50pm channel, a 50apm
wide white line is drawn in the AutoCAD file. The image from the AutoCAD file is then printed
on a high-resolution transparency to be used as a mask to filter UV light in the photolithography
process.

Silicon wafers with a 4 inch diameter are typically used as supports for the creation of a master
template used in this soft lithography procedure. A layer of photoresist is deposited on the surface
of the wafer using a spin-coating technique. The class of photoresist used in our photolithography
process is called SU-8 (MicroChem). The thickness of the photoresist layer can be controlled by
altering both the type of photoresist used and the rotational speed of the spin-coater. Generally,
different types of SU-8 are capable of spin-coating layers ranging in thickness from - 2 to 100s
of microns. Once the wafer is coated with the desired thickness of photoresist, it is exposed to
365nm light through the transparency mask with the channels drawn in it. SU-8 photoresist is
a negative resist meaning that it undergoes a photo-initiated crosslinking when it is exposed to
light at this wavelength. Therefore, wherever the mask does not have black ink (the places where
white lines were drawn in the AutoCAD file) the light will pass through the mask and crosslink
the photoresist. After the crosslinking, the wafer is washed with a solvent in order to remove the
un-crosslinked photoresist. Once the solvent has acted, the wafer is further washed with isopropyl
alcohol and de-ionized water to remove any traces of the solvent and un-crosslinked photoresist. At

the conclusion of this procedure, the silicon wafer contains projections (or features) of photoresist
in the locations dictated by the geometry of the transparency mask.

Master Template Preparation

Once the master template has been created using the photolithography procedure, its surface must
be treated in order to allow for easy removal of the PDMS during the molding step. Therefore, the
wafer is placed in a vacuum chamber inside a fume hood along with an open glass vial containing
- 0.5mL of a silanizing agent (Si - C13 (CH 2)2 - (CF 2 )5 - CF 3 , United Chemical Technologies,
T2492-KG, Bristol, PA). The silanizing agent is very toxic and must only be handled with glass
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instruments. The air is evacuated from the vacuum chamber and the wafer is left inside the
chamber for at least 4 hours. The silanizing agent undergoes a physical deposition process whereby
it evaporates from the vial and is re-deposited on all of the surfaces in the vacuum chamber including
the surface of the silicon wafer. After the wafer is coated, the vacuum is removed and the wafer is
placed in a clean petri dish. Any remaining liquid silanizing agent in the vial is allowed to evaporate
inside the fume hood.

PDMS Molding

After treating the master template wafer with the silanizing agent it can be molded with the PDMS
elastomer. The molding procedure can be repeated an indefinite number of times. This feature
of the soft lithography process is the major advantage over other techniques. The PDMS silicone
elastomer is mixed with a curing agent in a mass ratio of 10:1 until the two parts are thoroughly
mixed. The PDMS mixture is then degassed in a vacuum chamber at 15inHg to remove all of the
air bubbles that were entrained during the mixing process. Once the PDMS mixture is degassed,
it is poured over the silicon master template inside the petri dish. The whole system is then cured
overnight inside a vacuum oven at 650C and 15inHg. After curing, the PDMS film is peeled off
of the master template and placed in another clean petri dish with the "channel face" down. The
photoresist features on the surface of the master have been transferred to the PDMS as depressions
which, when placed face down upon glass, plastic, or another sheet of PDMS become microfluidic
channels with a height equal to the photoresist thickness and a width as defined in the AutoCAD
file.

1.3 MR Fluids in Microfluidics

There have been a number of studies on confined systems of MR fluids in recent years ranging
from determination of fundamental properties of the self-assembly to applications utilizing the self-
assembled structures. A particularly common microfluidic geometry is the thin-slit where the width
of the channel is much larger than the height. Self-assembly of MR fluids in the thin slit geometry
with a uniform magnetic field directed normal to the thin-slit, has been well studied and the types
of structures that form in this geometry have been generally characterized [10, 15, 11]. At low
volume fractions, the MR fluid self-assembles into uniformly spaced columns that span the height
of the slit [10]. At higher volume fractions, in thin slits, more complex structures can be formed
that are highly dependent upon the thickness of the slit [11]. Using more complex magnetic fields,
such as a rotating field, periodic planar structures have been observed in the plane of the rotating
field between parallel walls [15]. As mentioned previously, there are several recent applications
where the structures formed by MR fluids are used in microfluidic geometries. Generally, these
applications fall into two categories; 1) applications utilizing the dynamic nature of the structures
formed and 2) applications utilizing the properties of static MR fluid structures.

Among the applications in the first category are devices that use MR fluid structures as valves,
pumps, and mixers in microfluidic channels [16, 17, 18]. These applications utilize an external
magnetic field which changes in time in order to move the MR fluid structures within the channel.
Another class of microfluidic devices contained in the first category are devices which utilize fluid
flow to move the MR fluid structures throughout the channels [19, 20]. This has proven to be a
convenient way to move and control functionalized MR colloids used in cell or protein capture [21].
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The static structures formed by MR fluids have been used as a sieving matrix for the separation
of DNA by electrophoresis in microfluidic devices [3, 4]. These devices use low volume fraction MR
fluids in thin-slit microfluidic channels with a uniform external magnetic field directed perpendicular
to the thin slit. Again, the structures that self-assemble under these conditions resemble columns
spanning the height of the channel and separated by a characteristic distance or pore size. As a
sample of DNA is driven through the channel using electrophoresis it passes through the region of
columnar obstacles and collides with the columns therefore delaying its passage [22]. These size
dependant events result in a separation of the sample where the smaller pieces of DNA traverse
the obstacle region faster than the larger pieces. This separation technique is less expensive, faster,
and has equivalent resolution to traditional gel-electrophoresis devices.

All of the microfluidic devices mentioned in this section share the common feature of MR
fluids self-assembling in microfluidic geometries. The self-assembled structures may or may not be
exposed to a secondary force such as flow or electric fields. There is a definite need for the ability to
understand the physical processes governing this self-assembly and subsequent exposure to external
forces in microfluidic geometries. The aim of this thesis is to address this need by studying the
self-assembly of MR fluids in extremely confining geometries.

1.4 Objectives

The objectives of the work presented in this thesis are as follows. The first objective is to develop
a Brownian dynamics (BD) code capable of simulating the self-assembly of MR colloids in complex
microfluidic geometries. The description of the BD code developed in this work is given in Chapter 2.
Using the tools of BD simulations and microfluidic experiments the second objective is undertaken
which is to study two model systems where MR fluids self-assemble under tight confinement. The
model systems are presented in Chapters 3 and 4. The final objective is to study self-assembled
MR fluids under the application of a secondary force. In Chapters 5 and 6 we present two studies
of MR fluid structures experiencing pressure driven flow in a microfluidic channel. We summarize
the work in this thesis and present a global outlook in Chapter 7.



CHAPTER 2

Brownian Dynamics

Although it had been observed very soon after the invention of the microscope, the name "Brownian
motion" is attributed to the British botanist Robert Brown for his work in 1827-1828 where he
reported on the irregular and unpredictable motion of pollen particles in water even in the absence
of external forces [231. This general phenomenon applies to any particle, or colloid, with a size
- 10nm to - 10im suspended in a surrounding fluid consisting of much smaller particles. Due to
the high frequency of collisions between the Brownian colloid and the surrounding fluid particles,
the Brownian colloid moves with a random, un-correlated motion. The Brownian dynamics (BD)
simulation technique is a mesoscopic technique which accurately models the Brownian motion of
colloids by introducing a stochastic term representing the random fluctuations in position due to
momentum transfer from the collision of solvent molecules with the Brownian colloid [24]. Unlike
the similar simulation technique known as molecular dynamics (MD), the BD algorithm does not
attempt to model every interaction between solvent molecules and Brownian colloids but rather
"lumps" the contributions due to solvent-colloid collisions into one stochastic term.

2.1 Stochastic Differential Equation

The equation of motion of a Brownian colloid is approximated by the stochastic differential equa-
tion [24]

1 1
dri (t) ~ -FDi (t) dt+ -FB,i (t) dt, (2.1)S C
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where the inertia of the colloids is neglected. The term FD,i represents all of the deterministic forces

acting upon colloid i and ( is the drag coefficient on a single colloid. The term FB,i represents
the stochastic process which is used to model the Brownian force acting on the colloid due to
collisions with the solvent molecules. Physically, the Brownian force term replicates the diffusive

behavior of the colloid. In the work presented in this thesis, we assume that the colloids in an MR
fluid diffuse as if they are in a very dilute solution. In other words, we neglect the hydrodynamic
interactions (HI) between colloids which has several consequences for the modelling of MR fluids.
Neglecting HI greatly reduces the computation time necessary to simulate MR fluids making the
simulation of large (> 10, 000 colloid) systems possible. Although the rheological properties of MR
fluids are not captured when HI are neglected, the structural properties and many of the dynamic
time scales involved in structure formation are captured. Furthermore, tight confinement, such
as in microfluidic channels, screens the HI between colloids greatly reducing its influence on the
dynamics of the system.

When HI are neglected and ( is constant, the Brownian force term in Equation 2.1 can be
written as [24]

FB,i (t) = V2kBTd" (t) (2.2)

The parameter Wi is a Wiener process with

dt -0 (2.3)
dWi (t) dWj (t') (2.3j6)( ')

dt dt'

where 6ij is the Kronecker delta, 6 is the Dirac delta function, and 6 is the identity tensor. Equa-
tions 2.2 and 2.3 imply that the diffusion of the colloids due to Brownian forces is isotropic in space
and independent in the three cartesian directions.

The deterministic forces in Equation 2.1 (FD,i) are due to the magnetic interactions between
the colloids and bulk hydrodynamic flow (if any). All of the work presented in this thesis contains
deterministic forces due to magnetic interactions which we will describe here. In Chapters 5 and 6
we will introduce the deterministic forces due to hydrodynamic flow. The energy of interaction
between two identical MR colloids in a uniform external magnetic field is given by Equation 1.10.

Therefore the deterministic force acting on colloid i due to it's magnetic interactions with the other
colloids in the system is given by

N

D (t) = -VUij (rij (t), Oij (t)) (2.4)
i•j

where N is the number of colloids in the system. The gradient of the energy between colloid i and
j is written as

Uj (rij, Oij) 3 AkBTd 3  (rij + (rij -ez) ez (2.5)
2 rt .ij 5 i r

where e. is the unit vector in the z-direction. In Equation 2.5 the uniform external magnetic field
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is directed in the z-direction.

Combining Equations 2.1 to 2.5 results in the full equation of motion for colloid i due to
Brownian motion and magnetic interactions with the other colloids in the system. It is useful
to non-dimensionalize the equation of motion in order to obtain general results applicable to any
system with the same dimensionless parameters. Therefore, we use the characteristic length scale d
and the characteristic time scale (d2%) / (kBT) (the time for an MR colloid to freely diffuse a distance
of one diameter) to non-dimensionalize our equation of motion. Equation 2.1 in dimensionless form
is written as

d-i (i) _ FD,i (i dt+ FB,i (i dT, (2.6)

where dri = dri/d and d = dt (kBT) / (d2 ). The dimensionless Brownian force (FB,i) is given
by

FBi ( dW (2.7)
dt

where the dimensionless Wiener process has the properties

Kdi() =0
d( 0 (2.8)

dWi (i) dWj( )- (2.8)
dt dt/

The dimensionless magnetic force (FDa) is given by

Di - [5  - e].) e (2.9)

where the separation rij is taken at time t. Taken together, Equations 2.6 to 2.9 give the stochastic
differential equation describing the motion of colloid i.

2.2 Algorithm

The simplest way to integrate the equation of motion given by Equations 2.6 to 2.9 is to use an
explicit Euler integration scheme [24]. In other words Equation 2.6 is written in discrete form as

r~ (T+ A) _ ri () + ±FD,i (•i AT± FB,i (-) AT, (2.10)

where At is the dimensionless time step used to integrate the equation of motion forward in time.
The discrete integration has a consequence for the form of the Brownian force given by Equations 2.7
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and 2.8. Namely, the discrete dimensionless Wiener process has the following properties

dWi 0)

dW K () dWj (?) iJ6 6(2.11)
dt dt' At

We model the Wiener process defined by Equation 2.11 using a uniform random number distribution
between -0.5 and 0.5. The Central Limit Theorem states that any independent random "hopping"
process in which the mean displacement and mean-square displacement are finite will result in
a Gaussian probability distribution for the position of the hopping entity in the long time limit.
Freely diffusing colloids have a Gaussian probability distribution, thus we can use the uniform
distribution as stated and after many time-steps, we will reproduce the diffusive behavior of the
colloids. We used a random number generator developed by H. C. Ottinger [24] (RANULS) which
generates random floating point numbers between 0 and 1. The random numbers are shifted by
-0.5 in order to generate a set of random numbers between -0.5 and 0.5 (R), a distribution with
(R) = 0 and (IRR) = 1/12. The Brownian force in our simulations is thus modeled as

2 24
FBi () = IR (2.12)

At

Therefore, with Equations 2.9, 2.10, and 2.12 we have fully specified the discrete stochastic equation
describing the motion and interactions of Brownian MR colloids under the application of a uniform
external magnetic field.

If we were to calculate the magnetic interactions between the MR colloids in the system using
the sum over all particles as shown in Equation 2.4 then the computation time for this problem
would scale - N 2 . This is inefficient as the interactions between two MR colloids separated by
a large distance are not nearly as important (or strong) as the interactions between two colloids
in close proximity. Therefore, we implemented a cutoff distance for the magnetic interactions
between colloids along with a linked-list binning algorithm [25] where the bin sizes were slightly
larger than the cutoff value. The cutoff value depends upon the specific system being studied and
only interactions between colloids separated by a distance less than the cutoff are considered. The
binning algorithm reduces the computation time so that it scales < N 2

2.2.1 Excluded Volume

There is another property of the magnetic interactions between MR colloids which deserves con-
sideration. To this point we have not included the fact that the colloids in our system have a finite
size. The form of the magnetic force that we have used (Equation 2.9) is the force between two
identical point dipoles and there is no mechanism in the equations to keep the distance rij from
equalling zero. When rij = 0 the magnetic force becomes infinite which is obviously un-physical.
Therefore, we must enforce the "excluded volume" or finite size of the MR colloids in our model.

Generally, MR colloids are stabilized in solution in some manner which will not allow them to
aggregate due to Van der Waals forces when there is no external magnetic field present [5]. The
form of stabilization can range from steric stabilization (e.g. polymer brushes on the surface of the
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colloids) to screened electrostatic stabilization (e.g. negatively charged molecules grafted on the
surface of the colloids) [26]. In both of these cases the interactions are very short ranged (< 0.1d)
but can be very strongly repulsive when the colloids are close enough together. The combination of
these two properties means that the equations describing the energy of interaction due to excluded
volume can be very stiff and therefore require an extremely small time-step in the explicit Euler
integration scheme mentioned previously.

An alternative method for modelling the excluded volume interactions between MR colloids
is to implement a hard-sphere constraint. The advantage of this approach is that the excluded
volume interactions are taken into account without having to integrate a stiff repulsive potential
between colloids. Several algorithms have been developed in the literature for implementing hard-
sphere constraints into BD codes [27, 28, 29]. We will briefly introduce two hard-sphere algorithms
and discuss their relative advantages and disadvantages as applied to the problem of MR fluid
self-assembly in confined geometries.

Displacement Algorithm. The first hard-sphere algorithm we will introduce was developed by
Heyes and Melrose in 1993 [27]. At the end of a time-step in the BD algorithm, colloids can be
overlapped due to their magnetic interactions or Brownian motion. Therefore, after the time-step,
hard-sphere excluded volume interactions are treated by displacing overlapped colloids along the
line connecting their centers until they are just contacting each other. This procedure is performed
in a pairwise fashion and is iterated until all overlaps are removed. The BD algorithm then proceeds
to the next time step. In this manner, un-physical moves that may have occurred during the course
of a time-step are projected out. This method has been used to successfully reproduce physical
properties of real systems containing hard-sphere colloids [27, 30]. The advantage of this algorithm
is that it is computationally simple and therefore does not require large amounts of memory or
computation time. The disadvantage of this algorithm is that all overlaps are corrected by placing
the colloids at contact meaning that there is a singular large probability that two colloids will be
contacting one another. This singular error propagates to any system property that is calculated as
a function of the density correlation function at contact. However, the singularity is integrable and
therefore, coarsening the density correlation function in space reduces the magnitude of the error.
Additionally, reducing the time-step in the simulations reduces the error due to the singularity in
this algorithm as it is inversely proportional to the square root of the time-step.

In order to quantify the errors due to the Displacement Algorithm, we used a simple test
problem of a Brownian colloid diffusing in a 1D hard-wall well as illustrated in Fig. 2.1a. We
used our BD algorithm without magnetic forces to simulate the motion of the colloid for several
thousand dimensionless times until the probability density function (PDF) for the location of the
bead reached a steady state as shown in Fig. 2.1b. The large magnitude peaks in the measured
PDF at the two hard walls are due to the singularity in this algorithm.

We model the PDF for this simple case as

P(x) = C + E6(x - L) + E6(x + L) (2.13)

where L is the location of the hard wall as shown in Fig. 2.2a and x is the position of the colloid.
The PDF in Equation 2.13 is normalized meaning that C = (1/2 - E)/L. We define the probability
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-L

Fig. 2.1: (a) Schematic of the 1D test problem for the Displacement Algorithm.
The diffusion of a Brownian colloid was simulated in a ID well with hard walls.
(b) The long-time steady-state probability density function for the location of the
colloid inside the 1D well. The solid line is the analytical solution and the x
symbols show the steady-state density profile measured from the BD simulations
with a dimensionless time-step of 10- 4. Note the large peaks in the measured
density profile at the two hard walls.
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Fig. 2.2: (a) The probability density function given by Equation 2.13 for the
position of a Brownian colloid diffusing in a 1D well with hard walls at -L and
L. (b) The probability of a Brownian colloid diffusing to a position q near a
hard wall located at L.

of moving to a position q during a time-step as

1 +T--L(q + L) for -L < x < T - L
p(qlx)= - [H(q - x - T) - 1] [H(x - T - q) - 1] for T - L < x < L - T (2.14)

S(q - L) for L- T < < IL

where T is the half-width of the uniform random number distribution in our algorithm (T = Vf6 )
and H is the Heaviside function. The Dirac delta comes from the part of the uniform random
number distribution which lies outside the well as shown in Fig. 2.2b.

At steady state, the probability of a colloid being located at a position q after one time-step is
given by

P(q) = P(x)p(qlx)dx. (2.15)
-- L

jII ýP(X)
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Integrating Equation 2.15 we obtain

+ -+ f6(q+ L)+ L6(q+ L) + _q for_-L< q 2T-L
P(q) = C for 2T- L < q < L- 2T (2.16)

c+ E + E(q- L)+ 6(q- L) + CL-) forL-2T< q < L

The error E occurs at the walls of the well and we are interested in estimating E so we match

the probability from the two PDFs given by Equations 2.13 and 2.16 at the wall by integrating

over a width 6 away from the wall

L Lj P(x)dx = P(q)dq (2.17)

to arrive at the following equality

CE Ee E CT Ce2
S+ + - + CE + E. (2.18)2 2T 2 4 4T

Letting e go to zero, we are left with the following expression for the error

CT
E =- (2.19)

2

When measuring a density profile in a BD simulation, the coordinates of the colloid are binned

into discrete positions separated by a dimensionless distance (or bin-size) AZ. The peak E next to
the hard-wall is therefore lumped into a bin of width AZ causing the total probability in the bin

next to the wall to be CA + E. The analytical solution has a total probability of CAZ in the bin

next to the wall so the relative error in the probability due to the displacement algorithm is finally

given as
E T E

Rel. Err. = CA - = 2A (2.20)CAi 2,AZ 2AZ
This analysis predicts that the error due to the Displacement Algorithm is proportional to the

square root of the time-step in the simulation. Furthermore, it predicts that the error will be

inversely proportional to the bin-size during the discrete calculation of the PDF in the 1D well.

These two scalings are confirmed in Fig. 2.3 where we show results from the simple BD simulations

plotted as open circles and the prediction given by Equation 2.20 as a solid line. The exact prediction

in Equation 2.20 is slightly higher than the errors measured in the simple test simulations because

the two PDFs given by Equations 2.13 and 2.16 are not exactly identical meaning that our above

analysis is not quite self-consistent. However, it does correctly predict the sources of error at the
walls and how that error scales with the time-step and the bin-size. Knowing the source and the

magnitude of the error due to the Displacement Algorithm allows us to choose our time-step and
bin-size in order to minimize its contribution to the total error in our BD simulations.

Elastic Collision Algorithm. The hard-sphere algorithm developed by Strating in 1999 [28]
treats overlaps between hard-spheres as perfectly elastic collisions. At the end of a time-step in
the BD algorithm, if two colloids are overlapped, their initial positions along with the length of
the time-step are used to calculate the "time" and position where they first collided assuming that
they travelled with a constant velocity during the course of the time-step. Their trajectories for
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At

Fig. 2.3: (a) Relative error in the density distribution for the 1D well as a
function of time-step. The bin-size in this case was taken as AF = 0.05. The
solid line is the prediction given by Equation 2.20 and the open circles are
results from BD simulations. (b) Relative error in the density distribution for
the 1D well as a function of bin-size. The time-step in this case was taken as
At= 10- 4. The solid line is the prediction given by Equation 2.20 and the open
circles are results from BD simulations.

the rest of the time-step are then calculated from the collision time and position assuming that
they underwent a perfectly elastic collision. This is repeated for all overlaps that occurred during
the course of a time-step. This algorithm has the advantage of removing the singularity that
occurs in the Displacement Algorithm. However, there are many disadvantages of this algorithm,
the first of which is that it does not represent the true physics of diffusion. During the course
of a time-step a Brownian colloid diffuses in many directions rather than with a single velocity
as assumed in the Elastic Collision Algorithm. From a computational standpoint, this algorithm
requires longer computation times due to the need to calculate the collision times for all overlapped
colloids. Additionally, all of the collision times must be calculated first and then the collisions are
handled in the order in which they occur.

There are even more complex algorithms that have been developed to accurately model the
interaction between a hard sphere and a hard-wall such as the algorithm developed by Peters
and Barenbrug [31] but these algorithms are generally not adaptable to the case of hard sphere
interactions except in special cases [29]. We have used the Displacement Algorithm developed by
Heyes and Melrose in our BD simulations of MR fluid self-assembly because it is not computationally
intensive and the errors are controllable as long as one keeps their source in mind. Additionally,
this algorithm is very easy to generalize for the case of hard-walls; another important consideration
in our BD simulations.

2.2.2 Hard Walls

The boundary conditions of the simulation box in our BD code can either be periodic or hard-
walls. Each of the three cartesian directions are independent of one another meaning that we can
model self-assembly in free solution, thin-slits, rectangular channels, or rectangular boxes by having
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periodic boundaries in three, two, one, or zero of the cartesian directions respectively. In the case
of hard-walls, the Displacement Algorithm is easily implemented for any geometry that appears
smooth over the length scale of the colloids d.

Flat Walls

In the case of flat hard-walls, the algorithm is straight forward. At the end of a time step, any
colloids that are overlapped with the walls of the simulation box are displaced normal to the wall
until they are just contacting the wall. For instance, if a colloid is overlapped with a hard-wall in
the x-y plane (located at Y = 0) then it is displaced until it is just contacting the wall meaning it's
dimensionless z coordinate is simply set equal to 0.5 (or one colloid radius).

Other Hard Walls

If the hard-walls being implemented in the BD algorithm are not flat but rather have some functional
form which appears smooth over the length scale of the colloids (such as a sinusoidal function) then
the Displacement Algorithm can also be used with success. If the hard-wall in the x direction is
described by the equation

XHW = f (Y) (2.21)

then at the end of a time-step, if a colloid is overlapped with the hard-wall (has crossed the line

defined by Equation 2.21) then it must be displaced until it is just contacting the wall. If the

overlapped colloid has coordinates (io, o0, zo) in the x, y, and z directions respectively then it must
be repositioned to the coordinates (1l, Yl, zl) where

0.5
X1 = XHW [

0.5 (dfHw/dy) (2.22)y1 = yo +
1 + (dS Hw/dy~) 2

z 1 = z0.

Thus, with the Displacement Algorithm, non-flat hard-walls can be easily included in the BD
algorithm.

This method can also be used to model walls with sharp corners, such as stepped (or terraced)

walls. If the corners are concave (i.e. the colloid is "enclosed" by the corner region) then the

Displacement Algorithm works exactly except for the singularity at the walls. If the corners are

convex (i.e. the colloid is "outside" the corner region) then there are errors near the corner due to
the Displacement Algorithm which again scale with the square root of the time-step.

2.3 Summary

The BD code that was developed for this thesis is quite versatile in that it allows for the simulation
of the self-assembly of MR fluids under a variety of geometric constraints and external forces.
The algorithm outlined in this chapter is a basic BD algorithm with the added functionality of
a "potential-less" hard-sphere excluded volume constraint between the colloids. This hard-sphere
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constraint has additionally been applied to the case of hard-walls. Since the equation of motion is
de-coupled in the three cartesian directions in this algorithm, we can simply "turn off' any of the
three cartesian dimensions in our BD code in order to simulate simpler systems. This is relevant
for the work presented in Chapter 3





CHAPTER 3

Two Dimensional Systems

The self-assembled structure of MR fluids in thin-slit microfluidic channels has been used as a
sieving matrix for the size-dependent separation of DNA by electrophoresis [3, 4]. When viewed
from the top of the channel (in the field direction), the structure of the MR fluid appears to be a
two-dimensional (2D) field of columns of MR colloids. Therefore, it is prudent to begin any study of
MR fluid self-assembly in these microfluidic channels by investigating the self-assembly in 2D first.
The 2D model fails to capture the effects of chain coalescence that occur in a truly 3D system [32],
but it serves as a starting point for understanding the inter-column structure in the channel system.
The characteristic length scales in microfluidic devices are becoming smaller every day and a 2D
self-assembled system of MR colloids is rapidly becoming an important subject of study. In this
chapter we will investigate the self-assembly of MR fluids in 2D microfluidic channels. The results
presented in this chapter have been published in the following references [33, 34, 35]. This chapter
was reproduced in part with permission from Haghgooie, R. and Doyle, P.S., Phys. Rev. E, 70,
061408 (2004), copyright 2004 by the American Physical Society. This chapter was also reproduced
in part with permission from Haghgooie, R. and Doyle, P.S., Phys. Rev. E, 72, 011405, (2005),
copyright 2005 by the American Physical Society. This chapter was additionally reproduced in part
with permission from Haghgooie, R., Li, C. and Doyle, P.S., Langmuir, 22, 3601, (2006), copyright
2006 American Chemical Society.
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3.1 Background

Self-assembly of field-responsive colloids in 2D has been widely studied because it is a model system
with very interesting physics. The most studied aspect of these systems is the nature of the solid-
liquid phase transition. In the unbounded (infinite plane) 2D system, it has been theorized that
the nature of the solid-liquid phase transition is second order with an intermediate stable hexatic
phase [36, 37, 38]. There is compelling experimental evidence supporting the existence of a hexatic
phase in the case of purely repulsive dipoles [39, 40, 41]. While many simulation studies have been
performed upon a variety of 2D colloidal systems, the nature of the phase transition has not yet
been conclusively determined in simulations [42, 43, 44, 45, 46, 47].

In addition to the nature of the phase transition, many researchers have been interested in
the properties of 2D colloids confined laterally. Much of this research has focused on circular
confinements [48, 49, 50, 51, 52, 53]. This confinement imposes a circular shell-like structure upon
the crystal and leads to very unique properties of the phase transition. Nonhomogeneous melting
has been observed in these systems where the melting begins at the boundary between the shell-
like structure and the more hexagonal structure in the center of the circular confinement [51, 52].
Additionally, re-entrant freezing was observed in small clusters of colloids confined in 2D circles
due to radial fluctuations of the colloids in the crystal [48, 49, 50]. As the interaction strength
between the colloids was decreased the clusters transitioned from solid-like to liquid-like. However,
as the interaction strength was further decreased, increased radial fluctuations of the colloids caused
the rings in the shell-like structure to become locked in register with one another and produced
re-entrant freezing behavior. This type of re-entrant phase behavior was also observed in systems
of 2D colloids confined in periodic 1D light fields [54, 55, 56].

Another very important form of constraint for 2D colloidal systems is channel-like confine-
ment. This type of system has the obvious application towards studying microfluidic geometries.
Additionally, channel-like confinement breaks the radial symmetry that exists in circular confine-
ments leading to different structures and dynamics. A few experimental studies have been done on
colloidal-like systems confined in quasi-2D channels [57, 58, 59]. Teng et al. [57] observed anisotropic
diffusion, enhanced in the direction parallel to the confining walls when studying a dusty plasma
system confined in a quasi-2D channel. The dusty plasma system was not a truly 2D system in
that the "colloids" were actually short chains of colloids aligned in the direction normal to the
plane of observation. These chains interact differently than repulsive dipoles causing significant
differences between the behavior of dusty plasma system and the one studied here. The other stud-
ies were performed on spherical block copolymers confined in a 2D channel [58, 59]. The authors
observed that the orientational order of the colloidal crystal decayed in the regions farther from the
wall. The width of the channel in this study was three orders of magnitude larger than the block
copolymers so the effects of tight confinement were not probed. Recently, simulations and theory
have been performed on a system of colloids in narrow 2D channels interacting with a Yukawa
potential [60]. The channel walls in these studies consisted of a parabolic confining potential. The
authors observed re-entrant behavior as a function of the density of colloids in the channels and
they characterized the structural and melting transitions that occur in this system.

In addition to the general nature of the effects of confinement on 2D colloidal systems, the
nature of the boundaries can drastically affect the structure of self-assembled colloidal systems
either by providing a template for extreme ordering or by disrupting the natural structure of the
system [61, 62, 63, 64]. For instance, the structure of clusters of colloids confined in 2D circles
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has been characterized as having an outer region of ring-like structure and an inner region of
hexagonal structure, independent of the nature of the circular confining potential [51, 52, 53]. This
illustrates a case where the boundary imposes an unusual local structure while the center of the
cluster relaxes back to the unconfined structure. In colloidal systems boundaries can appear in
different forms, as an impurity or as a confinement. Self-assembly in the presence of boundaries is
of great, and growing, importance in a variety of applications ranging from photonic band-gaps and
semiconductors [65, 66] to medical devices [67, 68, 3]. Much research has been done to characterize
the effects of boundaries upon the self-assembly of colloidal systems as they are both important
industrially and from a fundamental scientific standpoint. Much effort has also gone into exerting
control over the self-assembly of colloidal systems using boundaries and confinement [69, 70, 71].
In particular, two-dimensional (2D) colloidal systems are ideal for studying the specifics of self-
assembly near boundaries because of their reduced geometry and their accessible length and time
scales.

3.2 Simulations of 2D MR colloids

The system studied consisted of MR colloids confined to a 2D plane with a uniform external
magnetic field directed normal (z-direction) to the confining plane. We have modeled the MR
colloids as hard spheres with repulsive point dipoles at their centers. This approach has been used
widely in the literature [72, 73, 33] and has been shown to be a good approximation for the magnetic
behavior of MR colloids [74]. The large separation distances between the colloids in this system
ensure that the dominant magnetic field is the external field and the effect of mutual induction
between colloids is negligible. In this system, the colloids interact with a purely repulsive dipolar
potential and therefore the equation for the magnetic force between colloids (Equation 2.9) reduces
to

Nmag 3 (5Eij + iij) (3.1)

since the distance zij is identically zero. The interactions between the colloids are purely repulsive
in this system and therefore, the important length scale is no longer the colloid diameter. The
important length scale becomes the spacing between the colloids R where R = a sin 60 and a is the
lattice spacing in a perfectly hexagonal 2D colloidal crystal. The lattice spacing is a purely geometric
property and is a function of the number density in the system (n) such that a = (n/-3/2)- 1/2
The number density is defined as the number of colloids in the system divided by the total area
available to the centers of the colloids. Therefore, the length scale in terms of the number density
in the system is written as

R=( -1/2 (3.2)

The change in length scale also brings about a change in the energy scale in the system. The
appropriate energy scale for the 2D system is defined as

=- - (3.3)2 R(
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Defining the energy scale as in Equation 3.3 results in the interesting observation that all 2D dipolar
systems at the same F behave identically, as long as R is the only relevant length scale in the system
(i.e., d < R) [73] as is the case for all of the results reported here.

3.2.1 Simulation Details

Brownian dynamics simulations were used to study this system with the dimensionless equation of
motion derived in Chapter 2 (Equation 2.10). Since the important length scale in this system is R
and not d the time scale given in Chapter 2 must be altered in the 2D system. Therefore, the time
scale in the 2D system is given as ((R 2 ) / (kBT), the time necessary for a colloid to freely diffuse
a unit distance R. Additionally, due to the large magnitude of the repulsive interactions compared
to the thermal motion in our 2D systems (at the field strengths we simulated) we never observed
overlaps between colloids, only overlaps between the colloids and the walls.

Simulations of the unbounded system were performed with 14,784 colloids where we imposed
periodic boundary conditions in the x- and y-directions and the magnetic field was aligned in the z-
direction. Simulations of the channel systems were done with 960 - 3,840 colloids where we imposed
periodic boundary conditions in the y-direction and hard walls in the x-direction. The number of
colloids in each simulation was chosen in order to ensure that the properties of the system did
not depend upon the system size. A time step of At = 7.5 x 10- 5 was used and a cutoff for the
dipole-dipole interaction of 6.5R was implemented. All of the simulations were determined to be
converged in system size, time step, and cutoff for the dipole-dipole interaction.

The number density in the simulations reported here was held constant at n = 0.0462 such that
d < R. For the channel systems, the width of the channel was taken to be the width accessible to
the centers of the colloids. This definition implies that the width of the channel used for calculating
the number density is in fact the true width of the channel minus d. Defining the channel width
in this way ensures that we remove any system dependence on the colloid diameter d. In the
unbounded systems the area is simply the true area since we have periodic boundary conditions in
all directions.

3.2.2 Unbounded 2D System

The simulations of the unbounded systems were equilibrated from a perfect hexagonal lattice. The
total defect concentration was tracked as a function of time and the system was determined to be
at equilibrium when the defect concentration (Cdef) remained unchanged over a dimensionless time

of 373. A defect is defined as a colloid with more or less than six nearest neighbors. Statistics were
taken after the system was determined to be equilibrated. Examples of the equilibration curves
are shown in Figure 3.1a. In the liquid phase, near the transition field strength, the equilibration
was slower than for systems farther away from the phase boundary. This is shown in Figure 3.1a
where the equilibration of the unbounded system at a dimensionless field strength of 12.41 is much
faster than at a dimensionless field strength of 14.89. Fluctuations in the defect concentration
also increase near the phase boundary which is consistent with the recent work of Reichhardt and
Reichhardt [75].

The state of the unbounded system was determined by calculating the bond-order correlation
function in time (g6(7)) [76]. The correlation function is given by the equation

96(7) = (('(0)(6(7)), (3.4)
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Fig. 3.1: (a) Defect concentration as a function of time during the equilibration
of the unbounded system at three dimensionless field strengths. (b) The bond-
order correlation function for unbounded 2D systems at several dimensionless
field strengths. Above a dimensionless field strength of 15.20 the system behaves
as a solid crystal and below a dimensionless field strength of 14.89 the system
behaves as a liquid.

where F is the dimensionless lag time and 46 is the local bond order parameter

1
e6 = ei6 k  (3.5)

k=1

In Equation 3.5 m is the number of nearest neighbors for a given colloid and Ok is the angle between
the vector connecting the colloid and its kth nearest neighbor and an arbitrary reference axis. The
nearest neighbors are determined by performing a Delaunay triangulation. Theory predicts that
the behavior of g6(7) in time can be used to determine the phase of the unbounded system [76].
In the solid phase, g6(F) remains constant for all lag times while in the liquid phase g6(7) decays
exponentially to zero as a function of lag time. In the hexatic phase, g6(7) decays algebraically
to zero as a function of lag time. The bond-order correlation function is plotted in Figure 3.1b
for a variety of dimensionless field strengths. We were able to equilibrate the liquid phase up to a
dimensionless field strength of 14.89 and the solid phase down to a dimensionless field strength of
15.2. Between these two field strengths we were not able to converge our unbounded system due to
the diverging correlation lengths and times near the phase transition [77] and therefore we are not
able to comment upon the existence of a hexatic phase in this system. However, our results clearly
indicate that the solid-liquid phase transition occurs between a dimensionless field strength of 14.89
and 15.2. This range is in good agreement with the simulation results of Ldwen [78] for the same
type of system. However, Ldwen used an empirical criterion to determine the transition point and
the system size was much smaller (N = 961) than the current study. Experimental studies have
shown the existence of a hexatic phase between a dimensionless field strength of 12.14 and 13.93
with a liquid phase below 12.14 and a solid phase above 13.93 [41], a slightly lower range than our
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simulation results. However, our determination of the phase boundary region in the unbounded
system serves as a base case for our simulation study which we will perturb by introducing parallel
walls into our 2D system.

3.2.3 Infinite Field Structures in 2D Channels

The 2D channel system underwent simulated annealing from an equilibrated liquid state to a very
high field strength (F = 50). As mentioned above, the 2D dipole system is found to be in the
solid phase at this field strength. The annealing process was performed at varying rates and
with sequential heating and cooling to ensure an equilibrium structure at r = 50. The system
was then quenched by setting the stochastic term in Equation 2.10 to zero. This turns off the
Brownian motion effectively causing r to go to infinity. The quenching was done from a variety of
different starting configurations within the equilibrated crystal and the final internal energy of all
the quenched systems for a given dimensionless channel width did not vary by more than 1%.

The quenched crystal was observed to align with one of its lattice-vectors along the length of
the channel, parallel to the confining walls as seen in the top of Figure 3.2b. From this observation
we note that there should be certain channel widths, magic numbers, that are fully commensurate
with the natural spacing of an unbounded crystal aligned in the direction parallel to the walls. We
will show, however, that these magic numbers are not simply integer multiples of R, as implied by
the alignment of the crystal, but are affected by a number of the properties of the 2D crystal in
channels.

A characteristic of the infinite field structures in channels is the dimensionless wall-spacing i,
which is defined as the distance between adjacent colloids along the walls. In Figure 3.2a the
dimensionless wall-spacing is seen to follow exactly the 1D lattice spacing for channel widths less
than - 2. The 1D lattice spacing (dashed line in Figure 3.2a) is the calculated wall-spacing for
a constant n channel system in which the colloids are aligned in two rows, one at each wall. In
the large channel limit the wall-spacing approaches a constant showing the behavior of a semi-
infinite system. The value that is approached (- 0.83a) is actually less than the spacing of the
2D unbounded crystal meaning that the line-density of the lattice-line on the wall is larger than
that of a lattice-line in the unbounded 2D crystal. The line-density is defined as the number of
colloids per unit length along a lattice-line and is a constant equal to a- 1 along the lattice-lines of
an unbounded 2D lattice. The increased line-density along the wall is explained by noting that the
walls remove some of the energetic penalty associated with a higher line-density. In the unbounded
2D crystal, increasing the line-density of a row in the crystal results in a higher interaction energy
between the colloids in that row (ie. the spacing between colloids in the row is reduced) and a
higher interaction energy between that row and adjacent rows. In the channel system, the row of
colloids at the wall has only one neighboring row, not two, so the energetic penalty for increasing
the line-density along the wall is lower than for the unbounded 2D crystal. The consequences of
the higher density of colloids along the wall will be discussed further in Section 3.2.4.

In Figure 3.2a there is a non-monotonic decrease in the wall-spacing characterized by a series
of decaying oscillations as the channel width is increased. The largest oscillation occurs near a
channel width of 2. For very narrow channels, the colloids are aligned in two parallel rows but as
the channel width is increased, it becomes energetically favorable for colloids to be in the center
of the channel so they leave the walls, thus increasing the wall-spacing. As the channel ýwidth is
further increased and the center of the channel is filled in with colloids, it becomes less energetically
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Fig. 3.2: (a) The average dimensionless wall-spacing for different dimension-
less channel widths; square symbols correspond to integer channel widths and
circle symbols correspond to non-integer channel widths. The dash-dot line cor-
responds to the dimensionless 2D unbounded lattice spacing and the dashed line
corresponds to the dimensionless ID lattice spacing. The oscillations in wall-
spacing as a function of channel width are continuous (inset). (b) The crystal
aligns with the channel walls (top) and remains hexagonal in the Delaunay tri-
angulation (bottom) for a dimensionless channel width of 3.
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Fig. 3.3: Configuration snapshots and equilibrium density profiles for selected
dimensionless channel widths at a dimensionless field strength ofF = 16.13.

favorable for the colloids to be in the center of the channel and again the wall-spacing decreases
following approximately the 1D scaling. This process continues as the channel width is increased
but the walls become farther removed from the center of the channel and therefore are less affected

by the changes occurring there. Thus, the oscillations in the wall-spacing decay after a channel
width of - 5 where there is a buffer of at least one lattice-line between the wall and the center
of the channel. These oscillations are continuous as shown by the inset in Figure 3.2a indicating
that the addition of a new row in the center of the channel is a continuous process as the channel

width is increased. The presence of these oscillations indicates that the channel width plays an

important role in the types of structures that form in the 2D channel system. The oscillations in

the wall-spacing occur with a period - R but the maxima and minima do not occur at integer
multiples of R indicating that the magic numbers are not simply integer multiples of R.

3.2.4 Finite Field Structures in 2D Channels

In order to study the properties of the crystal at finite field strengths, where thermal fluctua-

tions are important, the 2D channel system was annealed to F = 16.13. One measure that has
been widely used to characterize the structure of a system confined between parallel planes is the

equilibrium density profile of that system normal to the confining planes [79]. Figure 3.3 shows
equilibrium density profiles transverse to the walls for a selection of channel widths at F = 16.13.

A characteristic feature of the density profiles is that they show a well defined layered structure
parallel to the walls similar to the aforementioned dusty plasma study [57]. This layered structure
is evident even for dimensionless channel widths of 100 implying that the system is in a solid state
with rows that are parallel to the walls of the channel for all channel widths.

The sharpness of the peaks in the center of the channel varies non-monotonically as the channel
width is increased. The broadening and sharpening of the peaks always occurs near the center of
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the channel indicating that the layering near the walls is weakly affected by the increase in channel
width but the structure in the center of the channel undergoes large changes. The change in the
structural properties in the center of the channel will prove important in characterizing the 2D
dipole system in channels.

The most unique feature of the density profiles is the large peak in the profile occurring at
each wall which was not observed in the dusty plasma study [57]. This peak is the result of the
convolution of two collaborating effects. The increase in channel width causes an increase in the
line-density of the colloids along the wall as seen in Figure 3.2a. Additionally, the long ranged
nature of the dipole-dipole interaction results in a net increase in the localization of the colloids at
the walls as the channel width is increased.

Transverse mobility at walls

The most direct measure of the transverse mobility of the colloids localized at the wall is their
mean squared displacement (MSD) in the direction normal to the wall (Ax2(\)) where F is the
dimensionless lag time. The wall-colloids are defined as colloids located within a distance R/2
from the wall. The MSD of the wall-colloids was observed to approach a plateau at long lag times
(Figure 3.4 inset) implying that the colloids are localized at the wall for significant lengths of time.
Eventually, the wall-colloids will migrate away from the wall but this was only rarely observed over
the timescale of observation in Figure 3.4. Additionally, this escape became increasingly unlikely as
the channel width was increased. It was observed that the plateau value of the MSD decreases as
the channel width is increased (Figure 3.4) implying that the wall-colloids become more localized.
This increased localization is a direct result of the long ranged nature of the dipole interactions,
combined with the presence of a hard wall, and contributes to the large peaks at the walls in the
density profiles. In the limit of large channels, the MSD approaches a constant with a correction of
order i-1. This form for the MSD is expected when the potential near the walls is approximated
by the sum of a near and a far contribution

U/p, @ - -
k = U' near(P, w) + U'far(, wY). (3.6)

The two parts of the potential are defined as

U'near(P, ) = rRpL + 3/2dy (3.7)
F-o ((6 - Y)2 +2

SO d (3.8dXU'far (, I) = FR2 n ((X - )2 )3(3.8)

where * is the x-position of the first row away from the wall (the arbitrary cutoff between the near
and far parts of the potential) and PL is the line-density of the row. This definition of the potentials
approximates the rows neighboring the walls as a continuum. This approximation introduces some
error into the quantitative prediction for the MSD but does not affect the qualitative nature of the
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Fig. 3.4: Plateau value of the mean squared displacement (MSD) of wall-colloids
in the direction normal to the wall for selected dimensionless channel widths;
square symbols correspond to integer channel widths and circle symbols corre-
spond to non-integer channel widths. The value of (A 2) (oo) is taken from an
extrapolation of the simulation data. The dotted line is the approximation de-
rived for the MSD [Equation 3.19] (without the constant term). Bottom left is
a trace of the colloid motion near the wall in a dimensionless channel width of
w = 10, for a lag time of 7 = 3.7, showing constrained motion at the wall. The
top inset shows the MSD versus lag time for the three traces; ý = 3 (dashed
line), i = 10 (dotted line), and f = 100 (solid line).

scaling. After the integrations, the potentials become

2FRPL (3.9)
U'near (X, w) =-- Y ~)

2

U'far (, i) = 2FR 2 n (2 - ) (3.10)

The dimensionless MSD in Figure 3.4 is much smaller than one for all channel widths and
therefore, the potential can be expanded to first order near Y = 0 as

U(Y, ý) A(iiY, ') + B(ii3, _3),

Cq

(3.11)
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where

A(i, i = R + 2FR2n (3.12)

B(i, ) = i- - + 2rR2n - . (3.13)

The average MSD is given by the following expression

2) (, ) = ) - (0))2) ( ). (3.14)

In the long-time limit Equation 3.14 can be written as

lim (AY2)(i-, -c-) = 2(Y2)(w, c)- 2( )2(0, c). (3.15)

This expression can be written as the following integral

= 2e2-A-B •di f-e-A-Bydi 2
lim(A 2 )(iii, ) = 2 e-A-B -2 e-A-B(3.16)f+' e-A-Bydi ( fxE e-A-Bidid)Ii

Since the Boltzmann weighting goes to zero quickly as Y increases, the limit (e) of the integration
can be taken to infinity. The average MSD displacement then becomes

jim (AX2)(w,' ) 2  2  2 . (3.17)

From the density profiles in Figure 3.3 the position of the first peak away from the wall (c) can
be calculated as a function of the channel width. This dependence is shown in Figure 3.5 and is
found to be

1.0
F ~ 1.0 + -.. (3.18)

Equation 3.18 implies that the separation between the row at the wall and the next row away
is approximately equal to the lattice-line spacing in the unbounded 2D crystal (R) which is an
intuitive result. The functional form of F is important in determining how the MSD behaves as
a function of the channel width. Combining Equations 3.13, 3.17, and 3.18 and expanding in the
limit of large @ gives the approximate form for the average MSD as

lim (a )(, 2)(i 8 (1 + 12pL . (3.19)
Fi+00' c F r2R 2 R(Rn+ 8pL) 2  Rn + 8pL

The result of this analysis is plotted as a dotted line in Figure 3.4 (without the constant term)
and is seen to predict the correct scaling behavior. The quantitative error in the pre-factors is
introduced by the many approximations made during the derivation of the MSD dependence on
iD. Importantly, the derivation of the MSD dependence shows that the interactions of the wall-
colloids with the colloids in their immediate vicinity (the neighboring row) are the dominant factor
in determining the behavior of the MSD as a function of the channel width. The interactions with
the colloids farther away give higher order corrections to the MSD scaling.
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The data in Figure 3.4 also show oscillations in the MSD as a function of the channel width.
As in the case of the wall-spacing (Figure 3.2a) the oscillations decay after a channel width of -
5. This implies that effects of the changes occurring in the center of the channel are being shielded
from the wall colloids. There is a regular periodicity of the oscillations which is - R implying that
there are magic number channel widths and in this case the maxima in the MSD data occur at
integer multiples of R for channel widths greater than 2.

Figure 3.6 shows the physical changes occurring in the structure that give rise to the first
oscillation. For dimensionless channel widths less than - 2 there are two rows of colloids, one on
each wall. As the channel width is increased, the two rows of colloids have weaker interactions
leading to an increase in the MSD plateau of the wall-colloids. Near a dimensionless channel width
of 2, colloids begin to occupy the center of the channel. The repulsion due to the increased number
of colloids occupying the center of the channel results in a decrease of the MSD of the wall-colloids.
For a dimensionless channel width of 2.31 there is a well defined row in the center of the channel
forcing the wall-colloids to remain near the wall, thus causing a minimum in the MSD at the wall.
As the channel width is further increased, the center row begins to divide into two rows causing a
very loose structure to exist in the center of the channel. This loose structure allows the colloids
at the wall to fluctuate away more easily resulting in a maximum for the MSD at a dimensionless
channel width of 3. Above the dimensionless channel width of 3, the rows in the center of the
channel begin to form and become distinct and when ·i = 3.46 there are two distinct rows in the
bulk, both of which force their respective neighboring wall-colloids to remain near the wall. A
similar process is repeated as the dimensionless channel width is increased from 3.46 to 4 (max
MSD) to 4.62 (min MSD). The intermediate width of 4.15 shows a large amount of disorder in the
bulk so it is surprising that a maximum in the MSD does not occur at this channel width. However,
in this channel, the first rows in the bulk remained well defined and therefore do not allow the wall-
colloids to fluctuate away from the walls. At a dimensionless channel width of 5 the row in the
center of the channel again begins to broaden and the MSD at the walls passes through a maximum.
However, in this case, the first row in from the wall is left relatively unchanged by this process and
therefore the oscillations in the MSD of the wall-colloids are diminished for dimensionless channel
widths greater than 5. In Figure 3.6 this effect is further illustrated by the examples of ii = 4.15
and 5.15 where it is evident that there is disorder in the center of the channel but the first rows in
the bulk remain well defined.

Defect Structure

The analysis of the density profiles and the MSD at the walls leads to the observation that the
structural changes that take place in the crystal as the channel width is increased are occurring
predominantly in the bulk for large channels. The structural changes in the bulk in turn affect
the properties of the wall-colloids. In order to further understand the effect of channel width on
the structure of the 2D crystal, it is necessary to measure properties of the whole crystal, not
just properties at the walls. One important measure of the structure of a 2D crystal is the defect
concentration. For an unbounded system of repulsive dipoles in 2D the structure is purely hexagonal
with each colloid having six neighbors. Defect sites in that crystal are defined as sites which have
more or less than the usual six neighbors. For wall-colloids in a channel, a defect is defined as a
colloid that would have more or less than six neighbors if the wall were not present. This translates
to defects at the wall being defined as colloids with more or less than four neighbors since a wall-



3.2. Simulations of 2D MR colloids

1.50

2.00 C~E~M

2.31 * -

3.00 -

3.46 t

4.00 - -

4.62 *

5.00

5.15

4.15

Fig. 3.6: Density of colloids for selected dimensionless channel widths (Z = 1.50
to 6.00) for a total time of 7 = 37 showing the oscillations between a loose and
tight center row as the channel width is increased. Each point represents the
position of a colloid and points were drawn every F = 0.37.

~k~i~i~i~i~

6.00



3.2. Simulations of 2D MR colloids

-e

w

U.',

0.3

" 0.2

0.1

0.0

Fig. 3.7: (a) Defect concentration for selected dimensionless channel widths;
square symbols correspond to integer channel widths and circle symbols corre-
spond to non-integer channel widths. The dotted line is the prediction given
by Equation 3.24 (without the constant term). (b) The defect concentration
approaches a constant as the channel width increases. The dash-dot line cor-
responds to the equilibrium defect concentration in the unbounded system at a
dimensionless field strength of F = 16.13.

colloid with four neighbors is equivalent to a non-defect site in the unbounded 2D case. This can
be seen in the Delaunay triangle diagram in Figure 3.2b where the crystal is triangular and each
wall colloid has four neighbors. For the non wall-colloids (bulk-colloids) in the channel system,
defects are defined in the same way as they are in the unbounded 2D crystal. The concentration of
defect sites can be used to determine the state of the system [80, 81], but here we are interested in
using the defect concentration as a measure of how the channel system differs from the unbounded
system.

The defect concentration as a function of channel width is shown in Figure 3.7a. Surprisingly,
the defect concentration increases as the channel width is decreased. This is counter-intuitive
because the channel geometry is shown to stabilize a layered structure near the walls as shown in
the density profiles (Figure 3.3). These two observations are reconciled by noting that although
the channel walls do impart a very nice layered structure near the walls, that structure is not
perfectly hexagonal because the line-density of the colloids at the wall differs from that in the
adjacent row. Therefore, the wall-spacing is not commensurate with the bulk crystal spacing and
as a result defects occur near the walls. For the narrow channels, the wall-colloids comprise a large
portion of the system and therefore their higher defect concentration dominates the overall defect
concentration of the system.

The behavior of the defect concentration as a function of the channel width in Figure 3.7a is
predicted by a simple argument. The concentration of defects is given by a bulk contribution and
a wall contribution

Ndef Nbf Nb Nvw Nw
Cdef (iv-) def _ def (3.20)N Nb N NW N' (3.20)

where N and Ndef are the total number of colloids and defects in the system respectively. The
parameters Nb and Nw are the number of bulk and wall colloids respectively. Again, the boundary
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between the bulk region and the wall region is defined as a distance R/2 away from the walls. The
ratios Ndbef/Nb and Nd~ef/NW can be approximated as constants equal to the unbounded system
defect density and the semi-infinite wall-defect density respectively. The wall-defect structure is
shown in Figure 3.8 (inset) where the defects along the walls are always accompanied by another
defect in the first row of the bulk. Taking this into consideration, each wall-defect in the semi-
infinite limit actually induces another defect in the bulk and therefore the semi-infinite wall-defect
density must be doubled. Therefore, the total defect concentration is approximated as

N b  N w

Cdef(W) " Cdef(OO)-- + 2Cdef(oo) N (3.21)

Based upon the definition of the wall region, the two ratios in Equation 3.21 can be approximated
as

Nw 2 pw 2R 2
.. .. (3.22)

N nw 0.83w 0.83i(
N b  2

N1 - (3.23)
N 0.83w

The parameter Pw is the line density along the wall and is equal to (0.83a) - 1 (from Figure 3.2)
for large channels. The factor of 2 comes from the two walls. Therefore the total concentration of
defects is approximated as

Cdef( d- f• Cbef(Go) + (2Cef(Oo) - Cbef(oo) 2 (3.24)cdef ý de m +O Wdef(O 0.83iD'

in the limit of large channels. The values of Cdef(oo) and Cwef(oo) were obtained by extrapolating
the simulation data in the channels. This approximation (constant plus correction of order ýi-1) is
seen as a dotted line in Figure 3.7a and additionally the total defect concentration is observed to
approach the unbounded limit of 0.02 exactly as the channel width gets very large in Figure 3.7b.
This observation implies that the defect properties of the channel system approach the unbounded
system in the limit of large channels, as expected. Even for large channels however, there is still a
large concentration of defects at the walls as seen in Figure 3.8. The concentration of wall-defects
goes to a constant in the limit of large channels. The value that the wall-defect density approaches
(0.18) is much larger than the value that the bulk-defect density approaches (0.02). The cause of
this higher defect density can be seen in Figure 3.8 (inset) where there are stable dislocations along
the length of the wall. In the unbounded system, a dislocation is defined as a pair of neighboring
colloids with 5 and 7 neighbors respectively. Along the wall in the channel system, a dislocation
is defined as a wall-colloid with 3 or 5 neighbors neighboring a bulk-colloid with 7 or 5 neighbors
respectively. Along the wall, 18% of the total wall-colloids are part of a dislocation and are the
cause of the higher density of defects at the wall. The dislocations along the walls are spaced
evenly which is a consequence of the differing line-densities along the wall and in the first row. The
different line-densities, force wall-colloids and their neighboring row to form dislocations at regular
intervals in order to minimize the energy of interaction between these two rows.

The oscillations in defect concentration as a function of channel width decay much more slowly
than the oscillations in the wall-spacing or MSD. The splitting of the center row into two rows as
the channel width is increased causes a loose structure to form in the center of the channel and
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increases the defect concentration in the channel. When there are well defined rows in the center
of the channel, the structure there is very regular and therefore the defect concentration in the
channel is lower. As in the case of the wall-spacing and the MSD, the periodicity of the oscillations
in the defect density is - R but in this case the maxima and minima do not occur at integer
multiples of R. The oscillations in defect density persist for large channels (iii > 10) indicating that
the structure in the center of wide channels is still strongly influenced by the channel width. At the
walls however, the oscillations in the wall-defect concentration decay by a channel with of - 5. The
combination of these two observations leads to the conclusion that the large channel oscillations in
total defect concentration are due to bulk contributions and not the walls. Therefore, the structural
changes due to changing channel width are predominantly manifested in the center of the channel
and the structure near the walls is influenced in a secondary manner. The results in this section
indicate that defect concentration is a very sensitive measure of the effects of channel width on the
crystal structure in the channel.

3.2.5 Dynamics in 2D Channels

In Sections 3.2.3 and 3.2.4 we characterized the equilibrium structures that form in these systems
and we found that the colloids along the walls exhibit significantly different behavior from the
colloids in the bulk. We performed an analysis of the colloids against the wall and found that they
are highly localized and remain so over the duration of our simulations. Therefore, in this section
we will focus on the dynamics of the bulk colloids. Again, a bulk colloid is defined as any colloid
located at a distance greater than R/2 from the wall. All of the results presented for g9(6) are
given for the bulk colloids only.

The bond-order correlation function is shown in Figure 3.9 for a variety of channel widths at
two different field strengths. In Figure 3.9a g96() is shown for channels at a dimensionless field
strength of 16.13, a value well into the solid phase for an unbounded system. For a channel width
of 100, the g6(F) behavior is indistinguishable from the behavior in the unbounded system showing
that the channel system approaches the unbounded system in the limit of large channels. As the
channel width is made narrower the channel system becomes more disordered than the unbounded
system at this dimensionless field strength [33]. This trend towards more disorder is non-monotonic
and exhibits several oscillations as a function of channel width. An example of these oscillations is
illustrated by the g6(7) behavior for the dimensionless channel widths 5 to 3 (g to a) in Figure 3.9a.

In Figure 3.9b, g6M() is shown for channels at a dimensionless field strength of 12.41. This field
strength is well into the liquid phase in the unbounded system where g6 (M) decays exponentially
to zero. In Figure 3.9b (and Figure 3.9c) at a dimensionless channel width of 100, the g6(F) curve
begins to decay exponentially and is indistinguishable from the unbounded curve. However, at
a dimensionless lag time of - 1, a plateau begins to develop and the curve deviates from the
unbounded case. Eventually at a dimensionless lag time of - 50 the plateau begins to decay
exponentially again. We will discuss this plateau in more detail shortly. As the dimensionless
channel width is made narrower the channel system becomes more ordered than the unbounded
system at this field strength. Again, the non-monotonic behavior in g96() is observed for this
dimensionless field strength. In Figure 3.9b oscillations are shown for dimensionless channel widths
5 to 3 (g to a). However, in general as the channel width becomes wider the unbounded case is
approached slowly as seen in Figure 3.9c where four g6(7) curves are shown for successively wider
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Fig. 3.9: The bulk bond-order correlation function at a dimensionless field
strength of (a) F = 16.13, (b) F = 12.41 for a variety of channel widths.
(c) The bulk bond-order correlation function at a dimensionless field strength
of F = 12.41 for large channel widths. The letters a, b, c, d, e, f, g, h, i, j, and
k correspond to the dimensionless channel widths 3, 3.12, 3.46, 4, 4.15, 4.62, 5,
10, 20, 50, and 100 respectively. The dotted line corresponds to the unbounded
system at a dimensionless field strength of (a) F = 16.13 and (c) F = 12.41.
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channels, 10, 20, 50 and 100 at a dimensionless field strength of 12.41. The second exponential
decay of the plateau only becomes evident for channels with a dimensionless width iv- > 20. The
existence of this intermediate time plateau is a very interesting feature of this system and we offer
below an explanation for its origin and subsequent decay.

Local Dynamics

The origin of the plateau is due to the presence of the parallel flat walls in the channel systems.
The walls create a region of stable structure that extends away from the wall into the middle of
the channel. We are interested in probing the local dynamics in these regions and therefore we
chose to look at the bond-order correlation function in time for different sections of the channel.
We analyzed g6 (7) for strips of dimensionless width 2 along the length of the channel located at
increasing distances from the walls. Therefore, the strip labelled 0-2 indicates the sections of the
channel that are within a dimensionless distance of 2 from either wall. In our analysis, only colloids
that remained in a given strip for the duration of the lag time were considered. Additionally, only
bulk colloids were considered for this analysis (e.g. in the strip labelled 0-2, the colloids within a
distance R/2 from the wall were not used in the analysis).

The results of this analysis are shown in Figure 3.10 for a dimensionless channel width of 100 at
a dimensionless field strength of 12.41. In the regions nearest the wall (0-2 to 2-4) there is a very
well defined plateau in g6 (F) over all dimensionless lag times. As we move farther away from the
walls (4-6 to 6-8) there is still a distinguishable plateau in g6(T) over all lag times but it is plagued
by large statistical noise. The poor statistics are the result of the fact that the colloids in these
sections do not remain in their respective sections for very long times. If we move even farther
away from the wall (8-10 to 14-16) there is no longer a statistically distinguishable plateau in g6(M)
and all of the curves fall on top of the curve for the unbounded system at this dimensionless field
strength.

These results bring to light many interesting features of the dynamics in these systems. In
the sections where there is a plateau in g6(7), it remains constant until the longest lag time for
which we have statistics. Additionally, the value of this plateau is continuously decreasing as we
move away from the wall until there is no longer a statistically significant plateau. This continuous
decrease indicates that there is no well defined boundary between the "wall" region and the "bulk"
region but rather there is a continuous transition from one to the other. This result is similar to
the observations made by Segalman et al. [59] for a system of block copolymers confined in two
dimensional channels. Teng et al. [57] also observed the decay of order as one moves away from the
confining walls in a dusty plasma system. Additionally, in their results for g96() they observed a
plateau for the sections near the walls, in good agreement with our results.

Now we address the issue of the subsequent decay in the plateau in large channels (Figure 3.9c)
since no such decay is observed within the sections nearest the wall in Figure 3.10. The reason for
the decay is actually related to the mobility of the colloids in the different regions of the channel.
As mentioned previously, the statistics in Figure 3.10 for the sections 4-6 and 6-8 away from the
wall become rather poor at long times due to this mobility. In Figure 3.11 we show trajectories for
two colloids over four different dimensionless lag times in a dimensionless channel width of 100 at
a dimensionless field strength of 12.41. For all of the lag times, the colloid against the wall remains
very localized next to the wall but becomes increasingly mobile in the direction parallel to the wall.
For a dimensionless lag time less than - 1 (Figure 3.11a) the colloid in the bulk is able to explore
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Fig. 3.10: The local bond-order correlation function at a dimensionless field
strength F = 12.41 and a dimensionless channel width i = 100. The labels
0 - 2, 2 - 4, etc. refer to the dimensionless distance away from the wall where
statistics were taken. The distances 8 - 10 through 14 - 16 away from the wall
are statistically indistinguishable from one another and from the bond-order
correlation function for the unbounded system at this field strength.



3.2. Simulations of 2D MR colloids

R

ali

6

b

~4 tj _ýY ý'

C

Fig. 3.11: Trajectories for a bulk colloid (blue) and a neighboring wall colloid
(red) over four different times at a dimensionless field strength of F = 12.41
in a channel of dimensionless width fi = 100. The total trajectory time is (a)
F - 0.373, (b) -= 3.73, (c) ? 37.3, and (d) F = 373. The channel wall is
drawn as a solid line.

its local region without feeling the constraint of its neighboring colloids. This type of behavior is
seen uniformly over the entire width of the channel and gives rise to the initial exponential decay
in the bond-order correlation function. Over intermediate lag times (Figures 3.11b and c) that
colloid completely explores its local environment but remains trapped in its respective region near
the wall. Since the colloid remains trapped in this local region its orientation with respect to its
neighbors remains well correlated in time and therefore a plateau develops in g6(f). Over very long
lag times (Figure 3.11d) the bulk colloid is able to escape the region near the wall and make an
excursion into the center of the channel. This excursion causes the correlation of the bond-order
for this colloid to decay and therefore the plateau in g6 (F) begins to decay for very long lag times.

Figures 3.10 and 3.11 illustrate that the structure in the different regions of the channel combined
with the different dynamics in those regions give rise to the unusual behavior of the bond-order
correlation function in time. The region closest to the wall is highly structured and the colloids
there have low mobility while, at liquid-like field strengths, the regions far from the wall have less
structure and high mobility. The exchange of colloids between these two regions of the channel is
slow and therefore over intermediate times there is a plateau in g6(F) before the colloids near the
wall can escape into the bulk. It is important to note that in Figure 3.9c the decay in the plateau
is only seen for channels wider than - 20, matching well with what we have found in Figure 3.10
where we observed a persistent plateau in g6(F) out to a dimensionless distance of 8 from the
walls. This means that, at this dimensionless field strength, in channels with a dimensionless width
narrower than - 16 there are no regions where the g6(7) curve decays to zero and therefore in these
channels we would expect the plateau to persist for all lag times.

., r



3.2. Simulations of 2D MR colloids 57

a b
0 0 x oo 0oooo 0 0 0 0 o ~ 4, C

0 XO 00X X 0 X X 0 0

UUUAWAU UU A U V VU U UAW^ ,

S0O X 0XU 0 0X O
x 
U OoX0 00 d

0 0oX 0 · 0 0 0 0 X 00 0 9

oo XO Xoo XOOo XO0X 0 0 0

'oX 0 0 0 0 0 0 X 0 0 0 0 0 0 0 X A . *

Fig. 3.12: (a) Snapshots of equilibrium defect configurations at a dimensionless
field strength of F = 16.13 for sections of dimensionless length 20, in four
diferent channel widths c, d, e, and f corresponding to ii = 3.46, 4, 4.15, and
4.62 respectively (keeping consistent notation from the curves in Figure 3.9).
Open thin circles correspond to six-fold coordinated colloids (or four-fold if on
a wall), closed circles correspond to five-fold coordinated colloids (or three-fold
if on a wall), x symbols correspond to seven-fold coordinated colloids (or five-
fold if on a wall). (b) Trajectories of the colloids in that section of the channels
for a dimensionless lag time of F = 3.73.

The behavior of the bond-order correlation function and the dynamics of the colloids in general
are intimately related to the defects in these 2D systems [40, 37]. We have observed that the
channel-like confinement gives rise to some very interesting defect properties [33) and we will now
discuss in more detail how those defect properties affect the dynamics of the colloids in 2D channels.

Link Between Structure and Dynamics

It is well known that defects can give rise to increased mobility of the colloids in a solid 2D crystal.
This point is illustrated for the channel systems in Figure 3.12. Figure 3.12a shows the defect
structure for four different dimensionless channel widths (3.46, 4, 4.15, and 4.62) at a dimensionless
field strength of 16.13. Again, in the channel systems, a bulk colloid is said to be a defect if it
has more or less than six neighbors while a wall colloid is said to be a defect if it has more or less
than four neighbors. It is quite evident that the defect concentration is larger for the intermediate
channel widths of 4 and 4.15 than it is for the channel widths of 3.46 and 4.62. Additionally, it is
important to note that even in the channels with a low concentration of defects (3.46 and 4.62) there
are still regular dislocations along the wall [33]. Comparing the defect structures in Figure 3.12a
with the trajectories shown in Figure 3.12b it is seen that the colloids in the channels with more
defects are significantly more mobile than those in the channels with lower defect concentration.
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Similar to the trajectories in Figure 3.11, the colloids along the wall remain highly localized even
if there is significant mobility of the colloids in the bulk.

Again, the behavior (and the magnitude) of g6(7) is highly correlated to the defect structure of
the 2D system. Therefore comparing the curves in Figure 3.9a for the same dimensionless channel
widths as in Figure 3.12 we see that the oscillations in the trend of g6(f) as a function of channel
width come about because of oscillations in the defect concentration. In the unbounded 2D system
both the bond-order correlation function in time and information about the defects can be used
to characterize the phase of the system and therefore we will apply a similar analysis to our 2D
channel systems.

3.2.6 State-Diagram of Laterally Confined 2D Systems

As we have shown in Section 3.2.5, the channel system is quite heterogeneous with the regions near
the wall having different behavior than the regions farther away from the wall. Additionally, there
is no well defined boundary between these two regions and therefore it is very difficult to define
a "phase" for the entire channel system. We can however produce a map of the properties of the
system as a function of the independent thermodynamic variables controlling the system (F and
i5). An example of this type of state diagram is shown in Figure 3.13 where we have mapped the
bulk-defect concentration (Cbef) as it is closely related to the dynamics of the 2D channel system.
In Figure 3.13a we show the value of the bulk-defect concentration for each set of conditions that
we simulated. In Figure 3.13b we show an interpolated continuous contour plot for the same data
in order to more clearly illustrate the trends in the data. The most obvious characteristic of the
state diagram in Figure 3.13 is the re-entrant behavior observed as a function of dimensionless
channel width. The periodicity of the oscillations in the bulk-defect concentration as a function of
channel width is '- R. This observation suggests that the parallel channel walls cause a periodic
destabilization of the crystal in the bulk as the channel width is decreased. We do not observe any
re-entrant behavior as a function of dimensionless field strength, in contrast to systems confined in
2D circles or periodic ID light fields [48, 49, 50, 54, 55, 56].

A state-diagram such as this is important in that it shows how sensitive the structures, and
therefore dynamics, in 2D channel systems are to the geometric constraints imposed upon the
system. The state-diagram presented here is quite general and similar trends occur for other
properties of the 2D channel system such as the local orientational order parameter (P 6 ) and
even the value of the plateau in g6(7). Additionally, the re-entrant behavior as a function of the
dimensionless channel width is an interesting characteristic that has not been observed in other 2D
confining geometries.

As an example of the effect of F on the structure of the system we show density profiles for
four different dimensionless channel widths in Figure 3.14. The four dimensionless channel widths
in Figure 3.14 are the same as the four channels shown in Figure 3.12. For all of the dimensionless
field strengths in Figure 3.14 there is a large magnitude peak in the density profiles occurring at
the walls [33]. For low F systems (Figure 3.14a) there is not a significant qualitative difference
between the density profiles for the four channels. However, as F is increased (Figures 3.14b and
c) the density profiles for dimensionless channel widths 3.46 and 4.62 begin to appear strikingly
different from the profiles for dimensionless channel widths 4 and 4.15. Sharp peaks in the density
profiles appear across the channel for iii = 3.46 and 4.62 while for dimensionless channel widths of
4 and 4.15 the peaks are not as pronounced and there is less order across the channel.
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Fig. 3.13: (a) Bulk defect concentration as a function of channel width and
field strength. Light (yellow) indicates a high concentration of defects and dark
(black) indicates a low concentration of defects. Each symbol designates a sim-
ulation result. (b) Continuum plot of bulk defect concentration as a function of
channel width and field strength. Continuous contours have been interpolated
along lines of constant defect concentration from the data in (a).
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Fig. 3.14: Density profiles across the channels for three different dimensionless
field strengths (a) F = 2.48, (b) r = 8.69, (c) F = 13.65. Density profiles
are given for four dimensionless channel widths c, d, e, and f corresponding to
wi = 3.46, 4, 4.15, and 4.62 respectively (keeping consistent notation from the
curves in Figure 3.9).

Generality of re-entrant behavior for repulsive potentials

We have compared our results for the dipolar system with two other systems described here. The
first system consists of colloids interacting via a r- 6 potential defined as

Usij(rij) = 6 ( . (3.25)

Similar to the dipolar system, we define a dimensionless field strength F6 as

= 6 ( d 6  (3.26)
F6kT kR
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where the length scale R is as defined for the dipolar system. The simulation details for the r - 6

system are identical to those described in Section 3.2.1 and Chapter 2 for the dipolar system and
d < R so R is still the only important length scale.

The second system consists of hard-spheres confined in a 2D channel. The analogous term for
the dimensionless field strength FHS is defined for this system as [78]

FHS = nd2, (3.27)

where n is again the number density in the system. For the hard sphere system, the important
length scale is now d so the dimensionless channel width for these systems is defined as the true
width of the channel scaled by d. Additionally time is made dimensionless as t= t(kBT)/((d 2) for
this system. The simulations of the hard sphere systems utilized the same dimensionless time step
and total times as the dipole system. The algorithm developed by Heyes [27] was used to treat
hard sphere interactions for this system.

Ldwen [78] reports values for the solid-liquid phase transition for these two systems in the
unbounded limit as Fj = 5.33 and FHs = 0.887 (where the asterisk refers to the phase transition
point) giving us a reference for solid and liquid phases in these two systems. In Section 3.2.2 we
showed that the phase transition in the dipolar system occurs in the range F = 14.89 - 15.2 so for
this section we will take F* = 15.045 for the dipolar system.

In Figure 3.15 we illustrate the general result of re-entrant behavior in 2D channel systems
by showing data for bulk defect concentration as a function of dimensionless channel width for
the three different types of 2D colloidal systems. In Figures 3.15a and b the dimensionless field
strengths are such that the unbounded systems would be in the liquid phase while in Figure 3.15c
the dimensionless field strengths are large so that the unbounded systems would be well into the
solid phase. The curves in Figure 3.15 are equivalent to taking slices of constant F in Figure 3.13.
The hard sphere results in Figures 3.15a and b were done for different fractions of F4* than the
respective simulations for the dipole and r - 6 systems. This is because the hard sphere system
becomes a gas if the number density is too low and therefore loses all structure. In Figure 3.15, as
the interaction strength is increased, it is evident that the re-entrant behavior of the bulk defect
concentration as a function of channel width becomes more pronounced for the dipolar and r - 6

systems. For the hard sphere curves in Figures 3.15a and b this trend is evident as well. In
Figure 3.15c the FHs for the hard sphere system is large enough that there are hardly any defects
in any of the channel widths but even this system still exhibits re-entrant behavior as a function
of channel width. These results strongly suggest that the general form of the state-diagram shown
in Figure 3.13 holds for 2D colloidal systems confined in hard-wall channels and interacting with
repulsive potentials.

There are significant differences, however, between the three different types of colloidal systems.
For instance, in Figure 3.15c the hard sphere system is nearly perfect due to the high number density
while the other two systems still exhibit significant defect concentrations. A qualitative example of
this difference between the systems is given in Figure 3.16 where we present snapshots of the defect
structure in a section of a channel with dimensionless width 6.5 for the three different systems.
The dimensionless field strengths in Figure 3.16 are F = 1.13F*, F6 = 1.13r*, and FHS = 1.13r*s ,
all well into the solid phase for the unbounded systems. It is evident that the three systems have
significantly different defect distributions. The dipolar system shows the regular dislocations along
the wall that have been reported previously [33], while the other two systems exhibit no such regular
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Fig. 3.15: Concentration of defects in the bulk as a function of dimensionless
channel width at three different dimensionless field strengths (a) F - 0.16F*,
F6 = 0.16F, FHS = 0.79F*~ (unbounded liquid phase) (b) F = 0.58F*, Fe
0.58F*, FHS = O.9FHS (unbounded liquid phase) (c) F - 1.13F*, F6 = 1.13F*,
FHS = 1.13F;P (unbounded solid phase). The (black) solid lines correspond to

the dipolar system (r 3 ), the (red) dotted lines correspond to the r - 6 system,
and the (green) dashed lines correspond to the hard sphere system.
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Fig. 3.16: Snapshots of equilibrium defect configurations in channels with a di-
mensionless width ofne = 6.5 and a dimensionless fiel strength ofin = 1.13buffer insi*,
r6 = 1.13FP, rHs = 1.13r* . Each snapshot shows a section of dimensionless

length 100 (total dimensionless channel length is 170). orden thin circles corre-
spond to sithin the-fold coordinated colloids (or four-fold if on a wall), closed circles
correspond to five-fold coordinated colloids (or three-fold if on a wall), x sym-
bols correspond to seven-fold coordinated colloids (orfive-fold if on a wall). The
channel walls are shown as solid lines.

defects along the walls. Rather, in the r-6 system, the defects are found in small clusters that are
distributed along the length of the channel. In the hard sphere system there are very few, short
lived, pairs of dislocations showing evidence of the extreme ordering mentioned above.

3.3 Experiments on 2D MR Colloids

The 2D MR colloid system was also studied experimentally as a model for the self-assembly of MR
fluids in microfluidic geometries. The experimental study of this system will have tremendous im-
pact on the choices of materials and dimensions for real microfluidic devices utilizing self-assembled
MR fluids as structural components.

3.3.1 Experimental Procedures

Using soft-lithography [82J we fabricated poly-dimethylsiloxane (PDMS) channels 40Atm tall and
40, 80, and 2001im wide. These channels were treated with an oxygen plasma and bonded to
a thin sheet of PDMS such that the two ends of the channel remained open. The channel was
filled with a solution of paramagnetic colloidal spheres (2.8um carboxylated DynaBeads® M-270,
Dynal) suspended in 5.Ox TBE buffer (0.17M ionic strength) to screen the electrostatic repulsion
between the colloids. At this ionic strength the Debye length is -1nm. The colloids have a magnetic
susceptibility of 1 (given by manufacturer) [83] and a specific gravity of 1.6 causing them to sediment
in the z-direction due to gravity to the bottom of the channel, forming a monolayer in the x-y plane
with out of plane thermal fluctuations less than - 8Onm. The open ends of the microchannel were
then sealed using Vaseline® and the entire channel system was submerged in TBE buffer inside
a sealed chamber with dimensions of -v 2cm x 2cm x 2cm in order to prevent evaporation and
pressure driven flows within the channel. The cell was placed inside an electromagnetic coil (25mm
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Fig. 3.17: (a) Schematic of the experimental setup (not to scale). An end view of
the channel is shown with the shaded regions being PDMS. The beads sediment
in the z-direction to the bottom of the channel. The entire channel system is
submerged in TBE buffer inside a chamber and placed into the center of the
magnetic coil. The system is observed from underneath with the microscope
objective (20x) and the images are captured with a CCD camera and sent to
the computer for analysis. (b) SEM image of the PDMS channel before it is
sealed. The opening shown will be the bottom of the well once the channel is
sealed with a thin sheet of PDMS. The arrows indicate the location of the walls
of the channel. (c) Characteristic image obtained during an experiment. The
channel width is 40,pm and the dimensionless channel width is 3.44. (d) Trace
of the positions of the colloids in (c) for a dimensionless time of 0.65.

inner diameter) such that the channel was located in the center of the coil thus causing the system
to experience a uniform magnetic field in the z-direction (normal to the monolayer of colloids).
The magnetic field was calibrated using an axial Hall probe and Gauss-meter (SYPRIS) and found
to be uniform within a circle of radius 1cm in the center of the coil. The uniform field induced
dipole moments in the colloids causing them to experience purely repulsive interactions [73]. The
magnetic coil was placed on an inverted microscope (Axiovert 40 CFL, Zeiss) and image stacks of
the system were captured using a CCD camera (KPM1A, Hitachi). A schematic of the experimental
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setup is shown in Figure 3.17a and an SEM image of one of the PDMS channels (before bonding)
is shown in Figure 3.17b. An example of an experimental image is shown in Figure 3.17c. The
image stacks were analyzed off-line using custom programs [84, 85] written in the IDL language
(Research Systems, Boulder CO) allowing us to assemble trajectories for the colloids such as the
one shown in Figure 3.17d.

The dimensionless channel width iii was defined as the real channel width divided by R. Using
the current in the magnetic coil and the number density of colloids in the system as free parameters,
we were able to explore a large section of the F - i phase space. We varied the dimensionless width
of the channels between experiments by changing n, keeping d < R for all of the channel widths.
We performed experiments for a dimensionless field strength of F - 12 ± 1 (in the liquid phase
in the unbounded system [40, 86, 34]). The precise value of F could only be measured after an
accurate value for n was obtained, during the off-line analysis of the experiment, and therefore
during an experiment we aimed for F - 12.

After filling the channel with magnetic colloids, allowing them to sediment, and estimating n
for a given system, the magnetic field was turned on and the system was equilibrated for several
tens of dimensionless times. We measured the free diffusion coefficient of the colloids along the
surface to be - 52% of the calculated Stokes diffusion coefficient (Do = kBT/(). Time was made
dimensionless with the time for a colloid to freely diffuse one unit length along the PDMS surface
[t= t(0.52kBT)/((R 2)]. After equilibration, 1000 images were taken over a dimensionless time of
- 15 and used to analyze the structural and dynamical properties of the system. By repeating
several experiments at fixed conditions and obtaining identical results each time, we ensured that
the size of the system and the time over which statistics were taken was sufficiently large to represent
the equilibrium state of the system. The calculated properties were then compared with results
from BD simulations performed as previously described. These simulations do not have any fitted
parameters as all of the physical properties in the experiments were known a priori (or measured)
for the beads, coil, and channels.

3.3.2 Structural Oscillations

As stated previously, the most characteristic global property of the structure in this system is the
layering of the colloids parallel to the channel walls [57, 33]. This layering is illustrated in the
density profiles shown in Figure 3.18 from the experimental system (dotted lines) and from BD
simulations (gray solid lines). For all of the channel widths there is very good agreement between
the simulation results and the experimental results. Slight differences arise at the walls of the
channel where the experimental peak heights show some variance with respect to each other and
the simulation results. In the PDMS channels the walls are not perfectly planar (Figure 3.17b) and
this roughness gives rise to the differences in the peak heights that we observe experimentally.

In order to accurately and quantitatively capture the effects of the rough walls in the density
profiles generated from our BD simulations, we obtained an estimate for the standard deviation of
the wall position from our experiments and used that information to approximate "rough walls"
during the post processing of the simulations. A schematic of this process is presented in Figure 3.19.
The experimental distribution of the wall position was determined by tracing the position of each
wall colloid for the duration of the 1000 frames and taking the outer most x-position (normal to
the wall) as the location of the wall in the vicinity of that colloid. We were then able to assemble
a distribution of wall positions for the channel. For a typical experiment the wall position was
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Fig. 3.18: (a) Density profiles across the channels for ten different dimensionless
channel widths 2.74, 2.98 3.07, 3.19, 3.44, 3.93, 4.08, 4.25, 4.52, and 15.63. The

gray solid curve corresponds to the predictions from BD simulations and the
dotted black curves correspond to the density profile measured experimentally.
(b) Snapshots of the experimental system and Delaunay triangulations for five
different dimensionless channel widths 2.74, 3.07, 3.44, 4.08, and 4.52. All
of the channels shown have a true width of 40pm. Open triangles are seven-
coordinated colloids (five-coordinated if next to the wall) and closed circles are
five-coordinated colloids (three-coordinated if next to the wall).
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Fig. 3.19: (a) Top: The distribution of wall positions for a dimensionless chan-
nel width of 2.74 is shown as the gray histogram and the gaussian curve with
the same mean and standard deviation as the histogram is shown as a dotted
black line. Bottom: Schematic of one channel wall illustrating the roughness
and how the wall colloids can be used to probe that roughness. (b) Comparison
of experimental (dotted black) and simulation (solid gray) density profiles for a
dimensionless channel width of 2.74 before and after the simulation data have
been corrected for wall roughness.

measured to have standard deviation of - 0.3/pm. In post-processing the simulation results, a
random gaussian variable was added to the x-position of the wall colloids with the same standard
deviation as measured from the experiment. Even with the presence of rough walls however, both
the experiments and the simulations exhibit very large peaks at the walls indicating the high degree
of localization that occurs at the hard-wall.

Another important property to note is the periodic broadening and sharpening of the peaks in
the center of the channel as the channel width is increased (Figure 3.18a). This behavior implies that
there are structural changes occurring in the center of the channel as a function of the dimensionless
channel width. In order to study in more detail these structural changes, we used the experimental
images to perform a Delaunay triangulation on the positions of the colloids to determine the nearest
neighbors and the locations of the defect sites in the channel as shown in Figure 3.18b. A colloid
was considered a defect if it had more or less than six neighbors. Again, in the case of flat walls, we
have to treat the colloids at the walls differently than those in the bulk and therefore, we define the
wall colloids as any colloid located within a distance of R/2 from the wall. Recall, wall colloids are
considered to be defects if they have more or less than four neighbors. The results in Figure 3.18b
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show clearly that the structure in the narrow channels is oscillating between order and disorder
(low and high defect concentrations) as the channel width is increased.

A similar set of structural transitions has been noted previously for hard sphere systems confined
in thin slits (3D systems) [87, 88]. However, in the case of hard spheres in thin slits, the structural
transitions are the result of geometric constraints upon the packing of the spheres resulting in
transitions from one type of solid crystal structure to another. The 3D system can transition from
a triangular to square lattice and back as the thin gap height is increased [87]. In the case of
repulsive dipoles confined in 2D channels, the system remains in a triangular lattice at all channel
widths but the lattice lines alternate between straight (parallel to the walls) and buckled as the
channel width is increased. Additionally, in the 2D channel system, the structural transitions are
intimately tied to changing dynamics in the system.

For the largest channel shown in Figure 3.18a the layering near the walls is seen to give way
to an isotropic (liquid) structure in the center of the channel for this dimensionless field strength.
This feature strongly resembles the structure of a hard sphere fluid near a flat hard wall. In the
case of hard spheres, the wall can act as a nucleation site for a perfect, layered, crystal to form out
of the fluid phase [64]. However, in the case of repulsive dipoles in 2D next to a hard wall this is
not exactly what happens. The long-ranged nature of the colloidal interaction combined with the
presence of a hard wall leads to a higher concentration of colloids along the wall than in the bulk
for large channels [33]. This concentration difference causes the appearance of dislocations along
the wall, as seen in Figure 3.20c, resulting in a seemingly contradictory response of this system to
the presence of a flat hard wall. In Figures 3.18a and 3.20b the dimensionless channel width 15.63
clearly exhibits a more crystalized (layered) state near the walls but we show that although the
wall assists in the natural formation of a crystal it also induces regularly spaced defects in that
crystal. Furthermore, as seen in Figure 3.20c, the first layer in the bulk corrects the structure and
the dislocations along the wall no longer strongly affect the structure of the rest of the system.
This experimental result is consistent with the simulation results discussed earlier in this chapter.

The appearance of dislocations along the wall is an interesting phenomenon seen in different
forms in other systems. The large channel limit in hard-wall channels is essentially equivalent to
a hard circular confinement with infinite radius. Kong et. al. [53] showed that large 2D clusters
confined in hard-wall circles exhibit a high number of defects along the confining boundary. More
recently de Villeneuve et. al. [63] studied a 2D slice of a 3D hard-sphere colloidal system near a
spherical impurity, using confocal microscopy. The spherical impurity created a convex boundary
in the 2D slice. In this case they observed grain boundaries emanating radially outward from
the circular boundary similar to the regularly spaced dislocations observed in our 2D hard-wall
channel system. However there are significant differences between these three examples. In the
large 2D clusters as well as the convex boundary case, the defects along the confining boundary
are attributed to the bending of the lattice while in our system the lattice does not need to bend
at the boundary. Additionally, in the case of the convex boundary, the defects continue to radiate
out into the bulk as grain boundaries while in our system they are terminated after the first layer
in the bulk.

3.3.33 Structure and Dynamics

Having located the defect sites in our system we were also able to calculate the average concentration
of defects for a given set of conditions. The results for the total and wall concentration of defects are
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Fig. 3.20: (a) Experimental image for a section of a channel with 1i = 15.63
showing the structure near the wall. (b) Density profile in the section of
the channel shown in (a). (c) Delaunay triangulation for the section of the
channel shown in (a). The shaded region at the bottom represents the "wall-
region" (a distance less than R/2 from the wall). Open triangles are seven-
coordinated colloids (five-coordinated if in the wall region) and closed circles
are five-coordinated colloids (three-coordinated if in the wall region).
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Fig. 3.21: Defect concentration as a function of dimensionless channel width at
a dimensionless field strength of 12 ± 1 for (a) the channel as a whole and (b)
the wall region. The solid line represents the simulation results for F = 12 with
the shaded region representing the range of defect concentrations for F = 12 1.
The closed circles represent the experimental data. (c) Colloid trajectories in
two different channel widths (4.08 and 3.44) at F = 12 ± 1 for a dimensionless
time of 0.65.

shown in Figures 3.21a and b respectively. We observed very pronounced oscillating behavior in the
total defect concentration (Fig. 3.21a) in our experimental system. We note that for very narrow
channels, the total defect concentration follows closely with that of the wall defect concentration
since most of the colloids in the system are wall colloids. However, above a dimensionless channel
width of ~ 5 the wall behavior begins to deviate from that of the total defect concentration. As
predicted [33], in the large channel limit, the wall defect concentration goes to a constant value not
equal to zero due to the presence of stable dislocations along the wall.

The defect concentration is intimately tied to the dynamics of the system and therefore the
dynamical behavior of the system also oscillates as a function of dimensionless channel width. In
Fig. 3.21c the two traces shown are for a peak (4.08) and valley (3.44) in the defect concentration
curve shown in Fig. 3.21a. The channel with the higher defect concentration (4.08) exhibits more
liquid-like dynamics, with some of the colloids more easily able to diffuse away from their original
positions in a short time. For the lower defect concentration (3.44) the colloidal crystal appears to
be more solid-like with the colloids remaining on their original lattice sites.
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Fig. 3.22: Bulk bond-order correlation function as a function of time for five
different dimensionless channel widths 2.74 (solid line and circle symbols), 3.07
(dotted line and triangle symbols), 3.44 (dashed line and square symbols), 4.08
(dash-dot line and diamond symbols), and 4.52 (dash-triple-dot line and x sym-
bols). The lines represent results from BD simulations and the symbols are
experimental results.

A more quantitative measure of the dynamics in the system is the bond-order correlation func-
tion in time (g6(7)). In the 2D channel system, the behavior of g6(Q) for the colloids in the bulk (a
distance greater than R/2 from the wall) can be used as a measure of the state of the system [34].
In Figure 3.22 we show g6(F) data for the five dimensionless channel widths shown in Figure 3.18b
from both simulations and experiments. As the dimensionless channel width is increased from 2.74
to 4.52 the 96 (7) behavior of the system oscillates between a solid like constant for iii = 2.74, 3.44,
and 4.52 and a liquid like decay for ivi = 3.07 and 4.08. All of the curves in Figure 3.22 show the
characteristic intermediate-time plateau in g6(7) that is expected for thin channels but they illus-
trate the re-entrant behavior of the system, transitioning from liquid-like to solid-like and back as
the channel width is increased [34]. Previous authors have theoretically predicted similar re-entrant
behavior for another 2D system (in parabolic confinement) [60] but this is the first experimental
observation of re-entrant behavior as a function of confining geometry for 2D repulsive colloidal
systems.

Contrary to these results are the observations for colloids confined in 2D circles [48, 49] where
re-entrant behavior is reported as a function of the dimensionless field strength. In Figure 3.23
we show that there is no such re-entrant behavior as a function of dimensionless field strength in
this system. However, we do note that the behavior of the system as a function of dimensionless
field strength is strongly dependent upon the dimensionless width of the channel. For i = 3.07,
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Fig. 3.23: The total defect concentration as a function of F for three different
dimensionless channel widths 3.07 (triangles), 3.41 (squares), and 10.93 (cir-
cles). The lines represent simulation results for i = 3.07 (dotted line), 3.41
(solid line), and 10.93 (dashed line).

increasing F does not greatly affect the concentration of defects in the system while for i = 3.41
the concentration of defects decreases significantly as F is increased. For wider channels such as
w = 10.93, increasing F causes a decrease in the total defect concentration because, as mentioned
previously, the large channels have a bulk region that behaves more like the unbounded system
(without walls).

3.4 Summary

An analysis has been presented of the structure and dynamics in a system of repulsive dipoles
confined in 2D channels. The application of parallel planar walls to the system of 2D dipoles results
in unique and sometimes surprising properties. This system has not been explored in the literature
and it is important in further understanding the effects of confinement on colloidal systems.

The alignment of the crystal in the direction of the walls is expected for any confined colloidal
system, however the large magnitude of the wall-peaks in the density profile is a unique property
of the long-ranged nature of the particle interactions. The spreading of the peaks in the center
of the channel, for channel widths not commensurate with the natural crystal, indicates a loss
of structure in that region. The defect concentration and local bond-orientational order in the
channel confirm that the local structure is disrupted in these channels. The oscillations in all of
the structural properties indicate that the crystal in the 2D channel system can be altered by slight
changes in the channel width. This is a very important observation for any application that is
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highly dependent on the type of structure in the channel. Additionally, the slow approach (iD-1)
of the system properties to their unbounded values indicate that channel-like confinement, even
fairly large channels, drastically changes the structural properties of the 2D dipolar crystal. The
same properties of MR colloids confined in 2D channels were observed in both simulations and
experiments indicating that the BD simulations are capable of reproducing realistic results for this
system.

The structural analysis of the dipole system in 2D channels shows many similarities to other
studies of confined 2D systems. Wall-induced layering is observed in this system analogous to the
layering observed in the dusty-plasma study [57] and the shell structure in circular confinements [49,
89, 51, 90, 52]. However, in the case of repulsive magnetic dipoles there is a higher density and
localization at the walls in the 2D channel system than in the dusty plasma system. Extreme
localization of the wall-particles has been observed in hard circular confinement studies with long
ranged repulsive interactions [89]. However, the increased localization as a function of the channel
width is an important observation in this study in that it shows how the addition of walls continues
to influence the behavior of the system, even for large channel widths. In the experimental systems,
where the channel walls appeared rough on the length-scale of a colloid diameter, the extreme
localization of colloids at the walls was also observed and affected the structure and dynamics of
the rest of the system.

Similar to the dusty plasma study, order-disorder transitions were observed in the channel by
observing the alternate sharpening and broadening of the density peaks as the channel width was
increased. However, in the case of the dipole interactions, the wall-peak actually increases in
magnitude as the channel width is increased due to the long-ranged nature of the inter-particle
interactions and the presence of the hard wall. Also, the sharpening and broadening of the peaks
only occurs near the center of the channel in the case of dipolar interactions indicating that the
structure of the crystal in the center of the channel changes significantly with only slight changes
in the channel width. The oscillations in the structural properties as a function of the channel
width occur with a regular period - R indicating that there are certain regular intervals of channel
widths (magic numbers) that are commensurate with the natural structure of dipolar particles
in 2D channels. These magic numbers do not occur at integer multiples of R, as expected, but
are influenced by such system properties as the high density at the walls. This observation is
important in that it indicates that there is an appropriate, yet complex, methodology for predicting
the structures that will form in the channel system.

We have compared the dynamical properties of these systems to the case of an unbounded
2D system. We have performed careful simulations of the unbounded system in an attempt to
determine over which range of dimensionless field strengths the solid-liquid phase transition occurs.
We were able to determine that the phase transition occurs in a narrow range of dimensionless
field strengths (between 14.89 and 15.2) but we were unable to converge our simulations of the
unbounded system between these two dimensionless field strengths. Experimentally, a hexatic
phase has been observed in this system [39, 40, 41] indicating that it may be possible to observe
this type of phase in a simulation with an extremely large number of colloids.

We perturbed this 2D unbounded system by introducing parallel hard walls to create a channel-
like geometry. In the channel systems we observed dynamics that differed significantly from the
unbounded system in both our simulations and experiments. We observed the existence of a
plateau in the bond-order correlation function due to the stabilizing presence of a hard wall. We
also observed that the channel systems exhibited strikingly different local structure and dynamics in
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the regions near the wall and farther away from the walls causing both the onset and the subsequent
decay of the plateau in the bond-order correlation function in large channels at lower dimensionless
field strengths. The heterogeneity of the channel systems was shown by calculating the bond-order
correlation function in different sections of the channel. We observed a decay in the correlation
function as we moved away from the walls in our channel systems. This observation is consistent
with studies performed on spherical block copolymers confined in very wide 2D channels [59].
However, combining this observation with our analysis of the local dynamics of the colloids leads
to an explanation of the anomalous form of the g6(F) curves seen in this 2D channel system.

The dynamics in 2D colloidal systems are strongly linked to the defect properties of those
systems and we showed this to be true for the 2D channel systems as well. We have presented
a state-diagram for dipoles confined in a 2D channel system as a function of dimensionless field
strength and dimensionless channel width that summarizes the behavior of these systems. The
qualitative aspects of the state-diagram are applicable to any order parameter of the 2D channel
system as they are all linked to the structure and dynamics. The exact nature of the simulation
state-diagram was further validated by direct comparison to our experimental results for the 2D
channel system. Additionally, by simulating systems with sharper repulsive potentials we have
shown that the general form of the state-diagram presented here (with re-entrant behavior) can be
considered universal for colloids in 2D hard-wall channels interacting with repulsive potentials.

We have observed re-entrant behavior in the properties of the dipolar system as a function of the
geometry of the system, not the dimensionless field strength. This finding is similar to the re-entrant
behavior observed in other simulation studies of colloids confined in 2D channels [60] demonstrating
that, qualitatively, this behavior can be seen for a variety of colloidal interactions as well as confin-
ing potentials. Despite the qualitative similarities however, there are important differences between
the hard wall confinement presented here and the parabolic confinement studied previously. These
differences have been discussed extensively in the case of 2D circular geometries [89, 48, 50, 53]. An
example of an important difference between these two types of confinement is that the average den-
sity of colloids remains constant when the external field strength is decreased in hard wall systems
while in systems with parabolic confinement the average density of colloids increases with decreased
external field strength. As a result of these distinctions, hard wall systems and parabolic systems
can behave quite differently, even in the case of channels. An example of this difference in behavior
is the unusual structural transition from four rows to three rows and then back to four rows as the
interaction strength between colloids was increased in parabolic channel-like confinement [60]. No
such structural transition is observed in the case of hard wall confinement. However, as mentioned
previously, both systems do exhibit re-entrant behavior.

We did not observe any re-entrant behavior as a function of dimensionless field strength in
either our simulation or experimental results but the re-entrant behavior as a function of the di-
mensionless channel width implies that the structural properties and therefore the dynamics of
these self-assembled colloidal systems in microfluidic geometries are very sensitive to the confine-
ment geometry itself. This will have impact upon many applications where both the structure and
mobility of the self-assembled colloids are important considerations in the application design. Ad-
ditionally, it illustrates the many effects that confinement can have upon the self-assembly process
of colloidal systems.
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3.5 Outlook

The specifics of the self-assembly next to the hard-wall have been discussed in this work and we
have shown that although the wall does induce an ordered layered structure in this system, it also
causes defects to form along the wall disrupting the natural lattice. This is an example where
confining boundaries are used to both promote stability and disrupt natural structure in a single
colloidal system.

Looking forward into the future, the next step that this research can take is to investigate more
closely the properties of the dislocations that arise along the walls in the 2D hard-wall channels
for repulsive dipoles. We have determined that one of the causes of the interesting structural
and dynamical behavior in 2D channel systems is the different crystal structure that exists next
to the walls in these systems. This study will be important to elucidate the physics behind this
observation. The energetics of the 2D colloidal crystal in hard-wall channels are an important
property that will help to explain why the dislocations arise for dipoles but not for r - 6 potentials.
Additionally, the nature of the dynamics of the dislocation glide along the walls will be an important
property for understanding in more detail how the dynamics of the 2D crystal are affected by the
introduction of parallel hard walls with a dimensionless width of iu. From a practical standpoint,
once we fully understand the origin and effects of the dislocations along the walls, we can design
microfluidic devices to either utilize the presence of the dislocations or to suppress their formation.





CHAPTER 4

Thin Slit Systems

The confined self-assembly of induced dipoles such as the kind found in magnetorheological (MR)

fluids has been of great interest for many years from both a fundamental science standpoint and

from a practical application standpoint [91, 10, 3, 92]. The confinement of MR fluids can cause
drastic changes in the nature of the structures that form under the application of an external

magnetic field [10, 93]. Recently, the self-assembled structures formed by MR fluids under the
application of an external magnetic field have been used as structural components in microfluidic
devices to perform size-dependent separation of DNA molecules [3, 92]. In these devices, a low
volume fraction MR fluid is self-assembled in a slit-like microchannel by the application of a uniform
external magnetic field directed normal to the thin-slit. The self-assembled structure formed by
the MR fluid in this geometry resembles an array of column-like clusters spanning the height of
the channel. The spacing between these columns (or the pore-size in the channel) is an important
parameter for characterizing the efficacy of the DNA separation.

4.1 Background

Columns can form in thin-slit channels when the volume fraction of MR colloids is less than about
0.1 and the external magnetic field strength is strong enough to overcome the Brownian motion
of the colloids [94, 91, 10, 8]. There has been much research done to measure and model how the
spacing between the column structures in thin-slits depends upon the thickness of the slit. The
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experimental investigations have been performed in thin-slits with thicknesses ranging from - 10
to 1000's of colloid diameters [94, 91, 10, 93, 8]. The theoretical investigations into this system have
generally been performed at infinite external field strength (or zero temperature) [94, 95, 96]. All
of the experiments and theoretical studies performed on this system have concluded that there is a
power-law dependence on the spacing between columns as a function of the thickness of the thin-
slit [94, 91, 10, 93, 95, 96]. However, there has been much disagreement about the exact value of the
power-law. A survey of the literature can convince one that it is generally agreed that the power-law
in thin-slits with a thickness of - 10 to 100's of colloid diameters is - 0.4 and as the slit-thickness
is increased to several 1000's of colloid diameters the power-law transitions to - 0.6 [94, 91, 10, 95].
All of the above results are generally applicable as long as the external magnetic field is large
enough to overcome Brownian motion. However, as the magnitude of the external magnetic field
approaches infinity, there is theoretical evidence that there should be in fact only a single power
law dictating the spacing between columns as a function of the slit-thickness [96].

It is well known that as the external magnetic field is slowly increased from zero to a large value,
bulk field responsive fluids such as MR fluids undergo several structural transitions [97, 98, 8, 991.
The first transition is from a gas of Brownian colloids to randomly distributed chains of colloids
aligned in the field direction. This aggregation into chains is known as head-to-tail aggregation.
As the field is further increased, the chains of colloids begin to aggregate laterally in order to form
clusters of zipped chains. This secondary aggregation is known as zippering. Likewise, in confined
MR fluid self-assembly the same transitions can occur as the external field magnitude is increased.
These transitions are illustrated in Fig. 4.1 where we show a schematic of the evolution of the
MR fluid structure from a randomly dispersed state (left) to the lowest energy state (right) in two
different slit-thicknesses. In the top of Fig. 4.1 the lowest energy structure on the right consists of
chains spanning the height of the thin-slit and therefore only head-to-tail aggregation is necessary
to form these structures. In the bottom of Fig. 4.1 the system must undergo both the head-to-tail
aggregation and the zippering transitions. However, because of the confinement in a thin-slit, the
energy barriers associated with the zippering of chains of MR colloids can be large, thus preventing
the system from reaching the lowest energy state. We will show that one needs to take into account
not only the lowest energy state of the thin-slit system but also the energy barriers associated
with achieving that state in order to fully understand the self-assembly of MR fluids confined in
thin-slits.

The characteristic length-scales in microfluidic devices are ever-shrinking and therefore it is
likely that the thickness of the channels used for DNA separations will continue to shrink down to
the fundamental limit of a single MR colloid diameter. In the extreme case where the thickness
of the channel is equivalent to a single colloid diameter, the MR colloids will self-assemble in
truly two-dimensional (2D) channels. As of yet, the self-assembly of dilute MR fluids in such
extreme confinement has not been studied. Some work has been done to study the self-assembly of
concentrated MR fluids (> 0.2 volume fraction) under this extreme confinement but the structures
that form at such high concentrations are not column-like [11]. Some of the infinite field theoretical
models mentioned previously can be extended down into the range where the slit-thickness is less
than 10 colloid diameters but, as we will show, these models do not tell the whole story of the
self-assembly in thin-slits.

In this work we use Brownian dynamics simulations to study the self-assembly of dilute MR
fluids under confinement in thin-slits. We are interested in studying the phase space that is practical
for the microfluidic DNA separation devices mentioned previously, namely volume fractions < 0.1
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Fig. 4.1: Top: Schematic of the self-assembly of an MR fluid confined in a thin-
slit with a thickness equal to 4 colloid diameters. At time zero the MR fluid is
a gas-like Brownian suspension and as the external field is slowly ramped the
colloids aggregate head-to-tail in order to form chains spanning the height of the
thin-slit. Bottom: Schematic of the self-assembly of an MR fluid confined in a
thin-slit with a thickness equal to 10 colloid diameters. At time zero the MR
fluid is a gas of Brownian colloids and as the external field is slowly ramped the
colloids first aggregate head-to-tail in order to form chains and then undergo a
secondary zippering transition in order to reach the lowest energy state. There
can be significant energy barriers to the zippering transition.
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and external fields that are sufficiently large to cause structure formation but small enough that they
can be experimentally realized. We observed that there is a cross-over from truly 2D behavior to
the 3D behavior observed in the experimental systems mentioned above. We explain the mechanism
of the cross-over in these systems and discuss the details of the structure in the systems when the
slit-thickness is < 5 colloid diameters. We propose a model for predicting the properties (structure
and dynamics) of the self-assembled MR fluids in the case of extreme confinement.

4.2 Simulation Details

We used the Brownian dynamics (BD) simulation technique to model the self-assembly of the MR
fluid in thin-slits [24, 33, 34]. The dimensionless equation of motion for this system was derived in
Chapter 2 (Equation 2.10). The equation of motion was integrated forward in time using a simple
Euler integration scheme. At the end of a time-step, hard sphere overlaps were treated with the
Displacement Algorithm (Chapter 2). This procedure was performed for all overlaps, between two
colloids and between colloids and hard walls [33, 34], and was iterated until all overlaps in the
system were removed.

The boundary conditions of the simulations in this work were periodic in the x- and y-directions
and hard-walls in the z-direction. The uniform external magnetic field was directed in the z-direction
(normal to the thin-slit) causing the MR colloids to self-assemble into column structures spanning
the height of the thin-slit. Simulations were performed for the self-assembly of five different volume
fractions of MR fluid (4 =0.01, 0.03, 0.04, 0.05, and 0.07) in thin-slits ranging in thickness from
ld to 30d (or dimensionless thickness of L = 1 to 30). The simulations were done in boxes with
dimensionless lengths of 60, 35, 35, 30, and 30 in the x- and y-directions for the volume fractions
0.01, 0.03, 0.04, 0.05, and 0.07 respectively. Therefore, the number of colloids in the simulations
(N) ranged from 69 to 3,610 depending upon L and 4.

A dimensionless time-step of At = 10- 4 was used with time made dimensionless as t =
t (kBT) / ((d2) where ((d 2) / (kBT) is the time necessary for an MR colloid to freely diffuse a
distance equal to its diameter. A dimensionless cutoff for the dipole-dipole interaction of 20 was
used along with a linked-list binning algorithm [25] where the bin sizes were slightly larger than
the cutoff value. Therefore, only interactions between colloids separated by a distance less than
the cutoff were considered. The simulations were started from a random configuration and the ex-
ternal magnetic field strength was ramped continuously from A = 0 to A = 50 over a dimensionless
time of 100 after which it was held constant at A = 50. Ramping the external magnetic field over
a longer time did not change the final properties measured in the simulations. We tracked the
spacing between the columns (or clusters) formed by the MR colloids until it remained constant
for a dimensionless time of at least 100 before we began to collect statistics. All of the simulations
were determined to be converged in system-size, time-step, cutoff for the dipole-dipole interaction,
and ramp-time for the external magnetic field. For each set of conditions (4, L), six separate tra-
jectories were simulated (all from different starting configurations) in order to obtain a reasonable
average for the physical properties of the structure and dynamics in these systems. An example of
an equilibration curve for L = 5 and ¢ = 0.01 is shown in Fig. 4.2. Schematics of the initial and
final states of the system are shown as insets in Fig. 4.2.

The average spacing between clusters was calculated in the following manner as illustrated in
Fig. 4.3. Starting with a snapshot of the system configuration (Fig. 4.3 left), the (Y, y-) position of
the center of mass was calculated for each continuously connected cluster of MR colloids resulting
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Fig. 4.2: The average dimensionless spacing between clusters ((- ) versus di-
mensionless time for a typical simulation (L = 5) where the dimensionless
external magnetic field is ramped from A = 0 to A = 50 over a dimensionless
time of 100 and then held constant at 50 until the system reaches steady-state.
The inset on the left shows a typical random starting configuration and the inset
on the right is an example of the final, steady-state structure.
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Fig. 4.3: Left: Top view of the simulation box. Middle: 2D projection of the
centers of mass of all the clusters in the simulation box. The red line represents
the periodic boundaries of the simulation box. Right: Delaunay triangulation
of the 2D projection showing the nearest neighbors of all of the clusters in the
simulation box from which the average spacing can be calculated.

in a 2D projection of the thin-slit system in the x-y plane (Fig. 4.3 middle). MR colloids were
considered to be connected if they were in hard-sphere contact. A Delaunay triangulation was
performed on the 2D projection in order to determine the nearest neighbors of each cluster (Fig. 4.3
right). The average distance between clusters was then calculated as the average distance between
nearest neighbor clusters.

4.3 Transition from 2D to 3D

As mentioned above, the previous work on the self-assembly of MR fluids in thin-slits under the
application of a uniform external magnetic field normal to the thin-slit has all been done in slits
with dimensionless thicknesses ranging from L ~ 10 to 1000's. We are interested in probing the
properties of self-assembled MR fluids tmder much tighter confinement (L = 1 to 30) as there are
many interesting properties of these systems that have not been observed in the previous work. In
Fig. 4.4 we present our simulation results (circle symbols) for the average dimensionless spacing
between clusters as a fimction of the dimensionless slit-thickness for € = 0.04. We compare our
simulation results to the experimental results of Liu et al. [10] (triangle symbols) for the same
system. The dashed (horizontal) line in Fig. 4.4 represents the spacing between colloids at this
volumne fraction for a purely 2D system. This spacing is defined as [33]

(8)2D -- = (4.1)

where OA is the area fraction of colloids which, for a monolayer of colloids, is related to 0 as
-A = 1.50. The dotted (power-law) line in Fig. 4.4 is the empirical power-law that Liu et al. found

to best fit their data in the range L < 200 and is given by

(s-) = 2.058jL03 7
(4.2)
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Fig. 4.4: Dimensionless spacing between clusters as a function of dimensionless
slit-thickness for q = 0.04. The simulation data are shown as circles (closed
circles are integer values of L). The simulations were performed at A = 50.
The experimental data of Liu et al. [10] (performed at A = 166) are shown as
open triangles. The dashed line is the spacing for a 2D system at the same 0
given by Equation 4.1 and the dotted line is the empirical power-law given by
Equation 4.2 that Liu et al. fit to their experimental data.
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The spacing in our simulations follows very closely the spacings from the experimental work of
Liu et al. [10] for dimensionless slit-thicknesses > 10. However, there are two interesting features of
the data shown in Fig. 4.4; the deviation from the empirical power law for slit-thickness < 10 and
the large oscillations in the spacing between clusters as a function of the slit-thickness for extremely
thin slits (L < 5). The deviation from the power law is expected intuitively but the details have
not been previously explored. The large oscillations that occur in the dimensionless spacing for
extremely thin slits will be discussed shortly.

In discussing the deviation from the power-law behavior, we are in essence discussing the tran-
sition from 3D to 2D behavior in these systems. For this discussion it will be useful to relate the
cluster spacing to the average cluster size in the system. Using simple geometric arguments we
can relate the average cluster size in the thin-slit system to the average cluster spacing as shown
in Fig. 4.5. We define the average cluster size as (c) = N/Nc where N, is the number of clusters
in the system. If we assume that the clusters all have a dimensionless circular cross sectional area
Ac and are arranged in a triangular lattice with dimensionless spacing 9 as shown in the inset of
Fig. 4.5 then the area fraction of clusters is equal to the area fraction in a triangular lattice

OA =- - (4.3)
4

where A is the dimensionless area of the x-y plane. Using the definition of the volume fraction

Nir
-- 6L- (4.4)

6AL

we can first substitute the definition for the average cluster size ((c) = N/Nc) into Equation 4.4
for N and then we can further substitute for the ratio Nc/A from Equation 4.3. Making these two
substitutions into Equation 4.4 and re-arranging we arrive at the relationship between the average
spacing between clusters as a function of the average cluster size

S (c) (4.5)

which is plotted as the dashed line in Fig. 4.5.

When L = (c) Equation 4.5 reduces to Equation 4.1, the value for the dimensionless spacing
in the 2D system. This means that if the clusters are simply chains with a single colloid width
spanning the height of the thin-slit, the average spacing between those chains should be equal to
(-)2D. We independently measured the average dimensionless spacing between clusters and the
average cluster size in our simulations for all 0 and plotted them in Fig. 4.5. The relationship
between average spacing and the cluster size is very well predicted by Equation 4.5. In our BD
simulations we have access to the properties of the individual clusters (arrangement and number of
colloids within a cluster) which are not easily accessible in experimental systems so we can relate
changes in the average spacing between clusters to specific changes in the properties of the clusters
themselves. In the experimental work, only general shape properties of the clusters have been used
to explain the spacing behavior as a function of slit-thickness [91, 10]. The relationship between
cluster properties and average spacing (Equation 4.5) will become important in later discussions of
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Fig. 4.5: Average spacing between clusters as a function of the average cluster
size in the system. Data for five different volume fractions are presented. The
dashed line is the prediction given by Equation 4.5 and the inset is a schematic
top-view of a triangular arrangement of clusters with circular cross-sections.
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Fig. 4.6: Average cluster size as a function of dimensionless slit-thickness for
0 = 0.04. The solid circles represent integer values of the dimensionless slit-
thickness L. The horizontal dashed line represents the case where the clusters
are single colloid width chains spanning the slit-thickness. The top inset is a
histogram of the distribution of cluster sizes in a thin-slit with L = 4 along with
a top-view image of a characteristic cluster under these conditions. The bottom
inset is a histogram of the distribution of cluster sizes in a thin-slit with L = 20
along with a top-view image of a characteristic cluster containing zipped chains.

spacing as a function of slit-thickness and volume fraction.
For instance, the cross-over in the behavior of the dimensionless spacing from 2D to 3D as

shown in Fig. 4.4 is directly related to the more complex clustering occurring as the slit-thickness
is increased. This point is illustrated in Fig. 4.6 where it is evident that the cross-over in the
spacing between clusters is directly correlated with the cross-over from clusters which are single
chains spanning the height of the thin-slit ((c)/L = 1) to clusters containing several "zipped"
chains. Recall that zipped chains are chains of MR colloids directed in the external field direction
which have aggregated laterally to form larger clusters [99]. For a dimensionless slit-thickness of
4 (Fig. 4.6 top inset) most of the clusters are chains containing 4 colloids spanning the height of
the thin-slit ((c)/L = 1). For a dimensionless slit-thickness of 20 (Fig. 4.6 bottom inset) there
is a bimodal distribution of cluster types. There is a distinct peak at (c)/L = 1 implying that a
significant fraction of the clusters are single chains spanning the height of the thin-slit while there
is another, much broader, peak representing clusters consisting of several zipped chains. Again, in
Fig. 4.6 oscillations occur in the average cluster size as a function of the slit-thickness for L < 5
which will be discussed shortly.

There have been several models created to describe both the spacing between clusters and
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the cluster sizes themselves as a function of the slit-thickness in these systems [94, 10, 96]. The
model developed by Grasselli et al. [94] assumes the clusters are ellipsoids spanning the height of
the thin-slit and containing enough colloids so that there is a distinct surface and bulk for each
cluster. This assumption breaks down for thin-slits where L ( 30 since the clusters under such
confinement only contain a hand-full of colloids and are quite discrete in nature. Similarly the
model developed by Liu et al. [10] assumes cylindrical clusters spanning the height of the thin-slit
and again containing distinct surface regions and bulk regions. Therefore this model also breaks
down for L < 30 since it relies on a continuum description of the clusters. The model developed
by Gross [96] considers discrete colloids arranged in clusters with either body-centered-tetragonal
(bct) or face-centered-cubic (fcc) internal structures at infinite field strength.

The Gross model calculates the infinite-field lowest-energy configuration of the colloids in the
system for each slit-thickness. Using Equation 4.5, the average cluster-size predicted by the Gross
model can be translated into an average spacing between clusters. The prediction for the average
spacing as a function of slit-thickness from the Gross model is shown in Fig. 4.7 dotted line along
with our simulation results. The Gross model only makes predictions for integer values of L
and therefore we will concentrate for now on those slit-thicknesses (filled circles in Figs. 4.4, 4.6,
and 4.7). For L < 4 the lowest energy state of the system as predicted by the Gross model consists
of clusters with (c) = L. Our simulation results match the predictions of the Gross model for the
integer values of L in this range. However, for L > 5 there are significant deviations between our
simulation results (as well as experimental results [10] shown in Fig. 4.4) and the predictions by
the Gross model for the lowest energy state. When we quench our simulations to zero-temperature,
we find that the energy in the system is higher than the energy for the configurations predicted by
the Gross model. This implies that our simulations (and the experimental results [10]) are indeed
in meta-stable states and and do not reach the ground state configurations.

The discrepancy in power-laws was noted by Gross who offered the following postulate for why
experimental observations of spacing versus slit-thickness do not match the predictions from his
theoretical, infinite-field, model. Gross conjectured that for low volume fractions and high external
field strengths the energy barriers for chain aggregation (zippering) may not be able to be overcome
over laboratory time scales and therefore many of the experimental results for the thin-slit system
were possibly trapped in states that do not correspond to the ground state at infinite external
magnetic field [96]. This comment has the potential to explain the behavior that has been observed
experimentally [10] and that we have observed in our simulations but it has not been elaborated
upon in satisfying detail in the literature. We will now show that the presence of energy barriers
can dictate many of the properties of self-assembled MR fluids in thin-slits where L < 30.

4.3.1 Energy Barriers to Chain Aggregation

Two rigid chains of MR colloids aligned parallel to one another interact with an energy Uc(r) that
has the general form shown in Fig. 4.8a [9]. The energy curve consists of two parts (Fig. 4.8a inset).
The attractive energy well on the left can exist if the chains have a net attraction once they have
zipped and the approach energy on the right exists for all parallel chains as they approach one
another laterally. For large F all parallel chains have a repulsive interaction and as they approach
each other that repulsion increases (the maximum in Fig. 4.8a). If the chains are "uniformly
parallel", meaning that they are of the same length and are not shifted vertically with respect
to one another, then their interaction is always repulsive and there is no "zipped" energy-well.
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Fig. 4.7: Average dimensionless spacing as a function of dimensionless slit-
thickness. The dashed line is the spacing predicted by the Gross model [96].
The closed symbols represent integer values of L.

However, if the chains are shifted with respect to one another or are of different lengths then there
can be a "zipped" energy-well in their interaction energy. In fact, if the two chains are small
enough such that they can undergo head-to-tail aggregation as illustrated in Fig. 4.8b, then there
exists a path for their aggregation with little or no energy barrier at all. Therefore, head-to-tail
aggregation between individual MR colloids or short chains can readily occur in the thin-slit system
as long as it is geometrically feasible. The vertical line on the left hand side of the energy curve
in Fig. 4.8a represents the hard-sphere excluded volume potential when two chains are completely
aggregated. Increasing the dimensionless external magnetic field strength A will cause the maximum
and minimum in Fig. 4.8a to increase in magnitude. The exact form of Uc(-) can be calculated for
any two rigid chains by simply summing the dipole-dipole interactions between all of the colloids
in the two chains.

The discussion of the energy barriers is relevant to the results presented in Fig. 4.7. When
L < 4 the lowest energy state of the system as predicted by the Gross model is single colloid width
chains spanning the height of the thin-slit. As illustrated in Fig. 4.8b, the head-to-tail aggregation
necessary to form the single chains does not involve any significant energy barrier and therefore
the system is not kinetically limited from reaching the lowest energy state. For L > 5 the lowest
energy state of the system as predicted by the Gross model consists of clusters containing zipped
chains. However, in Fig. 4.8a we illustrate that the zippering of chains involves energy barriers
which have to be overcome in order to form the larger clusters predicted by the Gross model. As
mentioned previously, this idea has been postulated in the literature [96, 9] but a more quantitative
analysis will be presented here. We have developed a simple model to quantify the energy barriers
to zippering under the extreme confinement studied in this work. Our model attempts to calculate
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Fig. 4.8: (a) The general form of the interaction energy between two chains of
MR colloids (in arbitrary units) as a function of their separation distance. The
right inset illustrates the two parts of the energy curve, the approach energy
and the zipped energy. The left inset illustrates the configuration of chains
undergoing zippering. (b) The form of the interaction energy between two short
chains which are able to undergo head-to-tail aggregation. The inset illustrates
the configuration of the two short chains before (right) and after (left) head-to-
tail aggregation.

the potential energy barriers to aggregation for various global constraints (N, L, and q) in order
to determine when the thin-slit system is kinetically limited from reaching the lowest-energy state
as predicted by the Gross model. Our model differs from previous attempts to model the energy
barriers to zippering [9] in that we include the effects of volume fraction which physically accounts
for additional net attraction forces between chains, due to the surrounding chains, which must be
added to the simple picture presented in Fig. 4.8.

4.3.2 Model

In the real thin-slit system, we have a fixed number of colloids N in a box with a fixed height L
and a fixed volume fraction ¢ such that the ratio N/1 is also fixed. Recall that N = No(c) so the
previous fixed ratio can be written as Ne(c)/¢. Therefore fixing L, Nc, and (c)/1 is tantamount to
fixing N, L, and 0. Furthermore, the ratio (c)/(L¢) is fixed and therefore (3) is fixed for a given
value of L. We find that fixing Nc and (s) for a given L leads to more useful conclusions from our
model.

Therefore, consider a periodic one dimensional system of Nc rigid chains aligned with the
external field and interacting with dimensionless energy Uc () (made dimensionless with kBT). For
simplicity, the chains only interact with their two nearest neighbors along the line and the entire
system is under the global constraints mentioned above such that

Z ni = Nc (4.6)
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Fig. 4.9: Top: A side view of the one-dimensional periodic line where the
neighbor-pairs of clusters are all identical. Bottom: Top-down view of a hexag-
onal arrangement of chains in a thin-slit where the lattice spacing is (i).
The model considers the highlighted lattice vector (considered to be a one-
dimensional periodic line).

and
njFj = N.(-s) (4.7)

where ni is the number of pairs of neighboring chains with separation Fi. The motivation for this
model is illustrated in Fig. 4.9 where we observe that the top-down view of the thin-slit system
looks like a hexagonal lattice in the ideal case with spacing between clusters given by (3). The
lattice vectors in this simplified picture can therefore be considered the one dimensional periodic
system we are modelling.

The Boltzmann weighted probability of having a set of separations n = {no,n 1 ,...} in our
model is

w(n) = e_.Eot (4.8)
no!n!...

where OUtot is defined as

ct 0t  n ic(F'i). (4.9)

We want to find the set of separations that maximize the probability given in Equation 4.8 under the
constraints given by Equations 4.6 and 4.7. Using Lagrange multipliers we write the maximization
function as

-na - nijc(Fi) - a ni - nj ii = 0. (4.10)
Solving Equation 4.10 using Stirling's i for the first term on the LHS we are left

Solving Equation 4.10 using Stirling's approximation for the first term on the LHS we are left
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with the result
n* = Ce-[ 5

e
(" - )+tB ' ]  (4.11)

where the constant C comes from the first Lagrange multiplier (a) and is found by applying the
first constraint (Equation 4.6). Substituting in for the constant term we find

Nce-(Wc(ri)+pri)n C Ei e-(Uc(F)+OO) (4.12)

Applying the second constraint and substituting Equation 4.5 for (s) we can solve for the Lagrange

multiplier / with

f Fe-(vc(O+40d? 7/ . (c) (4.13)
f e-(Uc(r)+f dF V 3;v -3

where we have replaced the sums over i with integrals over the separation distance T. Equation 4.13
can be solved numerically for / once we specify Uc(r_), ¢, (c), and L. More importantly, in this
model the probability that two chains will be separated by a distance F is given by

P(Fr) = (4.14)
f e-[C(r-+0F]

meaning that the dimensionless potential energy between two neighboring chains is equivalent to

Again, the general form of the interaction between two rigid chains undergoing a zippering
aggregation is shown in Fig. 4.8a. Recall that the specific form of Uc(-) depends upon the two types
of chains and A. If we take the part of the function Uc(r-) that lies to the right of the maximum,
we can calculate 3 for a specific system given 4, (c), and L using Equation 4.13. Furthermore, we
can then use 3 to calculate the potential energy between two neighboring chains (UO(r) + O-r). An
example of the potential energy between a rigid chain of 10 MR colloids and rigid chains of different
lengths (Nsmall) in a thin-slit with L = 10 is shown in Fig. 4.10a. The volume fraction of the MR
fluid in this case was taken to be 0.04 and the dimensionless field strength was A = 50. The two
interacting chains were assumed to be aligned in the vertical direction along the centerline of the
thin-slit but shifted such that they can undergo a zippering aggregation as illustrated in Fig. 4.10b
(insets). The curves in Fig. 4.10a illustrate the effect that 3 has upon the interaction between two
chains in this model. Physically, /3 is the parameter that takes into account the presence of other
chains in the system. For instance, if the two test chains in Fig. 4.10a move far away from one
another, the energy Uc (F) + OT actually increases because they are moving closer to the other chains
in the system (i.e. they increase the total energy in the system). Therefore, the value of 3 will
depend upon the volume fraction in the system and the types of chains for which the interaction
energy is being calculated.

The idea of a volume fraction dependence upon the interaction between chains has been spec-
ulated before by Mohebi et al. [9]. In their work, the authors define a separation distance between
chains called an escape distance below which two chains will zipper and above which the two chains
will repel one another. They allude to the fact that as the volume fraction is increased, chains
will be in closer proximity to one another and therefore more likely to enter the escape distance of
their neighboring chains. However, this effect has not been quantified in the literature and here we
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Fig. 4.10: (a) The dimensionless potential energy between neighboring chains
of length 10 and Nsmaii for six different small chain lengths (Nsmai = 9, 8, 7,
6, 5, and 4 from top to bottom) at a dimensionless field strength of A = 50
in a dimensionless slit-thickness of L = 10. The potential energy barrier to
aggregation is shown for NAman = 9. (b) The dimensionless energy barrier to
aggregation as a function of Nsmai at a volume fraction of 0.04 and a dimen-
sionless field strength of 50. Insets are illustrations of the systems presented in
this figure before aggregation (left) and after aggregation (right) for Nsmaii = 9,
7, and 4 from top to bottom. (c) The dimensionless potential energy between
neighboring chains of length 10 and 7 for five different volume fractions (0.07,
0.05, 0.04, 0.03, and 0.01 from top to bottom) at a dimensionless field strength
of A = 50 in a dimensionless slit-thickness of L = 10. The potential energy
barrier to aggregation is shown for 4 = 0.01. (d) The dimensionless energy
barrier to aggregation as a function of volume fraction for a chain of length 10
and a chain of length 7. Inset is an illustration of the system presented in this
figure before aggregation (left) and after aggregation (right).
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present a quantitative analysis of the volume fraction dependence.

The curves in Fig. 4.10a show a local energy minimum near a dimensionless separation of
, 4 which increases in magnitude as Nsmall is increased. In order for two chains to zipper (have

a dimensionless separation distance < 1) they must pass through the transition state in their
interaction energy (the maxima near F - 1.5 in Fig. 4.10a) before reaching the aggregated state.
The difference between the local energy minimum and the transition state energy is the energy
barrier to aggregation Ubar. In Fig. 4.10a the energy of the transition state as a function of Nsmall
is increasing faster than the local energy minimum and therefore the energy barrier to aggregation
increases with Nsmal. When Ubar ' 1 two chains can zipper relatively easily by diffusion. In
Fig. 4.10b we see that for a small chain length Nsmall 5 6 the dimensionless energy barrier to
aggregation is < 1 implying that the two chains can easily undergo the zippering aggregation. This
means that for a given L, q, and A there can be a critical small chain length (Nmall) such that
for any chain smaller than Nmnall it is energetically likely that it will zipper with a chain of length
Nbig = L.

In Fig. 4.10c we show the dimensionless potential energy between a chain of length 10 and a
chain of length 7 at several different volume fractions in a dimensionless slit-thickness of 10 with
A = 50. This illustrates the effect that the volume fraction has upon the interaction between
neighboring chains since increasing the volume fraction causes the energy barrier to aggregation to
decrease. By increasing the volume fraction, the chains are forced to be closer together. This closer
proximity means that they have less freedom to diffuse away from their neighbors and therefore
, will be larger. The larger value of 3 causes the local minima in Fig. 4.10c to increase much
faster than the the local maximum (transition state energy) and therefore the energy barrier to
aggregation is reduced with increased volume fraction. As a result, the ability for two chains to
undergo a zippering aggregation depends heavily upon the volume fraction in the system as shown
in Fig. 4.10d where the energy barrier shrinks significantly as 0 is increased.

We are interested in knowing when zippering aggregation barriers are small as a function of
the slit-thickness for the thin-slit system and therefore, we applied our model to the following
problem. For a fixed slit thickness, we calculated the energy barriers for the zippering of one rigid
chain which spanned the height of the thin-slit (Nbig = L) and another rigid chain with a length
1 < Nsmal1 < L - 1. The vertical position of the small chain was determined as

if Nbig - Nsmall is even: irmall = - -0.5
2 (4.15)

if Nbig - Nsmall is odd: Zsmall =

where ismall is defined as
Nsmall

small small . (4.16)

In Fig. 4.11 we show for several different q the value of Nsmall where the dimensionless aggregation
energy barrier to zippering becomes < 1 as a function of L (or Nbig). For any slit-thickness L and
volume fraction 0 a chain spanning the height of the thin-slit can zipper with any other chain of
length Nsmall 5 N*mall where N*mall is the critical small-chain length shown in Fig. 4.11.

Scaling the lengths in Fig. 4.11 by the characteristic dimensionless length-scale (s)2D causes all
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Fig. 4.11: Critical small-chain length as a function of dimensionless slit-
thickness for five different volume fractions at a dimensionless field strength
of A = 50.

of the critical small-chain length curves (Nmaii(L)) to collapse onto a single master curve as shown
in Fig. 4.12. This is a very important result as it indicates that there is a self-similar behavior of the
thin-slit system when the slit-thickness is scaled by V. Additionally, for our simple model, this
result indicates that zippering aggregation can only occur when L/(~)2D > 1.2. Consequently, if
the lowest energy state of the thin-slit system contains clusters with zipped chains, then that state
may not be able to be achieved if the energy barriers to zippering are too high. We expect that
the dimensionless slit-thickness where the system will depart from 2D behavior should be affected
by the energy barriers to zippering and from our model we find that the departure slit-thickness
will be proportional to V/ (as predicted by the collapse in Fig. 4.12).

In Fig. 4.13 we present the dimensionless spacing between clusters as a function of the dimen-
sionless slit-thickness for integer slit-thicknesses only. In Fig. 4.13a, the departure point of the
cluster spacing from 2D behavior depends upon ¢. Scaling both the dimensionless slit-thickness
and the dimensionless spacing between clusters by the 2D spacing ((S)2D) in Fig. 4.13b we show that
the dimensionless slit-thickness where the system departs from 2D behavior is indeed proportional
to V and occurs when L/(8)2D > 1.2 (the vertical dotted line segment in Fig. 4.13b). To further
emphasize the importance of this scaling in volume fraction we show in the inset of Fig. 4.13b the
collapse of the cluster-spacing curves if we take the 0 scaling predicted by the Gross model [96].
In Fig. 4.7 the lowest-energy model shows an abrupt departure from 2D behavior at L > 4 for
0 = 0.04. Based on the lowest-energy model, the departure point from 2D behavior should be
proportional to 00.122 however, it is shown by the poor collapse in the inset of Fig. 4.13b that the
departure point does not depend solely upon the lowest energy state but that energy barriers to
aggregation are of great importance.
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Fig. 4.12: Scaled critical small-chain length as a function of dimensionless slit-
thickness scaled by the 2D spacing for five different volume fractions at a di-
mensionless field strength of A = 50.

Not only does the model presented here predict the departure from 2D behavior but it also
appears in Fig. 4.13b to explain the behavior of the system after the departure as well. Figure 4.12
shows the self-similar nature of the aggregation of chains in a simple model system. For the thin-
slit system, consider a scaled slit-thickness of L/(-)2D in the range where zippering is energetically
feasible (greater than 1.2). At any volume fraction, the scaled lengths of the chains that can zipper
with a chain of length L are the same. This means that the average cluster size will also scale with
(-)2D and therefore the spacing between clusters will not have a volume fraction dependence. Thus,
all of the scaled spacing curves in Fig. 4.13b collapse for the range of slit-thicknesses studied here.

The volume fraction dependence is further illustrated in Fig. 4.14 where we show top-down
views of the clusters in a dimensionless slit-thickness of 10 at four different volume fractions. The
distribution of cluster sizes for each of the four cases is also presented in Fig. 4.14 showing the
increased fraction of zipped clusters as the volume fraction is increased. The left most peak in the
cluster distributions is for a cluster size of 10 and the broader peak that appears in the distributions
for larger volume fractions is for clusters of zipped chains.

4.3.3 Time-scales for Zippering

The dimensionless first passage time for a rigid Brownian chain of Nsmall colloids diffusing in a
1D dimensionless potential energy landscape Uls (where Uls is made dimensionless with kBT) to



4.3. Transition from 2D to 3D

- 1

10 100 0.1 1.0 10.0

Li/ (S 2D

Fig. 4.13: (a) The average dimensionless spacing between clusters (scaled by the
2D spacing) for five different volume fractions as a function of the dimension-
less slit-thickness for integer values of L only. (b) The average dimensionless
spacing between clusters (scaled by the 2D spacing) as a function of the dimen-
sionless slit-thickness (also scaled by the 2D spacing) for five different volume
fractions. The horizontal dashed lines are the 2D spacing. The vertical dotted
line segment in (b) denotes the point at which our model predicts the dimension-
less spacing will deviate from 2D behavior. The inset in (b) shows the average
dimensionless spacing between clusters (scaled by the 2D spacing) as a function
of the dimensionless slit-thickness scaled as predicted by the Gross model [96].
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Fig. 4.15: (a) Mean dimensionless aggregation time as a function of 0 for a
chain of 7 MR colloids to undergo a zippering aggregation with a chain of 10
MR colloids in a dimensionless slit-thickness of 10 and a dimensionless external
field strength of 50. The solid line is the theoretical prediction given by Equa-
tion 4.17 and the circles are the results from BD simulations. (b) Calculated
dimensionless aggregation time (Equation 4.17) as a function of the dimension-
less energy barrier for 2 < Nbig < 30 and 1 < Nsma,, < Nbig at A - 50. The

solid line is an empirical fit to the data given by to/Nsmaii = 1 + 0.036e0 . 937Ubar.

overcome a dimensionless energy barrier located at position Yo is given by [100]

N N a 0 YO
to = NsmaiD  ( eU0s(Y)d} dY (4.17)

where time is made dimensionless with (((2Dd2)/(kBT) since (')2D is the important dimensionless

length scale in this problem. For the example shown in Fig. 4.10c we can solve Equation 4.17
numerically for each of the five volume fractions in order to estimate the time for the two chains

to aggregate. In Fig. 4.15a we show the solution to Equation 4.17 (solid line) as a function of ¢
along with the mean times for aggregation for simple BD simulations. The simple BD simulations
consisted of 8 chains of MR colloids, 7 of which contained 10 colloids and the 8th containing 7
colloids. The chains were started on a hexagonal lattice, oriented in the field-direction (z-direction),
and confined between hard walls inside a simulation box with dimensionless height L = 10. The

simulation box had periodic boundary conditions in the other two cartesian directions and the
dimensionless lengths of the periodic dimensions were equal and determined by the volume fraction.
The system was simulated using our BD algorithm until the small chain aggregated with one of
the larger chains. This procedure was repeated 100 times and the mean time for aggregation was
thus calculated.

As shown in Fig. 4.15a, our simple model for the energy between chains as a function of chain-
length, field strength, and volume fraction is able to qualitatively predict the fact that there are
orders of magnitude increases in the timescales for zippering as the volume fraction is decreased.
For the case presented in Fig. 4.15a, the energy barriers to aggregation are given in Fig 4.10d. For
the higher volume fraction cases the chains in the simple simulations zip together much faster than
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predicted by the model due to the fluctuations of the colloids within the chains [98, 101]. When the
colloids in a chain are able to fluctuate then the barrier to the zippering aggregation can be reduced
and therefore the time for aggregation is also reduced. However, the timescales for aggregation
found in our simple BD simulations for this particular case still show orders of magnitude increases
as the volume fraction decreases (and therefore the energy barrier to aggregation increases). In
fact, for the case of 0 = 0.01 we were not able to observe even a single aggregation event for chains
of length 7 and 10 in our simple BD simulations when simulating out to dimensionless times of
150,000.

In Fig. 4.15b we show the timescales for zippering as a function of the energy barrier as predicted
by our model for dimensionless slit-thicknesses ranging from 2 to 30 and A = 50. The data for all of
the volume fractions fall onto a single master curve given by to/Nsmal =- 1 +0.036e 0 .937Ubar which is
plotted as a solid line in Fig. 4.15b. The exponential increase in the aggregation time as a function
of energy barriers indicates how the presence of energy barriers to zippering can cause the structure
of self-assembled MR fluids in certain thin slits to be unable to reach the lowest energy state.

4.3.4 Discussion

The results presented in this section illuminate several important features of self-assembly of dilute
MR fluids confined in extremely thin-slits. Most notably, we have studied the transition from truly
2D behavior to 3D behavior of the structure in the system, manifested in the spacing between
clusters. This cross-over in the structural properties has not been addressed in previous work.
When we extrapolate the models previously developed down to the extremely small slit-thicknesses
studied in this work we find that a new understanding is needed in order to explain the trends
that we observe. We have introduced a simple model for the energy of interaction between chains
of MR colloids taking into account the volume fraction of the MR fluid. This model is the first
to quantitatively address the effect of volume fraction upon the energy barriers to aggregation for
dilute MR fluids in thin-slits. We have used the model to predict the transition point from 2D
behavior to 3D behavior in the thin-slit system. In particular, the transition is correlated with the
ability of the chains to begin aggregating laterally into larger column-like clusters. Our model is able
to predict, as a function of volume fraction, at which dimensionless slit-thickness this aggregation
becomes kinetically feasible. Additionally, in agreement with previous work [10] we find that the
3D behavior of the spacing between clusters follows a power-law. Furthermore, our model explains
the volume fraction dependence of the self-assembled structures in thin-slits when L < 30. This
represents the first quantitative analysis of the transition from 2D to 3D behavior for dilute MR
fluids self-assembling in the thin-slit system.

We have attempted to use the model for the energy barriers to aggregation in order to predict
the timescales for zippering of chains in the thin-slit system. We found qualitative agreement
between the predicted timescales and our BD simulations for this aggregation process in that the
timescales increase by orders of magnitude as the volume fraction is decreased. The dimensionless
timescale for aggregation from our model for a chain of length 7 to zipper with a chain of length 10
at 0 = 0.03 and A - 50 is to ' 23.5. The dimensionless energy barrier to aggregation in this case is
- 4. For 1pm colloids in water, this translates to a real time of ' 10.4 minutes. By comparison, if
the short chain length were 8 instead of 7 then the dimensionless energy barrier would be - 7.8 and
the dimensionless timescale for aggregation would be to - 525 or 6.7 hours. During the process of
slowly ramping the external field, many short chains will first form with different lengths (Fig. 4.1)
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and in order to reach the lowest energy state of zipped clusters, those short chains must aggregate
laterally. The timescale of this process will be dominated by the slowest aggregation step which, as
we have shown, can be prohibitively long. This point supports the contention that real experimental
studies of self-assembly in thin-slits can be kinetically trapped in metastable states that only change
over extremely long time scales.

4.4 Quasi 2D Thin-Slits

In Fig. 4.4 the spacing between clusters oscillates as a function of slit-thickness for extremely
thin slits (L < 5). The structure of concentrated MR fluids (0 = 0.2) has been shown to oscillate
between disorder and labyrinth structures in extremely thin-slits [11] but the self-assembly of dilute
MR fluids has not been previously investigated. In Fig. 4.16 we show the spacing between clusters
as a function of slit-thickness for all five volume fractions. Schematics of the types of clusters that
form in three different slit-thicknesses are shown as well. Based on observations of the cluster
types in these systems, we have determined that the oscillations in spacing with increasing L are
due to geometric effects in the case of declining spacing or energetically favorable re-arrangement
of the cluster types in the case of increasing spacing. In 2D (L = 1) the colloids experience
purely repulsive interactions and the spacing is determined simply by geometry [33, 34]. As the
slit-thickness increases, the colloids still experience repulsive interactions for L < 1 + 1/3 and
therefore the clusters will remain just single colloids. In order to maintain a constant volume fraction
of MR colloids the clusters must be closer to one another, hence the decrease in spacing. Once
the slit-thickness becomes large enough L - 1.75 the MR colloids can have attractive interactions
and can therefore begin to form clusters larger than a single colloid. As mentioned previously, the

spacing is proportional to (c)J/ and therefore the spacing increases sharply as more large clusters

are formed. This process is repeated between each integer value of L.

We have shown in Fig. 4.5 that the spacing between clusters is related to the average cluster
size in the thin-slit system and therefore it is useful to be able to predict the types of clusters that
form as a function of slit-thickness. None of the current studies in the literature are able to model
the extremely thin slits studied here. Therefore, we developed a zero-temperature model similar
in nature to the Gross model [96] but applicable to the case of extremely thin slits. Our model
consists of three possible types of clusters arranged on a hexagonal lattice with a spacing defined by
the average cluster size as shown in Fig. 4.17. We chose three types of clusters in order to limit the
degrees of freedom in our model such that we were able to easily find a solution. The three types
of clusters (A, B, and C) vary depending upon the slit-thickness as shown on the left in Fig. 4.17.
For instance, when 1 < L < 2 the clusters A, B, and C are a "singlet", "doublet", and "triplet"
arranged as shown in Fig. 4.17. The intra-cluster arrangement of colloids was chosen such that it
minimized the intra-cluster energy per colloid. Intra-cluster energy is determined by summing all
of the interaction energies between MR colloids within a cluster and dividing by the number of
colloids in the cluster.

Using the model as outlined, we varied the concentrations of clusters (OA, 4B, 0C) in order
to minimize the total energy per colloid. The cluster concentration was defined as /i - Ni/Nclust
where Ni is the total number of clusters of type i and Nlust is the total number of clusters. The
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Fig. 4.16: Average dimensionless spacing normalized by the 2D spacing as a
function of dimensionless slit-thickness for five different volume fractions (0 =
0.01, 0.03, 0.04, 0.05, 0.07) at a dimensionless field strength of A = 50. The
types of clusters observed in our simulations are shown for three dimensionless
slit-thicknesses (1.5, 1.75, and 2.5) as insets.
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total energy per colloid was defined as

Utot Tintra Ttinter
S  -tot + tot (4.18)

N N N

where gra/N and 'er/N are the total intra- and inter-cluster energies per colloid respectively.
The total intra-cluster energy per colloid is defined as

utntra NA •intra NBtra + NCU tra
tot _ U + +(4.19)

N NAnA + NBnB + NcnC

where ni is the number of MR colloids in a cluster of type i and Uintra is calculated, as mentioned,
by summing all of the interaction energies between the colloids in a cluster of type i. The total
inter-cluster energy is defined as

er A,B,,C AA,B,C 0 uin t er
"ot __ - i(4.20)

N 2 OAnA +÷ BnB +f cnr

and the energy Ujnter is defined as

jter _ iusj lat) (4.21)

lat

where the sum is over all the lattice sites and the term jlust ( lat) denotes the energy between a
cluster of type i and a cluster of type j separated by a distance Flat. The dimensionless distance Flat
is determined by both the characteristic spacing (8)2D and the specific lattice site. The () brackets
denote an angle-averaged energy meaning we allow the two clusters to rotate with respect to one
another keeping their center-of-mass separation equal to flat and take their average interaction
energy. We summed over a large enough lattice such that increasing the number of sites did not
change the results.

Once we have found the distribution of cluster concentrations (OA, OB, 0C) that minimizes the
energy per colloid for a given L, A, and 4 we can calculate the average cluster size and therefore
the average spacing between clusters. In Fig. 4.18 we show the normalized average spacing between
clusters as a function of dimensionless slit-thickness for all five volume fractions from both our
simulations (symbols) and our zero-temperature model (dashed lines). The curves are shifted for
ease of viewing. The predictions from our model match well with the simulation results for most
slit-thicknesses. In particular, the model correctly predicts the magnitude and locations of the
oscillations in the spacing as a function of the slit-thickness. However, in some instances, there is
disagreement between our model and the simulation results due to the following sources. Either
our model does not contain enough detail (cluster types) or the lowest energy state is unreachable
over reasonable simulation time-scales due to energy barriers.

We illustrate the sources of disagreement between our model and the simulation results in
Fig. 4.19. In Fig. 4.19a we show as dotted lines the cluster-size distributions predicted by our
model for all 0 for two dimensionless slit-thicknesses. The actual cluster-size distributions from our
BD simulations are shown as solid lines. The left set of distributions is for a dimensionless slit-
thickness of 2.75 and the right set of distributions is for a dimensionless slit-thickness of 3.75. Recall
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Fig. 4.18: Normalized dimensionless spacing as a function of slit-thickness for
0 = 0.01, 0.03, 0.04, 0.05, and 0.07 (from top to bottom) for A = 50. The
curves are shifted by 1 with respect to one another for ease of viewing. The
dashed lines are the predictions from the zero-temperature model for each 0.

that our model only allows for three types of clusters in each slit-thickness but the BD results for
0 = 0.07 show that there are in fact more, larger, cluster types. This is an example of a case where
our model does not contain enough detail to accurately predict the cluster-size distribution and
therefore the spacing between clusters. A point of interest resulting from this observation is that our
simulation results are consistent with previous work done on the self-assembly of concentrated MR
fluids under extreme confinement where the authors observed labyrinth structures in dimensionless
slit-thicknesses of 3.8 [11]. The large clusters in our simulations are the precursors to the labyrinth
structures observed for more concentrated MR fluids as illustrated in Fig. 4.19d. In the top-down
view of the thin-slit system when =- 0.07 and L = 3.75 the clusters are arranged in a configuration
that can easily lead to the labyrinth structures observed in this slit-thickness with more concentrated
MR fluids.

For L = 3.75 and 0 < 0.04 the model does well in predicting the cluster-size distributions.
However, in the case of L = 2.75 for the same range of 0 the cluster-sizes predicted by the model
are not observed in the simulations. The cause of this discrepancy is shown in Fig. 4.19b where we
show the energy of interaction between two doublets in a slit with dimensionless thickness of 2.75
at a dimensionless field strength of A = 50. The dotted line represents the maximum interaction
energy between the two clusters when they are configured as shown in the inset. The gray area
represents the possible energy states between the two clusters as measured in BD simulations and
the solid line is the average interaction energy also taken from the BD simulations. Taking the
average interaction energy measured in the BD simulations, we calculated 0 and therefore the
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Fig. 4.19: (a) Cluster size distributions for L = 2.75 (left) and L = 3.75 (right).
From top to bottom the distributions are for q = 0.01, 0.03, 0.04, 0.05, and 0.07.
The dotted lines are the predictions from the zero-temperature model and the
solid lines are from the BD simulations. (b) The energy of interaction between
two doublets in a dimensionless slit-thickness of 2.75 with A = 50. The dotted
line is the analytical interaction energy for the the configuration shown in the
inset. The gray area represents the energies of interaction between doublets
observed in the BD simulations and the solid line is the average interaction
energy as a function of separation distance observed in the BD simulations. (c)
The dimensionless energy barriers to aggregation for doublets as a function of
volume fraction in a slit of dimensionless thickness L = 2.75 and A = 50. (d)
Top-down view of the self-assembled structure when L = 3.75, q = 0.07, and
A = 50 showing the precursor to the labyrinth structure.

energy barriers to zippering in this case. The resulting energy barriers are plotted in Fig. 4.19c
where it is clear that the energy barriers to zippering are large (several kBT) for small 0 indicating
that the aggregation times are quite large for these systems.

Despite the sensitive slit-thicknesses where our zero-temperature model disagrees with the simu-
lations due to the presence of energy barriers to zippering, it generally does a good job of predicting
the spacing between clusters for slit-thicknesses 1 < L < 5 when 0.01 < 0 < 0.07. Furthermore,
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Fig. 4.20: (a) Cluster size distributions for ¢ = 0.05 in a variety of dimen-
sionless slit-thicknesses. The gray solid line is the distribution observed in
the BD simulations and the dotted black line is the prediction from the zero-
temperature model. (b) The average spacing between clusters as a function of
dimensionless slit-thickness for 0 = 0.05. The solid line is the prediction from
the zero-temperature model and the symbols are the simulation results. The
closed symbols denote the slit-thicknesses presented in (a).

it correctly predicts the magnitude of the oscillations in spacing as well as the decay in the os-
cillations as the slit-thickness is increased. The cause of the oscillations (geometric effects and
re-arrangement of the cluster types) is confirmed by both the model and the simulation results. In
Fig. 4.20 we show the predictions for the cluster distributions and spacing between clusters for a
volume fraction of 0 = 0.05. In Fig. 4.20b, the oscillations in spacing are quite obvious and the zero
temperature model clearly predicts the spacings observed in our BD simulations. Additionally, in
Fig. 4.20a the cluster distributions predicted by the model are also found in the simulations. The
oscillations are shown to be correlated with the changes in the cluster distributions. For instance
as L increases from 2.5 to 3 the cluster-size changes from 2 to 3 and as a result the spacing between
clusters increases. From L = 3 to 3.5 the cluster-size remains constant and therefore the spacing
decreases as a result of the geometric constraint due to the constant volume fraction.

4.5 Summary

As the length scales in microfluidic devices utilizing self-assembled MR fluids shrink, new scalings
and models are needed to describe the properties of both the self-assembly and the structures
that form in these devices. The previous work on self-assembly of MR fluids in thin-slits has not
addressed this increasingly important range of phase space where the slits are extremely thin and
the MR fluid is dilute. We have shown that the self-assembled structures in extremely thin slits
undergo a cross-over in their properties from a purely 2D system to the 3D behavior observed
previously [10, 96, 94]. We have shown that this cross-over is due to the increased "clustering" of
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the MR fluid colloids. The cross-over is strongly influenced by the energy barriers associated with
the zippering aggregation of chains of MR colloids under the extreme confinement induced by the
thin-slit. It has been postulated that the energetics of the zippering aggregation are important
in the self-assembly of MR fluids under confinement in a thin-slit but this point has not been
quantitatively analyzed in the literature [96, 9]. We introduced a model for the energetics of the
zippering aggregation and showed how the cross-over in behavior from 2D to 3D depends upon
the volume fraction of the MR fluid. Using the model for aggregation, we were able to predict the
time-scales for two chains to aggregate given q, L, and A. This result leads to the observation that,
in certain instances, it is unfeasible for aggregation of chains to occur even though thermodynamics
predicts that the aggregated state is the lowest-energy state [96].

For dimensionless slit-thicknesses ranging from 1 to 5, we have shown that discrete proper-
ties of the clusters are very important for determining the spacing between clusters. By simply
changing the slit thickness slightly, the spacing between clusters can drastically change due to the
energetically favorable re-arrangement of cluster types in the system. We introduced a new zero-
temperature model for the distribution of cluster types in extremely thin-slits in order to predict the
spacing between clusters as a function of slit-thickness. Our model is able to quantitatively predict
the spacing between clusters in the range 1 < L < 5 with some notable exceptions. The sources
of the disagreement between our zero-temperature thermodynamic model and the BD simulations
again arise from barriers to aggregation or the lack of sufficient detail in the model. In the highest
volume fraction case ¢ = 0.07 we see that very large clusters can form when the dimensionless slit
thickness is between integer values. This observation is consistent with a previous study on the
self-assembly of concentrated MR fluids in extremely thin slits [11]. The large clusters in these cases
are precursors to the labyrinth structure that can form if the MR fluid is concentrated enough.

4.6 Outlook

Energy barriers appear in many systems in nature and are often important in determining whether
a system can reach its lowest energy state. In thin-slits the energy barriers to "zippering" have
been shown to be quite important in determining the structure of dilute MR fluids under the
application of a uniform magnetic field for dimensionless slit-thicknesses L < 30. We note that
they are probably also very important for determining the structure of MR fluids in much thicker
slits as evidenced by the discrepancy between results presented in the theoretical and experimental
literature [96, 10, 94, 91, 8, 98]. The energy barriers in these thicker slits have not, however, been
quantitatively analyzed in the literature due to the much larger complexity involved.
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CHAPTER 5

Self-Assembly Under Flow

The self-assembly of MR fluids under the application of pressure driven flow and an external mag-
netic field involves mechanisms that are not seen in the absence of flow. From a basic science
standpoint, the effects that flow can have upon the self-assembly process are important for under-
standing structure formation under these conditions. In particular, the flow can affect the nature
of the interactions between MR colloids and, in addition, it can affect the kinetics of structure
formation and the final structure that forms. Many applications utilizing MR fluids require the
fluid to flow through channels under the application of pressure [102]. Therefore, a study of the
self-assembly of MR fluids under these conditions is of great importance.

5.1 Background

For many years the flow behavior of MR and ER fluids has been studied both experimentally [103,
104, 105, 106, 107] and in simulations [108, 109, 110]. It has been determined that MR fluids
generally behave as a Bingham fluid for concentrated suspensions [103]. The yield stress of the
fluid has been shown to depend upon the magnitude of the external magnetic field [6, 103]. This
yield stress has been attributed to the formation of structures in the MR fluid when the external
magnetic field is applied. Most of the experimental and simulation studies have been performed
upon systems in steady or oscillatory shear flow [108, 111] and only recently has attention been
paid to pressure driven flow [110, 106, 107].



5.2. Simulation Details

Recent studies on the pressure driven flow of concentrated MR fluids have investigated both
the microstructure as well as the rheological properties of the fluids [110, 106, 107]. The struc-
tural assessments have focused upon the general evolution of the system to its final steady-state
configuration. The authors have found that both the structure and the rheological properties of
concentrated MR fluids under pressure driven flow depend upon the boundary conditions and the
orientation of the external magnetic field. However, none of the studies have addressed the specific
mechanisms of the formation of chains in dilute MR fluids under the application of pressure driven
flow.

There have been a number of studies of the self-assembly of chains in dilute MR fluids in
rotating magnetic fields [112, 113, 114, 115]. These studies have focused on the forces acting upon
a chain of MR colloids when it is immersed in a viscous fluid under the application of a rotating
external magnetic field. The authors have found that the types of structures that form depend
upon the balance of viscous and magnetic forces. The dimensionless parameter relating the viscous
and magnetic forces is the Mason number [116, 104, 114]. However, in this case the flow forces arise
not due to external pressure gradients but because of the viscous drag on the chain as it is rotated
through the fluid.

The kinetics of self-assembly in dilute MR fluids have been well studied in the quiescent case
(the absence of bulk fluid flow) [1171. It has been established that the fluid self-assembles into
chains which grow in length as a power-law in time. The forces at work in the growth of the chain
are the magnetic forces which must overcome the Brownian motion of the colloids. The growth of
chains under the application of pressure driven flow should follow some of the same mechanisms as
found in the quiescent case but as we will show there are multiple mechanisms involved when flow
is applied.

The fact that many applications utilizing MR fluids involve pressure driven flow through mi-
crochannels implies that there is a definite need for understanding structure formation in dilute
MR fluids under these conditions. Here we present a simulation study of the self-assembly of a
dilute MR fluid experiencing pressure driven flow through a rectangular microchannel under the
application of a uniform external magnetic field.

5.2 Simulation Details

In this work, we studied a dilute MR fluid in a rectangular thin-slit microchannel with periodic
boundaries in the y-direction and flat hard walls in the x and z-directions. The simulation box
had a dimensionless size of 10 x 100 x 100 where lengths were made dimensionless with the colloid
diameter d. The uniform external magnetic field was directed in the z-direction and the pressure
driven flow down the channel was in the y-direction. A schematic of the coordinate system for
these simulations is shown in Fig. 5.1.

The Poiseuille flow in this study imposed a velocity V(ri(t)) on a colloid located at ri given by
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5.2. Simulation Details

Fig. 5.1: Schematic of the system for studying the self-assembly of dilute MR
fluids under the application of pressure driven flow. There are hard walls in
the z-direction and the x-direction and the y-direction has periodic boundary
conditions. The flow is in the y-direction and the uniform external magnetic
field is in the z-direction. The MR colloids form structures that span the channel
in the z-direction and are convected in the y-direction. Top: Cross-section of the
channel in the x-y plane where the positive z-direction is into the page. Bottom:
Cross-section of the channel in the y-z plane where the positive x-direction is
into the page.
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5.2. Simulation Details

the expression [118]

V(ri(t)) = 6Vavg

ri (t) -e, (ri(t) -ex) 2

L L2
(-1)ne-•,(n~te,)/L cos fAnri(t) -e, - L/2

n=o L

- (- )n-' (W-r,(t).e.)/L ri(t) -ex - L/2

n=o n

ey, (5.1)

where L = 10d is the height of the channel in the x-direction, W = 100d is the width of the channel
in the z-direction, Vavg is the average bulk fluid velocity in the y-direction, and An is given by

A n+ (n± 7>. (5.2)

The form of the velocity profile is shown in Fig. 5.1 for both the x-y plane (top) and in the y-z
plane (bottom) along the centerline of the channel in the z- and x-directions respectively. We have
assumed that the presence of the colloids in the fluid does not disturb the velocity profile given by
Equation 5.1 and we have neglected the hydrodynamic interactions between the colloids and the
hard-walls. This method has been used successfully in the literature to simulate the self-assembly
of field-responsive fluids in flow [119].

The MR colloids were modeled as hard spheres with an induced point dipole at their centers.
Again, the interaction energy between two MR colloids Udj is given by Equation 1.10. In this study
we have assumed a large magnitude external magnetic field (A > 1) and a large magnitude average
velocity (Pe > 1, where Pe is the Peclet number) such that we can neglect the thermal motion of
the MR colloids. The equation of motion for a single colloid in our system was thus given by

N
dri(t) ý V(ri(t))dt + -VUijdt, (5.3)

where the inertia of the colloids is neglected and, for simplicity, we neglect the hydrodynamic
interactions between colloids. The parameter C is the Stokes drag coefficient on a single colloid.
For this system, we have made lengths dimensionless with the colloid diameter d and times have
been made dimensionless as t = t(3Uo)/(2d2() where (2d 2()/(3Uo) is the time it takes a colloid
to move a distance d due to its magnetic interaction with another colloid. The parameter Uo is
the natural energy scale for this system defined as Uo - -Uij(d,0) = 7rrpod3 X2H,2t/72 which is
the magnitude of the energy between two touching colloids aligned head to tail. Using this set of
length, time, and energy scales Equation 5.3 is re-written in dimensionless form as

2 N

dri(t) __ MaV(i(T))dt + 3 --ViFjdt (5.4)
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5.3. Cluster Growth

where the Mason number (Ma) for this system is defined as

2d(vavg 1 4 4?rlavgMa d H (5.5)
3Uo dt•o2H2ext

At a time of zero, the MR colloids were placed in the simulation box at random positions. In
this study, we investigated the self-assembly of an MR fluid with a volume fraction of ; = 0.025 and
therefore the number of colloids in our simulations was 4,775. The simulation was integrated forward
in time using the simple Euler integration scheme with a defined Ma. At the end of a time step,
hard sphere overlaps were removed using the Displacement Algorithm described in Chapter 2. The
dimensionless time step used in these simulations was At = 0.01 and a dimensionless cutoff distance
of 27 was used for the magnetic interactions. Since we have neglected Brownian motion in this
study, the simulations were deterministic meaning that the results of a single simulation did not have
statistical noise but instead were determined by the Mason number and the starting configuration of
the colloids. Therefore, we performed six simulations with different starting configurations at every
Ma in order to ensure a good statistical sampling of the system. All of the starting configurations
gave qualitatively indistinguishable results.

5.3 Cluster Growth

The kinetics of aggregation in dilute MR fluids have been characterized in the case of no flow by
tracking the average cluster-size as a function of time [117]. Typically, the aggregation of the MR
colloids in a dilute MR fluid occurs head-to-tail and therefore long chains of colloids form in time.
The cluster-size grows with a power-law dependence on time in the no-flow case of diffusion limited
aggregation [117]. In Fig. 5.2 we show the average cluster-size as a function of dimensionless time
in our system for five different values of Ma. The average cluster-size is defined as (c) - N/NC
where N is the number of colloids in our simulations and N, is the number of clusters. A cluster
is defined as a continuously connected group of colloids where two colloids are considered to be
connected if they are in hard-sphere contact.

In Fig. 5.2 several interesting observations can be made. At short times (t < 10) the behavior
of the system (as far as growth-rate of clusters) is independent of Ma. For longer times, as Ma is
increased from 0.0 to 1.0, the growth-rate increases implying that the formation of clusters occurs
at an increased rate for higher Ma. However, for Ma=1.0 at long dimensionless times (t > 400) the
power-law of the growth-rate shrinks to near zero and the average cluster-size remains constant.
The growth-rate of clusters for Ma=0.001 is indistinguishable from the growth-rate at Ma=0.0 over
the range of dimensionless times shown in Fig. 5.2. The mechanisms and behavior inherent in these
three important observations will be discussed in the following section.

5.3.1 Modes of Aggregation

The formation of a connection between two colloids can occur head-to-tail as mentioned or, in the
case of "zipped" chains, can occur laterally. These two types of connections, vertical and horizontal
respectively, are illustrated in Fig. 5.3. Two colloids are considered to be in vertical contact if they
are touching and the angle made by the vector connecting their centers and the external field vector
is 0 < 30 or 9 > 150 [9]. Likewise, two colloids are in horizontal contact if they are touching and
30 < 0 < 150 [9].
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Fig. 5.2: Average cluster size as a function of dimensionless time for an MR
fluid with 0 = 0.025 at five different values of Ma. The black dashed line
represents the cluster growth-rate when there is no bulk-flow.
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Fig. 5.3: Left: A connection is considered vertical if 0 < 30 or 0 > 150. Right:
A connection is considered horizontal if 30 < 0 < 150.
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Fig. 5.4: (a) Vertical connectivity as a function of dimensionless time for five
different values of Ma. (b) Horizontal connectivity as a function of dimension-
less time for five different values of Ala. The black dashed lines represent the
connectivity growth-rate when there is no bulk-flow.

The vertical comnnectivity is defined as

Nv
C, - (5.6)

N-1

where Nv is the number of vertical connections in the system. The parameter Cv can vary between
0 and 1. The horizontal connectivity is defined as

Nh
Ch -- N (5.7)

where Nh is the numnber of horizontal connections in the system. The parameter Ch can vary
between 0 and 3. These two parameters, Cv and Ch, will prove important in understanding the
mechanisms of aggregation under the application of pressure driven flow. In Fig. 5.4 we show
the vertical and horizontal connectivity as a function of time for the same five Mason numbers
shown in Fig. 5.2. The connectivity behavior illuminates the aggregation mechanisms leading to
the behavior observed in Fig. 5.2. For instance, the vertical connectivity as a function of time
is fairly independent of Ma. This implies that vertical connections are formed in this system at
the same rate regardless of the flow velocity (vavg). This is in contrast to the experimental study
of Brunet et al. [120] who studied the growth-rate of a chain of MR colloids when the external
magnetic field and the flow were in the same direction. In this study the authors found that the
chain growth, by vertical connections, was dependent upon the flow rate of the bulk fluid.

At long times (t > 200), the vertical connectivity reaches a plateau as almost all of the pos-
sible vertical connections have been made by this time. In contrast, the horizontal connectivity
(Fig. 5.4b) remains at a value of zero for t < 10 at all values of Ma. At longer times, the growth-rate
of the horizontal connectivity depends upon Ma in the same manner as the cluster-size, increasing
rates for increasing Ma. The plateau in the horizontal commectivity only occurs for Ma=1.0 over
the range of dimensionless times shown in Fig. 5.4, similar to the cluster-size as a function of time.
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Fig. 5.5: (a) Snapshots in time of the configuration of colloids in the x-y plane
at Ma = 0.1. The flow is parabolic from left to right and the external magnetic
field is directed into the page. (b) Top-view snapshots of the thin-slit channel
in the y-z plane for the first and last times shown in (a). The flow direction is
upwards and the magnetic field is directed left to right. The colloids marked in
red evolve from a set of dispersed chains into a single cluster over dimensionless
time shown in the snapshots.

Again, the connectivity growth-rates for Ma=0.001 are indistinguishable from the growth-rates at
Ma=0.0 over the range of dimensionless times shown in Fig. 5.4.

The combination of the horizontal and vertical connectivity data help to explain the salient
features in Fig. 5.2. At short times, there are only vertical connections being made and they are
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5.3. Cluster Growth

independent of the bulk fluid velocity. Therefore, for all values of Ma, the cluster growth-rate is
identical. However, at intermediate times the horizontal connectivity becomes non-zero and the
fluid velocity becomes important. This increase in horizontal connectivity is a secondary process
driven by the interactions between co-flowing chains of MR colloids. The mechanism of the growth
of the horizontal connectivity is due to the zippering of chains flowing past one another and is
illustrated in Fig. 5.5. Recall from Fig. 5.1 (top) that the pressure driven flow profile in the x-y
plane is parabolic. Therefore, chains at different x-positions in the channel experience different
bulk fluid velocities. In Fig. 5.5 we show several snapshots in time of the x-y plane at Ma=0.1. As
the dimensionless time increases from 100 to 460 the chains marked in red in Fig. 5.5 flow past one
another, aggregating to form the large cluster depicted in the snapshot at t = 460.

When two chains pass one another in the bulk flow, if they are close enough together and
their relative velocities are small enough they can aggregate laterally creating several horizontal
connections. This "shear assisted aggregation" should therefore depend upon the average velocity
in the system. In Figs. 5.2 and 5.4b the horizontal aggregation is clearly dependent upon the flow
rate in the system. Contrary to the vertical connections, this mechanism is similar to the work of
Brunet et al. [120] where the ratio of the magnetic attraction to the shear forces (relative velocity)
dictates whether or not a flowing colloid can aggregate with the chain of MR colloids. The fact
that lateral aggregation is dependent upon the flow rate in this system as opposed to head-to-tail
aggregation in the work of Brunet et al. has to do with the different orientations of the external
magnetic field and the flow velocity (orthogonal versus parallel).

The two timescales for the formation of clusters are further illustrated for Ma=0.1 in Fig. 5.6
where we show several top-view snapshots of the configuration of colloids in the microchannel.
For t < 50 (Figs. 5.6a to c) only the vertical connectivity is increasing and therefore the cluster
formation is only occurring head-to-tail. In Fig. 5.6d at t = 100 the system consists of many single
chains of MR colloids that have only begun to aggregate laterally. At the later time of t = 1000 in
Fig. 5.6e, more chains have aggregated laterally and therefore the average cluster-size is increased.
At very long dimensionless times such as t = 5000 in Fig. 5.6f, the larger clusters continue to
aggregate laterally, increasing both the horizontal connectivity and the average cluster-size.

The plateau that occurs in both the average cluster-size and the horizontal connectivity for
Ma=1.0 is due to the following mechanism. Larger values of Ma physically imply stronger flow
forces versus the magnetic forces in the system. We have shown that chains of MR colloids will
form in this system regardless of the flow rate for the range of Ma we have studied. As a secondary
process those chains will aggregate laterally to form larger clusters. However, if the flow forces are
so strong that they can shear clusters apart then the system reaches a steady-state where clusters
are constantly forming and breaking due to the competing effects of the magnetic forces and the
flow forces. A similar effect has been observed in the case of rotating chains of MR colloids when
the frequency of the rotating magnetic field is increased above a certain threshold [112].

This steady-state region is the cause of the plateaus for Ma=1.0 in Figs. 5.2 and 5.4b. The
steady-state is further illustrated in Fig. 5.7 where top-view snapshots of the microchannel are
shown for Ma=1.0 at the same dimensionless times as those in Fig. 5.6. This series of snapshots
shows some qualitative similarities and differences compared with those in Fig. 5.6. For t < 10 the
two sets of snapshots look very similar for Ma=0.1 and Ma=1.0. However, for t > 50 the horizontal
connectivity begins to increase for Ma=1.0 and the snapshots in Figs. 5.7c to f look very different
from those in Figs. 5.6c to f. At long times, the clusters that form for Ma=1.0 can not span the
width of the channel in the z-direction as they do for the Ma=0.1 case. In Fig. 5.1 (bottom), the
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Ma = 0.1 at dimensionless times of (a) t = 1, (b) t = 10, (c) t = 50, (d)
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Fig. 5.7: Snapshots of the
Ma = 1.0 at dimensionless
t= 100, (e) t = 1000, and
are depicted as solid lines.

microchannel in the y-z plane for a system with
times of (a) t = 1, (b) t = 10, (c) t = 50, (d)

(f) t = 5000. The channel walls in the z-direction

velocity profile in the y-z plane has large gradients near the walls. These gradients in the velocity
profile cause the clusters to experience shear forces along their length. When the shear forces are
small they just cause the steady configuration of the clusters to appear bent in the flow direction
(Fig. 5.6f). However, if the shear forces are large enough to break the clusters apart then the "shear
induced breaking" leads to the steady-state configuration depicted in Figs. 5.7e and f. In these two
snapshots, separated by significant lengths of time, the qualitative nature of the clusters in the
system does not change, implying steady-state due to shear induced breaking of the clusters.

Due to the periodic boundary conditions in the flow direction and the finite number of colloids
N, as time approaches infinity we expect that for lower values of Ma (Ma < 0.1) there should
also be a plateau in the cluster-size and horizontal connectivity as a function of time, albeit due
to a different mechanism than the one just described. For the lower Mason numbers, eventually
all of the colloids will be incorporated into a few large clusters that do not break apart under the
pressure induced flow, therefore causing a plateau in the cluster-size as a function of time. This
process clearly has not occurred by a dimensionless time of 6000 since the average cluster-size is
still increasing in the system with Ma < 0.1 (Fig. 5.2).

The value of Ma where shear induced breaking was found to be significant was Ma > 0.25.
This result is shown in Fig. 5.8 where we plot the average cluster-size at a dimensionless time of
t = 6000 as a function of Ma. Clearly, for Ma < 0.075 the average cluster-size increases as a
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Fig. 5.8: Average cluster-size as a function of Ma at a dimensionless time of
t = 6000. The solid line connects the symbols and is only to guide the eye. The
shear assisted aggregation, transition region, and shear induced breaking ranges
are separated by the vertical dashed lines.

function of Ma. This is consistent with the observation that chains aggregate laterally by zippering
when they flow past one another (Fig. 5.5). The higher the Mason number, the more frequently
chains will pass each other and be given the opportunity to aggregate laterally. For Ma > 0.25 the
average cluster-size decreases as a function of Ma. This too is consistent with the description of
shear induced breaking causing a steady-state cluster-size where large aggregates can not exist due
to the strong flow forces present in the system. When 0.075 < Ma < 0.25 the average cluster-size
remains constant as a function of Ma in Fig. 5.8. This range of Mason numbers is the transition
region between the shear assisted aggregation and the shear induced breaking regions at low and
high Ma respectively.

5.3.2 Flow Rate Dependence

In the shear assisted aggregation regime the growth-rate of the horizontal connectivity was shown in
Fig. 5.4b to depend upon the flow rate in the system. This is further illustrated in Fig. 5.9a where
the horizontal connectivity as a function of time is plotted for a range of Ma in the shear assisted
aggregation and transition regions. The important phenomenon in shear assisted aggregation is
the change in velocity from zero at the walls to its maximum value at the center of the channel
in the x-direction. If we therefore scale the dimensionless time with this shear rate (or multiply t
by 3Ma/L) then we can capture the flow rate dependence of the shear assisted aggregation. The
multiple 3tMa/L is simply a re-scaling of time such that t* = 3tMa/L = (1.5vavg)/(L/2)t. In
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Fig. 5.9: (a) Horizontal connectivity as a function of dimensionless time for
a variety of Mason numbers in the shear assisted aggregation and transition
regions. (b) Horizontal connectivity as a function of scaled dimensionless time
'where t* = 3tMla/L = (1.5vavg)/(L/2)t for the same values of Ma from (a).

Fig. 5.9 we show how the dimensionless time t* is able to capture the flow rate dependence of
the horizontal connectivity growth in the shear assisted aggregation and transition regimes. The
collapse of the curves in Fig. 5.9b implies that the growth of the horizontal connectivity depends
linearly on the average velocity of the bulk fluid in this system.

The growth behavior of the horizontal connectivity in the shear induced breaking region is also
dependent upon the flow rate. In Fig. 5.10a we show the horizontal connectivity as a function of
dimensionless time for values of Ma in the shear induced breaking region. Again, if we scale the
dimensionless time in order to take account of the flow rate dependence, we see that the horizontal
connectivity curves in the shear induced breaking region also collapse (Fig. 5.10b). This implies
that the horizontal connectivity behavior of the system is also linearly proportional to the average
velocity of the bulk fluid in the shear induced breaking region. The curves in Fig. 5.10b have
also been normalized by the plateau value of the horizontal connectivity C* in order to show their
self-similar nature.

5.4 Discussion

We have shown that the self-assembly of MR fluids under pressure driven flow in a thin-slit mi-
crochannel with a uniform external magnetic field directed orthogonal to the flow direction is a
two-step process in time. At short times, the MR colloids attract each other head-to-tail and form
chain-like aggregates and the rate of formation is independent of the flow rate. The chains that
form are convected down the channel and because of the parabolic nature of the Poiseuille flow in
the x-direction, chains can experience different velocities. As the chains flow past one another, they
aggregate laterally to form larger clusters in a process that is highly dependent upon the bulk fluid
flow rate. This shear assisted aggregation occurs for Ma < 0.1. The existence of two de-coupled
time scales for the structure formation process in this system implies that the curves in Fig. 5.2
can not be collapsed using a single scaling. At short times, the magnetic time scale is important
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Fig. 5.10: (a) Horizontal connectivity as a function of dimensionless time for a
variety of Mason numbers in the shear induced breaking regqion. (b) Normalized
horizontal connectivity as a function of scaled dimensionless time where t*
3tMa/L = (1.5vavg)/(L/2)t for the same values of Ma from (a).

but at longer times, the flow time scale dominates.
At large values of Ma, the (clusters that form can not span the width of the channel in the field

direction because of the large shear rates near the walls. The fluid flow in these cases acts to break
the clusters apart resulting in a steady-state average cluster-size that decreases with increasing Ma.
This shear induced breaking region occurs for Ma 2 0.25. In between the shear assisted aggregation
and shear induced breaking regions, the system is in a transition region where the long-time average
cluster-size is not dependent upon the flow rate of the bulk fluid.

Our results are similar to some of the previous work done on self-assembly of MR fluids in
flow. As in the case of Brunet et al. [120] we have found that aggregation of MR, colloids in the
flow direction depends upon the flow rate in the system. In our case this corresponds to lateral
aggregation of chains while in their work, the chains and flow were oriented in the same direction so
the aggregation of the colloids was head-to-tail. Additionally, we have found that above a threshold
value of Ma a 0.25 the clusters will break due to the high shear rates present in the system. This
is similar to the results for chains of MR colloids subjected to a rotating magnetic field where there
is a threshold frequency for the external field (corresponding to a threshold value of Ma) above
which the chain of colloids will break due to shear forces [112].

5.5 Outlook

A point that has not been made in this chapter is the following. One could conceivably perform a
force balance on a cluster spanning the width of the channel in order to determine its steady-state
shape in the pressure driven flow and at which flow rate it is expected to break apart. This would
elucidate some of the physics of the transition from shear assisted aggregation to shear induced
breaking of the clusters. Another point of interest is illustrated in Fig. 5.1 (top) where the few
large clusters are seen to repel one another such that they flow only along the bottom and top
surfaces of the thin-slit channel. This repulsion was discussed in Chapter 4 and therefore the
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configuration in Fig. 5.1 is not surprising. However, it is well known that concentrated colloidal
suspensions will undergo shear induced migration away from regions of high shear [121]. This shear
induced migration is due to the hydrodynamic interactions between the colloids and between the
colloids and the wall. This mechanism is absent in the simulations presented here and therefore it
is not possible to observe shear induced migration with the simulation technique of this chapter.
However, even though the MR fluid we have studied is dilute (0 = 0.025) the clusters are locally
concentrated areas of colloids and therefore might be subject to shear induced migration. If this
effect is important, it would work to counteract the magnetic repulsion causing the clusters to be
pressed against the two walls in the y-z plane. This is a point of some interest which could be
investigated further in the future.





CHAPTER 6

Pattern Assisted Cell Sorting

One unique property of MR fluids as structural components in microfluidic devices is their ability to
be dynamic in nature. When exposed to an external force in addition to an external magnetic field,
the structures can move while still maintaining their integrity. This can be a very useful property
when designing microfluidic applications utilizing MR fluids as structural components. We present
here an example of an application for MR fluid structures under the application of pressure driven
flow in a microfluidic device. This work was done in collaboration with Daniel C. Pregibon.

6.1 Background

In recent years, the drive to develop microfluidic technologies for performing lab scale procedures
has increased immensely [3, 4, 122]. Many of these new technologies utilize field responsive fluids as
an integral structural component of the microfluidic devices [18, 123, 3, 19]. This promising area of
research brings together the microstructures formed by field responsive fluids with the small scale
geometries of microfluidic channels to create a new class of lab-on-chip technologies.

The microstructure of MR fluids have been well studied both experimentally [124, 99] and with
simulations [97, 8]. The general result of all of these studies is that under the application of a
uniform external magnetic field, MR fluids self-assemble into chain like structures aligned in the
direction of the external field. As mentioned in Chapter 4, depending upon the volume fraction of
colloids in the MR fluid, the chains can coalesce to form larger scale "labyrinth" structures (at high
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volume fractions) or "column-like" structures (at low volume fractions). The confinement of MR
fluids in microfluidic geometries has also been well studied [10, 11, 34, 35]. Confinement in the field
direction helps to dictate the types of structures that will form (labyrinth versus columns) [10, 11]
and confinement in one or two dimensions orthogonal to the external field determines the nature
of the inter-cluster structure. The influence of confinement upon the structure can be useful for
many microfluidic applications.

The isolation and separation of cells is of particular importance in the effort to develop microflu-
idic diagnostic and therapeutic tools. In particular, cancer therapies, pre-implantation diagnostics,
and studies in basic cell science all rely upon the ability to isolate and separate cells of interest.
Current approaches to cellular separations include flow cytometry [125, 126, 127, 128], surface
affinity chromatography [129, 130], electrophoretic fractionation [131, 132], optical sorting [133],
and immunomagnetic separations [134, 135, 136]. Immunomagnetic cell sorting has become very
popular in the field due to its relative simplicity, low cost, and high specificity.

The immunomagnetic separation technique traditionally consists of a separate incubation step
followed by the separation step. In the incubation step, a heterogeneous cell population is incubated
with magnetic colloids decorated with an antibody that binds specifically to the surface marker
of a target cellular phenotype. The separation is then performed by subjecting the cell-colloid
mixture to a magnetic field gradient in either a batch or continuous fashion in order to separate
the cells bound to the magnetic colloids [134, 135, 136, 137, 138]. The incubation step required
in this assay, limits the true "continuous" operation of such devices. Even more importantly, the
extended incubation time required (typically 15 to 30 minutes) may alter the physiology of the
cells causing the results to be inaccurate. Therefore, there is a great need for an immunomagnetic
cell separation device that combines the incubation (cell binding) and separation into a single step,
thus improving both the speed and accuracy of chip-based diagnostic tools.

When exposed to an external magnetic field paramagnetic colloids will experience interactions
due to their induced dipole moments. These interactions are responsible for structure formation
in MR fluids and in the case of the immunomagnetic assays mentioned above the interactions will
cause the magnetic colloids to form chains in the field direction. We propose here a new method for
manipulating immunomagnetic colloids to achieve cell binding and sorting in a single microfluidic
process. The method we present is based upon similar physics to those demonstrated by Inglis et
al. [21], but has several advantages over the previous work. In particular, we propose to "guide"
chains of paramagnetic colloids along magnetic rails that have been fixed to the bottom surface
of a microfluidic channel [139]. The general scheme is presented in Fig. 6.1 where the magnetic
chains, cell mixture, and buffer are introduced to the microfluidic device separately and exposed
to a uniform magnetic field normal to the bottom surface of the channel. The driving force for
motion of the three streams down the channel is pressure driven flow. Due to the laminar flow,
the three streams will only mix by diffusion under normal circumstances. However, the presence
of the magnetic rails causes the chains of magnetic colloids to traverse the stream with the cell
mixture where they can then capture the cells of interest and proceed to the clean buffer stream.
This procedure has the advantage of being able to perform the separation in a single step with no
batch incubation step required prior to the separation. As we will show, our method has the added
advantage of "column arrest" where we can hold the chain of magnetic colloids fixed on the rail
as the bulk fluid phase flows past thus increasing the amount of time that a chain can spend in
contact with any of the three streams.

In order to characterize this system, we investigated the motion of a free-moving chain of
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Fig. 6.1: General scheme for magnetic pattern assisted cell sorting. Three
streams are introduced into the microfluidic channel on the left hand side. As
they co-flow down the channel the selected cells are captured and separated from
the general population by magnetic chains traversing the width of the channel
'with the aid of patterned rails.

magnetic colloids flowing in a thin-slit microfluidic chaunel past a single rail patterned to the bottom
of the channel. The uniform external magnetic field was directed normal to the bottom surface of
the channel causing the chain to align in the field direction. We varied the external magnetic field
strength, bulk fluid velocity, and slit-thickness in order to determine their effects upon the behavior
of the system. Additionally, we investigated the use of discrete colloid rails consisting of a line of
magnetic colloids fixed on the bottom surface of the channel versus continuous rails consisting of a
continuous strip of magnetic material fixed to the bottom surface of the channel. We determined
that the operation of the device depends upon the type of rail, the slit-thickness, and the ratio of
the magnetic field to the flow velocity.

6.2 Simulation Details

The system studied consisted of short chains of MR colloids interacting with a single "rail" of
paramagnetic material patterned on the bottom surface of a thin slit mnicrochannel. A uniform
external magnetic field was applied in the z-direction (normal to the surface containing the rail)
and a Poiseuille flow was applied in the y-direction. The thin slit simulation box consisted of hard
walls in the z-direction and periodic boundary conditions in the x and y-directions. The rail was
either modeled as a line of discrete MR colloids fixed to the bottom surface or as a continuous line
of magnetic material with the same line-density of dipoles as the discrete rail case. Both of these
cases are described below.

The bulk Poiseuille flow imposed a velocity V(ri(t)) on a colloid located at ri given by the
expression

V(r(t)) - g ri(t) e r(t) -e (6.1)V~r~t) 6av L Le,(61
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where L is the height of the thin slit in the z-direction, e. is the unit vector in the z-direction, and
vavg is the average velocity of the bulk fluid flow in the y-direction.

The MR colloids were modeled as hard spheres of diameter d with an induced point dipole at
their centers. The interaction energy between two MR colloids Uij is given by Equation 1.10. In
our model, we assume a large magnitude external magnetic field and a large Peclet number flow
such that we can neglect the thermal motion of the MR colloids. The equation of motion for a single
colloid in our system was thus given by N

dri(t) - V(ri(t))dt + [ -VUij - VUlrai l dt, (6.2)

where the inertia of the colloids is neglected and, for simplicity, we neglect the hydrodynamic
interactions between MR colloids. The parameter ( is the drag coefficient on a single colloid,
-VUij is the force on colloid i due to its magnetic interaction with colloid j, and -VU r ail is the
force on colloid i due to its magnetic interaction with the rail. The form of U 1ai l will be discussed
shortly.

In this system, lengths are made dimensionless as F - r/d and times are made dimensionless
as t = vavgt/d where d/vavg is the time it takes for a colloid to convect a distance d due to the
imposed flow vavg. This timescale differs from the one introduced in Chapter 5 but is more useful
for this study because we will only consider cases with non-zero Vavg. The natural energy scale for
this system is defined as Uo = -Uij(d, 0) = 7r/iod 3X2H2.t/72 which is the magnitude of the energy
between two touching colloids aligned head to tail. Taking this set of length, time, and energy
scales Equation 6.2 is re-written in dimensionless form as

dri(t) - V(i(t))dt + 3 a -U - aila d. (6.3)

The dimensionless parameter in the second term on the R.HS of Equation 6.3 is called the Mason
number (Ma) and is a ratio of the flow forces to the magnetic forces in the system. The Mason
number has been defined with different proportionality factors in the literature [116, 104, 114] but
it is always the ratio of viscous forces to magnetic forces. In this study the Mason number is defined
as

M 2 CVavg 14 4 rYVavgMa = = 144,ivavg . (6.4)
3Uo/d - dox2H (6.4)

The dimensionless size of the simulation box was set at 100 x 500 x L and the initial conditions
for each simulation were as follows. The magnetic rail was placed on the bottom surface of the
channel such that it intersected the dimensionless coordinates (1, 20, 0.5) and made an angle Or with
respect to the x-axis. A chain of MR. colloids aligned in the z-direction and containing N colloids,
where 2 < N < L, was placed at the dimensionless coordinates (50 cos Or + 1, 10, 0.5) such that the
bottom colloid in the chain was touching the bottom surface of the slit and it was located, in the
x-direction, at the center of the rail.

Discrete rails. In the discrete case, the rail consisted of 100 MR colloids of diameter d stamped
in a line to the bottom of the channel. The first colloid in the rail was located at the dimensionless
coordinates (1, 20, 0.5) and each subsequent colloid was located at the dimensionless positions (1 +
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(n - 1) cos 0r, 20 + (n - 1) sin Or, 0.5). In this case, the colloids in the rail were identical to the
colloids in the short chain and therefore the energy of interaction between colloid i in the short
chain and the rail is simply

U rl od6 X2H xt 100 1 - 3cos2 i n

Ura(ri) = 144 n= r3 (6.5)

Continuous rails. In the continuous case, the rail was modeled as an infinite line of paramagnetic
material with an effective "line density" of dipoles equal to m/d due to the external magnetic field,
where m is the dipole moment of a single MR colloid given by m = (rd 3XHext)/6. As mentioned
previously, the line of paramagnetic material was located in the dimensionless plane i = 0.5. The
energy of interaction between colloid i in the short chain and the continuous rail is given by

Ufail(f•i, ) = 7rpod3x24Hxt 1 - 2 co2 i , (6.6)

where Fi is the dimensionless scalar magnitude of the shortest vector connecting colloid i and the
rail defined as

[ i + y tan Or + tan Or (tan Or- 20)
i [Xi - 1 + tan2 r

[ - tan Or ( ai + n tan Or) + (tan Or - 20) (6.7)
+Yi 1± + tan2 Or Je

+ [i - 1/2] ez

and Oi is the angle made by the vector fi and the external field vector (e.).
After placing all of the colloids in the appropriate positions and defining Ma and Or for the

system, the equation of motion was integrated forward in time using the Euler integration scheme.
At the end of a time step, hard sphere overlaps were removed by using the Displacement Algorithm
described in Chapter 2. The dimensionless time step used in these simulations was At = 0.01Ma
ensuring that the displacement of a colloid during a time step was only a small fraction of d. Since
we have neglected Brownian motion in this study, the simulations were deterministic meaning that
the results of a single simulation did not have statistical noise but instead were determined by the
system parameters (L, Or, Ma). Therefore, only a single simulation was performed for each set of
parameters.

6.3 Discrete Rails

Using lithographic techniques, one can affix a line of magnetic colloids to the bottom surface of a
microfluidic channel [139]. In the case of our cell separation device, this line of magnetic colloids
forms the discrete rail as in the case described above. When we consider the free chain of magnetic
colloids to be of length N - L such that it spans the height of the thin-slit channel then we have
observed that there are four general modes of behavior for the interaction between the chain and
the patterned discrete rail. The chain of colloids can guide parallel to the rail without touching it
(Guiding I), stick to the rail without moving (Sticking), guide along the rail by physically contacting
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Fig. 6.2: Four different modes of behavior for a chain of magnetic colloids
flowing in the y-direction from left to right. (a) In the Guiding I mode, the chain
guides parallel to the rail without touching it. The inset shows the configuration
of the chain (open circles) and the rail (closed circle) in the Guiding I mode.
(b) In the Sticking mode, the chain does not move along the rail but remains
arrested as the bulk fluid flows past. (c) In the Guiding II mode, the chain
mounts the rail and guides along the rail in physical contact. The inset shows
the configuration of the chain (open circles) and the rail (closed circle) in the
Guiding II mode. In the Guiding II mode, the chain can lose the bottom-most
colloid when it mounts the rail thus the illustration in the inset only contains
five magnetic colloids. (d) In the No Guiding mode, the chain does not remain
in sustained contact with the rail but instead flows by without guiding.

it (Guiding II), or be weakly affected by the presence of the rail and simply flow past it without
guiding (No Guiding). The four different behaviors are illustrated in Fig. 6.2.

In the Guiding I mode (Fig. 6.2a), the bottom colloid in the chain feels a repulsive force from
the rail that is much stronger than the flow force. The attractive "interactions between the colloids
in the chain cause it to remain connected in the z-direction and therefore it can not move past the
rail. In this mode, the chain remains upstream of the rail and guides parallel to the rail without
touching it (Fig. 6.2a inset). In the Sticking mode, the flow force experienced by the chain is able
to overcome the repulsion between the rail and the bottom colloid in the chain causing the chain to
mount the rail. During this mounting process, the chain can lose it's bottom colloid as illustrated in
Fig. 6.3. Once the chain has mounted the rail, it experiences a complex potential energy landscape
along the rail. This potential energy landscape arises from the anisotropic interactions between
MR colloids. When the chain is directly between two of the colloids in the discrete rail it is in a
local minimum of the potential energy and in order to proceed along the rail, the flow forces must
be able to overcome the energy barriers.

This point is further illustrated in Fig. 6.3b where the chain experiences a portion of the flow
force along the rail from left to right. If the flow force is not strong enough to overcome the potential
energy barriers associated with moving along the rail then the chain will remain in the Sticking
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Fig. 6.3: (a) An illustration of the forces acting upon the chain of magnetic
colloids in the vicinity of the rail. The bottom colloid experiences a repulsion
from the rail while the chain as a whole feels a driving force towards the rail
from the bulk fluid flow. (b) When the chain has mounted the rail typically it
loses it's bottom colloid in order to sit on top of the rail and still span the height
of the microchannel. The chain feels the driving force due to the fluid flow but
must overcome the potential energy barriers associated with moving along the
rail. The form of the energy barriers is shown by the solid line.

mode. If the flow forces are strong enough, then the chain will guide while in contact with the rail
in the Guiding II mode. If the flow force is stronger still, then the chain breaks away from the rail
and continues to flow down the channel without guiding. This is the No Guiding mode mentioned
above. We have determined in which regions of phase space (Ma, L, and Or) the different modes
will dominate the behavior of the chain of magnetic colloids in this system. The trajectories of the
chains (such as shown in Fig. 6.2) were used to determine the mode of behavior for a chain under
a given set of conditions.

The phase diagram for the four modes of behavior when the chain of magnetic colloids spans
the height of the channel is shown in Fig. 6.4 for three different dimensionless channel heights.
The behavior of the chain is seen to depend upon the Mason Number (Ma), the channel height
(L), and the angle of the rail (Or). When the rail angle is very small (Or 5 10) the rail is almost
perpendicular to the flow direction and therefore there is no range of Ma where the chain will guide
in contact with the rail (Guiding II). The chain may be in the Guiding I mode for a very small
range of Ma but otherwise it either sticks on the rail or does not guide at all. As the angle of
the rail is increased (10 < Or < 65) there are significant ranges of Ma where the chain can be in
any of the four modes. The Guiding II region continues to grow over this range of rail angles and
the Sticking region shrinks. For large rail angles (Or > 65) the rail is almost parallel to the flow
direction and the Guiding II region is the dominant region in Fig. 6.4. The Guiding I region also
grows significantly over this range of rail angles but shows an additional dependence on the number
of colloids in the chain. This indicates that the parameters NMa and Or do not uniquely define the
behavior of the system at the Guiding I boundary.

6.3.1 Predicting the Phase Boundaries

Using simple force balances, we can predict where the boundaries will occur between the different
modes of behavior in this system. For instance the boundary between the No Guiding mode and
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Fig. 6.4: The phase diagram for the interaction between a chain of N magnetic
colloids spanning the height of the microchannel and a discrete magnetic rail
fixed to the bottom of the channel. The mode of interaction depends upon the
chain length, rail angle, and ratio of flow to magnetic forces (Ma). The solid
lines are the phase boundary predictions given by Equations 6.10 and 6.14 for
the No Guiding/Guiding II and Guiding II/Sticking boundaries respectively.
The dashed line is to guide the eye for the Guiding I/Sticking transition and
has the form NMa = 0.125/ cos 0,.
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the Guiding II mode should occur when the flow forces perpendicular to the rail are larger than
the magnetic forces attracting the chain to the rail. The path of a chain over the rail in the No
Guiding mode is shown in Fig. 6.5 for three different rail angles Or. At all three angles, the chain
leaves the rail by pulling off of the down stream edge of the rail. The flow forces perpendicular to
the rail can be written as

FF low oc Nvavg( cos 0 (6.8)

since the bulk flow acts upon all of the colloids in the chain. The dominant magnetic force due
to the rail is upon the colloid touching the rail since the magnetic force between two MR colloids
decays with separation distance to the fourth power (Equation 2.5). Therefore the magnetic force
on the chain due to the rail can be written as

FMag oc (Uo/d) (6.9)

Equating the expressions given in Equations 6.8 and 6.9 results in the following expression

Nav oc NMa = C± (6.10)
Uo/d cos Or

where C± is an 0(1) proportionality constant for this case. When Ff lOW and FMag are approxi-
mately equal the chain will transition from the Guiding II mode to the No Guiding mode. We have
found in our simulations that C1 equals 1.55 for the Guiding II to No Guiding transition. This
constant was determined by simulating the case Or = 0 such that the entire flow force is opposed
by the magnetic forces. The prediction given by Equation 6.10 is plotted as a solid line in Fig. 6.4.

Likewise, the phase boundary between the Sticking mode and the Guiding II mode should occur
when the flow forces parallel to the rail are large enough to overcome the potential energy barriers to
moving along the rail shown in Fig. 6.3b. The path of a chain along the rail in the Guiding II mode
is shown in Fig. 6.5 for three different rail angles Or. When guiding along the rail, the chain hops
from one potential energy well to another by passing over the intervening colloid. The resistance
to guiding in this case will depend upon the detailed interactions between the bottom colloid in
the chain and the two colloids on the rail between which it sits before hopping. A schematic of the
geometry in this case is shown in Fig. 6.6 for a top-view (x-y plane - normal to the thin-slit) and a
side-view (perpendicular to the rail). The position of the center of the bottom colloid in the chain
is denoted by the filled circle in Fig. 6.6 and its position relative to the next "downstream" colloid
in the rail is denoted by r, 0, and ¢ in spherical coordinates. The bottom colloid in the chain is
constrained to be in contact with the downstream rail colloid and its force in the r direction is
exactly countered by the hard-sphere repulsion.

In the case of the Sticking/Guiding II transition, the motion of the chain along the rail is
quite complicated as it depends upon not only the magnetic and flow forces but also steric forces
due to the hard-sphere repulsion. However, the boundary between these two regimes should be
some combination of the two extreme limits O --+ 0 and Or --- 90. When 0r -- 0 the flow force is
completely perpendicular to the rail and therefore it should be balanced by the magnetic forces
perpendicular to the rail. We have already shown the form of that force balance in Equation 6.10.
When Or -- 90, the flow forces are entirely perpendicular to the rail. However, a portion of the flow
force is normal to the downstream rail colloid's surface and is therefore cancelled by the hard-sphere
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Fig. 6.5: Trajectories of the chain along the rail in the Guiding II and No
Guiding modes for three different rail angles. The colloids in the rail are depicted
as circles and the trajectory of the chain is shown as a solid line.
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Flow
Fig. 6.6: An exaggerated schematic of the local coordinate system between the
chain and the discrete rail. The position of the center of the bottom colloid in
the chain is denoted by the filled circle surrounded by a dashed circle. The local
spherical coordinates are shown for this configuration. Left is a top-view of the
system and right is a side view. The flow direction and external field directions
are shown with solid arrows.

repulsion. The appropriate force balance when Or -+ 90 is in the 0-direction as defined in Fig. 6.6.
When Or -+ 90 the angle ¢ = 180. For this specific case, the magnetic forces in the 0-direction are
given by

FMag (4.125 cos + 1.875 cos 30 - 6 cos 0 sin O)

Likewise, the flow forces in the 0-direction can be written as

(6.11)

(6.12)FFlow oc Nvavg( cos 0 (sin € cos Or + cos q sin Or)

Therefore, equating the two forces in Equations 6.11 and 6.12 yields the force balance in the 0-
direction

N avgoc NMa
Uo/d

2.25 + 3.75 (2 cos2 • - 1) - 6 sin 0
sin Or I

(6.13)

The energy landscape in Fig. 6.3b is very steep when the chain is between two rail colloids. In
other words, the motion in the direction down the rail is very constrained. Therefore, the angle 0
in Equation 6.13 is fairly constant since it depends upon the ability of the chain to move down the
rail.

As mentioned, the boundary between Sticking and Guiding II is a combination of the behavior of
the system in the two extreme limits of rail angle. Expressing the boundary as a linear combination
gives

NMa C  + ( s in ) (6.14)
90 cos Or 90 sin (r
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Fig. 6.7: The phase diagram for the interaction between a chain of N magnetic
colloids where N < L and a discrete magnetic rail fixed to the bottom of the
channel. The dimensionless channel height was 10 for this case. The solid lines
are the predictions given by Equations 6.10 and 6.14 for the No Guiding/Guid-
ing II and Guiding II/Sticking boundaries respectively.

where CL and Co are proportionality constants. In our simulations, we find that C± = 1.93 and
Co = -0.59 by matching the behavior of the system at the two limits Or = 0 and Or = 90. We already
showed that NMa = 1.55 at the limit where 0r = 0 (for the Guiding II/No Guiding transition) and
by performing a simulation for 0r = 90 we find that NMa = 0.64 in that limit.

The force balance for the boundary between the Guiding I mode and the Sticking mode is even
more complicated than the other two phase boundaries and is not self-similar as a function of the
chain length. In Fig 6.4 it appears that the Guiding I mode disappears asymptotically as the chain
length is increased. Therefore, we only show the form of the boundary to guide the eye in Fig 6.4.
However, the predictions for the phase boundaries given by Equations 6.10 and 6.14 are seen to be
quite accurate in Fig. 6.4. They are able to predict not only the shape and location of the phase
boundary but also the chain-length dependence. This is further illustrated in Fig. 6.7 where we
show the phase diagram for chains of height 4, 6, 8, and 10 interacting with the discrete rail in a
channel with L = 10. This figure emphasizes the fact that the chain length is the important length
scale in determining the phase boundaries.

A feature that is conspicuously absent from Fig. 6.7 is the Guiding I mode that exists for the
case of N = L. When the chain length is smaller than the channel height, the repulsion on the
bottom colloid due to the presence of the rail causes the short chain to elevate in the z-direction
in order to reduce that repulsive energy. The elevation of the short chain allows it to mount the
rail even at very low values of Ma so for N < L the Guiding I mode can not exist. This elevation
is not possible when the chain spans the height of the microchannel and therefore at low Ma, the
Guiding I mode exists for N - L.
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Fig. 6.8: The phase diagram for the interaction between a chain of N magnetic
colloids spanning the height of the microchannel L and a continuous magnetic
rail fixed to the bottom of the channel. The solid line is the prediction given by
Equation 6.10.

6.4 Continuous Rails

The system presented by Inglis et al. [21] consisted of continuous rails on which cells coated with
magnetic nanoparticles could guide. In the separation scheme that we have presented, the presence
of a continuous rail leads to the two modes of behavior shown in Fig. 6.8. Most notably, there is no
Sticking mode in the continuous rail case since the potential energy landscape shown in Fig. 6.3b
does not exist for continuous rails. The absence of the Sticking mode causes the Guiding I and
Guiding II regions of the phase diagram to merge and therefore the only two modes are Guiding
and No Guiding. This is similar to the observations of Inglis et al. where they observe guiding when
the magnetic forces are large and no guiding when the flow forces are large. Again the transition
from the No Guiding mode to the Guiding mode is due to the balance of forces perpendicular to
the rail given by Equation 6.10. This force balance was also presented by Inglis et al. [21].

6.5 Discussion

The four modes of behavior present in the discrete rail case create a distinct advantage over the
two modes available in the continuous rail case. In particular, the ability to transition back and
forth between the Sticking mode and one of the Guiding modes can be useful for the cell separation
scheme presented in this work. As mentioned, the incubation of the heterogeneous cell solution
with the magnetic beads is usually the rate limiting step in immunomagnetic separations. However,
in our scheme one could take advantage of the different modes of behavior in order to efficiently
perform the incubation in a continuous manner.

For instance, the three streams in Fig. 6.1 can be introduced to the microchannel as shown with
Or = 450 and NMa = 1.5. The external magnetic field could then be oscillated such that NMa
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changes from 1.5 to 0.5 with a defined frequency. This oscillation of the external magnetic field
would cause the chains to alternatively guide and stop with the same frequency as the external
field. Therefore, the chains would "march" along the rails, moving across the three flowing streams
and pausing when the external field is high. When the chains are paused in the stream containing
the heterogeneous mixture of cells then they will be able to capture the cells of interest as they
flow by. The oscillation frequency of the external field could be adjusted such that the chains will,
on average, spend enough time in the stream containing the cells to ensure an optimum effective
incubation period. Operated in this manner, the device we propose would be the first continuous-
flow immunomagnetic cell separation process performed on a microfluidic scale.

We have presented here an application that utilizes the self-assembled structures found in MR
fluids as dynamic structures in a microfluidic device. The idea for the pattern assisted cell separation
device presented in this chapter can have an important impact upon this area of microfluidics since
it is a simple scheme that does not require extensive fabrication or precise magnetic field gradients.
Furthermore, it allows one to perform separations of biological entities in a continuous fashion,
incorporating an effective incubation step into the separation process and thus removing the need
for a time-intensive batch incubation.

The device proposed by Inglis et al. [21] is similar in nature to the one proposed here but it
uses continuous rails and therefore does not support the Sticking mode present in our device. As a
result, the Inglis device requires an incubation of the cell mixture and the magnetic nanoparticles
in a batch process before the separation step. The Sticking mode is critical in that it allows the
chains to be temporarily trapped in the stream containing the cell mixture in order to capture the
cells of interest.

6.6 Outlook

In the near future, a set of proof of principle experiments must be done with discrete rails as outlined
in this work. The technologies to construct the device proposed here already exist in the literature
and therefore the ideas presented can be verified in a real cell separation device. In particular,
we must show that we can apply the phase diagram we have found in our simulations in order
to "march" the chains along the rails to perform the continuous immunomagnetic cell separation
proposed in Section 6.5.
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CHAPTER 7

Conclusions and Outlook

In this thesis we have presented a series of studies that merge the areas of microfluidics and MR
fluids. This is a timely union of these two technologies as new microfluidic applications are being
developed that utilize the self-assembling properties of MR fluids [4]. We have systematically
investigated the effects that confinement in microfluidic geometries has upon the structure and
dynamics of self-assembled MR fluids. The work done here will have a broad impact upon the
design and ultimate use of MR fluids as structural components in microfluidic devices.

7.1 Two Dimensional Systems

We began in Chapter 3 by investigating a model system consisting of MR fluid confined in a plane
with an external magnetic field directed normal to that plane. The MR fluid in this system formed
a monolayer of colloids interacting with purely repulsive dipolar interactions. This system has
been of interest for many years as a model for 2D crystallization and melting [87]. We performed
the largest BD simulations to date of unbounded 2D dipole system (14, 784 colloids) in order to
determine the external field strength at which the solid-liquid phase transition occurs [34]. We were
able to determine upper and lower bounds for the phase transition region providing a very narrow
window of external field strengths over which it occurs. Our results were consistent with, albeit
more precise than, previous simulation work on the same system.

In addition to the unbounded system, we fully characterized the structure and dynamics of MR
fluids confined in 2D channels with parallel hard walls [33, 34, 35]. We found that the dimensionless
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channel width plays a crucial role in determining the structure and state of the system. We mapped
out the state of the system as a function of external field strength and channel width and discovered
that the system exhibits re-entrant behavior as a function of channel width but not external field
strength. The behavior of the 2D channel system oscillates back and forth between solid-like
and liquid-like states as the channel width is increased. This represents the first time such an
observation has been made as a function of the geometry of the system. Previous work had found
re-entrant behavior of the system as a function of external field strength for MR fluids confined
in 2D circles [49]. Additionally, we were able to show that the re-entrant behavior as a function
of channel width was not unique to the dipolar interaction but in fact is general for repulsive
interactions between colloids confined in 2D hard-wall channels.

Another property of MR colloids in the 2D channel system that we observed was the regular
defect structure along the hard-walls. Free dislocations arose along the hard-walls in this system
due to the energetically favorable arrangement of colloids consisting of a higher density along the
walls. The presence of these defects gives rise to many of the structural properties observed for MR
fluids under this confinement. However for other repulsive interactions the dislocations along the
wall were not observed indicating that the energetics in these systems do not favor that structure.
Therefore the general property of re-entrant behavior for repulsive colloids in 2D channels does not
rely upon the presence of free dislocations along the walls.

All of the results found in our BD simulations for MR fluids in 2D hard-wall channels were
confirmed experimentally [35]. We performed a series of experiments with paramagnetic colloids in
a monolayer confined between parallel hard walls and subjected to a uniform external magnetic field.
The results from these experiments confirmed exactly the observations from our BD simulations and
allowed us to verify that the structure of MR fluids under this extreme confinement is well-modeled
with our BD technique.

7.2 Thin Slit Systems

Another technologically relevant geometry for the confinement of MR fluids is a thin-slit microchan-
nel. In Chapter 4 we investigated the self-assembly of dilute MR fluids confined in thin-slits with
a uniform external magnetic field directed normal to the confining planes. In particular, we char-
acterized the spacing between the clusters that form as a function of the slit-thickness and volume
fraction of the MR fluid. This property of the system is crucial to the DNA separation devices that
utilize self-assembled MR fluids in thin-slits [4]. We showed quantitative agreement between our
BD simulations and previous experimental work on the same system [10]. The previous work only
considered slit-thicknesses larger than tens of colloid diameters but due to advances in microfluidic
technology, the sizes of microchannels can now range down to a single colloid diameter. Our simu-
lations represent the first investigation of self-assembly of dilute MR fluids in such extremely thin
slits (less than five colloid diameters in thickness).

We showed that there is a cross-over in the behavior of the spacing between clusters as the
slit-thickness is reduced. The details of the cross-over were shown to be highly dependent upon
the energy barriers to lateral aggregation of MR colloids confined in thin-slits. We introduced a
model to predict when the energy barriers to aggregation become significant as a function of the
volume fraction of MR fluid and the slit-thickness. This model was the first to include the effects
of volume fraction on the energetics of aggregation and we were able to show that indeed it plays
an important role in determining when the barriers to aggregation become important. We were
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able, for the first time, to quantitatively explain the volume fraction dependence of the cross-over
in behavior as the slit-thickness is reduced. Our model also helps to explain why real MR fluid
systems in thin-slits can not reach their theoretically predicted ground states [96].

In the extremely thin slits (less than five colloid diameters) we observed that the spacing be-
tween clusters oscillates as a function of slit-thickness. This was the first observation of its kind for
dilute MR fluids although a similar oscillating behavior has been observed for very concentrated
MR fluids [11]. We introduced a quantitative model for the ground states of the MR fluid clusters
under such extreme confinement and showed that it was able to predict the oscillations in spacing.
We showed that for most slit-thicknesses in this range, the system reached the ground state con-
figuration of clusters but in some cases the energy barriers to aggregation were again too large to
reach the ground state.

The study of the thin-slit system is of great importance for understanding the self-assembled
MR fluid structures that will form in microfluidic devices. Using the results of this study, one can
tailor the geometry of a microfluidic channel in order to achieve a desired pore size between the MR
fluid structures. Additionally, this study introduced a quantitative model of the energy barriers to
aggregation that exist in the thin-slit system which will aid in understanding the dynamic response
of MR fluids to an external magnetic field under such confining conditions.

7.3 MR Fluids and Flow

Taking our experiences in modelling the behavior of MR fluid structures in microfluidic geometries,
in Chapter 5 we investigated, more generally, the self-assembly of MR fluids under the application
of pressure driven flow. We chose to study the technologically relevant geometry of a thin-slit
microchannel with an aspect ratio of 10:1. In our study, the external magnetic field was directed
perpendicular to the flow direction along the wide-axis of the thin-slit. This study is relevant as
many applications utilizing MR fluids require the fluids to flow under the application of pressure
through microfluidic channels [102].

Using simulations, we were able to show the important processes taking place during self-
assembly in pressure driven flow. Head-to-tail aggregation of MR colloids was shown to occur at
the same rate, independent of the fluid flow rate, for all of the flow rates studied. In contrast, the
lateral aggregation of chains of MR colloids depended heavily upon the flow rate and we found
that there were two important regions of flow rate affecting this aggregation process. At lower flow
rates the shear assisted aggregation regime dominated where the non-uniform nature of the flow
profile in the plane normal to the thin-slit assisted chains in aggregating laterally. At higher flow
rates the shear induced breaking regime dominated due to the non-uniform flow profile parallel
to the thin-slit. This velocity profile acts along the length of the clusters that form and near the
side walls, where the gradient of the profile is large, the clusters shear apart in this regime. The
mechanisms elucidated by this study are important for understanding and predicting the response
times of MR fluids to the application of an external magnetic field in the presence of bulk fluid flow.
Additionally, this study has provided a prediction for the mechanism of how MR fluid structures
will fail under the application of pressure driven flow and at which flow rates that failure will occur.

In Chapter 6 we introduced an idea for a cell separation device that utilizes MR fluids as
structural components that can move under the application of bulk fluid flow. The design of
this device was done in collaboration with Daniel C. Pregibon. This immunomagnetic separation
device idea would be the first continuous device able to perform all of the steps in a cell separation.
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The device consists of "rails" of paramagnetic colloids fixed to the bottom surface of a thin-slit
microchannel which are capable of guiding a free vertical chain of paramagnetic colloids along the
rail. The paramagnetic colloids in the chain are decorated with an antibody that binds specifically
to the surface markers of cells of interest. As the chain guides along the rail, it can capture cells as
they flow past and then drag them into a clean buffer stream for separation farther downstream.

We characterized, using simulations, the operational range of the device and showed the dif-
ferent modes in which it can be run. In addition, we presented theoretical predictions for the
boundaries between the different modes of operation and showed how those predictions match with
the simulation results. We compared the operation of this device with a previous application in
the literature [21] in order to show the added functionality present in our device. At present, the
device presented in Chapter 6 is the first microfluidic example capable of performing a continuous
immunomagnetic cell separation.

7.4 Future Work

In the future there are many exciting directions this research can take. One area of considerable
interest is to investigate further the properties of 2D colloidal crystals with repulsive dipolar in-
teractions near hard-walls. We have shown that regular free dislocations arise along the walls in
2D channels but we have not studied the properties of these dislocations. Specifically, one could
study the timescales associated with their diffusion along the wall and the frequency with which
they form and annihilate. Additionally, a more rigorous understanding of the energetics leading to
their formation would be very interesting from a basic physics standpoint.

In thin-slits, experimental exploration of the extremely thin slit regime (less than five colloid
diameters) would illustrate how useful the oscillating spacing (or pore size) between MR fluid
clusters can be for DNA separations. Additionally, the ideas presented in Chapter 4 for the energy
of interaction between two chains of MR colloids at a fixed volume fraction and slit-thickness could
be extended to the range of slit-thicknesses studied experimentally in the literature [10]. There is
still a discrepancy in the literature between the cluster spacings observed experimentally [10] and
the ground state cluster spacings predicted by theory [96]. This discrepancy is most likely due to
the presence of energy barriers to aggregation of clusters (larger than single chains) but it has not
been shown quantitatively for the larger slit-thicknesses (greater than 100 colloid diameters).

The results for MR fluids self-assembling in flow presented in Chapter 5 should be compared to
experimental results. In particular, it should be determined how important shear induced migration
is in this system, how important is the channel geometry (both size and aspect ratio), and how do
the results depend upon the volume fraction of the MR fluid. Another point of interest would be
to develop a model for predicting the steady-state shape of the clusters under the application of
pressure driven flow. Additionally, the cell sorting device presented in Chapter 6 could be fabricated
and tested to determine if the theoretical predictions in this thesis hold true for a physical device.
The technology exists in the literature to fabricate the device and therefore it should be considered
for the sake of introducing the first continuous immunomagnetic cell separation device.

We have pointed out several directions that this research can take in the immediate future.
Undoubtedly, farther into the future, these questions and many more will be addressed. The idea
of utilizing MR fluids as structural components in microfluidic devices is blossoming into a wide-
ranging field with many interesting scientific and application oriented problems. This thesis will
serve as a guide for undertaking and solving these problems.
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Appendix A

Tips and Tricks

This appendix contains detailed descriptions of many useful tools that were used during the process
of the research in this Thesis. An overview of the Brownian dynamics (BD) algorithm is given
along with detailed descriptions of the more unique features. The important "post-processing"
routines used for calculating properties of the simulated systems are also listed with descriptions.
Additionally, experimental tips are given for performing experiments on the self-assembly of MR
fluids in microfluidic channels

A.1 Brownian Dynamics Algorithm

The general form of the BD code is shown in Fig. A.1. Each subroutine presented in Fig. A.1 will
be described in more detail in this section.

initialize.f This subroutine initializes the random number generator and any lookup tables
that might be necessary. The random number generator was developed in [24] and is given on
pages 308-309. The necessary lookup tables could be for the flow profile as well as the hard-wall
equations given in Chapter 2.

placement.f There are many different ways to place the colloids inside the simulation box.
The two most useful starting configurations are a random starting configuration where the colloids
are placed using randomly generated positions or a previous simulation's ending configuration. If
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main.f [reads input file and calls simulation]
simulation.f [integrates equation of motion]

initialize.f [initializes random number generator]
placement.f [places the colloids in the simulation box as instructed

in the input file]
headermovieprint.f [prints the input parameters into the output

file]
movieprint.f [prints the initial configuration of colloids into the

output file]
for i=1 ,final_time

zeromove.f [sets the "move" vectors to zero]
if (field_on) then

newlist.f [bins the colloids based on their positions]
interactions.f [calculates the magnetic interactions

between colloids and updates the
"move" vectors]

endif
if (flow_on) then

flow.f [calculates the force on the colloids due to bulk
fluid flow and updates the "move" vectors]

endif
if (brown_on) then

brownian.f [calculates the Brownian force on the
colloids and updates the "move" vectors]

endif
makemove.f [adds the "move" vectors to the positions of

the colloids]
period.f [enforces periodic boundary constraints if any]
newlist.f [bins the colloids based on their positions]
hardsphere.f [enforces the hard sphere constraint]
period.f [enforces periodic boundary constraints if any]
if (sample time) then

movieprint.f [prints the current configuration of
colloids into the output file]

endif
continue

Fig. A.1: Pseudo code description of the BD algorithm used for the research in this thesis.
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the colloids are placed randomly then after each colloid is placed we must check to ensure that it
hasn't overlapped with any of the other colloids in the system.

headermovieprint.f This subroutine simply prints a copy of the input file as the first lines of
the output file. In the output file, the lines printed by this subroutine are preceded with a # sign
which acts as a comment symbol.

movieprint.f The position vectors are sent to this subroutine so that they can be printed to
the output file. The output file is in the "xyz" format which has the following form (after the
comment lines printed in headermovieprint.f). The number of colloids is printed on its own line
followed by a comment line which contains the time of the snapshot. Then N lines are printed (one
for each colloid) formatted as

type x-position y-position z-position

zeromove.f This subroutine simply takes in the move vectors (the vectors that give the dis-
placement for each colloid) and sets them to zero in preparation for the next time-step in the
loop.

newlist.f The colloids are binned into a linked list set of bins as described in [25] on page 552.
interactions.f The magnetic interactions between all of the colloids are calculated. We loop

through the bins that are created in newlist.f and calculate the interactions between each colloid
in a bin and each other colloid in that bin and half of the neighboring bins. While looping through
all of the bins, we check to enforce the periodic boundary conditions (check to see if a neighboring
bin exists as a periodic reflection) and the hard-wall conditions (check to see if a bin is next to a
hard wall so it has no neighbors on that side). The interactions between the colloids are calculated
using the force equation (Equation 2.5) in Chapter 2 and the displacements due to the magnetic
interactions are added to the move vectors.

flow.f The flow forces are calculated based upon the positions of the colloids (without HI) and
the displacements are added to the move vectors. The flow force can have an analytical form or
can be a numerical lookup table that was generated in initialize.f.

brownian.f The displacement due to Brownian motion is added to the move vectors by gen-
erating three random numbers (one in each cartesian direction) for each colloid in the system.

makemove.f The move vectors are simply added to the position vectors in order to step the
positions of the colloids forward in time.

period.f The periodic boundary conditions are enforced by looping through all the colloids and
checking if their positions are outside the simulation box. If the colloids are outside the simulation
box in one of the periodic directions, their position is replaced by the periodic image that is inside
the simulation box.

hardsphere.f The hard-sphere and hard-wall constraints are enforced by this subroutine. First,
all of the move vectors are re-zeroed and then all of the bins along the hard walls are checked for
colloids that overlap with the wall. If there are colloids overlapped with the hard-walls, they
are displaced according to the rules given in Section 2.2.1 for the Displacement Algorithm. We
then loop through all of the bins in the same manner as described for interactions.f and calculate
the hard-sphere interactions between all of the colloids. The displacements due to the hard sphere
interactions [27] are added to the move vectors and after all of the interactions have been calculated,
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the colloid positions are updated with the move vectors. If none of the colloids were found to be
overlapped, then we exit the subroutine. Otherwise, the subroutine is repeated until all overlaps
are removed.

A.2 Post-processing

The output file from the simulations contains a series of configuration snapshots in time for the
simulation system. In order to analyze the system, we must be able to calculate useful properties
using the output file. Generally, we have written many post-processing codes that read in the
output file into a set of position vectors one frame at a time and calculate properties such as
density profiles (calcdens.f), connectivity (calcconn.f), cluster properties (calcclust.f), etc. For
the special case of calculating the nearest neighbors in 2D, we have developed another set of codes
described below.

A.2.1 Delaunay Triangulation

The output file is re-formatted (using makepositions.f) into a file with two columns containing
the following lines

Nframes Nframes
Nparts Nparts
xside yside

dt dt
x-pos y-pos (N x Nframes lines)

time between frames time between frames

This file is then read into IDL (using formatpos.pro) as an array p(2,Nframes,N) containing the
x- and y-positions of the colloids in every frame. The IDL procedure createtri.pro is then used
to create a file containing all of the position and nearest neighbor information for the colloids in
every frame.

createtri.pro Takes as input the array p(2,Nframes,N) and a sample frequency (freq). This
procedure, loops through the frames (with the frequency defined by the user) and runs the built
in IDL procedure triangulate.pro on the x- and y-positions of the colloids in each frame. The
command line for running triangulate.pro is

triangulate,x,y,tr,conn=c

where the vector c contains the nearest neighbors for each colloid in the system for one frame. For
more information on the triangulate procedure, the IDL Reference Guide should be consulted. The
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procedure createtri.pro then writes to an output file. The first six lines of the output file contain
Nparts, Nframes, Nsamp, xside, yside, and freq where Nsamp=Nframes/freq. After the first six
lines, the procedure prints the following lines for each frame that has been sampled. One line is
printed containing the length of the vector c. The vector c is then printed followed by N lines
containing the x- and y-positions of the colloids in the frame.

The output file from createtri.pro is then used as input for post-processing scripts to calculate
the bond-order correlation function (boot.f), defect density (countdef.f), and spacing between
clusters (calcspace.f). Additionally, the outputs from the Delaunay triangulation (tr and c) can
be used to plot the 2D structure of the colloids in the system using plottri.pro and colortri.pro
respectively.

All of the codes presented in this appendix are given in their full form in Appendices B and C.

A.3 Experimental Tricks

During the course of designing and performing the experiments in this thesis, we learned many
valuable lessons about what works and what does not work. In this section, we give a few of the
lessons learned in order to aid in performing this research in the future.

A.3.1 Colloid Preparation

The paramagnetic colloids used in this research were purchased from Dynal (Dynabeads). The
magnetic properties quoted in the documentation sent with the colloids are not always accurate
and the best source for up to date information is to call Dynal. Generally, two types of colloids were
used in this research, epoxy coated and carboxylated. The epoxy coated colloids have no surface
charge and are shipped in deionized (DI) water. In order to prevent sticking and aggregation in
experiments, we found that a 0.02 wt% solution of Triton X-100 surfactant should be used as the
carrier fluid. In order to exchange the carrier fluid we placed our sample of Dynabeads over a
household magnet in order to concentrate the colloids at the bottom of the vial. A pipette was
then used to remove the supernate and replace the same volume with the surfactant solution. This
"washing" procedure was repeated three times to ensure a complete exchange of the carrier fluid.
Likewise for the carboxylated colloids, they are shipped in DI water. In the case of charged colloids,
we have found that a buffer solution (5 x TBE) is the best carrier fluid. The TBE usually contains
many salt crystals and it must be filtered with a 0.2pm filter before being used as a carrier fluid for
the colloids. After filtering, the same washing procedure is applied using TBE instead of surfactant
solution.

We have found that the colloid solutions do not have a long life when kept outside the refrig-
erator. After a week or two, the colloids will aggregate and/or the TBE will crystalize in the vial
and the colloid solution will not be useful any longer. The best remedy for this is to make a fresh
colloid solution for each set of experiments to be performed. The colloids (as received from Dynal)
will keep indefinitely in the refrigerator and therefore it is best to start each set of experiments
with a freshly washed sample of colloids.

A.3.2 Channel Preparation

Just as important as having a freshly washed sample of colloids is having a clean microchannel
environment in which to perform experiments. We have found that the best method for producing
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clean channels with uniform surface properties is to use PDMS for all four sides of the channel. To

make a thin sheet of PDMS (the eventual bottom surface of the channel) we pour 10g of the PDMS

solution into a clean petri dish. The PDMS must be degassed and contain no bubbles in order to
produce a smooth surface when cured.

To assemble the channels, the following procedure is used. A glass cover-slip is cleaned with

DI water and ethanol to remove any dust particles. A rectangle is cut out of the thin PDMS and
placed, clean-face-up, on the glass cover-slip. Meanwhile, the appropriate channel is cut out from
the mold of the master template and any reservoirs (access holes) are cut as well. The two pieces,
cover-slip with thin PDMS and channel (face up) are placed into the oxygen plasma chamber and
exposed to an oxygen plasma for 15 seconds. The channel is then placed face down onto the thin
PDMS in order to create a four-walled all-PDMS microchannel. The oxygen plasma causes the
PDMS surfaces to have a negative charge which, when coupled with the carboxylated Dynabeads,
prevents the colloids from sticking to the surfaces of the channel.

In the case of the 2D channel studies, the experiments must remain stable for up to 24 hours and
therefore a secondary enclosure was created to keep the entire channel system submerged in TBE
(Chapter 3). Without the secondary enclosure, evaporation and permeation of the carrier fluid
would cause a net flow in the system [140], thus disrupting the dynamics of the colloids themselves.
This secondary enclosure was simply created with cover-slips for the top and bottom and thick
PDMS walls on the sides. The bottom cover-slip of the enclosure served the same purpose as the
cover-slip mentioned above and therefore the thin PDMS was placed directly on the bottom surface
of the enclosure.

A.3.3 Tracking Colloids

In order to track the positions of the colloids during an experiment, special tracking procedures

were used as described in [85]. Generally, a movie of the experiment was recorded on digital video

tape and after the experiment was completed, several stacks of images were taken from the movie
with a fixed interval of time between the images. The positions of the colloids were then located
in each image and a tracking algorithm was used to track individual colloids in time through the

stack of images.
There were many difficulties in accurately tracking the positions of the colloids due to optical

interference from the channel walls. We minimized the interference due to the presence of the walls
in the following manner. A single image was produced by averaging all of the images in the stack.

In this image, the walls are the only non-moving part of the system so the colloid positions are

blurred out and only an image of the walls is left. We then subtracted the image of the walls from

each image in the stack in order to remove the interference from the walls. This procedure only

worked well when the images in the stack were separated by long enough times that the colloids
moved significantly between each frame.

Another trick that we learned while performing the experiments was the following. During the
tracking procedure, it is much easier to track if one feeds the initial positions of the colloids (in
the first frame) into the tracking algorithm. Since the colloids do not move very far (relative to
the inter-colloid distance) and they are separated by large distances, inputting the initial positions
helps to remove false tracks that may occur due to noise in the images.
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This appendix
descriptions of

B.1 input

Numparts
Nfixed
FinalTime
Timestep
StartFrame

StartConfig
Nseed

Geometry
HSCut
StartField

StopField

Periodicity
Dimensionality
PulseField

contains the Fortran codes used for the BD simulations in this thesis. The general
these codes are given in Appendix A.

1000
0
50
0.0001
1
rand
68046503
50 50 30
5.5
50

50
.true. .true. .true.
.true. .true. .true.
.false.
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B.2. main.f

PulseON = 0

PulseOFF = 0

MagCut = 10

MagStartTime = 0

Vavg = 0
Movie = movie.xyz

SampleNum = 1000

END

B.2 main.f

program main

implicit none
integer n, Tfinal , nseed , pon, poff
integer ftime , sframe , nfixed , nsamp
double precision dt, xside, yside, zside, lambda, mbinsize
double precision hbinsize , lambdao, G
character *32 input ,scratch, moviefile , sconf
logical perx, pery, perz, xdim, ydim, zdim, pulse

scratch = 'Beginning'
input = 'Reading input
write (,*) scratch
write(*,*) input

open (unit=3, file='./iinput , status='old')

5 read (3,*) input
backspace ( unit=3)
if (input. eq. "Nurnparts" ) then

read (3 ,*) input , scratch , n
elseif(input. eq." Nfixed") then

read (3,*) input , scratch, nfixed
elseif (input. eq ."FinalTime ) then

read (3,*) input , scratch , Tfinal
elseif (input. eq ." Tirnestep" ) then

read (3,*) input , scratch, dt
elseif (input eq." StartFrame" ) then

read (3,*) input , scratch , sframe
elseif(input eq ."StartConfig") then

read (3,*) input, scratch , sconf
elseif(input eq ."Nseed" ) then

read (3,*) input , scratch, nseed
elseif(input eq."Geometry" ) then

read (3,*) input , scratch , xside , yside , zside
elseif(input eq ."HSCut") then

read (3,*) input , scratch , hbinsize
elseif (input .eq .'StartField" ) then

read (3,*) input , scratch , lambdao
elseif (input .eq." StopField") then

read (3,*) input , scratch , lambda
elseif(input eq.- PulseField' ) then
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read (3 ,*) input , scratch , pulse
elseif(input. eq ."PulseON") then

read (3,*) input, scratch, pon
elseif(input. eq."PulseOFF") then

read (3,*) input , scratch , poff
elseif (input. eq."MagCut") then

read (3,*) input , scratch , mbinsize
elseif (input. eq. "MagStartTime") then

read (3,*) input, scratch, ftime
elseif(input. eq. "#") then

read(3,*) input
elseif(input. eq."Periodicity") then

read(3,*) input, scratch, perx, pery, perz
elseif (input. eq."Movie") then

read (3,*) input, scratch, moviefile
elseif (input .eq."Dimensionality" ) then

read(3,*) input, scratch , xdim, ydim, zdim
elseif(input .eq."Vavg") then

read (3,*) input , scratch , G
elseif(input .eq."SampleNum") then

read (3,*) input , scratch, nsamp
elseif(input. eq."INTD") then

goto 15
else

write(*,*) "The variable ",input," is formatted"
write(* ,) "incorrectly in the input file"
stop

endif
goto 5

15 close (unit=3)

call simulation (dt , xside , yside , zside ,n,lambda, mbinsize ,
+ hbinsize , Tfinal , ftime , nseed , perx , pery , perz ,xdim,ydim,
+ zdim, moviefile , lambdao, sframe ,G, nfixed , sconf , pulse ,pon,
+ poff ,nsamp)
end

B.3 simulation.f

subroutine simulation(dt ,xside ,yside ,zside ,n, lambda, mbinsize ,
+ hbinsize , Tfinal, ftime, nseed ,perx ,pery ,perz ,xdim, ydim,
+ zdim, moviefile ,lambdao, sframe ,G, nfixed , sconf, pulse ,pon, poff ,
+ nsamp)

implicit none
integer time, Tfinal , nseed , ftime ,sframe
integer n, mxbinnum, mybinnum, mzbinnum, pon, poff
integer hxbinnum, hybinnum, hzbinnum, nfixed ,nsamp
integer hoc(0:10000000), 11(n), on, off , counter
double precision xside , yside , zside , x(n) , y(n) , z(n) , dt
double precision hbinsize , lambdao
double precision xmove(n), ymove(n), zmove(n)
double precision Bmult, lambda, mbinsize , G
double precision mxbinsize , mybinsize , mzbinsize , Q
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double precision hxbinsize , hybinsize , hzbinsize
logical perx, pery, perz, xdim, ydim, zdim, pulse
character *32 moviefile , sconf

*/*** Constants ***********

open( unit=9, file=moviefile , status='new')

time = 0
mxbinnum = IDINT(xside/mbinsize)
if (mxbinnum. eq. 0) mxbinnum=l
mybinnum = IDINT(yside/mbinsize)
if (mybinnum. eq . 0) mybinnum=l
mzbinnum = IDINT(zside/mbinsize)
if (mzbinnum. eq . 0) mzbinnum=l
mxbinsize = xside/dble(mxbinnum)
mybinsize = yside/dble(mybinnum)
mzbinsize = zside/dble(mzbinnum)
hxbinnum = IDINT(xside/hbinsize)
if (hxbinnum. eq . 0) hxbinnum=1
hybinnum = IDINT(yside/hbinsize)
if (hybinnum. eq . 0) hybinnum=1
hzbinnum = IDINT(zside/hbinsize)
if (hzbinnum. eq. 0) hzbinnum=l
hxbinsize = xside/dble(hxbinnum)
hybinsize = yside/dble(hybinnum)
hzbinsize = zside/dble(hzbinnum)
if (mxbinnum*mybinnum*mzbinnum. gt .10000000)

+ write(*,*) 'Too many magnetic bins'
if (hxbinnum*hybinnum*hzbinnum. gt .10000000)

+ write(*,*) 'Too many hardsphere bins'
Bmult = sqrt(24.0d0*dt)
Q = 0.0d0
on=0
off=1
counter=0

***************************

call initialize(nseed)
call placement (xside, yside, zside, x, y, z, n,xdim,ydim,zdim,

+ sframe , nfixed , sconf , perx , pery , perz)
write (* , *) " All Placed"
call headermovieprint (9 ,dt, xside , yside , zside ,n,lambda, mbinsize ,

+ hbinsize , Tfinal , ftime , nseed , perx , pery , perz , xdim ,ydim,
+ zdim, moviefile ,lambdao, sframe ,G, nfixed , sconf , pulse ,pon,
+ poff , nsamp)

call movieprint (9,n,x,y,z,time, xside ,yside ,zside ,0, nfixed)

*/*** Main body of simulation ****

do 40 time=1,Tfinal
*/*** Forces *****

if (time.gt.ftime) then
counter=counter+1
if (pulse) then

if(off.eq.1.and.counter.eq. poff) then
Q = 3.0dO/2.0dO*((lambda-lambdao)/dble (Tfinal-ftime)*
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+ dble (time-ftime)+lambdao)
of f =0
on=1
counter=0

elseif(on.eq.1.and. counter.eq.pon) then
Q=0.0d0
off=1
on=--0
counter=0

endif
else

on=1
Q = 3.0d0/2.0d0*((lambda-lambdao)/dble( Tfinal-ftime )*

+ dble(time-ftime)+lambdao)
endif

endif
call zeromove(n,xmove,ymove,zmove)
if(on.eq.1) then

call newlist(n,x,y,z,hoc,11 ,mxbinsize,
+ mybinsize , mzbinsize , mxbinnum, mybinnum, mzbinnum)

call interactions (xside , yside , zside ,x,y,z,dt,mxbinnum,
+ mybinnum, mzbinnum, n, perx , pery , perz , hoc, 11 ,
+ Q, mbinsize , xmove, ymove, zmove, mxbinsize ,
+ mybinsize , mzbinsize)

endif
call flow(n,dt,x,G, xside,ymove)
ca ll brownian (n, xmove,ymove, zmove, xdim, ydim, zdim, Bmult)
call makemove (n, x, y, z, xdim, ydim, zdim, xmove,ymove, zmove, nfixed)

*/**** Constraints *****
call period(n,x,y,z, xside ,yside , zside ,perx,pery ,perz)
call newlist(n,x,y,z,hoc, 11, hxbinsize ,

+ hybinsize , hzbinsize , hxbinnum, hybinnum, hzbinnum)
call hardsphere (xside ,yside ,zside ,x,y,z,hxbinnum,hybinnum,

+ hzbinnum, n, perx, pery , perz , hoc, 11 , xdim, ydim, zdim, nfixed ,
+ hxbinsize , hybinsize , hzbinsize)

call period(n, x,y, z, xside , yside , zside , perx , pery , perz)

if(Tfinal.gt.nsamp) then
if (MOD(time , Tfinal/nsamp). eq.0) then

call movieprint (9, n, x,y, z, time, xside , yside , zside ,on,
+ nfixed)

endif
else

call movieprint (9,n,x,y, z, time, xside , yside , zside ,on, nfixed)
endif

40 continue

close ( unit=9)
end

B.4 initialize.f
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subroutine initialize(nseed)

implicit none
integer nseed

call ranils(nseed)

*/ ********************* ************

,/ Can also hard code any lookup tables that might be needed.
,/ For instance , to calculate the flow force on a particle
,/ located at a certain position, it might be faster to have a
,/ look up table and interpolate rather than calculating the
,/ force on the fly.
**************************************************

return
end

B.5 ranils.f

subroutine ranils(iseed)

parameter (IN=2147483563,IK=40014,IQ=53668,IR=12211,NTAB=32)
integer IV(NTAB)
common /RANBLS/ IDUM,IDUM2,IY,IV

IDUM=iseed +123456789
IDUM2=IDUM

do 10 J=NTAB+8,1,-1
K=-DUM/IQ
IDUM=IK * (IDUM-K*IQ)-K*IR
if (IDUM. It. 0) IDUM=IDUM+I N
if (J. le .NTAB) IV(J)=IDUM

10 continue

IY=IV (1)
return
end

B.6 placement.f

subroutine placement (xside ,yside ,zside ,x,y,z,n,xdim,ydim,
+ zdim , sframe , nfixed , sconf , xper , yper , zper)

implicit none
integer sframe,rand,nfixed
integer n,i,k,j,nx,ny,latt
integer Nparts,time,crds
double precision x(n),y(n),z(n),xside ,yside,zside
double precision spacing ,volfrac , rnflt ,PI
parameter (PI=3.14159d0)
logical xdim,ydim,zdim,done,xper,yper,zper
character*32 type,junk,sconf
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rand=0
latt=0
crds=0
if (sconf.eq."rand") then

rand = 1
elseif(sconf.eq."latt") then

latt = 1
elseif(sconf.eq."coords") then

crds = 1
else

write ( ,) 'Bad starting configuration input'
stop

endif

if (rand.eq.1) then
do 13 i=1,nfixed

*************************************************************

• / Some block of code to place the fixed colloids at their
• / positions as defined by the problem
*/*************************************************************

13 continue
do 15 i=nfixed+l,n

5 x(i) = rnflt()*xside
y(i) = rnflt()*yside
z(i) = rnflt()*zside
if(.not.xdim) x(i) = xside/2.0d0
if(.not.ydim) y(i) = yside/2.0d0
if(.not.zdim) z(i) = zside/2.0d0
call checkplace (x,y,z,n,i ,done,xside ,yside ,zside,

+ xper,yper,zper)
if (.not.done) goto 5

15 continue
endif

if (latt.eq.1) then
volfrac = dble(n)*PI*0.25d0/(xside*yside)
spacing = sqrt(PI/(2.0d0*sqrt(3.0dO)*volfrac))
nx = idint(xside/spacing)
ny = idint(yside/(spacing*sqrt(3.0d0)*0.5d0))+1
k=0
write(*,*) 'Spacing = ',spacing
write(* ,*) 'Placing ',nx,' x ', ny, ' array
do 25 i=l,nx

do 30 j=l,ny
k=k+l
if(MOD(j ,2).eq.0) then

x(k) = dble(i-1)*spacing+spacing/2.0d0+0.5d0
else

x(k) = dble(i-1)*spacing+0.5d0
endif
y(k) = dble(j-1)*spacing*sqrt(3.0dO)*0.5d0+0.5d0
z(k) = zside/2.0d0

continue
continue

endif
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if (crds.eq.1) then
open( unit=1, file='coords , status='old')

3 read(1,*) junk
if (junk.eq.'#') goto 3
backspace (unit=1)
read(1,*) Nparts
backspace (unit=l)
do 20 i=1,sframe

read(1 ,*)
read(1 ,*) time
do 40 j=1,Nparts

if (i.eq.sframe) then
read(1,*) type, x(j), y(j), z(j)

else
read(1,*) type

endif
40 continue
20 continue

endif

return
end

B.7 checkplace.f

subroutine checkplace (x,y,z,n,j,done, xside ,yside ,zside,
+ xper,yper,zper)

implicit none
integer i, n, k, j
double precision x(n), y(n), z(n)
double precision diffsq , xside , yside , zside
logical done,xper,yper,zper

if (j.gt.1) then
k=j -1
done = .true.
do 15 i=l,k

diffsq = (x(j)-x(i))*(x(j)-x(i))+(y(j)-y(i))*(y(j)-y(i))
+ +(z(j)-z(i))*(z(j)-z(i))

if (diffsq.lt.1.0d0) then
done = .false.

end if
15 continue

else
done = .true.

end if

*/*****************************************************************
,/ This code is for flat walls. If the walls are not flat then
• / the code must be modified to include the functional form of
•/ the walls.

/***(.*********************** ************************************notxper) then
if(.not.xper) then
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if (x(j).lt.0.5d0.or.x(j).gt.xside-0.5d0) done=. false.
endif
if(.not.yper) then

if (y(j). It .0.5d0. or.y(j ).gt.yside -0.5d0) done=. false .
endif
if(.not.zper) then

if(z(j).lt.0.5d0.or.z(j).gt.zside-0.5d0) done=. false .
endif

return
end

B.8 headermovieprint.f

subroutine headermovieprint (unit , dt , xside , yside , zside ,n, lambda,
mbinsize , hbinsize , Tfinal , ftime , nseed , perx , pery , perz ,xdim,
ydim, zdim, moviefile , lambdao, sframe ,G, nfixed , sconf , pulse ,pon,
poff ,nsamp)

implicit none
integer unit , n, Tfinal , ftime , nseed , sframe , nfixed
integer pon, poff, nsamp
double precision dt , xside , yside , zside ,G
double precision lambda, mbinsize , hbinsize , lambdao
logical perx, pery, perz, xdim, ydim, zdim,pulse
character *32 moviefile , sconf

format( '
format( '
format( "
format( (
format( '
format( '
format( '

Timrestep
Geometry
HSCut
StartField
StopField
MagCut
Vavg

,f9 .7)
,flO 10.4,
,f10 .4)
,f 10 .4)
,f10.4)
,f10.4)
,f10.4)

f10.4 ,flO 10.4)

'# Numparts
'# Nfixed
'# FinalTime
dt
'# StartFrame
'# StartConfig
'# Nseed
xside , yside , zsid
hbinsize
'# Periodicity
'# Dimensionality
lambdao
lambda
'# PulseField
'# PulseON
'# PulseOFF
mbinsize
'# MagStartTime

G
'# Movie

n
nfixed
Tfinal

sframe
sconf
nseed

, perx , pery , perz
, xdim, ydim, zdim

, pulse
, pon
, poff

-= , ftime

S' , moviefile

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
( unit
(unit
(unit
(unit
(unit
(unit
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write (unit ,*) '# SampleNum = ', nsamp

return
end

B.9 movieprint.f

subroutine movieprint (unit ,n,x,y,z ,time, xside ,yside ,zside ,on,

+ nfixed)

integer i , n, unit , time,on, nfixed
double precision x(n), y(n), z(n)
double precision xside , yside , zside

write (unit ,*) n
write (unit ,78) time , xside , yside , zside , on

78 format(i8,' fs x= ',f9.3,' y= ',f9.3,' z= ',f9.3,
+ ' field= ',i2)

do 7 i=l,n
if (i.le.nfixed) then

write (unit,5) x(i),y(i),z(i)
5 format('C',2x, f9.3,2x,f9.3,2x, f9.3)

else
write (unit,6) x(i),y(i),z(i)

6 format('N',2x,f9.3,2x,f9.3,2x,f9.3)
endif

7 continue

return
end

B.10 zeromove.f

subroutine zeromove(n,xmove,ymove,zmove)

implicit none

integer i , n

double precision xmove(n), ymove(n), zmove(n)

do 4 i=l,n
xmove(i) = O.OdO
ymove(i) = 0.OdO
zmove(i) = O.OdO

4 continue

return

end

B.11 newlist.f
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subroutine newlist (n, x, y, z, hoc, 11 ,rnx,rny,rnz , ncellx ,
+ ncelly , ncellz)

implicit none
integer n, i, ncellx , ncelly , ncellz , ncell3 , hoc(0:10000000)
integer icelx , icely , icelz , icel , ll(n)
double precision x(n), y(n), z(n)
double precision rnx, rny, rnz

ncell3 = ncellx*ncelly*ncellz

do 5 icel=0,ncell3-1
hoc(icel) = 0

5 continue

do 10 i=l,n
icelx = idint(dint(x(i)/rnx))
icely = idint(dint(y(i)/rny))
icelz = idint(dint(z(i)/rnz))
if ((icelx.ge.ncellx).or.(icely.ge.ncelly).or.

+ (icelz .ge.ncellz ).or.(icelx. It .0).or.
+ (icely.lt.0).or.(icelz.lt.0)) then

write(*,*) "'Particles are outside the box!!!",
+ i,x(i),y(i),z(i)

endif
icel = icelx + ncellx*icely + ncellx*ncelly*icelz
11(i) = hoc(icel)
hoc(icel) = i

10 continue

return
end

B.12 interactions.f

subroutine interactions (xside,yside,zside,x,y,z,dt,ncellx,

+ ncelly ,ncellz ,n,perx,pery,perz,hoc,11,
+ Q, mbinsize ,xmove,ymove, zmove, rnx ,rny, rnz)

implicit none

integer i, n, hoc(0:10000000), ll(n), ncellx , ncelly , ncellz
integer icelx , icely , icelz , pid
double precision xside,yside,zside,x(n),xmove(n),dt,z(n),zmove(n)
double precision y(n), ymove(n), Q, mbinsize, rnx, rny, rnz
logical perx, pery, perz

do 3 i=1,n
icelx = idint(dint(x(i)/rnx))
icely = idint(dint(y(i)/rny))
icelz = idint(dint(z(i)/rnz))
pid=i
call mbins (icelx , icely , icelz , ncellx , ncelly , ncellz ,hoc,

11 ,n, perx , per

y , pers , x ,y , z , xside , yside ,
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+ zside ,xmove,ymove,zmove, dt ,Q, mbinsize , pid)
3 continue

return
end

B.13 mbins.f

subroutine mbins (icelx , icely , icelz , ncellx , ncelly , ncellz ,hoc,11 ,n,

+ perx, pery , perz ,x,y,z, xside ,yside , zside ,xmove,ymove,
+ zmove, dt ,Q, mbinsize , pid)

implicit none
integer icelx , ncellx , icely , ncelly , icelz , ncellz , n, pid
integer hoc(0:10000000), 11(n), i, dx, dy, dz, xch, ych, zch
integer dumicelx , dumicely , dumicelz , jcel , j , skip
double precision x(n) , y(n) , z(n) , xside , yside , zside
double precision xmove(n) , ymove(n) , zmove(n)
double precision xi, yi, zi, xmovei, ymovei, zmovei
double precision xmovej, ymovej , zmovej
double precision dt, Q, mbinsize
double precision xmult , ymult, zmult , sqdist , sqcutoff
double precision dumx, dumy, dumz
logical perx, pery, perz

sqcutoff = mbinsize*mbinsize
i=pid
skip = 0
do 53 dx=icelx+l,icelx,-1

xmult = 0.OdO
dumicelx = dx
call wallcheck (dumicelx , ncellx , perx , xmult , skip)
xch=1
if(dx.eq.icelx) xch=0
if (skip.eq.0) then

do 52 dy = icely -1,icely+1
if(dx.eq.icelx .and. dy.eq.icely -1) skip=1
ymult = 0.0dO
dumicely = dy
call wallcheck (dumicely ,ncelly ,pery ,ymult,skip)
ych=1
if(dy.eq.icely) ych=0
if (skip.eq.0) then

do 51 dz = icelz -1,icelz+l
if((dx.eq. icelx).and.(dy.eq.icely)

+ .and.(dz.eq.icelz -1)) then
skip = 1

endif
zmult = 0.OdO
dumicelz = dz
call wallcheck (dumicelz ,ncellz ,perz ,zmult,skip)
zch=l
if(dz.eq.icelz) zch=O
if(skip.eq.0) then
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jcel = dumicelx+ncellx*dumicely+
+ ncellx*ncelly*dumicelz

j = hoc(jcel)
50 if(j.ne.0) then

if (j.ne.i) then
dumx = x(j) + xside * xmult
dumy = y(j) + yside * ymult
dumz = z(j) + zside * zmult
sqdist = (x(i)-dumx)*(x(i)-dumx)+

+ (y(i)-dumy)*(y( i)-dumy)+
+ (z ( i)-dumz) * (z ( i)-dumz)

if (sqdist. It . sqcutoff) then
xmovei = xmove(i)
ymovei = ymove(i)
zmovei = zmove(i)
xi = x(i)
yi = y(i)
zi = z(i)
xmovej = xmove(j)
ymovej = ymove (j)
zmovej = zmove(j)
call magnetic (sqdist ,xi, yi ,zi,

+ dumx,dumy,dumz,
+ xmovei , ymovei, zmovei,
+ xmovej , ymovej , zmovej , dt ,Q,
+ xch, ych, zch)

xmove(i)= xmovei
ymove(i) = ymovei
zmove(i)= zmovei
xmove(j) = xmovej
ymove(j) = ymovej
zmove(j) = zmovej

endif
endif
j=11(j)
goto 50

endif
endif
skip = 0

51 continue
endif
skip = 0

52 continue
endif
skip = 0

53 continue
return
end

B.14 wallcheck.f

subroutine wallcheck (dumcell, ncell , per, mult , skip)

implicit none
integer dumcell, ncell , skip
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double precision mult
logical per

if(dumcell. gt. ncell -1) then
if(per) then

dumcell = dumcell - ncell
mult = 1.0d0

else
skip = 1

endif
elseif(dumcell. It .0) then

if(per) then
dumcell = dumcell + ncell
mult = -1.0d0

else
skip = 1

endif
endif

return
end

B.15 magnetic.f

subroutine magnetic (sqdist ,xi,yi,zi,xj ,yj ,zj ,xmovei,
+ ymovei , zmovei , xmovej , ymovej , zmovej ,
+ dt,Q,xch,ych,zch)

implicit none

integer xch,ych,zch
double precision sqdist, xi, xj, yi, yj, zi, zj
double precision xmovei, xmovej, ymovei, ymovej, zmovei, zmovej
double precision xcomp, ycomp, zcomp, dt, Q

xcomp = -Q/((sqrt(sqdist))**5)*

+ (xi-xj)*((5.0d0*(zi-zj)*
+ (zi-zj)/sqdist)-1.OdO)*dt

ycomp = -Q/((sqrt(sqdist))**5)*

+ (yi-yj)*((5.0d0*(zi-zj)*
+ (zi-zj )/sqdist)-l.0d0)*dt

zcomp = -Q/((sqrt(sqdist))**5)*
+ (zi-zj)*((5.OdO*(zi-zj)*
+ (zi-zj)/sqdist)-3.OdO)*dt

xmovei = xmovei+xcomp
ymovei = ymovei+ycomp
zmovei = zmovei+zcomp

if(xch.ne.0.or.ych.ne.0.or.zch.ne.0) then
xmovej = xmovej-xcomp
ymovej = ymovej-ycomp
zmovej = zmovej-zcomp
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endif

return
end

B.16 flow.f

subroutine flow(n,dt,x,G, xside ,ymove)

implicit none

integer n, i
double precision xside
double precision x(n)
double precision ymove(n)
double precision G, dt

do 5 i=l,n
*/********************************************************

• / Insert the block of code that calculates the flow
•/ profile for your geometry. This flow profile is
• / parabolic in the x-direction with flow in the
•/ y-direction.

*/*****************************************************

ymove( i)=ymove( i)-,G* dt*(x( i)-x( i )*x( i )/xside)
5 continue

return
end

B.17 brownian.f

subroutine brownian (n,xmove, ymove, zmove, xdim, ydim, zdim, mult)

implicit none
integer n, i
double precision xmove(n),
double precision mult
logical xdim, ydim, zdim

do 15 i=l,n
if (xdim) xmove(i) =
if (ydim) ymove(i) =
if (zdim) zmove(i) =

15 continue

ymove(n), zmove(n), rnflt

xmove(i)
ymove(i)
zmove(i)

( rnflt ()-0.5d0)*mult
( rnflt ()-0.5dO)*mult
( rnflt ()-0.5d0)*mult

return
end

B.18 rnflt.f

double precision function rnflt ()

parameter (IN1=2147483563,IK1=40014,IQ1=53668,IR1=12211)
parameter (IN2=2147483399 ,IK2=40692,IQ2=52774,IR2=3791)
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parameter (NTAB=32,AN=1./IN1,INM1=IN1-1,NDIV--1+INM1/NTAB)
integer IV(NTAB)
common /RANBLS/ IDUM,IDUM2,IY,IV

K = IDUM/IQ1
IDUM = IK1*(IDUM-K* IQ1)-K*IR1

if (IDUM. It . 0) IDUM=IDUM+IN 1

K = IDUM2/IQ2
IDUM2 = IK2*(IDUM2-K*IQ2)-K*IR2

if (IDUM2. It .0) IDUM2=IDUM2+IN2

J=1+IY/NDIV
IY=IV ( J)-IDUM2
IV (J)=IDUM
if (IY. It .1) IY=IY+INM1
rnflt = dble(AN*IY)

return
end

B.19 makemove.f

subroutine makemove(n,x,y,z, xdim, ydim, zdim, xmove,ymove,zmove,
+ nfixed)

implicit none

integer i , n, nfixed

double precision x(n), y(n), z(n)

double precision xmove(n), ymove(n), zmove(n)
logical xdim, ydim, zdim

do 103 i=1,n

if (.not.xdim) xmove(i) = 0.0dO
if (.not.ydim) ymove(i) = 0.OdO
if (.not.zdim) zmove(i) = 0.OdO
if(i.le.nfixed) then

xmove(i) = O.OdO
ymove(i) = O.OdO
zmove(i) = O.OdO

endif
x(i) = x(i) + xmove(i)
y(i) = y(i) + ymove(i)
z(i) = z(i) + zmove(i)
if (abs (xmove(i)). gt .0.25dO. or. abs (ymove(i)). gt .0.25d0

+ .or.abs(zmove(i)).gt.0.25d0)
+ write(*,*) 'Big move ',i ,xmove(i),ymove(i),zmove(i)

103 continue

B.19. makemove.f

return
end
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B.20 period.f

subroutine period (n, x,y, z, xside , yside , zside , perx , pery , perz)

implicit none

integer n, i
double precision x(n), y(n), z(n)
double precision xside, yside, zside
logical perx, pery, perz

if (perx.or.pery.or.perz) then
do 5 i=l,n

if (perx) then
if (x(i).gt.xside)
if (x(i).lt.0.0d0)

endif
if (pery) then

if (y(i).gt.yside)
if (y(i).lt.0.0d0)

endif
if (perz) then

if (z(i).gt.zside)
if (z(i).lt.0.0d0)

endif
5 continue

endif

return
end

B.21 hardsphere.f

x(i)=x( i)-xside
x( i)=x( i)+xside

y( i)=y( i)-yside
y(i)=y( i)+yside

z(i)=z(i)-zside
z(i)=z( i)+zside

subroutine hardsphere (xside ,yside ,zside ,x,y,z,ncellx,
+ ncelly , ncellz ,n, perx , pery , perz , hoc, 11 ,xdim,ydim,zdim, nfixed ,
+ rnx,rny,rnz)

implicit none

integer i, n, hoc(0:10000000), ll(n), ncellx , ncelly , ncellz
integer icelx , icely , icelz , pid
integer done, count, nfixed
double precision xside,yside,zside ,x(n),xmove(n),z(n),zmove(n)
double precision y(n), ymove(n), rnx, rny, rnz
logical perx , pery , perz , xdim, ydim, zdim

done = 0
count = 1

1 if (done.eq.0) then
if (NMD(count,100).eq.0) write(*,*) 'HS count = ',count
count = count + 1
done = 1
do 3 i=l,n

xmove(i) = 0.OdO
ymove(i) = O.OdO
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zmove(i) = O.0d0
3 continue

call wallexvol(xside ,yside , zside ,n,x,y,z,perx,pery,perz , hoc , 11,
+ ncellx , ncelly , ncellz)

do 32 i=l,n
icelx = idint(dint(x(i)/rnx))
icely = idint(dint(y(i)/rny))
icelz = idint(dint(z(i)/rnz))
pid=i
call hbins ( icelx , icely , icelz , ncellx , ncelly , ncellz ,

+ hoc , 11 ,n,perx , pery , perz ,x,y,z , xside , yside , zside ,
+ xmove, ymove, zmove, done, nfixed , pid)

32 continue

do 103 i=l,n
if(.not.xdim) xmove(i) = 0.0d0
if(.not.ydim) ymove(i) = 0.OdO
if(.not.zdim) zmove(i) = 0.OdO
x(i) = x(i) + xmove(i)
y(i) = y(i) + ymove(i)
z(i) = z(i) + zmove(i)

103 continue
goto 1

endif
return
end

B.22 wallexvol.f

subroutine wallexvol (xside ,yside ,zside ,n,x,y,z,perx,
+ pery , perz ,hoc, 11 , ncellx , ncelly , ncellz)

implicit none
integer n,i,ncell3 ,icel ,jcel ,hoc(0:10000000) ,11(n)
integer ncellx ,ncelly , ncellz
double precision x(n), y(n), z(n)
double precision xside , yside , zside
logical perx, pery, perz

ncell3 = ncellx*ncelly*ncellz
*/********* ******************* ****************************

*/ The code in here is only for flat walls. If you want
./ to incorporate walls that are not flat , you must insert
./ the functional forms of the walls below

if (.not.perx) then
do 10 icel=0,ncell3 -1,ncellx

i=hoc(icel)
15 if (i.ne.0) then

if(x(i).lt.0.5d0) x(i) = 0.5d0
i=ll(i)
goto 15
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endif
10 continue

do 20 icel=ncellx -l,ncell3 -1,ncellx
i=hoc(icel)

25 if (i.ne.0) then
if(x(i).gt.xside -0.5d0) x(i) = xside -0.5d0
i=ll(i)
goto 25

endif
20 continue

endif

if (.not.pery) then
do 30 icel=0,ncell3-1,ncellx*ncelly

do 31 jcel=icel ,icel+ncellx-1
i=hoc(jcel)

35 if (i.ne.0) then

if(y(i).lt.0.5d0) y(i) = 0.5d0
i=ll(i)
goto 35

endif
31 continue
30 continue

do 40 icel=(ncelly -1)*ncellx ,ncell3 -1,ncellx*ncelly
do 41 jcel=icel ,icel+ncellx-1

i=hoc(jcel)
45 if (i.ne.0) then

if(y(i).gt.yside-0.5d0) y(i) = yside - 0.5d0
i=ll(i)
goto 45

endif
41 continue
40 continue

endif

if (.not.perz) then
do 50 icel=0,(ncellx*ncelly)-1

i=hoc(icel)
55 if (i.ne.0) then

if(z(i).lt.0.5d0) z(i) = 0.5d0
i=ll(i)
goto 55

endif
50 continue

do 60 icel=ncell3-(ncellx*ncelly),ncell3-1
i=hoc(icel)

65 if (i.ne.0) then
if(z(i).gt.zside-0.5d0) z(i) = zside-0.5d0
i=ll(i)
goto 65

endif
60 continue
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endif

return
end

B.23 hbins.f

subroutine hbins ( icelx , icely , icelz , ncellx , ncelly , ncellz ,hoc,11 ,n,
+ perx, pery , perz , x, y , z , xside , yside , zside ,xmove,ymove,
+ zmove, done, nfixed , pid)

implicit none
integer icelx , ncellx , icely , ncelly , icelz , ncellz , n
integer hoc(0:10000000), 11(n), i, dx, dy, dz
integer dumicelx , dumicely , dumicelz , jcel , j , skip
integer done, nfixed , pid, xch, ych, zch
double precision x(n), y(n), z(n), xside , yside , zside
double precision xmove(n), ymove(n), zmove(n)
double precision xi, yi, zi, xmovei, ymovei, zmovei
double precision xmovej, ymovej , zmovej
double precision xmult , ymult , zmult , sqdist
double precision dumx, dumy, dumz
logical perx, pery, perz

i=pid
skip = 0
do 53 dx=icelx+1l,icelx ,-1

xmult = O.OdO
dumicelx = dx
call wallcheck (dumicelx , ncellx , perx , xmult ,skip)
xch=l
if(dx.eq.icelx) xch=0
if (skip.eq.O) then

do 52 dy = icely -1,icely+l
if(dx.eq.icelx .and. dy.eq.icely-1) skip=1
ymult = O.OdO
dumicely = dy
call wallcheck (dumicely ,ncelly ,pery ,ymult,skip)
ych=l
if(dy.eq.icely) ych=0O
if (skip.eq.O) then

do 51 dz = icelz -1,icelz+l
if ((dx.eq.icelx).and.(dy.eq.icely)

+ .and.(dz.eq.icelz -1)) then
skip = 1

endif
zmult = O.OdO
dumicelz = dz
call wallcheck (dumicelz ,ncellz ,perz ,zmult,skip)
zch=l
if(dz.eq.icelz) zch=O
if(skip.eq.0) then

jcel = dumicelx+ncellx*dumicely+
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+ ncellx*ncelly*dumicelz
j = hoc(jcel)

50 if(j.ne.0) then
if (j.ne.i) then

dumx = x(j) + xside * xmult
dumy = y(j) + yside * ymult
dumz = z(j) + zside * zmult
sqdist = (x(i)-dumx)*(x(i)-dumx)+

+ (y(i)-dumy)*(y(i)-dumy)+
+ (z ( i)-dumz) * (z ( i)-dumz)

if (sqdist.lt.0.99d0) then
done = 0
xmovei = xmove(i)
ymovei = ymove(i)
zmovei = zmove(i)
xi = x(i)
yi = y(i)
zi = z(i)
xmovej = xmove(j)
ymovej = ymove(j)
zmovej = zmove(j)
call HSexvol (sqdist,xi,yi,zi,

+ dumx, dumy, dumz,
+ xmovei , ymovei , zmovei ,
+ xmovej , ymovej , zmovej , nfixed ,
+ i ,j ,xch,ych,zch)

xmove(i) = xmovei
ymove(i) = ymovei
zmove(i) = zmovei
xmove(j) = xmovej
ymove(j) = ymovej
zmove(j) = zmovej

endif
endif
j=11(j)
goto 50

endif
endif
skip = 0

51 continue
endif
skip = 0

52 continue
endif
skip = 0

53 continue
return
end

B.24 HSexvol.f

subroutine HSexvol (sqdist ,xi ,yi ,zi ,xj ,yj ,zj , xmovei ,ymovei,
+ zmovei , xmovej , ymovej , zmovej , nfixed , i , j , xch, ych , zch)
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implicit none

integer nfixed , i, j, xch, ych, zch
double precision sqdist, xi, xj, yi , yj, zi , zj, dist
double precision xmovei, xmovej, ymovei, ymovej, zmovei, zmovej
double precision rmove, xcomp, ycomp, zcomp

dist = sqrt(sqdist)
rmove = 0.5dO*(dist -1.OdO)
xcomp = rmove*(xi-xj)/dist

ycomp = rmove*(yi-yj)/dist
zcomp = rmove*(zi-zj)/dist

if(i. gt . nfixed .and.j .gt . nfixed ) then
xmovei = xmovei-xcomp
ymovei = ymovei-ycomp
zmovei = zmovei-zcomp

elseif(i.gt.nfixed.and.j.le.nfixed) then
xmovei = xmovei-xcomp-xcomp
ymovei = ymovei-ycomp-ycomp
zmovei = zmovei-zcomp-zcomp

endif

if(xch.ne.0. or.ych.ne.0.or.zch.ne.0) then
if(i. gt . nfixed.and.j .gt.nfixed) then

xmovej = xmovej+xcomp
ymovej = ymovej+ycomp
zmovej = zmovej+zcomp

elseif(i.le.nfixed.and.j.gt.nfixed) then
xmovej = xmovej+xcomp+xcomp
ymovej = ymovej+ycomp+ycomp
zmovej = zmovej+zcomp+zcomp

endif
endif

return
end
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Post-processing Codes

The following Fortran and IDL codes are used to calculate properties of the simulated systems
using the output file from the BD code.

C.1 calcdens.f

program calcdens

*/************************************************

•/ Program to calculate the density profile of
• / colloids in 2D channels

implic********************************** none

implicit none

integer Nparts, i, p, Nframes, index, bin, bad,
parameter (index=50000)
double precision x, xside, yside
double precision slicewidthw, slicewidth, dist
double precision dens(index)
double precision rho, PI
character*32 tpe

nbins

Appendix C
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Nframes = 1001
slicewidthw = O.1d0

bad=0
do 2 i=1,index

dens(i) = 0.OdO
2 continue

open (unit=10, file='movie. xyz', status=* old ')
3 read(10,*) tpe

if (tpe.eq. '#') goto 3
backspace ( unit =10)
read (10 ,*) Nparts
read (10 ,*) i , tpe , tpe , xside , tpe , yside
rho = dble(Nparts)/((xside-1.0d0)*yside)
nbins = IDINT(( xside -1.OdO)/slicewidthw)
if(nbins.gt.index) then

bad=1
goto 73

endif
slicewidth = (xside -1.0d0-2.0d0*slicewidthw)/(nbins -2)
backspace( unit=10)
backspace (unit =10)
do 4 i=1,Nframes

read (10,*)
read (10,*)
do 5 p=1,Nparts

read(10,*) tpe, x
if (x. it .0.5d0+slicewidthw ) then

bin = 1
elseif (x.gt.xside -0.5d0-slicewidthw) then

bin = nbins
else

bin = IDINT((x-0.5d0-slicewidthw)/slicewidth)+2
if (bin.eq.nbins) write(*,*) 'nbins'

endif
dens(bin) = dens(bin)+1.OdO

5 continue
4 continue

close(unit=10)

open ( unit=13, file=' density ' ,status='new')
tot = 0
write (13,*) 0, 0
do 8 i=1,nbins

if(i.eq.1) then
dist = slicewidthw/2.0d0

elseif (i.eq.nbins) then
dist = xside -1.0d0-slicewidthw/2.0d0

else
dist=slicewidth*(DBLE( i )-1.5d0)+slicewidthw

endif
dens( i)=dens(i )/(dble(Nframes))
if(i.eq.l.or.i.eq.nbins) then

dens ( i)=dens(i )/(yside*slicewidthw)
else
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dens(i)=dens(i)/(slicewidth*yside)
endif
dens(i)=dens(i)/rho
write(13,*) dist ,dens(i)

8 continue
write(13,*) xside-1.0d0, 0
close(unit=13)

73 if(bad.eq.1) write(*,*) 'Need to increase index'

end

C.2 calcconn.f

program calcconn

•/****** *************************************

•/ Program for calculating the connectivity of
• / the simulated system

* /* ***********+*********************************

implicit none
integer Nparts, i , j , k, Nframes
integer time, index , bad
parameter (index=50000)
double precision x(index), y(index), z(index), dt
double precision hconn, vconn, zside
double precision xside, yside, xsep, ysep, zsep
double precision hsep
character*32 tpe, tpe2
logical xper, yper, zper

xper=.true.
yper=.true.
zper=.false .
Nframes = 1001

bad=0
do 6 j=1,index

x(j) = 0.OdO
y(j) = 0.OdO
z(j) = 0.OdO

6 continue
open (unit =10, f i e='movie. xyz ' , status=' old ')
open( unit =11, file=' connectivity ' , status='new )

3 read(10,*) tpe, tpe2
if (tpe.eq.'#') then

if (tpe2.eq. 'Numnparts') then
backspace (unit =10)
read(10,*) tpe, tpe2, tpe, Nparts

elseif(tpe2. eq. 'Timestep') then
backspace (unit =10)
read(10,*) tpe, tpe2, tpe, dt
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elseif(tpe2.eq. 'Geometry') then
backspace ( unit =10)
read(10,*) tpe , tpe2, tpe, xside, yside, zside

endif
goto 3

endif
backspace (unit =10)
backspace( unit=10)

if(Nparts. gt . index) then
bad=1
goto 73

endif
do 20 k=1,Nframes

read(10 ,*)
read(10,*) time
do 25 j=1,Nparts

read(10,*) tpe, x(j), y(j), z(j)
25 continue

hconn=O.OdO
vconn=0.OdO
do 30 i=1,Nparts-1

do 35 j=i+l,Nparts
xsep=abs(x(j)-x(i))
ysep=abs(y(j)-y(i))
zsep=abs(z(j)-z( i))
if(xper.and.xsep.gt.xside/2.0d0) xsep=xside-xsep
if (yper .and. ysep . gt . yside/2.0d0)dO ysep=yside-ysep
if(zper. and.zsep . gt . zside/2.OdO) zsep=zside-zsep
if (sqrt (xsep*xsep+ysep*ysep+zsep*zsep). It .1.05d0) then

hsep=sqrt (xsep*xsep+ysep*ysep)
if(hsep/zsep.lt.0.57735d0) then

vconn=vconn +1.0dO
else

hconn=hconn+1.0dO
endif

endif
35 continue
30 continue

hconn=hconn/dble(Nparts -1)
vconn=vconn/dble (Nparts -1)
write(11,*) dble(time)*dt,hconn,vconn

20 continue
close (unit=l0)
close (unit=11)

73 if(bad.eq.1) write(*,*) 'Need to increase index'
end

C.3 calcclust.f

program calcclust

/*ogram to c*********alculate t***********************he clusters in the system.
•/ Program to calculate the clusters in the system.
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]/ Outputs a file "flatmovie" containing the x-
/ and y-positions of the clusters (2D projection).

Also outputs a file "clustersize" containing the
]/ cluster size distribution in the simulation. The
]/ file "clustvst" contains the average cluster
]/ size in the system versus time.
j/*************************************************

implicit none
integer indexl , cmax
parameter (indexl=10000)
parameter (cmax=300)
integer Nframes , Nparts, 11 (index1,12) , counter , bad
integer time, nn(indexl), i, j, k, frame
integer found(indexl), newmemb, ind, cl(cmax)
integer csize(cmax), totcount
double precision dt, xside , yside , zside
double precision dist , zsep , xsep, ysep
double precision x(indexl), y(indexl), z(indexl)
double precision xcol , ycol , tempx, tempy
character*32 tpe, tpe2
logical xper, yper, zper

xper=.true.
yper=.true.
zper=.false .
Nframes = 1001

bad=0
do 2 i=l,cmax

csize (i)=0
2 continue

open( unit=10, f ile= 'movie. xyz ' , status='old ')
open( un it=11, file=' flatmovie ' , status='new')
open(unit=13, file=' clustvst ' ,status='new')

3 read(l0,*) tpe, tpe2
if (tpe.eq. '#') then

if (tpe2.eq. 'Numparts') then
backspace (unit =10)
read(10,*) tpe, tpe2 , tpe, Nparts
write (11 ,*) '# Numparts = ',Nparts

elseif(tpe2.eq. 'Timestep') then
backspace (unit =10)
read(10,*) tpe, tpe2, tpe, dt
write(11,*) '# Timestep = ',dt

elseif(tpe2.eq. 'Geometry') then
backspace (unit =10)
read(10,*) tpe, tpe2, tpe, xside, yside, zside
write (11,*) '# Geometry = , xside , yside , zside

endif
goto 3

endif
backspace( unit =10)
backspace( unit=10)
if(Nparts. gt . indexl) then
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bad=l
goto 73

endif
totcount=0
do 20 frame=1l,Nframes

do 25 j=1,Nparts
do 26 i=1,12

11 (j , i)=0
26 continue

nn(j )=0
found ( j)=0

25 continue
read (10,*)
read(10,*) time
write(11 ,*) Nparts
write(11,*) time, ' fs'
do 30 j=1,Nparts

read(10,*) tpe, x(j), y(j), z(j)
30 continue

do 35 i=1,Nparts
counter=0
do 40 j=1,Nparts

if(i.ne.j) then
xsep=abs(x(i)-x(j))
ysep=abs(y (i)-y(j))
zsep=abs(z(i)-z(j))
if (xper . and. xsep . gt .xside /2. OdO) xsep=xside-xsep
if (yper. and. ysep . gt . yside /2.0dO) ysep=yside-ysep
if (zper .and. zsep . gt .zside /2.0dO) zsep=zside-zsep
dist=sqrt (xsep*xsep+ysep*ysep+zsep zsep)
if(dist.lt.1.05d0) then

counter=counter+l
11 (i ,counter)=j

endif
endif

40 continue
nn( i)=counter

35 continue
do 45 i=l,Nparts

xcol=-100.0d0
ycol= -100.0d0

do 47 j=l,cmax
cl(j)=0

47 continue
if(found(i).eq.0) then

totcount=totcount+l
found ( i)=1
counter=l
ind=l
cl (counter)=i
newmemb= 1

99 i f(ind.le.counter.or.newmemb.eq.1) then
newmemb=0
do 50 k=l,nn(cl(ind))

j=ll (cl(ind) ,k)
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if(found(j).eq.0) then
newmemb= 1
found(j )=1
counter=counter+l1
cl (counter)=j

endif
50 continue

ind=ind+l
goto 99

endif
xcol=x(i)
ycol=y(i)
do 55 k=2,counter

j=cl (k)
tempx=x (j)
tempy=y(j)
if(xcol-tempx.gt.xside/2.0d0) then

tempx=tempx+xside
elseif(xcol-tempx.It.-xside/2.0dO) then

tempx=tempx-xside
endif
if(ycol-tempy.gt.yside/2.0d0) then

tempy=tempy+yside
elseif(ycol-tempy.lt.-yside/2.OdO) then

tempy=tempy-yside
endif
xcol=(xcol*dble(k-1)+tempx)/ dble(k)
ycol=(ycol*dble (k-1)+tempy)/dble (k)

55 continue
if(counter.gt.cmax) then

bad=2
goto 73

endif
csize (counter)==csize (counter)+1

endif
555 format( 'C' ,2x,f9.3,2x,f9.3,2x,f9.3)

write(11,555) xcol, ycol, 0.OdO
45 continue

counter=0
do 83 i=l,cmax

if(csize(i).ne.0) counter=counter+1
83 continue

write (13,*) dble(time)*dt , dble (Nparts)/ dble (counter)
20 continue

close (unit=10)
close (unit=11)
close (unit =13)
open( unit=12, file=' clustersize ' ,status='new')
do 80 i=l,cmax

write(12,*) i, dble(csize(i))/dble(totcount)
80 continue

close (unit=12)

73 if(bad.eq.1) write(*,*) 'Need to increase indexl:
if(bad.eq.2) write(*,*) 'Need to increase cmnax'
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end

C.4 makepositions.f

program makepositions

*/*******************************************

*/ Reformats the file movie.xyz into a form
,/ that can be read in by format_pos.pro

implicit none

integer Nparts, i, p, Nframes, time, timeold
double precision x, y, z, xside, yside, zside, dt
character*32 tpe, tpe2

Nframes = 1001

open( unit=10, file='movie. xyz ' , status='old )
open( unit=11, file='positions ' ,status='new )

3 read(10,*) tpe, tpe2
if (tpe.eq.'#') then

if (tpe2.eq. 'Numparts') then
backspace (unit =10)
read (10,*) tpe , tpe2 , tpe , Nparts

elseif(tpe2.eq. 'Timestep') then
backspace (unit =10)
read(10,*) tpe, tpe2 , tpe, dt

elseif (tpe2 . eq. 'Geometry ) then
backspace (unit =10)
read (10,*) tpe , tpe2 , tpe , xside, yside, zside

endif
goto 3

endif
backspace (unit-=10)
backspace (u nit =10)
write (11,*) Nframes , Nframes
write (11 ,*) Nparts , Nparts
write (11 ,) xside , yside
write(ll ,*) dt, dt
time = 0
do 4 i=1,Nframes

timeold=time
read(10,*) time
read(10,*) time
do 5 p=1,Nparts

read(10,*) tpe, x, y, z
write(ll,*) x, y

5 continue
4 continue

write (11,*) time-timeold , time-timeold
close (unit=10)
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close (unit=11)
end

C.5 format_pos.pro

function formatpos ,file ,per=per

* * ************************ ** * **** ***

Program to read in the x-y coordinates
from a simulation into IDL

*************************** *************

t=read_ascii (file)
a=t. fieldl
nframes=a(0 ,0)
nparts=a(0 ,1)
xside=a(0,2)
yside=a(1,2)
dt=a(0,3)
interval=a(0,nframes*nparts+4)

if (keywordset (per)) then begin
traj=fltarr (2, nframes ,4* nparts)

endif else begin
traj=fltarr (2,nframes, nparts)

endelse

for j=0O,nframes-1 do begin
ind = long(j)*long(nparts)+4
traj (O ,j ,0: nparts-1)=a(O, ind :ind+long(nparts-1))
traj (1 ,j ,0: nparts-1)=a(1,ind:ind+long(nparts -1))

if(keywordset(per)) then begin
traj (O,j ,nparts:2*nparts-1)=a(O,ind:ind+long(nparts-1))+xside
traj (1,j ,nparts:2*nparts-1)=a(1,ind:ind+long(nparts-1))

traj (O ,j ,2* nparts:3* nparts-1)=a(O, ind : ind+long(nparts -1))
traj (1, j ,2* nparts:3* nparts-1)=a(1, ind : ind+long(nparts -1))+yside

traj (O ,j ,3* nparts:4* nparts-1)=a(O, ind: ind+long (nparts -1))+xside
traj (1,j ,3*nparts:4*nparts-1)=a(1, ind: ind+long(nparts-1))+yside

endif
endfor

openw, 1 , 'datafile '
if (keyword_set(per)) then begin

printf ,1,4* nparts
endif else begin

printf ,1l,nparts
endelse
printf ,1 , nframes
printf ,1, xside
printf ,1, yside
printf ,1 ,dt
printf , ,interval
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close ,1

return ,traj

end

C.6 createtri.pro

pro createtri ,traj ,mult

;~************************ ***********

Program to calculate a Delaunay
triangulation of a set of points
in 2D.

t=read_ascii( 'datafile ')
a=t . field1

nparts=a (0)
nframes=a (1)
g=ceil (nframes/mult)
xside=a(2)
yside=a(3)

openw,1, ' triangles'
printf ,1, fix (nparts)
printf ,1, fix (nframes)
printf ,1 ,g
printf ,1, xside
printf ,l, yside
printf ,1, mult

for frame=0,nframes -l,mult do begin
xx=traj (0 ,frame ,*)
yy=traj (1,frame ,*)
w=where(xx(*) ge -10.)
X=XX(W)
w--where(yy(*) ge -10.)
y=yy (w)
triangulate ,x,y, tr , conn=c
n=--nelements (c)
printf ,1,n
for i=long(0) ,long(n-1) do begin

printf ,1 ,c(i)
endfor
for i=long (0), long(nelements (x) -1) do begin

printf ,1,x(i),y(i)
endfor

for i=long(nelements (x)) ,long (nparts -1) do begin
printf ,1,-100.,-100.
endfor

endfor
close , 1
end
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C.7 boot.f

program boot

*/************************************************

• / Program for calculating the g6(t) in the
• / bulk region of 2D channels
•/************************************************

implicit none

integer indl , ind2
parameter (indl=201)
parameter (ind2=109999)
integer Nparts, i, ind, n, sze, nframe
integer k, frame, j, indi, indio, ind2io, shortcount
integer ind2i , count(0:ind2), c(0:indl,0:ind2)
integer bulk, bad
double precision x(0:indl,0:ind2), y(0:indl,0:ind2),xside,yside
double precision psioim, psiore, dt
double precision psire, psiim, psitotre(0:ind2)
double precision psitotim(0:ind2), angle, dist
double precision xsep, ysep, interval, interval2
double precision psitempre , psitempim
double precision rho, lenscl, lenscl2 , PI
parameter (PI=3.141592654d0)

bad=0
open( unit=9, file=' datafile ' ,status='old ')
read (9,*)
read (9 ,*)
read(9,*) xside
read(9,*) yside
read(9,*) dt
read(9,*) interval
close (unit=9)
do 5 i=0,ind2

do 10 j=0,indl
x(j,i) = 0.OdO
y(j,i) = O.OdO
c(j,i) = 0

10 continue
count(i) = 0
psitotre(i) = 0.OdO
psitotim(i) = 0.OdO

5 continue

open( unit =10, fi le=' triangles ,status='old ')
read(10,*) Nparts
read (10,*)
read(10,*) n
read(10,*) xside
read(10,*) yside
read(10,*) interval2
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rho = dble (Nparts)/(xside -1.0dO)/yside
lenscl = 1.0d0/sqrt (2.0d0*rho/sqrt (3.dd0))
lenscl2 = lenscl*lenscl
if(n.gt.indl) then

bad=1
goto 73

endif
do 15 frame=0,n-1

read(10,*) sze
if(sze.gt.ind2) then

bad=2
goto 73

endif
do 20 j=0,sze-1

read(10,*) ind
c(frame,j) = ind

20 continue
do 25 j=0,Nparts-1

read(10,*) x(frame,j), y(frame,j)
25 continue
15 continue

close (unit=10)

do 30 frame=0,n-2
do 35 nframe=frame,n-1

ind=nframe-frame
psitempre = 0.0d0
psitempim = 0.OdO
do 40 i=0,Nparts-1

bulk=1
if (y(frame, i ). It .2.d0* lenscl. or.

+ y(frame, i).gt.yside -2.0d0*lenscl .or.
+ y(nframe, i ). It .2.Od0*lenscl. or.
+ y(nframe, i ). gt.yside -2.0d0* lenscl) then

bulk = 0
endif
if(x(frame , i). It. lenscl/2.0d0+0.5d0.or.

+ x(frame , i ). gt . xside-lenscl /2.0dO-0.5d0. or .
+ x(nframe , i )t. lenscl /2.OdO+0.5d0. or.
+ x(nframe , i). gt . xside-lenscl /2.0dO-0.5d0) then

bulk = 0
endif
if(bulk.ne.0) then

count (ind)=count (ind)+1
indio=c(frame , i)
ind2io=c(frame, i+1)-1
psiore = 0.OdO
psioim = 0.OdO
shortcount=0
do 55 k=indio,ind2io

if(c(frame,k).ne.i) then
xsep=x (frame , c (frame ,k))-x(frame , i )
ysep=y (frame , c (frame , k)) -y (frame , i )
dist=sqrt (xsep*xsep+ysep*ysep)
angle=acos (xsep/ dist)
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if(ysep.lt.0.0d0) then
angle =2.0d0*PI-angle

endif
angle=angle *6.0d0
psiore=psiore+cos (angle)
psioim=psioim+sin (angle)
shortcount=shortcount+1

endif
55 continue

psiore=psiore /dble (shortcount)
psioim=psioim / dble (shortcount)

ind2i=c(nframe , i+l)-1
indi=c(nframe, i)
shortcount=0
psire = O.OdO
psiim = O.OdO
do 75 k=indi,ind2i

if(c(nframe ,k).ne. i) then
xsep=x (nframe , c (nframe , k)) -x (nframe , i )
ysep=y (nframe , c (nframe , k)) -y (nframe , i )
dist=sqrt (xsep*xsep+ysep*ysep)
angle=acos(xsep/dist)
if(ysep.lt.0.OdO) then

angle =2.0dO*PI-angle
endif
angle=angle * 6.0 dO
psire=psire+cos (angle)
psiim=psiim+sin (angle)
shortcount=shortcount+l1

endif
75 continue

psire=psire /dble ( shortcount)
psiim=psiim/dble (shortcount)
psitempre=psitempre+(psiore * psire+psioim*psiim)
psitempim=psitempim+(psiore*psiim-psioim* psire)

endif
40 continue

psitotre(ind) = psitotre(ind) + psitempre
psitotim(ind) = psitotim(ind) + psitempim

35 continue
30 continue

open( unit =11, fi I e=' bulk-g6oft , status='new' )
do 85 k=0,n-1

psitotre (k)=psitotre (k)/dble (count (k))
psitotim (k)=psitotim (k)/ dble (count (k))
write (11,*) dble(k)*dt*interval*interval2/lenscl2,

+ psitotre(k),count(k)
85 continue

close (unit=11)

73 if(bad.eq.1) write(*,*) 'Need to increase indl'
if(bad.eq.2) write(*,*) 'Need to increase ind2'
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end

C.8 countdef.f

program countdef

********************* ***********************

Program for calculating the concentration
• / of defects in the 2D channel system

/* **************•***************************** *

implicit none

integer index
parameter (index=200000)
integer Nparts , i, ind , n, sze
integer k, frame, j , indj , shortcount
integer ind2j , c(0:index)
integer totcount , wtotcount , midcount , highcount , lowcount ,btotcount
integer blowcount, bad
integer wlowcount, whighcount, bhighcount
double precision x(0:index), y(0:index), xside
double precision dt , slicewidth , yside
double precision interval , interval2

bad=0
open(unit=9, file='datafile ' ,status='old )
read(9,*)
read(9,*)
read(9,*) xside
read(9,*) yside
read(9,*) dt
read(9,*) interval
close ( unit=9)

open( unit=10, fi le=' triangles' ,status= old ' )
read(10,*) Nparts
read (10 ,*)
read(10,*) n
read(10,*) xside
read(10 ,*) yside
read(10,*) interval2

slicewidth = 0.5d0*sqrt(sqrt (3.0d0)/(2.0d0*
+ (dble (Nparts)/(xside -1.0d0)/ yside)))

unit=11, file=' defects ,status='new')
unit =12, fi Ie=' wall-defects ',status='new')
unit =13, fi I e='bulk-defects' ,status='new')
frame=0,n-i
5 i=0,index
x(i) = O.OdO
y(i) = O.OdO
c(i) = 0

open(
open(
open(
do 15

do
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5 continue
read (10,*) sze
if(sze.gt.index) then

bad=1
goto 73

endif
do 20 j=0,sze-1

read(10,*) ind
c(j) = ind

20 continue
do 25 j=0,Nparts-1

read(10,*) x(j), y(j)
25 continue

totcount=0
wtotcount=0
highcount=0
lowcount=0
midcount=0
wlowcount=0
whighcount=0
blowcount=0
bhighcount=0
btotcount=0
do 30 j=0,Nparts-1

if (y(j). gt .4.0 d0*slicewidth and.
+ y(j). It .yside -4.0d0*slicewidth) then

totcount=totcount+l
shortcount=0
indj=c(j)
ind2j=c (j +1)-1
if (x( j ). it . slicewidth . or .x(j ). gt . xside-slicewidth ) then

wtotcount=wtotcount+1
do 35 k=indj , ind2j

if(c(k).ne.j) then
if(x(c(k)). gt. slicewidth .and.

+ x(j). It . slicewidth ) then
shortcount=shortcount+1

elseif (x(c(k)). it . xside-slicewidth
+ .and.x(j).gt.xside-slicewidth) then

shortcount=shortcount+l1
endif

endif
35 continue

if (shortcount. le .1) lowcount=lowcount+l
if (shortcount .eq.2) midcount=midcount+l
if (shortcount . ge .3) highcount=highcount+1
if (shortcount. le .1) wlowcount=wlowcount+1
if (shortcount . ge .3) whighcount=whighcount+1

else
btotcount=btotcount+1
do 45 k=indj,ind2j

if(c(k).ne.j) then
shortcount=shortcount+1

else
write ( ,) 'Bulk particle is on the boundary'
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endif
45 continue

if (shortcount . le.5) lowcount=lowcount+1
if (shortcount.eq.6) midcount=midcount+l
if (shortcount.ge.7) highcount=highcount+1
if (shortcount.le.5) blowcount=blowcount+1
if (shortcount.ge.7) bhighcount=bhighcount+l1

endif
endif

30 continue

write (11 ,) dble(frame)*dble( interval )*dble(interval2 )dt*
+ dble (Nparts)/(xside -1.0d0)/yside*2.0dO/sqrt (3.0dO),
+ dble (lowcount+highcount)/dble (totcount), totcount

write (12 , *) dble (frame)* dble (interval)* dble ( interval2 )*dt*
+ dble(Nparts)/(xside -1.0d0)/yside*2.0dO/sqrt (3.0dO),
+ dble (wlowcount+whighcount )/ dble (wtotcount), wtotcount

if (btotcount.ne.0) then
write (13,*) dble(frame)*dble(interval)*,dble( interval2 )*dt*

+ dble(Nparts)/(xside -1.0d0)/yside*2.0dO/sqrt (3.0dO),
+ dble (blowcount+bhighcount )/ dble (btotcount ), btotcount

endif
15 continue

close (unit=11)
close (unit=12)
close (unit=13)
close (unit==10)

73 if(bad.eq.1) write(*,*) 'Need to increase index'

end

C.9 calcspace.f

program calcspace

***********************************************

• / Program for calculating the spacing between
• / clusters in the thin-slit system
*************************************************

implicit none
integer index
parameter (index=200000)
integer Nparts , i , ind , n, sze , bad
integer k, frame , j , indj, nbins
integer ind2j ,c(0:index), bin
double precision x(0:index), y(0:index), tcount
double precision slicewidth ,xside ,yside , interval2
double precision space , sp(index), dt, interval
double precision fcount , aspace, maxlen
parameter (maxlen=30.0d0)

bad=0
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slicewidth = 0.05d0
nbins=INT(maxlen/slicewidth)
if(nbins.gt.index) then

bad=1
goto 73

endif
do 99 i=l,nbins

sp(i)=0.OdO
99 continue

open(unit=9, file=' data file ',status='old')
read(9,*)
read(9,*)
read (9,*)
read (9,*)
read (9,*) dt
read(9,*) interval
close (unit=9)

open(unit =10, file=' triangles ',status='old')
read (10,*) Nparts
read (10,*)
read (10,*) n
read (10,*) xside
read (10,) yside
read (10,) interval2
if (Nparts. gt. index) then

bad=l
goto 73

endif
open( unit=11, file= spacing ', status='new ' )
open( unit=12, fi le=space-vs-t , status='new ' )
tcount=0.OdO
do 15 frame=0,n-1

fcount=0.OdO
aspace=0.OdO
do 5 i=0,index

x(i) = O.OdO
y(i) = O.OdO
c(i) = 0

5 continue
read (10,*) sze
if(sze.gt.index) then

bad=l
goto 73

endif
do 20 j=0,sze-1

read(10,*) ind
c(j) = ind

20 continue
do 25 j=0,Nparts-1

read(10,*) x(j), y(j)
25 continue

do 30 j=0,Nparts-1
if(x(j).ge.xside*0.5d0.and.x(j). le . xside *1.5d0.and.
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+ y(j).ge.yside*0.5d0.and.y(j).le.yside*1.5d0) then
indj=c(j)
ind2j=c (j +1)-1
do 45 k=indj , ind2j

if(c(k).eq.j) write(*,*) 'Particle is on boundary'
tcount=tcount +1.0d0
fcount=fcount + 1.0d0
space=sqrt ((x(j)-x(c(k)))*(x(j)-x(c(k)))+

+ (y(j)-y(c(k)))*(y(j)-y(c(k))))
if (space. gt . maxlen) then

bad=2
goto 73

endif
bin=INT(space/ slicewidth)
sp( bin)=sp (bin)+1.0dO
aspace=aspace+space

45 continue
endif

30 continue
write (12,*) dble (frame)* interval* interval2 *dt , aspace/fcount

15 continue
do 999 i=l,nbins

write (11 ,*) (dble(i)-0.5d0)*slicewidth ,sp(i)/tcount/slicewidth
999 continue

close (unit=12)
close (unit=11)
close (unit=10)

73 if(bad.eq.1) write(*,*) 'Need to increase index'
if(bad.eq.2) write(*,*) 'Need to increase maxlen'
end

C.10 plottri.pro

pro plottri ,x,y

Program to plot the connectivity
(as defined by Delaunay
triangulation) of a set of
points in 2D

;************************************

triangulate ,x,y, tr , conn=c

for i=0,n_elements(tr)/3-1 do begin
g=[tr[*,i], tr [0,i]]
oplot ,x[g],y[g]

endfor

end

C.11 colortri.pro
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pro colortri ,x,y,c,xside ,yside ,xper=xper

;***************** *******************

Program to plot the defect structure
of a set of points in 2D

; ************** ********* *************

circle=findgen (17)*2.*!Pi/16.
usersym,cos(circle),sin(circle),/fill

xsd=xside
if(not keywordset(xper)) then xsd=xsd -1.

rho =1.* n_elements (x)/ xsd/yside
lenscl=l1./sqrt (2.* rho/sqrt (3.))

for i=0,n_elements(x)-1 do begin
nlist=c[c[i]: c[i+1]-1]
if(not keywordset(xper)) then begin

if (x(i) It lenscl/2.+0.5 or x(i) gt xside-lenscl/2.-0.5) then begin
count=0
for j=0,nelements(nlist)-1 do begin

if (nlist(j) ne i) then begin
if (x(nlist(j)) gt lenscl/2.+0.5 and x(i) It $
lenscl/2.+0.5) then begin

count = count + 1
endif else begin

if (x(nlist(j)) It xside-lenscl/2.-0.5 and x(i) gt $
xside-lenscl/2.-0.5) then begin

count = count + 1
endif

endelse
endif

endfor
if count le 1 then begin

oplot ,[x(i)] ,[y(i)] ,psym=8
endif else begin

if count ge 3 then begin
oplot ,[x(i)] ,[y(i)] ,psym=5

endif
endelse

endif else begin
if n_elements(nlist) le 5 then begin

oplot ,[x(i)] ,[y(i)] ,psym=8
endif else begin

if n_elements(nlist) ge 7 then begin
oplot ,[x(i)] ,[y(i)] ,psym=5

endif
endelse

endelse
endif else begin

if nelements(nlist) le 5 then begin
oplot ,[x(i)] ,[y(i)],psym=8
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endif else begin
if n_elements(nlist) ge 7 then begin

oplot ,[x(i)] ,[y(i)] ,psym=5
endif

endelse
endelse

endfor

return
end
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