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ABSTRACT
The purpose of this research is to synthesize nanostructured and porous hydrophilic

networks (nanoporous hydrogels) using block copolymers and to understand their transport
properties. Nanoporous materials are synthesized by connecting two or more chemically
distinct polymer blocks, inducing microphase separation to form a pattern on the scale of tens
of nanometers, and finally removing one of the polymer blocks. The sacrificial block needs
to be degraded easily and controllably and the blocks must self-assemble. Desired properties
for the non-degradable polymer block are that it be hydrophilic and that it can be crosslinked
to form a hydrogel. Advantages of the nanoporous hydrogels are hydrophilicity and
flexibility, and the hydrophilic nature would make these membranes suitable for the
separation, based on size selectivity, of biological macromolecules such as proteins.

Hydrogels with nanoscale structure were synthesized using amphiphilicpoly(s-
caprolactone-b-ethylene oxide-b-&-caprolactone) (PCL-b-PEO-b-PCL) triblock copolymers.
The triblock copolymer was produced by the ring opening polymerization of C-caprolactone
with PEO as a macro-initiator in the presence of stannous octoate as a catalyst. PCL and PEO
have a sufficiently high segment-segment interaction parameter to induce microphase
separation in bulk (the calculated XFH is 0.15 at 70 OC) or in water. PCL degrades easily in a
NaOH aqueous solution. PEO is hydrophilic and crosslinkable by ultraviolet (UV) or other
forms of ionizing radiation such as an electron beam or 60Co. A pore size is controlled by the
molecular weights of the block copolymers. Furthermore, terminal hydroxyl groups of PEO
are restored after PCL removal that allow further chemical modification.

To search for optimum crosslinking conditions, PEO homopolymers were studied.
Electron beam irradiation of up to 50 Mrads on PEO bulk films did not produce networks
when the primary molecular weights of PEO were small. Gel fractions of electron beam
crosslinked polymers increased when the primary molecular weight of PEO increased, but
the produced Mc (molecular weight between crosslinks) values were too high to achieve fine
mesh sizes. Therefore, aqueous solutions of PEO were studied to achieve lower M. values (-
1,500 g/mol).

Microstructures in aqueous solutions of PCL-PEO-PCL block copolymers were
studied by Small Angle X-ray Scattering (SAXS). The SAXS studies show that the block
copolymers form 30-40 nm structures in aqueous solution. Lamellar and cylindrical
nanostructures were observed by SAXS, indicating cylindrical structure as the block lengths
become more different in length. The lamellar structure remained after electron-beam
crosslinking of the block copolymers as shown by Atomic Force Microscopy (AFM). It is
demonstrated through Fourier Transform Infrared Spectroscopy (FTIR), mass loss, and



Differential Scanning Calorimetry (DSC) that the PCL can be completely removed by
hydrolysis in NaOH(aq) to form porous PEO hydrogels. After PCL removal, the resulting
nanoporous hydrogels have relatively high macromolecular diffusivities due to pores
produced by PCL removal as observed in Fluorescence Recovery After Photobleaching
(FRAP) studies.

The effect of temperature and water content on morphology of PCL-b-PEO-b-PCL,
with block number average molecular weights of 9,000-30,000-9,000 g/mol, was also studied.
Cylindrical morphology was observed in a solvent-evaporated sample. When it was heated
above the melting peaks of both PEO and PCL blocks, a change in morphology was observed
by SAXS. When this sample was cooled to room temperature in the ambient atmosphere,
another morphology (lamellae) was observed with SAXS and AFM. This asymmetric change
in morphology across the melting-crystallization transition suggests a role of kinetics
(microphase separation and crystallization) in determining the observed microstructures.
Addition of water at room temperature also affected the microphase separation of the block
copolymer due to hydrophilicity of PEO. As the polymer concentration is decreased below
60%, the morphology changes from cylinders to lamellae. DSC shows that water addition
decreases PEO crystallinity but PCL crystallinity remains.

These hydrogels retain active functional groups following PCL removal that serve as
sites for further chemical modification with pH or temperature responsive materials, which
may find use in drug separation and drug delivery systems.

Thesis Supervisor: Kenneth J. Beers
Assistant Professor of Chemical Engineering
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1. Background

1.1. Introduction

Nanostructured materials have patterns on the scale of tens of nanometers. To

produce nanostructured materials, block copolymers have been used widely, employing the

microphase separation between incompatible polymer blocks. Especially, nanoporous

materials have attracted much interest for a wide variety of applications. Block copolymers

of two or more chemically distinct polymer blocks self-assemble to form patterns on the

scale of tens of nanometers. By removing a sacrificial block of the block copolymers,

nanoporous materials are formed. Specifically, hydrophobic materials such as polystyrene

have been used extensively for non-degradable blocks, and the high glass transition

temperature (T,) of polystyrene allows retention of the porous structures at room temperature.

To remove the degradable block from the block copolymers, several degradation techniques

have been used, including thermal degradation, ion etching, ozonolysis, and hydrolysis.

In the following, several examples of non-degradable polymers and degradable

polymers are described in addition to the degradation techniques employed. They are

categorized based on their possible applications.

1.2. Examples of nanoporous materials

Low dielectric materials for microelectronic devices: Materials with low dielectric

constants are useful in microelectronic areas for electronic isolation. For example,

foamed polyimides were studied for this purpose (Hedrick, 1999). The voids need to

be as small as possible to produce good isolation layers in the polyimide. Sub-micron

sized voids are produced by the microphase separation of a thermally-decomposable

polymer in a polyimide continuous phase. Widely used decomposable polymers are

poly(propylene oxide), poly(methyl methacrylate), poly(styrene), poly(cc-

methylstyrene), poly(lactides) and poly(lactones). The typical degradation

temperature is above 2500 C, well below the thermal degradation temperatures of

polyimides.



* Nanolithography for microelectronic devices: Traditional photolithography

involves a mask and a photoresist, which makes it difficult to produce small patterns

on the scale of nanometers that are much smaller than the wavelengths used.

Alternative surface patterning methods were studied by Park (1997). Well-defined

patterns from block copolymer self-assembly can be used to produce an etching mask

for nanoelectronic devices. The patterns are on the scale of tens of nanometers.

Polystyrene-polybutadiene (PS-PB) diblock copolymers were used to produce

lithography templates. A PB phase forms spheres in the continuous PS matrix after

annealing. The PB spheres are then transferred into holes or dots by two different

processes. First, PB spherical phases can be degraded by ozonolysis to form holes

because ozone breaks down the double bonds in PB. An alternative approach is to

prevent PB from degrading by reactive ion etching to form nanodots.

* Filters: The final example is polystyrene monoliths. Nanoporous polystyrene

materials were studied by Lee (1989) and Zalusky (2002). Polystyrene-b-poly D,L-

lactide (PS-b-PDLLA) was used to induce cylindrical microphase separation, and the

microstructure was aligned by a mechanical force such as a shear flow. After that, the

PLA block was degraded by hydrolysis to produce pores (Zalusky, 2002).

Crosslinkable polystyrene was also used (Lee, 1989). Isopropoxysilyl groups in PS

are hydrolyzed to form silanol, which is followed by condensation of the silanols to

form siloxane linkages. This crosslinking allows the nanopatterns to be retained in an

organic solvent.

1.3. Objectives of our research

The purpose of our study is to synthesize nanostructured and porous hydrogel using

block copolymers. Most of previously studied nanoporous materials involve hydrophobic

polymer matrices and have not been crosslinked, therefore, the patterned porous structure

will collapse upon exposure to a good (organic) solvent. Most of previously studied

hydrogels were synthesized by homogeneous crosslinking of hydrophilic polymers, lacking



the advantage of anisotropic pore formation as in our approach. Hydrophilic materials that

have nanopores produced by removal of one block in the block copolymers would make

these materials suitable for biological applications such as protein separation and drug

delivery because the hydrogels may not cause denaturation of biomaterials during separation

processes, whereas hydrophobic membranes may cause this problem due to interaction with a

hydrophobic core of the biomaterials.

In the following, various materials for synthesis of nanostructured and porous

hydrogels are considered.

1.3.1 Materials selection

To produce nanostructured and porous hydrogels using block copolymers, the

sacrificial polymer block needs to be degraded easily and selectively, and the non-degradable

polymer block needs to be hydrophilic and crosslinkable. Polyethers and polyesters can be

used as degradable blocks. Polymers of cyclic ethers can be used because of their low ceiling

temperatures. For example, polytetrahydrofuran (PTHF) and poly(1,3-dioxolane) (PDXL)

have relatively low ceiling temperatures: 800C for PTHF (Ivin, 1984) and O0C for PDXL (De

Clercq, 1992). This is because its monomer is more stable thermodynamically, and they are

depolymerized in the presence of a cationic initiator such as triflic acid (De Clercq, 1992).

Other choices for the degradable block include polyesters such as poly(8-caprolactone) (PCL)

and poly(D,L-lactide) (PDLLA). Polyesters are hydrolyzed in acidic or basic aqueous

solutions.

There are various examples of nondegradable polymer blocks such as poly(2-

hydroxyethyl methacrylate) (PHEMA) and poly(ethylene oxide) (PEO). Poly(methyl

methacrylate) (PMMA) is a hydrophobic polymer, but when it is hydrolyzed to produce

carboxyl acid (Smith, 1993; Wang, 1991), it becomes hydrophilic. PEO has been reported to

be crosslinked by UV in the presence of the photoinitiator, benzophenone (Doytcheva, 1997).

These polymers were demonstrated to be crosslinkable under certain conditions by ionizing

radiation such as an electron-beam (Dennison, 2001) or 60Co (Nitta, 1958-59; Nitta, 1961;

Salovey, 1963).



Poly(c-caprolactone)-b-poly(ethylene oxide)-b-poly(E-caprolactone) (PCL-PEO-PCL)

block copolymers are selected for our research. The triblock copolymer can be produced by

the ring opening polymerization of e-caprolactone in the presence of PEO as a macro-

initiator with a catalyst, stannous octoate. PCL and PEO have a sufficiently high segment-

segment interaction parameter to induce microphase separation at above the melting points of

both blocks (-70oC) (the calculated Flory-Huggins interaction parameter is 0.15 at 700C).

PCL degrades easily in a NaOH solution. PEO is hydrophilic and crosslinkable by ultraviolet

(UV) or other forms of ionizing radiation such as an electron beam or 60Co. Pore sizes are

controlled by the molecular weights of the block copolymers. And terminal hydroxyl groups

of PEO are restored when PCL-b-PEO-b-PCL is hydrolyzed that allow further chemical

modification.

To produce the desired nanoporous hydrogels, it is essential to understand microphase

separation behavior of block copolymers and the relationship between mesh size produced by

crosslinks and the pore size produced by removal of a labile block in the block copolymer.

1.3.2. Microphase separation of block copolymers

Block copolymers that consist of incompatible blocks show several morphologies in

the bulk phase, depending upon the volume fraction of one of the blocks (Matsen, 1994;

Matsen, 1999; Bates, 1999). They show spherical, cylindrical, lamellar, or gyroid phase

separation when ZFHN is above 10.5, where XFH is a Flory-Huggins interaction parameter and

N is a degree of polymerization. Generally, ZFH can be estimated using solubility parameters

as shown in Eq 1-1, that uses parameters obtained from group contribution calculations (Van

Krevelen, 1976).

< V > (6A - 6B )2
%FH = Eq 1-1

RT

<V> is the average molar volume of repeat units of both blocks, 6A is a solubility parameter

of A block in the block copolymer, R is the ideal gas constant, and T is absolute temperature.

To control the size of microstructures induced by microphase sepearation, different

molecular weights of polymers can be used. An increase in block length produces larger



microstructures (Zalusky, 2002). For example, a domain period (Q) of a lamellar morphology

in the strong segregation regime is proportional to N2/3 as shown Eq 1-2 (Bates, 1999).

2A = 1.03a ABI/6N 2/3  Eq 1-2

where a is a statistical segment length.

Adding homopolymers or solvents to block copolymers also can affect the

morphology. For example, adding PS homopolymers to diblock copolymer containing PS as

one of the blocks changes lamellar or cylindrical morphologies to gyroid depending on

polymer concentration and molecular weight (Winey, 1992). Another example is the addition

of water to amphiphilic block copolymers as studied for PEO-poly(propylene oxide)-PEO

(PEO-PPO-PEO) block copolymer systems (Wanka, 1994). Various morphologies including

cubic, hexagonal, and lamellar microphases (Ivanova, 2000) were observed depending on the

triblock copolymer composition, concentration, and temperature.

1.3.3. Pore size and mesh size

There are two kinds of pores in nanostructured and porous hydrogels when they are

swollen in water, which will be denoted as meshes and pores respectively in the following. A

"mesh" is the random opening of a chain-free region and is present as well in homogeneous

hydrogels. A "pore" corresponds to a chain-free region that correlates to the domain of a

degraded block in a self-assembled block copolymer phase. A mesh size is determined by

chemical crosslinks (or Me), therefore, the denser is crosslink density, the narrower is the

mesh size. A pore size is determined by the size of degradable block, i.e., the longer is the

degradable block, the bigger is the pore size. A schematic diagram of nanoporous hydrogels

in an aqueous solution is shown in Figure 1.1. At relatively high crosslink density, the mesh

size between crosslinks (4) is small, and penetrants should diffuse mainly through pores.

Therefore, these materials can be used for membranes for separation of macromolecules,

with an additional length scale governed by the self-assembled morphology.

The relation between the mesh size and the equilibrium degree of swelling of

homogeneous polymeric networks is described as follows (Canal, 1989).

5= Q (r o2 Eq 1-3



is the mesh size, Q is the volume ratio of the swollen to the unswollen network at

equilibrium. r2 is the unperturbed root-mean-square end-to-end distance between

crosslinks, which is (3Mc/Mo)1/2CX' 2 1 for PEO (Me=molecular weight between crosslinks,

Mo=molecular weight of repeat unit, C., is the characteristic ratio, and I is an average bond

length). Eq 1-3 is not rigorously correct for our non-homogeneous systems because the

swelling ratio (Q) is related to both the mesh size (ý) and the pore size (d), but it can be used

to estimate approximate mesh and pore sizes. For example, when Mc=1,500g/mol, Q=17

(data from our experiment), CO =4.0, 1=1.5A, and Mo=44g/mol are assumed for PEO

hydrogels (Sundararajan, 1996), 4 is estimated to be 7.8 nm. Even with this large mesh size,

the macromolecular diffusivity of proteins and small particles would be reduced significantly

if there were no larger "pores" corresponding to the domains of the degraded blocks. This is

described by the following equation (Lustig, 1988; Canal, 1989).

Dge - D r 1 - e - Eq 1-4

Dge, is the diffusivity of a penetrant through the mesh of the hydrogel, D. is the diffusivity in

solution, and r is the penetrant size.

When 4 is 7.8 nm, r is 7 nm, and Q is 17, Dge, is 10 % of D,.

1.4. Thesis overview

The purpose of this research is to synthesize nanoporous hydrogels using PCL-b-

PEO-b-PCL amphiphilic block copolymers and to understand their transport properties. Due

to lack of crosslinkable functional groups in PEO, a high energy electron beam (2.5 MeV)

was used to produce the crosslinks, which are important to fix the nanostructures produced

by microphase separation of the block copolymers after removal of the degradable PCL

blocks. This crosslink studies were performed with PEO homopolymers and are described in

chapter 2. Using the optimum crosslinking conditions found in these experiments,

nanoporous hydrogels were synthesized, as detailed in Chapter 3. Briefly, nanoporous

hydrogels were produced by (1) synthesizing PCL-PEO-PCL block copolymers, (2)

crosslinking the PEO block of the block copolymer in aqueous solutions at high



concentrations, and (3) degrading the PCL blocks by hydrolysis. Diffusion coefficients of

various proteins in these nanoporous hydrogels then were studied, as described in Chapter 4.

Morphologies of the block copolymers in water were found to be affected by block length

ratio of PEO and PCL, water content, and temperature. The morphology studies are described

in Chapter 5.

The study presented in chapter 3 was published in Biomacromolecules. The studies

described in chapter 4 and 5 will be submitted to Biomaterials and Polymer, respectively.
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2. Crosslinking of PEO with electron beam irradiation

2.1. Introduction

PEO is hydrophilic and biocompatible, but lacks crosslinkable functional groups.

However, for the synthesis of nanoporous hydrogels using PCL-b-PEO-b-PCL, PEO needs to

be crosslinked after microphase separation to retain the nanostructures after PCL removal.

Therefore, high energy irradiation including an electron beam (Doytcheva, 1997) and 6Co

(Nitta, 1958-59; Nitta, 1961; Salovey, 1963) can be used. These irradiation methods are not

expected to crosslink PCL (Bovey, 1958). To our knowledge, no studies have been reported

for PEO crosslinking by electron beam in the presence of PCL as done here. Therefore, it is

necessary to make sure that PEO-PCL block copolymers can also be crosslinked using an

electron beam, and to find the optimal crosslinking condition for this block copolymer.

In this chapter, the experimental results when bulk PEO films were irradiated with an

electron beam are described followed next by the results using aqueous solutions of PEO.

Finally, crosslinking studies for PEO-PCL diblock copolymers are described.

2.2. Experimental Section

2.2.1. Materials

Polyethylene oxide (PEO, M,=4 600, 10 000, 47 000 g/mol) and benzophenone were

purchased from Sigma-Aldrich and used without further purification. PEO-b-PCL (Mn=5000-

4000 g/mol) diblock copolymers were obtained from Polymer Source, Inc. (Quebec, Canada)

and used as received. Sodium azide (NaN 3) was purchased from Mallinckrodt, and solvents

(benzene, dimethylene chloride, chloroform) were obtained from Aldrich (Milwaukee, WI).

2.2.2. Electron beam irradiation

For the electron beam irradiation of PEO in bulk, PEO was dissolved in dimethylene

chloride, and PEO films were prepared to be 400 jtm in thickness on Petri dishes 5 cm in



diameter. They were dried in hood for 1 day and in a vacuum oven for another day at room

temperature. Electron beam irradiation was carried out at the High Voltage Research

Laboratory at MIT. A 2.5 MeV van de Graff generator with the dose rate of 1.25 Mrad/pass

and a belt speed of 0.8 cm/s was used. PEO bulk films were preheated for 20-30 min at

1000C before they were put on the belt of the electron beam generator to melt the crystalline

PEO and to increase the amorphous portion, where most crosslinking takes place. For the

electron beam irradiation of PEO in water, PEO was dissolved in Milli-Q water with 0.01%

NaN3 to retard bacterial growth. Aqueous PEO solutions were prepared to be 0.2 cm or 0.5

cm thick, and they were irradiated without preheating. Gel fractions were measured by

comparing dry weights before and after extraction with Milli-Q water with 0.01% NaN 3.

2.2.3. Intrinsic viscosity measurement

Intrinsic viscosity of polymers was measured with benzene as a solvent at 250 C. An

Ubbelohde viscometer (Cole-Parmer, size OC) was immersed in a constant temperature

water bath (Koehler instrument). The retention time of all samples was measured after at

least 10 minutes of temperature equilibration. The following equations (Eq. 2-1) were used to

calculate intrinsic viscosities (Collins, 1973).

sp = [r]+ k'[q]2 Eq. 2-1

(lnqr) = [q]+ k"[q]2

where ir,= relative viscosity = (retention time of a solution)/(retention time of pure solvent)

r77 = specific viscosity= r,r-1

c = concentration in units of g/dl

[q]= intrinsic viscosity in units of dl/g

k', k" = constants (k'- k" -0.5 when experiments are performed correctly)

2.2.4. Swelling experiments.



For the samples that were irradiated in bulk, M, (molecular weight between crosslinks)

was measured in chloroform at room temperature after one day of equilibration. For the

samples that were crosslinked in aqueous solution, 0.01% NaN3 in Milli Q water was used

and the weights of the samples were measured at room temperature after two days'

equilibration. The weights of the dry samples were measured after vacuum drying at 400 C for

two days. M, was calculated by either Eq. 2-2 or Eq. 2-3. Eq. 2-2 was used for the samples

crosslinked in bulk film (Doytcheva, 1997).

1 _ 2 ln(1- v2s)+ V2s + X V2s
Eq. 2-2Mc  M,, VI p2 (v22s/3 -v2s /2)

Z1 = +0.34
RT

where v2 s : polymer volume fraction at equilibrium swelling

V,I molar volume of solvent=80.12 cm 3/mol for chloroform

p 2: polymer density

6, : solubility parameter of a solvent = 9.3 (cal/cm 3 )0 s5 for chloroform

•P: solubility parameter of a polymer = 10.3 (cal/cm 3)0.5 for PEO

•, : Flory-Huggins interaction parameter = 0.477 at 21 C

Eq. 2-3 was used for crosslinked samples in aqueous solutions (Dennison, 1986). This

equation is more complicated than Eq. 2-2 because water is present during crosslinking

experiments. Furthermore, z values cannot be calculated from solubility parameters because

water forms hydrogen bonds with PEO. Dennison (1986) obtained the z value between PEO

and water using osmometry.

1 n(l- v2s )+ 2s +1 V2s

1 2Eq. 2-3

V 2r 2 V2r

V2r

S+ -
Wp -+A (W r -- Wp)



v 2s 
=

\P
+ ( Pp )(W-,)

where, M,, : number average primary polymer molecular weight

v: polymer specific volume

V,: molar volume of solvent

"1 =F-H interaction parameter-0.426 between water and PEO at room temperature

v2, : polymer volume fraction at equilibrium swelling

V2 r : polymer volume fraction immediately after crosslinking

wr: weight of the gel immediately after crosslinking

w,: weight of the fully swollen gel

w,: weight of the dried polymer network

p, : density of polymer

p,: density of solvent

2.3. Results and Discussion

2.3.1. Electron beam irradiation of PEO in bulk

PEO with various molecular weights (Mn, 4 600, 10 000, 47 000 g/mol) was

irradiated with an electron beam in bulk films. When PEO (4 600 g/mol) was irradiated with

50 Mrads in air, the intrinsic viscosity decreased to 0.113 dl/g from 0.129 dl/g (no

irradiation), which indicates that chain scission may be predominant over crosslinking

through the oxidation of the PEO main chain. When irradiated in an argon atmosphere,

intrinsic viscosities increased slightly. Higher molecular weight PEO showed higher intrinsic

viscosities than PEO of lower molecular weight (Figure 2.1). We also found that when the

higher molecular weight (47 000 g/mol) of PEO was used, a dosage of 30 Mrads was

sufficient for gelation, but it was not enough for the gelation of PEO 4600 g/mol. This is

because a larger number of crosslinks (lower Mc values) is necessary for low MW PEO to



ensure that each chain has enough crosslinks to tie it into a network of other chains. At above

a gelation dose, the effect of electron beam dose on gel fraction and Mc was studied, and the

result is plotted in Figure 2.2. Higher doses produced higher gel fractions and lower Me

values.
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Figure 2.1. Effect of the molecular weight of PEO on the intrinsic viscosity after electron

beam irradiation with 30Mrads dose in at argon atmosphere; the higher molecular weight

of PEO (47 000g/mol) formed a gel with the 30 Mrads dose.
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The gelation dose for PEO 47 000 g/mol is about 5 Mrads, and the gelation dose for

M n 10,000 g/mol is expected to be around 50 Mrads. Therefore, at least 50 Mrads is expected

to be needed to produce mechanically stable hydrogels. But higher doses than 50 Mrads are

not practically convenient to achieve. Therefore, we tried adding benzophenone into the PEO

bulk films to increase crosslink densities. As shown in Scheme 2.1, benzophenone has been

known to produce PEO radicals when they are added to PEO films undergoing ultraviolet

(UV) irradiation, and PEO radicals react with other PEO radicals to form crosslinks

(Doytcheva, 1997). However, benzophenone did not improve crosslinking on our samples as

shown in Figure 2.3. Therefore, we considered adding water to improve crosslink density.

The experimental results of how water affected M, are described below.

2.3.2. Electron beam irradiation of PEO (10,000 g/mol) in water

It has been reported that water produces OH radicals and O anion radicals under an

electron beam, and that they react with the PEO backbone to form PEO radicals (Dennison,

1986; Scheme 2.2). These PEO radicals react each other to undergo crosslinking. Therefore,

the presence of water expected to enhance crosslink density. As shown in Figure 2.4, even

with such small doses as 5, 10, and 20 Mrads, MC values of 1500-4000 g/mol were achieved

when PEO 10 000 g/mol was irradiated in a 9% aqueous solution. And after 20 Mrads, MC

reached an asymptotic value of 1,500 g/mol.

Various concentrations were also tested to see the concentration affects Me, and the

results are shown in Figure 2.5. Mc increased with an increase in concentration. 20 Mrad and

30 Mrad doese produced roughly similar M, values.

The effect of sample thickness on the crosslinking of PEO was also studied. The 2.5

MeV van de Graff generator at the High Voltage Research Lab at MIT is known to be able to

irradiate uniformly samples of up to 0.5 cm in thickness (Dennison, 1986). To identify the

optimal sample thickness for our samples, two thicknesses (0.2 cm and 0.5 cm) of aqueous

PEO solutions were studied. As shown in Figure 2.6, the two thicknesses did not produce

very different Mc values. However, 0.2 cm produced more uniform Mc values. Therefore, this

thickness was used in all further experiments where a specific thickness is not mentioned.



Scheme 2.1. Crosslinking of PEO induced by benzophenone and ultraviolet irradiation

(Doytcheva, 1997).
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Scheme 2.2. Irradiation chemistry of PEO in water (image from Dennison, 1986).
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Figure 2.6. Effect of solution thickness on M, when a 9% aqueous PEO solution (primary

Mn= 10 000 g/mol) was crosslinked with 20 Mrads.



2.3.3. Electron beam irradiation of PEO-b-PCL diblock copolymer in water

Crosslinking of diblock copolymers with an electron beam was studied first using a

commercially available PEO-PCL diblock copolymer (Mn = 5000-b-4000 g/mol). Since we

want to crosslink PEO and degrade PCL, PCL should contain enough ester linkages for

hydrolysis after electron beam irradiation, and not impede PEO crosslinking. Bovey (1958)

studied the crosslinking of polyesters in bulk, -[(CH 2)4COO]n-, and concluded that it required

fairly high doses to form a gel and that the more CH2 groups between ester functional groups,

the easier crosslinking will occur. Since PCL has only five CH 2 groups between ester groups,

it is expected that PCL does not undergo severe crosslinking under the current electron beam

irradiation conditions. Furthermore, since water radiolysis accelerates the crosslinking

process considerably, the hydrophobic PCL domain is even less favored than PEO for

crosslinking by electron beam irradiation. Gel fraction data after electron beam irradiation of

diblock copolymer aqueous solutions indicate that PEO is crosslinked in spite of presence of

PCL (Figure 2.7). However, the polymer concentrations affect gel fraction. This further

confirms that water is essential to crosslink PEO efficiently by an electron beam. Electron

beam irradiation of block copolymers is described in more detail in Chapter 3.

2.4. Conclusions

Crosslinking experiments in the bulk PEO films were less effective than in aqueous

solutions, and water increased the crosslink density remarkably to produce Mc values of

about 1,500 g/mol. Crosslinking experiments with PEO-PCL diblock copolymers were

performed successfully with the optimal experimental conditions that were achieved by the

PEO experiments. Synthesis of nanoporous hydrogels using PEO-PCL block copolymers is

further described in the next chapter.
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3. Synthesis and Characterization of PCL-b-PEO-b-PCL Based Nanostructured and

Porous Hydrogels

3.1. Introduction

Nanoporous materials have received much attention due to their well-ordered nano-

scale pore structures and their high surface areas, and have been studied for numerous

potential applications in separation, catalysis, nanolithography, and as low dielectric

materials. While inorganic nanoporous materials synthesized with metal oxides are

hydrophilic, the majority of current nanoporous organic materials are hydrophobic, which

limits potential biomedical applications. In this chapter, we report a novel synthetic method

for hydrophilic, flexible, nanostructured and porous polymer networks.

Nanoporous materials derived from block copolymers are advantageous for the

degree of control over pore size distribution that they offer. These materials are synthesized

by connecting two or more chemically-distinct polymer blocks, inducing microphase

separation to form a pattern on the length scale of tens of nanometers, and removing one of

polymer blocks to generate voids. Polymers with high glass transition temperatures (Tg) have

been used for the non-degradable blocks because a high Tg offers retention of structure at

mild temperatures in spite of the absence of chemical cross-links (Hedrick, 1999; Park, 1997;

Zalusky, 2002). However, once the glass melts or contacts a good solvent, such porosity

disappears. This problem can be avoided by cross-linking a non-degradable block as shown

by Lee (1989) and Cavicchi (2004).

Amphiphilic polymer networks (APNs) have been studied extensively for biological

applications due to the presence of both hydrophilic and hydrophobic domains (Patrickios,

2003). Specifically, Barakat (1999) synthesized APNs using block copolymers of polyester

and poly(2-hydroxyethylmethacrylate) (PHEMA), and studied hydrophilic and hydrophobic

drug release profiles as the networks are swollen in hydrophilic and hydrophobic solvents.

Another recent example is apoly(ethylene oxide)-poly(dimethyl siloxane) (PEO-PDMS)



network that can be used in contact lenses due to its optical clarity when swollen in water and

to its high oxygen permeability (Erdodi, 2005). Hentze(1999) also used PEO as a hydrophilic

domain in their study of a PEO-b-poly(butadiene) network. They induced microphase

separation of the diblock copolymer in water to produce lamellar and cylindrical

microstructures and then fixed the ordered structures by 60 Co radiation-induced cross-linking.

In our study, an APN system is used to produce nanostructures in water, but instead of using

the hydrophobicity of the hydrophobic domain as in the examples above, it is removed to

produce a nanoporous hydrophilic network.

In this study, PCL-b-PEO-b-PCL block copolymers were selected. As shown by

Bae(2005), these block copolymers show different microstructures by micellization in water

depending upon the polymer concentration (Wanka, 1994) and the temperature. The

molecular weights of the blocks also affect the phase structure (Bates, 1999). The

copolymers must be cross-linked prior to void formation in order to retain any spatial

structure originating from block copolymer templating. PEO can be cross-linked by an

electron beam (Dennison, 1986), by UV (Doytcheva, 1997) or by a 60Co source (Nitta, 1958-

59; Nitta, 1961; Salovey, 1963). Here, an electron beam is used to cross-link the polymer

through covalent C-C bonds, such that the resulting cross-links do not degrade once the PCL

blocks are removed through hydrolysis of PCL's ester linkages in NaOH(aq) (Zalusky, 2002).

The terminal hydroxyl groups of PEO are restored after the PCL is removed through

hydrolysis, allowing later chemical modification. Due to their hydrophilicity and

biocompatibility, the resulting nanoporous PEO networks may find use as hydrogels for

selective separation or drug delivery.

3.2. Experimental Section

3.2.1. Materials.

PEO, e-caprolactone, and stannous octoate were purchased from Sigma-Aldrich and

used without further purification. PEO-b-PCL diblock copolymer (Mn=5,000-4,000 g/mol)

was purchased from Polymer Source (Quebec, Canada). Sodium azide and methanol were



purchased from Mallinckrodt (Phillipsburg, NJ), and the solvents (dichloromethane, n-

hexane) were obtained from EMD Chemicals (Gibbstown, NJ).

3.2.2. Synthesis of PCL-b-PEO-b-PCL triblock copolymers

PEO was reacted with e-caprolactone in the presence of stannous octoate as a catalyst

at 130 0C for 21 hours under a nitrogen atmosphere. Synthesized block copolymers were

dissolved in dichloromethane and precipitated into cold n-hexane three times to remove

unreacted monomers, and the final products were dried in a hood at room temperature for one

day and in a vacuum oven at 400 C for another two days. Three different triblock copolymers

were synthesized using different molecular weights of the PEO macro-initiator.

3.2.3. Cross-linking of PCL-b-PEO-b-PCL by electron beam irradiation

PCL-b-PEO-b-PCL was dissolved in Milli-Q water in a 5 cm Petri dish in diameter,

with 0.01% NaN3 added to retard bacterial growth. After equilibrating the aqueous solutions

at room temperature for one week, e-beam irradiation was carried out at the High Voltage

Research Laboratory (HVRL) at MIT, using a 2.5 MeV van de Graff generator with a dose

rate of 1.25 Mrad/pass and a belt speed of 0.8 cm/s. The temperature was not controlled

during irradiation. For an emulsion at 20% polymer concentration, a 30 Mrad dose was used,

while 50 Mrad doses were used at 40, 60, and 80% polymer concentrations. The maximum

film thickness achievable with little depth variation in the electron dose is -0.5 cm (Dennison,

1986), and our samples were approximately 0.2 cm thick. After cross-linking, the samples

were extracted with 0.01% NaN3 Milli-Q water, and the final products were dried in a

vacuum oven at 40 0C for two days. Dry weights of samples before and after extraction were

compared to calculate the gel fractions.

3.2.4. Synthesis of nanostructured and porous PEO hydrogel

Cross-linked samples of PCL-b-PEO-b-PCL were placed in 40/60 (v/v %)

methanol/water solutions with 0.5MNaOH at 1000C for two days to hydrolyze the ester



linkages of the PCL blocks. The degradation was followed by extraction with 40/60 (v/v %)

methanol/water solutions and pure water to remove the degraded PCL monomer and

oligomer segments. The final products were dried in a vacuum oven at 400C for two days.

3.2.5. Esterification of the nanostructured and porous PEO hydrogel

The porous PEO hydrogels produced by the PCL degradation were reacted with an

excess amount of glutaric acid at 1000C for one hour in the presence of concentrated sulfuric

acid as a catalyst and 3A molecular sieves for absorption of the water by-product. As a

reference sample in which no esterification was to be expected, the same reaction condition

was used except that toluene was added instead of glutaric acid. The reacted PEO hydrogels

were extracted with dichloromethane and water.

3.2.6. Characterization

Number and weight average molecular weights (Mn and Mw, respectively) and

polydispersities (Mw/Mn) were obtained with a Waters Gel Permeation Chromatograph (GPC)

at the University of Akron using tetrohydrofuran (THF) as the solvent at a 1 ml/min elution

rate with calibration through use of polystyrene standards. Proton Nuclear Magnetic

Resonance (iH-NMR) spectra were acquired by a 300 MHz Varian Mercury apparatus using

CDC13 as a solvent at the MIT Department of Chemistry Instrumentation Facility (DCIF).

Small Angle X-ray Scattering (SAXS) experiments were performed at the Institute for

Soldier Nanotechnologies (ISN) at MIT, and Ultra Small Angle X-ray Scattering (USAXS)

was conducted by a University-National laboratory-Industry Collaborative Access Team

(UNICAT) at the Argonne National Laboratory. Wet samples of triblock copolymers

(emulsions in water, cross-linked polymer hydrogels, and porous hydrogels after PCL

removal) were enclosed or mounted upon KaptonTM tape. SAXS data were collected for

exposures of 1,000 sec at room temperature. Background calibration was performed by

subtracting the signals from the corresponding empty KaptonTM tape holders. Atomic Force

Microscopy (AFM) images were taken with a Veeco Metrology Group Nanoscope IV

Scanning Probe Microscope (Digital Instruments) at the MIT Center for Material Science and



Engineering (CMSE). Dry samples were microtomed to produce smooth surfaces for AFM

measurement. Fourier Transform Infrared Spectroscopy (FTIR) measurements were

conducted using a Nicolet Magna 860 at CMSE. Samples for IR measurement were vacuum-

dried at 400 C for at least two days prior to analysis and prepared by the following methods:

(1) by grounding a dried sample with mortar and pestle, mixing with KBr powders, (2) by

crushing a dry sample to form a thin film on a ZnSe plate, or (3) by making thin film using

diamond compression cell windows. Melting points (Tm) of block copolymers were obtained

with a Perkin Elmer Pyris 1 Differential Scanning Calorimeter (DSC) at CMSE. Wet samples

of 5-10 mg were used for DSC, and high pressure stainless steel pans with O-rings were used

to prevent evaporation of water. The samples were heated at the rate of 10OC/min from 20 0C

to 1000 C and cooled at the rate of 100CImin to 200C to erase prior thermal history. These

samples were heated again to 1000C at the same rate to collect the DSC results.

3.3. Results and Discussion

The synthetic route to produce the nanostructured and porous hydrogel is shown in

Scheme 3.1. Amphiphilic PCL-b-PEO-b-PCL block copolymers are synthesized, which form

different microstructures in water depending upon the polymer concentration and the block

lengths (a lamellar phase is shown as an example). The copolymers must be cross-linked

prior to void formation in order to retain any spatial structure originating from the block

copolymer templating. The ordered emulsion is cross-linked by electron beam, as the

resulting cross-links do not degrade when the PCL blocks are removed through hydrolysis of

their ester linkages. The terminal hydroxyl groups of PEO are restored when the PCL is

removed, allowing later chemical modification.

In the following, each step is described.

3.3.1. Synthesis of PCL-b-PEO-b-PCL triblock copolymers and their microphase

separation in water

PEO was reacted with e-caprolactone in the presence of stannous octoate as a

catalyst. Hydroxyl groups of PEO react with the catalyst, and this complex initiates the ring



opening polymerization of e-caprolactone. Three different triblock copolymers were

synthesized using different molecular weights of PEO macro-initiator, as shown in Table 3.1.

Molecular weights and polydispersity indices of the synthesized triblock copolymers were

determined by GPC, and block lengths of PCL were determined by 'H-NMR. The triplet

PCL peak at 4.067 ppm was compared with the singlet PEO peak at 3.651 ppm to determine

the molecular weight of the PCL block (Cohn, 2002; Piao, 2003). The Mn of Poly3

determined by GPC is lower than the Mn of the starting PEO homopolymer. This is perhaps

due to degradation or may be related to the unusually high polydispersity and pronounced

low-MW shoulder. Figure 3.1(a) shows the broad molecular weight distribution of Poly3,

including an additional small peak at very low molecular weights that was not observed for

Polyl and Poly2. The low-MW side peak suggests that Poly3 contains degraded products of

PEO or short PCL oligomers. The Mn reported in Table 3.1 was determined by considering

the high molecular weight peak only. Comparing the GPC curves for the refractive index (RI)

and UV detectors shows Poly3 to contain a considerable amount of triblock copolymer rather

than merely homopolymers, as is shown in Figure 3.1(b). Specific refractive index

increments (dn/dc) of PEO and PCL in THF are comparable - 0.068 ml/g (Yuan, 1999) vs.

0.0795 ml/g (Knecht, 1972), respectively at 546 nm. Therefore, the RI intensity (measured at

690 nm) in Figure 3.1(b) indicates signals from both PEO and PCL, whereas the ultraviolet

(UV) peak measured at 250 nm detects mainly PCL due to its ester groups (Campos, 2005).

Although the RI and UV curves are not identical, their closely-located peak positions indicate

Poly3 chains are mostly block copolymer.

Microphase separation of PCL-b-PEO-b-PCL triblock copolymers in water was

achieved by equilibrating aqueous solutions of the triblock copolymers at room temperature

for one week, and the resulting microstructures were observed by SAXS. Figure 3.2 shows

SAXS spectra of Polyl at various polymer concentrations. When Polyl was dissolved in

water at a concentration of 20%, the emulsion sample has a peak at 40 nm. As polymer

concentrations increase, d-spacing values of the emulsions decrease to 40, 34, and 29 nm at

40, 60, and 80% concentrations respectively. All SAXS peaks were analyzed as plots of

Intensity*q2 vs. q. Several peaks are recognized at high concentrations of 60% and 80%, and

the q ratio between the three peaks is 1:2:3, indicating lamellar structure. The 80% emulsion



of Poly2 shows a different q ratio, near 1 : 3:44:4 7, suggesting cylindrical structure (Figure

3.3). This will be further described in Chapter 5.



Scheme 3.1. Synthesis of nanostructured and porous hydrogel.
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Table 3.1. PCL-b-PEO-b-PCL triblock copolymers synthesized.

Mn (PEO)a Mn (NMR)b g/mol Mnc g/mol M/Mn Polymerization
Rg/mol yield (%)d

Poly1 15,000 7,500-15,000-7,500 29,000 1.23 58

Poly2 30,000

Poly3 47,000

9,000-30,000-9,000

19,000-47,000-19,000

a determined by GPC using starting PEO homopolymer; b determined by 'H-NMR based

on the Mn of PEO measured by GPC; C from GPC; d determined by comparing the amount of

added e-CL monomer and the Mn(NMR) of the PCL block.

43,000

36,000

1.17

2.55
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Figure 3.1. GPC of Poly3; (a) molecular weight distribution and (b) chromatogram.
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Figure 3.2. SAXS of Polyl at several concentrations in water; the arrows are expected

peak positions for a lamellar microphase; the first order peaks for 20%, 40%, 60%, and 80%

are 40 nm, 40 nm, 34 nm, and 29 nm, respectively.
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Figure 3.3. SAXS of Poly2 at 80% in water; the arrows are expected peak positions for a

cylindrical microphase; the first order peak was observed at 25 nm.



3.3.2. Cross-linking of PEO in PCL-b-PEO-b-PCL by electron beam irradiation

Cross-linking was performed by electron beam irradiation of aqueous solutions of

PCL-b-PEO-b-PCL triblock copolymers. Under an electron beam, water is degraded to

produce -OH and 0.- radicals that abstract hydrogen from the -CH 2- groups of PEO. As

cross-links are formed by the combination of these -.CH- radials, the presence of water

accelerates cross-linking during irradiation (Dennison, 1986). The hydrophobic PCL is

expected to be cross-linked less extensively as water plays such an important accelerative

role. Gel fraction data after cross-linking show Polyl and Poly3 to achieve near 100% gel

fractions. In Figure 3.4, the gel fractions of the Poly] and Poly3 that were synthesized in our

lab are compared with that of a commercially-available diblock copolymer, PEO-b-PCL

5,000-4,000 g/mol. In the election beam cross-linking of PEO homopolymer (Mn = 15,000

g/mol), the molecular weight between cross-links (Mc) from swelling experiments was found

to be dependent upon the polymer concentration; a Me of 2,500 g/mol was obtained at 20%

vs. values of -4,000 g/mol at 40% and 60% concentrations. If it is assumed that a similar Mc

is obtained in the block copolymers, it is understandable why the diblock copolymer, 5,000-

4,000 g/mol, shows a lower gel fraction than the triblock copolymers with longer PEO blocks.

At 40 and 60% polymer concentrations, a Mc of 4,000 g/mol means that there is on average

only one cross-link in a PEO block of MW 5,000 g/mol. However, the numbers of cross-links

per PEO block of weights 15,000 and 47,000 g/mol are sufficiently greater than one to yield

high gel fractions even at high polymer concentrations. Poly3 did not show a 100% gel

fraction even though it has a long PEO block length, perhaps due to chain scission during

electron beam irradiation.

Microstructures after cross-linking of the emulsions were observed by SAXS (Figure

3.5). Cross-linked samples were swollen in water, and SAXS measurements of these samples

show that the micro-structures originating from microphase separation in emulsions were

retained with slight increases in length scales. The effects of cross-linking upon the

morphology of the amphiphilic networks were also investigated by AFM. Figure 3.6 presents

an AFM phase image of Polyl cross-linked at 80% concentration for a dried sample. The

image size is 1 um x 1 rum, and the length scale of the observed structure is -27 nm, while an
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Figure 3.6. AFM phase images of the cross-linked polymers at 80% polymer concentration

(dried sample); top: Polyl (lamellar structure, 27 nm); bottom: homopolymer PEO

Mn= 10,000 g/mol.
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AFM image of a cross-linked homopolymer PEO shows no microstructure under

similar conditions.

3.3.3. PCL degradation from cross-linked PCL-b-PEO-b-PCL

PCL was removed from the networks to produce nanostructured and porous PEO

hydrogels. Ester linkages in the PCL blocks were degraded by hydrolysis in a NaOH(aq)

solution, as shown in Scheme 3.2. The hydroxyl functional groups of PEO are restored

following PCL removal.

FTIR was used to probe the absence of PCL in the degraded sample. As shown in

Figure 3.7, the sample after the PCL degradation shows complete loss of the PCL-unique

C=O peak at 1726 cm-1. The weight loss after degradation of PCL supports this conclusion.

As shown in Figure 3.8, Poly3 is 44 % by weight PCL, and the measured weight losses of

46-51% suggest the complete removal of PCL with nearly complete retention of the PEO

during degradation.

DSC results for Polyl in aqueous solution, after cross-linking, and after PCL

degradation further confirm this picture of the synthesis process: microphase separation in

water, PEO cross-linking, and PCL removal. As shown in Figure 3.9, some crystallinity of

both the PEO and PCL blocks remain in aqueous "emulsions", which at higher polymer

concentrations more resemble "pastes". The presence of two peaks indicates microphase

separation. The lower of the peaks at 440C is identified with PEO, in agreement with

observed melting points in the presence of water for a homopolymer PEO sample,

Mn= 15,000 g/mol, with values of 500C at polymer concentrations of 20, 40, 60, and 80%

(Figure 3.9). The Tm of a PCL homopolymer, Mn=8,000 g/mol, was reported to be 550C (Piao,

2003), and thus the second, higher peaks in the DSC curves at 530C are identified with the

PCL domains. Since crystallization of PEO is affected by the presence of PCL, the Tm of

PEO is expected to decrease from the homopolymer value in triblock copolymers (An, 2001).

As the polymer concentration is reduced, the lower, PEO peak becomes less intense, relative

to the PCL peak, due to the increased local presence of water in the PEO domains. In

addition, wet samples after cross-linking and PCL removal were studied by DSC as well



Scheme 3.2. Degradation of PCL in the PCL-PEO-PCL triblock copolymers.
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(Figure 3.10). Following cross-linking, the PEO peak is further reduced. Following

degradation, the PCL peak is lost as well.

The nanostructured and porous PEO hydrogels were investigated with SAXS in the

swollen state; however, no scattering peaks were observed following PCL removal. As this

could occur if the length scales of the porous structures in the swollen hydrogels were

beyond the detection limit of the SAXS apparatus, USAXS experiments were performed, but

these as well showed no significant structure. Any "porous" hydrogel swollen in a good

solvent (here water) has solvent everywhere, and the "pores" are defined as those regions in

which there are no spanning polymer chains, which themselves constitute a minor component

even in the "non-pore" regions. Thus, another possible explanation of the lack of observed

structure in the SAXS spectra is a small contrast between "pores" and "matrix". SANS

experiments in heavy water may provide greater contrast. Another explanation is that

following PCL removal, the PEO further swells to reduce spatial heterogeneity. But even if

this were the case, the resulting hydrogels yet may have interesting macromolecular transport

properties due to the necessarily-inhomogeneous distribution of cross-links. There may exist

"breathing modes" in which the hydrogel opens an O(10nm) void corresponding to the initial

location of a PCL-rich domain, such that there are little or no PEO strands crossing the void

to entangle a passing macromolecule. A study of transport properties is described in the next

chapter.

3.3.4. Esterification of the nanostructured and porous PEO hydrogel

After PCL removal, the terminal hydroxyl groups of PEO are restored and become

available for further chemical modification, providing new functional groups localized to the

former domain boundaries. To confirm this, the porous PEO hydrogel produced by PCL

degradation from Poly3 was reacted with an excess of glutaric acid. The procedure is shown

in Scheme 3.3. FTIR spectra of the reacted hydrogels following extraction show that ester

groups are produced during this process. As shown in Figure 3.11, the presence of a C=O

stretch at 1728 cm-' and a hydrogen-bonded O-H stretch originating from carboxyl groups of

the glutaric acid on the reacted hydrogel indicate that the hydroxyl groups at PEO termini are

chemically available. For samples exposed to similar conditions but lacking the glutaric acid,



these signs of ester formation are not evident. If these hydroxyl groups are used to attach

environmentally responsive materials, the pores may be further controlled by pH or

temperature, which would be useful in biological applications such as drug delivery.

3.4. Conclusions

Nanostructured and porous PEO hydrogels were synthesized using amphiphilic PCL-b-PEO-

b-PCL triblock copolymers. After microphase separation of the triblock copolymers in water,

cross-linking of the PEO block was performed with an electron beam, followed by PCL

removal through hydrolysis. Microphase structures were observed by SAXS (emulsion

samples) and AFM (cross-linked samples); mostly lamella yet cylindrical in one instance.

SAXS experiments following PCL removal showed no significant structure, perhaps due to a

lack of contrast in swollen states of the "porous" hydrogels. To further investigate these

materials, macromolecular transport experiments were performed and described in the

following chapter. These nanostructured and porous hydrogels have hydroxyl functional

groups available for further chemical modification and can be used in biomedical or

pharmaceutical applications.



Scheme 3.3. Esterification of the nanostructured and porous hydrogel with glutaric acid.
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4. Macromolecular Transport through Nanostructured and Porous Hydrogels

Synthesized Using the Amphiphilic Copolymer, PCL-b-PEO-b-PCL

4.1 Introduction

Amphiphilic block copolymers have been studied extensively due to their interesting

combination of hydrophilic and hydrophobic behavior. In particular, poly(ethylene

oxide)/poly(s-caprolactone) (PEO/PCL) block copolymers are widely used in drug delivery

systems because of their biocompatibility and biodegradability (Gan, 1999; Yoo, 1999; Zhao,

1999; Park, 2002; Ge, 2002; Nie, 2003).

Hydrogels are produced by crosslinking hydrophilic polymers such as PEO, and the

mesh size determined by crosslink density governs the mobility of penetrant molecules.

Molecules smaller than the mesh size pass relatively easily through the gel while larger

particles become entangled with the polymer chains of the network and diffuse more slowly.

The mesh size is the characteristic size of the "voids" in the swollen gel that are filled with

fluid and have no spanning polymer chains.

Diffusion through gels has been studied for fluorescent molecules and particles using

the technique of Fluorescence Recovery after Photobleaching (FRAP) (Kosto, 2004; Cheng,

2002; De Smedt, 1997). Kosto and Deen (2004) studied the diffusion of fluorescein-labeled

proteins and polysaccharide through agarose and agarose-dextran composite gels. Cheng and

Prud'homme have examined the effect of crosslink density on transport through PEO gels

(Cheng, 2002), establishing a clear relationship between penetrant size and the mesh size of

the matrix. When the penetrant is comparable to the mesh size, the diffusivity through the

hydrogel is much lower than that observed in water, yet for very small penetrants the

hydrogel and water diffusivities are comparable in magnitude.

This work presents FRAP data for macromolecular transport through nanostructured

and porous hydrogels synthesized using PCL-b-PEO-b-PCL block copolymer templating.

Microphase-separated emulsions of the block copolymer in water are crosslinked in an

electron beam to obtain hydrogels with similar spatial structure as the emulsions. The PCL

domains then are removed through hydrolysis to form porous PEO hydrogels (Kang, 2006).

Even if the mesh size in the crosslinked PEO domains were small, the regions formerly



occupied by the PCL domains have no spanning PEO chains and should introduce new

channels for macromolecular transport. As well, the porous PEO hydrogels have functional

groups near the pore regions that are available for further chemical modification (Kang,

2006). These materials potentially offer high macromolecular diffusivities with the

possibility of chemical modification, and so show promise for use in drug delivery and

separation.

4.2. Experimental Section

4.2.1 Materials

PEO 45 kg/mol, e-caprolactone, stannous octoate, and a dye (Acid yellow 73) were

purchased from Sigma-Aldrich and used without further purification. Sodium azide and

methanol were purchased from Mallinckrodt (Phillipsburg, NJ) and the solvents

(dichloromethane, n-hexane) were obtained from EMD Chemicals (Gibbstown, NJ).

Fluorescein-conjugated proteins (parvalbumin 12 kDa, and BSA 68 kDa) and carboxylated

polystyrene beads (nominal diameter 20 nm) were purchased from Molecular Probes Inc.

(Eugene, OR). Capillary tubes (300 pm in thickness) were obtained from VitroCom Inc.

(Mountain Lakes, NJ).

4.2.2 Synthesis of PCL-b-PEO-b-PCL triblock copolymers

10 g of PEO (45 kg/mol) was dissolved in 30 ml of toluene, and the mixture was

heated to 130 0C in a nitrogen atmosphere to evaporate the solvent and any water that might

have been in the PEO. A mixture of 10 ml of e-caprolactone and three drops of stannous

octoate as a catalyst was added and the resulting reaction medium was held at 130 0C for 21

hours under a nitrogen atmosphere. The synthesized block copolymer was purified with

dichloromethane and cold n-hexane three times. The final product was dried in a hood at

room temperature for one day and in a vacuum oven at 400C for another two days. The

polymerization yield was 42 %.



4.2.3. Crosslinking of PCL-b-PEO-b-PCL by electron beam irradiation

PCL-b-PEG-b-PCL in a 5 cm dia. Petri dish was heated to 700 C for one day, and after

cooling to room temperature, Milli-Q water with 0.01% NaN3 was added to make an

emulsion of the desired concentration. After equilibration at room temperature for more than

two days, the aqueous solution was crosslinked by an electron beam to form a hydrogel

(Kang, 2006). The temperature during irradiation was controlled below 50 oC through use of

a slow dose rate and a fan. For an emulsion at a 20 % polymer concentration, a 30 Mrad dose

was administered, with 50 Mrad doses being used at 40%, 60%, and 80% polymer

concentrations. After extraction with 0.01% NaN3 Milli-Q water, the crosslinked samples

were dried in a vacuum oven at 400C for two days.

A PEO homopolymer (45 kg/mol) was also crosslinked under the same conditions to

serve as a control. An average molecular weight between crosslinks (Mc) of the PEO

hydrogel was calculated from swelling experiments in water using the following equation,

1 2 In(l - v2s 2s )v + XFH V2s2

Mc M ,, Vp2 A 3 V 2 (1)2

Mn is number average primary polymer molecular weight, v2s is polymer volume fraction at

equilibrium swelling, V1 is molar volume of solvent, p2 is polymer density, and XFH is Flory-

Huggins interaction parameter (0.426 between water and PEO at room temperature as

determined by osmometry; Dennison, 1986). The mesh size of the hydrogel was calculated

using the swelling ratio and the Mc as follows (Cananl, 1989).

= Ql/ 3 (r12 (2)

5 is the mesh size, Q is the equilibrium volume ratio of the swollen and unswollen polymers,

and )1/2 is unperturbed root-mean-square end-to-end distance between crosslinks. )1/2

for PEO was calculated using the following equation,

2 3McCC12
ro 3M (3)

Mo

Mo is the molecular weight of a repeat unit, Coo, is the characteristic ratio (3.88 for PEO [13]),

and I is an average bond length (1.46 A for PEO; Sundararajan, 1996).



4.2.4. Degradation of PCL in the crosslinked sample

Ester linkages of PCL were hydrolyzed in 0.5MNaOH in 40/60 (v/v %)

methanol/water solutions, and the product was extracted with 40/60 (v/v %) methanol/water

solutions and pure water. The final products were dried in a vacuum oven at 400C for two

days.

4.2.5. Transport properties of the nanostructured and porous hydrogel

The transport properties of the resulting nanostructured and porous hydrogel

following PCL removal were then studied. A dry sample of the gel was embedded in LR

white resin, and after drying for one day, was microtomed to produce a thin film (thickness

100-150 un). These films were swollen in fluorescein or fluorescein-labelled

macromolecules (parvalbumin 12 kDa, BSA 68 kDa, and carboxylated polystyrene beads-

nominal diameter 20 nm) solutions that were prepared with a buffer of PBS, pH 7.4. The

swollen films were mounted on a microslide and were enclosed by a cover glass. Silicon

sealant was used to prevent evaporation. Diffusion coefficients of various penetrants were

measured by Fluorescence Recovery After Photobleaching (FRAP), as described in detail in

ref. 7. A photobleaching spot was generated by a strong laser beam, and the shrinking of the

spot with time was observed. From the time scale of the recovery process and the initial

physical size of the spot, the diffusivity of the fluorescein (or fluorescein-labeled) molecule

can be estimated. As a control, diffusion coefficients were also measured in a PEO gel

synthesized from PEO homopolymer (45 kg/mol) under similar conditions. Thus a

comparison of the nanostructured hydogel to the control shows directly the effect upon

transport properties of the nanoscale porosity. The diffusion coefficient in water (D.) of each

penetrant was measured in a capillary tube (300 um in thickness). Do was used to calculate

each penetrant's Stokes-Einstein radius (rs) (Kosto, 2004),

kbT
r, = k D (4)
Si Boltmanns constant, T is the absolute temperature, and is the viscosity of a solution.

kB is Boltzmann's constant, T is the absolute temperature, and ýt is the viscosity of a solution.



4.2.6. Characterization

Number and weight average molecular weights (M, and Mw respectively) and

polydispersities (Mw/M,) were obtained with a Waters Gel Permeation Chromatograph (GPC)

at the University of Akron using tetrahydrofuran (THF) as the solvent at a 1 ml/min elution

rate with calibration through use of polystyrene standards. Proton Nuclear Magnetic

Resonance (iH-NMR) spectra were acquired by a 300 MHz Varian Mercury apparatus using

CDC13 as a solvent at the MIT Department of Chemistry Instrumentation Facility (DCIF).

Small Angle X-ray Scattering (SAXS) experiments were performed at the Institute for

Soldier Nanotechnologies (ISN) at MIT. Aqueous emulsions of triblock copolymers were

enclosed in KaptonTM tape. SAXS data were collected for exposures of 1,000 sec at room

temperature. Background calibration was performed by subtracting the signals from the

corresponding empty KaptonTM tape holders. Atomic Force Microscopy (AFM) images were

taken with a Veeco Metrology Group Nanoscope IV Scanning Probe Microscope (Digital

Instruments) at the MIT Center for Material Science and Engineering (CMSE). Dry samples

were microtomed to produce smooth surfaces for AFM measurement. Fourier Transform

Infrared Spectroscopy (FTIR) measurements were conducted using a Nicolet Magna 860 at

CMSE. Samples for IR measurement were vacuum-dried at 400C for at least two days prior

to analysis and prepared by crushing a dry sample to form a thin film on a NaCl sample

window.

4.3. Results and Discussion

4.3.1. Synthesis of high molecular weight of PCL-b-PEO-b-PCL

A high molecular weight of poly (E-caprolactone-b-ethylene oxide-b-E-caprolactone)

(PCL-b-PEO-b-PCL) triblock copolymer was synthesized by ring opening polymerization of

e-caprolactone with PEO (45 kg/mol) as a macro-initiator in the presence of stannous octoate

as a catalyst. High molecular weight polymers are favored as they improve the mechanical

strength and gel fraction of the hydrogels following electron beam crosslinking (Kang, 2006).

Table 4.1 shows the molecular weights of the triblock copolymer, E45CL30, as determined



Table 4.1. PCL-b-PEG-b-PCL triblock copolymer synthesized.

M,(PEO)ag/mol M, (NMR)b g/mol Mc g/mol Mw/Mnc

10,000-45,000-
E45CL30 45,000 51,000 1.27

10,000

a determined by GPC using starting PEO macro-initiator; b determined by 'H-NMR based on

the Mn of PEO measured by GPC; c from GPC



by 'H-NMR and GPC. It has 30% of PCL as determined by 1H-NMR (Figure 4.1). There is a

distinctive PEO peak at 3.651 ppm, which was compared with the PCL peak at 4.067 ppm to

estimate the block ratio of PEO to PCL. GPC was also used to determine the molecular

weight and polydispersity of the triblock copolymer. As shown in Figure 4.2, the triblock

copolymer exhibits an increase in molecular weight and slightly a broader molecular weight

distribution following polymerization from the PEO macro-initiator.

4.3.2. Microstructures of E45CL30

The morphology of E45CL30 in water was studied using SAXS. For this, the triblock

copolymer was annealed at 700C (above the melting points of both PEO and PCL) for one

day, and after cooling to room temperature, water was added to produce emulsions of the

desired concentrations. These were equilibrated at room temperature for two days before

SAXS measurement. As shown in Figure 4.3, high concentration samples show more

pronounced peaks. At 100%, the q ratios of the three peaks are 1:2:3, indicating lamellar

morphology. The shorter block length of PCL than that of PEO tends to produce cylindrical

morphology, as seen in the sample prepared at room temperature without heating (in more

detail in Chapter 5). However, when it is heated above melting point of both blocks, and

recrystallized at room temperature, as done here, lamellar morphology is observed. As the

polymer concentration decreases, the SAXS peaks weaken.

The morphology formed at an 80 % polymer concentration was fixed by electron

beam crosslinking. The morphology of a dried sample of the resulting hydrogel was

investigated by AFM. Figure 4.4 shows a 500 nm x 500 nm phase image that exhibits a

lamellar morphology with a 20 nm spacing. This is in good agreement with SAXS,

considering the loss in water that occurs when drying the gel.
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80%, and 100% are 52 nm, 45 nm, 26 nm, and 25 nm respectively.



Figure 4.4. An AFM phase image of E45CL30 after crosslinking at 80% polymer

concentration (dry sample, 500 nm scan size). It has a lamellar structure (20 nm).



4.3.3. Synthesis of nanostructured and porous hydrogel

Next, the PCL segments were removed in the crosslinked samples by hydrolysis of

their ester linkages. PCL removal was confirmed by FTIR as shown in Figure 4.5.

Disappearance of the C=O peak at 1726 cm-I suggests that PCL was completely degraded

and removed.

4.3.4. Transport properties

The nanostructured and porous hydrogel is expected to have porous openings

produced by PCL removal in addition to the mesh regions between chain crosslinks found in

a homogeneous gel. Because of this additional porosity, the nanostructured and porous

hydrogel swells more upon addition of water (a twelve-fold increase in volume over the dry

state) than the homogenous control gel obtained from the same PEO homopolymer under the

same conditions (which exhibits only a six-fold increase in volume). To further investigate

this structural difference, diffusion coefficients of various penetrants were measured in this

nanostructured and porous hydrogel and the control PEO homopolymer network. The mesh

size of the PEO network is -12 nm, which was determined by swelling experiments in water.

Table 4.2 shows the various penetrant molecules used and their Stokes-Einstein radii (rs)

calculated from the diffusivity in water (D,,) determined by FRAP experiments.

Due to the presence of pores produced by PCL removal, the nanoporous hydrogel is

expected to have higher diffusion coefficients than the homogeneous control PEO

homopolymer gel. This behavior is indeed observed in Figure 4.6, which plots the reduced

diffusion coefficients (diffusion coefficient in the hydrogel divided by De) in the two gels for

various penetrants. Over a range of penetrant sizes, penetrant diffusion is indeed faster in the

nanostructured hydrogel than in the homogeneous control gel. Furthermore, a penetrant of

size -8 nm did not exhibit sufficient fluorescent intensity in the homogeneous control PEO

gel for FRAP measurement, suggesting that the penetrant was unable to diffuse into the

hydrogel within a reasonable time frame. However, its diffusion coefficient in the

nanostructured and porous hydrogel remained relatively high.



To investigate further, an additional homogeneous PEO gel with a larger mesh size

(-36 nm) was synthesized by using a smaller electron beam dose. The -8 nm penetrant was

able to diffuse into this looser network and exhibited a high diffusivity. For all gels, the

polystyrene bead (-27 nm in diameter) was too large to enter and have its diffusivity

measured by FRAP. The data of Figure 4.6 show that the nanostructured hydrogels have the

high macromolecular transport rates of a much looser network, while retaining the high

crosslink density in the PEO domains.

4.4. Conclusion

A nanostructured and porous hydrogel was synthesized using PCL-b-PEO-b-PCL

block copolymer templating. An emulsion of the block copolymer in water was crosslinked

in an electron beam and exhibited lamellar morphology. The PCL domains were then

removed through hydrolysis. The regions formerly occupied by PCL offer additional

channels for macromolecular transport through the gel. A hydrogel with this nanostructured

porosity was found through FRAP experiments to have significantly increased

macromolecular mobility compared to a control homogeneous PEO gel. This process allows

a means to increase macromolecular transport rates without reducing the crosslink density in

the PEO domains.
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Table 4.2. Penetrant molecules used.

D (10 -7 cm 2/s r (nm)b

Dye (Acid yellow 73)

Parvalbumin (12 kDa)

BSA (68 kDa)

Carboxylated polystyrene bead

43.08 ± 1.83

17.74

6.45 ± 0.14

1.80 ± 0.11

a determined by FRAP experiments; b calculated from DA.

0.57

1.38

3.80

13.60
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Figure 4.6. Reduced diffusivities for various penetrants; D"o is diffusion coefficient in water;

PEO (12 nm) denotes the PEO network whose mesh size is -12 nm, and the nanoporous

hydrogel was synthesized under the similar conditions as for PEO (12 nm); no significant

penetration of-~8 nm probe in 12 nm PEO hydrogel has observed.



5. Effect of Temperature and Water on Microphase Separation of PCL-PEO-PCL

Triblock Copolymers

1. Introduction

Amphiphilic block copolymers, especially those containing polyethylene oxide (PEO)

as a hydrophilic component, have been studied extensively due to their biomedical

applications. For example, PEO/poly(s-caprolactone) (PEO/PCL) block copolymers have

been used in drug delivery systems due to the biocompatibility of PEO and PCL and the

biodegradability of PCL. Drug loading and release behavior have been reported (Yoo, 1999;

Ge, 2002; Yu, 2005) in addition to the kinetics of enzymatic degradation (Gan, 1999; Zhao,

1999; Nie, 2003). PEO and PCL are semi-crystalline, and the thermal properties of the

PEO/PCL block copolymers in bulk have been studied (Gan, 1996; Gan, 1997; Bogdanov,

1998; An, 2001; Piao, 2003). Micellar self-assembly of PEO/PCL block copolymers in dilute

aqueous solutions has been also reported (Zhao, 2001). The phase behavior of low molecular

weight PEO/PCL block copolymers was studied at low polymer concentrations up to 35%

(Hwang, 2005; Bae, 2005), however, most studies of phase behavior have been limited to

either dilute solutions or to bulk systems, yet recently concentrated solutions have been used

to form nanostructured and porous hydrogels (Kang, 2006).

In our study, various concentrations (20-80 wt %) and high molecular weights of PCL-b-

PEO-b-PCL were used to study phase behavior using Small Angle X-ray Scattering (SAXS),

Atomic Force Microscopy (AFM), and Differential Scanning Calorimetry (DSC). High

concentration studies are useful because the block copolymers exhibit multiple morphologies

at high concentrations including lamellae and cylinders (Wanka, 1994). The influence of the

crystallinity of both PEO and PCL upon microphase separation was examined both by

varying the temperature and by adding water, the latter of which should affect PEO

crystallinity more strongly than PCL crystallinity due to its hydrophilic nature.

5. 2. Experimental Section

5.2.1. Materials



PEO, e-caprolactone, and stannous octoate were purchased from Sigma-Aldrich and

used without further purification. Sodium azide and methanol were purchased from

Mallinckrodt (Phillipsburg, NJ), and the solvents (dichloromethane, n-hexane) were obtained

from EMD Chemicals (Gibbstown, NJ).

5.2.2. Synthesis of PCL-b-PEO-b-PCL triblock copolymers

10 g of PEO was reacted with 17 ml of e-caprolactone in the presence of stannous

octoate (3 drops) as a catalyst at 130 0C for 21 hours under a nitrogen atmosphere. A

synthesized block copolymer was purified with dichloromethane and cold n-hexane three

times. The final product was dried in a hood at room temperature for one day and in a

vacuum oven at 400 C for another two days. The polymerization yield was 33%. Table 5.1

shows a poly(E-caprolactone-b-ethylene oxide-b-s-caprolactone) (PCL-PEO-PCL) block

copolymer, whose molecular weights were determined by IH-NMR and GPC. The block

copolymer is denoted as E30CL36, signifying that 30,000 g/mol of PEO was used, and that

the volume percent of PCL is 36%.

5.2.3. Morphology of PCL-b-PEO-b-PCL triblock copolymers

The morphologies of the dried powder samples of the block copolymer were studied

after drying the purified polymer solutions (mainly in dichloromethane as a solvent) in a

hood at room temperature for one day and in a vacuum oven at 400 C for another two days.

The synthesis and purification of the polymer in addition to solvent evaporation were

repeated twice, and those separately-prepared powder samples yielded reproducible

morphology results obtained using Small Angle X-ray Scattering (SAXS) (described in more

detail in the Characterization section). Aqueous polymer samples were prepared by adding

Milli-Q water with 0.01% NaN3 to make 20 %, 40 %, 60 %, and 80 % polymer

concentrations, and after equilibration at room temperature for a week, morphologies of those

samples were studied using SAXS.



Table 5.1. A PCL-b-PEO-b-PCL triblock copolymer synthesized.

Mn (PEO)a

Mn (NMR)b g/mol Mnc g/mol Mw/Mnc

g/mol

E30CL36 30,000 9,000-30,000-9,000 43,000 1.17

a determined by GPC using starting PEO homopolymer; b determined by 'H-NMR based on

the Mn of PEO measured by GPC; c from GPC.



5.2.4. Crosslinking of PCL-b-PEO-b-PCL by electron beam irradiation

Milli-Q water with 0.01% NaN3 was added to PCL-b-PEO-b-PCL in a 5 cm diameter

Petri dish to form a solution of 80% polymer concentration. After equilibration at room

temperature for a week, the aqueous solution underwent electron beam irradiation to

crosslink primarily the PEO block in the block copolymer (Kang, 2006). A 50 Mrad dose

was applied, and the temperature during irradiation was not controlled. A crosslinked sample

was extracted with 0.01% NaN3 Milli-Q water, and dried in a vacuum oven at 400C for two

days.

5.2.5. Characterization

Number and weight average molecular weights (Mn and Mw, respectively) and

polydispersities (Mw/Mn) were obtained using a Waters Gel Permeation Chromatograph

(GPC) at the University of Akron using tetrohydrofuran (THF) as the solvent at a 1 ml/min

elution rate with calibration through use of polystyrene standards. Small Angle X-ray

Scattering (SAXS) experiments were performed at the Institute for Soldier Nanotechnologies

(ISN) at MIT. Wet samples of triblock copolymers (emulsions in water) were enclosed in

Kapton TM tape. SAXS data were collected for exposures of 1,000 sec. Background

calibration was performed by subtracting the signals from the corresponding empty

Kapton TM tape holders. Scattering data were analyzed using DatasqueezeTM and integrated

using the "average" function. The "sum" integration method was used for Figure 5.1 and

Figure 5.7 to make the peaks more pronounced in the graphs; however, the peak positions

were same as the integration results obtained using "average." An Atomic Force Microscopy

(AFM) image was taken with a Veeco Metrology Group Nanoscope IV Scanning Probe

Microscope (Digital Instruments) at the MIT Center for Material Science and Engineering

(CMSE). A dry sample was microtomed to produce a smooth surface for AFM measurement.

Melting peaks (Tm) and crystallization peaks (TJ) of the block copolymer were obtained with

a Perkin Elmer Pyris 1 Differential Scanning Calorimeter (DSC) at CMSE. Powder samples

of 5-10 mg were enclosed in aluminum pans and were heated at the rate of 10oC/min from



20 0C to 1000C, held at 1000C for 3 min, and cooled at the rate of 100C/min to 200C. These

samples were heated again to 1 00C at the same rate to collect the DSC results for the

heating cycle, so as to erase previous thermal history. Aqueous samples are prepared using

high pressure stainless steel pans with O-rings to prevent the evaporation of water.

5.3. Results and Discussion

5.3.1. Microphase separation of the block copolymer by solvent evaporation

Microphase separation of the block copolymer, E30CL36 (Table 5.1), was induced by

solvent (dichloromethane) evaporation at room temperature for one day and by further drying

at 40 0C for two days. Crystallization of PEO of the block copolymer competes with the

microphase separation process (An, 2001) because the morphology induced by microphase

separation raises free energy of crystalline phase, most likely through domain size associated

surface free energy. E30CL36 has a 36% volume fraction of PCL, and its microphase

separation was studied using SAXS (Figure 5.1). It shows three peaks whose q ratios are

1:43:47. The expected q ratio for a cylindrical microphase is 1:43:/4:47... (Chu, 2001), but

as peaks positions for '/3 and '4 lie close together, the sample is identified as having a

cylindrical morphology (cylinders of PCL in PEO matrix) despite of the absence of a

separate identifiable peak at the '4 position.

5.3.2. Effect of temperature on morphology of E30CL36

The melting behavior of E30CL36 powder samples was studied using DSC. PCL

homopolymer, 8,000 g/mol, has a melting peak (Tm) at 59 0C (Piao, 2003), while PEO

homopolymer, 30,000 g/mol has a Tm at 670 C (Figure 5.2). However, the block copolymer,

E30CL36, exhibited lower Tm's as shown in Figure 5.3. The Tm of PEO was reduced to 61 OC

probably due to the imperfect crystallization rendered by microphase separation, while the

Tm of PCL was observed at -540 C. PCL crystallinity was suppressed significantly due to the

shorter block length of PCL than that of PEO (Figure 5.3). Comparable results were reported

by Gan (1996), who suggested that the shorter PEO block length than that of PCL (20 weight
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Figure 5.1. SAXS of E30CL36 powders prepared by solvent evaporation; the arrows are

expected peak positions for a cylindrical microphase; the first order peak is 24 nm.
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Figure 5.2. DSC of PEO homopolymer powders (30 000g/mol); the second heat cycle of

DSC is shown; the melting peak is observed at 670 C.
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Figure 5.3. DSC of E30CL36 powders; the second heat cycle of DSC is shown in addition to

the cooling cycle; the first melting peak is the Tm of PCL (540 C), while the second at 61 C is

the Tm of PEO; in the cooling cycle, Tc,pcL=25 0C and Tc,PEO=42 0C.



% PEO) in their PEO-b-PCL sample resulted in complete suppression of PEO

crystallinity. The cooling cycle also shows two crystallization peaks, and the peak at 420 C is

that of PEO. Presence of both crystallization peaks of PEO and PCL in addition to melting

peaks of PEO and PCL further confirms microphase separation of the block copolymer.

The effect of temperature on microphase separation of the block copolymer was studied

using SAXS (Figure 5.4). Powder samples of E30CL37 were enclosed in Kapton TapeTM,

and mounted on a hot stage to increase the temperature to 700C. Before collecting scattering

data, samples were equilibrated at each reported temperature for 30 min. At low

temperatures, three peaks were observed, and their q ratios are 1 :3:'/7, indicating a

cylindrical morphology. This morphology is retained until melting of PEO and PCL occurs.

After melting at -60 0C, the first order peak decreased to a lower q, representing an increase

in the domain size, but the changed morphology could not be identified due to the presence

of only one peak. The block copolymer is expected to have an equilibrium morphology at

temperatures above the melting points of both blocks. The mean-field theory suggests that

the block copolymer has a gyroid microphase as the volume fraction of PCL is 36% (Bates,

1999). Therefore, the change in morphology observed at temperatures above melting points

of PEO and PCL suggests that the cylindrical morphology obtained by solvent evaporation at

below the melting points was determined kinetically through competition between

microphase separation and the crystallization of PEO and PCL. The kinetically captured

cylindrical morphology was reproducible upon multiple observations.

An as-cast sample of the block copolymer was heated at 700 C for one day to melt the

crystalline structures, and then re-cooled to room temperature at ambient atmosphere. The

resulting sample was investigated by SAXS, and it was found that the sample has a lamellar

morphology as shown in Figure 5.5. This is perhaps because PCL blocks crystallize faster

than PEO blocks because PEO is blocked by PCL at both ends. And this produces PCL

crystalline lamellae next to PEO amorphous regions (Gan, 1996; Nojima, 1997; Perret,

1972). Slow cooling is expected to produce more complete microphase separation, and PEO

will crystallize within microphase-separated structures (An, 2001). When water is added to

decrease the polymer concentration to 80%, the lamellar morphology is retained, and the

length scale of the lamellae increases to 29 nm from 27 nm due to swelling of the PEO.
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Figure 5.4. SAXS of E30CL36 powders; the dotted lines are expected peak positions for a

cylindrical microphase; the first order peaks are 24nm for 250C, 350C, and 450 C, and 3 1nm

for 600C and 700C.
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Figure 5.5. SAXS of E30CL36 at room temperature; the arrows are expected peak

positions for an indicated morphology; 80% indicates 80% polymer concentration in water.

:ylinders
24nm)

lamellae
(27nm)

lamellae
(29nm)



The lamellar structures of E30CL36 were also observed by AFM. The sample for

AFM was prepared by crosslinking the block copolymer at 80% polymer concentration by

electron beam irradiation to fix the microstructure. Figure 5.6 shows an AFM phase image of

the sample in a dry state. The domain size of the lamellar structure is 23nm.

5.3.3. Effect of water on morphology of E30CL36

Good solvent reduces the melting points of crystalline polymers, and is mixed with

the polymer chains in the amorphous regions (Sharples, 1966). The effect of water on the

hydrophilic PEO homopolymer (Mn= 15,000 g/mol) was studied using DSC. In the bulk

phase, it has a Tm peak at 660 C. However, when water is added to decrease the polymer

concentration to 80%, the Tm decreases to 51 0C (Figure 3.9). Futhermore, as more water was

added to reduce the polymer concentration further to 20%, the melting peak disappeared,

suggesting complete suppression of PEO crystallinity. Since PCL-b-PEO-b-PCL is

amphiphilic, water can produce interesting morphology changes in the block copolymer

systems. Previously, it was described that the shorter PCL block than that of PEO resulted in

significant suppression of PCL crystallinity. When water is added to the block copolymer,

water will increase the amorphous regions of PEO, and hence improve PEO mobility. This

may improve PCL crystallization and PCL crystalline lamellae formation may be enhanced

considerably.

To study the effect of water on the crystallinity of PCL-PEO-PCL block copolymer,

DSC experiments were performed at various polymer concentrations (Figure 5.7). As

described previously, the bulk (100% concentration) sample has crystallization peaks of both

PCL and PEO (250 C and 420C, respectively). At 80% polymer concentration, the T, of PEO

decreased, and the Tc of PCL increased which made it overlapping with that of PEO. The

crystallization peak height of PEO also decreased relative to that of PCL, suggesting the

crystallization portion was reduced and the amorphous region increased. When more water

was added to make 60% polymer concentration, two crystallization peaks were completely

overlapped.

The effect of water upon the block copolymer morphology was studied using SAXS

(Figure 5.8). As described above, a bulk (100% concentration) sample of the block



copolymer exhibits a cylindrical morphology following solvent evaporation. When water was

added to reduce the concentration to 80% followed by a week of equilibration, the cylindrical

morphology was retained with a slight increase in length scale due to swelling of PEO by

water. However, as more water was added to reduce the polymer concentration to 60%, a

dramatic morphology change occurred. The 60% SAXS spectrum shows three peaks, and the

q ratios are 1:2:3, indicating lamellar structures. This morphology remains with 20% and

40% samples. The morphology change from cylinders to lamellae is probably related to

decreased PEO crystalline portion, hence increased amorphous region.

These SAXS and DSC data suggest that water reduces PEO crystallinity and

increases PEO mobility, hence might improve PCL crystallinity that was suppressed by PEO

crystallization. This suggested idea was schematically drawn in Figure 5.9. In the figure,

water increases an amorphous portion of PEO and mixes with the PEO chain in the

amorphous regions only (Sharples, 1966). This amorphous region improves PEO mobility,

and makes it easier to form PCL crystalline lamellae, resulting in lamellar microphase

separation between PEO and PCL in the block copolymer. Unfortunately, few studies have

been reported about morphologies of PEO/PCL block copolymers when both blocks are

comparably crystalline. An (2001) used SAXS to study a morphology change between two

different crystallization temperatures, however, they did not succeed in identifying the

morphology observed at the -18 nm length scale due to experimental difficulties. Further

studies are required to understand better the morphology effect of water addition.

5.4. Conclusions

The microphase separation of PCL-b-PEO-b-PCL (Mn= 9,000-30,000-9,000 g/mol,

fpcL=0.36) was studied using SAXS, AFM, and DSC. The morphologies of the block

copolymer at room temperature were determined by competition between microphase

separation and crystallization of PEO and PCL. Two different morphologies (cylinders and

lamellae) were observed at room temperature in addition to the unidentified one at

temperatures above melting points of both blocks. A cylindrical morphology was formed by

solvent evaporation of the block copolymer at room temperature and annealing at 400C.

Lamellae were observed after the block copolymer was melted and cooled to room



temperature. Addition of water at room temperature also changed the morphology from

cylinders to lamellae.



Figure 5.6. AFM phase image of crosslinked E30CL36 at 80% polymer concentration;

image size is 1 [im x 1 tm, and a domain size of the lamellae is 23nm (dry sample).
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6. Conclusions and Recommendations

6.1. Synthesis and Characterization ofPCL-b-PEO-b-PCL Based Nanostructured and

Porous Hydrogels

* Conclusions: Nanostructured and porous PEO hydrogels were synthesized using

amphiphilic PCL-b-PEO-b-PCL triblock copolymers. After microphase separation of

the triblock copolymers in water, crosslinking of the PEO block was performed with

an electron beam, followed by PCL removal through hydrolysis. Microphase

structures were observed by SAXS (emulsion samples) and AFM (cross-linked

samples); these were mostly lamella yet cylindrical in one instance. SAXS

experiments following PCL removal showed no significant structure, perhaps due to a

lack of contrast in swollen states of the "porous" hydrogels. These nanostructured and

porous hydrogels have hydroxyl functional groups available for further chemical

modification and can be used in biomedical or pharmaceutical applications.

* Future work: Modification of hydroxyl groups of the nanostructured and porous

hydrogels with pH or temperature responsive materials would be an interesting future

work. They may be used in biomedical areas such as drug delivery after reacting to

temperature or pH responsive materials to further control pores size depending on the

environment where the hydrogels are used. The hydrophilicity and biocompatibility

of these hydrogels are advantageous for this application. These hydrogels can also be

used as matrix to immobilize enzymes, which are essential for biological reactions.

When they are immobilized, their recovery from reactants and products is easy and

they can be reused.

Hydroxyl groups of the nanostructured and porous hydrogels can directly

react with carboxyl groups of the materials that are to be attached. For example, they

can react with a carboxyl group of an amino acid, and by reacting an amine group of

the amino acid with a carboxyl group of another amino acids, a polypeptide chain will

form (Scheme 6.1 (a), Montalbetti, 2005). The hydrogel makes it easy to wash off



undesired reactants and byproducts from the reaction solution so that a desired

polypeptide sequence can be produced. Furthermore, they can be modified to

produce other reactive materials so they can be reacted with amine groups of

materials that are to be attached. For example, S-triazine derivatives or p-

benzoquinone can react to -OH group of the hydrogel to produce reactive

intermediates (Scheme 6.1 (b) and (c)). This intermediate further reacts to amine

terminal groups of proteins.

In addition, pH responsive hydrogels have been used for insulin delivery. For

example, glucose-sensitive hydrogels swell/deswell depending on glucose

concentration in the blood to release insulin. This swell/deswell behavior is controlled

by pH because when glucose reacts with an enzyme (glucose oxidase), gluconic acid

is produced, and pH of the medium decreases. For a pH responsive material, the

hydrogels contain cationic polyelectrolytes or anionic polyelectrolytes. Polycationic

polymers swell when pH decreases, and polyanionic hydrogels collapse when pH

decreases. Glucose oxidase is entrapped or immobilized on the hydrogels for a rapid

pH change depending on glucose concentration. For insulin delivery, both

polycationic hydrogels (Klumb, 1992) and polyanionic hydrogels (Cartier, 1995)

were used. Polycationic hydrogels capped a flexible insulin reservoir so that insulin

can be released when the hydrogels swell as pH decreases. Polyanionic hydrogels

were immobilized to a cylindrical monolith that contains insulin. When pH decreases,

the hydrogels collapses and the pores open. Glucose-sensitive hydrogels can also be

used without a reservoir when the hydrogels contain insulin (Podual, 2000a, 2000b;

Goldbart, 2002).

Using our nanostructured and porous hydrogels can improve this insulin

delivery further by utilizing heterogeneous pores (produced by PCL removal).

Modifying hydroxyl groups of the hydrogel with pH-responsive materials will result

in pore opening/closing depending on pH change. Furthermore, due to the pores, the

swelling/deswelling behavior will be faster than conventional hydrogels. Relatively

slow swelling/deswelling of conventional polycationic hydrogels was observed in the

study by Podual (2000, b). Bulk diffusion of water through pores is expected to



resolve this issue (Albin, 1985). Therefore, the nanostructured and porous hydrogels

will improve this issue.
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6.2. Macromolecular Transport through Nanostructured and Porous Hydrogels

Synthesized Using the Amphiphilic Copolymer, PCL-b-PEO-b-PCL

* Conclusions: A nanostructured and porous hydrogel was synthesized using high

molecular weights of PCL-b-PEO-b-PCL block copolymer. An emulsion of the block

copolymer in water was crosslinked in an electron beam and exhibited lamellar

morphology. The PCL domains were then removed through hydrolysis. The regions

formerly occupied by PCL offer additional channels for macromolecular transport

through the gel. A hydrogel with this nanostructured porosity was found through

FRAP experiments to have significantly increased macromolecular mobility

compared to a control homogeneous PEO gel. This process allows a means to

increase macromolecular transport rates without reducing the crosslink density in the

PEO domains.

* Future work: Mechanical measurement studies of these hydrogels would be

interesting. Swelling ratio data, which have relatively close relationship with

mechanical strength of hydrogels, suggest that the nanoporous hyrogels might have

stronger mechanical strength than the homogeneous PEO hydrogel that has similar

transport properties.

6.3. Effect of Temperature and Water on Microphase Separation of PCL-PEO-PCL

Triblock Copolymers

Conclusions: The microphase separation of PCL-b-PEO-b-PCL (Mn= 9,000-30,000-

9,000 g/mol, fpcL=0.3 6) was studied using SAXS, AFM, and DSC. The morphologies

of the block copolymer at room temperature were determined by competition between

microphase separation and crystallization of PEO and PCL. Two different

morphologies (cylinders and lamellae) were observed at room temperature in addition

to the unidentified one at temperatures above melting points of both blocks. A

cylindrical morphology was formed by solvent evaporation of the block copolymer at

room temperature and annealing at 400 C. Lamellae were observed after the block
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copolymer was melted and cooled to room temperature. Addition of water at room

temperature also changed the morphology from cylinders to lamellae.

Future work: Investigating morphology change of the block copolymers at

temperatures above melting points of each block would be interesting to see which

block of the block copolymer is the dominant one for morphology change. And the

identification of the morphology observed at temperatures above melting points of

both PEO and PCL by AFM or SEM will be useful.
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