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ABSTRACT

Approaches to shape computation and algorithmic art-making within the fields of shape
grammars and computer graphics still do not consider the immediacy of the artist's mark
in drawing and painting. This research examines the canvas, or 2D picture plane, as the
expressive and dynamic problem space of the artist who naturally reframes both the
problem and the solution with each successive mark. The fluidity of the artist's mark is
the most important element in transforming the blank canvas into an image. In this
research, I use my own traditionally drawn and painted artwork as the baseline corpus for
analysis. From my analysis, I define a nonsymbolic, formal grammar for the synthesis of
images in the style of the baseline corpus and develop software prototype "sketches" to
support the geometric representation of freehand sketching consistent with mark—making.

Curve generation is critical to the expressive marks of the artist. The result of this
research is a curvilinear shape grammar that supports both explicit and implicit shape
recognition while affording the artist the ability to draw (shape union) and erase (shape
difference) computationally. I compare the results of the synthesis phase with my
traditional sketches showing that it is possible to compute imagery consistent with the
evolving style of the artist's own hand. Additionally, the analysis phase of the research
supports the supposition that formal algorithmic understanding of one's artistic process
has directive and positive influences on the evolution and refinement of the style.
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Chapter 1 Background and Context

This dissertation examines some of the key issues in shape computation as they relate to
artistic practice from process to product. It employs the extensive body of literature in
shape grammars and applies time—tested techniques from the field of computer graphics.
While both the disciplines of shape grammars and computer graphics have a wealth of
research on visual design process and product, relatively little research exists with the
specific focus on a living artist's body of work and its analysis and synthesis from a
computational perspective. The main contribution of this work, then, is to produce
further insights in computational analysis and synthesis of a specific artistic body of work
that is still evolving stylistically. The evolving style in question is my own as this
research examines a sub—set of my drawing and painting style as I describe in Chapter 2.
Further, this research results in a roadmap for continued work in the integration of shape

grammar theory with computer graphics practice.

The Problem

Visual artists and designers who work in the area of digital media require tools and

methods that allow for both flexibility and repeatability of process.

Digital computers are perfectly suited for enumeration and search of large data spaces
based on rules, or algorithms. However, for the digital artist who wants to work
algorithmically, employing a process that is rooted in enumeration and search techniques
will eventually pose a major creative difficulty. The digitally algorithmic approach casts

the artist as an enumerator who passively examines the output of a vast combinatorial
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production space and evaluates results as visually interesting or compelling. At the point

that the visual results of such an implementation do not correspond to the visual concept,
the artist must refine the model and begin the output process anew. But during each
iteration, the initial concept limits the system. While the artist can alter the limiting
boundary between iterations to accommodate new vision, the design space at any given
moment remains static. This condition gives rise to two separate modalities. The first is
the conceptual state where the artist is seeing and considering subsequent marks on the
canvas. The second is the action state, or implementation, where the actual mark—making

occurs.

Since the practice of visual creation is one of shifting priorities, the more significant role
for the artist is one of creator who dynamically re—frames the problem space with every
new visual realization. The realization can be at the conceptual level-—the result of
simply looking at the existing design with new insights—or at the implementation level-
—the result of physically adding or subtracting from the design, for example, via new
marks or erasures. Such a system implies that the designer is able to make inputs
dynamically and move beyond the constraints of a static model, or boundary system.
Specifically, this approach implies a supple system that accommodates process at both
the conceptual and implementation levels. Present day design tools provide a brittle
environment for the fluid demands of this visual process and the result is frequently an

obvious product of a given tool suite.
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Flexibility is not the only requirement, however. Digital computation tools should also

allow for a formal and repeatable process. The environment must provide both tools and
methods that allow for an emerging schema of visual problem solving. To achieve this,
the formal description of the mark and its physicality on the canvas are ideally one and
the same and without syntactic constraints. In the ideal situation, the methodology does
not depend either on canonical primitive forms or hierarchies that impose a structure on
form. In this constrained state, the combinations allowable by the canonical forms in
their hierarchies limit the artistic vision, as there is no accommodation for ambiguity. In
the role of creator, the artist necessarily translates ambiguities into non—ambiguities, if

only on a temporary basis.

Flexibility and repeatability, however, do not imply an adaptive system. Rather, the
requirement is an elastic schema that allows the designer to identify and use emergent
shape, color and texture. In such a design environment, the process itself is visibly
apparent and affords the designer the tools and methods to frame and solve the problem
simultaneously. Specifically, the artist’s description of the design and her
implementation, or composition, is one and the same. This requirement becomes clear
when you consider geometry where the visualization—seeing the form on the page—and
representation—symbolically defining the form for rendering on the page—are two
separate entities as contrasted with art where the visualization and the representation are
the same entity. Sutherland [55, 56], the grandfather of computer graphics, is very
explicit on this exact point articulating that visualizatiqn is different than the geometric

computer representation.
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The division between visualization and representation typically leads the digital

algorithmic artist to a product that ignores the dynamic role of the hand and the eye in
visual process. In particular, the immediacy of the mark as a form that restructures the
picture plane with every new placement has historically been lost in computation.
Through self—analysis on a body of my own work, this research pursues a computational
apparatus that considers the immediacy of interaction between the artist and the canvas

while also employing algorithmic devices.

The Role of the Artist’s Mark

Prior research has not addressed the immediacy of drawing and painting as a device in
computational and/or algorithmic art. Mark—making— anytime the marking tool comes
in contact with the picture plane for the purposes of adding or subtracting—is a critical
component of immediacy in artistic process because it is the device through which the
artist transforms the canvas into an image. This transformation occurs in the tight loop
between the hand and the eye where every mark influences every other mark in a re—

framing of the picture plane.

Given this relation, the artist cannot reasonably separate process and product during
visual explorations. The interaction requires the artist to conceive the picture plane as a
dynamic surface. The artist regards the mark as a form that influences what comes next
rather than as a descriptor in analysis. This supports both conceptual input and

representational output as one and the same. As such, models of interaction that require a
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hierarchical structuring of canonical forms can generate interesting imagery, but they will

not permit immediacy.

The mark can be a means or an end. To put this in terms of the shape—grammar
literature, the mark can exist on the page as an individual element [50] free of syntactic
strictures either ready to exist on its own, or in combination with other marks to construct
a greater whole. The types of marks that exist may be as varied as the artists who make
them. Characteristics of the mark include its direction, weight, duration, pressure and

angle. Some examples that are important to my work are present in Figures 1-1 and 1-2.

The Algorithm as a Method for Understanding and Producing Art

The algorithmic artist bases rules on a formalized visual understanding. The coupling of
rules with an appropriate production tool is commonly known as analysis and synthesis.
Algorithmic approaches facilitate formal understanding of visual productions as they de—
mystify the art making process. De-mystification results in a formalized process that is
repeatable and affords the artist the ability to explore a direction that is not dictated by

off-the—shelf software [Mitchell in [1]].

The degree of formal understanding varies, however, depending on the methods artists
use. For example, shape grammars are highly explanatory spatial algorithms that
inherently provide mechanisms for visual insight [26] while other symbolic algorithms

leave aspects of the production opaque to the artist.
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(b)

Figure 1-1. Pencil drawing from life. (a) Note the use of different pressure strokes and the angle of usage
of the tool to bring attention to different areas of the model. (b) Detail of profile. Structural marks
emphasize minimal facial features. (c) Detail of shoulder and upper back. Ambiguous marks suggest form.
Artist: J. Martino
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(b)

Figure 1-2. Digital painting of gestural marks. (a) Painting detail. Note how direction, weight, duration,
pressure and angle affect the quality of the marks. (b) This painting is based on an initial small vector
graphic scribble that was enlarged many times and colorized. The colorized scribble became the basis for

this larger work. 20” x 20”. Artist: J. Martino

Some such examples are those that rely on artificial intelligence [8, 35] genetic

algorithms [43], cellular automata [Brown in [3]] or evolutionary techniques [59]. The
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majority of this work requires an a priori modeling of an environment, non—visual

mathematical relationships, non—visual primitives and/or (pseudo) randomization.

Bentley in [3] summarizes, in part, the difficulty with these symbolic methods.

Often the style of form generated using a particular representation is more
identifiable than the style of the artist used to guide the evolution. [...] The cause
of this 'style problem' is perhaps due to the initial preconceptions and assumptions
of the designer of the representation. By limiting the computer to a specific type
of structure, or a specific set of primitive shapes and constructive rules, it will
inevitably always generate forms with many common and identifiable elements.

Bentley implies that attempts to conform to an underlying structure and badly selected
primitives are at the root of the problem. Yet, symbolic techniques require that the artist
make these choices upfront and before seeing any visual production. But another
potential benefit of the algorithm is that of seeing what may not have already been seen
and having a mechanism, i.e., the algorithm, to explore the new insight in a formal way.
In the same vein, algorithmic implementations also allow the artist to be highly

productive.

The longest—standing example of algorithmic drawing and coloring may be Harold
Cohen's program, Aaron. In the past thirty years, Cohen and Aaron have produced a

large body of images ranging from cave-style paintings to figurative work [35].

Cohen approaches the problem of drawing as temporally linear and spatially based on a
grid. Working from an a priori strategy of moving from the image foreground to the

background, each new input adds cumulatively to the output. Once the line is placed,
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there is no turning back to consider ambiguities or other directions for the image. Aaron

has no access to visual information and draws forms from a database of 3D anatomical
and plant—form information. Even though Aaron accesses geometric information, the
program's strategy is formed from three "cognitive" primitives:

a) Is the form open or closed?
b) How many forms are on the page?

¢) How much space is remaining in the page that is divided into a matrix of cells?

While Aaron can convincingly draw and color an unending and impressive stream of
images, the immediacy of the mark in the drawing and painting process is noticeably
absent. And, although Cohen has generated a large body of work, there is no expanding
beyond the combinations allowed for by the fact that he works from a fixed database of

spatial definitions.

Cohen’s approach is more about the quantitative use of geometry than it is about the
qualitative use of shape. Just because shape is qualitative, however, does not imply that
the artist cannot use it as a computational device. The shape—grammar literature shows
that shape computation is not only possible, but it is in fact a desirable method for

computing what we can see.

Specific uses of shape grammars in the visual 2D arts include [52], [47, 48], [53] who
defined the first shape—grammar design language for original painting. Their work starts

at the stage of rule development without first a formal analysis of an existing style. Since
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that time, [30] have used shape grammars to analyze and synthesize the art of Kandinsky,

[22], [23] have analyzed and synthesized the art of Diebenkorn and Mir6 , and [24], [26]
have analyzed the changes in styles of the deStijl artists, Vantongerloo and Glarner.
Knight's work on style shows that design can build upon design creating a family of
designs and more critically, that a flexible rule-based design language can define style
formally. Despite this rich history, there have been no artists who have used the formal
devices afforded by shape grammars to analyze and synthesize work within their own
corpus. However, issues of design practice and process are recent concerns in the field of

shape grammars as in [32].

In computer graphics, numerous artist/scientists have used algorithmic approaches to
generate images. Most of the early computer graphic works serve as historical interest
and were products of early research collaborations between artists and scientists. A good
historical overview is in [14]. Many of these early endeavors tend toward mathematical
visualization rather than art. Additionally, there is a body of literature underscoring the
relation between art and mathematics with a comprehensive overview in [12]. Escher
may be the most renowned artist in this category. His tiling techniques reflect images
possible using cellular automata. Finally, for a recent overview of computer generative

art see [5].

In computer graphics, much of algorithmic art is abstract with one major exception being

the figurative work of Cohen. Above, I have discussed salient specifics of Cohen's work.
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Of the abstract artists, two who remain prolific are Verotsko and Mohr. Here, it bears

briefly commenting on their work.

Verotsko classifies his work as instruction compositions for art form generators. He has
customized pen—plotters to hold sumi—brushes and writes programs to plot his images.

He describes his work as

[A concentration] on developing my program of procedures, the 'score’, for
visualizing ... forms. By joining these procedures with fine arts practice I create
aesthetic objects to be contemplated much as we contemplate the wondrous forms
of nature. [5]

Mohr, whose work focuses on fracturing of the symmetry of the 6—-dimensional

hypercube, says

[My work is] always the result of a calculation. At the same time, however, it is
not a mathematical art, but rather an expression of my artistic experience. The
rules I invent reflect my thinking and feelings. It is not necessarily the system of
logic of my work I want to present, but the visual invention which results from it

[5].

As symbolic productions, we can consider these implementations as special cases of
shape—grammar formalisms occurring in the atomic—dimension of space. While such
approaches make it difficult, if not impossible, to consider the impact of a new mark on
the page during the dynamic process of creation, it is interesting to note that the
procedural differences of the algorithmic artists surveyed do not preclude their interest in
understanding their product and their process through a formal expression of their visual

selves.
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Overview of the Thesis Content

This dissertation is part of my ongoing work to analyze a sub—set of my own drawing and
painting style and to progress to its computational synthesis. During the course of this
research, I have aimed for a flexible rule-based design language to generate 2D images
with attention to form. The primary research objective in formalizing the design
language has been to understand my personal artistic process to the extent that it informs
my results and to suggest new directions. This understanding has founded the secondary
research objective: the development of software “sketches™ to eventually synthesize
images in the style of the already existent corpus. I document these topics in the

following five chapters.

Chapter 2, The Corpus, shows visual examples from the pre-computational phase.
Beginning with a sampler of sketchbook content and progressing to time—based analysis
tools, I provide an explanation of the techniques and methods T used to develop the initial

corpus with an eye toward defining its synthesizing rule base.

Chapter 3, Analysis and Development of the Design Language, shows the development
of the shape rules that define my corpus. I define the rules of the design language and
show how I refined them as my progressive understanding of the design space increased.
Additionally, I discuss the similarities and differences among images from the foundation

corpus and the images manually generated once the design language was in place.
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Finally, T touch upon the initial steps in analysis of my use of color for eventual

development into formal rules for that aspect of my image making.

Chapter 4, Description of Computer Implementation Methods, discusses why some
aspects of the manual methods are straightforward and others are difficult when
translating a shape grammar design language to a computer implementation. Motivated
by the curvilinear grammar of Chapter 3, this chapter contrasts the use of lines with
curves and addresses why a computer implementation forces the use of a symbolic model

particularly when looking for curvilinear sub—shapes in a canvas.

Chapter 5, Conclusions and Future Work, states the contributions to the field made by

this research and proposes a direction for its continuation.
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Chapter 2 The Corpus
I began the corpus that would become the foundation for this work as a series of small
digital paintings, Devotions, in 1997. At that time, I became interested in the relationship
between color and natural elements and phenomena. I reflected on issues such as

visualizing the un—seeable. For example, what does thunder look like? What feelings

does the moon motivate?

Figure 2-1. Color palettes. Color palette selection for each of Thunder (top left), Moon (top right), Air
(bottom left), Lightning (bottom right). ). Each palette represents the colors associated with the natural
element or phenomenon. In addition to the black and white squares, there are thirty—six (36) colors with
the possibility of repetition in each palette. The color placement within the palette is a compositional
element.
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Figure 2-2. Color mixing. These small canvases introduce mixed color and texture for each of Thunder
(top left), Moon (top right), Air (bottom left) and Lightning (bottom right). The result becomes the starting
point for a larger painting. Digital painting tools such as watercolor, chalk and oil create the mixture and
textures based on the palettes of Figure 2—1. Note that in general, the position of color in these paintings
aligns with their position from the palette.

As a result, I concerned myself largely with color selection and manipulation in the early
phase of the series. Figures 2—1 and 2-2 illustrate the results of color selecting and
mixing and serve as the basis for a preliminary discussion of color analysis that follows

in Chapter 3.



Early work

My consideration of shape during this period grew from an interest in Mayan glyphs.

Sketchbook entries in Figure 2-3 document this influence.

Figure 2-3. Sketchbook drawings. Four instances of sketchbook drawings depict the Mayan glyph
influence. All sketches are at 1:1 as they appear in the original sketchbook.

Figure 2—4. Early digital painting depicts Mayan glyph influence. Final output of this painting was as a
Polaroid emulsion transfer onto Somerset Velvet. The original is approximately 4” x 4”.
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Small compositions held some aesthetic interest, as in Figures 2—4 and 2-5. Larger
works, however, lacked strong visual organization and stylistic clarity. The compositions

were merely a collection of the parts that would eventually become the signatures of the

resultant body of work, but made no significant aesthetic statement at the time.

Figure 2-5. Three early digital paintings in the Devotion series. These images use the color palette and
mixing baseline from Moon. The shapes depict Mayan glyph influence, but hint at an evolution toward
more artist specific forms. The original paintings are approximately 6” x 6”.

Content and style

It was not until 2000, then, that I began to dedicate myself in earnest to the aesthetic and
stylistic development of these images. My motivation to focus on stylistic concerns was
likely due to the fact that many of my early paintings were not compositionally

satisfying. From the period 2000 — 2002 I worked almost exclusively on developing the
shapes and pursued almost nothing new with respect to color or texture. Essentially, I
engaged in a basic sketching process that would inform eventual paintings and small-scale
sculpture. Also during this period, I considered the possibility of computational

approaches to generating drawings and paintings in the style that I was developing.
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I completed the early drawings and paintings outside of any computational framework

such as evolutionary graphics, artificial intelligence, machine learning or shape
grammars, however. This approach allowed for two important developments. One, I
now had a sizable corpus to use as a basis for considering computational devices. Two, [
was able to develop the foundation corpus without considering the potential technical

constraints or merits of a particular computational approach.

Figure 2—6. Sketchbook drawings. Three instances of sketchbook drawings from mid 2002 that
demonstrate a clear stylistic evolution. All sketches are at 1:1 as they appear in the original sketchbook.

Only after achieving a level of stylistic consistency and clarity (Figure 2—6) in mid 2002,
did I then turn to the issues of computational devices that I might use to synthesize works
similar to those I had drawn in my sketchbooks over the preceding years. It is important
to note, however, that stylistic clarity does not mean the end of one's stylistic evolution.
An important criterion in deciding on a computational approach was the ability to
incorporate the inevitable and dynamic maturation in style without needing to remodel
the computational framework. Indeed, it is difficult to find algorithmic approaches to

style that do not require a static method.
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One example of such a static approach from the computer graphics literature is Freeman

[15]. Their method does not consider stylistic maturation, but rather distinct changes in
style. They focus on content preservation across styles and opt to develop a training set of
lines representing several styles. Then in turn, they apply the various styles to a given
drawing. In a process external to the intended drawing, an artist draws the style training

set.

By definition, the pre—processing that their method requires considers artistic process as
separate from product. Any expressiveness, or immediacy, in drawing style is captured
in an action distinct from the subject matter of the drawing. The design space as pre—
modeled is not the working methodology of the artist for this type of approach reveals:

a) the impossibility for any mark to act as a visual influencer on any other
mark

b) the impossibility to introduce anything in the drawing that is a result of
seeing the interrelation among marks

c) that without real-time, dynamic influencing, style cannot develop, it can
only be imposed

d) that any style captured by the line sets is likely emulative of some existing
style.

The net result is that the style of the drawing changes, but stylistic change, as integral to
process does not Figure in their model. This method is radically different from that of
Knight’s shape grammar approach to analyzing style changes of deStijl artists as
demonstrated in [24], [26]. Her work shows that not only can a single style can lead to a

range of new ones, but that one can capture this process computationally.
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The Tools

During the analysis phase on my body of work, I used two basic sets of tools to document
the shape aspect of my image making. The first was quite traditional. I continued my
regular practice of sketchbook drawing using either a pen: black ink pigma micron 01, or
a mechanical pencil: black polymer lead of 0.5mm width and 4B softness. The second
augmented the traditional method. I registered a traditional sketchbook on a Wacom
pressure sensitive tablet. Then, I employed a pressure sensitive stylus equipped with a
mechanical pencil lead of the same specification that I used for the traditional sketchbook
method. As I drew on the sketchbook-augmented tablet, I recorded my drawings as
QuickTime movies using Corel Painter. This setup created in essence two original

substrates: the sketchbook and the time—based digital canvas.

Although I could have easily completed the time—based drawing process without the
addition of a sketchbook and used a typical, non—leaded stylus, the augmented approach
was valuable for a variety of reasons. The presence of the sketchbook and the leaded
drawing instrument closely emulate the traditional drawing process. Although it is not
uncommon for digital artists to place a piece of paper on their tablet to get the physical
interplay of paper tooth, the leaded stylus meant the ability to collect the exact same data
in two equally useful forms: analog and digital. Drawing with paper and pencil,
specifically the feel of the instruments, decidedly influences the quality of the mark and

affects the drawing experience.
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The activity of traditional sketchbook drawing permitted the execution and collection of

hundreds of shape drawings and served as an "unbiased" check for the "correctness" of a
synthesized drawing. It was very difficult, however, to capture how the shapes were
drawn and to use that kind of information in developing the rule base. The activity of
recording the drawing process allowed my repeated viewing of a drawing's progress and

permitted a non—automated analysis.

The primary objective in collecting the time—based drawing, then, was to have a method
for discerning the temporal order of the marks. Technically speaking, the order of mark
making is a non—issue when drawing. Indeed, a drawing—whether finished or in
progress—demands no particular structural relationship among the marks at any
particular moment in time. In order to compute using the marks as a device, however,
shape grammar techniques require the definition of a spatial relation among the marks. It
is worth noting that the modeling of a spatial relation is in no way akin to the modeling of
a hierarchical relation as no mark is subordinate to any other mark. My basic approach in
defining the spatial relations, then, was to look to the actual process that [ used to create
them. In this way, the resultant design language conforms rather closely to actual process
and serves double duty in that it not only synthesizes artistic product but also illuminates
artistic process. Figure 2-7 illustrates the creation of a drawing using the augmented

sketchbook and shows frames from the resultant time—based data.



Frame 1

:Fra.me 4

Frame 10

Figure 2-7. Time based example of drawing.

Frame 2

Frame 11
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Erame 3

:Frame 6

Frame 9

An added benefit of the time—based exercise was that I gained insight into what I was

doing as I drew. Even without a formal computational mechanism in place, such self-

analysis allowed me to fine tune the drawing style in a manner that may not have been

possible otherwise. For example, many sketchbook drawings became overworked and

this characteristic manifested itself equally during the time—based drawing exercises.

Having the time-based tool allowed me to examine more clearly where the sketches were
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going off target into the realm of the overworked. In this way, the ability to repeat a

drawing by watching served to inform the development of style. The essential aspects
began to reveal themselves and the sketchbook drawings became fine—tuned as Figures

2—8 and 2-9 show.

Figure 2-8. Sketchbook drawings circa 2004 based on the triangle as the inspirational shape. Shown 1:1.

@ / Q.

Figure 2-9. Sketchbook drawings circa 2003 based on the spiral as the inspirational shape. Shown 1:1.
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Chapter 3 Analysis and Development of the Design Language

Chapter 2 explained the techniques and methods that I used for developing the foundation
corpus of my work. One of the activities during that part of the work was to record my
drawing process in a time—based medium to afford the benefit of repeated viewing. The
resultant collection of short movies served as an important resource in developing the
shape rules. This chapter illustrates some of the key movies to influence the initial design
language, details the grammar, goes on to show refinements to the grammar and
compares and contrasts the results of computed and non—computed product. Finally, I

discuss initial work on the analysis of color during painting exercises.

Observation and Analysis

The approximately 70 time-based drawings and continuously growing sketchbook
source—approximately 3000 drawings at last count—are the basis for my observations
and analysis. While formulating the rules, I gave specific attention to the relation among
the marks and their resultant shapes, the order and characteristic of the marks, styling of
the shapes and the spatial relations of closed and open shape outlines. A critical
observation was that in many cases I was using a non—drawn, invisible shape to reserve
and define space on the canvas. Specifically, the visible marks are perturbations, or
parametric variations, of simple implied shapes such as squares, circles, triangles, and
spirals. Frequently, the final drawing does not bear great resemblance to the initial, non—

drawn shape and gives the appearance of much more complexity than the shape rules

imply.
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Sub-dividing the Canvas

Early in my analysis of the existing corpus, it became clear that my marks were intended
to bring attention to small areas of the overall canvas. I defined these areas by a series of
outline—like marks that represented both closed and perforated—or segmented—shapes.
Figure 3—1 shows an example of a circle as the non—drawn shape. Using the implied
circle, I draw a loosely conforming segmented circle. Figure 3-2 continues the same

drawing with a second segmented circle-like form at the interior of the first.

- T S -

)

Frame 1 Frame 2 Frame 3 Frame 4
- N K -

Frame 5 Frame 6 Frame 7

Figure 3—1. Frames 1 — 7 illustrate the use of a circle as the motivating shape and the use of segmented
marks to outline an area of the canvas.
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Frame 8 Frame 9 Frame 10 Frame 11
/ \
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\
_/

Frame 12

Figure 3—2. Frames 8 — 12 continue the drawing from Figure 3—1 and illustrate a set of interior marks
loosely conforming to a second circle.

In addition to single shapes within a shape, other groupings of outlines occur in the
foundation corpus. For example, there are numerous cases of a primary outline shape

supported by multiple fenestrations, or punctures, as in Figure 3—3a.

Spiigys

(a) (b) (c)

Figure 3-3. Three examples of the spatial relation among shapes in the foundation corpus. Example (a)
demonstrates a major shape with two fenestrations while examples (b) and (c) show two closed shapes
side-by-side.

Groupings of closed shapes in close side—by—side proximity as in Figure 3—4 and Figure

3-3b and c are also common. Also present, but less common, are cases of open shape
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outlines that support intersections as in Figure 3—5. Interestingly, however, shapes on top

of each other, or layered shapes, are common in my painting examples, but do not occur
in drawing. The intersecting shape examples are the closest occurrences of this
phenomenon. One supposition for why this is the case is that the drawing phase does not
explicitly include erasing. Indeed, erasing is anticipated during drawing by leaving gaps
among the marks. As we will see later in this chapter, erasing is a key aspect of my

layered painting.
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Frame 4

U

Frame 8

Frame 16

Figure 3—4. An example from the time-based drawings illustrating multiple side-by—side shapes as well

as punctured shape.
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Frame 1 Frame 2 Frame 3 Frame 4
Frame 5 Frame 6 Frame 7 Frame 8
Frame 9

Figure 3-5. An example of shape intersection from the time-based drawings.

Observations on Shape Outlines

It is valuable to note that closed shapes in my drawing style may be inscribed with
additional shapes in much the same way as the Ice Ray grammar [49] divides a polygon.
In the spirit of this grammar, also known as the Chinese lattice, it is possible to achieve

a) the relation for positioning of the shape within a shape

b)  trimming the implied shape’s "corner” in order to make a new shape that is
proximal to the remaining implied shape.

Specifically, an implied shape may sub—divide as in Figure 3-6.
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(@ (b)

Figure 3-6. Sub—dividing an implied shape. (a) shows the implied triangle that becomes a sub—divided
shape as in (b).

Tapia presents a very rigorous algorithm for achieving the above goals in Appendix 2 of

[57].

Essentially, the sets of closed outlines fall into two categories as in Figures 37, 3-8 and
3-9.

a) internal closures, or shapes punctuated by holes

b) external closures, or clusters of closed shapes

Further in Figure 3-8, where the third outline is a loose reflection of the first outline, and
Figure 3-9, where the second outline is a loose reflection of the first outline, we see that

clusters of closed shapes serve to create balance in the overall composition.

Additionally, nothing prohibits the puncturing of a closed shape that is part of a cluster
of shapes. Indeed, at times outer shape lines function as inner shape lines as in Figure 3—
10. Other examples from the time-based analysis suggest a number of embellishments

and combinations of inner and outer lines as in Figure 3—11a and b.
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Frame 9 Frame 10
Figure 3-7. Shape punctuated by hole and with embellishments around major outline.
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Figure 3-8. Clusters of closed shapes. Positioning creates balance.
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Figure 3-9. Clustering of closed shapes.
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Frame 5 Frame 6 Frame 7 Frame 8
Figure 3-10. Clustering of closed shapes with punctuation.

D)
2

(@) (®)
Figure 3-11. Embellished shapes.
Figure 312 illustrates the informal grammar that resulted from these observations. The

informal grammar does not, however, discern the difference between inscribed, or

punctuated, shapes and proximal shapes.
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given i = | and an empty shape, @
O denotes the outline of a shape

rule A @ > 0 draw a first outline, open or closed

ruleB O, —> Oi + O;,, addasecond outline, open or closed

rule C -> close an opening

L

rule D - intersect an opening

T

Figure 3—12. Informal rule set based on generalization of observations and analysis of time—based and
sketchbook drawings.

Formal Grammar Based on Observations and Analysis

In this section, I detail the formal grammar for my drawing style. But, before presenting
the rules in the grammar for my designs, it is worth stopping a moment to give a
definition of a shape grammar and to provide a basic visual example of a formal grammar
to illustrate the concepts. Shape grammars, as defined by Stiny [52], provide
computational methods for generating designs. Computations start with an initial design
state. This state may be the blank canvas, or the empty shape. A computation or rule
application is in two parts. The first part is to recognize a shape in the current design
state. The second part is to replace the recognized shape with another shape. The

replacement can be a transformation, a different shape or an additional shape. The
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computational rule is defined by a left side, A, and a right side, B. The generalization of a

rule, then, is A — B, and read "erase A and draw B in its place." The rules in the
grammar that I will discuss are all visual, but there is nothing that precludes the designer's
use of rules to define any aspect of the design such as stroke characteristics, color,
materials, etc. [51], [25]. Additionally, the designer may add rules at any point in time
without the requirement to re-model the design space. For this reason, the computational
approach of shape grammars affords the designer great flexibility and an immediacy of

working style that is critical in visual productions.

For our basic example, the initial state is not the blank canvas, but rather a design in
progress (Figure 3—13a). A shape rule favored by Stiny that rotates a square 45 degrees
(Figure 3—13b) serves as our example. Note that the initial design presents three
opportunities for application of the rule as Figure 314 illustrates. And Figure 3-15
demonstrates the three possible resultant designs after applying Simple—-Rule 1 once.
Adding a new rule, Figure 3-16, illustrates the ease of augmenting the design space. Again
beginning with the same initial design (Figure 3—13a), we can create some very unexpected

new designs as in Figure 3—-17.

(a) Initial Design (b) Simple-Rule 1

Figure 3-13. The initial design state begins with an image in progress. Simple-Rule 1 rotates a square 45
degrees about its center of mass.
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(@ ® (©)
Figure 3-14. Possible locations for rule application. Each of a, b and ¢ highlight a different square from
the initial design where Simple—Rule 1 could be applied

71 K>

(a) (b) (c)
Figure 3-15. Possible design states. Each of a, b and ¢ correspond to the found squares in Figure 3—15a, b
and c above. Here, we see the three possible results of applying Simple—Rule 1 once to each of those cases.

Simple—Rule 2

Figure 3-16. Introduction of a new rule. Simple—Rule 2 allows the addition of an offset square to an
existing square. The resultant inner square is exactly one quarter the size of the original square.
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initial design by Simple—Rule 1
= =
by Simple—Rule 2 by Simple—Rule 1
@3?
i

by Simple—Rule 2, twice by Simple—Rule 1, twice

Figure 3—17. A derivation using Simple-Rule 1 and Simple—Rule 2. When considering the simplicity of
the rules, the resultant design is somewhat unexpected.

With this simple example, it becomes clear that the designer never needs to remodel the
computational framework to accommodate new rules. In theory, one could develop a set
of rules over time that represents an entire stylistic evolution. No requirement to supplant
earlier rules exists such that information is never lost. New rules, however, can augment
existing rules. Such an approach is very freeing as it affords the artist the ability to focus
on the different aspects of image making either collectively or separately. For example,
my rules for applying color are still in progress. But, I can create the color portion of an
image using non—formal, non—computational methods and easily join that product with
the formalisms for shape. Once the color rules are in place, it is easy to add them to the
formal design language. Nothing that I have created previously with the formal rule base
needs to be recalibrated, taught or learned. This is in stark contrast to the processes

required in other, fixed algorithmic methods mentioned in Chapter 1.
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I will return to the example of Figure 3—14 in Chapter 4 as it serves as a basis for
explorations in the computer implementation of shape grammar rules. I dedicate the
remainder of this section to the current formalization of the grammar that defines my

drawing style. For an earlier rule set that led to this grammar, see Appendix A.

A salient observation on open and closed outlines is that they represent essentially the
same forms. An open outline is simply a closed outline with "erasures" loosely fitted
along the curve of the implied primitive shape. Further, the primitive shape may be
distorted in any number of ways such as stretch, squash and skew. Since ultimately the
erased portions serve as space holders for new marks loosely conforming to the same
implied shape, the spatial relations of the marked and unmarked portions pose an
interesting problem in formalizing the rules related to these segmented shapes. The
problem has its roots in the ability to keep an overall balance to the completed shape.
Too few segmentations and the result is visibly too similar to its implied primitive. Too
many segmentations and the shape does not conform enough to examples from the

baseline, hand—drawn corpus.

The first step for the designer is to create a space holder based upon an implied shape.

Rule 1 addresses this requirement and Figure 3—18 shows some possibilities. Once the
designer determines the implied shape, the next task is to find its center of mass and scale

the shape based on the center, as in rule 2. The basic concept behind rule 3 is to replace
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the implied shape by a loosely conforming piecewise Bézier curve. To define the

parametric constraints for manipulating the Bézier, I use minor scaling of the implied
shape to generate guide shapes. The current experimental scale factor is +/— 10%. Next,
a set of intersecting lines at the interior of the smaller guide shape creates intersection
points on the scaled guide shapes and the original implied shape. These intersections
serve two functions. The first is to define the sub—shapes of the implied shape that the
Bézier curves will ultimately replace. The second is to define the parameters within

which the Bézier pieces can be manipulated.

The following rules will use the triangle as an example. I show a specific derivation later

in this chapter and leave the specific details of calculating the Bézier curves for Chapter

4.

@ ->

Figure 3-18. Rule 1. Replace the empty shape, @, with a closed shape which will act as a space holder, or
implied shape, on the canvas. The implied shape need not be limited by the examples shown here.
Additional rules are easy to create. For example, a closed shape could be replaced by a rectangle,
pentagon, etc.
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Figure 3-19. Rule 2a. Calculate the center of mass of the implied shape.

Figure 3-20. Rule 2b. Scale the implied shape up 110% and down 90% from the center to create the
parameter space guide shapes for perturbing the implied shape. Here the guide shapes are in light grey.

Figure 3-21. Rule 2¢c. Once the guide shapes are in place, erase the center of mass marker.

>

>

Figure 3-22. Rule 3a. Draw intersecting lines equal or greater in number to the number of sides of the
implied shape. Their intersection must be at the interior of the smaller guide shape and they may not
coincide.

50
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Figure 3-23. Rule 3b. Once the intersecting lines are in place, the points where they intersect the guide
shapes and original implied shape become the parameter space. Sub—shapes in the form of Bézier curves
replace the original implied shape. The guide shapes remain to serve as the constraints for moving the
control points of each individual Bézier.

Figure 3-24. Rule 3c. Remove the intersecting lines and hide the Bézier handles.

Figure 3-25. Rule 3d. Remove the guide shape to leave the final parameterized shape.

Figure 3-26. Rule 4 shows the ability to add a decoration to the exterior of a shape much like a drop
shadow effect to create depth to the form.

B

>

>



s

>
B

Figure 3-27. Rule 5 shows the ability to add a decoration to an interior shape much like a drop shadow
effect to create depth to the form.

>
>

Figure 3-28. Rule 6 is a variation of Rule 4 that allows further decoration to the exterior of a closed shape.

>
=

Figure 3-29. Rule 7 allows a decoration to be added between two closed shapes.

Revision of Segmentation Parameters

While the rules from the previous section capture many of the subtleties of perturbing the
implied shape, they can produce shapes with unpleasant cusps, or crinkles, that are not
consistent with the foundation corpus. This section demonstrates a series of revisions
that brings the synthesized design in closer alignment with the hand—drawn shapes that
they aim to emulate. Two main changes facilitate the result. The first relates to the
adjustment of the corners on the implied shapes. The second is to parameterize further
the allowable positions of the points on the Béziers. Essentially, we delete all corners of

implied shapes and the set of intersecting lines alone defines the points on the perturbed
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shape. The result is softer corners defined by the two nearest Bézier control points and
gentler undulation along the edges of the shape. The cross—shaped markers, +, constrain
the control handles of the piecewise Bézier that “turns”, or rounds, the corner. The
markers that intersect the implied shape and connect the two guide shapes, — and !
constrain the remaining points. In essence, the markers serve as sliders for the
appropriate points, and when rounding a corner, their control handles. Figure 3-31

shows a close up of the setup and Figure 3-30 illustrates the actual rule. Figure 3-32
shows the perturbed shape less the parametric guides, but with the Bézier points and

control handles as well as the final shape.

\ / W
_—

/0 /=

Figure 3-30. The revised rule 3b shown above in Figure 3-23. The major difference is in the handling of
the corners and in the parameter space of the individual points of the Bézier curves.
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Figure 3-31. Close up of the top left corner of the shape rule. The crossed markers regulate the position
of the control points on the corner Bézier. The horizontal and vertical markers regulate the position of the
remaining points on the piecewise Bézier. The control points not associated with the corner point must
remain within the two guide shapes and may not extend beyond the position of their nearest control point.

T )

(a) (b)

Figure 3-32. (a) perturbed shape without the parametric guides (a) shape with Bézier controls hidden (b).

Clearly, this revised rule applies equally to exterior shapes and interior shapes. However,

the rule only applies in the cases where these shapes types are not joined. The next step
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is to build upon these refinements to join interior and exterior shapes. Given the

mechanisms now in place for perturbing the interior and exterior shapes, this step
becomes rather straightforward. Beginning with the segmented exterior shape as in
Figure 3-33a, we draw an interior shape such that the intersection of the parameter lines
is at its interior. We follow all the rules for segmenting an implied shape to perturb the
interior shape, a triangle in our example, according to the correct parameters. Then, we
delete a segment on each of the interior and exterior shapes as the common intersecting
lines indicate (Figure 3—33b). We may repeat this step multiple times. Finally, we join
the open ends of the interior and exterior shapes. An example of a final drawing follows

in Figure 3-33c.
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(b)

(c)

Figure 3-33. Rule 8 a, b, ¢ joining interior and exterior shapes.

Manual Synthesis and Testing of the Design Language

In the previous sections, I have detailed a rule-based design language using a shape
grammar. The purpose of this language is to illustrate the ability to emulate the hand
productions of my foundation corpus using visual algorithms. In this section, I address
the results of the shape rules—the manual synthesis— by comparing their production

output with the results of my freehand drawings in the same style. In the first iteration of
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the test, although I do not use a computer implementation, I strictly adhere to the
grammar as [ manually construct the shapes. In the second iteration, I draw shapes
freehand with an intuitive understanding of the rules. In both cases, I use digital drawing
tools. Finally, I compare and contrast the two results in an effort to understand the
success and room for improvement with respect to the rules. A caveat remains, however.
Although the current—day freeform drawings bear clear resemblance to the drawings of
the foundation corpus as in Figure 3—34, my knowledge of the formal grammar

significantly informs any drawings that I now do in this style.

(a) (b)

Figure 3-34. Comparison of shapes pre and post computational framework. I have drawn both shapes by
hand where (a) illustrates a sketchbook drawing and (b) is a freeform drawing example using a vector
graphics software package. Both shapes support the notion of implied shapes, specifically an implied
exterior rectangle and an implied interior triangle.

Each iteration of the test begins with the same set of implied shapes as in Figure 3-35a.
Figure 3-35b illustrates a derivation based on strict adherence to the rules. Figure 3-35¢
illustrates the results of drawing freeform, specifically without strict application of the

rules.
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(a) (b) (©

Figure 3-35. Testing the design language. (a) beginning implied shapes (b) rule derived shape (c)
freeform shape

In comparing the results in Figure 3-35b with 3-35¢ above, we observe that both shapes
follow the general spirit of the implied shapes and one may generally conclude that
they've been drawn in the same style and perhaps by the same artist. Below, Figure 3-36
illustrates the derivation for the rule—generated shape while Figure 3-37 shows
significant stages in the freeform drawing. The rules governing segmentation of the
implied shape capture the undulation of the implied form moderately well although we
can see that perturbations in the freeform shape are more radical than their rule-based
counterparts. The rules for joining exterior and interior shapes handle that relationship
reasonably well although the joins in the freeform shape go further toward obscuring the

implied interior shape than the formal rules currently support.

Contrasting the results, we can see that the shape I constructed by strict adherence to the
rules is much more economical than its freeform counterpart as it literally contains less
data. The current iteration of the shape rules knowingly restricts the number of points
and hence the number of Bézier curves that form each shape. When drawing the

freeform shape, the curves are far less simplified as the digital drawing tool is set to a
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high level of precision. Specifically, points are drawn at a higher temporal frequency for

the duration of the stroking gesture. This higher level of precision more closely emulates
the hand—drawn feeling of the shape. To represent this aspect of the hand, then, future
iterations of the shape rules need to capture information about precision and number of
data points collected over time. We can liken this phenomenon somewhat to the use of a
pencil when the drawing gesture is slower or faster. Clearly, a fast gesture will be more
economical even in the continuous, analog domain of the pencil. While conversely, a
slow gesture will contain more information and have a less than clean, even jittery,

appearance on the page.

A second observation is that the parameter space defining the "erased" portion of the
implied shapes is too predictable and symmetrical in comparison to the freeform
equivalent. The experimental 10% value of uniformly scaling the implied shape up and
down is too restrictive. A first step in its refinement would be to make the scaling factor
non—uniform. Despite the need for further rule refinement, however, the overall impact
of the rules is that they generate shapes that are clearly in the style of the non-rule-based

forms that they seek to emulate.
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by rule 8¢ by rule 8d by rule 7
Figure 3-36. A step-by-step derivation of a shape using the rule-based design language.
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Figure 3-37. A freeform drawing at three different stages. (a) illustrates the use of implied shape to hold
space during the drawing of two segmented shapes. (b) shows the connection of the segments and the
joining of the interior and exterior shapes. (c) is the finished shape with the addition of depth creating
connecting marks between the two shape parts.

Observations about Color Usage

This section discusses my use of color during painting exercises. Although I have not yet
formally defined the rules for this usage, this section shows how formalized rules on
drawing can easily join with non—formal approaches on the way to creating a finished
image. And, at some point in the future it will be useful to join the formal painting rules

with the formal drawing rules.

My painting process divides itself into four different stages, or progressions. As Chapter
2 describes, I first define the color palette. On the selection of the actual colors in the

palette, I will note that my preference is to maintain the hue while manipulating
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saturation and brightness. The result is a fairly monochromatic palette. At times,

however, I do vary hue and in those cases saturation and brightness remain relatively
constant. With these two remarkably simple rules, the colors in the palette are always
very pleasing. Additionally, I use these palettes repeatedly for any number of new

paintings.

The balance of this section is an overview of the three remaining progressions. We can
think of each of these progressions as "ground layers" for the phases and progressions to
follow. Progression One is the loosest and quickest of the set, the results of which are in
Figure 2—2. Progression Two introduces shape derived from the formal rules for
drawing. Progression Three adds a rule—derived semi-transparent shape layer to the

painting. I present the visual results of these techniques in Figure 3-39.

Progression One

Phase One

With the original color palette as a clone source, I begin Phase One on a blank canvas and
use digital watercolor tools to soften existing colors and mix new ones. I incorporate
some of the emergent colors as I elaborate the canvas. The end of Phase One, Figure 3—
38a, is a watery, dreamlike representation of color that largely represents the original

color palette.
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Phase Two

This phase builds on the image of Phase One by introducing additional digital media such
as chalk and oil. These tools serve to create additional mark types and texture as well as

to introduce newly mixed color to the canvas.

Progression Two

This progression also typically starts with a blank canvas. In terms of rules, we can think
of this as subtracting the entirety of the previous progression that has been saved.
Eventually, most of its content will be added back to the canvas, but not before adding a
shape drawing. I derive the drawing portion of the painting from the shape rules that |
have defined earlier in this chapter. Once the shape is in place on the canvas, as in Figure
3-38b, I slowly add color from the end of Progression One back onto the canvas. I use a
variety of digital tools, most frequently watercolor, chalk and oil, in this phase of
Progression Two. The chalk defines the edges of the shape and the watercolor implies its
volume. Although I may dip back into the original color palette, I typically restrict my
usage to the colors of the current canvas and those present in the final Progression One

image.

Progression Three

This progression is a mixture of formal rules and as yet unformulated color manipulation.
Its main purpose is to add a semi-transparent layer to the painting. The visual result is
that of looking through a veil or fogged glass to the rest of the painting. This progression

also starts with subtraction as I use the shape rules to erase a portion of the painting.
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These erasures create highlights on the canvas. I then use the watercolor tool to bring
back color and form from the final image of Progression Two thus adding depth to the
image. The darkest colors of Progression One create drop shadows and recessed areas of

the painting (Figure 3—38c).

Examples of final paintings resulting from these progressions are in Figure 3-39.

(c) (d)

Figure 3-38. Painting in progress, Fire. The final painting is shown in Figure 3-39. (a) digital watercolor
image based on original color palette (b) adding a rule-based shape to the painted canvas (¢) semi-
transparent layer added to the painting (d) further elaboration using digital chalk and oil tools.



(b) Thunder

(c) Moon (d) Fire

Figure 3-39. Final digital paintings. Each of these paintings is a combination of formal shape rules and
informal color usage.
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Chapter 4 Design of Computer Implementation Methods

Chapter 3 dealt with the visualization aspects of this research. Specifically, I described
the analysis of my drawing style and the subsequent development of a rule-based design
language using shape grammars to synthesize the style. The synthetic method of Chapter
3, however, is a manual computation that does not rely upon computer implementation
techniques. With the curvilinear design language of the previous chapter as a motivator,
this chapter discusses the representation issues associated with computer implementation
methods for a general shape grammar. Here, I consider both rectilinear and curvilinear
shapes. Most specifically, I will focus on a novel use of cubic Bézier curves as
representational forms when programming a computer implementation of a shape

grammar.

The shape—grammar literature is very explicit on the techniques required to compute with
rectilinear shapes using both manual computational [18] and computer implementation
methods [6], [57, 58]. Relatively little exists, however, on the topic of computation with
curvilinear shapes [52],[20]. Given the objective of this research, namely to consider the
immediacy of the mark in computation, the need to include representations of curvilinear
forms is great. Conceptually, the formal devices used in shape—grammar computations
support lines and curves equally. Practically, however, choices of representation figure

significantly in the computer-programming phase.



67
Computer Implementation for Rectilinear Shapes

Explicit shapes are those drawn directly by the artist on the canvas while implicit shapes
are those that emerge as a result of explicitly placed shapes. Explicit and implicit shapes
may by rectilinear or curvilinear. The search and replacement of explicit shapes is easily
accomplished in today's off—the—shelf vector graphics software packages. The search and
replacement of implicit shapes, however, is still not available. Figure 3—14c is an
example of rectilinear explicit and implicit shape types as shape—grammar techniques
afford the ability to locate and transform both these forms. The fundamental devices for
achieving are the maximal element and the embedding relation. Specifically, in the case
of rectilinear forms, the maximal—-element is the line. A line is maximal if it has no
further decomposition. Meaning, it is not part of any other line on the canvas and is
uniquely describable. Any lines that are collinear and non-disjoint can be reduced to a
maximal line. Figure 4-1 shows the cases where two lines are reducible to a single,

maximal line [47] while Figure 4-2 shows several examples of maximal lines.
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Figure 4-1. Reduction rules. For clarity, the lines are not drawn collinearly as they would appear on the
canvas. The lines L0 and L1 are collinear and defined respectively by the points (PO, P1) and (QO, Q1.
MaxLOL1 is the maximal lie representation. (a) Both boundaries shared. L0 and L1 represent the same line
where PO = Q0 and P1 = Q1. The points (PO, P1) define the resultant maximal line. (b) No shared
boundaries and complete overlap. PO < Q0 < Q1 < P1, the resultant maximal line is (PO, P1). (c) One
shared boundary and overlap where P0=Q0, Q1 <P1. The resultant maximal line is defined by (PO, P1) (d)
No shared boundary and partial overlap of L0 and L1 where PO < Q0 <P1 < Q1. The resultant maximal
line is the reduction defined by (PO, Q1) (¢) One shared boundary and no overlap where P1 = Q0, P1 <QI.
The reduction is defined by (PO, Q1).

PO
PO Q0 / S
Pl \ P
Qi

0
Q1 Pl RO RI Qo0 - Ql
(@) (b) ©

Figure 4-2. Maximal lines. Three possible spatial relations among maximal lines.

P1

[ —

Another way to describe the notion of maximal lines is in terms of the embedding
relation. If a line, L1, is embedded in another line, LO, then L1 is not maximal. The
notation of within, designated by <=, captures this relation. Formally we can say a line,

L1, is embedded in LO if and only if every maximal element in L1 is embedded in a
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maximal element in L0, i.e., L1 <LO=. In shape grammars this is also known as the part,

or sub—shape, relation. So, simply stated, a shape is embedded when it is part of another

shape.

There are several ways to represent curves, and hence lines, in space. Explicit, implicit
and parametric forms are well known with each having its benefits and drawbacks. The
parametric form is the most flexible as it may represent a line in any position in 3D and is
easy to manipulate in computations. Using the parametric form also makes it easy to join
pieces of curves together giving the appearance of a fluid stroke. This aspect is

particularly important for a curvilinear design language in general and mine in particular.

Conceptually, a parametric line is movement along a vector over time and in 2D can be

generalized as

(x, y) = (f(t), &(t))

where t is time, f(t) is horizontal motion and g(t) is vertical motion. For a finite segment
defined by two points, PO and P1, over the unit interval, the parametric line

representation for the general case is

P(t) = PO + t(P1-PO) for 0>=t <=1 (1)

and for the 2D case is

P(t) = PO(x) + t(P1(x) - PO(x)) )
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P(t) = PO(y) + (P1(y) - PO(y)) 3)
Figure 4-3 shows a visual representation of the parameterized line where t is a fraction of
the distance from PO to P1. For example, P(.5) indicates the midpoint of POP1. The
vector representation is opportune not only for lines. An element is maximal if and only
if it embeds everything continuously along its same vector. This understanding is
important when we think about how to represent maximal curves within the constraints of

a computer implementation and is explored later in this chapter.

P(t<0)

P(0)

P(.25)

P(.5)

P(.75)

P(1)
P(t>1)

PO

P1

Figure 4-3. Parametric line. POP1 indicates a finite segment and P(t) a fractional distance between PO and
P1. P(0) =P0 and P(1) = P1.

Not only is this representation useful when the shapes become curvilinear, it also makes
issues such as embedding and shape difference, i.e. erasing, easier to compute

programmatically as the following section shows.

Maximality, Embedding and Erasing with Parametric Lines

Recall from the definition of a maximal line that we need to determine if two lines are
collinear and if they are non—disjoint. This section describes how the parametric line
applies to these requirements as well as describes how the parametric representation

facilitates finding embedded shapes and erasing shapes.
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Collinearity

The use of parametric lines makes reducing two lines to their single maximal
representation straightforward. Once we have determined that two lines are both

collinear and non—disjoint, we simply adjust the boundary parameters appropriately.

First, we test two lines for collinearity using the area of a triangle approach. Three points
are collinear if the triangle that they define has a zero area. We take the four points that
define the two lines in question three at a time for a total of four cases to test. To

calculate the triangle's area, we use the familiar determinant form:

x0 x1 x2
Area = 172 * yo0 yl y2
1 1 1

Disjointness and reparameterization to construct the maximal line

Knowing two lines to be collinear, we can then test for disjointness by considering the
bounding boxes of each line. If the bounding boxes overlap or share a boundary, then the
lines are not disjoint and may be reduced to a maximal representation. Recall from
Figure 4—1 that there are five cases that require reduction

a) one line is completely embedded in the other and there are two shared
points, i.e., the two lines are the same

b) one line is completely embedded in the other and there are no shared points
¢) one line is completely embedded in the other and there is one shared point
d) one line is partly embedded in the other and there are no shared points

e) the two lines only share a boundary at exactly one point
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Referring to the parametric line equation (1), we use the t values to determine the
minimum and maximum points of the two lines and in this way test for embedding. First,
find the parametric equation of the line in question, and then find t for the given points on
the line. The minimum and maximum coordinates become the t=0 and t=1 values for the
resultant maximal line. Figure 44 serves to illustrate these concepts in general while

Figure 4-5 shows the test bed data for our maximal line function and a specific worked

example.
P(o)‘ .............. P(O)
QW)
AT
Q3);
P(1)
.............. § oy P(1.5)=Q(1)
() (b)

Figure 4—4. Testing disjointness and reduction to a maximal line using the parametric line representation.
(a) the overlapping bounding boxes of two collinear lines where P(0) < P(.5), P(.5)=Q(0), P(1) = Q(.5),
P(1.5) =Q(1). The minimum value for t is at PO while the maximum value is at Q1. (b) a reparameterized
line which is now maximal.
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(a)
Worked Example
line PO, P1
Given
ixco; 3,2 ,((75 :22)) P(t) = PO + t(P1-P0)
XCO b L BLELE
Ixco20 (7.1),(9,3) 1xc020 is defined by POP1 where
PO = (7,1 -
o2l  (8,2),(10,4) 0= (D andP1=03)
Ixco21 is defined by P2P3 where
i’“"’?’ 21,22 P2 = (8,2) and P3 = (10,4)
xcod (2,3),(2,2)
Ixcod @, 0), @,1) 1) find the parametric equation for the line
=7+1(9-7
Ixeo5  (3,1),(3.3) o Hé l;
Ixcob (5,1),(6,2)
Ixco7 (6,2),(7.,3) 2) substitute in the relevant x and y values and solve for t
Ixc10 (6,0), (5’10) P2x=> 8=7+2t=>t=05
P2y=> 2=1+2t=>t=0.5
Ixco8 (6,1), 8,3)
Ixcll (3,0), (6,3) P3x=> 10=7+2t=>t=15
Ixcl2 (4’1)’ (5,2) P3y=> 4 =1+2t=>t=15
Ixcl3 4,1),(3,0) 3) order the points according to t values
Ixcl14 (4,1), (6,3) PO(0), P2(0.5), P1(1), P3(1.5)
Ixcl5 4,1),(3,2) ) )
4) keep the max and min values to define the maximal line
Ixcl6 (4,1),(1,4) such that MaxLin x = (7,1), y = (10,4)
(b) (c)
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Figure 4-5. Data test bed for maximal lines. (a) visualization (b) data (c) worked example. Line Ixco2l

is partially embedded in 1xc020. Upon completion of the maximal line procedure, Ixc020 is

reparameterized to the full length of the two lines and Ixco21 is discarded.

Each time a shape is drawn on the canvas, the maximal lines must be re—calculated.
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Registration points
Recall that a shape grammar consists of a design state; call it the canvas, C, and a set of
shape rules in the form A -> B. We can apply the rule if there is some transformation of

the shape A, T(A), within C. Where T(A) occurs, we can replace it with ©(B).

Informally, we can articulate this as see a shape, erase it and draw a new one. Formally,
these are the operations recognize shape, shape difference and shape union. Specifically

C, the canvas
A —> B, the shape rule
7(A) <= C, we see the shape, A, within the Canvas, C

(C - 1(A)) + ©(B), we erase the shape A and draw the shape B

In order to carry out these steps in a computer implementation, an additional device
assists us: registration points. Registration points can provide more specificity about
how we can recognize a shape and apply a rule [57]. To find the registration points both
of a shape rule and shapes on the canvas, we must extend all maximal lines in search of

their intersection points with other maximal lines.

Again using the ability to reparameterize a line, we extend the maximal lines by some
constant, k, representing the distance that the line should be extended. Specifically we

restate the line equation as,

P(u) = PO + u(P1-P0) for (0 - k) <=u <= (1 +k) (4)

The value of k should be set in relation to the canvas size.
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In order to find the intersection of two extended lines, we again use the notion of
overlapping bounding boxes. If two bounding boxes overlap, the lines may intersect
within that overlapping bound. To determine more precisely where this occurs, we then
divide each line in half, i.e. find P(.5) and Q(.5), and examine the four resulting lines and
their bounding boxes. The cases that do not result in an overlap can be discarded, as can
any overlapping cases that contain disjoint lines. The remaining case contains the
intersection and we continue dividing and checking recursively until we find an
intersection within some acceptable tolerance, epsilon. Figure 4-6 illustrates the general
concept of the divide—and—conquer algorithm for finding registration points while Figure

4-7 shows a specific application of registration points in shape replacement.
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iteration 0

..............

iteration 1

iteration 2

iteration 3

iteration 4

(®
Figure 4-6. Recursive sub—division search for the intersection of two lines. (a) the initial state (b) sub—
division and bounding box location. (c), (e) this branch is eventually discarded as it contains disjoint lines.
(d), (f) Overlapping bounding boxes with non disjoint lines (g) the search continues until the remaining
overlapping bounding boxes are within the tolerance of epsilon, ¢, in each of x and y. The box becomes
very small such that the intersection point may be defined as (x, y) = [x(max)-x(min)| , [y(max)-y(min)|.
Note that this is a general procedure that, with minor modifications, will work for curves as well.



77

C (&

Figure 4-7. Use of registration points to apply shape rule. The dotted lines indicate extensions of the
maximal lines while the circles indicate the registration points. The shape rule, A->B, flips a quadrilateral
portion of an equilateral triangle about the marker, +. After three applications of the rule, the result is C'

<

Embedding

Having computed the maximal lines and registration points for all rules and the current
design, we are now prepared to recognize both explicit and implicit shapes on the canvas.
The parametric line equation allows us to determine the value of t for any registration
point on a line where it is embedded. We use the same programming techniques as those
for reducing lines to their maximal representation, namely those for collinearity and non
disjointness. However, we check for embedding by restricting our search to lines that are
completely within another as in cases (b) and (c) of the reduction rules. Specifically, L1
is embedded in LO when

L1 <LO where there are no shared points

L1 <LO where there is one shared point
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Note that the case of LO = L1, two shared points, has been removed by prior calculation

of maximal lines.

Erasing

Erasing, or shape difference, is another reparameterization manipulation. Once a shape,
A, has been successfully recognized on the canvas, we must first erase it as in (C - ©(A))
before we can draw the new shape, B. Using the shapes in Figure 4-8C as an example,
we see that the overall design contains six (6) maximal lines, LO thru L5, as defined in
Figure 4-8a. We consider a rule that recognizes an equilateral triangle and rotates it 180
degrees about its center of mass. Such a triangle is embedded in lines L1, L2, and L4.
Specifically, the points L1(1/3)=L2(1/3), L1(2/3)=L4(1/3), L4(2/3)=L2(2/3) form a
triangle. The middle third of each of L1, 1.2, and L4 must be erased and then redrawn as

in Figure 4-7b. Twelve (12) maximal lines now represent the resulting design.

We used the data in Figure 4-9 to test our procedures for maximal line construction,
embedding and erasing and were able to recognize explicit and implicit shapes, draw
(perform shape union), and erase (perform shape difference). Specifically, we used a
rule to find squares repeatedly and rotate them 45 degrees about center. The
methodologies described here also conveniently allow for almost perfect shapes to be
recognized, erased and drawn. For example, as the square gets rotated, it loses its perfect
90-degree angles due to rounding errors, but with respect to our eye the angles stay right.

In cases such as this, the computer implementation will respect the eye.
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(b)

Figure 4-8. Recognizing, erasing and drawing shapes embedded on the canvas. (a) an exploded view of
Figure 4-7C shows the maximal line representation of the design before applying the shape rule (b) the
result of applying the shape rule that rotates an equilateral triangle about its center of mass (c) the maximal
line representation, still in exploded view, of the design after applying the shape rule.
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line PO,Pl
10 (100,550), (200, 550)
11 (200, 550), (200, 450)
2 (200,450), (100, 450)
13 (100,450), (100, 550)
110 (250, 500), (250, 400)
111 (250, 400), (150 , 400)
112 (150,400), (150, 500)
113 (150,500), (250, 500)
! 45 (210, 600), (262, 696)
| | 167 (290, 696), (348 , 600)
(S, (SO | 189  (334,578), (228, 578)
' X0 (100 ,400), (200, 400)
IxI  (150,400), (175, 400)
X2 (125,350), (125, 450)
©) )

Figure 4-9. Test bed for shape recognition, draw and erase. This is the dataset before finding all the
maximal lines. (a) visualization (b) data points

Curves from Visualization to Representation

As an artist, nearly every mark that I make is a curve. But, making a mark, or a curve,
with a pencil is different than with a stylus and tablet connected to a computer. While it
is true that any mark that I make is drawn over some time interval, the computer
representation of a mark is acutely dependent on this fact. A computer mark, more
specifically a curve, will be defined by a series of points that is specifically defined as a
function of time. The exact number of points also depends upon the precision desired
and the complexity of the curve path. Clearly, a complex curve with high precision will

have more points than the same complexity curve with less precision.

Geometric representations for curves are nontrivial as there are many types to choose

from each with their advantages and disadvantages. Any representation will be good at
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solving some problems and less good for solving others. The requirements for a

computer implementation of a curvilinear shape grammar where the artist's mark is
paramount are:

a) the curve must be easy to draw, yet afford complex shapes
b) curve intersections must be easy to evaluate

c) curve reparameterization must be possible without changing the shape of the
curve

The most useful way to represent a curve is as a spline, or piecewise parametric
polynomial curve. A variety of spline types exist such as Bézier, B-Spline and Hermite
curves [37], [41]. As this section describes below, Béziers are particularly appropriate

for representation of the artist's mark.

A Bézier curve is a parametric polynomial function that interpolates its control points.
The polynomial can be of any degree. Further, the curve will contain two end points plus
a number of control points. Where n is the curve degree, n - 1 is the number of control
points such that the total number of points is n + 1. The polygon defined by the n + 1
points is call the convex hull while the line that joins the points (PO ... Pn) is the control
polyline. Typically, the points of the curve are defined over the unit interval, 0 <=t <=1,

such that PO corresponds to t =0 and Pn tot = 1. The curve segment is of the form

n

P(t) = .20( 'Z) (1-t)"'itipl- ,0<=t<=1

i=

&)
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where n is the degree of the curve, P is the point and t is time. For the linear, first degree

form of the curve, we recognize the parametric line formula from (1)
P(t) = (1 - t)P0O + tP1
Similarly the quadratic form is
P(t) = (1 - t)*PO + 2(1 - t )P1 + P2 (6)

a visual example of which is in Figure 4-10. The cubic form, visualized in Figure 411,

18
P(t) = (1 - )°P0 + 3(1 - §tP1 + 3(1 - )?P2 + £P3 0)

As we can see from the figure drawings, lower—order curves such as the quadratic form,
are not particularly flexible as they do not curve much beyond the shape of the letter 'C'.
For our purposes the cubic is better able to match the requirements of the artist's mark.
Higher—order Béziers are possible, but not considered here because they become more
complex to compute. Indeed, cubic Béziers are popular in graphics programs expressly
because they give a reasonable compromise between computational issues and

smoothness.

Further, cubic Béziers have many properties that we require to represent the artist's mark
in shape—grammar computations. Specifically [37], [41] they

a)  lie within their convex hull and generally resemble the shape of their control
polyline
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b) do not require slopes as inputs and can therefore be constructed from data
points

¢) are invariant under affine parametric transformations such that the
reparameterization from the unit interval to any other interval results in the
same curve with some exceptions discussed later in this chapter

d) are easy to draw by sampling the time parameter

e¢) have easily computed intersections

Figure 4—12 illustrates the five (5) types of Bézier curves with their control polylines
[54], [60] less the two (2) degenerate cases of a straight line and a point. Importantly,
these types hold only for local examination of the curve i.e., for smaller intervals of t.
Under global examination, where the t interval becomes rather large, the number of types
reduces. These types will become important as we explore their role in shape grammar

computer implementations

Although a single cubic Bézier can generate a number of interesting shapes, their real
expressive power comes from joining them piecewise. When two curves are joined, they
are said to be continuous. The degree of continuity, however, depends upon the
conditions at the joint. Here, we are primarily concerned with GO and G1 continuity. GO
continuity only ensures that the two curves join and says nothing about the smoothness of
the two curves at the joint. G1 ensures smoothness across the joint as it has the additional
requirement that the curves have a common tangent line at the joint. Examples of GO and
G1 continuity are in Figure 4-18 ¢, ¢'. The concept of continuity comes into play when
we create piecewise Béziers from hand—drawn data as well as in the method for defining

maximal curves. We will look at continuity again in the following sections.
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The ability to join cubic Béziers piecewise meets our requirement to draw complex
freeform curves. It also affords the ability to approximate shapes such as a circle (Figure
4-13) or an ellipse. This is in addition to the ability to construct n-gons as bezigons — 2D

shapes that use Bézier curves for the edges of the shape.

This section has given an overview of a curve representation, the cubic Bézier that has
the characteristics required to model a hand-drawn mark. The next section will explore

these properties as they relate to the computer implementation of a shape grammar.

PO

P2
Figure 4-10. Quadratic Bézier curve. PO and P2 are the end points and P1 is the control point. Note that

the curve lies completely within the convex hull formed by the points P0, P1, P2. Also note that the curve
is not particularly flexible.

PO

P2 — P3

Figure 4-11. Cubic Bézier curve. PO and P2 are the end points and P1 and P2 are the control points. Note
that the curve lies completely within the convex hull formed by the points PO, P1, P2, and P3. Also note
that the curve is particularly flexible and well suited for hand—drawn representations.
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(d (e)
Figure 4-12. Cubic Bézier types. The dotted lines represent the control polyline for cach curve. (a) cusp
(b) arch (c) single inflection point (d) loop (€) two inflection points, or bump

Figure 4-13. Circle approximated by four (4) cubic Béziers. It is not possible to represent a
mathematically perfect circle, but the results are visually correct. The gray circles represent the joints
between the Bézier pieces and the dotted lines are the tangents across the joints.

Extending the Theory from Lines to Curves

When extending the shape—grammar computer implementation to curves, we consider the
same devices required for lines. Specifically this section discusses maximal—curve
construction, embedding and finding the registration points on a canvas of curvilinear

shapes.

Extending curves and finding registration points

Recall that to find the registration points among rectilinear shapes, we needed to extend

the lines. Similarly when searching for registration points among curves, we must extend
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the curves. Even though we see five (5) types of curves in Figure 4-12, curve extensions

reduce this number to four (4) as an arch will always extend to one of the other types. To
extend the curves, we use formula (7) and adjust the t interval as desired. For example,
using the interval -6 <=t <= 6 extends two arch curves as in Figure 4-14. Note that they

degenerate to other curve types.

(a) (b)
Figure 4-14. Extended Bézier curves. (a) shows an arch, P, which degenerates to a loop. (b) shows an
arch, P, which degenerates to a bump.

Now that we can extend the curves, we must calculate the registration points by finding
the intersections of the curves on the canvas. Using the sub—division algorithm of de
Casteljau [41] we apply the same idea to finding Bézier intersections as we did to finding
line intersections. Rather than check the bounding box of the line, however, we check the
convex hulls of the curves for overlap. If convex hulls do not overlap, then the curves do
not intersect. If the convex hulls do overlap, we check the flatness of the curves within
the hull. If the curves approximate a flat line, then we find the intersection using the
method for line intersections illustrated in Figure 4-6. If the curves do not approximate a
straight line, we continue to recursively subdivide the curves checking for overlapping

convex hulls and nearly straight curves.
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Two Béziers can possibly intersect in nine (9) places compared to two lines, which can
only intersect at one point. Also, the variation diminishing property [38] of cubic Béziers
tell us that a line will intersect a Bézier at most the number of times the line intersects the

Bézier's control polyline as in Figure 4-15.

T

(a) (b)

Figure 4-15. Bézier intersections. (a) two Béziers will intersect each other at most nine (9) times as shown
by the filled circles. (b) A straight line will intersect a Bézier at most the number of times that it
intersections the control polyline shown as the dotted line. The unfilled circles show the three (3)
intersections of the line with the control polyline while the filled circles show its intersections with the
curve.

Recall, however, that before searching for registration points, the drawing must be
reduced to its maximal elements. The next sub—section proposes such a procedure for

Curves.



88
Maximal curves and embedding

O/

Figure 4-16. Canvas of curves.

Figure 4-16 shows a hypothetical canvas of curves and lines. In order to carry out shape
grammar computations, each curve must have a unique representation on the canvas; it
must be maximally represented. To solve this problem, we will represent the curves on

this canvas as cubic Béziers.

In order to compute maximal lines, we depend on the notions of collinearity and non
disjointness to reduce lines to their maximal representation. In the world of curves,
continuity is the analog to collinearity and non disjointness from the line world. As
stated in the section above, two curves are non disjoint if they have GO continuity. For
our purposes, we will say that two curves have the property of cocurvilinearity if they
exhibit G1 continuity. Indeed, if we consider lines as a degenerate case of a cubic Bézier,
collinearity meets the requirements for G1 continuity and by default for GO continuity as

well. Referring to the types of Bézier curves in Figure 4-11, maximal curves will always
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be of one of these types. Complex curves can be achieved, however, by joining these

types piecewise. Note that an arch is very likely to be embedded in another curve type as
it degenerates to one of the other four types when extended. Given this, Figure 4-16

shows an example drawing containing two maximal curves: a loop and a single

inflection.

Figure 4-17. Maximal curves. Two Bézier curves, an inflection and a loop, are joined piecewise in a
maximal representation. The control polyline is dotted.

Before showing the decomposition of Figure 4-16 into maximal curves, however, it is
opportune to restate the reduction rules in terms of the cubic Bézier representation as in
Figure 4-18. As with lines, five cases require reduction.

a)  one curve is completely embedded in the other and there are two shared
points, i.e., the two curves are the same

b) one curve is completely embedded in the other and there are no shared
points

¢) one curve is completely embedded in the other and there is one shared point
d) one curve is partly embedded in the other and there are no shared points

e) the curves lines only share a boundary at exactly one point
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The method for actually reducing two curves to their maximal representation is similar in

spirit to that of line reduction. The details, however, are different enough to warrant

detailing here and are taken case by case.

Given two curves, P and Q, as in Figure 4-18 and the formula for a cubic Bézier as in (7)

(a) If PO = QO and P3 = Q3 and the control polyline of each curve is identical,
then the curves are identical. Discard Q and keep P as the maximal curve.
We will call this the test of control polylines.

(b) If QO and Q3 are both embedded in P, then divide P into three (3) curves R,
S, T from the intervals defined by PO to QO0, QO to Q3 and Q3 to P3,
respectively. If R, S or T is identical to Q by the test of control polylines,
then discard Q, R, S, and T and keep P as the maximal curve.

(c) If QO is embedded in P and Q3=P3, then if P2P3 is collinear with Q2Q3,
divide P at QO to form two (2) curves R and S. If either R or S is identical
to Q by test of control polylines, then discard Q, R, and S and keep P as the
maximal curve.

(d) If QO is embedded in P and P3 is embedded in Q, divide P at QO into curves
R, S and divide Q at P3 into curves T, W. If S is identical to T by test of
control polyline, then join P and Q and evaluate according to case (¢) below.

(e) If P3=QO and there is G1 continuity at the shared point and if at least one
of P or Q is of type arch, then join the curves to make curve R. Now
compare P with R and Q with R as per each of cases a - d above. If none of
the requirements is met, discard R and keep P and Q as maximal curves

To illustrate how each of these tests might fail, again refer to Figure 4-18.

(@) P0=Q0 and P3=Q3, but the control polylines are not identical

(b") QO and Q3 are both embedded in P, but none of R, S, or T is identical to Q
(¢) QO is embedded in P and Q3=P3, but P2P3 is not collinear with Q2Q3

(d) QO is embedded in P, but P3 is not embedded in Q

(¢") P and Q have GO continuity, but not G1 continuity
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Figure 4-18. Reduction rules for curves. (¢) shows G1 continuity between P and Q. (e') shows only GO
continuity between P and Q.

Now we are ready to evaluate Figure 4-16 and decompose it to its maximal curve
representation. Figure 4-19 shows the drawing represented as 13 maximal curves. A
close up of one area shown in Figure 4-20 reveals two maximal curves, one of type arch
and the other of type single inflection point. We know that P and Q are maximal because

when we join them to create R, as in Figure 14-20b, neither P nor Q is embedded in R.
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To join the curves P and Q to make curve R, we once again use de Casteljau's algorithm.

Below we will see an example of finding an embedded curve and how to handle its

reduction to a maximal element.

*
»
anst®

Figure 4-19. A maximal element representation of a curvilinear drawing. Thirteen (13) maximal curves
represent the drawing in cubic Bézier form.

Pl Rl
..

(a) (b)

Figure 4-20. Magnification of portion from above drawing. A piecewise Bézier that cannot be further
decomposed and is therefore maximal. (a) the two maximal pieces arch and loop (b) a failed attempt at
further decomposition

Problem of non-uniqueness

Figure 4-21a illustrates a more complex example of embedding and construction of a
maximal curve. We see the arch curve, Q, embedded in the bump curve, R. We also
note that the curve P, the loop, exhibits G1 continuity with Q. This scenario presents two

options. The first is to accept Q as embedded in R and define P and R as the maximal
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curves as in 4-21b. The second is to join Q and P into a reparameterized P and to

subtract Q from R, causing R to be reparameterized as well as in 4-21c. In order to
maintain the uniqueness required by reduction to maximal elements, one of the options

must be selected over the other.

Other interesting cases arise when a curve R is only partially embedded over the G1
continuous joint of curves P and Q. In such cases, the amount of curve R that is not
embedded may be considered trivially small so as to be discarded. But, this judgment
depends on the intent of the overall design and should be handled on a case-by—case

basis.
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(©)
Figure 4-21. Curve embedding. Q is the arch, P is the loop, and R is the bump. (a) Q is embedded in R. Q

and P are G1 continuous. To maintain uniqueness either option (b) or (c) must be selected. (b) Q is
embedded in R so delete Q. P and R are now maximal curves. (c¢) Q and P are G1 continuous. Divide Q
from R thus reparameterizing R. Join Q with P. P and R are now maximal curves.
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Shape recognition, drawing and erasing

Now that we have detailed the methods for computing maximal curves, handling
embedding and finding registration points on a canvas of curves, we can attempt to find

implicit and explicit shapes.

Returning to the canvas of curvilinear shapes, we will recognize an implicit shape in C,
erase it, C-t(A), and draw a new shape, B. Figure 4-22 offers a close—up view of the

drawing and the shape rule in question.

Shape recognition starts much the same way for curves as for lines. For curves, however,
there are two phases to the recognition. The first is only concerned with the endpoints of
shape A. Once the spatial relation of the points is found on the canvas, the second phase
of recognition begins. If any of the points on the canvas is embedded in a curve at other
than the end points, i.e., if the point is a registration point, then the curve must be divided
using de Casteljau's algorithm. Clearly, a registration point is embedded in at least two
curves. At this point, recognition shifts to the second phase. We compare the control
polylines of the shape rule with those of the curves found on the canvas. If the shapes of
the polylines are similar, then a shape is recognized. Now, A may be erased and B
drawn. Erasing of curvilinear shapes is handled in much the same way as the case for
lines. Once a shape is recognized, the maximal curve needs to be reparameterized in the

usual way.
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In the example of Figure 4-22, P is divided to make P, R, S, T and W. Then, the control

polyline of the piecewise shape A, represented by curves A and A', is compared to the
control polyline of each of the newly divided curves. The polyline of A is recognized as

similar to that of S joined with T. A is erased and B is drawn.

B3=B’0
A B
P R P R
e \/
) U
W W
C C'

Figure 4-22. Curvilinear shape recognition, erasing and drawing. The gray circles indicate registration
points. (A) the left hand side of the shape rule defined by two maximal curves (B) the right hand side of
the shape rule defined by two maximal curves (C) the canvas before applying the rule (C') the canvas after
applying the rule.

Translating Hand—Drawn Data to Piecewise Cubic Bézier

In order for the artist's mark to be represented in a form that will allow its computation as
described above, we must translate the series of data points that make up a stroke into
some usable form. Since the piecewise Bézier has many properties that respect the
gesture of a mark, we take our hand—drawn data and convert it to a piecewise curve.
Before doing this however, it is wise to reduce the amount of data that hand—drawn

strokes generate. We consider the connection of all the data points of a stroke to be a



97
polyline. Then, we cull the data set by simply applying a distance threshold. There are,

however, much more sophisticated techniques [9, 29] such as those used in cartographic
applications, but they are somewhat overzealous for our application. Once we have a

polyline, we must convert it to a piecewise Bézier.

Referring to Figure 4-23, a minimum of three (3) drawn points, DO, D1, D2, is required
to covert a polyline to a piecewise Bézier. These points will convert to two pieces of a
joined Bézier curve with G1 continuity. The points DO and D2 define the unit cord,
which is then displaced to become the tangent of D1. Then each cord, DOD1 and D2DI,
is split at the midpoint and rotated according to the angle defined between the tangent at
D1 and the relevant cord, either D2D1 or DOD1. This process continues for all the points
in the stroke until a multi—piecewise Bézier is defined as illustrated in Figure 4-24. Now

the piecewise curve is ready to be redrawn in terms of its maximal elements.
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(a)

(b)
Figure 4-23. Constructing a piecewise Bézier from hand—drawn data. (a) DO, D1 and D2 are the given
hand—drawn points. P1, P2, Q1 and Q2 are constructed. (b) the final piecewise representation

98
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Figure 4-24. Raw hand—drawn stroke data and its conversion to a piecewise Bézier. The black polyline is
the original data; the white piecewise Bézier is the curve representation before maximization. Tangents to
the joints of the pieces are shown in grey and circles mark the joints themselves.

Computer Implementation Environment

Choosing an implementation environment for representing a shape grammar is not an
easy task. The fundamental choices are between imperative and declarative languages.
Many imperative languages exist to choose from, each replete with tempting graphics
libraries. Some examples are Java, C, C++, etc. For declarative languages, the list is
much shorter and includes Prolog, Lisp and SQL. With imperative languages,
instructions are in list form and must execute in a particular order. This one statement at
a time model means that each statement is having an effect on the changing content at a
memory location. In contrast, declarative languages describe a set of conditions and let
the system figure out how to fulfill them using a general mechanism like logical
unification [39]. This model is based on stating the relationship between inputs and
outputs and essentially is performing pattern matching. When considering the artist's
mark, we must be able to express abstractions because the drawing is the computation
[58]. This implies that declarative methods will be the most successful. Even in

declarative languages, however, the mechanisms are symbolic and not visual. The
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description of the visual world of the artist will always lose something in translation to

the symbolic realm. Also worth noting, imperative methods will always be needed for

pesky things like graphics library management and user interfaces.

The implementation experiments described in this chapter were carried out in SWI—
Prolog running over X11 on a Macintosh laptop with 1.33 GHz processor and 256Mb

RAM. Visualizations were confirmed in the Adobe PostScript description language.

In this chapter we have shown techniques for representing a shape grammar in a
computer implementation. For the rectilinear case we show methods that have been
tested on representative data. Based on understanding of the rectilinear case and
motivated by the specific grammar of Chapter 3, a curvilinear method is proposed and

implementation “sketches” demonstrated.
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Chapter 5 Conclusions and Future Work

The primary motivation for this work was to produce insights in the computational
analysis and synthesis of a specific artistic body of work that is still evolving stylistically.
The secondary motivation was to outline a software roadmap for continued work in the
integration of shape grammar theory with computer graphics practice. As my research
evolved, it became clear that the above motivations could be classified as two possibly

incompatible concerns: shape visualization and geometric representation.

From the perspective of the artist, visualization and representation will always be one and
the same. When working in the analog domain of the pencil, the artist conceives the
mark and can quickly represent it on the canvas with a gesture. With similar ease, the
artist can recognize shape on the canvas and transform it. The problem space is fluid and
the solution path is immediate, intimate and continuous. No need exists to grapple with

intermediaries such as symbolic mathematical specifications.

When working in the digital domain, however, the problem space remains fluid, but the
solution process is not as spontaneous. This is particularly the case when the artist
chooses to employ algorithmic techniques, or rule-based systems, in their work.
Computations that are produced via programming techniques require a separation of the
visualization and representation processes. The notion of visualization remains largely
the same, but representation becomes symbolic and in so doing erodes the immediacy—
the continuity—of the mark making process. The text of Chapter 4 makes this point quite

dramatically. For every stroke that the artist desires to place on the canvas, there are
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numerous ways to represent it mathematically. And once represented, the mark still

needs to go through a number of conditioning steps to make it easier to compute with.
Essentially, the initial, immediate symbolic representation is insufficiently elegant to
work with from a mathematical perspective and must be further massaged. Take, for
example, the process for translating the gestural hand—drawn stoke into a piecewise
Bézier. This type of transformation activity would never concern the artist during the
creative process. Indeed, imagine for an instance that any artist's mark, no matter how
crudely drawn, lacks elegance the moment it touches the canvas. The notion is absurd
and is good motivation to not burden the artist with issues of symbolic representation.
Yet, the requirement persists at the behest of the computer's discrete approach to problem

solving and inevitably the computer artist risks being similarly constrained.

An additional objective of the research, then, became the idea of bridging visualization
and representation issues for a specific body of work when confronted with the
requirement to complete a computer implementation. Motivated by the primary objective
of the research, I defined a shape grammar largely outside the confines of a computer
implementation. The analysis required to define the grammar instigated a more complete
understanding of my artistic process and using the grammar as a synthesis tool helped in
refining the very style that [ was analyzing. Essentially, the activity of achieving formal
algorithmic understanding required me to look more objectively and critica}ly at what I
was already drawing and painting. Armed with the understanding afforded by the
grammar, discoveries on the implementation side ensued. Specifically, the research

meets its secondary objective by demonstrating incremental improvements to existing
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rectilinear methods and further contributes to the field in the area of curvilinear methods

by highlighting issues and proposing possible solutions given a specific representation

approach.

Future Work

The future of this research could take a number of directions. The text of Chapter 4 gives
insights into the challenges that await in developing a 2D drawing system to support
curvilinear shape grammar techniques. Extensions to that system would include color
usage and eventually 3D representation. Ultimately, however, the way that humans are
able to recognize and transform shape can never be fully supported in the current day's

computer architectures. In short, the systems would need to be re-built from the ground

up.

With respect to user interfaces to support an environment for the immediacy of the artist's
mark as a computation device, the playing field is still relatively open and challenging.
An exciting research area in sketch and gesture recognition is an excellent place to look
for possibilities. The research of Arvo [2] and LaViola [31] is particularly inspiring.
Displays are also a critical part of the equation for the computational artist. The notion of
the display as substrate is not too distant in the future as early work in the area of paper—

like displays demonstrates [19].

In summary, the artist's ability to define computational devices in the analog domain that

support their aesthetic understanding can only lead to their increased awareness and
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abilities. And perhaps it will also alter the way they work; that has certainly been the

case here. In addition, as artists become more facile with and encouraged by analog
computational approaches, the demand for the digital realm to follow will only increase.
We have already seen proof of this in the realms as they exist today where creative

demands continually push the boundaries of our tools.

Figure 5-1. Questo non ¢' un cerchio.
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Appendix A First Formal Grammar and a Derivation

Rules 1 and 2 address the requirement to loosely follow the form of an implied shape
where rule 1 creates the exterior shape and rule 2 the interior shape. The various forms of
rule 3 provide a system for closing segmented shapes in a simple way, namely the closing
of exterior and interior shapes independently (rules 3b, b.2, d). Drawings resulting from
these rules more closely resemble the implied, non—drawn shapes. Rule 3c is responsible
for joining interior and exterior shapes as part of the closing process. It is this rule that
creates shapes that do not resemble the initial implied shapes. Rules 4, 5,9 and 10
provide depth information and shape embellishment. Rule 8 is very similar to the basic
Ice Ray rule [Stiny 19xx] in that it divides a shape into pleasingly balanced smaller

shapes. The end of this appendix presents a possible design outcome in figure A—34

using these rules to generate the design. Throughout the rules the marker, %ﬁ, denotes
segments of a segmented shape and the preferences for connecting other segments to it.

o is the preferred angle of connection while f is the second choice.



Rule 1_open

Figure A-19. Rule 1_open replaces the empty shape with a segmented shape based on an implied
primitive. In this case, the implied shape is a circle, but may be any other simple shape such a triangle,
square, spiral. The dot and arrowhead serve as labels for subsequent replacement rules.

Rule 1 _closed

Q@ =
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Figure A-20. Rule 1_closed is essentially the same as Rule 1_open with the difference that a closed form

replaces the empty shape. In this case the implied replacement shape is a rectangle.



Rule 2_open

where the number of

the number of (

o

is less than or equal to
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Figure A-21. Rule 2_open replaces a segmented shape with two segmented shapes, one within the other.

The dot, dash, angle marker and two arrowhead styles serve as labels for subsequent replacement rules.

Rule 2_closed

Figure A-22. Rule 2_closed replaces a non—-segmented shape with two closed shapes, one within the
other. In this case, the outer shape is an implied rectangle while the inner shape is an implied triangle.
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Rule 3a

ey

connect within angle a 1st choice
connect within angle f 2nd choice
without intersecting any other line segment

all “%x must be gone before moving to Rule 3¢

Figure A-23. Rule 3a shows the joining rule for two segmented shapes with an inner and outer
relationship. Stating preferences for angles ensures that the two forms do not cross over each other in
undesirable ways. The shade area represents the interior, or filled area, of the shape as subsequent rule
applications occur.

Rule 3b

ﬁf :
p
« =

p

connect within angle o 1st choice
connect within angle p 2nd choice

without intersecting any other line segment

all ”@E must be gone before moving to Rule 3¢

Figure A-24. Rule 3b shows the joining rule for segments of an inner shape. The shaded area represents
the interior of the shape that will ultimately be closed by repeated rule application.



Rule 3b.2
o =>
B
o
p

connect within angle « 1st choice
connect within angle B 2nd choice
without intersecting any other line segment

all ﬁ§ must be gone before moving to Rule 3c
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Figure A-25. Rule 3b.2 shows the joining rule for segments of an inner shape. The shade area represents

the interior of the shape that will ultimately be closed by repeated rule application.

Rule 3¢

/%,\ 9&/

connect within angle « 1st choice
connect within angle f 2nd choice

without intersecting any other line segment

Figure A-26. Rule 3c shows the joining of tail portions of exterior and interior shape segments. The

shaded area represents the inside edge of the form.
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Rule 3d

Figure A-27. Rule 3d show the joining rule for segments of an outer shape.

Rule 3e

Figure A-28. Rule 3e shows the completion of filling a closed shape.
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Rule 4

Figure A-29. Rule 4 shows the ability to add a decoration to the exterior of a shape much like a drop
shadow effect to create depth to the form.

Rule 5

Figure A-30. Rule 5 shows the ability to add a decoration to an interior shape much like a drop shadow
effect to create depth to the form.
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Rule 8

&

Figure A-31. Rule 8 shows the ability to split a closed shape into two shapes.

Rule 9

Figure A-32. Rule 9 is a variation of Rule 4 that allows further decoration to the exterior of a closed
shape.
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Rule 10

&

Figure A-33. Rule 10 allows a decoration to be added between two closed shapes.
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Rule 3d — twice Rule 3b — once Rule 3a — twice

=> =>
Rule 3¢ — twice Rule 3e — twice Rule 2 closed — four times

=i =>
Rule 10 — twice Rule 5 — four times Rule 9 — four times

Figure A-34. Derivation of completed shape using initial design language and based on implied circle
within a circle.



