Lecture 11: Isolated Singularities

(Text 126-130)

Remarks on Lecture 11

Singularities: Let \(f(z) \) be holomorphic in a disk \(0 < |z - a| < \delta \) with the center \(a \) removed.

(i) If

\[
\lim_{z \to a} f(z)
\]

exist or if just

\[
\lim_{z \to a} f(z)(z - a) = 0,
\]

then \(a \) is a removable singularity and \(f \) extends to a holomorphic function on the whole disk \(|z - a| < \delta \).

(ii) If

\[
\lim_{z \to a} f(z) = \infty,
\]

\(a \) is said to be a pole. In this case

\[
f(z) = (z - a)^{-h}f_h(z),
\]

where \(h \) is a positive integer and \(f_h(z) \) is holomorphic at \(a \) and \(f_h(a) \neq 0 \). We also have the polar development

\[
f(z) = B_h(z - a)^{-h} + \cdots + B_1(z - a)^{-1} + \varphi(z),
\]

where \(\varphi(z) \) is holomorphic at \(a \).

If neither (i) nor (ii) holds, \(a \) is said to be an essential singularity.
Theorem 9 A holomorphic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.

Simplified Proof: Suppose statement false. Then \(\exists A \in \mathbb{C} \) and \(\delta > 0 \) and \(\epsilon > 0 \) such that

\[
|f(z) - A| < \delta \quad \text{for } |z - a| < \epsilon.
\]

Then

\[
\lim_{z \to a} (z - a)^{-1}(f(z) - A) = \infty.
\]

So

\[
(z - a)^{-1}(f(z) - A)
\]

has a pole at \(z = a \). Thus

\[
f(z) - A = (z - a)(z - a)^{-h} g(z),
\]

where \(h \in \mathbb{Z}^+ \) and \(g(z) \) is holomorphic at \(z = a \).

If \(h = 1 \), \(f(z) \) has a removable singularity at \(z = a \). If \(h > 1 \), \(f(z) - A \) has a pole at \(z = a \) and so does \(f(z) \). Both possibilities are excluded by assumption, so the proof is complete.

Q.E.D.

Exercise 4 on p.130.

Suppose \(f \) is meromorphic in \(\mathbb{C} \cup \{\infty\} \). We shall prove \(f \) is a rational function. If \(\infty \) is a pole, we work with \(g = 1/f \), so we may assume \(\infty \) is not a pole. It is not an essential singularity, so \(\infty \) is a removable singularity. Thus for some \(R > 0 \), \(f(z) \) is bounded for \(|z| \geq R \). Since the poles of \(f(z) \) are isolated, there are just finitely many poles in the disk \(|z| < R \). (Poles of \(f(z) \) are zeroes of \(1/f(z) \).) At a pole \(a \), use the polar development near \(a \)

\[
f(z) = B_h(z - a)^{-h} + \cdots + B_1(z - a)^{-1} + \varphi(z).
\]

The equation shows that \(\varphi \) extends to a meromorphic function on \(\mathbb{C} \cup \infty \) with one less pole than \(f(z) \). We can then do this argument with \(\varphi(z) \) and after iteration we obtain

\[
f(z) = \sum_{i=1}^{n} P_i \left(\frac{1}{z - a_i} \right) + g(z),
\]

where \(P_i \) are polynomials and \(g \) is holomorphic in \(\mathbb{C} \). The formula shows that \(g \) is bounded for \(|z| > geR \) and being analytic on \(|z| \leq R \), it thus must be bounded on \(\mathbb{C} \). By Liouville’s theorem, it is constant. So \(f \) is a rational function.