Stochastic Processes

\(T \) - a set, \((\Omega, \mathcal{F}, \mathbb{P})\) - probability space

A stochastic process \(X_t(\omega) = X(t, \omega): T \times \Omega \to \mathbb{R} \)

such that for each \(t \in T \), \(X_t: \Omega \to \mathbb{R} \) is a random variable

Kolmogorov’s theorem: \(F \subset T \) - finite, \(\alpha(\{X_t\}_{t \in F}) = \mathbb{P}_F \)

If \(F_1 \subset F_2, \mathbb{P}_{F_1} = \mathbb{P}_{F_2}|_{\mathbb{R}^{F_1}} \) where \(|_{\mathbb{R}^{F_1}} \) means restricted to the coordinate of \(F_1 \)

\(\mathbb{R}^T \), for a fixed \(\omega \in \Omega, X_t(\omega) \in \mathbb{R}^T \), a function \(T \to \mathbb{R} \)

\(B_T \) - cylindrical \(\sigma \)-algebra generated by cylindrical sets:

\(F \subset T \) - finite, \(B \) - Borel set in \(\mathbb{R}^F, B \times \mathbb{R}^T|_F \)

Define a map \(X: \Omega \to \mathbb{R}^T, X(\omega) + X_t(\omega) \in \mathbb{R}^T \)

\(\mathbb{P} \circ X^{-1} \) - the law of \(X_t(\omega) \) on \(\mathbb{R}^T \)

\[\left\{ \sup_{t \in T} X_t > 1 \right\} \]

may not be a measurable set

\[\bigcup_{t \in T} \{X_t > 1\}; T = [0, 1], \mathbb{E} \int X_t dt \]

Definition 1. \((T, d)\) - metric space

\(X_t \) - sample continuous if \(X_t(\omega) \in C(T) \) - continuous function on \(T \) for all \(\omega \in \Omega \)

\(X_t \) is continuous in probability of \(X_t \xrightarrow{\text{in prob}} X_{t_0} \) if \(t \to t_0 \).

Example.

\((\Omega, \mathbb{P}) = ([0, 1], \lambda - \text{Lebesgue measure}), T = [0, 1]\)

\(X_t(\omega) = I(t = \omega), X_0(\omega) = 0, t \text{ fixed}, X_t = I(\omega = t), \mathbb{P}(X_t = 0) = 1, \mathbb{P}(X_t^j = 0) = 1 \)

\[\mathbb{P}(\{X_t \text{ is continuous}\}) = 0 \text{ or } 1 \]

Definition 2. \((T, d)\) - metric space. \(X_t \) is measurable on \((T, \mathcal{B}) \times (\Omega, \mathcal{F})\) if \(X_t(\omega): T \times \Omega \to \mathbb{R} \)

Lemma 1. If \((T, d)\) - separable metric space, \(X_t \) is sample continuous then \(X_t \) - measurable.

\[j \]

\((X_j)_{j \geq 1} \) - a partition of \(T \) such that diameter\((C_j) \leq \frac{1}{n} \)

For \(t \in S_j, X_t^n(\omega) = X_{t_j}(\omega) \) for \(t_j \in S_j \)

\(X_t^n(\omega) \) is obviously measurable on \(T \times \Omega \), convergence due to the fact that \(X_t \) is sample continuous.

\(C(T) \subseteq \mathbb{R}^T; (C(T), || \cdot ||_\infty) \) - metric space

\(B \) - Borel sets in \(C(T) \), i.e. generated by open balls \(\{f \in C(T): ||f - g||_\infty < \epsilon\} \)

Lemma 2. \(T = [0, 1]; \mathcal{B} = S_T = \{B \cap C(T): B \in B_T \} \) - cylindrical \(\sigma \)-algebra

Proof.

\(S_T \subseteq \mathcal{B}; B \in \mathbb{R}^F \) - Borel set, \(B \times \mathbb{R}^T|_F = \{(x_t)_{t \in F} \in B\} = \{X(x_t) \in B\} \subseteq \mathcal{B} \)

\(X: C(T) \to \mathbb{R}^F, X(x_t) = (x_t)_{t \in F}, X \) - continuous in \(|| \cdot ||_\infty \Rightarrow \text{measurable} \)
would work for separable sets

Take a closed ball \(\{ f \in C(T) : \| f - g \|_\infty \leq \epsilon \} = \bigcap_{\text{rational } t} \{ |f(t) - g(t)| \leq \epsilon \in S_T \Rightarrow \mathcal{B} \subseteq S_T \} \)

cylindrical algebra restricted to continuous functions

The law on \((C(T); \| \cdot \|_\infty)\) is entirely determined by finite dimensional distributions. \(\square\)

Brownian motion

\(X_t = 0, X_t, X_s - X_t \) is independent of \(X_t \) and \(X_s - X_t \equiv X_{s-t} \)

\(\sigma^2(t) = \text{var}(X_t), \sigma^2(nt) = n\sigma^2(t), \sigma^2\left(\frac{t}{m} \right) = \frac{1}{m^2}, \sigma^2(qt) = q\sigma^2(t) \)

\(X_t = \sum_{k=1}^{n} \left(\frac{X_{n_k}}{m} - X_{\frac{t(n-1)}{n}} \right) ; X_t \) is Gaussian; If \(\sigma^2(1) = 1, \sigma^2(t) = t \)

\(s < t, \mathbb{E}X_s X_t = \mathbb{E}X_s (X_s + (X_t - X_s)) = s = \min(t, s) \)