28.2a) Looking at Gram-Schmidt algorithm we see that each column \(j \) of \(Q \) is a linear combination of the columns \(1 \) to \(j \) of \(A \), so \(Q \) is upper Hessenberg. On the other hand since \(A \) is tridiagonal we have \(r_{ij} = 2 \) for all \(j > i + 2 \). So \(R = \)

\[
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\]

and \(Q = \)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

b) The matrix \(RQ \) must be upper Hessenberg and also \(RQ = QRT \) is symmetric since \(A \) is symmetric so \(RQ \) is upper Hessenberg and symmetric which means tridiagonal.

c) At step \(i \) only the element \(a_{ii} \) needs to be made 0. This can be done by using a 2x2 Householder reflection based on \(a_{ii} \) and \(a_{ii} \). This will affect only 6 elements of the matrix, namely \(a_{ii} \), \(a_{ii+1} \), so we need 6 flops for multiplications and 24 flops at each step. A total of \(m-1 \) steps have to be done, ending with 24 \(m \) operations, compared with \(O(m^3) \) for a full matrix.

30.3 Let \(A \) be the matrix and \(A' \) the updated matrix. Let \(|a_{jj}'| = \max |a_{ij}|. \)

If \(a_{jj} \) is zeroed out then:

\[
a_{jj}' = a_{jj} = a_{jj} + a_{jj}' + 2a_{jj}'^2 = (a_{jj} + a_{jj}') + 2a_{jj}'^2 = (a_{jj})^2 + 2a_{jj}'^2.
\]

Now \(\| A' \| = \sum_{i,j} |a_{ij}'|^2 \)

\[
\| A \| = \sum_{i,j} |a_{ij}|^2
\]

since \(\| A' \|^2 = \sum_{i,j} |a_{ij}'|^2 \leq m(m-1) \sum_{i,j} |a_{ij}|^2 \)

we get \(\| A' \| \leq \| A \| (1 - \frac{2}{m(m-1)}) \)

or \(\| A' \| \leq (1 - \frac{2}{m(m-1)}) \| A \| \).

30.6 Simple computations show that:

\[
\begin{align*}
\text{If } & p(z) \neq 0, \\
p^{(1)}(2) &= 0, & p^{(0)}(2) &= 1, & p^{(2)}(2) &= -1, \quad \text{if } z = 2 \\
p^{(1)}(2) &= 0, & p^{(0)}(2) &= 1, & p^{(2)}(2) &= 1 \\
p^{(1)}(2) &= 0, & p^{(0)}(2) &= 0, & p^{(2)}(2) &= 0
\end{align*}
\]

The sign sequence is +1, +1, -1, +1, which means that no eigenvalues of \(A \) are smaller than 2.

Now \(p(x) = x^4 + 1 \), \(p^{(4)}(x) = 4x^3 + 1 \), \(p^{(3)}(x) = 12x^2 + 0 \), \(p^{(2)}(x) = 24x + 0 \), \(p^{(1)}(x) = 24x^2 + 0 \).

The sign sequence is +1, -1, -1, +1 and there is one sign change, which means that 1 eigenvalue of \(A \) is smaller than 1.

So there is only one eigenvalue of \(A \) in \([2, 2]\).