
A MICROPROCESSOR IMPLEMENTATION OF AN

IMAGE ENHANCEMENT/TRANSMISSION SYSTEM

by

RALEIGH CEDRIC GALLINGTON

B.S. Massachusetts Institute of Technology

(1978)

SUBMITTED TO THE DEPARTMENT OF

ELECTRICAL ENGINEERING IN PARTIAL

FULFILLMENT OF THE

REQUIREMENTS FOR THE

DEGREES OF

MASTER OF SCIENCE

and

ELECTRICAL ENGINEER

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1981

@ Massachusetts Institute of Technology

Signature of Author

/.
Certified by

De.rtment of Electfical Engineering
-•August 7, 1981

... F....eiber

Accepted by / - •-- iArchvs Arfur SmithArchives
MASSACHUSETTS INSTiTUTE Chairman, Department Ccamittee

OF TECHNOLOGY

NOV 13 1981

t IBRARIES

-2-

A MICROPROCESSOR IMPLEMENTATION

OF AN IMAGE ENHANCEMENT

TRANSMISSION SYSTEM

by

RALEIGH CEDRIC GALLINGTON

Submitted to the Department of Electric Engineering
on August 7, 1981 in partial fulfillment of the
requirements for the Degree of Master of Science

and Electrical Engineer.

ABSTRACT

This thesis describes the design (implementation)
and performance of an image enhancement/transmission
system and involves the use of a standard Intel 8080
or 8085 microprocessor system. Given image data at
8kb/s corresponding to values obtained by raster
scanning the image, performs a 2:1 data compression
using psychovisual coding techniques and presents
this data to a communication channel of 4kb/s cap-
acity. This channel could be, for example, a stan-
dard voice communication channel. The receiver por-
tion of the system reconstructs an image from this
data that is visually superior to the original image.
The transmitter and receiver portions of the system
are the subject of this thesis.

Thesis Supervisor: William F. Schreiber

Title: Professor of Electrical Engineering

-3-

Acknowled rement s

I wish to thank Professor Schreiber for proposing, •supe-

vising, and sponsoring this work. I also wish to thank

Lakshmi Dasari and James Cyr for their surgestions for and

assistance in the construction of the hardware, respectively,

and Deloris Butler for her invaluable assistance in the

preparation of this paper.

Raleigh Cedric Gallington

-4-

TABLE OF CONTENTS

Page

Abstract

Acknowledgements 3

Table of Contents

Table of Figures 6

Chapters
I. Introduction .. 8

II. Backround . 12
1. Enhancement 12
2. Compression . 14

III. Functional Block Diagram 18

IV. System Implementation 29
1. Gradient and Local Contrast 29
2. Low-Pass Filter 36
3. Subsampler and Interpolator. 38
4. Compander 40
5. Overall System.. 42
6.a. Transmitter Controller 42
b. Receiver Controller 44

V. Simulator Implementation 46
1. Support Programs 46
2. Transmitter Controller 46
3. Receiver Controller 60

VI. Microcomputer Implementation 69
1. System Requirements 69
2. Microcomputer System Design 75

a. CPU Group 75
b. ROM Group 79
c. RAM Group 79
d. I/O Group 81
e. DMA Group 89

VII. Conclusion and Suggestions For Further Work 93
A. Simulator Implementaion. 93
B. Microcomputer Implementation 94

Appendices 97
A. Transmitter Controller Routine 98
B. Pattern Generator 112
C. The Gradient Subroutine 115
D. The Local Contrast Subroutine 117

-5-

TABLE OF CONTENTS

E. The Horizontal Low-Pass Filter Subroutine

F. The Vertical Low-Pass Filter Subroutine .

G. The Vertical Interpolator Subroutine

H. The Horizontal Interpolator Subroutine

I. The Receiver Routine

J. The I/O Routines

K. The Multiplication Subroutine

L. Parameter Storage

Page
. 120

....... . 124

........ 126

....... . 128

. 130

........ 138

....... . 142

.. 144

References 147

-6-

TABLE OF FIGURES

Page
16d 1-4 4h-JL i ti St

2-1. e. Iyt WLI UCUoLLL'QL..•CL . A

3-1. System Orientation

3-2. Transmitter Functional Block Diagram

3-3. Receiver Functional Block Diagram

3-4. Filter Coefficients

3-5. Luminance Scale Factor

3-6. Local Contrast Scale Factor

4-1. Gradient Area

4-2. Local Contrast Area

4-3. Local Contrast with Column Update

4-4. Local Contrast Areas with Vertically Adjacent Centers
2J. JJVVL.OD~~ .L1-JL.a. ~r~c
4-6. Subsamled and InterPolated L ows

4-6. Subsampled and Interpolated Lows
5-1. TRANSMITrER-Flags, Pointers, and Memory Allocation . . .

5-2a. STATUS Flag 50
5-2b. STATUS Flag Sequence .

5-3a. FLAGA Flag

5-3b. FLAGA Flag Sequence . .

5-4. RECEIVER-Flags, Pointers,

5-5. RFLAG Flag

5-6. RFLAG Flag Sequence . .

6-1. Microcomputer Layout . .

6-2. The CPU Group

6-3. The ROM Group . .

6-4. The RAM Group

6-5. The I/O Group

6-6. Interrupt Controller Prog

6-7. I/O Buffers and Pointers

6-8. I/O Group--External Confi

and Memory

. . . .a

.

ram Bytes .

guration .

. 50

. 54

. 54

Allocation 61

. 62

. 62

. 72

. 77

. 80

. 82

. 85

. 87

. 87

. 91
6-9. The DMA Group

19

20

21

21

27

27

31

32

34

35

39

41

. 48

quato
. 92

-7-

TABLE OF FIGURES

A-A. Transmitter Controller Routine

A-B. Pattern Generator Subroutines

A-C. Gradient Subroutine

A-D. Local Contrast Subroutine

A-E. Horizontal Low-Pass Filter Subroutine

A-F. Vertical Low-Pass Filter Subroutine

A-G. Vertical Interpolator Subroutine . . .

A-H. Horizontal Interpolator Subroutine .

A-I. Receiver Routines

A-J1. I/O Routines

A-J2. MSI Multiplier

A-K. Multiplication Subroutine

Page

. . . 99

S. . . 113

S. . . 116

S. . . 118

S. . . 120

S. . . 125

S. . . 127

. . . . 129

S. . . 131

S. . . 139

S. . . 141

S. . . 143

-8-

INTRODUCTION

The image enhancement/transmission system described herein

consists of an 8080 microprocessor implemented image enhancer/

transmitter (transmitter) and an image receiver/reconstructor

(receiver)*. Although a discussion of the performance of one

without the other is not very mearingful, their design and

operation can be discussed seperately once the system's spec-

ifications have been discussed.

The enhancement technicues used in the system have been

verified by, and rely heavily on, results from the theses of

Curlander (1), Gilkes (2), and Hoover (3). Curlander and

Gilkes discussed enhancement techniques while Hoover presented

and discussed the performance of a system whose overall approach

and operation is similar to that of this system. These results

will be summarized in a later section.

The function of this system is to perform a 2:1 data com-

pression of the information from a digitized image and transmit

it to a remote receiver without degrading the subjective visual

quality of the resultant image and possible even improving it.

The basic approach involves first separating the high and low

spatial frequency components (content) of the image, then per-

forming the data compression on each independently. Thus it is

not necessary to find a single algorithm which can be successfully

applied to the entire image content .without failing to meet the

- i- i ii i . .

* The transmitter and receiver could also be describer as a psycho-
visual coder and decoder respectively, see ref. (T.H. Huang)

-9-

system objectives.

The low frequency components(lows) can be compressed by

simply subsampling the values since, by their very nature,

these values vary spatially quite gradually. Just how

gradually they vary depends on the frequency response of the

filter used to extract them. Thus the lows value for a given

pel (pixel) location will not be much different than the

corresponding values at nearby pel. Thus, not much error is

introduced if a particular pel value is also assumed to be the

value at all of the nearby* pels. Since that value would then

specify the pel values for that entire area only that one pel

value need be sent to the receiver for it to reconstruct the

area. The error, although small, would be highly structured

spatially (as is typical of quantization noise), and its

visibility would tend to be emphasized as spurious contours

as the spatial sampling rate is decreased; thus limiting the

degree of subsampling allowable. This piecewise constant

approximation can be readily improved upon by somewhat smoothing

the transition from one value to the next. By assuming the lows

to be spatially piecewise linear rather piecewise constant, a

greater degree of subsampling can be allowed, and since linear

interpolation can be easily reproduced in the receiver this is

achieved without any increase in the amount of information to

be transmitted. A gaussian interpolation would allow subsampling

* "nearby" is relative to filter length

-10-

to an even greater degree but would also be considerably more

difficult to implement, especially in the receiver. In fact,

for the amount of data compression desired for this system

it is not worthwhile to go beyond the linear interpolator.

The high frequency components, on the other hand, vary

quite rapidly spatially and thus do not lend themselves readily

to subsampling. Instead, data compression is achieved by

quantizing (elimination of the lower order bits) the original

8-bit high pel values to 3 bits. To reduce degradation of the

resultant image, the highs are adaptively enhanced and companded

before quantization. Noise processing (dithering) at both the

transmitting and receiving ends, using Robert's techniques (7),

is also used to reduce the visible effects of this quantization,

such as edge contours*. The enhancement procedure involves two

scaling operations. The first is a scaling of the highs pel values

according to the luminance (value) at that pel location in the

original image. This is then followed by a scaling according to

some measure of the amount of detail in the area, i.e. the amount

of edge information. These two procedures are hereafter referred

to as the luminance and detail scaling functions, respectively.

The receiver has the task of reconstructing the image from

the transmitted lows and highs. The transmitter carries the

brunt of the computational load, largely leaving the receiver

to only correctly align and add the highs and lows. It must

also expand the highs, complete thr noise processing, and inter-

SNote that it is impossible to use an average of four or more bits
per highs value, transmit the subsampled lows, and still keep
pace with the incoming image data.

-11-

polate the lows values, but these ooerations are relatively

straightforward comoared to those recuired in the transmitter.

After these are completed, for each given p&l location, the 8-bit

resultant data is presented to a facsimile reproduction device

at a rate of 1-kbyte/s (8kb./s); the same as the data rate from

the scanning device to the transmitter.

-12-

II. Background

Before further discussion of the actual implementation of the

system, a summary of some of the theoretical and

empirical bases for the techniques just mentioned is

in order. These techniques are used to first achieve image

quality improvement by means of increasing the sharpness and de-

creasing the noise (9), and then to perform data compression with

minimal effects on the resultant image quality (II). While the

section does not delve much into the details of human visual per-

ception in general, it does make use of some important findings.

II-1 Enhancement

As mentioned earlier, the system relies heavily upon the

findings of Gilkes (2), Curlander (1), and Hoover (3). In Gilkes'

work digital unsharp masking* was used to optimally sharpen images,

an improvement on direct linear amplification of the edge informa-

tion (highs). In this technique an unsharp (or slightly fuzzy)

mask from the original** is combined with the original in such a way

as to achieve a form of spatial high pass filtering. A scale factor

is determined from the resulting image data at each pel then applied

to the corresponding pel of the original image.

From experimental results he found that for optimum edge

sharpening this scale factor should (1) be considerably larger in

bright areas, (2) be inversely related to edge contrast,** and

* see ref. [9 sectiao V7. E.
** The mask would correspond to the image resulting from the lows

data in this system.
*** 1) and 2) correspond to this system's luminance and detail

scaling factors, respectively.

-13-

(3) have magnitude such that the dynamic range of the optimally

sharpened image does not exceed the limitations of the system and

lead to edge compression. The measure of edge contrast used here is

the edge information itself. This corresponds to the scaling of the

edge information (highs) of the original by a factor determined by

the same edge information, i.e. a nonlinear scaling and by a factor

determined by the luminance of the original. A significantly greater

amount of sharpening can be achieved than is possible with linear

scaling without causing such visible artifacts as mach bands (9) and

increased noise visibility (graininess in the image). These mach

bands, which appear as light or dark halos alongside an edge, result

from excessive overshoot and/or undershoot in the luminance transi-

tion, which corresponds to the edge, and are characteristic of

oversharpening. While this approach can achieve optimal sharpening

over the entire image, Gilkes found that it also leads to some de-

formation of the edges. Also, while it can reduce noise visibility,

it does not differentiate between this undesired noise and desired

texture in the image.

Curlander also dealt with optimal sharpening and, in fact,

achieved this without the edge deformation inherent in Gilkes'

approach.* One major difference between his approach and the

approach in the earlier work by Gilkes was the measure of edge con-

trast used to determine the corresponding scale factor. Curlander

used a detail measure corresponding to the average over an area of

the magnitude of the edge information rather than the edge informa-

* Curlander's work was a continuation of the work done by Gilkes.

-14-

tion itself. In addition to the guidelines for scale factor deter-

mination arrived at by Gilkes, it was determined that the contrast

scaling factor should be small for low detail measures to avoid

accentuating noise. As before the reduction of noise visibility may

also cause the attenuation of some desired texture since they may

involve approximately the same amount of detail or edge activity. It

is possible, however, to achieve rendition of texture superior to

that of Gilkes' approach (9).

As did Gilkes, this detail scaling is combined with edge scaling

according to the luminance value of the original, taking advantage

of the fact that more edge sharpening can be tolerated in high lum-

inance (bright) areas than in lower luminance (darker) areas. This

is because such artifacts as the occurrance of mach bands and noise

visibility are inversely related to luminance (7). The optimal

scale functions according to detail measure and according to lumin-

ance were both determined empirically (1) and are used directly in

this system.

11-2 Data Compression

The aim of psychovisual coding* is to achieve data compression

by selectively eliminating that information which is relatively unim-

portant to the visual quality of the image (5) (10) (11). The tech-

nique used for the lows data is closely related to the sampling theorem

(or Nyquist criterion). Since the lows are clearly bandlimited, the

subsampling and reconstruction procedures are directly analogous to

* also referrec to as psychophysical coding.

-15-

the sampling and reconstruction of, for example, a continuous time

waveform. The compression technique used for the highs cannot be

so easily related to linear system theory and is dependent rather

on knowledge about the visual perception of edge information.

While the human eye is very sensitive to edges it is not very

sensitive to the exact size of the actual edge transition (5).

Quantization takes advantage of this insensitivity, with the

number of bits kept being determined by the dynamic range and/or

resolution necessary to maintain the optimal sharpening achieved by

the enhancement procedures*. For example, if not enough resolution

were retained the error between the quantized and unquantized edges

might be large enough to produce the visual artifacts of oversharpen-

ing or, on the other hand, produce unsharpened edges.

A more objectionable effect of the quantization is appearance

of artificial contours paralleling the real edges and corresponding

to the quantization steps encountered as an edge is approached**.

(see Figure 2-1). To minimize the visibility, the highs are com-

pressed such that the quantum levels correspond to subjectively equal

increments of brightness (9). The receiver expands this quantized

information to restore the highs. The function used for the compres-

sor and expander (compander) are thus based on empirical facts con-

cerning the human eye's brightness perception (3).

SHoover (3) obtained excellent results with three bits.
** Huang (4) found that 100 level ("-7 bits) were needed to present

the occurance of visible quantization noise.

-16-

N

lacement

FIGURE 2-1 Edge with k-steps

I

-17-

compressed* 127 -(highs - 1) +
highs 127'" 5 - 1

expanded =
highs

2

+

The visibility of the quantization noise also tends to be empha-

sized because of the eye's greater sensitivity to strongly structured

noise, as opposed to unstructured (random) noise. Roberts' (7) noise

processing scheme exchanges this strongly structured quantization noise

for spatially random noise, thus greatly reducing its visible effects.

In this technique, pseudorandom noise is added to the highs. After

quantization and transmission to the receiver, the same noise** is

subtracted, giving data with random noise of noise power equal to

that of the quantization noise in the absence of the noise

processing.

Hoover's work demonstrated the performance of an enhancement/

transmission system utilizing the techniques just discussed, veri-

fying that the combined effect of the enhancement and data compression

techniques, does indeed correspond to an overall improvement in the

visual quality of an image.

* Note that the number, 127, is the maximum positive or negative
value of the highs data.

** Since the noise is pseudorandom, it can be duplicated in the
receiver.

-18-

III. Functional Block Diagram

This section is concerned with the discussion of the functional

block diagram. Although in the actual implementation some of the

functions are distributed somewhat differently.* The block diagram

describedL in this section is more useful in explaining the opera-

tion of the system. Figure 3-1 shows how the system would be

utilized (set up) for an actual image transmission process.

The functional block digrams for the transmitter and the receiver

are shown in figures 3-2 and 3-3 respectively. The necessary delays

have not been included here but will be discussed in the section(s)

dealing with implementation. These diagrams do, however, show the

flow of data through the major blocks of the system; blocks which

correspond directly to operations descussed in earlier sections.

The operation of (design of) each of the blocks and their inter-

action with one another are discussed after a brief discussion of

of the overall system as shown in Figure 3-1.

The transmitter accepts 8-bit data values from the scanning

device at a rate of one word per second, i.e. 8kb/s, and presents

data to the transmission channel at a rate of 4kb/s. The data

from the scanner to the transmitter must be accompanied by, or

contain, appropriate framing pulses** to facilitate successful

transfer without necessarily having prior knowledge of the size of

the original image. Given the scanner's rate of 8kb/s, the trans-

* This will be discussed in a later section.
** new page (image) and new line indications

-19-

FIGURE 3-1 System Orientation

-20-

Transmitter Functional Block Jianram

FIGURE 3-2

-21-

Receiver Functional Block iiaqram

FIGURE 3-3

k -4 -3 -2 -1 0 1 2 3 4

ak 1 3 13 28 37 28 13 3 1

1 3, I \I

3-~

± -.- ~

F i-L i-4 Filtrr Coefficients

-22-

mitter's 2:1 data compression and the transmission channels 4kb/s

capacity there is no channel capacity left in which to send these

necessary framing signals to the receiver.

Two alternative methods to circumvent this problem were con-

sidered: 1) Delay the beginning of the transmission and use this

time to send a count of the number of pels per line. 2) Have the

framing pulses (indications), when they occur, override the data

value being transmitted.

The delay of the first method would not pose a problem and has

the desirable feature of leaving the actual image data unaffected.

However, any framing errors that might occur* would tend to accum-

ulate line to line since the system would have no means of realig-

ning itself.

The second method does affect the data, but is immune to the

type of cumulative framing errors of the first. In addition, not

that the only data affected is the first or last pel value on each

line and corresponds only to the outer boundary of the image. Since

this does not affect visual quality, this method is chosen over the

first.

The first block to be discussed is the low-pass filter, the

major tool in the separation of the lows and highs data. It is a

two dimensional, circularly symmetric Gaussian digital filter. It is

implemented as two cascaded one-dimensional filters; one for hori-

* An error in the line length assumed by the receiver could
result from a miscount in the transmitter or even just a
noisy transmission.

-23-

zontal, one for vertical. This is a valid procedure for any multi-

dimensional filter whose impulse response is a separable sequence (5)t

Each of the filters is implemented as a weighted sum with nine non-

zero coefficients

Sa -ak x[n- k] # ak , x[n- k]
k, - co k = -4

where x[n] is the original data along either a horizontal or vert-

ical line, depending on the direction of the filter. Thus the

separation into two filters implies that

4 4

4 4
Sbk a a x[i- k, J - 1

kk -4 = --

i.e. - bkl= ak * al

where x[i,j] is the original image data's 2-D representation.

Each of the filters requires nine 8 x 8 - bit multiplications

and the summation of these 16-bit products. Thus the representation

* For example, a 2-9 filter whose coefficients correspond to the
function exp[- (x +2y) can be s parated into two cascaded
1-D filters lexp (-x) and exp (-y)]. However, if the co ffi-
cients were to correspond to a function such as exp[-(x.y) 1,
separation into two 1-D filters is not valid since there is
no way to separate such a function into two functions, each
of just one variable.

-24-

of the output of the filter would require 20 bits. The microproces-

sor used has only 8-bits/word so that this would require multiple

precision arithmetic, for which there is neither enough computation

time or memory space available. Limiting the filters to single pre-

cision arithmetic, the multiplication operation rounds off to an

8-bit product and the filter coefficients are constrained to

S ak < 128.

This guarantees that the nine 8-bit products will not lead to a

more than 8-bit sum (3). (see Fig. 3-4).

The algorithm for the multiplication operation is to shift

and add, much as would be done by hand. The individual bits of

the multiplier are used to determine whether or not to add the

next left-shifted version of the multiplicand to the accumulated

sum. In actual implementation, beginning with the LSB of the

multiplier, the multiplicand is multiplied by either one or zero

(depending on the multiplier bit), added to the existing sum, and

the result shifted right one bit. This is repeated eight times for

an 8x8 multiplication and gives a full 16-bit product. However, if

only the eight MSB's of the sum are kept at any time and after the

last shift the bit shifted out* is added to the sum, the desired

product,rounded to eight,bits results. As an example of this al-

gorithm, consider a 4x4 bit multiplication with a desired 4-bit

This bit being one implies that the lower order byte of the
product would have been one-half or more of the upper byte
LSB (i.e. 1 128).

-25-

rounded product. (example shows 11(1011) times 5(0101))

Step #1. multiply 0101 0101
by LSB

#2. add to 0000 + 0101 0101
sum

#3. shift sum 0101 40010
right

#4. multiply by 0101. 1 =) 0101
2nd LSB

#5. add to sum 0010 + 0101 4 0111

#6. shift sum 0111 0011
right

#7. multiply
by 2nd 0101 -0 + 0000
MSB

#8. add to 0011 + 0000 4 0011
sum

#9. shift sum 0011 40001
right

#10. multiply 0101. 1 4 0101
by MSB

#11. add to 0001 + 0101 2 0110
sum

#12. add bitlast shifted 0110 + 1 40111; which is 56 if one kept
track of the decimal
point.

The error inhereat in this algorithm is common to any fixed

point multiplication algorithm using finite word lengths (clearly

11' 5 = 55, not 56). The round off improves the resolution by one

half bit (i.e. a factor of vf), therefore, the 8x8 multiplication

is accurate to one part in 362 (28.5).

The results from the filter are subsampled by a factor of four

-26-

horizontally and a factor of two vertically to obtain the lows data

to actually be transmitted. This subsampled data is also linearly

interpolated in two dimensions and subtracted from the corresponding

unfiltered original data to obtain the highs. Since the receiver

has the same interpolation scheme, it agrees with the transmitter

on the lows data. This insures that the transmitter's enhancement

of exactly the information that the receiver lacks after having

received and interpolated the lows data, i.e. the receiver's highs

data.

The enhancement of the highs involves the determination of two

scale factors. The first, the luminance scale factor, is obtained

from a lookup table (Fig. 3-5) using the corresponding original

data value as the index. The determination of the detail scaling

factor is more involved in that the index to be used is the local

contrast. This is computed as average of the magnitude of the

gradient over a 15x15 pel area centered at the pel to be scaled

(Figure 3-6).

Computation of the gradient at a given pel involves the four

adjacent pels (Right, Left, Above and Below) as shown below.

gradient (pel) (~ +el IR -2 pel) horizontal

+(el- BI + JA - oeli)vertical
2 2

The remaining blocks perform the data compression of the highs.

The first block is the amplitude compressor which in effect makes

the quantization steps smaller for smaller inputs or, equivalently,

-27-

LC F - .1 + .01LC O-LC-21
.4 22-LC-35

=.35 - 1.25LC 35-LC-50
=-.05 60-LC-255

64

contrast

Local Contrast. Scale Factor

FIGURE 3-6

Luminance
Scale
Factor

ýU IUU I U LUU L U \X

Luminance Scale Factor
luminance

FIGURE 3-5

A

IYYII

-28-

makes them larger for larger inputs. This is done in such a way

that the steps are equally visible over the whole dynamic range (9).

The function, about midway between logrithmic and linear, follows

the equation presented toward the end of section II.

compressed = 127 (highsl " 5- 1)/(127" 5- 1) + 1

Roberts' (7) noise processing is used in order to exchange the

strongly structured noise from quantization for unstructured noise

and thus reduce the visibility of spurious contours. The three

MSB's of each highs value are then presented to the transmission

channel.

The receiver (Fig. 3-3) is not required to perform any involved

operations such as filtering, etc. It accepts lows data and linearly

interpolates the missing values. It also accepts quantized highs

data from which it subtracts PRN noise values corresponding to those

added to it in the transmitter. It then expands* the result and adds

it to the corresponding interpolated lows value giving the data for

the reconstructed image.

* The expander is the inverse function of the transmitter's
compressor and is presented in section II.

-29-

IV. System Implementation

This chapter discussed the actual techniques used to implement the

the functions of the blocks discussed in chapter III. Each of these

operations must be done each time a new byte of image data is received.

Some redistribution of the blocks was necessary to reduce the amount of

computation, and thus minimize the time required.

Associated delays and memory allocation are also discussed for

each block and the section concludes with a discussion of the incorpor-

ation of framing, system initialization, and Input/Output capability.

Note that in all of the discussions to follow it has been assumed

that the image is raster scanned horizontally from left to right,

moving vertically from top to bottom. There are also references to two-

dimensional locations with the location of the most recent po' considered

as the origin as shown below.

most recently = (original) data [0,0]
received pel ý A

horizontal vertical

Note that this definition implies that locations with negative horizon-

tal and vertical components are to the left of and above the current pel,

(most recently received) respectively.

IV-1 Gradient and Local Contrast

As described in chapter III, the gradient is computed as the sum

of the magnitude of the differences between the vel of interest and the

four adjacent pels. It is implemented in software and the results are

stored in memory for later use in the computation of the local contrast.

Note that the gradient uses data from three different scan lines,

therefore requiring the storage of three lines of original image data.

-30-

The result of a gradient operation will therefore, be delayed from

the incoming data by at least one scan line. The minimum delay

minimized both storage requirements and the delay of the local contrast

operation. Figure 4-1 shows the pels involved in the gradient and their

orientation relative to the incoming data. From this, the gradient is

observed to correspond to the ecuation:

•ost recently received value

gradient (0,-1) = H2 data(0,0)-data(0,- + rlata(0,-2)-data(O,-1)

+ data(-1,-1)-data(O,-1) + data(1,-1)-data(O,-1)]

The local contrast is the average of the magnitude of the gradient

values over a 15x15 pel area centered at location (-8,-9) relative to

the location of the most recently received pel (see Figure 4-2). A

straightforward implementation of this would require 224 additions,

probably taking more than one millisecond to run*. A great reduction

in the amount of computation required is achieved by taking advantage

of the fact that the areas used for conseouetive local contrast

computations have all but 30 pel locations in common. The area moves

along with the incoming pels so that when a new pel is received the

area picks up a new column and discards its oldest (leftmosý one.

Therefore, this implementation requires the continuous storage of the

local contrast and then fifteen additions and subtractions to update

this value. Care must taken in handling the way in which this value

is affected by edges of the image. The affects at the edges themselves

are not important, but for the second technique these edge effects

* the minimum instruction cycle time of the type of system proposed
(Intel 8085) is .8 usecs.

-31-

XXXXXXA ; XX X X x A X A,(X ; X X A X

XXXXXXXXXXXXXXXXX\ XX/~XXXXX

A X X X X X X X X X X/ X X X X A X A A A A A X A A X A

XXXXXXX XXAXX A XXXXXXXXXX XX

XXXXX XXXXXXXXXXXXX X X XX XX

XX XXX ,XXXXXXXXXXX X X A A

,, A 14% X X Xi ,. x .X A x A X A- X "I A, A XA A

X . X, X X X A x A X x x x x x X x A A X X A XA A X A \ X
X X X X X X X X X X X X X X X X XXX XX X X XX
XX X ;(,;X X X X XXX;<X X X X X XX XXX X X X

x-- pel

G-- current gradient pel

•-- most recently received pel

Gradient Area

FIGURE 4-1

-32-

x x

Sxx

x xi

x xi

xx

× i
x xi
x x1

X Xxx

xx

x x

x xl
x gx

91
xxxxxxxxx

X-- 0el

m-- T.most

g-- most

recently received

xx xxx

pel

recently determined gradient pel

current local contrast pel

--Note that tnis diagram merely shows orientation and
does not imply the types of data involed.

Local Contrast Area

FIGURF 4-2

__

I______

-33-

accumulate and persist throughout the interior of the image. To reduce

these affects, any portion of the averaging area that falls outside

of the image boundaries is filled in with zeroes. In addition, to

keep whatever effect there may be from accumulating from line to line,

the local contrast value is reset to zero at the beginning of each

new line of data. Notice that with this scheme, the first fifteen

local contrast computations for each line do not involve any subtrac-

tions since the columns to be subtracted fall outside of the image

boundaries. Thus the averaging area is allowed to grow to the full

fifteen columns before any columns begin to be discarded. Figure 4-3

shows the averaging area and columns most recently added and subtracted,

respectively, and their orientation relative to the most recently received

pel and the corresponding local contrast value location.

An even greater reduction in computation can be achieved by taking

the above approach and apply it in the vertical direction as well.

Figure 4-4 shows two averaging areas with vertically adjacent centers

and the corresponding columns to be subtracted and added. Notice each

of the columns has all but two pels in common with its counterpart from

vertically adjacent area. Therefore, only two additions and subtractions

are required to update the columns or, equivalently, to directly update

the local contrast value from one line to the next. This reduction in

computation is achieved at the expense of increased storage requirements,

since, in addition to continuous storage of the local contrast value,

the contribution from the corresponding columns for each update of the

local contrast value must be stored until the following line, at which

time it will be updated. This means an additional line of storage of

value; in fact, a line of double-precision values since each is the sum

-34-

xxxxxxxxxxxxxx xxxxxxxx xxx xxxx
X X

-I
X X X X X X X X XI X X X X X X X X X X X X X

X X

X X X X X X X X X X X X X X X X X x X X X X

X X X X X X X x X X X X X X X X X X X X X X

X Xxxxxx x x x x x x xxxxx xxxcx x x xx xx x x x x x x x xxx x xx xxxx xx xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

X X X X X X X

v v v v v

X x x x X X

x X X X x x x

X X X X X X X

X X X X x X X

X X x X x X X

X X X X X X x

x x xx xx x

x x x x x x x

L x x x x x
x

oxxxxxxX

x X x

X-- pal

-- most recently recivec pel

g-- most recently ietermined gradient pel

c-- current local contrast pel

--Note that tnis diagram merely shows orientation and
does not imply the tpes of data involved.

Local Contrast with Column Update

FIGURH 4-3

A A A A A • A

-35-

xxxx X x

X Xa X

x <x xx Ix

xxxx 1 xX iXX

X xX
XXX

x-- gradient

C2--current

pel

local contrast pel

C1--corresponding local contrast pel from previous line

Local Contrast Areas with Vertically
Adjacent Centers -4nd using Column Update

FIGURE 4-4

X x

x x

x x

X X

x x

x X

X X

Clx

C2x

xx

x x

x x

xx

xx

X x

x x

XXX
x x x

I

x X, x

x nx xX aX XX XI X

x x xx <X, x

XI X

x i

X X X

x/ ,XI×t2_

-36-

of fifteen 8-bit values.

To summarize, the storage requirements of these two operations

include sixteen lines of gradient magnitude values, one line of loc'l

contrast update values, and one local contrast value. The results of

these are gradient [0,-1] and local contrast [-7,-8] an3 correspond

to one and eight lines of delay respectively. Since the highs are

scaled according to the local contrast value, the corresponding highs

value must also be stored long enough to still be available when needed.

As was alluded to briefly, the local computation requires double

precision arithmetic. The value before scaling is the sum of 225

8-bit numbers, thus requiring sixteen bits for full representation.

The high order byte is used as the index for the scale factor lookup

table, the values of which correspond to the curve presented in chapter

II.

IV-2 Low Pass Filter

As discussed in chapter III, the 2-D low pass filter is imple-

mented as two cascaded 1-D filters. Each filter has nine nonzero

coefficients, therefore, the horizontal filter requires the storage of

nine lines to give valid results. The output of this filter pair

corresponds to lows (-4,-4) regardless of the order in which they arr

implemented and note that the highs cannot be obtained until the

corresponding lows value has been determined. Therefore the original

data must be stored for at least five lines*. Even after the highs

have been separated, the lows must be stored until all of the scaling

* This actually only requires four lines plus four pels, but is
impractical to implement as such.

-37-

operations have been completed for the corresponding highs value so

that they can be transmitted together. The corresponding local

contrast scale factor is delayed by eight lines from the incoming

data, requiring that the lows and highs be stored for five* lines

after they are first obtained. Also note that the vertical filter

recuires nine lines of either original or horizontally filtrrcd data,

depending on whether it is implemented before or after the horizontal

filter, respectively. To keep from having to store the highs, sep-

aration of the highs from the original data can be delayed until the

corresponding local contrast scaling operation can be carried out.

This, in itself, does not reduce storage rcauirempnts, since now the

luminance scaling must also be delayed; bringing the storage re•uire-

ments for the original data up from five to nine lines. This means

storage has actually only been reduced by one line using this scheme.

Note, however, that these nine lines of original data are the same used

by the vertical filter when it precedes the horizontal filter. Thus

there is a net savings of 5 lines, since no additional storage of

original data is implied by delaying the highs separation.

With the vertical and horizontal filters ordered as just dis-

cussed the vertical filter operates on the data from the most recent

nine lines of original data. Their locations correspond to (0,0),

(0,-1), (0,-2), (0,-3), (0,-4), (0,-5), (0.-6), (0,-7) and (0,-8) with
the results of the operation corresponding to locations (0,-L); all

relative to the most recently received oel. The horizontal filter then

* Once again, the actual reouiremont is four lines and three pel but
is impractical to implement(complexity, computation time).

-38-

operates on the nine most recent vertical filtering results. These

correspond to locations (0,-4), (-1,-4), (-2,-4), (-3,-4), (-4,-4),

(-5,-4), (-6,-4), (-7,-4) and (-8,-4) with the result corresponding

to location (-4,-4).[see Fig. L4-5]

All of the computations involved in the filtering are single-

precision. The multiplier used for coefficient multiplication is

accurate to 8.5 bits*, as discussed earlier, and the constraint on

the filter coefficients insures that one byte will be sufficient to

represent the result.

IV-3 Subsampler and Interpolator

Only one in every eight locations is to be a sample point for

the lows. This is arranged such that every fourth location on every

other line corresponds to a lows sample point. The value in between

are to be filled in by the interpolator to achieve lows actually

used for the highs separation. Only the sample points, however, will

be transmitted. Rather than filter at each location, pick out the

sample points, and then interpolate over the other points, it makes

sense (and greatly reduces computation time) to determine the sample

points before filtering and only compute the lows values for those

locations. Thus horizontal filtering need be done only for every

fourth location on every other line. Vertical filtering, while it

must be done for every point on the line, need be done only on every

other line.

The interpolator is split into two one-dimensional linear inter-

* the result is rounded off to eight bits for an accuracy of one part
in 362,

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

xx

x x

x >"

x x
x x

x x

X-- Del

,-- most recently recsived pel

--Note that this diagram merely shows orientation and
ooes n.t imply the types of data involved.

Lnw-Pass Filter Areas

FI LI RE 4-5

-39-

x x x , x x x x

-40-

polator. The horizontal interpolator operates on the lows sample

point it is given and the one previous to it. It simply takes their

difference, divides it by four, and repeatedly adds it to earlier

sample value to fill in the three undetermined values at the locations

in between. Similarly the vertical interpolator operates on the sample

point given and the corresponding point on the previously sampled line

to fill the undetermined value at the location in between. This value

and location filled are then given to horizontal interpolator so that

the three locations between the last two filled by the vertical inter-

polator, can be filled in.

Given that the result of the low pass filtering, at the times when

it is to be done*, corresponds to location (-4,-4) relative to the

most recently received pel, the horizontal interpolator results first

correspond to locations (-7,-4-), (-6,-4), and (-5,-4). The vertical

interpolator result corresponds to location (-4,-5) and thr second set

of horizontal interpolator results correspond to locations (-7,-5),

(-6,-5), and (-5,-5).[see Fig.4-6]

IV-4 Compander

As with the other scaling operations, the compression just before

the PRN processing is achieved by using the highs value as the index

for a lookup table. The same goes for the expander following the noise

processing in the receiver. The equations used to obtain the values

were presented in chapter II.

* location (-4,-4) must be a lows sample point

-41-

I i I IIIIII IIIIIII III I I

S I 1I i I I i S I I S i I I S i I 1 3 1 i I S

I I i I I I I I I I I I I I I I I I I I I I i I I

I II I I !IIIS IIISIIiSiiI IiI

2-- lows sample point

I-- lows pel obtaineu by interpolation from the
sample points

FIGURE 4-6

Subsampled and Interpolated Lows

-42-

IV-5 Overall System

There has been considerable discussion thus far of the various

image processing techniques being implemented in the system, but so

far not much has been said about the overall system and how it controls

and cycles through these operations. Since it is the goal of this

work to present first a system implementation to be operable with a

microprocessor simulator and later with an actual microcomputer

system, it is necessary to discuss somewhat how this system actually

controls the flbw of data through it. This includes not only input

from the scanner and output to the facsimile device, but also matters

such as the formatting of the data for transmission from the trans-

mitter to the receiver, the flow of data in and out of the various

storage area for the various operations, and the interfacing to I/O

devices.

IV-6A Transmitter controller

The transmitter is responsible for receiving and storing input

data, controlling the functions discussed earlier, determining when and

on what data they operate, and formatting the data to be transmitted.

The overall operation is the same for both the simulator and micro-

computer implementations. The microcomputer implementation has several

added features which are necessary both because it must interact with

external devices and because of constraints within the system itself.

These features will be discussed in detail in a later section devoted

to the microcomputer implementation.

The basic system objectives were for it to be capable of enhancing,

transmitting, and reconstructing images with scan lines of arbitrary

length up to 1024 pels. It is to receive data at up to 8kbytes/sec and

-43-

transmit data at up to Ikbytes/sec, thus the 1-millisecond constraint

on total computation time. The controller maintains and updates the

appropriate storage areas for each of the fnmctions. It also formats

the highs, lows and appropriate framing pulses to be presented to the

transmission channel. It is designed to expect framing indications

nested within the image data corresponding to the beginning of the

image('new page') and the end of each scan line ('new line'). The

allocation of memory storage areas for the various functions was dis-

cussed earlier. There must also be some storage of completely processed

highs and lows values so that it can be formatted for transmission.

The format calls for transmission of one line of lows followed by two

lines of highs values. This transmission occurs in the same time it

took to receive the corresponding two lines of original data. There

are two output storage areas, each comprised of one line of lows and

two lines of highs. While the data from one area is being transmitted,

the other area is being loaded with new values. Note that the two highs

lines correspond to the highs from the line located above and on the

line from which the lows sampler were determined.

In summary,the memory requirements are 9kbytes of original data,

16kbytes of gradient magnitude values, 2kbytes of local contrast update

values, 5kbytes of lows values, and 4.5kbytes for the output buffer

areas. There are also about 64 bytes devoted to flags and pointers for

the various operations and storage areas. The controller initializes all

pointers and flags and zeroes out the storage areas for the gradient

magnitude and local contrast update values to proper startup for the

local contrast operation.

-44-

The controller must insert additional framing information into

the data as it is being transmitted. The 'new line' and 'new page'

indications are already nested in with lows data, but the line

mismatch value must be inserted into the first lows line right after

the 'new page' indication. Since the mismatch value is important to

image reconstruction, it is transmitted four times to reduce to pro-

bability of an error due to noisy transmission.

IV-6B Receiver controller

The receiver receives the formatted data from the transmitter

and reconstructs the original image from it to be output to some

device. It must also extract the necessary framing information so that

the device can properly align the image. As mentioned earlier, this

output data corresponds to the digitized version of raster scanned

image, therefore the new line and new page indications are sufficient

for proper alignment. Involved in the reconstruction process are a

2-D linear interpolation of the low similar to that done in the trans-

mitter, a magnitude scaling*, and the remaining portion of the PRN

processing. The controller must also make use of the line mismatch

information to insure that the highs and the lows lines are of the same

length.

In the format discussed in the previous section a line of lows is

transmitted, then is followed by two lines of highs. When the line of

lows is received, the interpolator is used to fill in the values

which were not transmitted. By maintaining the two most recently

* This scaling is the expander portion of the compander pair.

-45-

received lows lines, it is possible to fill in not only the missing

values on the received line, but also all of the values for the line

between these two for which no low values were transmitted. Thus

the highs lines are to align with the most recently received lows

line and the untransmitted line that would have preceded it were

every lows line transmitted. All of these are transmitted in the order

in which they were determined in the transmitted; thus the first highs

line alligns with the untransmitted lows line, and the second with

the lows line that was actually transmitted.

As in the transmitter, the scaling operation is done via a

lookup table. The scaling is preceded by the noise processing, where

the PRN values are also obtained from a lookup table. The same table is

used for both the receiver and transmitter and the indices are derived

from the horizontal and vertical position of the pel being processed

relative to upper left hand corner of the image. The table contains

64 1-Pyte values corresponding to an 8 x 8 noise mask. Thus, it is

sufficient to have two 3-bit counters, one for horizontal and one for

vertical, in each the transmitter and the receiver.

The scaling and noise processing are performed on the highs values

immediately as each is received. The result is then added to the

corresponding lows value and output to some sort of facsimile reproduction

device. There is almost certainly a need to convert this digitized data

to a form compatible with the device and, time permiting, some such

converter will be implemented. For the simulated version, this is not

a factor in testing. The results will, in this case, be stored in a

file and viewed later on of the systems* television monitors.

* the simulator is implemented on the Cognitive Information Processing
Group' s Unix system.

-46-

V. Simulator Implementation

In this chapter, the details of the implementation of the system

on an 8080 microprocessor simulator are preserted. The discussion of

these details includes the software written to implement the functions

and achieve the overall system behavior described in the preceding chapter.

Before dealing with software, it seems appropriate to first discuss

briefly some of the programs be used in conjunction with the simulator.

The format of the images available for testing and that of the resultant

images is also to be considered.

V-1 Supoort Programs

There are two programs available on the Unix system that facilitate

the use of the simulator. The micro-assembler, MICAL, assembler files

written in either the Motorola 6800 or the Intel 8080 instruction set,

converting them to the appropriate machine codes. A second function,

RELDLD, converts this code to a form that can be loaded directly into

the simulator for execution. This section briefly presents the logic

format for using to the degree need for this project. For more details

on the functioning and use of these the reader should refer to the

UNIX system manual.

The assembler will attempt to convert any file with the suffix

.8080 into Intel 8080 machine code.

V-2 TRANSMITTER CONTROLLER

This section is mainly concerned with the various control and data

flow operations carried out by the controller. All of the other

transmitter functions are implemented as subroutines, called from this

program. It also carries out the scaling operations, i.e.- it fetches

the appropriate values from the various lookup tables.

-47-

The first section of the controller program initializes the data

storage areas for the various subroutines. It also sets all of the

locations to zero; the gradient and local contrast update storage areas*

as was specified in chapter VI. Appendix A contains a complete listing

of the program plus all of the subroutines for the simulator. The

initialization portion is quite straightforward. It begins by loading

the filter coefficients. It next initializes all of the control flags

and the pointers for the various functions. Finally, it seroes out the

areas mentioned and proceeds to the rest of the program.

Figure 5-1 show the memory allocation for storage of the various

pointers and flags. The pointers are used both in loading new data

and as references in accessing previous data. In fact, the majority

of the computation in the controller itself is devoted to these

pointer manipulations. The corresponding data storage areas are also

shown, with the address indicated by the pointers corresponding to the

locations in which data has most recently been stored or, for the

transmitter output pointers, the locations from which data was most

recently taken. That the proper manipulation of these pointers is

sufficient to achieve the desired data flow structure, will be demon-

strated later in this section. After initialization has bren completed

each of the pointers contains the address of the lowest aedroes of

the corresponding storage area. The control flags are set such that

all functions pertaining to obtaining the lows and loading thp trans-

mitter output buffer area are disabled. Thrre are five such flngs

labelled STATUS, STIN, STOUT, HGHEN and FLAGA. These too will be dii•-

cussed in the next several paragraphs.

* A total of 18 kbytes.

-48-

V LL di S
C't T C

U L U o U

area

L; L t

vEFO

8L

BEE6

BEE4

BEE2
0 E E0

LOWS output
Duffer point er
HIGHS output
buffer pointer
LOWS output
buffer pointer
HIGHS output
buffer pointer
G -(A DIE • T
pointer
HX0UIT framing
pointer

FLAGA
M, Si:IS AT CH
THIGHS

Filter
Coefficients

89FF

E8FFF

for

for
area

Loccl ConLrast
'Value StuoraqeI

TR~NS i S I iTTE R-FaosF i nte r s
and ki'{emory Allocation

FIGURt 5-1

ORIGinal
data pointer

pointer
LOUS
pointer

0 E Al
BE UA

iL L) U

Ut-O

- - r- F

D E C EUCCtDECA

2800

4C00

8C00

9400

A800

LC Update
pointer

ST OUT
STIN

Uriginal
Oata

Storaqe Area
Gradient
itorage
Area
LC Update

Storane Area
LCli J
Storage
Area

FLows
Output
Buffer
Highs
Output
Buffer

RECEIVER AREA

Reserved
for
Stack

inout to buffer area

output from buffer

-49-

The flag word STATUS is used both to totally disable the uinc-

tions pertaining to the determination of the lowsr and latrr, to im-

plement the subsamoling scheme. As mentioned, it ir initially rpt

such that the filters and interpolators are totally disable•. It

is first modified when it is detected that the orl at the cernt.

of the vertical low pass filter area (see Fig. 4-5) contains a 'n•,w

page' indication. It should also be mentioned that this flag is

also used to signal when the line mismatch value can be determined.

Figure 5-2 shows what each of its bits indicates. When the 'new pael'

indication is detected, bit 7 is set and bits ',1, and 2 are ~-st.

Since for vertical filtering to be inhibited both bit 2 and bit '

must be set, vertical filtering is done on for each subsouent pass

through the program. The filter is designed to pass any 'new line'

or 'new page' indication that is detected at its center, directly to

its output, thus preserving the framing information in the lows.

Each 'new line' indication detected at the vertical filter causes

the controller to toggle bit 2 of STATUS toggle. Similarly, when a

'new page' indication is detected at the oDl just aftr the horizontal

filter's center, the controller sets bit ? of STATUS. When a 'new

line' indication is detected at this location, bit 3 of STATUS iC

toggled. Note that bit 3 should therefore get toggled five passes

after bit 2. Thus filtering is enabled from the time the vertical

filter detects a 'new page' or 'new line' indication until the time

that the horizontal filter detects the following 'new line' indication.

Thus bit 3 is used to, in effect, extends the filter's enable times

just long enough for the horizontal filter to pass on the new line

indication.

-50-

7 6 5 4 2 1

i ---- enable to ouitput transmitter(highve
active

modulo-four counter for lows sub-
sampling

both L logic 1, indicates a line for
which there are to be no lows samole
points

first line indication (high)
active

STATUS Flaq

FIGURE 5-2a

Filter
-- x np x x x x x x x x x x x x x nl x

input
STATUS-Oc 80 81 82 83 80 81 82 83 80 81 82 83 80 81 04 05

x x x x x x x x x x x x x nl x x x

06 07 04 Oc Od Oc Od Oc Od Oc Od Oc Od 08 09 Oa Ob

x x x x x x x x x x x nl x x x x x

00 00 01 02 03 00 01 02 03 00 01 04 :5 06 07 04 Oc

x x x x x ...

Od Oc Od Oc Od Oc ...

x-- data input to filter

np- 'new page' indication input to filter

nl- 'new line' indication input to filter

-- Note that the state of the STATUS flag is
indicated in hexidecimal notation.

-- The sequence shown corresponds to a line
length of fifteen pels.

STATUS Flaq Sequence

FIGURE 5-2b

-51-

While the filters are enabled, i.e. on every odd line, bits

and 1 are made to carry out a modulo-four binary count of the

number of pels on the line. Each time the count is zero, the hori-

zontal filtering is done. So that the lows sample points will

correspond to pels q, 4, 8, etc. the count is set to three each time

the horizontal filter passes a 'new line' indication to its output.

Thus if the indication occurs during the rnable time, the horizontal

filtering will be done again on the next pass, rather than skipping

the next three, which corresponds to the first pel of the line. The

next 'new line' indication passed on by the horizontal filter will

affect bits 4 and 1 in the same way, but since the filters will be

disabled by the next pass, it doesn't cause a problem. The horizontal

filter itself is allowed to set these bits since, as was just shonm,

it can be done rather blindly.

There is one remaining issue concerning the use of the STATUS

flag for controlling the filters. Since it is necessary that the framing

indications be present in the lows data, it is necessary that the

pels from the original image that contain 'new line' indications,

in fact, correspond to sample points for the lows. From the discussion

thus far, this would only be true for images with line lengths that

were multiples of four. However, setting the modulo-four count to

zero whenever the vertical filter detects the indication, guarantees

that the pel will indeed be a sample point. It does cause the last

two sample points to corresnond to locations other than multiples of

four on the line, however, this is acceptable since it is only an edge

effect and not at all cumulative.

Finally, STATUS is also used to enable the transmitter to present

-52-

one byte of data to the transmission channel*. Since the transmission

rate is one-half of the input rate and since bit d and 1 are already

performing a modulo-four count of pels when the filters are enabled,

bit 0 can be used to enable or disable the output. When the filters

are disabled the controller can simply toggle the bit on each pass.

The next three flags mentioned are almost inconsouential compared

to STATUS. The flag STIN (Set Transmitter ITput) is used to disable

the routine that loads the lows area of the output buffer, thus pre-

venting it from loading erroneous data until valid low data is avail-

able. This routine scans the lows values shortly before they are

used in highs separation. When a 'new page' is detected, the flag is

set,**the routine begins loading the lows sample points into the

transmitter output buffer.

The flag STOUT (Set Transmitter OUTput) is use4 when reset, to

totally disable any output from the transmitter. It is set by the

routine that loads the lows output buffer when it loads the first

'new line' indication.

The flag HGHEN disable the routine that loads the highs storage

area in the output buffer. After STIN has been set, it will be set

when it detects the 'new page' indication in the original data pel

* Although data is presented to the channel in parallel bytes at a time,
there are no constraints on the actual form used by the channel as
long as appropriate converters are availeble at both its transmitter
and receiver ends.

•* STIN = FF when set

-53-

being used in highs separation. Remember that the highs separation

is achievee by subtracting the lows values from the corresponding

original data value. Since the'new page' indication is the first

valid input pel, this flag guarantees that no invalid data will be

loaded into the output buffer.

Clearly these three flags have not been as fully utilized as the

STATUS flag, and it would have been more efficient to combine these

into one flag. In development, however, it was desireable to keep

them separate and facilitate debugging.

The last flag mentioned (FLAGA) is used by the routine that

actually takes the data from the appropriate output buffer areas and

presents it to the transmission channel. Figure 5-3 shows what each

of the bits in this flag indicates. It is initialized to indicate

lows and controls the type of data transmitted and the word length.

Once the routines are enabled, the routines begin taking data from

the lows area of the output buffer. The very first value it gets

should be the 'new page' indication. This value will cause the first

line indicator (bit 5) to be set and also set FLAGA so that it will

next transmit the line mismatch value* (bit 7 set). After this value

is transmitted, FLAGA is set such that the routine will go back to

transmitting the lows values. When a 'new line' indication is trans-

mitted, FLAGA is checked for the'first lind'indication. If it is

present then FLAGA is set such that one line of hiphs will be trans-

mitted, i.e. bit 3 is set. Otherwise it will be set such that two

lines of highs will be transmitted, i.e. bit 4 is set. At the Pnr of

* Remember that the mismatch value is transmitted four times.

-54-

7 6 5 4 [2 1 0

- transmit
transmit

transmit

transmiti~tr an sm i t

first highs line (highsl)

second highs line (highs2)

lows line

first line of image

line mismatch value

FLAGA Flaq

FIGURE 5-3a

--The sequence shown would correspond to a line length
of fifteen pels.

initially-__
set to 20

20 20 20 20
newt

p~age

10 10 10 10

00 08 08 0

08 10 10 1
new

line'

10 1 0 A 2 0 2
'new
line'

0 00 08 0

8

0

eO 60 60 60 60 10 10
new

' line'

10 10 10 10 10 10 :0
'nell
line'

fS 08 08 08 08 0 0,

10 ;0 10 10 10 10 10

0 20 2008 OS 0 C6 0
'new
line'

8 08 08 08 10 10 10
new
line'

10 10 10

20 20 204
'new

line'

08 00 08

10 10 10

•7! 08 08 08

10 1i0 10...

FLAGAr Flaq SeIience

FIGURE 5-3b

~-~- -~-- ---- ~~

-55-

each line of highs FLAGA is shifted left once such that FLAGA is

eventually set for lows again. Notice that manipulation of this

and the other flags discussed is dependent on data, especially

the framing indications. The proper manipulation of the pointers

is, therefore, crucial to the operation of the controller and will

be discussed next.

As was mentioned earlier, much computation is devoted to

pointer manipulation. There are even some special subroutines for

incrementing the pointers when framing indication are received.

Stairting just after the initialization process is completed, the

first operation involves getting the new pel value and storing it

in the original data storage area at the address indicated by the

pointer*, CRIG. The pel is then checked for a 'new line' or a

'new page' indication. For a 'new page' indication two subroutines**

are called which set the ORIG and GRADIENT pointers to the first

location of the next line in their respective storage areas. Note

that since each line is allocated 1kbyte, it is necessary to incre-

ment the high order byte of the pointer by four to move to the next

linet** These routines also take care of wrapping thp pointers to

* Note that all of the pointers, except those for the output buffers,
are incremented further down in the program.

** The subroutines are named INCDAT and INCGR, respectively.
*** The six MSB's of the pointer determine the line number, and the

ten LSB's the location on that line.

-56-

guarantee that they remain within the bounds of their respective

storage areas. The 'new page' indication is then removed from its

original location and put at the new one indicated by the pointer.

For a 'new line' indication, the same two routines are called to

move the ORIG and GRADIENT pointers to the first locations of the

next line in their respective storage areas. They are each then

decremented once, such that the point to the last location allocated

for the previous line. Thus it is guaranteed that on the next pass

the pointers will point to the first location of the desired line.

The 'new line' indication is left in its original location to mark

the end of valid data on that line, but is also put at the new loca-

tion indicated by the pointer. This serves as a marker for when some

reference from the pointer crosses the boundary between lines and

is important in that it makes it unnecessary to recheck the pointer

when making references to other pels on the same line.

The gradient is then computed for the area centered at the nel

just above the pel indicated by the ORIG pointer. The GRADIENT

pointer indicates the address where the results will be stored. The

inner working of the Gradient subroutine are discussed in appendix C.

The next section of the controller is concerned with checking

for framing indications at the pel locations which would correspond

to the center of the vertical filter area and the location just after,

i.e. to the left of, the center of the horizontal filter area, setting

the STATUS flag accordingly. Starting with a copy of the ORIG pointer

store in the cpu's memory pointer*, this pointer is first moved back

four lines, to the center of vertical filter area, then back (left)

* this is register pair HL in the Intel 8080 or 8085 assembly code

-57-

five pels to the desired location in the horizontal filter area.

It then either calls or doesn't the filter subroutines, depending

on the state of the STATUS flag and the results of the checks just

mentioned. Whether or not filtering is enabled, or has even begun,

an attempt will be made to separate out the highs from the original

data. Therefore it moves the pointer back four additional lines

and also back three more pels, so that the pointer indicates

ORIG (-7,-8). Since the low pointer LCOS* indicates the address

of the results of filtering an area centered at ORIG (-4,-4), it

must be moved back three lines and then back three pels. The value

at LOWS (-7,-8) is then subtracted from the value at CRIG (-7,-8)

to obtain the highs value. The pointer ORIG (-7,-8), the value

at ORIG (-7,-8), and the highs value are all saved on the stack for

later use and the controller proceeds with the edge (highs) enhance-

ment. The magnitude of the highs value is determined and stored

temporarily in the memory location labelled THIGHS (Temporary HIGHS

buffer). The original data value is put in the lower byte of the

memory pointer and the address of the luminance scale factor lookup

table is put in the high order byte. The highs magnitude is then

multiplied by the resultant value** and the product stored in THIGHS.

Next the routine LOCCCN (LOCal CONtrast) is called returns the

appropriate value in reg H. This value is moved to the low order

byte of the memory pointer and the address of the local contrast

* From chapter4, the lows pointer corresponds to LOWS (-L,-4) relative
to the more recently received pel. That convention is followed here
also.

S* The value is obtained from the table

-58-

lookup table is put in the high order byte. The value in THIGHS

is the multiplied by the resultant value and the product is com-

bined with the original highs value from the stack; the result is

the fully enhanced highs value. This is then moved to the lower

byte of the memory pointer and the address of the compressor

lookup table is put in the high order byte. The result is then

passed on to the noise processor, NOISEP, which will add in

pseudo-random noise. It uses as an index the three LSB's of ORIG

(-7,-8) and the three LSB's of the count of the number of lines

of highs that have been enhanced*. This count is set to zero when

the 'new page' indication occurs at ORIG(-7,-8) and is incremented

each time a 'new line' indication occurs there.

When the filters are enabled, the vertical filter is given

three pointers; one for accessing the original data, ORIG (0,0),

one for accessing the filter coefficients, and one for the storage

address of the result, VLOWS (0,-4). The sixteen most recent results

are kept, although only nine are needed by the horizontal filter,

in order to simplify the updating of and referencing from the VLO, TS

pointer. The horizontal filter given three pointers; on; for accessing

data, VLO1S (0,-4), one for accessing the filter coefficients, and

one for the storage address of the result, LOWS (-4,-4). The hori-

zontal, when given the pointer LMIS (x,y), %will fill in the locations

LOWS (x-3,y), LOWS (x-2,y), and LOWS (x-1,y)*1 The vertical inter-

polator, given the same pointer, will fill in location LcOWS (x, y-1).

Thus to fill in the area around the sarble point the controller calls

* The count is referred to in the program as NCNT
** The horizontal interoolator will not leave the current line to fill

in values.

-59-

the vertical interpolator with pointer LOWS (-h,4-L), i.e. the most

recently determined lows sample point. It then calls the horizontal

interpolator twice, first with pointer LOWS (-4,-I) and th~n with

pointer LOWS (-4,-5).

Whenever a lows sample point occurs at LOWS (-7,-8), it is

loaded into the output buffer area. The input and output pointers

start at the same location, but, as was mentioned in discussing

the flag STCOUT, the transmitter output is disabled until after a full

line of lows sample points has been loaded.

The last part of the controller could be considered the actual

transmitter. It consist of two routines; one which gathers the

next eight bits to be transmitted together into one byte and another

which takes data from the output buffer and gives it to the first

routine, accompanied by an indication of how many bits were to be

transmitted from each value*. The first routine takes one bit from

the location referred to as XMIT. It then updates the location XCNT

by shifting it once to the left. If the shift results a carry bit

being set, the second routine is called to reset XCNT and to put a

new value in XMIT. It repeats this sequence seven more times, i.e.

until it fills up the byte to be transmitted. Note that by setting

XCNT appropriately, the second routine can, in effect, truncate any

desired number of bits from the data words as they are transmitted;

thus there is no need for a separate ouantizer for the highs. Thei

control aspects of these routines were discussed previously, .with

the exception of one issue. While highs are being transmitted there

* The two routines are referred to as TXOUT and UPDATE, respectively
in the program.

-60-

must be some means of detecting when the end of each line has been

reached. Since there are no framing indications in the highs area

of the output buffer and since there was no static relationship

between the corresponding output pointer and any other existing

pointer, another pointer was created. Its location on a given

line* is kept in agreement with that of the highs output buffer's

output pointer, but its line number** is such that it falls within

the original data storage area. Thus this pointer can be used by

the transmitter to monitor the original data storage area for

framing indications. There is a separate subroutine, INCHBF, which

is very similar to INCDAT and INCGR, which is used to for either of

the pointers for the highs output buffer. More details on the other

subroutines can be found in the appendices.

V-3 Receiver Controller

The receiver controller is much less comolex than the trans-

mitter, thanks largely to the pains taken in designing the transmitter

to present the data in a simple format. The receiver does not have

much to do in the way pointer manipulation and, in fact, only

requires a little over 3kbytes of data storage. The memory allocation

is shown in Figure 5-4. There is only one data pointer and one

control flag. The flag, RFLAG, determines what type of data the

receiver will be expecting. Figure 5-5 shows this flag and what

each of its bits indicates. The receiver is initially in the 'off'

* 10 LSB's of the pointer
** 6 MSB's of the pointer

-61-

HFLG C
RWHU
RLwS
pointer
FRAMEiE
RN CNT
RCNT

Ri T C H

RECEIVER-Flags, Pointers,
and ýiemory Allocation

FIGURE 5-4

,6 13

2000

23FF

8A00

BUFF

RLIS Storage
Area (loaded
direct)

TRANShiITTER AREA

RLjS Storage
Area (loaued by
interpolation)

-62-

image uata not yet being received(:ff)

line mismatch value being received

first line of highs being received

second line of highs being received

lows line being received

first lows line of image beino
received

RFLAG FlaQ

FIGURE 5-5

-- The sequence shown would correspond to a line length
of sixteen pels. One state is shown for each byte
received.

initially__ 01 1
set 7o 01

01 01 02
, tnew
page'

04 04 04 04 08

04 03 08 08 08

08 08 10 10 10

20 20 08
new

line'

08 08 08

10 10 10

10 04 04
'new
line'

08 08 08 i1il 01 01 01
t'n e

line'

10 10 10 10 04 04 '0
'new
line

10 04 04 04 04 08 OS
'new
line'

04 04-0M 08 08 08...

RFLAG Flag Se-uence

FI 1-ý E 5-6

~

-63-

state, (bit 0 set), and remains there until a 'new page' indi-

cation is detected. It then expects the line mismatch value,

(bit 1 set), followed by the rest of the lows line (bit 5 set).

At the end of this line, indicated by a 'new line' indication

being received, RFLAG is shifted right twice such that the

second line of highs is indicated, (bit 3 set). The end of the

highs line is determined by monitoring the corresponding lows

values for framing indications as the highs are being received.

At the end of each of these lines, RFLAG is shifted left once.

Since bit 4 indicates lows, only one line of highs will be

expected to follow the first line of lows. Since, however,

all subsequent lows lines are indicated by bit 4 rather than

bit 5, two lines of highs will be expected after each of these

lows lines. Figure 5-6 shows the sequence described and it can

be seen to agree with the transmitter's output format.

The program to implement this controller is listed in

appendix I. For test purposes it is called from the transmitter

when it presents data to the transmitter. This is necessary in

the simulator version since there is no way to interrupt the

processor and hence the transmitter routine. In a real world

application the transmitter and receiver would be implemented

on separate processors. The next chapter deals somewhat with

such issues. Since the same processor is used here, however,

the transmitter must be both initialized before any processing

can begin. The initialization routine for the receiver is thus

inserted just before the transmitter initialization.

-64-

When the receiver routine, RCVR, is called it stores the

value given to it in the accumulator in memory location RWRD

and sets RCNT, the number of bits left in RWRD, to eight. As

each bit is read, this value is decremented such that control

returns to the transmitter when the bits are exhausted. In all

of the various receiver modes the location, FRAME, is used to

collect the bits as they are read. These bits are shifted in

from the right as they are read and one of the bits is in FRAME

set initially such that a carry bit will occur when it is full.

For example, when the 3-bit highs values are being received, bit

5 of FRAME is initially set. When the 8-bit lows values are being

received, bit 0 of FRAME is set, so that carry bit occurs when

the eighth bit is loaded.

The receiver consists of four sections which are executed

almost totally independently of each other and a small section

that determine which of these will be executed for a given RCVR

call. These sections correspond to the four types of data expected

by the receiver and begin at the points labelled ROFF, RMSMTH,

RLITS, and RHIGHS.

The receiver is initially in the 'off' state and in this

mode the section beginning at ROFF is executed. It continually

checks loads new bits into FRAME until it either runs out of bits

from RWRD or until it detects a 'new page' indication in FRAME,

i.e. the eight most recently loaded bits were all 1's. The

first case, simply results in a return from subroutine. For the

second case, how.ever, the pointer RIWS is moved to point to the

-65-

first location of the other directly loadable line and the new

page indication is stored there. Note that although there are

actually 3 lines for lows storage, one of these is reserved to

be filled in exclusively by interpolation from the values on

the other two lines. FRAME is then set to accept eight bit, i.e.

bit 0 is set, and RFLAG is set to indicate that the line mismatch

value is to be expected next. Similar to the transmitter, the

receiver has a line counter that is used by the PRN processor,

that is reset to zero at this time. Control is then transferred

to the section that receives the line mismatch value, i.e. the

section that begins a RMSMTH, so that whatever bits that may

yet remain in RWRD can be loaded into FRAME before returning from

the subroutine,

When the receiver is in the mode that executes the program

section that expects the mismatch value, the next eight bits*

received will be loaded into FRAME. These eight bit should cor-

respond to four identical 2-bit line mismatch values. These

values are separated and added together. The result should be the

line mismatch value shifted right twice,and if either of the two

LSB's in nonzero some error must have occurred. The value is

then rounded off to the nearest multiple of four and the result

shifted right twice to obtain the actual line mismatch value and

* These eight bits will come from more than one input byte, unless
the 'new page' indication that was received came from a single
input byte without overlapping.

-66-

stored in RMTCH. The flag word, RFLAG, is then set to indicate

the first lows line, bit 5 set, the bit accumulator, FRAME, is

set to accept eight bits, and control is transferred to the lows

receiver, which begins at RLCOWS, so taht the remaining bits in

RWRD can be loaded into FRAME.

The section used to receive the lows, not only collects in-

coming bits into the 8-bit lows values, but also spaces them

appropriately and calls the two interpolators to fill in the

missing values. The horizontal interpolator is identical to the

one in the transmitter, except in the way it deals with 'new line'

indicators. The vertical interpolator fills in the corresponding

location on the line reserved for indirect loading the horizontal

interpolator is then again used to fill in the three locations

between this and the previous location filled by the vertical inter--

polator.

If the value loaded was a 'new page' indication, the section

starting at RPAGE is executed. It switches the pointer, RLWS, to

point to the first location of the other line and stores the

indication there. RFLAG is set such that the line mismatch value

is expected next. FRAME is set up to accept eight bits and control

is transferred to the mismatch receiver section. The line counter

is also reset to zero. Thus images can be transmitted one after

another if the transmitter maintains the format expected by the

receiver.

If the value loaded was a 'new line' indication, the section

starting at ENDLW is executed. It, too, switches the lows pointer

-67-

to point to the first location of the other line. This insures

that the pointer will indicate the most recently loaded lows

line when the highs are being received. Before this is done,

it is necessary to augment the current line of lows values

according to the line mismatch value. Zero is loaded into the

current location and into each subsequent location until the one

corresponding to the current pointer plus the mismatch value.

The same is done to the corresponding locations on the line re-

served for interpolated values.

The flag word, RFLAG, is then set to receive either one,

bit 3 set, or two, bit 2 set, lines of highs values, depending

on the current state of the flag. Remember that for the first

lows line, bit 5 is set, while all for subsequent low lines,

bit 4 is set. The flag word is shifted right twice when the

end of the lows line is reached, thus setting the receiver to

expect the appropriate number of highs lines according to the

transmitter's data format. The bit accumulator, FRAME, is then

set to accept three bits, i.e. bit 5 is set, and control is

transferred to the section beginning at RHIGHS so that any re-

maining bits in RLWS can be read into FRAME.

The section that receives highs values also generates the

system output and framing indications. After a three bit highs

value has been loaded into FRAME's three LSB positions, it is

shifted over until it fills the three MSB positions. The pointer

for the lows is then put into the memory pointer register and,

if the values are for the first line of highs, i.e. if bit 2 is

-68-

set, the six MSB's of the high order byte are switched to indicate

the line of lows that was loaded indirectly by means of interpo-

lation. Then the PRN value is obtained from the lookup table,

using the three LSB's of the line counter, RNCNT, and the three

LSB's of the lows pointer as indices. The routine for obtaining

the PRN value is identical to the one used by the transmitter

and it was only made a separate routine so that the transmitter

and receiver would be totally independent of each other. The

result is subtracted from the highs value and this value is

expanded, again via a lookup table.

The scaled highs value is then added to the corresponding

lows value and the result is ouput as the enhanced image data.

The lows values are checked for framing indications and if any

occur a prompt is sent to some external device to generate the

necessary framing pulses for the facsimile reproduction device.

When the 'new line' indication is detected RFIAG is shifted left

once and if the second highs line is indicated, i.e. if bit 3

is set, then FRAME is set to accept three bits-and control

remains with the section starting at RHIGHS. For a 'new page'

indication, FRAME is set to accept eight bits and control is

transferred back to the section which begins at RLCS. In the

absence of any framing indications, FRAME is set to accept three

bits and control remains with the highs receiver section.

-69-

VI. Microcormuter Inmlementation

The hardware implementation of the image enhancement/trans-

mission system discussed in the preceding chapters is achieved

using a microcomputer based on the Intel 8085 microprocessor.

This system should be capable not only of carrying out the

enhancement and transmission procedures, but also of completing

them in less than one mil.isecond, as the initial specification

stated. This does not include the time that is devoted to the

receiver since it would be implemented separately, or at least

would not run concurrently with the transmitter, in any real

world application. This chapter discusses the design of this

system, begirniing first with the overall system requirements,

then going into its detailed design, and the I/O structure.

VI-1 System Recuirements

The microcomputer requirements discussed in this section

pertain mainly to requirements on data storage capability,

software and parameter storage capability, and CPJ requirements.

These are based on and/or derived from the discussion in previous

chapters.

In discussing the transmitter portion of the system, it was

mentioned* that much of the effort involved manipulation of the

pointers for the various data storage areas. The storage require-

ments there were 9k bytes for the original image data, 16k bytes

for the gradient magnitude data, 2k bytes for the local contrast

* chapter V

-70-

update data, 5k bytes for the lows data, Ak bytes for the highs

output buffer, and 512 bytes for the lows output buffer. In

the receiver, the only storage required mentioned was 3k bytes

for the lows data. Thus the implementation of both the trans-

mitter and the receiver in the same microcomputer system requires

39.5k bytes of data storage capability. To this must be added

the data storage needed for storage of filter coefficients and

the intermediate lows values for the transmitter plus the flags,

pointers, and stack area for both the transmitter and receiver.

The software requirements for the transmitter and receiver

implementations discussed in the previous chapter are approxi-

mately 1500 and 512 bytes, respectiirely. Later in this chapter,

I/O considerations will be discussed which will increase the

overall software image requirement somewhat. It should not,

however, be large enough an increase to cause the overall reauire-

ment to exceed 2k bytes.

The requirements for parameter storage were not discussed

directly in the previous chapters, but can be determined from the

inferred sizes of the various lookup tables. First mentioned

were the two scale factor lookup tables and since the indices of

each can range from 0 to 255*, 256 bytes of storage is required

for each. Observing the behaviour of the curve for the local

contrast scale factor, however, reveals that it is a constant

for any input value greater than sixty. Thus by adding a few

* i.e. each is accessed with a one byte index

-71-

steps to the part of the transmitter controller program that does

the lookup, it was possible to decrease the storage requirement

for the corresponding table by 75o. The compander pair each also

have to cover the full range of an 8-bit index and, therefore,

require 256 bytes of storage each for their respective lookup

table. The lookup table for the PRN sequence uses 6-bit indices

and, therefore, requires 64 bytes of storage. Thus the

requirement for parameter storage comes to a total of 896 bytes.

The CPU requirements are not so well defined as the storage

requirements. The main consideration was in making sure that

it would be capable of running at a speed sufficient to execute

either the transmitter or the receiver program in less than one

millisecond per cycle. Each of the filters uses nine multipli-

cations and the adaptive scaling operations each also require

a multiplication. There is very little chance of any microcomputer

executing twenty multiplications in less than one millisecond,

using a software multiplier*. Therefore, in a real world applica-

tion it is assumed that this software multiplier would be re-

placed by some sort of external hardware mulitvlier**. Using a

subroutine to drive this external multiplier, multiolication can

be done in under twenty instruction cycles. If time permits, this

replacement will be made. Even so, there is a good deal of other

* see the appendices
** This is discussed again in chapter VII and the appendices.

-72-

U 1
7edge connect257

edge connector

U2
74504

U 4
8085A -2
Mi croprocessor

edge connector

U7
8259A
Int. Control

U 11

U12
745138

C3
edge connector

1U8
8212

U 13
3257 S
JhiA Controller

C4
edge connector

U16
2716-1

U17
2715-1

U3 '

Hex SPST Switch

U5
8212

U 6
8212

U9
8212

U14
8212

O10
8212

U1 5
8212

U18
8212 8212

FIGURE 6-1a I-icrocomputer Layout

-73-

FIGURE D-lb fiiicrocomputer Layout

-74-

-Ai
-81

C1
-El

-F1
-H1

il 1

ALE -- N1
-P1

CLK --R1
-S1

IEtU1W --T
-U1

GND -- V1

i 2-
82-
C2-
Di2-
E2-
F2-
H2-
32-
K2-
L2-
ii 2-
N2-
P2-
R2-
52-
T2-
U2-
V2-

- +ivolts
- 0U15
- GNJ

- OA14
- 0A13
- 0A12

- OA10
- OA9
- OA8

- OA05

- OA04
- OAD3
- OAD2
- OAD1

FIGURE 6-1c microcomputer Layout

(Edge Connector C2)

-75-

computation to be done and the processor must be able to in a

short enough period to at least allow time for multiplication

using the hardware device.

VI-2 Microcomouter System Design

The section presents the detailed design of a microcomputer

system capable of performing the functions of the transmitter

and receiver as discussed in the previous chapters. The Intel

8085, rather than the 8080, is chosen as the central processing

unit for this system, mainly because of its greater speed* and

its total compatability with the 808~ software used in the simu-

lator implementation discussed. It also requires fewer support

devices for the basic system. In the following sections, this

system is divided into five major groups: 1) the CPU group, 2)

the ROM group for program and parameter storage, 3) the RAM

group for data storage, 4) the I/O group, and 5) the DMA group.

The information for the devices incorporated in this design was

obtained from various microprocessor and TTL data books (see

references 12 through 17).

A. CPU Grouo

The 8085 microprocessor requires very little assistance from

support devices to perform the tasks of the CJP for. this system.

It has an 8-bit data bus and a 16-bit address bus, the low-order

byte of which is multiplexed with the data bus. Thus to have the

* The 8085A-2 has a minimum instruction cycle time of 8OOnsec,
while the 808OA-1 has a minimum instruction cycle time of
1300nsec.

-76-

full address available continuously, it is necessary to latch

the low-order address byte. In addition to insure that its

output drive capabilities are not exceeded by the loading of the

other devices on the bus, buffers are inserted between the 8085

and the data and address buses. The data bus requires a bidir-

ection buffer and the addressbus, since the low-order byte is

already buffered, only requires a buffer for the high-order byte.

Notice that the low-order address byte is latched by the signal

ALE (Address Latch Enable) and the direction of the bidirectional

data buffer is determined by the 'read' strobe from the

microprocessor, -RD. A anltiplexer, 74S257, with tri-state outputs,

is used to generate the signals - MEMW,-MENR,-I/CW, and -I/OR

from the 8085 signals -RD,-WR, and IO/-M and the various input

which are not used are either tied to GED or 'pulled up' to

Vcc , whichever corresponds to the particular input's inactive

state.

Figure 6-2 shows the detailed circuit diagram for the CPU

group. Note that although the 8085 has an internal clock gener-

ator, whose frequency is set by component(s) placed across

inputs XI and X2, in this implementation the X1 input is driven

by an external 5 MHZ crystal oscillator. This was done entirely

because of availability and for convenience. The 5 MHZ clock

frequency at this input corresponds to a 2.5 MHZ frecuency at

the CLK output of the 8085, only half the maximum clock rate.

-77-

.I unc C-Z he LPU Grou0

A'

A

A

A

-78-

B. ROM R CoM u

The ROM device chosen for this system is the Intel. 2716-1

and has access times short enough to allow its use with the

8085A-2 at the full 5 MHZ clock rate. It is a 2k byte device and

and has two enable inputs, -OE (Output Enable) and -CE (Chip

Enable). The delay from the address being stable or from -CE

being enabled to the corresponding output is 350 nsec maximum

and the corresponding delay from the -OE is only 120 nsec max-

imum. Therefore, the -CE input is connected to the enable from

the address decoder* and the -OE input is connected to -MEMR

signal, which occurs somewhat later in the machine cycle. Fig.

6-3 shows the detailed circuit diagram for the ROM group.

C. RAM Group

The RAM group is implemented with five 64k bits memory boards

built around the 2102**memory device. The boards were designed for

another system and their control circuitry had to be modified

somewhat in order to convert them from 4kxl6 to 8kx8 and to make

them totally compatible with the CPU's control signals. In

addition, many of the 2102's used were seen to of a variety that

would not be able to operate properly were the CPU opprated at

its maximum rate. Thus the overall system is not capable of per-

forming for the ROM group-its functions in the specified time,

* The 745138 is used to determine which of the 2k byte memory
segments is indicated by bits 11-15 of the address bus.

** The 2102 is a 1k x 1 bit random access memory device with an
access times ranging from 250 to 1Q~Qnsec, depending on the
version used. See ref. 16 pp 282.

-79-

FIGURE 6-3 The ROMY Group

-80-

unless the slower memory devices are replaced. Figure 6-1, shows

the detailed circuit diagram.

D. I/O Groum

The I/O capabilities of the system include receiving .ne

byte data value on either of two input ports and transmitting

one byte data on either of two output ports. For the system

implementation discussed in chapter V, these ports are simply

polled by the transmitter and receiver routines. To give the

system presented here a more flexible I/0 structure, it was

decided to use an interrupt driven I/O scheme. This relaxes

the timing constraints which would have to have been imposed

upon the image data source, the transmission channel, and the

facsimile reproduction device.

To implement this scheme, four I/O ports, 8212's, are used

in conjunction with a programable priority interrupt controller.*

The detailed circuit diagram is shown in Figure 6-5. The

interrupt controller must be initialized by the CPU before any

I/O operations can begin and special interrupt routines must

be added to the transmitter and receiver software to achieve the

desired I/0 features. To relax the timing constraints each of the

four interrupt routines uses a sixteen byte FIFO buffer as either

a data source for the output routines or as a storage area for the

input routines. The transmitter then gets data from or writes data

* The interrupt controller was chosen over the interrint scheme
incorporated into the 8085 itself because it allows more
flexibility in positioning the interrupt vectors.

-81-

FIGURE 6-4a The RAM Group

-82-

FIGURE 6-4b The RAM Group

LoADR

CLK
ALE

OAlR

-83-

each cell A6 A
AS ASs
RA A7'
Al c1E
At DO
A3 DIn
A'1 c'A+ VP c jo
Ap G

DOW'

7 ii-

OD7

•_ • t

FIGURE 6-4c The RARI Group

-- ---- - -io naii
I i •

1_v w

-84-

FIGUnE 6-5 The I/U Group

-85-

into these buffer areas, rather than the I/O devices directly.

The receiver and transmitter are also made to wait if, during

a transfer, it is detected that either the appropriate output

buffer is full or the appropriate input buffer is empty. Thus

the only timing constraints are that the receiver and transmitter

be able to run at least as fast as the scanning and reproduction

devices and that these two devices operate at comparable speeds.

The interrupt controller is designed to send a 'call' in-

struction to the CPU, sending it to one of eight different loca-

tions that contain the corresponding interrupt vectors. These

vectors are merly 'jump' statements to the appropriate interrupt

routines which are used to actually update the storage buffers.

These interrupt vectors and the corresponding routines are

appended to the routines presented in chapter V after the last

lookup table and the receiver initialization routine. A few

changes to transmitter and receiver routines are also made, so

that data transfers are made only through the appropriate I/O

buffer.

These interruot routines and the initialization routine for

the interrupt controller are listed in appendices. The controller

can be programmed for either a static or a rotating priority scheme

and requires two or three bytes for this programming. These bytes

and their interpretation are shown Fig 6-6. Note that for the

first byte, the input A0 is a logic 6 and that for the following

bytes is a logic '1', Any -I/OW or -I/OR signal that occurs,

with AO a logic '0', can be taken by the controller as an attempt

-86-

JD7 D6 jD5 D4 D3 D2 D1 1D0

IA7A61A5 11 1 F I S 0
Sinitialization command word

:CW1: A0=0 and D4=1

indicates that there will be two,instead of

three, initialization words.

single controller,i.e. no cascading

set vector interval (logic '1'= 4 bytes and

logic '0'= 8 bytes)

set for level, instead of edge, detection on

the interrupt inputs.

set the eleven MSB's of the base address for

the vectors.

ICW2: A0=1

FIGURE 6-6. Interrupt Controller Program Bytes

BE30
BE32
BE34 Scanner Input

Buffer Pointer
BE36 FACS Output

Buffer Pointer
BE38 XMIT Channel Output

Buffer
BE3A XMIT Channel Input

Buffer Pointer

rmerly the corresponding outpu
ffer pointer.

FIGURE 6-7 I/O Buffers and Pointers

BE00 Scanner Input

Buffer Area
BE0F
BE10 FACS Output

Buffer Area

BE1F
BE20 XMIT Channel Output

Buffer (not currently
BE2F used)

BE40 XMIT Channel Input

Buffer Area
BE4F _ I,-

-87-

to either begin programming it or to read its status or mask

registers. Thus care must be taken in accessing the other

I/O devices, to maintain Ad at logic 'I'. Note that since

there are only four I/O ports, no decoding of the address lines

was required to select them. Each port is simply selected

by a distinct address line and the appropriate I/O read or write

signal. The port assignments,based on the state of the address

bus during the transfer, are indicated in the detailed circuit

diagram of Fig. 6-5.

There are two similar sets of interrupt routines

for the various ports. The routines for the output ports use the

pointers for the appropriate data buffer areas in order to access

the oldest value stored there. There are no checks made to insure

that the buffers'are not empty since the loading routines, i.e.

the transmitter and receiver routines are designed to be able to

load these buffers at least as rapidly as they can be depleted.

The loading routines from the transmitter and receiver make sure

that they don't write over data not yet removed from the buffers

by comparing their pointers to the corresponding pointers from the

interrupt routines. The routines for the input ports use pointers

to their respective buffer areas in order to load new data values

over the oldest remaining data values. There are, again, no checks

made to insure that the buffer areas are not already full since it

is assumed that data is being removed from these areas, by the

transmitter and the receiver, at least as fast as they can be

loaded. The transmitter and receiver compare their pointers to

-88-

the corresponding pointer from the interrupt routines in order

to insure that they do not attempt to remove data from empty

buffer areas. Figure 6-7 shows the memory allocation for the

various pointers and buffer areas discussed, including the

additional pointers for the transmitter and receiver.

External devices which are to be connected to the I/O ports

should conform to the following specifications for data transfers.

Those used with input ports should present data, one byte at a

time, accompanied by positive pulse* to strobe the data into the

port and not attempt to input another byte until the interruot

line has returned to the high state. This will occur when the

corresponding interrupt routine takes the data byte from the

port, i.e. executes an 'in' instruction referenced to the port;

thus the interrupt line is used also as a data acknowledge signal

from the CPU to the external device. For devices requesting data

from an output port, the recuest should be a positive oulse similar

to the strobe used for input ports. This will cause the port to

interrupt the CPU. When the corresponding interrupt routine loads

the port, i.e. executes an 'out' instruction referenced to the

port, the interrupt line returns to the high state, acknowledging

the devices request and signalling that the data is available.

Figure 6-8 shows these configurations.

E. DMA Grout

The ability to directly load or read from memory was initially

incorporated into the system with the intent of downloading most

* This pulse must be at least 30nsecs wide.

-89-

of the software and parameters from the UNIX system rirectly

into random access memory devices. This would make it possible

to load, test, and readily modify the routines on the micro-

computer itself. The main device is the Intel 8257, a pro-

grammable DMA controller, and the 8212 is present only to

latch the high-order address byte, which is time multiplexed

with the data byte*. They are connected directly to the system

data and address buses and the signal AEN (Address ENable) is

used to give it control of these for a data transfer. The

controller has four channels which can be used both to load and

to read from the system memory or the I/O ports and can be

programmed by the CPU to transfer any desired number of bytes,

starting from any desired location. When it receives a request

for a data transfer, DRQ, it sends a hold request,HRQ, to the

CPU. Upon receiving the hold acknowledge,HLDA, signal from the

CPU,it takes control of the system buses and sends an acknowledge

signal, -DACK, to the device requesting the transfer. It then

maintains control of the buses until the transfer is completed,

at which time it removes the hold request to the CPU. Completion

of the transfer is determined by the programming of the controller

and not by the device being serviced.

In programming the 8257 the four lsb's of the address bus

select the mode or any one of the channels. The 'mode' is program-

* The signal ADSTB is used to strobe this latch.

-90-

med by one byte and determines which channels are enabled, their

priorities and the manner in which transfers are terminated,

reinitiated, or carried out in general. The channels are pro-

grammed with two bytes for each the beginning address of the

transfer and the type of, read or write, and number of bytes in

the transfer.

Figure 6-8 shows the detail diagram for the DMA group*, as it

presently exists. It was decided to suspend the further devel-

opment of this portion of the system, since time did not

permit the development of the necessary interface device between

the UNIX system and because the downloading program for UNIX

sends the data in a format that would not appear to be appropriate

for direct loading into memory for execution. It would also be

necessary to design some circuitry or modify the ROM structure

to initialise the controller. The main reason, however, was lack

of time, since the latter problems could be worked out given

sufficient time. Thus, although this section was built, it is not

utilized; there is no software that pertains to it.

It is important to reiterate that this transfer was intended

to load the system's software and parameters into memory. This

feature would be used only with the ROM devices removed and appro-

priate RAM storage added to the microcomputer to replace them.

As mentioned, this would be done mainly for test purposes and the

ultimate goal would still have been to put the software in ROM.

Note that the chip selest, -CS, is attached to one of the
address lines and that this line must remain high for any
I/O transfers not involving this device.

-91-

FIUJRE 6-8 1/l Group-'external

Confinuration

.S1o
DO
DG iDS

03.DI.

Di.
D4
DO

UR

ST8
Dl

DI

DZ

b*
D6

07
AcK

b7

DL

D1

IDI

ACK

ACKT

-92-

GiUKUH 6-9 The iJi4. CLroup

-93-

VII. Conclusion and SuiRestions for Further Work

A. Simulator Imolementation

The routines presented in chapter V were all tested and

the data paths verified on the 808d simulator, using as input

an internally generated test pattern. The test pattern was

then modified and enlarged to 256x256 pels, which is the

maximum size obtainable with the pattern generator used, and

the result loaded into a file. For this image to be displayed

on the IPS system, it was necessary to put it into standard

image format. The test image was appended to the header from

another image of the same dimensions and then loaded from the

UNIX system onto a magnetic tape for transfer to and display

on the IPS. Next the pattern generator was modified so that it

would, instead, read data from an image* and simply insert

the 'new line' and 'new page' indications where appropriate. In

addition to not containing the necessary framing indications, the

images stored in UNIX also have a thousand byte header of image

parameters. A short routine was written which would read this

-header and copy it into some destination file. The rest of the

image file was then the real image data and was passed on to

the transmitter. The result out of the receiver was then loaded

into the destination file right after the header and the resultant

file copied also onto magnetic tape for transfer to and display

on the IPS.

Throughout the course of this work, improvements were

* These images are stored as raw data in the /pic directory.
See /pic/pic. doc The one mentioned here was 256 X 256 pels.

-94-

almost constantly being made to the various routines as thr

author became more fluent with the 8d8d assembly language

and as the various algorithms were developed. Admittedly,

some liberties were taken, with the local contrast determination

especially, in the interest of reducing the amount of compu-

tation reauired. Indeed the estimated comoutation time*

almost exactly meets the initial specification of a 1 milli-

second cycle time for the transmitter routine. It may be of

interest to carefully examine the images resulting from this

implementation in comparison to images resulting from Hoover's[3[

system and to determine possibly which features of this system

give rise to whatever differences are observed. Time-efficient

methods of improving performance might also be investigated,

although it would probably require an intimate Inowledge of the

inner workings of at least the transmitter.

B. Microcomputer Imolementation

The microcomouter system discussed in chapter VI was built

and tested to verify that it functioned properly as a computer.

In other words, verify that it properly executes whatever 886-

type instructions were loaded into its ROM devices. Once

functional, the memory boards were also tested, using the micro-

computer to load and verify the contents of the storage locations.

Time did not permit, however, the construction of a test system

suitable for verifying its performance with an actual input image

* See the appendices.

-95-

from a scanning device and with its resultant image sent to a

facsimile reproduction device. Developing such a system would

be a major undertaking in and of itself and, along writh a model

for the transmission channel, could be incorporated into a

further project. The microcomputer was only operated at half of

its maximum speed, as mentioned earlier, in order to accomodate

the slower RAM devices. It would be necessary to uograde these

devices in order to make the system even be able to approach

the time specification of a 1millisecond cycle time. Appendices

A and J show that, even with the upgraded devices and with the

CPU at its maximum 5 MHZ lock rate, it is necessary to limit the

transmitter output to the transmission channel to being direct

loaded* rather than interrupt driven, and seems to be a reasonable

limitation for most real world apolications.

The last major drawback to fully testing the microcomouter' s

performance with a real image was the very real problem of lbading

approximately 3k bytes of data into the PROM by hand., one addrcss

at a time. There is an existing system**to which entire assembly

program files can be copied and used to completely program thr

PROMs, but it proved impossible, within the allotted time, to gain

access to it; thus the test program had to be loaded in machine

code a single address at a time.

The system has been tested on several shorter nrograms and

* In the simulator version, all I!O is done by direct loading.
** The system is in the JLE & CS departments microcomputer

laboratory. (bldg. 38, 6th floor)

-96-

performed as specified, demonstrating, at least to the author,

that it indeed functions prooerly as a comruter and should,

therefore, be able to handle the transmitter and the receiver

programs as well. The main concern is that there may yet be

some defective RAM devices on the memory boards since they were

purchased from a surplus vendor and contain some rather ancient

devices. This would be resolved with the aforementioned

component upgrading. The initial intent was to merely expand

an existing 8d8$ microcomnuter system, rather than to build one

from scratch. Unfortunately, the system became unavailable when

the full scope of the modifications to be made were made known

to the owner. The cost of purchasing a suitable board was also

prohibitive, leaving no recourse but to build the system from

scratch.

-97-

Appendices

The following appendices contain listings and discuss

briefly the operation of the various programs that comprise

the system. The average computation time is also discussed

and is determined from the number of machine states, i.e.

clock cycles, for each instruction and the number of times

that it is executed in each cycle. Included in this com-

putation is a scaling based on the percentage of cycles

for which the instruction is executed at all. For exam-

ple, the estimated computation time for the low-pass filter

subroutine is scaled by .125 when determining its contribu-

tion to the system's cycle time, since it is only called for

one out of eight pels. Note also that for clarity an instruc-

tion cycle is considered to be four machine states rather

than as defined in the technical manuals, where it can range

from four to six machine states.

-98-

Appendix A: Transmitter Controller

This section contains the 8080 assembly language

program listing for the transmitter controller discussed

in chapter V. Since much effort was devoted to its ex-

planation there, it is presented here without further ex-

planation of the main functions. Note that this is the

version used in the simulator implementation and treats

the receiver and its initialization routine as subroutines.

The pattern generator is also used as a subroutine and

is presented in appendix B.

The routine cycle takes an average of about 455 in-

struction cycles, excluding those functions external to it

such as gradient, local contrast filters, and interpolators.

This cycle time corresponds to approximately 364 microseconds

for the 8085A-2 operating at its maximum rate.

When requirements for these other functions are in-

cluded, except for the multiplication routine, the average

number of instruction cycles increases to 854. This would

require approximately 683 microseconds, i.e. under 19 inst-

struction cycles, to complete its operations. This can only

be achieved with some sort of hardware multiplier. For ex-

ample, the routine, MLTPLY, listed in Appendix J takes only

18 instruction cycles, under 14 microseconds, to complete

its operation and is completely compatible with the multi-

plication routine, MULTIPLY, used in the simulator implemen-

tation. The total time for multiplication would come to 272

microseconds, leaving a approximate 45 microseconds for the

I/O routine.

-99-

startup: ei
call rinit Ilinitialize receiver

Ixi h,0ObedO 11store the filter coefficients
mvi m,1 1starting with location ObedO
inx h iland ending with location Obed8
mvi m,3.
inx h
mvi m,13.
inx h
mvi m,28.
inx h
mvi m,37.
inx h
mvi m,28.
inx h
mvi m,13.
inx h
mvi m,3
inx h
mvi m,1
inx h Iset HL register to Obed9
mvi a,O Ilset accumulator to zero
mov m,a ~1set location Obed9 to zero (temporary highs buffer--THIGHS)
inx h
mov m,a Ilset location Obeda(MISMATCH) to zero
inx h
mvi m,20 11set location Obedb(FLAGA)
inx h
mvi m,1 Ilset location Obedc(XCNT) to one
inx h
mov m,a 11set location Obedd(XMIT) to zero
lxi h,Obec8 11set HL to point to Obec8
mov m,a ilinitialize it to zero
inx h 11set HL to point to Obec9
mov m,a Ilinitialize it to zero
inx h Ilset HL reg to point to STIN
mov m,a Ilset memory location to zero
inx h i1set HL reg to point to STOUT
mov m,a iland initialize to zero
Ixi h,ObefO IIVLPF output(VLOWS) storage area extends from OBEFO to OBEFF
shld Obeec liinitialize associated pointer
lxi h,8c02 1IDELTA Local Contrast storage area extends from

118C00 to 93FF (double precision values)
shld Obecc 1linitialize associated pointer
mov h,a lset reg H to zero
mov 1,a 11set reg L to zero
shld Obece ilinitialize value of LOCAL CONTRAST(2-bytes)
mvi h,28 lORIGinal data storage area extends from 2800 to 4BFF
shId Obeee 1linitialize associated pointer
shld Obede Ilinitialize pointer for framing indications for trans-

hlmission of highs

FIGURE A-A. Transmitter Controller Routine

-100-

mvi h,94 IIHLPF output(LOWS) storage area extends from 9400 to A7FF
shld Obeea 'dinitialize associated pointer

mvi h,Ob8 lilows transmitter storage areas extend from B800 to B8FF(L1)
iland from B900 to B9FF(L2)

shld Obee8 ¶Iinitialize associated input pointer to area LI
shld Obee4 ilinitialize associated output pointer to area L2
mvi h,Oa8 1lhighs transmitter storage areas extend from A800 to AFFF

i1(H1) and from BO000 to B7FF(H2)
shld Obee6 Slinitialize associated input pointer to area H1
mvi h,Oac
shld Obee2 ilinitialize associated output pointer to area H2
mvi h,4c iIGRADIENT storage area extends from 4C00 to 8BFF
shld ObeeO ilinitialize associated pointer
mvi b,0 11prepare to zero-out the memory storage areas for

mvi a,94 ilGRADIENT and DELTA LC
zerolc: mov m,b Ilthis extends from the current value of the HL reg(4C00)

inx h 91to 93FF
cmp h 11does H=94?
jnz zerolc ~lif not then iterate
lxi sp,OCO00 ilinitialize stack pointer
mvi b,45 lithis value to be used by the pattern generator
mvi c,l Ilinitialize associated counter
push b listore both on the stack
mvi a,Oc
push psw l1this word(STATUS) is used in subsampling the lows
mvi a,Off 11set first input value to 'page'
jmp ftime

resume: call gptrn
ftime: lhld Obeee 11prepare to store the data in storage area ORIG

mov m,a
cma
cpi 01 rIcheck for framing indications i.e. new line and new page
cma
jc pnew Ilif new page, jmp
jnz Intnw Ilif no framing indication, jmp
call incgr ilelse increment GRADIENT pointer to the next line
dcx h ilset pointer to the last possible address of the previous line
shld ObeeO iland store
call incdat iiincrement ORIGial data pointer to the next line
dcx h 11set pointer to the last possible address of the previous line
mvi m,Ofe 11put 'new line' indication at pointer address
shld Obeee 1Istore pointer
mov a,m
jmp frnwln

pnew: mvi m,O
call incgr ;lincrement GRADIENT pointer to the next line
shld ObeeO iland store
call incdat Ilincrement ORIGinal data pointer to the next line
mvi m,0Off 11put 'new page' indication at pointer address
shld Obeee listore pointer

FIGURE A-A (continued)

-101-

Intnw: mov a,m
call gradient 1{this subroutine both computes and stores the magnitude

1lof the gradient for the pel area centered above the
Ilcurrent pel.

ihld Obeee 11restore the ORIG pointer
frnwln: mov a,h I1put high order byte of ORIG pointer into accumulator

sui 38 llmove back four lines (offset of 28 since ORIG begins at 2800)
jp good ilif within storage area bounds, jmp
adi 24 11else wrap around by adding the size of the storage area

good: adi 28 11add back the offset
mov h,a Iput value into reg H
mov d,h
mov e,l llsave pointer in reg DE
dcx h
dcx h
dcx h
dcx h
dcx h
mov a,m ilcheck for framing indication at location (-4,-4)
cma
cpi 01
jc Inwpg
jnz nlnwln ilif no framing indications then jmp
pop psw ilelse new line. get STATUS from stack
xri 08 VItoggle bit 3
push psw iland store new value on the stack
jmp nlnwln

Inwpg: pop psw ilget STATUS from the stack
ani Of7 ilset bit 3

push psw 11store new value on the stack
nlnwin: xchg ilrestore ORIG pointer for location (0,-4) to reg HL

mov apn rlget corresponding data value
11The next few lines involve getting the pointers needed for the
ilvertical low-pass filtering operation.
ilreg BC gets the pointer for the filter coefficients
1Ireg DE gets the pointer for the data to be filtered
ilreg HL gets the pointer for the storage address of the result
lhld Obeee Ilget ORIG pointer
xchg Vland put it into reg DE
lhld Obeec ilput VLOWS pointer in reg HL
Ixi b,Obed8 lput address of end filter coefficient into reg BC
cma
cpi 01 ýIcheck for framing indications in the corresponding ORIG value
cma lIi.e. ORIG(O,-4), where ORIG(O,O) is the most recently received pel
jc pnwpg ilif new page, jmp
jz pnwln ~Iif new line, jmp
pop psw ilget STATUS word from stack
dcx sp
dcx sp lreset stack pointer
ani Oc Ilisolate bits 2 and 3 (toggle at each line change to
cpi Oc ilcontrol vertical subsamplinlq)

FIGURE A-A. (continued)

-102-

jz offln %iif bits 2 and 3 are nonzero(line # is odd), jmp
call vlpf 1lelse filter
pop psw ilget full status word from stack again
mov d,a 1land save it in reg D
dcr a
ani 3 ~Iisolate bits 0 and 1 (these control horizontal subsampling)
jnz nsmpl ilif bit 2 or bit 3 is nonzero, then jmp
mov a,d ilelse get the original STATUS word
dcr a
cmp a
jmp hflt Iprepare for horizontal filtering

nsmpl: mov e,a
mov a,d
ani Ofc 11mask off the two lsb's of the STATUS word
ora e iland replace then with the new values
jmp fltskip hIand skip filtering and interpolating operations
IlThis section is used if and only if the current line or pel
ilis not to be sampled (for lows only)

offln: pop psw 11get STATUS word from stack
xri 1 iltoggle LSB (controls output transmitter)

fltskip: push psw ilput STATUS word back on stack
lhld Obeea iPput LOWS pointer in reg HL
mov a,h
sui 10 ilmove LOWS pointer back four lines
cpi 94 1lcheck to insure pointer still within storage area
jnc olskip ilif so ,jmp
adi 14 ilif not, then wrap around before proceeding

olskip: mov h,a tIbefore proceeding
dcx h
dcx h
dcx h ilmove LOWS pointer back(left) three pels
mov b,m ilget LOWS value used in separating next highs value-LOWS(-7,-8)
jmp nwln

pnwpg: mov m,a tIput 'new page' indication at VLOWS pointer address
pop psw 1lget STATUS word from the stack (discard)
sub a hlset accumulator to zero
sta Obeda 11reset MISMATCH value
mvi a,80 hIset accunulator to 83(STATUS bit 7=1, indicates the first

cpi 0 Illine of an image)
jmp hflt

pnwln: mov m,a 11put 'new line' indication at VLOWS pointer address
pop psw lIget STATUS word
cpi 80 tlcheck for first line indication

jc noframe Vlif none,jmp
1IMISMATCH is the value of the modulo four count of the line length.
'ilSince only the subsampled version of the LOWS data is to be trans-
1Imitted, this value is needed to properly allign the image data for
ilreconstruction.
dcx sp
dcx sp

FIGURE A-A. (continued)

-103-

dcr a
ani 03
sta Obeda ,Istore MISMATCH
pop psw ilrestore status word to the accumulator

noframe:ani Oc ilreset firstline and hor. subsampling bits(bit 7 and bits land 0)
xri 4 iltoggle vertical subsampling bit(bit 2)
cpi 4 lIcheck to see if all other bits of the STATUS word were zero

hflt: push psw ilput STATUS word back on stack
jnz nwln 8lif a sampled line , imp
lThe appropriate pointers for the
ilhorizontal low-pass filtering operation are:
ireg BC still contains the address for the filter coefficients
ireg DE gets the pointer for the data to be filtered i.e.VLOWS
lireg HL get the pointer for the storage address of the result
call hlpf
call vint
call hint
dcr h
dcr h
dcr h
dcr h ilmove LOWS pointer back one line
mov a,h
cpi 94 11check to insure LOWS pointer still within storage area
jnc liskip ilif so , then jmp
adi 14 ilif not, then wrap around
mov h,a

liskip: call hint
mov a,h
sui Oc ilmove LOWS pointer back three more lines
mov h,a
cpi 94 iScheck to insure pointer still within storage area
jnc Iskip Ilif so, then jmp
adi 14 Ilif not, then wrap around
mov h,a

lskip: push h
call ldlbuf
pop h
dcx h
dcx h
dcx h 11move LOWS pointer back(left) three pels
mov b,m ilget LOWS value used in next highs separation--LOWS(-7,-8)

nwln: lhld Obeee ilget pointer for ORIG data
mov a,l
sui 7 ilmove back(left) seven pels
mov l,a
jnc nofix richeck for borrow from subtraction. jmp if none
dcr h 1lelse take borrow from pointer's high order byte

nofix: mov a,h
sui 20 11move pointer back(up) eight lines
mov h,a

FIGURE A-A. (continued)

-104-

cpi 28 Slcheck to see if pointer is still within storage area
jnc skip ilif so , jmp
adi 24 Ilelse wrap-around pointer
mov h,a

skip: mov a,m ilget corresponding ORIGinal data value i.e. ORIG(-7,-8)
push psw ilstore temporarily on stack
push h 1Istore ORIG pointer on stack also
mov l,a 11save ORIG value in reg L

sub b Ilobtain highs by subtracting LOWS value from ORIG value
push psw I1save the highs value on the stack
jp nhance ¶tcompute the magnitude of the highs value
cma lsince the multiplier is only for unsigned numbers
inr a 4li.e. a result that should have been negative will

Ilno longer be in two's complement form
nhance: 1xi b,Obed9 ilget pointer for Temporary HIGHS(THIGHS) buffer

stax b 11store highs value in THIGHS
mvi h,Oa I1set high order byte of HL reg.to address of lookup table for

illuminance scale factor
xchg iluse ORIG value in reg L as the index and move pointer to reg DE
call multiply Ilcomputes product of values pointed to by the BC and DE
stax b istore value in THIGHS
call loccon 1lcomputes local contrast(double-precision)--loccon(-7,-8)
mov a,h i~put high order byte in reg A (ignore low order byte)
cpi 40 iIsee if index exceeds limit
jc snext Ilif not , jmp
mvi a,3f ilelse set index to its upper limit

snext: mov l,a Ilput index into reg L
mvi h,Ob ilput address of lookup table for detail scale factor in reg H
xchg itput address into reg DE using the loccon value as the index
call multiply 11scale the value in THIGHS
mov d,a rIsave value in reg D
pop psw ilget highs value from the stack
jp postv Iland combine with the result of the scaling operations
sub d
jmp comprss

postv: add d
comprss: mvi h,08

mov 1,a ~Iget pointer for highs compression lookup table
mov a,m lIget compressed highs value
mov d,a 11and save in reg D
pop h ilretrieve the ORIG pointer
call noisep lithis generates a PRN value
add d iladd the PRN and THIGHS values
mov d,a iland save in reg 0

ldhbuf: 1hld Obee6 ilget input pointer for the HIGHS output buffer
mov m,d iland store the scaled highs value there
pop psw 1iget ORIG value from the stack
cma
cpi 01 'icheck for framing indications
cma

FIGURE A-A. (continued)

-105-

jc npage Ilif 'new page' indication, then jmp
push psw
Ida Obec9 Ilget HGHEN from memory
cpi Off Iland see if the enable is set
inx sp
inx sp Ilrestore the stack pointer
jnz xmitout
dcx sp
dcx sp liset stack pointer to retreive value
pop psw
jnz sline Ilif no framing indications, jmp
call inchbf Ilelse 'new line'.increment the highs output buffer's input

ilpointer to the next line
dcx h Ilmov pointer back to the last possible value of the previous line
Ida Obec8 Ilget NCNT and increment it (output line counter)
inr a
sta Obec8
jmp sline

npage: call inchbf ilincrement the H.O.B.'s input pointer to the next line
mov m,d Ilinsert the new page indication at the beginning of the line
mvi a,Off
sta Obec9 ilset HGHEN

mvi a,O
sta Obec8 Ilreset the line counter, NCNT

sline: inx h Ilincrement the HOB input pointer
shld Obee6 Iland store

xmitout: pop psw ilget STATUS word from stack
pusn psw 4Ibut put it back unchanged
rrc •iput LSB into carry (this bit toggles each time the program cycles)
cnc txout Ilif zero, present one byte to the transmit channel

mfinish: lhld ObeeO
inx h Ilincrement GRADIENT pointer
shId ObeeO
1hld Obeee
inx h ilincrement ORIGinal data pointer
shId Obeee
Ihld Obeec
inx h ilincrement VLOWS pointer
mov a,l fIcheck to insure that pointer is within storage area
ani Of
jnz vwrap 1lif so, jmp
lxi h,ObefO

vwrap: shld Obeec
1hid Obeea
inx h ilincrement LOWS pointer
mov a,h
cpi Oa8
jc alrght
sui 14
mov h,a

FIGURE A-A. (continued)

-106-

alrght: shld Obeea
jmp resume licycle

lIThis is the end of the main program. The rest are the subroutines
ilreferred to in the body of the main. Those referred to in main, but not
illisted below include the vertical low-pass filter(vlpf), the horizontal
illow-pass filter(hlpf), the gradient routine(gradient), the local contrast
ilroutine(loccon), the vertical interpolator(vint), the horizontal inter-
ilpolator(hint), and the multiplication routine(multiply). They are stored
ilindividually in other files (see /usr/gallin and type dir).
incgr: Ixi h,Obece

sub a
mov m,a
inr 1
mov m,a 11reset the local contrast value to zero
1xi h,8c00 ilreset delta local contrast pointer for the next line
shld Obecc
Ihld ObeeO ilget GRADIENT pointer
mov a,h ilput high order byte of pointer into accumulator
adi 4 Vlincrement pointer to the next line
ani Ofc nImask 2 LSB's(note: the 10 LSB's of pointer must be set to 0)
mov h,a
cpi 8c lIcheck to see if upper of the storage exceeded
mvi 1,0 i1set low order byte of pointer to zero
rnz lireturn if pointer within storage area
mvi h,4c 11else wrap pointer to lower bound of the storage
ret

ilThis is the end of this rountine. It is very similar to a couple of the
11routines to follow, but it was undesirable to combine them into a more
ilgeneral routine because of the constraints on computation time.
update: 1xi h,0Obedb load flaga, which indicates the type of word to

mov a,m fIbe transmitted next
ani 80 ilbit 7 indicates that the two-bit line mismatch is
jnz xmtmsmat ¶Ito be transmitted
mov a,m 1iif not, restore flaga to the accumulator
ani 20 i1bit 5 indicates that an 8-bit lows word is
jnz updlow Ilto be transmitted
lhld Obede 11else 3-bit highs.--get pointer for framing indications
mov a,m 11get value from ORIG storage area and check it. for framing
cma 11indications
inx h ilincrement pointer
shld Obede iland store it
cpi 01
jc nwhpg tlif new page,then jmp
jnz hout 1liif no framing indications,then jmp
mvi 1,0 ilelse 'new line' indication.
mov a,h 4iset pointer to the first possible value of the
ani Ofc lline being observed for framing
mov h,a 1lindications i.e. wrap pointer
shld Obede 11and store
Ihld Obee2 11get pointer for next highs value to be transmitted

FIGURE A-A. (continued)

-107-

mov b,m Ilget value and save in reg B
mvi 1,0 1Iset low order byte of pointer to zero
mov a,h 11move pointer to the last possible location of the current
ani Ofc illine , so that the next increment will move it to the first
adi 04 t11ocation on the next line.
cpi Ob8 ilcheck to insure that pointer is still within the bounds
jc txhwrp ilof the HOB storage area
mvi a,Oa8 Ilelse wrap pointer

txhwrp: mov h,a
dcx h
Ida Obedb ilget and
rlc ¶lupdate FLAGA
sta Obedb Iland store
mov a,b
jmp hgout

nwhpg: mvi 1,1
mov a,h
ani Ofc
mov h,a
shid Obede i{reset pointer to beginning of line and store it
lhld Obee2 11get HOB pointer
mov b,m land the corresponding highs value
mvi 1,0
mov a,h
ani Ofc
mov h,a himove pointer to the beginning of the current line
mov a,b
jmp hgout

hout: lhld Obee2 ilget next highs value to be transmitted
mov a,m 11from the highs output buffer

hgout: inx h ilupdate the pointer
shld Obee2 iland store it.
lxi h,0Obedd 11store this value in the transmitter output
mov m,a lIbuffer location(XMIT)
Ixi h,Obedc 11set transmit output bit counter for
mvi m,20 hlthree bit words(XCNT)
ret

updlow: Ida Obecb ilget the output enable indicator(STOUT)
cpi Off 11and check it
rnz Ilif not enabled, then return
Ihld Obee4 ilget value from the lows output buffer and
mov a,m ilput it in the accumulator
cma
cpi 01 llcompare it with the 'new line' indication
cma
jc unwp ilif 'new page' indication , then jmp
jnz pgbr 1lif no framing indication , then jmp

msmatch: mov b,a ilsave value in reg b while switching output buffer segment
mov a,h 1ithe switch between the two output buffer segments is achieved
xri 1 hIby complementing the LSB of the higher order byte of the
mov h,a hipointer each time a new line indication is encountered

mtch: mvi 1,0 l1set lower order byte to zero.(corresponds to rastor retrace)

FIGURE A-A. (continued)

-108-

shld Obee4 11store the updated pointer
lxi h,Obedd l1store the value from reg b in the transmitter
mov m,b 1loutput buffer location(XMIT)
Ixi h,Obedc lIset the transmitter output bit counter for 8-bit
mvi m,1 1lwords and store(XCNT)
lxi h,Obedb ilget FLAGA and check to see if this the end of the
mov a,m ~Ifirst line of the image to be transmitted
xri 28 ~1set FLAGA to indicate highs
mov m,a land store
ani 40 1lthis is the actual check for the first line(as mentioned
rz liabove) with bit 6 as the indicator
mvi m,10 ~lif so set FLAGA to 01(bit 0=1) ,store
ret iland return

unwp: xchg
Ida Obedb 11set FLAGA for lows first line(bit 5)

11and to transmit the MISMATCH value(bit 7)
ori OcO
sta Obedb
xchg
mvi a,Off lirestore data value to the accumulator

pgbr: inr 1 ilupdate the lows output buffer address pointer
shld Obee4 iland store
sta Obedd 11store value in transmit output buffer location(XMIT)
mvi a,1
sta Obedc 11set transmit output bit counter for 8-bit words
ret

xmtmsmat:lxi h,Obeda ilget value of line mismatch
mov a,m ýiand put it in the accumulator
rlc
rl c
ora m
rlc
rlc.
ora m
rlc
rlc
ora m
lxi h,Obedd 11store this value in the transmitter output
mov m,a ~lbuffer location(XMIT)
lxi h,0Obedc ¶lset the transmit output bit counter(XCNT) for
mvi m,01 ~18-bit words
Ixi h,Obedb 'Iget FLAGA and put it in the accumulator
mov a,m
ani 7f i1set bit 7 to zero(no more mismatch)
mov m,a iland store
ret lithe end

lIThis is the end of the routine which provides the actual transmitter
1Iroutine with both data values in the desired format and information on how
tImany bit of each of these values is to be transmitted.

FIGURE A-A. (continued)

-109-

txout: mvi d,7
txt: Ida Obedd Ilget value from transmit output buffer location(XMIT)

rlc 1Imove LSB into the carry bit
sta Obedd lstore rotated version of value in XMIT
mov a,c
ral 'Ishift bit into reg C from the left
mov c,a
Ida Obedc ilget transmit output bit counter(XCNT),
rIc ilupdate,
sta Obedc fland store it.
cc update i{if valid bits of XMIT exhausted,get next values for X

ilXMIT and XCNT
dcr d ildecrement counter for the number of iterations remaining
mov a,c Ilget value to be transmitted
jp txt Ilif count greater thanor equal to zero then iterate
out 06 9ITRANSMIT CHANNEL or direct buffer

call rcvr ,Isend output to the receiver for test
ret !lend routine

,IThis is the end of the routine. It has not yet been decided whether

,ito send its output directly to the transmitxchannel(which would be sufficient
itfor test purposes) or to send it to some FIFO buffer such as on the input
,Ito allow for more realistically flexible timing.
noisep: mov a,l 11this routine fecthes values from the PRN lookup table

ani 07 ,lusing the three lsb's of the pointer given it,
mov l,a iland the three Isb's of the line counter ,NCNT
Ida Obec8
ani 07
rlc
ric
rIc
ora 1
ori 40
inov 1,a
mvi h,Ob
mov a,m
ret

inchbf: mov a,h ýlhigh order byte of HOB pointer into accumulator
1l(pointer was already in HL reg)

adi 4 1!increment pointer to next line
ani Ofc 11mask 2 LSB's (Note: the 10 LSB's of pointer must be zeroed)
mov h,a Jiput new value into reg H
cpi Ob8 ilcheck to see if upper bound of storage area exceeded
mvi 1,0 ilset low order byte of pointer to zero
rc AIreturn if pointer within storage area
mvi h,0a8 ;,else wrap pointer to lower bound of storage area
ret •,end of routine

,iThis is the end of the routine. It can be used to increment either
1lof HOB's pointers since no pointer is specified and the storage area
,ispecified is appropriate for both.

FIGURE A-A. (continued)

-110-

incdat:" Ihid Obe-ee ilget pointer for ORIGinal data
mov a,h 1ihigh order byte of pointer into accumulator
adi 4 ̀ .!increment pointer to the next line
ani Ofc ,ilmask 2 LSB's (Note: the 10 LSB's of pointer must be zeroed)
mov h,a 'lput new value in reg H
cpi 4c ilcheck to see if upper bound of storage area exceeded
mvi 1,0 '1set low order byte of pointer to zero
rc 1!return if pointer within storage area
dcx h
mvi m,Ofe .Iset the last location of line before wrapping pointer
inx h •,this resets reg L to zero
mvi h,28 lIelse wrap pointer to lower bound of storage area
ret tlend of routine

ilThis is the end of the routine. There is'nt really anything more
ilto be said, since it is almost identical to inchbf and even moreso
ilto incgr.
ldlbuf: nov a,m 11get value to be loaded--LOWS(-8,-4)

mov c,a
cpi Off l1check for 'new page' indication
Ihid Jbee8 iget Lows Output Buffer(LOB) pointer
jz Idpg ilif 'new page' , then jmp
Ida Obeca
cpi Off
rnz
mov a,c
cpi Ofe
jnz 1dwd Ilif no framing indications, then jmp
pop psw
pop psw
pop psw
push psw
dcx sp

dcx sp
dcx sp
dcx sp
dni 04
jnz Idlows
mvi a,Off
sta Obecb ilset transmitter output enabled, STOUT
ret

Idlows: dcr 1 ilelse 'new line'. move pointer back(left) one pel
mov in,c SIstore value at LOB pointer address
miov a ,h
xri 1 tIswitch LOB areas
nov n,a
invi 1,0 ilset low order byte of pointer to zero
shld Obee8 -Istore pointer
ret

FIGURE A-A. (continued)

-111-

Idpg: mvi 1,0 11set low order byte of pointer to zero
sta Obeca ilset enable(STIN) for output buffer's input routine

Idwd: mov m,c istore valu. at pointer address
Ida Obeca ilcheck enable (STIN)
cpi Off
rnz ilif not enabled then return
inx h iiincrement LOB input pointer
shld Obee8 ilstore pointer
ret ilend of routine

lIThis is the end of the routine. It has one feature whlich may need
Ito be explained. It will always write whadtever 'new line' indications
'lit gets over the last value it stored.

ilThe reason for this is that the subsampled lows lines cannot be more
dithan one fourth of the total line length before subsampling. For a line
'lwith a nonzero MISIATCH (i.e. line length not a multiple of four), this
*ifeature prevents the transmitted line length from exceeding this limit.
'iSince the 'new line' indication must be transmitted, it will cause this
ilimit to be exceeded unless it happens to occur at a pel that was to be
iisampled (and transmitted). This corresponds to the line length being a
l~multiple of four i.e. MISMATCH=O

FIGURE A-A. (continued)

-112-

Appendix B: Pattern Generator

There were three different versions of the pattern

generator used in testing the system's simulator implemen-

tation. The first generates a checker test pattern with

a line length of sixty-four pel and was used mainly to test

the data paths and various subjunctions. The second gener-

ates test pattern of vertical bars with the approDriate

framing indications and with a line length of 256 pels.

This pattern was to be put through the system and displayed

in order to check the receiver's reallignment procedure. The

third version generates framing indications for images* input

to the system and otherwise passes the image data directly

through.

*The line length cannot exceed 256 pels.

-113-

gptrn: pop b
pop b
inr c
jz i4 ilchecker height = 4
mvi a,3f lIline length = 64
ana c
jz i3
mvi a,Of tichecker width = 16
ana c
mov a,b

il: jnz i2
cma

i2: mov b,a
jmp endit

i3: mov a,b
cma
mov b,a

i4: mvi a,Ofe
endit: push b

dcx sp
dcx sp
ret

Version 1

vIThis is he pattern generator used in testing the transmitter and receiver:
gptrn: pop b

pop b
pop b
inr c
jz i3 Illine length = 256
mvi a,Of listripe width = 16
ana c
mov a,b

il: jnz i2
cma

i2: mov b,a
jmp endit

i3: mov a,b
cma
mov b,a
mvi a,Ofe

endit : pusn b
dcx sp
dcx sp
dcx sp
dcx sp
ret

Version 2

FIGURE A-B. Pattern Generator Subroutine

-114-

gptrn: pop b
pop b
inr c
in 01 ilget input value
jz i4 Ilif end of line reached, then jmp
jmp endit l1else return with input value

i4: mvi a,Ofe ilif end of line, generate 'new line' indication
endit: push b

dcx sp
dcx sp
ret

Version 3

FIGURE A-B. (continued)

-115-

Appendix C: The Gradient Subroutine

The gradient subroutine is used to determine the

magnitude of the gradient at the pel location just above

the most recently receive- pel. This would correspond

to location (0,-l) relative to that pel. The routine

follows the procedure outlined in chapter IV and begins

by getting the original data pointer, ORIG*. It gets

the correspond pel value, location (0,0), then uses this

pointer as a reference in accessing the values for the pels

at location (0,-2), 0,-1), (1,-l) and (-1,-1), in that

order. It then computes the magnitude of the difference

between the value for location (0,-l) and the other four

locations and sums them. The results are divided by two

before summing and the sum is stored at the location in-

dicated by the gradient pointer.

The routine takes about 71 instruction cycles on the

average, which corresponds to approximately 57 microseconds

for an 8085A-2 at its maximum rate.

*This containes the storage address for the most recently stored pel
See the section on the transmitter controller.

-116-

grad ient:1hld Obeee ilThe gradient routine both computes the magnitude of the
mIov b,m iigradient for the area centered at the pel just above the
mov a,h :imost recently received pel and stores it for later use by the
sui 8 illocal contrast routine
cpi 28
jnc nowrap
adi 24

nowrap: mov h,a
mov c,mi
adi 4
cpi 4c
jc centered
sui 24

centered:mov h,a
mov a,m
inx h
mov e ,m
dcx h
dcx h
mov d,m
mov h,a
SUD e
jnc egrd
cma
inr a

egrd: rar
mov e,d
Inov a,h
sub d

jnc dgrd
Cma
inr a

dgrd: rar
add e
mov e,a
mov a,h
sub c
jnc cgrd
cma
inr a

cgrd: rar
add e
rmov e,a
mov a,h
sub b
jnc bgrd
cmna
inr a

bgrd: rar
add e

storeg: ihId ObeeU
mov mn,a
ret

FIGURE A-C. Gradient Subroutine

-117-

Appendix D: The Local Contrast Subroutine

The Local contrast routine follows the procedure

outlined in chapter IV and its results corresponds to lo-

cation (-1,-8) relative to the current pel. It first

saves the contents of the BC register pair on the stack,

since at the time this routine is called they contain the

temporary storage address for the highs value being scaled.

It then gets the GRADIENT pointer and manipulates it to

access the gradient values corresponding to locations (0,-l),

(0,-16), (-14,-16), and (-14,-1), in that order. The latter

two values are only accessed if the back reference from the

pointer doesn't cross a line boundary. These four values

are combined in the manner discussed in chapter IV; the

first and third values are added and the second and fourth

are subtracted. The result in then added to the correspond-

ing local contrast update value, which is obtained using

the appropriate pointer and is a double precision value.

The new update is stored and then added to the previous local

contrast value. This result is then stored in memory and

the HL register pair.

On the average about 97 instruction cycles are required

to complete this operation, which would take approximately

78 microseconds for an 8085A-2 microprocessor at its max-

imum rate.

-118-

Toccon: push b IITnis is the local contrast routine. It computes the average of
ihld (beeO Sithe gradient over a 15X15 pel area centered at (-7,-8),
mov c,m 'irelative to the current pel
mov a,h
sui 3c
cpi 4c
jnc lowrap
adi 40

lowrap: mov h,a
mov em
mov a,c
sub e
jnc edged
dcr b

edged: mov a,l
cpi Of
jnc noedge
mnov a,i
rar
jc noedge
rar
jnc contfin

noedge: mov a,1 ilthis section is skipped if the averaging area overlaps the
sui Of Iledge of the image
mov 1,a
mlov a,c
inov e,m
add e
jnc down
inr b

down: mov c,a
mov a,h
adi 3c
cpi 8c
jc local
sui 40

local: mov h,d
mov e,m
mov a,c
sub e
jnc contfin

dcr b
contfin: mov c,a

Ihid Obecc
mOV d,Ifl
inx h
mov e,m
add c
mov C,a
mOV a,·

FIGURE A-D. Local Contrast Subroutine

-119-

adc b
mov b,a
mov mn,a
dcx h
Imov m,c
inx h
inx h
shid Obecc
ihid Obece
dad b
shid Obece
pop b
ret

FIGURE A-D. (continued)

-120-

Appendix E: The Horizontal Low-Pass Filter Subroutine

The Horizontal filter routine computes the weighted

sum of the nine most recent vertical results and its

output corresponds to location (-4,-4) relative to the most

recently received pel. It expects the low end filter

coefficient address and the vertical filter result pointer

to be in the register pairs BC and HL, respectively, and

begins by checking the fifth most recent vertical filter

results for framing indications. It then moves to VLOWS

pointer to register pair DE and loads the lows pointer in-

to register pair HL. For a "new page" indication, it moves

the lows pointer to the first location of the next line

and simply stores the indication there. For a "new line"

indication it immediately puts the indication at the new

location indicated by the lows pointer. It also puts this

"new line" indication at the corresponding location on the

previous line * and then at the last possible location on

both lines. It leaves the lows pointer pointing to the

location just before the first one of the next line, thus

the next location loaded will be the first one of that line.**

It also modifies the controller's STATUS flag word such the

first location will be a sample point. The marking at the

end of the line are necessary to signal when a back reference

from the lows pointer has crossed a line boundary.

*Since the lows pointer is being moved, the interpolators would not be
able to fill in these llocations.
**The transmitter controller increments this pointer at the end of each
cycle.

-121-

Appendix E (cont.)

In the absence of any framing indications this sets the

counter, stored on the stack, for nine iterations. It

then successively gets the next filter coefficient and

vertical filter result, multiplies them together, and ac-

cumulates the products in the location indicated by the

lows pointer.

It takes an average of about 260 instruction cycles

for this routine, corresponding to about 208 microseconds

for the 8085A-2 operating at its maximum rate.

-122-

hlpf: mov e,l iIThis is the horizontal low-pass filter.
mov a,l ilIts results correspond to location (-4,-4), relative
sui 4 1to the most recently received pel
cpi OfO
jnc okayed
adi 10

okayed:mov 1,a
mov a,m
cma
cpi 01
cma
mov 1 ,e
xchg
lhld Obeea
jc nwfrm
jz frame
mvi c,OdO

hstart:mvi a,9
push psw
mvi m,0

cont: call multiply
add m
mov m,a
.pop psw
dcr a
rz
push psw
inr c
dcr e
mvi a,Oef
cmp e
jc cont
mov a,e
adi 10
mov e,a
jmp cont

frame: mov m,a
mov a,h
sui 04
cpi 94
jnc endint
adi 14

endint:mov h,a
mvi m,Ofe
mvi 1,Off
ori 3
mov h,a
mvi m,Ofe
adi 4
cpi Oa8
jc nhwrp
sui 14

FIGURE A-E. Horizontal Low-Pass Filter Subroutine

-123-

nhwrp: mov h,a
mvi m,Ofe
shld Obeea
pop psw
pop psw ilget STATUS word from stack
inr a hland set it such that the first pel
push psw 1lwill also be a sample point.
dcx sp
dcx sp
ret

nwfrm: mov a,h
adi 4
cpi Oa8
j c nhwp
sui 14

nhwp: ani Ofc
mov h,a
mvi 1,0
.mvi m,Off
shld Obeea
ret

of the next line

FIGURE A-E. (continued)

-124-

Appendix F: The Vertical.Low-Pass Filter Subroutine

The vertical filter routine computes the weighted sum

of the most recently received pel and the corresponding pels

from the eight preceding lines. It expects the high and

filter coefficient address, the ORIG data pointer, and

the VLOWS pointer to be present in the register pairs BC,

DE, and HL, respectively.* It begins by setting a counter

stored on the stack, for nine iterations. It then suc-

cessively gets the next filter coefficient and appropriate

pel value, multiplies them together and accumulates the pro-

ducts in the location indicated by the VLOWS pointer.

Excluding the time required for the multiplication

routine, this routine takes an average of about 240 instruc-

tion cycles, corresponding to about 192 microseconds for the

8085A-2 at its maximum rate.

*Framing indications are handled by the transmitter controller, which
will store these at the address indicated by the VLCWS pointer without
even calling this routine.

-125-

vlpf: mvi a,9 ilFTlis is tne verti c a l low-pass filter routine.
push psw illts results correspond to location (0,-4), relative
mvi m,O ',to the current pel
Inov a,d
cpi 48
jnc roll
adi 0

roll: mov d,a
roll2: call multiply

add m
mov m,a
pop psw
dcr a
rz
push psw
dcx b
dcr d
dcr d
dcr d
dcr d
mov a,d
cpi 28
jnc ro112
adi 24
mov d,a
jmp roll2

FIGURE A-F. Vertical Low-Pass Filter Subroutine

-126-

Appendix G: The Vertical Interpolator Routine

The vertical Interpolator computes the average of the

most recently determined lows value and the correspond value

from the second line above it, corresponding to locations

(-4,-4) and (-4,-6) relative to the most recently received

pel, and puts the result in location (-4,-5). It expects

the lows pointer to be in register pair HL and, before

the average is computed, the lows value is checked for

a "new line" indication. If it is present, it is copied

directly into location (-4,-5) instead of the average.

It takes about 34 instructions cycles on the average,

which corresponds to 27 microseconds for the 8085A-2 at

its maximum rate.

-127-

11Tilis is the vertical interpolator routine.
vint: mov c,m

mov a,h
sui 8
cpi 94
jnc norol l
adi 14

noroll: mov b,n
mov n,a
inov a,c
cpi Ofe
jz Inedge
mov a,m
sub c
rar
add c
rnov c,a

Inedge: mov a,b
sui 4
cpi 94
jnc rlln
adi 14

rlln: mov h,a
mov m,c
mov h,b
ret

FIGURE A-G. Vertical Interpolator Subroutine

-128-

Appendix H: The Horizontal Interpolator Subroutine

The horizontal interpolator takes the difference of

the most recently determined lows value, corresponding

the location (-4,-4) and (-8,-4), and linearly interpolates

the values for locations (-7,-4), (-6,-4), and (-5,-4).

If however, the attempt to reference back to location (-8,

-4) crosses a line boundary, no action is taken, preventing

the interpolator from writing over the end of line markers.

The routine takes about 45 instruction cycles on the

average, which corresponds to about 36 microseconds for

the 8085A-2 at its maximum rate.

-129-

iTh-is is the horizontal interpolator routine.
hint: mov a,l Sicheck for first pel of the line. If so, don't interpolate.

ora a
jnz hnt
mov a ,h
rrc
jc hnt
rrc
rnc

hnt: mvi d,2 delse proceed
mov a,in
dcx h
dcx h
dcx h
dcx h
mov b,m
sub b
ic neg
rar
stc
cmc
rar
jmp intrplt

neg: rar
stc
rar

intrplt:mov e,a
mov a,b

eoae: inx n
add e
mov m,a
dcr d
jp eoae
inx h ilreturn pointer to its original state
ret

FIGURE A-H. Horizontal Interpolator Subroutine

-130-

Appendix I: The Receiver

The section included in the program listing for the re-

ceiver controller and all of its subfunctions. These sub-

functions are almost identical to some of those already

presented and the controller routine was discussed in chapter

V, therefore further explanation is not included here. Also

included is the machine code listing with memory address as-

signments as they were in the simulator implementation.

-131-

rcvr: sta Obebl i1store input byte in RWRD
mvi a,9 ilset to keep track of the number of bits left in the present word
sta Obeb6 iland store the value

Ida ObebO 4iget flag which indicates the type of data that is currently
1lexpected from the transmitter

rrc
jc roff 1lif no transmission in progress then jmp

rrc
jc rmsmth i1else if line mismatch value is expected then jmp
rrc
jc rhighs l1else if first line of highs then jmp
rrc
jc rhighs 11else if second line of highs then jmp

rlows: Ida Obeb6 ilelse lows expected; get bit counter value for input word
dcr a iland decrement it
rz 1lif all bits exhausted then return
sta Obeb6 1Ielse store its new value
Ida Obebl ilmost recently received byte from transmitter
rlc ilget the next bit from the LSB position
sta Obebl \land store the modified word
Ida Obeb4 ilget byte used for accumulating the input bits
ral i1shift in the bit just taken from the received word
sta Obeb4 11and store the result
jnc rlows hlif the byte is still not full then iterate
Ihld Obeb2 hlelse full. get address for storage
inx h
inx h
inx h
inx h
shId Obeb2
mov m,a
call rhint 1I horizontal interpolation
call rvint 11 vertical interpolation
mov a,h
ani 03 hlmask off the upper 6 bits of the version in the accumulator
adi Oba 11and replace them with the pointer for the middle line
mov h,a 1luse this new pointer
call rhint ilto iterpolate the corresponding values on the middle line
xchg
lhld Obeb2 ilrestore the orignal pointer
mov anm iland the value just stored there, to check for framing indicat
cma hlindications
cpi 01
mvi a,1
sta Obeb4 1iset the bit accumulator to accept 8 bits next time also
jz endlw li f new line indication then jmp
jnc rlows 11if no framing indications then jmp

FIGURE A-I. Receiver Routines

-132-

rpage: mvi 1,0 Vlelse 'new page' indication
mov a,h ilswitch the address pointer
xri 04 Ilto the beginning of the other line
ani Ofc
mov h,a
mvi m,Off Ilalso put the 'new page' indication there
shid Obeb2 I1 store the pointer
mvi a,02
sta ObebO iset the flag such that the line mismatch value is expected
rrc
sta Obeb4 ¶Iand set the bit accumulator to accept 8 bits
jmp rmsmth

endlw: Ida Obeb7 ilget the line mismatch value
add I i1the value is added to the present value of the

iladdress pointer
fixup: mvi m,O tizeroes are loaded into all location in this interval

inx h ilmove pointer to the next address
xchg
mvi m,O
inx h
xchg
cmp e %Icomparison with theq pper limit
jnz fixup
mvi m,Ofe ilwhen finished, load last address with 'new line'
xchg

mvi m,Ofe
xchg
mov a,h
ani Ofc 11set pointer back to beginning of line so that the values

Ilcan be added to the incoming highs values
mov h,a
mvi 1,0
dcx h ¶imove pointer back such that the first value taken
shId Obeb2 ilwill come from the first location of the line
Ida ObebO
rrc
rrc
sta ObebO 1set flag such that one or two lines of highs are expected
mvi a,20
sta Obeb4 Ilset input bit accumulator to accept 3 bits
jmp rhighs

rmsmth: Ida Obeb6 lIget value from input bit counter
dcr a
rz ilif bits exhausted, then.return
sta Obeb6
Ida Obebl ilget the current input data word
r1c 11take the bit fr6m the LSB position
sta Obebl iland put back the remainder

FIGURE A-I. (continued)

-133-

Ida 9e664 11get input bit'accumulatbr
ral Vland load in the new bit
sta Obeb4
jnc rmsmth ilif not yet full then iterate
mov b,a ilelse full. save value in reg B
mvi 1,0 %Iset reg L=O

~iThe line mismatch value is transmitted four consecuti-ve times to reduce the
1probability of an error due to noise in the transmission channel.
1I The rest of this program separates and adds these values together.If they are
ilall the same, the two LSB's of the result will be zero. If not, then some error
1lhas definitely occurred and the value is rounded to the nearest valid value.

ani 3 t1set upper 6 bits to zero
add 1
mov 1,a
mov a,b
rrc
rrc
ani 3
add 1
mov 1,a
mov a,b
rlc
rl c
mov b,a
ani 3
add 1
mov 1l,a
mov "a,b
r1c
rlc
ani 3
add 1
rrc
rrc
jnc noerr
inr a

noerr: sui 04 Ilconvert it to a more convenient form
cma
inr a
ani 3f
sta Obeb7
mvi a,20

sta ObebO I1set flag to continue receiving the first lows line of the
1limage

mvi a,1 1Iset input bit accumulator to accept 8 bits
sta Obeb4
jmp rlows

FIGURE A-I. (continued)

-134-

roff: Ida Obeb6
dcr a
rz
sta Obeb6
Ida Obebl
rlc
sta Obebl
Ida Obeb4
ral
sta Obeb4
cpi Off
jnz roff
ihld Obeb2
mvi 1 ,0
mov a,h
ani Ofc
xri 04
mov h,a
mvi m,Off
shld Obeb2
mvi a,01
sta Obeb4 1ISET INPUT BIT ACCUMULATOR TO ACCEPT 8 BITS
r1c
sta ObebO Ilset flag to expect the line misatch value
jmp rmsmth

rhighs: Ida Obeb6
dcr a
rz
sta Obeb6
Ida Obebl
r1c
sta Obebl
'da Obeb4
ral
sta Obeb4
jnc rhighs
cmc
rrc
rrc
rrc ¶Irotate value into the three msb's
sta Obeb4 Ilstore temporarily back in the bit accumulator
Ihld Obeb2 UIget lows pointer
inx h
shld Obeb2 land update it
Ida ObebO
cpi 04 ilcheck for highsl indication
jnz hgh2 Ilif none, then jmp

hghl: mov a ,h
ani 03

adi Oba tIswitch six msb's of the lows pointer to the interpolated line
mov h,a

FIGURE A-I. (continued)

-135-

hgh2: push h ilsave pointer on the stack
call rnoisep
Ida Obeb4 ilget hghs value
sub b iland subtract the PRN value from it
mov l,a 11put result in low order byte of pointer for
mvi h,09 ilexpander lookup table
mov a,m iland get the scaled value
pop h ilrestore the lows pointer
mov b,m 11and get the corresponding lows value.

add b
out 07 l{this should be the completely enhanced image data
mvi a,20
sta Obeb4 1ireset FRAME in anticipation of next highs value
mov a,b
cpi Ofe 11check the lows value for framing indications
jc rhighs 11if none, then jmp
out 08 lelse generate output framing pulse
jnz rhighs ilif not the end of the line, then jmp
lhld Obeb2 ilelse reset the lows pointer, RLWS
mvi 1,0
mov a,h
ani Ofc
mov h,a
dcx h
shId Obeb2
Ida ObebO ilget and update RFLAG
rlc
sta ObebO
cpi 08 ilcheck for highs2 indication
mvi a,20
sta Obeb4 i1set FRAME for 3-bit words
jz rhighs ilif highs2 indication,then jmp
mvi a,01 ilelse prepare to receive lows
sta Obeb4 11by setting FRAME for 8-bit words
mov a,h l1and by setting RLWS for storage of the next lows line
xri 08 hlswitch lows pointer to just before the first location of the
mov h,a ilother line
mvi l,Ofc hidecrement it three more times, so that the next value loaded

liwill indeed be loaded into the first location of the line
shld Obeb2
jmp rlows

hIThis is the end of the receiver's main program (i.e. the receiver controller)
hIThe following are the subroutines used by this program
rnoisep: mov a,l

ani 07
mov 1,a
Ida Obeb5
ani 07

FIGURE A-I. (continued)

-136-

rlc
rlc
rlc
ora 1
ori 40
mov 1,a
mvi h,Ob
mov a,m
ret

ilThis is the end of the routine which fetches the pseudo-random noise values
rhint: mov a,l ilcheck for the first pel of the line

ora a
jnz rhnt
mov a,h
rrc
jc rhnt
rrc
rnc TIreturn if the first location of the line

rhnt: mvi d,2 ilelse proceed
mov a,m
dcx h
dcx h
dcx h
dcx h
mov b,m
sub b

jc rneg
rar
stc
cmc
rar
jmp rintrplt

rneg: rar
stc
rar

rintrplt:mov e,a
mov a,b

reoae: inx h
add e
mov m,a
dcr d
jp reoae
inx h 1Ireturn pointr to its original state
ret

flThis is the end of the horizontal interpolator routine for the receiver, and is
llexactly the same as the one used in the transmitter.
rvint: mov c,m

mov b,h 1save upper byte of lows pointer
mov a ,h
xri 04

FIGURE A-I. (continued)

-137-

mov h,a
mov a,m
sub c
rar
add c
mov c,a
mov a,h
ani 03
adi Oba
mov h,a
mov m,c
mov h,b ilrestore pointer to its original state
ret

lIThis is the end of the vertical interpolator for the receiver, and is identical
lIto the one used in the transmitter except for the way it treats 'new line'
ilindications and the pointer manipulations required
rin it: lxi h,Obeb)0 iHL reg points to RFLAG F*eceivel' Instlaestcian)

invi m,1
inx h *IHL reg points to RWRD
mvi mn,O
inx h
inx h
inx h IHL reg-points to FRAME
mvi 0m,0
inx h ¶IHL reg points to RNCNT, the receiver's line counter
mvi m,O
inx h 4iHL reg points to RCNT, the receiver's input bit counter
Invi m,O0
inx h •1HL reg points to RMTCH, the line mismatch value
mvi m,O
Ixi h,2000
shld Obeb2 'iinitialize receiver's lows pointer, RLWS

ret

FIGURE A-I. (continued)

-138-

Appendix J: I/O routines

The I/O scheme discussed in chapter VI requires the

addition of I/O initialization and interrupt routines to

the software used for the simulator implementation. There

also need to be some additions made for the proper main-

tenance of the input output buffer areas. These later

additions necessitate making some minor changes to the

existing system so that these buffer areas are accessed

rather than the ports themselves. These were discussed in

chapter VI and are listed here in a manner that will hope-

fully be understandable without listing the entire systems

software.

Note that a tentative routine to drive an external

hardware multiplier (MLTPLY) has been included. This

routine requires little under 14 microseconds, assuming

the CPU is run at its maximum rate, or in this case 20

instruction cybles. It replaces the current multiplication

routine, MULTIPLY. The external multiplier would be

expected to convert in at most 1.6 microseconds, a specifi-

cation that can be readily met with even a sequential-add

type of device. In fact, this specification can be halved

using several standard TTL components as shown in the

diagram (FIG.J2). The associated I/O ports do not require

any additional interrupt and I/O routines since they are

not interrupting devices, but rather slave devices

responding to the CPU. They would be located, most likely,

on a separate board with the multiplier.

-139-

init: di
mvi a,36 1program the interrupt controller
out 040 11for vectors to start at 64 and for a
mvi a,00 Ilfour byte interval--for this example,at least.
out OcO
ret SItransfer cont-rol back .Jo the main program

IlThis initialization routine would be called from the main
ilprogram. The starting address for the vectors would
ilactlally be set such that it did.not conflict with the
listorage space for the transmitter and receiver routines,
¶li.e. somewhere between 3 and 4k.

di IThis is the location of the first interrupt vector
jmp intO
di

jmp intl
di

jmp int2
di

jmp int3
¶iThe interrupt routines themselves follow
intO: push h

push psw
lhld Obe34
in Ocl ilfrom scanner (ABO)
mov m,a 1Istore value in input buffer
inr 1
mvi a,Of 11the buffer area extends from Obe00 to ObeOf
cmp 1
jnc finO
mvi 1,0 Ilwrap pointer

fi nO: shid Obe34
pop psw
pop h
ret

int 1: push h
push psw
Ihld Obe36
mov a,m
inr 1
out Ocl 1 to FACS (ABO)
mvi a,lf lithe buffer extends from ObelO to Obelf
cmp 1
jnc finl
mvi 1,10 ¶wrap pointer

finl: shld Obe36
pop psw
pop h
ret

FIGURE A-J1. I/O Routines

-140-

int2: push psw
ida Obe38 1the output to the transmission channel

iris direct, due to time constraints
out Oc2 ,Ito channel (AB1)

fin2: pop psw
ret

int3: push h
push psw
Ihld Obe3a
in Oc2 hifrom channel (ABI)
mov m,a
inr 1
mvi a,4f lithe buffer area extends from Obe40 to Obe4f
cmp 1
jnc fin3
mvi 1,40 llwrap pointer

fin3: pop psw
pop h
ret

'IThis is the subroutine for driving an extrnal multiplier.
mltply: Idax b

out Oc4
Idax d
out Oc8
nop
in Oc8
mov m,a
ret

FIGURE A-JI. I/O Routines(cont'd)

-141-

FIGURE A-J2. MSI Multiplier

-142-

Appendix K: The Multiplication Subroutine

The program listing is for the multiplier used by

the transmitter in the simulator implementation and per-

forms according to the technique presented in chapter III.

It expects the register pairs BC and DE to containg poin-

ters to the two avalues to be multiplied and returns the

result in register A.

It takes about 142 instructions on the average, which

would correspond to about 114 microseconds at the 8085A-2's

maximum rate.

-143-

Afnis is ti-, software multiplier routine, i.e. no external devices
;are involved. It multiplies the bytes indicatec by the OE register
-ipair and by the BC register pair and put the result into the
,iacCuaiuldtor. Its result is rounded to one byte.
mulutiply: push h

ilnov h ,b

mov 1 ,c
mov a,m
xchg
mov d,m
xchg
mvi 1,8
push d
push b
mvi e,C)
stc
cmc

mult: rar
mov d,a
mov a,h
jnc mnext
cmc
add e
mov e,a

mnext: mov a,e
dcr 1
jz finim
rar
mov e,a
mov a,d
mvi b,0
jnc mult
mvi b,l1
jmp mult

finim: dcr b
jm fmult
inr a

fmult: pop b
pop d
pop h
ret

FIGURE A-K. Multiplication Subroutine

-144-

Appendix L: Parameter Storage

The data storage for the various lookup tables and the

noise mask is listed below*.

1IThe first 256 bytes are for the compressor
0000 00 01 06 OA OD 10

13 15 18 1A IC 1E
IF 21 23 25

0010 26 28 29 2B 2C 20
2F 30 31 32 34 35
36 37 38 39

0020 3B 3C 3D 3E 3F 40
41 42 43 44 45 46
47 48 49 49

0030 4A 48 4C 4D 4E 4F
50 50 51 52 53 54
54 55 56 57

0040 58 58 59 5A 5B 5B
5C 5D 5E 5E 5F 60
60 61 62 63

0050 63 64 65 65 66 67
67 68 69 69 6A 6B
6B 6C 60 6D

0060 6E 6E 6F 70 70 .71
72 72 73 73 74 75
75.76 76 77

0070 78 78 79 79 7A 7A
7B 7C 7C 7D 7D 7E
7E 7F 7F 80

¶Ithis is the end- if the positive half of the table
0080 80 81 81 82 82 83

83 84 84 85 86 86
008C 87 87 88 88 89 8A

8A 8B 8B 8C 8D 8D
0098 8E 8E 8F 90 90 91

92 92 93 93 94 95
00A4 95 96 97 97 98 99

99 9A 98 9B 9C 9D
OOBO 9D 9E 9F AO AO Al

A2 A2 A3 A4 A5 A5
A6 A7

-OOBE A8 A8 A9 AA AB AC
AC AD AE AF BO BO
B1 B2

00CC B3 B4 B5 B6 B7
B8 B9 BA BB BC
BE BF

* The #'s in the left column are the start addresses for

each group of values(0000 maps to memory location 8000).

-14 5-

OODA CO C1 C2 C3 C4 C5
C7 C8 C9 CA CB CC
CE CF

00E8 DO D1 D3 D4 0D5 D7
08 DA DB DD DF El
E2 E4

00F6 E6 E8 EB ED FO F3
F6 FA FF 00

liThe next 256 bytes are for the-expander
0100 00 01 01 01 02 02

02 02 02 03 03 03
04 04 04 04

0110 05 05 06 06 06 07
07 08 08 09 09 OA
OA OB OB OC

0120 OC OD OD OE OF OF
10 11 11 12 13 13
14 15 16 16

0130 17 18 19 19 1A 1B
1C 1D 1E 1E IF 20
21 22 23 24

0140 25 26 27 28 29 2A
2B 2C 2D 2F 30 31
32 33 34 35

0150 37 38 3_9 3A 3B 3D
5!4 34 24 14 F3 E3
46 47 49 4A

0160 4B 4D 4E 50 51 53
54 56 57 59 5A 5C
5D 5F 60 62

0170 64 65 67 68 6A 6C
6D 6F 71 73 74 76
78 7A 7B 7F

0180, 81 85 86 88 8A 8C
8D 8F 91 93 94 96

018C 98 99 9B 9C 9E AO
Al A3 A4 A6 A7 A9
AA AC

019A AD AF BO B2 B3 B5
B6 B7 B9 BA BB BD
BE BF

01A8 C1 C2 C3 C5 C6 C7
C8 C9 CB CC CD CE
CF DO

01B6 D01 D3 D4 D5 D6 D7
08 D9 DA DB DC DD
DE DF

01C4 EO El El E2 E3 E4
E5 E6 E7 E7 E8 E9
EA EA

01D2 EB EC ED ED EE EF
EF FO F1 F1 F2 F3
F3 F4

01EO F4 F5 F5 F6 F6 F7
F7 F8 F8 F9 F9 FA
FA FA FB FB FC

O1F1 FC FC FC FD FD FD
FE FE FE FE FE FF
FF FF 00

tithe next 256 bytes are for
the luminance scale factor.

0200 00 02 03 05 06 08
09 OB OC OE OF 11
12 14 15 17

0210 18 1A 1C 10D 1F 20
22 23 25 26 28 29
2B 2C 2E 2F

0220 31 33 34 36 37 39
3A 3C 3D 3F 40 42
43 45 46 48

0230 49 4B 40 4E 50 51
53 54 56 57 59 5A
5C 5D 5F 60

0240 62 64 65 67 68 6A
6B 6D 6E 70 71 73
74 76 77 79

0250 7A 7C 7E 7F 81 82
84 85 87 88 8A 8B
8D 8E 90 91

0260 93 94 96 98 99 9A
9B 9C 9C 9D 9E 9F
AO Al A2 A2

0270 A3 A4 A5 A6 A7 A8
A8 A9 AA AB AC AD
AD AE AF BO

0280 B1 B2 B3 B3 B4 BS5
B6 B7 B8 B8 B9 BA
BB BC BD BE

0290 BE BF CO C1 C2 C3
C4 C4 C5 C6 C7 C8
C9 CA CA CB

02AO CC CD CE CF CF DO
D1 D2 D3 D4 D5 D5
D6 D7 D8 D9

-146-

02BO DA DB DB DC DD DE
OF EO EO El E2 E3
E4 E5 E6 E6

02C0 E7 E8 E9 EA EB EC
EC ED EE EF FO F1
Fl F2 F3 F4

0200 F5 F6 F7 F7 F8 F9
FA FB FC FC FD FE
FF FF FF FF

02EO FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF

02FO EF DF CF BF AF 9F
8F 7E 70 60 4E 40
30 20 10 00

9iThe next 64 bytes are for
0300 1A 1C 1F 21 24 26

29 2B 2E 30 33 36
38 3B 3D 40

0310 42 45 47 4A 4D 4F
66 66 66 66 66 66
66 66 66 66

0320 66 66 66 66 61 5C
57 52 4D 47 42 3D
38 33 2E 29

0330 24 1F 1A 18 17 16
14 13 12 11 OF OE
OD OD 00 OD

the local contrast scale factor

IlThe next 64 bytes are the values for the psuedorandom noise
0340 EF 00 F3 04 FO 02 ..

"F4 05 08 F7 OC FB
09 F8 OD FC

0350 F5 06 F1 02 F6 07
F2 03 OE FD OA F9
OF FE OB FA

0360 FO 01 F4 05 EF 00
OC 05 OA F8 00' FD
09 F7 OC FC

0370 F7 08 F3 03 F5 07
F2 03 10 00 OC FB
OE FD OA F9

0380

-147-

REFERENCES

1. Curlander, P.J., "Image Enhancement Using Digital
Adaptive Filtering", SM Thesis, MIT Electrical En-
gineering and Computer Science Department, August
1977.

2. Gilkes, A.M., "Photographic Enhancement by Adaptive
Digital Unsharp Masking", SM Thesis, MIT Electrical
Engineering and Computer Science Department, 1977.

3. Hoover, G.L., "An Image Enhancement/Transmission System",
SM Thesis, MIT Electrical Engineering and Computer Sci-
ence Department, May 1978.

4. Huang, T.S., Tretiak, O.J., Prasada, B., and Yamaguchi, Y.,
"Design Considerations in PCM Transmission of Low-Reso-
lution Monochrome Still Pictures.", Proceedins of the
IEEE, Vol. 55, No. 3, pp. 331-335, March 1967.

5. Huang, T.S., "Digital Picture Coding", Proceeding of the
National Electronics Conference, Vol. XXLL, 1966.

6. Oppenheim, A.V., and Schafer, R.W., Digital Signal Pro-
cessing, Prentice Hall, Inc., Englewood Cliffs, New
Jersey, 1975.

7. Roberts, L.G., "Picture Coding Using Pseudo-Random Noise",
IRE Transaction on Information Theory, Vol. IT-8, pp. 145-
154, February 1962.

8. Schreiber, W.F., "Aspects of Image Processing", unpub-
lished, MIT, Electrical Engineering and Computer Science
Department, September 1979.

9. Schreiber, W.F., "Image Processing for Quality Improve-
ment", Proceedings'of the IEEE, Vol. 66, No. 12, pp 1640-
1651, December 1978.

10. Schreiber, W.F., "Picture Coding", Proceeding of the IEE,
Vol. 55, No. 3, pp 320-330, March 1967.

11. Troxel, D.E., Schreiber, W.F., Grass, R., Hoover, G.L.,
Sharpe, R., "Bandwidth Compression of High Quality Ima-
ges", ICC, 1980.

-148-

Technical Manuals:

12. INTEL, "MCS-80/85 Family User's Manual", Intel Corp.,
October 1979.

13. INTEL, "Memory Design Handbook", Intel Corp., 1977.

14. INTEL, "8080 Microcomputer Peripherals User's Manual",
Intel Corp., 1975.

15. INTEL, "8080 Microcomputer Systems User's Manual",
Intel Corp., 1975.

16. Signetics, "Signetic Bipolar/MOS Microprocessor Data
Manuel", Signetics Corp., 1977.

17. Texas Instruments, "TTL Data Book, for Design Engi-
neers", Texas Instruments Inc., 1973.

