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ABSTRACT

This thesis describes the design (implementation)
and performance of an image enhancement/transmission
system and involves the use of a standard Intel 8080
or 8085 microprocessor system. Given image data at
8kb/s corresponding to values obtained by raster
scanning the image, performs a 2:1 data compression
using psychovisual coding techniques and presents
this data to a communication channel of 4kb/s cap-
acity. This channel could be, for example, a stan-
dard voice communication channel. The receiver por-
tion of the system reconstructs an image from this
data that is visually superior to the original image.
The transmitter and receiver portions of the system
are the subject of this thesis.
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INTRODUCTION

The image enhancement/transmission system described herein
consists of an 8080 microprocessor implemented image enhancer/
transmitter (transmitter) and an image receiver/reconstructor
(receiver)*, Although a discussion of the performance of one
without the other is not very meaningful, their design and
operation can be discussed seperately once the system's spec—
ifications have been discussed.

The enhancement technicues used in the system have been
verified by, and rely heavily on, results from the theses of
Curlander (1), Gilkes (2), and Hoover (3). Curlander and
Gilkes discussed enhancement technigques while Hoover presented
and discussed the performance of a system whose overall approach
and operation is similar to that of this system. These results
will be summarized in a later section.

The function of this system is to perform a 2:1 data com-
pression of the information from a digitized image and transmit
it to a remote receiver without degrading the subjective visual
guality of the resultant image and possible even improving it.
The basic approach involves first separating the high and low
spatial frequency components (content) of the image, then per-
forming the data compression on each independently. Thus it is
not necessary to find a single algorithm which can be successfully

applied to the entire image content without failing to meet the

* The transmitter and receiver could also be desecribed as a psycho-
visual coder and decoder respectively. see ref, (T.H. Huang)



system objectives.

The low frequency components(lows) can be compressed by
simply subsampling the values since, by their very nature,
these values vary spatially quite gradually. Just how
gradually they vary depends on the frequency response of the
filter used to extract them. Thus the lows value for a given
pel (pixel) location will not be mich different than the
corresponding values at nearby pel. Thus, not much error is
introduced if a particular pel value is also assumed to be the
value at all of the nearby* pels., Since that value would then
specify the pel values for that entire area only that one pel
value need be sent to the receiver for it to reconstruct the
area. The error, although small, would be highly structured
spatially ( as is typical of guantization noise), and its
visibility would tend to be emphasized as spurious contours
as the spatial sampling rate is decreased; thus limiting the
degree of subsampling allowable, This piecewise constant
approximation can be readily improved upon by somewhat smoothing
the transition from one value to the next. By assuming the lows
to be spatially piecewise linear rather piecewise constant, a
greater degree of subsampling can be allowed, and since linear
interpolation can be easily reproduced in the receiver this is
achieved without any increase in the amount of information to

be transmitted. A gaussian interpolation would allow subsampling

* TMnearby" is relative to filter length
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to an even greater degree but would also be considerably more
difficult to implement, especially in the receiver. In fact,
for the amount of data compression desired for this system
it is not worthwhile to go beyond the linear interpolator.

The high frequency components, on the other hand, vary
quite rapidly spatially and thus do not lend themselves readily
to subsampling. Instead, data compression is achieved by
quantizing (elimination of the lower order bits) the original
8-bit high pel values to 3 bits. To reduce degradation of the
resultant image, the highs are adaptively enhanced and companced
before quantization. Noise processing (dithering) at both the
transmitting and receiving ends, using Robert's techniques (7),
is also used to reduce the visible effects of this quantization,
such as edge contours*. The enhancement procedure involves two
scaling operations. The first is a scaling of the highs pel values
according to the luminance (value) at that pel location in the
original image. This is then followed by a scaling according to
some measure of the amount of detail in the area, i.e. the amount
of edge information. Thesé two procedures are hereafter referred
to as the luminance and detail scaling functions, respectively.

The receiver has the task of reconstructing the image from
the transmitted lows and highs., The transmitter carries the
brunt of the computational load, largely leaving the receiver
to only correctly align and add the highs and lows. It must

also expand the highs, complete th~ noise processing, and inter-

* Note that it is impossible to use an average of four or more bits
per highs value, transmit the subsampled lows, and still keep
pace with the incoming image data.
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polate the lows values, but these overations are relatively
straichtforward compared to those required in the transmitter.
After these are completed, for each given pel location, the 8~bit
resultant data is presented to a facsimile reproduction device

at a rate of 1-kbyte/s (8kb/s); the same as the data rate from

the scanning device to the transmitter.
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II. Background

Before further discussion of the actual implementation of the
system, a summary of some of the theoretical and
empirical bases for the techninues just mentioned is
in order. These techniques are used to first achieve image
quality improvement by means of increasing the sharpness and de-
creasing the noise ($), and then to perform data compression with
minimal effects on the resultant image quality (11). While the
section does not delve much into the details of human visual per—
ception in general, it does make use of some important findings.
I1~1 Enhancement

As mentioned earlier, the system relies heavily upon the
findings of Gilkes (2), Curlander (1), and Hoover (3). In Gilkes'
‘work digital unsharp masking* was used to optimally sharpen images,
an improvement on direct linear amplification of the edge informa-—
tion (highs). In this technique an unsharp (or slightly fuzzy)
mask from the original** is combined with the original in such a way
as to achieve a form of spatial high pass filtering. A scale factor
is determined from the resulting image data at each pel then applied
to the corresponding pel of the original image.

From experimental results he found that for optimum edge
sharpening this scale factor should (1) be considerably larger in

bright areas, (2) be inversely related to edge contrasti#** and

* see ref. [9) section IV, E,
** The mask would correspond to the image resulting from the lows
data in this system.
%% 1) and 2) correspond to this system's luminance and detail
scaling factors, respectively.
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(3) have magnitude such that the dynamic range of the optimally
sharpened image does not exceed the limitations of the system and
lead to edge compression. The measure of edge contrast used here is
the edge information itself. This corresponds to the scaling of the
edge information (highs) of the original by a factor determined by
the same edge information, i.e. a nonlipear scaling and by a factor
determined by the luminance of the original, A significantly greater
amount of sharpening can be achieved than is possible with linear
scaling without causing such visible artifacts as mach bands (9) and
increased noise visibility (graininess‘in the image). These mach
bands, which appear as light or dark halos alongside an edge, result
from excessive overshoot and/or undershoot in the luminance transi-
tion, which corresponds to the edge, and are characteristic of
oversharpening, While this approach can achieve optimal sharpening
over the entire image, Gilkes found that it also leads to some de-
formation of the edges. Also, while it can reduce noise visibility,
it does not differentiate between this undesired noise and desired
texture in the image.

Curlander also dealt with optimal sharpening and, in fact,
achieved this without the edge deformation inherent in Gilkes®
approach.* One major difference between his approach and the
approaéh in the earlier work by Gilkes was the measure of edge con-
trast used to determine the corresponding scale factor. Curlander
used a detail measure corresponding to the average over an area of

the magnitude of the edge information rather than the edge informa—

* Curlander's work was a continuation of the work done by Gilkes.
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tion itself. In addition to the guidelines for scale factor deter—
mination arrived at by Gilkes, it was determined that the contrast
scaling factor should be small for low detail measures to avoid
accentuating noise. As before the reduction of noise visibility may
also cause the attenuation of some desired texture since they may
involve approximately the same amount of detail or edge activity. It
is possible, however, to achieve rendition of texture superior to
that of Gilkes' approach (9).

As did Gilkes, this detail scaling is combined with edge scaling
according to the luminance value of the original, taking advantage
of the fact that more edge sharpening can be tolerated in high lum-
inance (bright) areas than in lower luminance (darker) areas. This
is because such artifacts as the occurrance of mach bands and noise
visibility are inversely related to luminance (7). The optimal
scale functions according to detail measure and according to lumin-
ance were both determined empirically (1) and are used directly in
this system.
I1-2 Data Compression

The aim of psychovisual coding* is to achieve data compression
by selectively eliminating that information which is relatively unim-
portant to the visual quality of the image (5) (10) (11)e The tech~
nique used for the lows data is closely related to the sampling theorem
(or Nyquist criterion)s Since the lows are clearly bandlimited, the

subsampling and reconstruction procedures are directly analogous to

* also referred to as psychophysical coding.



-15-

the sampiing and reconstruction of, for example, a continuous time
waveforme The compression technique used for the highs cannot be
so easily related to linear system theory and is dependent rather
on knowledge about the visual perception of edge information.

While the human eye is very sensitive to edges it is not very
sensitive to the exact size of the actusl =2dge transition (5).

Quantization takes advantage of this insensitivity, with the
number of bits kept being determined by the dynamic range and/cr
resolution necessary to maintain the optimal sharpening achieved by
the enhancement procedures*. For example, if not enough resolution
were retained the error between the quantized and unquantized edges
might be large enough to produce the visual artifacts of ovefsha;pen-
ing or, on the other hand, produce unsharpened edges.

A more objectionable effeet of the quantization is appearance
of artificial contours paralleling the real edges and corresponding
to the quantization steps encountered as an edge is approached*¥*,
(see Figure 2-1). To minimize the visibility, the highs are com-
pressed such that the quantum levels correspond to subjectively equal
increments of brightness (9). The receiver expands this quantized
information to restore the highs. The function used for the compres-—
sor and expander (compander) are thus based on empirical facts con-

cerning the human eye's brightness perception (3).

* Hoover éB; obtained excellent results with three bits,
*% Huang (4) found that 100 level (~7 bits) were needed to present
the occurance of visible quantization noise.
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L. 127
A

The visibility of the quantization noise also tends to be empha-

sized because of the eye's greater sensitivity to strongly structured
noise, as opposed to unstructured (random) noise. Roberts' (7) noise
processing scheme exchanges this strongly structured quantization noise
for spatially random noise, thus greatly reducing its visible effects.
In this technique, pseudorandom noise is added to the highs. After
quantization and transmission to the receiver, the same noise*¥* is
subtracted, giving data with random noise of noise power equal to
that of the quantization noise in the absence of the noise
processing.

Hoover's work demonstrated the performance of an enhancement,/
transmission system utilizing the techniques just discussed, veri-
fying that the combined effect of the enhancement and data compression
techniques, does indeed correspond to an overall improvement in the

visual quality of an image.

* Note that the number, 127, is the maximum positive or negative
value of the highs data,

*% Since the noise is pseudorandom, it can be duplicated in the
receiver, '
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I1I. Functional Block Diagram

This section is concerned with the discussion of the functional
block diagrame Although in the actual implementation some of the
functions are distributed somewhat differently.* The block diagram
described in this section is more useful in explaining the opera=
tion of the system. Figure 3=-1 shows how the system would be
utilized ( set up ) for an actual image transmission process.

The functional block digrams for the transmitter and the receiver
are shown in figures 3-2 and 3-3 respectively. The necessary delays
have not been included here but will be discussed in the section(s)
dealing with implementation. These diagrams do, however, show the
flow of data through the major blocks of the system; blocks which
correspond directly to operations descussed in earlier sections.

The operation of (design of) each of the blocks and their inter-
action with one another are discussed after a brief discussion of
of the overall system as shown in Figure 3~1.

The transmitter accepts 8-bit data values from the scanning
device at a rate of one word per second, i.e. 8kb/s, and presents
data to the transmission channel at a rate of hkb/s. The data
from the scanner to the transmitter must be’acc0mpanied by, or
contain, appropriate framing pulses** to facilitate successful
transfer without necessarily having prior knowledge of the size of

the original image. Given the scammer's rate of 8kb/s, the trans—

% This will be discussed in a later section.
*% new page (image) and new line indications
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mitter's 2:1 data compression and the transmission channels hkb/s
capacity there is no channel capacity left in which to send these
necessary framing signals to the receiver.

Two alternative methods to circumvent this problem were con—
sidered: 1) Delay the beginning of the transmission and use this
time to send a count of the number of pels per line. 2) Have the
framing pulses (indications), when they occur, override the data
value being transmitted.

The delay of the first method would not pose a problem and has
the desirable feature of leaving the actual image data unaffected.

. Hoﬁever, any framing errors that might occur* would tend to accum—
ulate line to line since the system would have no means of realig-
ning itself,

The second method does affect the data, but is immune to the
type of cumulative framing errors of the first. In addition, not
that the only data affected is the first or last pel value on each
line and corresponds only to the outer boundary of the image. Since
this does not affect visual quality, this method is chosen over the
first.

The first block to be discussed is the low-pass filter, the
major tool in the separation of the lows and highs data. It is a
two dimensional, circularly symmetric Gaussian digital filter. It is

implemented as two cascaded one-dimensional filtérs; one for hori-

* An error in the line length assumed by the receiver could
result from a miscount in the transmitter or even just a
noisy transmission.



zontal, one for vertical, This is a valid procedure for any multi-
dimensional filter whose impulse response is a separable sequence (5)%
Each of the filters is implemented as a weighted sum with nine non-

zero coefficients.

0 L
=3 g M n=-k] = T a ! x[n - k]
k= = o0 k==,

where x[n] is the original data along either a horizontal or vert-
ical line, depending on the direction of the filter. Thus the

separation into two filters implies that

L L
Z o bkl'x[i-k,j-l]
k= =l 1= =4

L L
=3 8.3 alax[i-k,j-l]
= =L, = =l

jee, = bkl = ak‘ 8.1

where x[i,3j] is the original image data's 2-D representation.
Each of the filters requires nine 8 x 8 - bit multiplications

and the summation of these 16=bit products.- Thus the representation

* For example, a 2= fil%er whose coefficients correspond to the
function expE— (x + )] can be sgparated into two cascaded
1=D filters [exp (=x g and exp (-y“)]. However, if the cogffi-
cients were to correspond to a function such as exp[=(x+y)“],
separation into two 1-~D filters is not valid since there is
no way to separate such a function into two functions, each
of just one variable.
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of the output of the filter would require 20 bits. The microproces—
sor used has only 8-bits/word so that this would require multiple
precision arithmetic, for which there is neither enough computation
time or memory space available, Limiting the filters to single pre-—
cision arithmetic, the multiplication operation rounds off to an

8-bit product and the filter coefficients are constrained to

L
;1;-: L &
This guarantees that the nine 8-bit products will not lead to a
more than 8-bit sum (3)e (see Fig. 3=L4).

The algorithm for the multiplic#tion operation is to shift
and add, much as would be done by hande The individual bits of
the multiplier are used to determine whether or not to add the
next left—-shifted version of the multiplicand to the accumulated
sume In actual implementation, beginning with the LSB of the
multiplier, the multiplicand is multiplied by either one or zero
(depending on the multiplier bit), addea to the existing sum, and
the result shifted right one bit. This is repeated eight times for
an 8x8 multiplication and gives a full 16~bit product. However, if
only the eight MSB's of the sum are kept at any time and after the
last shift the bit shifted out* is added to the sum, the desired
product,rounded to eight,bits results. As an example of this al=-

gorithm, consider a 4x4 bit multiplication with a desired 4=bit

* This bit being one implies that the lower order byte of the
product would have been one-half or more of the upper byte
LSB (i.e. 2 128).



rounded product. (example shows 11(1011) times 5(0101))

Step #1.

#24

#10,

#11.

#12.

mltiply
by LSB 0101+ 1 =2 0101
add to '

S 0000 + 0101 = 0101
shift sum

right 0101 = 0010

multiply by .
ond LSB 0101+ 1 2 0101

add to sum 0010 + 0101 £ 0111

shift sum
right 0111 =»0011
maltiply
by 2nd 0101 « O = 0000
MSB

add to

sum 0011 + 0000 & 0011

shift sum

right 0011 = 0001

miltiply  5109. 1 30101

. by MSB

add to

o 0001 + 0101 $ 0110

add bit
last shifted
out

0110 + 1 5 0111; which is 56 if one kept
track of the decimal
pOinto

The error inherant in this algorithm is common to any fixed

point miltiplication algorithm using finite word lengths (clearly

11¢ 5 = 55, not 56)s The round off improves the resolution by one

half bit (i.e. a factor of VZ), therefore, the 8x8 multiplication

is accurate to one part in 362 (2

80 5).

The results from the filter are subsampled by a factor of four



horizontally and a factor of two vertically to obtain the lows data
to actually be transmitteds This subsampled data is also linearly
interpolated in two dimensions and subtracted from the corresponding‘
unfiltered original data to obtain the highs. Since the receiver
has the same interpolation scheme, it agrees with the transmitter

on the lows datas This insures that the transmitter's enhancement
of exactly the information that the receiver lacks after having
received and interpolated the lows data, i.e. the receiver's highs
data.

The enhancement of the highs involves the determination of two
scale factors. The first, the luminance scale factor, is obtained
from a lookup table (Fig. 3-5) using the corresponding original
data value as the index. The determination of the detail scaling
factor is more involved in that the index to be used is the local
contrast. This is computed as average of the magnitude of the
gradient over a 15x15 pel area centered at the pel to be scaled
(Figure 3-6).

Computation of the gradient at a given pel involves the four

adjacent pels (Right, Left, Above and Below) as shown below.

gradient (pel) = ( Ip.e_l'_é;-_Li+ ‘B_%.&ll) horizontal

* [g______elz- Bl + 1A= pel ; ell Yvertical

The remaining blocks perform the data compression of the highs.
The first block is the amplitude compresser which in effect makes

- the quantization steps smaller for smaller inputs or, equivalently,
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makes them larger for larger imputs. This is done in such a way
that the steps are equally visible over the whole dynamic range (9).
The function, about midway between logrithmic and linear, follows
the equation presented toward the end of section I,

oo = 127 o ( |nighs|*>- 1)/(227°%- 1) 4+ 1
Roberts' (7) noise processing is used in order to exchange the
strongly structured noise from quantization for unstructured noise
and thus reduce the visibility of spurious contours. The three
MSB's of each highs value are then presented to the transmission
channel,

The receiver (Fig. 3=3) is not required to perform any involved
operations such as filtering, etc. It accepts lows data and linearly
interpolates the missing values. It also accepts quantized highs
data from which it subtracts PRN noise values corresponding to those
added to it in the transmitter. It then expands* the result and adds
it to the corresponding interpolated lows value giving the data for

the reconstructed image.

* The expander is the inverse function of the transmitter's
compressor and is presented in section II.
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IVe System Implementation

This chapter discussed the actual technigques used to implement the
the functions of the blocks discussed in chapter III. Each of these
operations must be done each time a new byte of image data is received.
Some redistribution of the blocks was necessary to reduce the amount of
computation, and thus minimize the time required.

Associated delays and memory allocation are also discussed for
each block and the section concludes with a discussion of the incorpor-
ation of framing, system initialization, and Input/Output capability.

Note that in all of the discussions to follow it has been assumed
that the image is raster scanned horizontally from left to right,
moving vertically from top to bottom. There are also references to two=
dimensional locations with the location of the most recent ps) considered
as the origin as shown below.

most recently

received pel (original) data [0,0]

horizontal vertical
Note that this definition implies that locations with negative horizon-
tal and vertical components are to the left of and above the current pel,
(most recently received) respectively.

IV-1 Gradient and Local Contrast

As described in chapter IIT, the gradient is computed as the sum
of the magnitude of the differences between the pel of interest and the
four adjacent pels. It is implemented in software and the results are
stored in memory for later use in the computation of the local contrast.

Note that the gradient uses data from three different scan lines,

therefore requiring the storage of three lines of original image Adata.



The result of a gradient operation will therefore, be delayrd from
the incoming data by at least one scan line. The minimum delay
minimized both storage requirements and the delay of the local contrast
operation. Figure L~1 shows the pels involved in the gradient and their
orientation relative to the incoming data. From this, the gradient is

observed to correspond to the equation:
ost recently received value
gradient (0,~1) =4[ data(0,0)~data(0,~1)+ data(0,=2)~data(0,~1)

+ data(~1,~1)~data(0,~1) + data(1,-1)~data(0,~1)]
The local contrast is the average of the magnitude of the gradient
values over a 15x15 pel area centerzd at location (~8,-9) relative to
the location of the most recemtly received pel (see Figure 4~2). A
straightforward implementation of this would regquire 22l additions,
probably taking more than one millisecond to run*., A great reduction
in the amount of computation required is achieved by taking advantage
of the fact that the areas used for conseouetive local contrast
computations have all but 30 pel locations in common. The area moves
along with the incoming pels so that when a new pel is received the
area picks up a new colurm and discards its oldest (leftmost) one.
Therefore, this implementation requires the continuous storage of the
local contrast and then fifteen additions and subtractions to update
this value. Care must taken in handling the way in which this value
is affected by edges of the image. The affects at the edges themselves

are not important, but for the second technique these edge effects

* the minimum instruction cycle time of the type of system proposed
(Intel 8085) is .8 usecs.
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accumulate and persist throughout the interior of the image. To reduce
these affects, any portion of the averaging area that falls outside
of the image boundaries is filled in with zeroes. In addition, to
keep whatever effeet there may be from accumulating from line to line,
the local contrast value is reset to zero at the beginning of each
new line of data, Notice that with this scheme, the first fifteen
local contrast computations for each line do not involve any subtrac-
tions since the columms to be subtracted fall outside of the image
boundaries. Thus the averaging area is allowed to grow to the full
fifteen columns before any columms begin to be discarded. Figure 4=3
shows the averaging area and columns most recently added and subtracted,
respectively, and their orientation relative to the most recently received
pel and the corresponding local contrast value location.

An even greater reduction in computation can be achieved by taking
the above approach and apply it in the vertical direction as well.
Figure L=l shows two averaging areas with vertically adjacent centers
and the corresponding columns to be subtracted and added. Notice each
of the colums has all but two pels in common with its counterpart from
vertically adjacent area. Therefore, only two additions and subtractions
are required to update the colums or, egquivalently, to directly update
the local contrast value from one line to the next. This reduction in
computation is achieved at the expense of increased storage reguirements,
since, in addition to continuocus storage of the local contrast value,
the contribution from the corresponding columms for each update of the
local contrast value must be stored until the following line, at which
time it will be updated. This means an additional line of storage of

value; in fact, a line of double-precision values since each is the sum
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of fifteen 8=bit values.

To summarize, the storage requirements of these two operations
include sixteen lines of gradient magnitude values, one line of local
contrast update values, and one local contrast value. The results of
these are gradient [0,-1] and local contrast [~7,-8] an® correspond
to one and eight lines of delay respectively. Since the hirhs are
scaled according to the local contrast value, the corresponding highs
value must also be stored long enough to still be available when needec.

As was alluded to briefly, the local computation requires double
precision arithmetic. The value before scaling is the sum of 225
8-bit numbers, thus requiring sixteen bits for full representation.
The high order byte is used as the index for the scale factor lookup
table,lthe values of which correspond to the curve presented in chapter
IT.

IV-2 Low Pass Filter

As discussed in chapter III, the 2-D low pass filter is imple=
mented as two cascaded 1-D filters. Each filter has nine nonzero
coefficients, therefore, the horizontal filter requires the storage of
nine lines to give valid results., The output of this filter pair
corresponds to lows (~4,~L) regardless of the order in which they are
implemented and note that the highs cannot be obtained until the
corresponding lows value has been determined. Therefore the original
data must be stored for at least five lines*. Even after the highs

have been separated, the lows must be stored until all of the scaling

* This actually only requires four lines plus four pels, but is
impractical to implement as such.
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operations have been completed for the corresponding highs value so
that fhey can be transmitted together. The corresponding local
contrast scale factor is delayed by eight lines from the incoming
data, requiring that the lows and highs be stored for five* lines
after they are first obtained. Also note that the vertical filter
requires nine lines‘of either original or horizontally filtered data,
degending on whether it is implemented before or after the horizontal
filter, respectively. To keep from having to store the highs, sep—
aration of the highs from the original data can be delayed until the
corresponding local contrast scaling operation can be carried out.
This, in itself, does not reduce storage recguirements, since now the
luminance scaling must also be delayed; bringing the storage require—
ments for the original data up from five to nine lines. This means
storage has actually only been reduced by orne line using this scheme.
Note, however, that these nine lines of original data are the same used
by the vertical filter when it precedes the horizontal filter. Thus
there is a net savings of 5 lines, since no additional storage of
original data is implied by delaying the highs separation.

With the vertical and horizontal filters ordered as just dis-
cussed the vertical filter operates on the data from the most recent
nine lines of original data. Their locations correspond to (0,0),
(0,-1), (0,-2), (0,=3), (0,=L), (0,~5), (0.=6), (0,~7) and (0,-8) with
the results of the operation corresponding to locations (0,=L); all

relative to the most recently received pvel., The horizontal filter then

*¥ Once again, the actual reguirement is four lines and three pel but
is impractical to implement(complexity, computation time).
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operates on the nine most recent vertical filtering results, These
correspbnd to locations (0,=4), (=1,=4), (=2,=4), (=3,=b), (~k,~4),
(=5,=4), (=b6,~4), (=7,~L) and (~8,=L) with the result corresponding
to location (=4,=L).[see Fig. L=5]

A1 of the computations involved in the filtering are single-
precision. The multiplier used for coefficient multiplication is
accurate to 8.5 bits¥*, as discussed earlier, and the constraint on
the filter coefficients insures that one byte will be sufficient to
represent the result.

IV=3 Subsampler and Interpolator

Only one in everj eight locations is to bg a sample point for
the lows. This is arranged such that every fourth location on every
other line corresponds to a lows sample point. The value in between
are to be filled in by the interpolator to achieve 1lows actually
used for the highs separation. Only the sample points, however, will
be transmitted. Rather than filter at each location, pick out the
sample points, and then interpolate over the other points, it makes
sense (and greatly reduces computation time) to determine the sample
points before filtering and only compute the lows values for those
locations. Thus horizontal filtering need be done only for every
fourth location on every other line. Vertical filtering, while it
mist be done for every point on the line, need be done only on every
other line.

The interpolator is split into two one-dimensional linear inter—

* the result is rounded off to eight bits for an accuracy of one part
in 362,
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polator. The horizontal interpolator operates on the lows sample
point it is given and the one previous to it. It simply takes their
difference, divides it by four, and repeatedly adds it to earlier
sample value to fill in the three undetermined values at the locations
in between., Similarly the vertical interpolator operates on the sample
point given and the corresponding point on the previously sampled line
to fill the undetermined value at the location in between. This value
and location filled are then given to horizontal interpolator so that
the three locations between the last two £illed by the vertical inter-
polator, can be filled in.

Given that the result of the low pass filtering, at the times when
it is to be done*, corresponds to location (=k,=L) relative to the
most recently received pel, the horizontal interpolator results first
correspond to locations (-7,-L4), (=6,~L), and (~5,-L). The vertical
interpolator result corresponds to location (=L,~5) and the second set
of horizontal interpolator results correspond to locations (=7,-5),
(=6,~5), and (=5,~5).[see Fig.L=6]

IV-. Compander

As with the other scaling operations, the compression just before
the PRN processing is achieved by using the highs value as the index
for a lookup table. The same goes for the expander following the noise
processing in the receiver. The equations used to obtain the values

were presented in chapter IT.

* location (=4,-L) mst be a lows sample point
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Iv-5 Overall System

There has been considerable discussion thus far of the various
image processing technigques being implemented in the system, but so
far not much has been said about the overall system and how it controls
and cycles through these operations. Since it is the goal of this
work to present first a system implementation to be operable with a
microprocessor simulator and later with an actual microcomputer
system, it is necessary to discuss somewhat how this system actually
controls the flow of data through it. This includes not only input
from the scammer and output to the facsimile device, but also matters
such as the formatting of the data for transmission from the trans-
mitter to the receiver, the flow of data in and out of the various
storage area for the various operations, and the interfacing to 1/0
devices.
IV-6A Transmitter controller

The transmitter is responsible for receiving and storing imput
data, controlling the functions discussed earlier, determining when and
on what data they operate, and formatting the data to be transmitted.
The overall operation is the same for both the simulator and micro-
computer implementations. The microcomputer implementation has several
added features which are necessary both because it must interact with
externa; devices and because of constraints within the system itself.
These features will be discussed in detail in a later section devoted
to the microcomputer implementation.

The basic system objectives were for it to be capable of enhancing,
transmitting, and reconstructing images with scan lines of arbitrary

length up to 1024 pels. It is to receive data at up to S8kbytes/sec and
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transmit data at u§ to lkbytes/sec, thus the 1.millisecond constraint

on total computation time. The controller maintains and updates the
appropriate storage areas for each of the fuinctions. It also formats
the highs, lows and appropriate framing pulses to be presented to the
transmission channel, It is designed to expect framing indications
nested within the image data corresponding to the beginning of the
image(*new page') and the end of each scan line ('new line'). The
allocation of memory storage areas for the various functions was dis-
cussed earlier. There must also be some storage of completely processed
highs and lows values so that it can be formatted for transmission.

The format calls for transmission of one line of lows followed by two
lines of highs values. This transmission occurs in the same time it
took to receive the corresponding two lines of original data. There
are two output storage areas, each comprised of one line of lows and
two lines of highs. While the data from one area is being transmitted,
the other area is being loaded with new values, Note that the two highs
lines correspond to the highs f;om the 1line located above and on the
line from which the lows sampler were determined.

In summary ,the memory requirements are 9kbytes of original data,
16kbytes of gradient magnitude values, 2kbytes of local contrast update
values, Skbytes of lows values, and L.5kbytes for the output buffer
areas. There are also about 64 bytes devoted to flags and pointers for
the various operations and storage areas. The controller initializes all
pointers and flags and zeroes out the storage areas for the gradient
magnitude and local contrast update values to proper startup for the

local contrast operation.



The controller must insert additional framing information into
the data as it is being transmitted. The 'new line' and "new page'
indications are already nested in with lows data, but the line
mismatch value must be inserted into the first lows line right after
the 'new page' indication. Since the mismatch value is important to
image reconstruction, it is transmitted four times to reduce to pro-
bability of an error due to noisy transmission.

IV-6B Receiver controller

The receiver receives the formatted data from the transmitter
and reconstructs the original image from it to be output to some
device. It must also extract the necessary framing information so that
the device can properly align the image. As mentioned earlier, this
output data corresponds to the digitized version of raster scammed
image, therefore the new line and new page indications are sufficient
for proper alignment, Involved in the reconstruction process are a
2=D linear interpolation of the low similar to that done in the trans—
mitter, a magnitude scaling*, and the remaining portion of the FRN
processing, The controller must also make use of the line mismatch
information to insure that the highs and the lows lines are of the same
length.

In the format discussed in the previous section a line of lows is
transmitted, then is followed by two lines of highs. When the line of
lows is received, the interpolator is used to fill in the values

which were not transmitted. By maintaining the two most recently

* This scaling is the expander portion of the compander pair.



received lows lines, it is possible to fill in not only the missing
values on the received line, but also all of the values for the line
between these two for which no low values were transmitted. Thus

the highs lines are to align with the most recently received lows

line and the untransmitted line that would have preceded it were

every lows line transmitted. All of these are transmitted in the order
in which they were determined in the transmitted; thus the first highs
line alligns with the untransmitted lows line, and the second with

the lows line .that was actually transmitted.

As in the transmitter, the scaling operation is done via a
lookup table. The scaling is preceded by the noise processing, where
the PRN values are also obtained from a lookup table. The same table is
used for both the receiver and transmitter and the indices are derived
from the horizontal and vertical position of the pel being processed
relative to upper left hand corner of the image. The table contains
6l 1=byte values corresponding to an 8 x 8 noise mask. Thus, it is
sufficient to have two 3-bit counters, one for horizontal and one for
vertical, in each the transmitter and the receiver.

The scaling and noise processing are performed on the highs values
immediately as each is received. The result is then added to the
corresponding lows value and output to some sort of facsimile reproduction
device. There is almost certainly a need to convert this digitized data
to a form compatible with the device and, time permiting, some such
converter will be implemented. For the simlated version, this is not
a factor in testing, The results will, in this case, be stored in a

file and viewed later on of the systems* television monitors.

* the simlator is implemented on the Cognitive Information Processing
Group's Unix system.



V. Simulator Implementation
In this chapter, the details of the implementation of the system

on an 8080 microprocessor simulator are presented, The discussion of
these details includes the software written to implement the func¢tions
and achieve the overall system behavior described in the preceding chapter.
Before dealing with software, it seems appropriate to first discuss
briefly some of the programs be used in conjunction with the simlator.
The format of the images available for testing and that of the resultant
images is also to be'considered;
V=1 Support Programs

There are two programs available on the Unix system that facilitate
the use of the simulator. The micro-assembler, MICAL, assembler files
written in either the Motorola 6800 or the Intel 8080 instruction set,
converting them to the appropriate machine codes. A second function,
RELDLD, converts this code to a form that can be loaded directly into
the simulator for execution. This section briefly presents the logic
format for using to the degree need for this project. For more details
on the functioning and use of these the reader should refer to the
UNIX system mamal,

The aésembler will attempt to convert any file with the suffix
+8080 into Intel 8080 machine code.

V=2 TRANSMITTER CCNTROLLER

This section is mainly concerned with the various control and data
flow operations carried out by the controller. All of the other
transmitter functions are implemented.as subroutines, called from this
program. It also carries out the scaling operations, i.e.=~ it fetches

the appropriate values from the various lookup tables.
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The first section of the controller program initializes the data
storage areas for the various subroutines. It also sets all of the
locations to zero;the gradient and local contrast update storage areas¥
as was specified in chapter VI. Appendix A contains a complete listing
of the program plus all of the subroutines for the simulator. The
initialization portion is quite straightforward. It begins by loading
the filter coefficients. It next initializes all of the control flags
and the pointers for the vari_ous functions, Finally, it szeroes out the
areas mentioned and proceeds to the rest of the program.

Figure 5-1 show the memory allocation for storage of the various
pointers and flags. The pointers are used both in loading new data
and as references in accessing previous data. In fact, the majority
of the computation in the controller itself is devoted to these
pointer manipulations. The corresponding data storage areas are also
shown, with the address indicated by the pointers corresponding to the
locations in which data has most recently been stored or, for the
transmitter output pointers, the locations from which data was most
recently taken. That the proper manipulation of these pointers is
sufficient to achieve the desired data flow structure, will be demon—
strated later in this section. After initislization has been completed
each of the pointers contains the address of the lowest address of
the corresponding storage area. The control flage are set such that
all functions pertaining to obtaining the lows and loading the trans-
mitter output buffer area are disabled. There are five such flags
labelled STATUS, STIN, STOUT, HGHEN and FLAGA., These too will be dis-

cussed in the next several pai'agraphs.

* A total of 18 kbytes.
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The flag word STATUS is used both to totally disable the func-
tions pertaining to the determination of the lows an? later, to im-
plement the subsamoling scheme. As mentioned, it is initially =rt
such that the filters and interpolators are totally Aisabled, It
is first modified when it is detectrd that the pel at the ernter
of the vertical low pass filter area (see Fig. L-5) containe a 'new
page' indication. It should also be mentioned that thie flag is
also used to signal when the line mismatch value can be determined.
Figure 5-2 shows what each of its bite indicates. When the 'newv page!
indication is detected, bit 7 is set and bits @,1, and 2 are reset.
Since for vertical filtering to be inhibited both bit 2 and bit ?
must be set, vertical filtering is done on for each subsequent pass
through the program. The filter is designed to pass any 'new line!
or 'new page' indication that is detected at its center, directly to
its outpui, thus preserving the framing information in the lows.

Each 'new line' indication detected at the vertical filter causes

the controller to toggle bit 2 of STATUS toggle. Similarly, when a
'new page' indication is detectrd at thr oel just after the horizontal‘
filter's center, the controller cets bit 2 of STATUS. Wien a 'nerw
line' indication is detected at this location, hit 3 of STATUS i-
toggled. Note that bit 3 should therefore get toggled five passes
after bit 2, Thus filtering is enabled from the time the vertical
filter detects a 'new page' or 'new line' indication until the time
that the horizontal filter detects the following 'new line' indication.
Thus bit 3 is used to, in rffect, extends the filter's enable times
just long enough for the horizontal filter to pass on the new line

indication.
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1716191412110
I | -——enable to output transmltuer(active)
modulo-four countsr for lous sub-
§ sampling
both ¢ logic 1, indicates a line for
which there are to be no lows samnle
points
| . . L . high
L
first lipe indication (active)
STATUS Flagq
FIGURL 5-2a
Filteg_x np X X X X X X X X X X X X x nl x
input

STATUS-0c 80 81 82 83 80 81 82 83 80 81 82 83 80 81 04 05
X X X X X X X X X X X X x nlx x X
06 07 04 Oc 0d Oc 0d Oc 0d Oc 0Od Oc 0Od 08 09 0a 0b
X X X X X X X X x x X nlx x x X X
00 GO 01 02 03 00 01 02 03 0O 01 LG LS UL 07 U4 Oc
X X X X X X ..
Ud Oc 0Ou Oc 0d Oc «..

x=-= data input to filter
np=- 'new page' indication input to filter
nl- 'new line' indication input to filter

-- Note that the state of the STATUs flag is
indicated in hexidecimal notation.

-- The sequence shown corresponds to a line
length of fifteen pels,

STATUS Flag 3Seqguencs
FLGURE S«2b
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While the filters are enabled, i.e. on every odd line, bits ﬁf
and 1 are made to carry out a modulo=four binary count of the
rmumber of pels on the line. Fach time the count is zero, the hori-
zontal filtering is done. So that the lows sample points will
correspond to pels @, L, 8, etc. the count is set to three each time
the horizontal filter passes a 'new line' indication to its output.
Thus if the indication occurs during the enable time, the horizontal
filtering will be done again on the next pass, rather than skipping
the next three, which corresponds to the first pel of the line. The
néxt 'new line' indication passed on by the horizontal filter will
affect bits/6 and 1 in the same way, but since the filters will be
disabled by the next pass, it doesn't cause a problem. The horizontal
filter itself is allowed to set these bits since, as was just shownm,
it can be done rather blindly.

There is one remaining issue concerning the use of the STATUS
flag for controlling the filters, Since it is necessary that the framing
indications be present in the lows data, it is necessary that the
pels from the original image that contain 'new line; indications,
in fact, correspond to sample points for the lows. From the discussion
thus far, this would only be true for images with line lengths that
were multiples of four. However, setting the modulo-four count to
zero whenever the vertical filter detects the indication, guarantees
that the pel will indeed be a sample point. It does csuse the last
two sample points to correspond to locations other than multiples of
four on the line, however, this is acceptable since it is only an edge
effect and not at all cumulative.

Finally, STATUS is also used to enable the transmitter to present
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one byte of data to the transmission channel*, Since the transmission
rate is one~half of the input rate and since bit @ and 1 are already
performing a modulo-four count of pels when the filters are enabled,
bit @ can be used to enable or disable the output. When the filters
are disabled the controller can simply toggle the bit on each pass.

The next three flags mentioned are almost inconsouential compared
to STATUS. The flag STIN (Set Transmitter INput) is used to disable
the routine that loads the lows area of the output buffer, thus pre-
venting it from loading erroneous data until valid low data is avail-
gble, This routine scans the lows values shortly before they are
used in highs separation. When a 'new page' is detected, the flag is
set¥*the routine begins loading the lows sample points into the
transmitter output buffer.

The flag STOUT (Set Transmitter OUTput) is used when reset, to
totally disable any output from the transmitter. It is set by the
routine that loads the lows output buffer when it loads the first
'new line' indication.

The flag HGHEN disable the routine that loads the highs storage
area in the output buffer. After STIN has been set, it will be set

when it detects the 'new page' indication in the original data pel

* Although data is presented to the channel in parallel bytes at a time,
there are no constraints on the actual form used by the channel as
long as sppropriate converters are available at both ites transmitter
and receiver ends.

*% STIN = FF when set
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being used in highs separation. Remember that the highs separation
is achieved by subtracting the lows values from the corresponding
original data value. Since the 'new page' indication is the first
valid input pel, this flag guarantees that no invalid data will be
loaded into the output buffer.

Clearly these three flags have not been as fully utilized as the
STATUS flag, and it would have been more efficient to combine these
into one flag, In development, however, it was desireable to keep
them separate and facilitate debugging.

The last flag mentioned (FLAGA) is used by the routine that
actually takes the data from the sppropriate output buffer areas and
presents it to the transmission channel. Figure 5-3 shows what each
of the bits in this flag indicates. It is initialized to indicate

lows and controls the type of data transmitted and the word length.

Once the routines are enabled, the routines begin tsking data from:3j>‘ ,.~

the lows area of the output buffer. The very first value it gets
should be the 'new page' indication. This value will cause the first
line indicator (bit 5) to be set and also set FLAGA so that it will
next transmit the line mismatch value* (bit 7 set). After this value
is transmitted, FLAGA is set such that the routine will go back to
transmitting the lows values. When a 'new line' indication is trans-
mitted, FLAGA is checked for the 'first liné'indication. If it is
present then FLAGA is set such that one 1line of highs will be trans-
mitted, i.e. bit 3 is set. Otherwise it will be set such that two

lines of highs will be transmitted, i.e. bit 4 is set. At the end of

* TRemember that the mismatch value is transmitted four times.
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lows line

first nighs line (highs?)

first line of image

line mismatch value

second nighs line (highs2)

FLAGA Flag
FIGURE 5-3a

--The sequence shown would correspond to a line length
of fifteen pels.
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each line of highs FLAGA is shifted left once such that FLAGA is
eventually set for lows again. Notice that manipulation of this-
and the other flags discussed is dependent on data, especially
the framing indications. The proper manipulation of the pointers
isg, therefore, crucial to the operation of the controller and will
be discussed next. |

As was mentioned earlier, much computation is devoted to
pointer manipulation. There are even some special subroutines for
incrementing the pointers when framing indication are received.
Starting just after the initialization process is completed, the
first operation involves getting the new pel value and storing it
in the origiﬁal data storage area at the address indicated by the
pointer*, CRIGe The pel is then checked for a 'new line' or a
'new page' indication. For a "new page' indication two subroutines**
are called which set the (RIG and GRADIENT pointers to the first
location of the next line in their respective storage areas. Note
that since each line is allocated lkbyte, it is necessary to incre-
ment the high order byte of the bointer by four to move to the next

line®** These routines also take care of wrapping the pointers to

* Note that all of the pointers, except those for the output buffers,
are incremented further down in the program.

*% The subroutines are named INCDAT and INCGR, respectively.
*%% The six MSB's of the pointer determine the line rumber, and the
ten LSB's the location on that line.
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guarantee that they remain within the bounds of their respective
storage areas. The 'new page' indication is then removed from its
original location and put at the new one indicated by the pointer.
For a 'new line' indication, the same two routines are called to
move the (RIG and GRADIENT pointers to the first locations of the
next line in their respective storage areas. They are each then
decremented once, such that the point to the last location allocated
for the previous line. Thus it is guaranteed that on the next pass
the pointers will point to the first location of the desired line.
The '"new line' indication is left in its original location to merk
the end of valid data on that line, but is also put at the new loce-
tion indicated by the pointer. This serves as a marker for when some
reference from the pointer crosses the boundary between lines and

is important in that it makes it unnecessary to recheck the pointer
when making references to other pels on the same line.

The gradient is then computed for the area centered at the vel
just above the pel indicated by the (RIG pointer. The GRADIENT
pointer indicates the address where the results will be stored. The
inner working of the Gradient subroutine are discussed in appendix C.

The next section of the controller is concerned with checking
for framing indications at the pel locations which would correspond
to the center of the vertical filter area and the location just after,
i.e. to the left of, the center of the horizontal filter area, setting
the STATUS flag accordingly., Starting with a copy of the CRIG pointer
store in the cpu's memory pointer¥*, this pointer is first moved back

four lines, to the center of vertical filter area, then back (left)

* this is register pair HL in the Intel 8080 or 8085 assembly code
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five pels to the desired location in the horizontal filter aree.

It then either calls or doesn't the filter subroutines, depending
on the state of the STATUS flag and the results of the checks just
mentioned. Whether or not filtering is enabled, or has even begun,
an attempt will be made to separate out the highs from the original
data. Therefore it moves the pointer back four additional lines
and also back three more pels, so that the pointer indicates

ORIG (~7,~8). Since the low pointer LOWS* indicates the address
of the results of filtering an area centered at ORIG (~i4,~L), it
mst be moved back three lines and then back three pels. The value
at LOWS (~7,-8) is then subtracted from the value at (RIG (-7,-8)
to obtain the highs value. The pointer ORIG (-7,-8), the value

at ORIG (~7,~8), and the highs value are all saved on the stack for
later use and the controller proceeds with the edge (highs) enhance-
ment. The magnitude of the highs value is determined and stored
temporarily in the memory location labelled THIGHS (Temporary HIGHS
buffer). The original data value is put in the lower byte of the
memory pointer and the address of the luminance scale factor lookup
table is put in the high order byte. The highs magnitude is then
miltiplied by the resultant value** and the product stored in THIGHS.
Next the routine LOCCON (IOCal CONtrast) is called returns the
appropriate value in reg H, This value is moved to the low order

byte of the memory pointer and the address of the local contrast

* From chapterl, the lows pointer corresponds to LOWS (-i,-4) relative
to the more recently received pel. That convention is followed here
also,

** The value is obtained from the table
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lookup table is put in the high order byte. The value in THIGHS
is the miltiplied by the resultant value and the product is com-
bined with the original highs value from the stack; the result is
the fully enhanced highs value. This is then moved to the lower
byte of the memory pointer and the address of the compressor
lookup table is put in the high order byte. The result is then
passed on to the noise processor, NOISEP, which will add in
pseudo~-random noise. It uses as an index the three LSB's of ORIG
(=7,~8) and the three LSB's of the count of the number of lines
of highs that have been enhanced¥*, This count is set to zero when
the 'new page' indication occurs at ORIG(—?,-B) and is incremented
each time a 'new line' indication occurs there,

When the filters are enabled, the vertical filter is given
three pointers; one for accessing the original data, ORIG (0,0),
one for accessing the filter coefficients, and one for the storage
address of the result, VLOWS (0,-L). The sixteen most recent results
are kept, although only nine are needed by the horizontal filter,
in order to simplify the updating of and referencing from the VLOHS
pointer., The horizontal filter given three pointers; one for accessing
data, VLOWS (O,-h), one for accessing the filter coefficients, and
one for the storage address of the result, LOWS (~L,-4). The hori-
zontal, when given the pointer LOWS (x,y), will fill in the locations
LOIS (x=3,y), LOWS (x=2,y), and LOWS (x=1,y)*¥ The vertical inter-
polator, given the same pointer, will fill in location LOWS (x, y-1).

Thus to fill in the area around the sampnle point the controller calls

* The count is referred to in the program as NCNT
*%* The horizontal intervolator will not leave the current line to f£ill
in values.



the vertical interpolator with pointer LOWS (-4,~L), i.e. the most
recently determined lows sample point. It then calls the horizontal
interpolator twice, first with pointer LOWS (=4,-L) and then with
pointer LOWS (=L4,=5).

Whenever a lows sample point occurs at LOWS (-7,-8), it is
loaded into the output buffer area. The input and output pointers
start at the same location, but, as was mentioned in discussing
the flag STQUT, the transmitter output is disabled until after a full
line of lows sample points has been loaded.

The last part of the controller could be considered the actual
transmitter. It consist of two routines; one which gathers the
next eight bits tb be transmitted together into one byte and another
which takes data from the output buffer and gives it to the first
routine, accompanied by an indication of how many bits were to be
transmitted from each value¥*, The first routine takes one bit from
the location referred to as XMIT., It then updates the location XCNT
by shifting it once to the left. If the shift results a carry bit
being set, the second routine is called to reset XCNT and to put a
new value in XMIT. It repeats this sequence seven more times, i.e.
until it fills up the byte to be transmitted. Note that by setting
XCNT appropriately, the second routine can, in effect, truncate any
desired number of bits from the data words as they are transmitted;
thus there is no need for a separate guantizer for the highs. The
control aspects of these routines were discussed previously, with

the exception of one issue, While highs are being transmitted there

* fThe two routines are referred to as TXOUT and UPDATE, respectively
in the program.
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must be some means of detecting when the end of each line has been
reached. Since there are no framing indications in the highs area
of the output buffer and since there was no static relationship
between the corresponding output pointer and any other existing
pointer, another pointer was created. Its location on a given
line* is kept in agreement with that of the highs output buffer's
output pointer, but its line number** is such that it falls within
the original data storage area. Thus this pointer can be used by
the transmitter to monitor the original data storage area for
framing indications. There is a separate subroutine, INCHBF, which
is very similar to INCDAT and INCGR, which is used to for either of
the pointers for the highs output buffer., More details on the other
subroutines can be found in the appendices.
V-3 Receiver Controller

The receiver controller is much less complex than the trans~
mitter, thanks largely to the pains taken in designing the transmitter
to present the data in a simple format. The receiver does not have
much to do in the way pointer manipulation and, iﬁ fact, only
requires a little over 3kbytes of data storage. The mémory allocation
is shown in Figure 5-4. There is only one data pointer and one
control flag. The flag, RFLAG, determines what type of data the
receiver will be expecting., Figure 5-5 shows this flag and what

each of its bits indicates. The receiver is initially in the 'off"

* 10 LSB's of the pointer
*¥%x 6 MSB's of the pointer
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and ilemary Allocation

FIGURE 5-4
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state, (bit @ set), and remains there until a "new page' indi-
cation is detected. It then expects the line mismatch value,
(bit 1 set), followed by the rest of the lows line (bit 5 set).
At the end of this line, indicated by a 'new line' indication
being received, RFLAG is shifted right twice such that the
second line of highs is indicated, (bit 3 set). The end of the
highs line is determined by monitoring the corresponding lows
values for framing indications as the highs are being received.
At the end of each of these lines, RFLAG is shifted left once.
Since bit 4 indicates lows, only one line of highs will be
expected to follow the first line of lows. Since, however,

all subsequent lows lines are indicated by bit 4 rather than
bit 5, two lines of highs will be expected after each of these
lows lines. Figure 5-6 shows the sequence described and it can
be seen to agree with the transmitter's output format.

The program to implement this controller is listed in
appendix I, For test purposes it is called from the transmitter
when it presents data to the transmitter. This is necessary in
the simlator version since there is no way to interrupt the
processor and hence the transmitter routine. In a real world
application the transmitter and receiver would be implemented
on separate processors. The next chapter deals somewhat with
such issues. Since the same processor is used here, however,
the transmitter must be both initialized before any processing
can begin. The initialization routine for the receiver is thus

inserted just before the transmitter initialization.
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When the receiver routine, RCVR, is called it stores the
value given to it in the accumulator in memory location RWRD
and sets RCNT, the number of bits left in RWRD, to eight. As
each bit is read, this value is decremented such that control
returns to the transmitter when the bits are exhausted. 1In all
of the various receiver modes the location, FRAME, is used to
collect the bits as they are read. These bits are shifted in
from the right as they are read and one of the bits is in FRAME
set initially such that a carry bit will occur when it is full,
For example, when the 3~bit highs values are being received, bit
5 of FRAME is initially set. When the 8-bit lows values are being
received, bit @ of FRAME is set, so that carry bit occurs when
the eighth bit is loaded.

The receiver consists of four sections which are executed
almost totally independently of each other and a small section
that determine which of these will be executed for a given RCVR
call. These sections correspond to the four types of data expected
by the receiver and begin at the points labelled ROFF, RMSMTH,
RLOWS, and RHIGHS.

The receiver is initially in the 'off' state and in this
mode the section beginning at ROFF is executed. It continually
checks loads new bits into FRAME until it either runs out of bits
from RWRD or until it detects a 'new page' indication in FRAME,
i.e. the eight most recently loaded bits were all 1's. The
first case, simply results in a return from subroutine. For the

second case, however, the pointer RINS is moved to point to the
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first location of the other directly loadatle line and the new
page indication is stored there. Note that although there are
actually 3 lines for lows storage, one of these is reserved to
be filled in exclusively by interpolation from the values on

the other two lines., FRAME is then set to accept eight bit, i.e.
bit @ is set, and RFLAG is set to indicate that the line mismatch
value is to be expected next. Similar to the transmitter, the
receiver has a line counter that is used by the PRN processor,
that is reset to zero at this time. Control is then transferred
to the section that receives the line mismatch value, i.e. the
section that begins a RMSMI'H, so that whatever bits that may

yet remain in RWRD can be loaded into FRAME before returning from
the subroutine,

When the receiver is in the mode that executes the program
section that expects the mismatch value, the next eight bits¥*
received will be loaded into FRAME, These eight bit should cor-
respond to four identical 2~bit line mismatch values. These
values are separated and added together. The result should be the
line mismatch value shifted right twice,and if either of the two
LSB's in nonzero some error must have occurred. The value is
then rounded off to the nearest multiple of four and the result

shifted right twice to obtain the actual line mismatch value and

* These eight bits will come from more than one input byte, unless
the "new page' indication that was received came from a single
input byte without overlapping.
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stored in RMI'CHe The flag word, RFLAG, is then set to indicate
the first lows line, bit 5 set, the bit accumlator, FRAME, is
set to accept eight bits, and control is transferred to the lows
receiver, which begins at RLOWS, so taht the remaining bits in
RWRD can be loaded into FRAME.

The section used to receive the lows, not only collects in-
coming bits into the 8-bit lows values, but also spaces them
appropriately and calls the two interpolators to fill in the
missing valuese The horizontal interpolator is identical to the
one in the transmitter, except in the way it deals with *new line'
indicators. The vertical interpolator fills in the corresponding
location on the line reserved for indirect loading. the horizontal
interpolator is then again used to fill in the three locations
between this and the previous location filled by the vertical inter—
polator,

If the value loaded was a 'new page' indication, the section
starting at RPAGE is executed. It switches the pointer, RINS, to
point to the first location of the other line and stores the
indication there. RFLAG is set such that the line mismatch value
is expected next., FRAME is set up to accept eight bits and control
is transferred to the mismatch receiver section. The line counter
is also reset to zero. Thus images can be transmitted one after
another if the transmitter maintains the format expected by the
receiver.

If the value loaded was a "new line' indication, the section

starting at ENDIW is executed., It, too, switches the lows pointer
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to point to‘the first location of the other line. This insures
that the pointer will indicate the most recently loaded lows
line when the highs are being received. Before this is done,

it is necessary to augment the current line of lows values
according to the line mismatch value. Zero is loaded into the
current location and into each subsequent location until the one
corresponding to the current pointer plus the mismatch value.‘
The same is done to the corresponding locations on the line re-
served for interpolated values.

The flag word, RFLAG, is then set to receive either one,
bit 3 set, or two, bit 2 set, lines of highs values, depending
on the current state of the flag. Remember that for the first
lows line, bit 5 is set, while all for subsequent low lines,
bit 4 is set. The flag word is shifted right twice when the
end of the lows line is reached, thus setting the receiver to
expect the appropriate number of highs lines according to the
transmitter's data format. The bit accumulator, FRAME, is then
set to accept three bits, i.e. bit 5 is set, and control is
transferred to the section beginning at RHIGHS so that any re—
maining bits in RLNS can be read into FRAME.

The section that receives highs values also generates the
system output and framing indications. After a three bit highs
value has been loaded into FRAME's three LSB positions, it is
shifted over until it fills the three MSB positions. The pointer
for the lows is then put into the memory pointer register and,

if the values are for the first line of highs, i.e, if bit 2 is



set, the six MSB's of the high order byte are switched to indicate
the line of lows that was loaded indirectly by means of interpo-
lation. Then the PRN value is obtained from the lookup table,
using the three L3B's of the line counter, RNCNT, and the three
LSB's of the lows pointer as indices. The routine for obtaining
the PRN value is identical to the one used by the transmitter

and it was only made a separate routine so that the transmitter
and receiver would be totally independent of each other. The
result is subtracted from the highs value and this value is
expanded, again via a lookup table.

The scaled highs value is then added to the corresponding
lows value and the result is ouput as the enhanced image data.
The lows values are checked for framing indications and if any
occur a prompt is semt to some external device to ‘generate the
necessary framing pulses for the facsimile reproduction device.
When the 'new line' indication is detected RFLAG is shifted left
once and if the second highs line is indicated, i.e. if bit 3
is set, then FRAME is set to accept three bits.and control
remains with the section starting at RHIGHS. For a 'new page'
indication, FRAME is set to accept eight bits and control is
transferred back to the section which begins at RLOWS, In the
absence of any framing indications, FRAME is set to accept three

bits and control remains with the highs receiver section.
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YI. Microcomputer Implementation

The hardware implementation of the image enhancement/trans-
mission system discussed in the prgceding chapters is achieved
using a microcomputer based on the Intel 8085 microprocessor.
This system should be capable not only of carrying out the
enhancement and transmission procedures, but also of completing
them in less than one millisecond, as the initial specification
stated, This does not include the time that is devoted to the
receiver since it would be implemented separately, or at least
would not run concurrently with the transmitter, in any real
world application. This chapter discusses the design of this
system, begimning first with the overall system requirements,
then going into its detailed design, and the I/0 structure.

VI=1 System Requirements

The microcomputer requiréements discussed in this section
pertain mainly to requirements on data storage capability,
software and parameter storage capability, and CPU requirements.
These are based on and/or derived from the discussion in previous
chapters.

In discussing the transmitter portion of the system, it was
mentioned* that much of the effort involved manipulation of the
pointers for the various data storage areas. The storage require-
ments there were 9k bytes for the original image data, 16k bytes

for the gradient magnitude data, 2k bytes for the local contrast

* chapter V
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update data, 5k bytes for the lows data, 4k bytes for the highs
output buffer, and 512 bytes for the lows output buffer. 1In

the receiver, the only storage required mentioned was 3k bytes
for the lows data. Thus the implementation of both the trans-
mitter and the receiver in the same microcomputer system requires
39.%k bytes of data storage capability. To this must be added
the data storage needed for storage of filter coefficients and
the intermediate lows values for the transmitter plus the flags,
pointers, and stack area for both the transmitter and receiver.

The software reguirements for the transmitter and receiver
implementations discussed in the previous chapter are approxi-
mately 1508 and 512 bytes, respectiiely. Later in this chapter,
I/O considerations will be discussed which will increase the
overall software image requirement somewhat. It should not,
however, be large enough an increase to cause the overall regquire-
ment to exceed 2k bytes.

The requirements for parameter storage were not discussed
directly in the previous chapters, but can be determined from the
inferred sizes of the various lookup tables. First mentioned
were the two scale factor lookup tables and since the indices of
each can range from @ to 255%, 256 bytes of storage is required
for each, Observing the behaviour of the curve for the local
contrast scale factor, however, reveals that it is a constant

for any input value greater than sixty. Thus by adding a few

* d.e. each is accessed with a one byte index
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steps to the part of the transmitter controller program that does
the lookup, it was possible to decrease the storage requirement
for the corresponding table by 75%. The compander pair each also
have to cover the full range of an 8-bit index and, therefore,
require 256 bytes of storage each for their respective lookup
table, The lookup table for the PRN seguence uses 6~bit indices
and, therefore, requires 64 bytes of storage. Thus the
requirement for parameter storage comes to a total of 896 bytes.
The CPU reguirements are not so well defined as the storage
requirements., The main consideration was in making sure that
it would be capable of running at a speed sufficient to execute
either the transmitter or the receiver program in less than one
millisecond per cycle, Each of the filters uses nine multipli-
cations and the adaptive scaling operations each also reouire
a multiplication. There is very little chance of any microcomputer
executing twenty multiplications in less than one millisecond,
using a software multiplier*. Therefore, in a real world applica-
tion it is assumed that this software multiplier would be re-
placed by some sort, of external hardware mulitolier**, Using a
subroutine to drive this external rmltiplier, rmltivlication can
be done in under twenty instruction cycles. If time vermits, this

replacement will be made. Even so, there is a good deal of other

* see the appendices
*¥ This is discussed again in chapter VII and the appendices.
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computation to be done and the processor must be able to in a
short enough period to at least allow time for multiplication
using the hardware device,

VI-2 Microcomputer System Design

The section presents the detailed design of a microcomputer
system capable of performing the functions of the transmitter
and receiver as discussed in the previous chapters. The Intel
8085, rather than the 8@8@, is chosen as the central processing
unit for this system, mainly because of its greater speed* and
its total compatability with the 8¢8¢ software used in the sim-
lator implementation discussed. It also regquires fewer support
devices for the basic system. In the following sections, this
system is divided into five major groups: 1) the CPU group, 2)
the ROM group for program and parameter storage, 3) the RAM
group for data storage, 4) the I/0 group, and 5) the DMA group.
The information for the devices incorporated in this design was
obtained from various microprocessor and TTL data books (see
references 12 through 17).

A. CPU Group

The 8085 microprocessor reguires very little assistance from
support devices to perform the tasks of the CPU for. this system.
It has an 8-bit data bus and a 16~bit address bus, the low-order

byte of which is multiplexed with the data bus. Thus to have the

* The 8085A-2 has a minimum instruction cycle time of 800Onsec,
while the 8080A-1 has a minimum instruction cycle time of
1300nsec.



full address available contimiously, it is necessary to latch
the low-order address byte. In addition to insure that its
output drive capsbilities are not exceeded by the loading of the
other devices on the bus, buffers are inserted between the 8085
and the data and address buses. The data bus requires a bidir-
ection buffer and the addressbus, since the low-order byte is
already buffered, only requires a buffer for the high-order byte.
Notice that the low-order address byte is latched by the signal
ALE (Address Latch Enable) and the direction of the bidirectional
data buffer is determined by the 'read' strobe from the
micropreocessor, =RD. A multiplexer, 745257, with tri-state outputs,
is used to generate the signals - MEMW,~MEMR,~I/OW, and -I/CR
from the 8085 signals —RD,~WR, and IO/=M and the various input
which are not used are either tied to GND or 'pulled up' to
Vcc, whichever corresponds to the particular input's inactive
state.

Figure 6~2 shows the detailed circuit diagram for the CPU
- group. Note that although the 8#85 has an internal clock gener—
ator, whose frequency is set by component(s) placed across
inputs X1 and X2, in this implementation the X1 input is driven
by an external 5 MHZ crystal oscillator. This was done entirely
because of availability and for convenience. The 5 MHZ clock
frequency at this input corresponds to a 2.5 MHZ frequency at
the CLK output of the 8085, only half the maximum clock rate.
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B, ROM &'OEQ
The ROM device chosen for this system is the Intel 2716-1

and has access times short enough to allow its use with the
8085A-2 at the full 5 MHZ clock rate. It is a 2k byte device and
and has two enable inputs, —=OE (Output Enable) and =CE (Chip
Enable). The delay from the address being stable or from -CE
being enabled to the corresponding output is 350 nsec maximum
and the corresponding delay from the -OE is only 120 nsec max-~
imume Therefore, the —=CE input is comnected to the enable from
the address decoder* and the -OE input is connected to -MEMR
signal, which occurs somewhat later in the machine cycle. Fig.
6=3 shows the detailed circuit diagram for the ROM group.
Ce RAM Group

The RAM group is implemented with five 64k bits memory boards
built around the 2102%*memory device. The boards were designed for
another system and their control circuitry had to be modified
somewhat in order to convert them from Lkx16 to 8kx8 and to mske
them totally compatible with the CPU's control signals. In
addition, many of the 2102's used were seen to of a variety that
would not be able to operate properly were the CPU operated at
its maximum rate. Thus the overall system is not capable of per-

forming for the ROM group.its functions in the specified time,

* The 7LS138 is used to determine which of the 2k byte memory
segments is indicated by bits 11-15 of the address bus.

** The 2102 is a 1k x 1 bit random access memory device with an
access times ranging from 250 to 10@@nsec, depending on the
version used. See ref. 16 pp 282,
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FIGURE 6-3 The ROM Group
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unless the slower memory devices are replaced, Figure 6-L shows
the detailed circuit diagram.

Do _I/0 Group

The I/0 capabilities of the system include receiving »ne
byte data value on either of two input ports and transmitting
one byte data on either of two output ports. For the system
implementation discussed in chapter V, these ports are simply
polled by the transmitter and receiver routines. To give the
system presented here a more flexible I/0 structure, it was
decided to use an interrupt driven I/0 scheme. This relaxes
the timing constraints which would have to have been imposed
upon the image data source, the transmission channel, and the
facsimile reproduction device.

To implement this scheme, four I/0 ports, 8212's, are used
in conjunction with a programable priority interrupt controller.*
The detailed circuit diagram is shown in Figure 6-5. The
interrupt controller must be initialized by the CPU before any
I/0 operations can begin and special interrupt routines must
be added to the transmitter and receiver software to achieve the
desired I/O features. To relax the timing constraints each of the
four interrupt routines uses a sixteen byte FIFO buffer as either
a data source for the output routines or as a storage area for the

input routines. The transmitter then gets data from or writes data

¥ The interrupt controller was chosen over the interrupt scheme
incorporated into the 8085 itself because it allows more
flexibility in positioning the interrupt vectors.
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into these buffer areas, rather than the I/0 devices directly.
The receiver and transmitter are also made to wait if, during

a fransfer, it is detected that either the sppropriate output
buffer is full or the sppropriate input buffer is empty. Thus
the only timing constraints are that the receiver and transmitter
be able to run at least as fast as the scanning and reproduction
devices and that these two devices operate at comparable speeds.

The interrupt controller is designed to send a 'call'! in-
struction to the CPU, sending it to one of eight different loca-
tions that contain the corresponding interrupt vectors. These
vectors are merly 'jump' statements to the sppropriate interrupt
routines which are used to actually update the storage buffers.

These interrupt vectors and the corresponding routines are -
appended to the routines presented in chapter V after the last
lookup table and the receiver initialization routine. A few
changes to transmitter and receiver routines are also made, so
that data transfers are made only through the asporopriate 1/0
buffer.

These interrupt routines and the initialization routine for
the interrupt controller are listed in appendices. The controller
can be programmed for either a static or a rotating priority scheme
and requires two or three bytes for this programming. These bytes
and their interpretation are shown Fig 6~6. Note that for the
first byte, the input AD is a logic @ and that for the following
bytes is a logic '1',. Any -I/OW or -I/(R signal that occurs,

with Af a logic '@', can be taken by the controller as an attempt
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[D7[D6ID5[ﬁZTD3|D2]D;JDQJ initialization command word

A7 |A6 A5 1 ICWl Ag=@ and D4=1
{ 1ndicates that there will be two,instead of
three, initialization words.
single controller,i.e. no cascading
set vector interval (logic 'l'= 4 bytes and
logic '@'= 8 bytes)
set for level, instead of edge, detection on
the interrupt inputs.
7 set the eleven MSB's of the base address for
4/ }//V¢///ﬁ the vectors.
AlS5 Al4 A13 Al2|All |[A1@|A9|A8| ICW2: A@=1

FIGURE 6-6. Interrupt Controller Program Bytes

BE@@ |Scanner Input
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BE@F (
BELf |FACS Output BE3g

Buffer Area BE32
BELF BE34 Scanner Input
BE2§ |XMIT Channel Output Buffer Pointer

BE36 FACS Output
£

E:egﬁr (not currentlyl Buffer Pointer

BE2F BE38 XMIT Channel Output
« - d |__Buffer
1| BE3A XMIT Channel Input

BE4§ |XMIT Channel Input Buffer Pointer

Buffer Area
BE4F

formerly the corresponding outpu
buffer pointer.

FIGURE 6-7 I/0 Buffers and Pointers
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to either begin programming it or to read its status or mask
registers. Thus care must be taken in accessing the other
1/0 devices, to maintain AJ at logic '1'. -Note that since
there are only four I/0 ports, no decoding of the address lines
was required to select them, Each port is simply selected
by a distinct address line and the sppropriate I/0 read or write
signal, The port assignments,based on the state of the address
bus during the transfer, are indicated in the detailed circuit
diagram of Fig., 6=5.

There are two similar sets of interrupt routines
for the various ports. The routines for the output ports use the
pointers for the appropriate data buffer areas in order to access
the oldest value stored there. There are no checks made to insure
that the buffers are not empty since the loading routines, i.e.
the transmitter and receiver routines are designed to be able to
load these buffers at least as rapidly as they can be depleted.
The loading routines from the transmitter and receiver make sure
that they don't write over data not yet removed from the buffers
by comparing their pointers to the corresponding pointers from the
interrupt routines. The routines for the input ports use pointers
to their respective buffer areas in order to load new data values
over the oldest remaining data values. There are, again, no checks
made to insure that the buffer areas are not already full since it
is assumed that data is being removed from these areas, by the
transmitter and the receiver, at least as fast as they can be

loaded. The transmitter and receiver compare their pointers to
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the corresponding pointer from the interrupt routines in order
to insure that they do not attempt to remove data from empty
buffer areas. Figure 6~7 shows the memory allocation for the
various pointers and buffer areas discussed, including the
additional pointers for the transmitter and receiver.

External devices which are to be comnected to the I/0 ports
should conform to the following specifications for data transfers.
Those used with input ports should present data, one byte at a
time, accompanied by positive pulse* to strobe the data into the
port and not attempt to input another byte until the interrupt
line has returned to the high state. This will occur when the
corresponding interrupt routine takes the data byte from the
port, i.e. executes an 'in' instruction referenced to the port;
thus the interrupt line is used also as a data acknowledge signal
from the CPU to the external device. For devices requesting data
from an output port, the recuest should be a positive pulse similar
to the strobe used for input ports. This will cause the port to
interrupt the CPU. When the corresponding interrupt routine loads
the port, i.e. executes an 'out' instruction referenced to the
port, the interrupt line returns to the high state, acknowledging
the devices reguest and signalling that the data is available.
Figure 6~8 shows these configurations.

Ee DMA Group
The ability to directly load or read from memory was initially

incorporated into the system with the intent of downloading most

* This pulse must be at least 3@nsecs wide.
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of the software and parameters from the UNIX system directly
into random access memory devices. This would meke it possible
to load, test, and readily modify the routines on the micro-
computer itself. The main device is the Intel 8257, a pro-
grammable DMA controller, and the 8212 is present only to
latch the high-order address byte, which is time multiplexed
with the data byte*, They are commected directly to the system
data and address buses and the signal AEN (Address ENable) is
used to give it control of these for a data transfer. The
controller has four channels which can be used both to load and
to read from the system memory or the I/0 ports and can be
programmed by the CPU to transfer any desired numbm; of bytes,
starting from any desired location. When it receives a reguest
for a data transfer, DRQ, it sends a hold request,HRQ, to the
CPUe Upon receiving the hold acknowledge,HLDA, sigmal from the
CPU,it takes control of the system buses and sends an acknovledge
signal, =DACK, to the device requesting the transfer. It then
maintains control of the buses until the transfer is completed,
at which time it removes the hold request to the CPU, Completion
of the transfer is determined by the programming of the controller
and not by the device being serviced.

In programming the 8257 the four lsb's of the address bus

select the mode or any one of the channels, The 'mode! is program-

* The signal ADSTB is used to strobe this latch.
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med by one byte and determines which channels are enabled, their
priorities and the manner in which transfers are terminated,
reinitiated, or carried out in general. The channels are pro-
grammed with two bytes for each the beginning address of the
transfer and the type of, read or write, and number of bytes in
the transfer. |

Figure 6-8 shows the detail diagram for the DMA group*, as it
vresently exists. It was decided to suspend the further devel-
opment of this portion of the system, since time did not
permit the development of the necessary interface device between
the UNIX system and because the downloading program for UNIX
sends the data in a format that would not appear to be appropriate
for direct loading into memory for execution. It would als;a be
necessary to design some circuitry or modify the ROM structure
to initialise the controller. The main reason, however, was lack
of time, since the latter problems could be worked out given
sufficient time. Thus, although this section was built, it is not
utilized; there is no software that pertains to it.

It is important to reiterate that this transfer was intended
to load the system's software and parameters into memory. This
feature would be used only with the ROM devices removed and appro-
priate RAM storage added to the microcomputer to replace them.

As mentioned, this would be done mainly for test purposes and the
ultimate goal would still have been to put the software in ROM,

* Note that the chip selest, =CS, is attached to one of the
address lines and that this line must remain high for any
I/0 transfers not involving this device.
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VII, Conclusion and Suggestions for Further Work

A, Similator Implementation
The routines presented in chapter V were all testrd and

the data paths verified on the 8d8d similator, using as input
an internally generated test pattern. The test pattern was
then modified and enlarged to 256x256 pels, which is the
maximum size obtainable with the pattern generator used, and
the result loaded into a file., For this image to be displayed
on the IPS system, it was necessary to put it into standard
image format. The test image was appended to the header from
another image of the same dimensions and then loaded from the
UNIX system onto a magnetic tape for transfer to and display

on the TIPS, Next the pattern generator was modified so that it
would, instead, read data from an image* and simply insert

the 'new’ line' and 'new page' indications where appropriate. 1In
addition to not containing the necessary framing indications, the
images stored in UNIX also have a thousand byte header of image
parameters, A short routine was written which would read this
‘header and copy it into some destination file. The rest of the
image file was then the real image data and was passed on to
the transmitter. The result out of the receiver was then loaded
into the destination file right after the header and the resultant
file copied also onto magnetic tape for transfer to and display
on the IPS.

Throughout the course of this work, improvements were

* These images are stored as raw data in the /pic directory.
See /pic/pic. doc The one mentioned here was 256YX 256 pels.
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almost constantly being made to the various routines as the
author became more fluent with the 8080 assembly language
and as the various algorithms were developed, Admittedly,
some liberties were taken, with the local contrast determination
éespecially, in the interest of reducing the amount of compu-
tation required. Indeed the estimated computation time*
almost exactly meets the initial specification of a 1 milli-
second cycle time for the transmitter routine. It may be of
interest to carefully examine the images resulting from this
~ implementation in comparison to images resulting from Hoover' s[ 3]
system.and to determine possibly which features of this system
give rise to whatever differences are observed, Time-efficient
methods of improving performance might also be investigated,
although it would probably require an intimate knowledge of the
inner workings of at least the transmitter.
Be Microcomputer Implementation

The microcomputer system Aiscussed in chapter VI was built
and tested to verify that it functioned proverly as a computer,
In other words, verify that it pfoperly executes whatever 3380-
type instructions were loaded into its ROM devices. Once
functional, the memory boards were also tested, using the micro-
comouter to load and verify the contents of the storage locations,
Time did not permit, however, the construction of a test system

suitable for verifying its performance with an actual imout image

* _ See the appendices.
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from a scanning device and with its resultant image sent to a
facsimile reproduction device. Developing such a system would
be a major undertaking in and of itself and, along with a model
for the transmission channel, could be incorporated into a
further project. The microcomputer was only operated at half of
its maximum speed, as mentioned earlier, in order to accomocate
the slower RAM devices., It would be necessary to uograde these
devices in order to make the system even be able to approach
the time specification of a 1millisecond cycle time. Appendices
A and J show that, even with the upgraded devices and with the
CPU at its maximum 5 MHZ lock rate, it is necessary to limit the
transmitter output to the transmission channel to being direct
loaded* rather than interrupt driven, and seems to be a reasonable
limitation for most real world applications.

The last major drawback to fully testing the microcomouter!s
performance with a real image was the very real problem of loading
approximately 3k bytes of data into the PROM by hand, one address
at a time. There is an existing system®**to which entire assembly
program files can be copied and used to completely program tir
PROMs, but it proved impossible, within the allotted time, to gain
access to it; thus the test program had to be loaded in machine
code a single address at a time,

The system has been tested on several shorter nrograms and

* In the similator version, all 1/0 is done by direct loading.
*¥* The system is in the EE & CS departments microcomputer
laboratory. (bldg. 38, 6th floor)



performed as specified, demonstrating, at least to the author,
that it indeed functions prooerly as a computer and should,
therefore, be able to handle the transmitter and the receiver
programs as well, The main concern is that there may yet be
some defective RAM devices on the memory boards since they were
purchased from a surplus vendor and contain some rather ancient
devices, This would be resolved with the aforementioned
comoonent upgrading, The initial intent was to merely expand
an existing 8080 microcomputer system, rather than to build one
from scratch. Unfortunately, the system became unavailable when
the full scope of the modifications to be made were made knowm
to the owner. The cost of purchasing a suitable board was also
prohibitive, leaving no recourse but to build the system from

scratch.
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Appendices

The following appendices contain listings and discuss
briefly the operation of the various programs that comprise
the system. The average computation time is also discussed
and is determined from the number of machine states, i.e.
clock cycles, for each instruction and the number of times
that it is executed in each cycle. Included in this com-
putation is a scaling based on the percentage of cycles
for which the instruction is executed at all. For exam-
ple, the estimated computation time for the low-pass filter
subroutine is scaled by .125 when determining its contribu-
tion to the system's cycle time, since it is only called for
one out of eight pels. Note also that for clarity an instruc-
tion cycle is considered to be four machine states rather
than as defined in the technical manuals, where it can range

from four to six machine states.
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Appendix A: Transmitter Controller

This section contains the 8@8@ assembly language
program listing for the transmitter controller discussed
in chapter V. Since much effort was devoted to its ex- .
planation there, it is presented here without further ex-
planation of the main functions. Note that this is the
version used in the simulator implementation and treats
the receiver and its initialization routine as subroutines.
The pattern generator is also used as a subroutine and

is presented in appendix B.

The routine cycle takes an average of about 455 in-
struction cycles, excluding those funétions,external to it
such as gradient, local contrast filters, and interpolators.
This cycle time corresponds to approximately 364 microseconds

for the 8@85A-2 operating at its maximum rate.

When requirements for these other functions are in-
cluded, except for the multiplication routine, the average
number of instruction cycles increases to 854. This would -
require approximately 683 microseconds, i.e. under 19 inst-
struction cycles, to complete its operations. This can only
be achieved with some sort of hardware multiplier. For ex-
ample, the routine, MLTPLY, listed in Appendix J takes only
18 instruction cycles, under 14 microseconds, to complete
its operation and is completely compatible with the multi-
plication routine, MULTIPLY, used in the simulator implemen-
tation. The total time for multiplication would come to 272
microseconds, leaving a approximate 45 microseconds for the

I/0 routine.
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call rinit 4Yinitialize receiver

1xi
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
inx
mvi
mov
inx
mov
inx
mvi
inx
mvi
inx
mov
1xi
mov
inx
mov
inx
mov
inx
mov

h
h

m,

h

m,

h
m
h
m
h

m,
h
m,
h
m,
h
m,
h
a,
m,
h
m,
h
m,
h
m,
h
m,
h,
m,
h
m,
h
m
h

m,

,0bed0 Ystore the filter coefficients
m,

1 Ystarting with location ObedO
Yand ending with location Obed8
3.

13.

’28.
»37.

28.
13.
3

._n

fiset HL register to Obed9
0 Yset accumulator to zero
a Vset location Obed9 to zero (temporary highs buffer--THIGHS) .

a Yset location Obeda(MISMATCH) to zero
20 Yiset location Obedb(FLAGA)
1 Yset location Obedc(XCNT) to one

a Ylset location Obedd(XMIT) to zero
Obec8 Yset HL to point to Obec8
a fYinitialize it to zero
Yiset HL to point to Obec9
a VYinitialize it to zero
liset HL reg to point to STIN
,a Yset memory location to zero
Yiset HL reg to point to STOUT
a Yand initialize to zero

1xi h,ObefO YVLPF output(VLOWS) storage area extends from OBEFO to OBEFF
shld Obeec Yinitialize associated pointer
1xi h,8c02 YDELTA Local Contrast storage area extends from

48C00 to 93FF (double precision values)

shld Obecc %initialize associated pointer

mov h,a Yset reg H to zero

mov 1,a Yset reg L to zero

shld Obece Yinitialize value of LOCAL CONTRAST(2-bytes)

mvi h,28 Y0RIGinal data storage area extends from 2800 to 4BFF
shld Obeee Yinitialize associated pointer

shld Obede (Yinitialize pointer for framing indications for trans-

fimission of highs

FIGURE A-A, Transmitter Controller Routine




zerolc:

resume:
ftime:

pnew:
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mvi h,94 YHLPF output(LOWS) storage area extends from 9400 to AJFF
shld Obeea %initialize associated pointer
mvi h,0b8 SiTows transmitter storage areas extend from B800 to B8FF(L1)

Yand from B900 to B9FF(L2)

shld Obee8 Yinitialize associated input pointer to area Ll

shld Obeed4 Ylinitialize associated output pointer to area L2

mvi h,0a8 thighs transmitter storage areas extend from A800 to AFFF
f1(H1) and from B00OO to B7FF(H2)

shld Obee6 Yinitialize associated input pointer to area Hl

mvi h,0ac

shld Obee2 %initialize associated output pointer to area H2

mvi h,4c SGRADIENT storage area extends from 4C00 to 8BFF

sh1ld Obee0 Yinitialize associated pointer

mvi b,0 SYiprepare to zero-out the memory storage areas for

mvi a,94 SIGRADIENT and DELTA LC

mov m,b Yithis extends from the current value of the HL reg(4C00)
inx h Yto 93FF

cmp h Ydoes H=94?

jnz zerolc 4if not then iterate

I1xi sp,0C000 Yinitialize stack pointer

mvi b,45 Ythis value to be used by the pattern generator

mvi ¢,1 9Yinitialize associated counter

push b  Ystore both on the stack

mvi a,0c

push psw fthis word(STATUS) is used in subsampling the lows

mvi a,0ff Yiset first input value to 'page'

Jmp ftime

call gptrn

Thld Obeee Yiprepare to store the data in storage area ORIG

mov m,a

cma

cpi 01 dYcheck for framing indications i.e. new line and new page
cma

jc pnew %if new page, jmp

Jnz Intnw Yif no framing indication, jmp

call incgr Yelse increment GRADIENT pointer to the next line

dcx h diset pointer to the last possible address of the previous line
shld Obee0 Yiand store

call incdat %iincrement ORIGial data pointer to the next line

dcx h iset pointer to the last possible address of the previous line
mvi m,0fe Yput 'new line' indication at pointer address

shld Obeee Ystore pointer

mov a,m

jmp frnwln

mvi m,0

call incgr %increment GRADIENT pointer to the next line

shld ObeeO tland store

call incdat Yincrement ORIGinal data pointer to the next line
mvi m,0ff Yput ‘new page' indication at pointer address

shld Obeee %store pointer

FIGURE A~A (continued)
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Intnw: mov a,m
call gradient 4this subroutine both computes and stores the magnitude
fof the gradient for the pel area centered above the
ficurrent pel.
1hld Obeee Yirestore the ORIG pointer
frnwln: mov a,h dlput high order byte of ORIG pointer into accumulator
sui 38 Ymove back four lines (offset of 28 since ORIG begins at 2800)
Jjp good 4if within storage area bounds, jmp
adi 24 Yelse wrap around by adding the size of the storage area
good: adi 28 Yladd back the offset
mov h,a Yput value into reg H
mov
mov
dcx

d,h
e,l
h
dcx h
h
h
h
a

flsave pointer in reg DE

dcx
dex
dcx
mov
cma
cpi 01
jc lnwpg
jnz nlnwln 4if no framing indications then jmp
pop psw lelse new line. get STATUS from stack
xri 08 yitoggle bit 3
push psw dand store new value on the stack
Jmp ninwln

Inwpg: pop psw iiget STATUS from the stack
ani 0f7 flset bit 3

push psw 1store new value on the stack
ninwln: xchg Yrestore ORIG pointer for location (0,-4) to reg HL

mov a,n 4Yget corresponding data value

The next few lines involve getting the pointers needed for the
- Alvertical Tow-pass filtering operation.

fireg BC gets the pointer for the filter coefficients

Yireg DE gets the pointer for the data to be filtered

fireg HL gets the pointer for the storage address of the result
Thld Obeee lget ORIG pointer '

xchg vMand put it into reg DE

Tnld Ubeec Yput VLOWS pointer in reg HL

Ixi b,0bed8 Ylput address of end filter coefficient into reg BC
cma

cpi 01 slcheck for framing indications in the corresponding ORIG value
cma Yi.e. ORIG(0,-4), where ORIG(0,0) is the most recently received pel
jc pnwpg §if new page, jmp

Jz pnwin 4if new line, jmp

pop psw dlget STATUS word from stack

dcx sp

dcx sp dlreset stack pointer

ani Oc fisolate bits 2 and 3 (toggle at each line change to

cpi Oc Ycontrol vertical subsampling)

,m Yicheck for framing indication at location (-4,-4)

FIGURE A-A. (continued)
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jz offln slif bits 2 and 3 are nonzero(line # is odd), jmp

call vlpf Yelse filter

pop psw diget full status word from stack again

mov d,a Yand save it in reg D

der a

ani 3 ylisolate bits 0 and 1 (these control horizontal subsampling)

jnz nsmpl %if bit 2 or bit 3 is nonzero, then jmp

mov a,d flelse get the original STATUS word

dcr a

anp a

jmp hflt prepare for horizontal filtering

mov e,a _

mov a,d '

ani Ofc Yimask off the two 1sb's of the STATUS word

ora e Yland replace than with the new values

jmp fltskip Yand skip filtering and interpolating operations

§iThis section is used if and only if the current line or pel

iis not to be sampled (for Tows only)

pop psw Yget STATUS word from stack

xri 1 dtoggle LSB (controls output transmitter)

push psw Yiput STATUS word back on stack

1hld Obeea ilput LOWS pointer in reg HL

mov a,h

sui 10 Ymove LOWS pointer back four lines

cpi 94 Ycheck to insure pointer still within storage area

jnc olskip §if so ,jmp

adi 14 4if not, then wrap around before proceeding

mov h,a ibefore proceeding

dcx h

dcx h

dcx h  dimove LOWS pointer back(left) three pels

mov b,m figet LOWS value used in separating next highs value-LOWS(-7,-8)

Jjmp nwln

mov m,a Yput 'new page' indication at VLOWS pointer address

pop psw Yget STATUS word from the stack (discard)

sub a Yset accumulator to zero

sta Ubeda Yireset MISMATCH value

mvi a,80 Yset accumulator to 83(STATUS bit 7=1, indicates the first
cpi 0 Yline of an image)

jmp hflt

mov m,a ilput ‘new line' indication at VLOWS pointer address

pop psw fget STATUS word

cpi 80 Ycheck for first 1ine indication

Jjc noframe 4if none,jmp

JIMISMATCH is the value of the modulo four count of the line Tength.
iSince only the subsampled version of the LOWS data is to be trans-
fimitted, this value is needed to properly allign the image data for
fireconstruction.

dcx sp

dcx sp

FIGURE A-A. (continued)
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dcr a
ani 03
sta Obeda fistore MISMATCH
pop psw Srestore status word to the accumulator
noframe:ani Oc ireset firstline and hor. subsampting bits(bit 7 and bits land 0)
xri 4 Ytoggle vertical subsampling bit(bit 2)
cpi 4 dicheck to see if all other bits of the STATUS word were zero
nfit: push psw Yput STATUS word back on stack
jnz nwin 1if a sampled Tine , jmp
{iThe appropriate pointers for the
Sihorizontal low-pass filtering operation are:
Yireg BC still contains the address for the filter coefficients
Yireg DE gets the pointer for the data to be filtered i.e.VLOWS
lireg HL get the pointer for the storage address of the result
call hlpf
call vint
call hint
dcr h
decr h
dcr h
dcr h 3move LOWS pointer back one line
mov a,h
cpi 94 dcheck to insure LOWS pointer still within storage area
jnc liskip #if so , then jmp
adi 14 4if not, then wrap around
mov h,a
liskip: call hint
mov a,h
sui Oc Ymove LOWS pointer back three more lines
mov h,a
cpi 94 Ycheck to insure pointer still within storage area
jnc 1skip ¥if so, then jmp
adi 14 Yif not, then wrap around
mov h,a
I1skip: push h
call ldlbuf
pop h
dcx h
dcx h
dcx h Ymove LOWS pointer back(left) three pels
mov b,m Yiget LOWS value used in next highs separation--LOWS(-7,-8)
nwin: 1hld Obeee Yiget pointer for ORIG data
mov a,l
sui 7 Yimove back(left) seven pels
mov 1,a
jnc nofix Sicheck for borrow from subtraction. jmp if none
dcr h lelse take borrow from pointer's high order byte
nofix: mov a,h _
sui 20 tYmove pointer back(up) eight lines
mov h,a

FIGURE A-A. (continued)




skip:

nhance:

snext:

postv:

comprss:

1dhbuf:
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cpi 28 Ycheck to see if pointer is still within storage area
jnc skip dlif so , jmp

adi 24 Yelse wrap-around pointer

mov h,a

mov a,m dlget corresponding ORIGinal data value i.e. ORIG(-7,-8)
push psw SYilstore temporarily on stack

push h Ystore ORIG pointer on stack also

mov 1,a Ysave ORIG value in reg L

sub b flobtain highs by subtracting LOJS value from ORIG value
push psw Ysave the highs value on the stack
jp nhance ¢Ycompute the magnitude of the highs value
cma flsince the multiplier is only for unsigned numbers
inr a fli.e. a result that should have been negative will
#no Tonger be in two's complement form
1xi b,0bed9 Slget pointer for Temporary HIGHS(THIGHS) buffer
stax b dstore highs value in THIGHS
mvi h,0a Yset high order byte of HL reg to address of lookup table for
Yluminance scale factor
xchg fluse ORIG value in reg L as the index and move pointer to reg DE
call multiply dicomputes product of values pointed to by the BC and DE
stax b Ystore value in THIGHS
call loccon Ycomputes local contrast(double-precision)--loccon(-7,-8)
mov a,h dlput high order byte in reg A (ignore low order byte)
cpi 40 dlsee if index exceeds limit .
jc snext 4if not , jmp
mvi a,3f Yelse set index to its upper limit
mov 1,a 9Yput index into reg L
mvi h,0b Yiput address of lookup table for detail scale factor in reg H
xchg tput address into reg DE using the loccon value as the index
call multiply sscale the value in THIGHS
mov d,a ‘vMsave value in reg D
pop psw ilget highs value from the stack
Jp postv  Yand combine with the result of the scaling operations
sub d
jmp comprss
add d
mvi h,08
mov 1,a Glget pointer for highs compression lookup table
mov a,m Yget compressed highs value
mov d,a fland save in reg D
pop h diretrieve the ORIG pointer
call noisep 4this generates a PRN value
add d Yladd the PRN and THIGHS values
mov d,a Yand save in reg D
Ihld Obee6 dlget input pointer for the HIGHS output buffer
mov m,d iland store the scaled highs value there
pop psw Yget ORIG value from the stack
cma
cpi 01 1icheck for framing indications
cma

FIGURE A-A. (continued)
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jc npage 4if 'new page' indication, then jmp

push psw

1da ObecY Yget HGHEN from memory

cpi Off fand see if the enable is set

inx sp

inx sp drestore the stack pointer

Jjnz xmitout

dcx sp

dcx sp set stack pointer to retreive value

pop psw

jnz sline §if no framing indications, jmp

call inchbf Yelse ‘new line'.increment the highs output buffer's input
flpointer to the next line

dcx h Ymov pointer back to the last possible value of the previous 1ine

1da Obec8 Higet NCNT and increment it (output line counter)

inr a

sta Obec8

jmp sline ‘

call inchbf slincrement the H.0.B.'s input pointer to the next line

mov m,d Yinsert the new page indication at the beginning of the line

mvi a,0ff

sta Obec9 dset HGHEN

mvi a,0

sta Obec8 Yireset the line counter, NCNT

inx h Yincrement the HOB input pointer

shld Obee6 tfland store

pop psw Hget STATUS word from stack

push psw dbut put it back unchanged

rrc dput LSB into carry (this bit toggles each time the program cycles)
cnc txout 4if zero, present one byte to the transmit channel
Thld Obee0

inx h fincrement GRADIENT pointer

shld Qbeel

Thld Obeee

inx h dlincrement ORIGinal data pointer

shld Obeee

1h1d Obeec

inx h flincrement VLOWS pointer

mov a,l Ycheck to insure that pointer is within storage area
ani Of

jnz vwrap %if so, jmp

1xi- h,0bef0

shld Obeec

Thid Obeea

inx h f%increment LONS pointer

mov a,h

cpi Ua8

jc alrght

sui 14

mov h,a

FIGURE A-A. (continued)
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alrght: shld Obeea

jmp resume Ycycle

YThis is the end of the main program. The rest are the subroutines

fireferred to in the body of the main. Those referred to in main, but not
ilisted below include the vertical low-pass filter(vipf), the horizontal
{iTow-pass filter(hlpf), the gradient routine(gradient), the local contrast
Yroutine(loccon), the vertical interpolator(vint), the horizontal inter-
fipolator(hint), and the multiplication routine(muitiply). They are stored
findividually in other files (see /usr/gallin and type dir).
incgr: 1xi h,Obece

sub a

mov m,a

inr 1

mov m,a Yreset the local contrast value to zero

1xi h,8c00 freset delta local contrast pointer for the next line

shld Obecc

Ih1d ObeeO ilget GRADIENT pointer

mov a,h Yput high order byte of pointer into accumulator

adi 4 Yincrement pointer to the next line

ani Ofc Simask 2 LSB's(note: the 10 LSB's of pointer must be set to 0)

mov h,a

cpi 8c Ycheck to see if upper of the storage exceeded

mvi 1,0 Ylset low order byte of pointer to zero

rnz dreturn if pointer within storage area

mvi h,4c lelse wrap pointer to lower bound of the storage

ret
MThis is the end of this rountine. It is very similar to a couple of the
firoutines to follow, but it was undesirable to combine them into a more
figeneral routine because of the constraints on computation time.
update: 1xi h,Obedb %load flaga, which indicates the type of word to
mov a,m Ybe transmitted next
ani 80 4bit 7 indicates that the two-bit line mismatch is
jnz xmtmsmat Yto be transmitted
mov a,m 4if not, restore flaga to the accumulator
ani 20 4bit 5 indicates that an 8-bit lows word is
jnz updlow Yto be transmitted
In1d Obede %else 3-bit highs.--get pointer for framing indications
mov a,m Aget value from ORIG storage area and check it for framing

cma §ffindications

inx h increment pointer
shld Obede Yand store it
cpi 01 :

jc nwhpg 9%if new page,then jmp

jnz hout %if no framing indications,then jmp

mvi 1,0 4else 'new line' indication.

mov a,h Slset pointer to the first possible value of the

ani 0fc  Vline being observed for framing

mov h,a findications i.e. wrap pointer

shld Obede 1and store '

1hld Obee2 1get pointer for next highs value to be transmitted

FIGURE A-~A. (continued)
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mov b,m flget value and save in reg B

mvi 1,0 1set low order byte of pointer to zero

mov a,h  4move pointer to the last possible location of the current
ani Ofc  94line , so that the next increment will move it to the first
adi 04 Ylocation on the next line.

cpi Ob8 Ycheck to insure that pointer is still within the bounds
jc txhwrp Yof the HOB storage area

mvi a,0a8 tlelse wrap pointer

mov h,a

dex h

lda Obedb 9get and

ric flupdate FLAGA

sta Obedb Yand store

mov a,b

jmp hgout

mvi 1,1

mov a,h

ani Ofc

mov ‘h,a

shld Obede direset pointer to beginning of line and store it

1hld Obee2 Yget HOB pointer

mov b,m 9Yand the corresponding highs value

mvi 1,0

mov a,h

ani Ofc

mov h,a 94move pointer to the beginning of the current 1ine

mov a,b

jmp hgout

Thld Obee?2 iget next highs value to be transmitted

mov a,m ‘from the highs output buffer

inx h ilupdate the pointer

shld Obee2 dYand store it.

1xi h,0bedd Ystore this value in the transmitter output

mov m,a Ybuffer location(XMIT)

1xi h,0bedc Uset transmit output bit counter for

mvi m,20 Ythree bit words({XCNT)

ret

1da Obecb fdlget the output enable indicator(STOUT)

cpi Off fland check it .

rnz 1if not enabled, then return

Inld Obee4 3dget value from the Tows output buffer and

mov a,m lput it in the accumulator

cma

¢pi 01 Ycompare it with the 'new line' indication

cma

jc unwp Yif 'new page' indication , then jmp

jnz - pgbr 49if no framing indication , then jmp

mov b,a iisave value in reg b while switching output buffer segment
mov a,h Ythe switch between the two output buffer segments is achieved
xri 1 by complementing the LSB of the higher order byte of the
mov h,a Ypointer each time a new line indication is encountered
mvi 1,0 Yiset lTower order byte to zero.(corresponds to rastor retrace)

FIGURE A-A. (continued)
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shld Obeed4 Ystore the updated pointer
1xi h,Obedd dstore the value from reg b in the transmitter
mov m,b Yloutput buffer location(XMIT)
1xi h,Obedc Yset the transmitter output bit counter for 8-bit
mvi m,l Ywords and store(XCNT)
I1xi h,0bedb ilget FLAGA and check to see if this the end of the
mov a,m Yfirst line of the image to be transmitted
xri 28 dset FLAGA to indicate highs
mov m,a Yland store
ani 40 4this is the actual check for the first line(as mentioned
rz Yabove) with bit 6 as the indicator
mvi m,10 4if so set FLAGA to 0l(bit 0=1) ,store
ret Hland return
unwp : xc hg
lda Obedb 4set FLAGA for lows first line(bit 5)
fland to transmit the MISMATCH value(bit 7)

ori 0c0

sta Obedb

xchg

mvi a,Off direstore data value to the accumulator
pgbr: inr 1 flupdate the lows output buffer address pointer

shid Obee4 dland store
sta Obedd Vstore value in transmit output buffer location(XMIT)
mvi a,l
sta Obedc Yset transmit output bit counter for 8-bit words
ret
xmtmsmat:1xi h,0beda Yiget value of line mismatch
mov a,m siand put it in the accumulator
ric
ric
ora m
ric
ric
ora m
ric
ric
ora m
1xi nh,0bedd Ystore this value in the transmitter output
mov m,a Ybuffer Tocation(XMIT)
1x1 h,Obedc Yset the transmit output bit counter(XCNT) for
mvi m,01 48-bit words
1xi h,0bedb Yget FLAGA and put it in the accumulator
mov a,m
ani 7f Aset bit 7 to zero(no more mismatch)
mov m,a Yand store
ret fithe end
§This is the end of the routine which provides the actual transmitter
firoutine with both data values in the desired format and information on how
fimany bit of each of these values is to be transmitted.
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mvi d,7 - :

lda Obedd Yget value from transmit output buffer Tocation(XMIT)
ric fimove LSB into the carry bit

sta Obedd Ystore rotated version of value in XMIT

mov a,c

ral Yshift bit into reg C from the left

mov C,a

lda Obedc lget transmit output bit counter(XCNT),

ric Yupdate,

sta Obedc Yland store it.

cc update Wif valid bits of XMIT exhausted,get next values for X
YXMIT and XCNT

dcr d Ydecrement counter for the number of iterations remainin

mov a,c Yget value to be transmitted -

Jjp txt ¢if count greater thanor equal to zero then iterate

out 06 YUTRANSMIT CHANNEL or direct buffer

call rcvr ssend output to the receiver for test

ret fland routine

iThis is the end of the routine. It has not yet been decided whether
4to send its output directly to the transmit.channel(which would be sufficient
sfor test purposes) or to send it to some FIFQ buffer such as on the input
dto allow for more realistically flexible timing.

noisep:

inchbf:

mov a,] #this routine fecthes values from the PRN lookup table

ani 07 %using the three 1sb's of the pointer given it,

mov 1,a iland the three 1sb's of the 1ine counter ,NCNT

lda Obec8

ani 07

ric

ric

ric

ora |

ori 40

mov 1,a

mvi h,Ub

mov a,m

ret

mov a,h fhigh order byte of HOB pointer into accumulator
{(pointer was already in HL reg)

adi 4 dincrement pointer to next line

ani Ofc limask 2 LSB's (Note: the 10 LSB's of pointer must be zeroed)

mov h,a iiput new value into reg H

cpi 0b8 ticheck to see if upper bound of storage area exceeded

mvi 1,0 Yset low order byte of pointer to zero

rc “return if pointer within storage area

mvi h,0a8 +else wrap pointer to lower bound of storage area

ret tend of routine

$This is the end of the routine. It can be used to increment either
ilof HOB's pointers since no pointer is specified and the storage area
uspecified is appropriate for both.

FIGURE A-A. (continued)
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incdat: Ihld Ubeee iget pointer for ORIGinal data

mov a,h ihigh order byte of pointer into accumulator

adi 4 slincrement pointer to the next line

ani Ofc dmask 2 LSB's (Note: the 10 LS8's of pointar must be zeroad)

mov h,a ilput new value in reg H

cpi 4c icheck to see if upper bound of storags area exceadad

mvi 1,0 Yset Tow order byte of pointer to zero

rc tireturn if pointer within storage area

dcx h

mvi m,0fe iset the last location of line before wrapping pointer

inx h iithis resets reg L to zero

mvi h,28 slelse wrap pointer to lower bound of storage area

ret llend of routine

iThis is the end of the routine. There is'nt really anything more

ito be said, since it is almost identical to inchbf and even moreso
ito incgr. '
Tdlbuf: mov a,m iliget value to be loaded--LOWS(-8,-4)

mov ¢c,a

cpi Off scheck for 'new page' indication

Inld Jbeed siget Lows Output Buffer(LUB) pointer

jz ldpg élif 'new page' , then jmp

lda Obeca

cpi Off

rnz

mov a,c

cpi Ofe

jnz ldwd %if no framing indications, then jmp

Pop psw

pop psw

pop psw

push psw

dcx sp

dcx sp
dcx sp
dex sp
ani 04
jnz ldlows
mvi a,0ff
sta Ubacb saet transmitter output enablad, STOUT
ret
Idlows: dcr 1 sielse 'new line'. move pointer back{laeft) one pel
' * mov m,c istore value at LOB pointer address '
mov a,h
xri 1 idswitch LUB areas
nov n,d
mvi 1,0 iset 1ow order byte of pointer to zaro
shld Obeed lstore pointer
ret

FIGURE A-A. {continued)
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ldpg: mvi 1,0 diset low order byte of pointer to zero

sta Obeca iset enable(STIN) for output buffer's input routine
ldwd: mov m,c iistore valu2 at pointer addrass

Ida Ubaca iichack enable (STIN)

cpi Off

rnz 4if not enabled then raturn

inx h jiincrement LUB input pointer

shld Obee8 dstore pointer

ret iend of routina

iThis is the end of th2 routine. It has one feature which may nead
Ito be explainad. It will always write wnatevar 'new line' indications
lit gets over the last value it stored.

IThe reason for this is that the subsampled lows lines cannot be more
ithan ona fourth of the total line length before subsampling. For a line
dwith a nonzero MISMATCH (i.e. line length not a multiple of four), this
ifeature prevents the transmitted line length from exceeding this limit.
wSince the 'new line' indication must bz transmitted, it will cause this
wlimit to be exceeded unless it happens to occur at a pel that was to be
usampled (and transmitted). This corrasponds to the line langth being a
“imultiple of four i.e. MISMATCH=0

FIGURE A-A. (continued)
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Appendix B: Pattern Generator

There were three different versions of the pattern
generator used in testing the system's simulator implemen-
tation. The first generates a checker test pattern with
a line length of sixty-four pel and was used mainly to test
the data paths and various subjunctions. The second gener-
ates test pattern of vertical bars with the appropriate
framing indications and with a line length of 256 pels.

This pattern was to be put through the system and displayed
in order to check the receiver's reallignment procedure. The
third version generates framing indications for images* input
to the system and otherwise passes the image data directly

through.

*The line length cannot exceed 256 pels.
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gptrn: pop b
pop b
inr ¢
jz i4 sichecker height = 4
mvi a,3f YUline length = 64
ana ¢
Jz i3
mvi a,0f Ychecker width = 16
ana c
mov a,b
il: jnz i2
cma
i2: mov b,a
Jjmp endit
i3: mov a,b
cma
mov b,a
i4: mvi a,0fe
endit: push b
dcx sp
dcx sp
ret

Version 1

iThis is the pattern generator used in testing the transmitter and recéiver:-
gptrn: pop b
pop b
pop b
inr ¢
jz i3 §1ine length = 256
mvi a,0f Ystripe width = 16
ana ¢
mov a,b
il: jnz 2
cma
i2: mov b,a
jmp endit
i3: mov a,b
cma
mov b,a
. mvi a,Ofe
endit: push b
dcx sp
dcx sp
dcx sp
dcx sp
ret

Version 2

FIGURE A-B, Pattern Generator Subroutine
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gptrn: pop b
pop b
inr c
in 01 tget input value
Jjz id 9if end of line reached, then jmp
jmp endit Yelse return with input value

i4: mvi a,0fe 4if end of line, generate 'new line' indication
endit: push b

dcx sp

dcx sp

ret

Version 3

FIGURE A-B. (continued)
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Appendix C: The Gradient Subroutine

The gradient subroutine is used to determine the
magnitude of the gradient at the pel location just above
the most recently receive- pel. This would correspond
to location (0,-1) relative to that pel. The routine
follows the procedure outlined in chapter IV and begins
by getting the original data pointer, ORIG*. It gets
the correspond pel value, location (0,0), then uses this
pointer as a reference in accessing the values for the pels
at location (0,-2), 0,-1), (1,-1) and (-1,-1), in that
order. It then compufes the magnitude of the difference
between the value for location (0,-1) and the other four
locations and sums them. The results are divided by two
before summing and the sum is stored at the location in-

dicated by the gradient pointer.

The routine takes about 71 instruction cycles on the
average, which corresponds to approximately 57 microseconds

for an 8085A-2 at its maximum rate.

*This containes the storage address for the most recently stored pel
See the section on the transmitter controller.
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‘gradient:lhld Obeee \The gradient routina both computes the magnitude of the
mov b,m wgradient for the area centered at the pel just above tha
mov a,n simost recently raeceivad pel and stores it for later use by the
sui 8 ‘Ylocal contrast routinz
cpi 28
jnc nowrap
adi 24
nowrap: mov h,a
mov C,i
adi 4
cpi 4c
jc centered
sui 24
centered:mov h,a
mov a,m
inx h
mov e
dex h
dcx h
mov d
mov h
Sup @
jnc egrd
cma
inr a
agrd: rar
mov e,d
mov a,h
sub d

jnc dgrd
cma
inr a
dgrd: rar
add e
mov e
mov a
sub ¢
jnc ¢
cma
inr
cgrd: rar
"~ add e
mov e,a ,
mov a,h- B
b .
b

=Y

sub
jnc
cina
inr a

bgrd: rar
add e

storag: 1hld Obeel
mov m,a
ret

grd

FIGURE A-C. Gradient Subroutine
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Appendix D: The Local Contrast Subroutine

The Local contrast routine follows the procedure
outlined in chapter IV and its results corresponds to lo-
cation (-1,-8) relative to the current pel. It first
saves the contents of the BC register pair on the stack,
since at the time this routine is called they contain the
temporary storage address for the highs value being scaled.
It then gets the GRADIENT pointer and manipulates it to
access the gradient values corresponding to locations (0,-1),
(0,-16), (-14,-16), and (-14,-1), in that order. The latter
two values are only accessed if the back reference from the
pointer doesn't cross a line boundary. These four values
are combined in the manner discussed in chapter 1IV; the
first and third values are added and the second and fourth -
are subtracted. The result in then added to the correspond-
ing local contrast update value, which is obtained using .-
the appropriate pointer and is a double precision value.

The new update is stored and then added to the previous local
contrast value. This result is then stored in memory and

the HL register pair.

On the average about 97 instruction cycles are required
to complete this operation, which would take approximately
78 microseconds for an 8@85A-2 microprocessor at its max-

imum rate.
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Toccon: push b HTnis is the local contrast routine. [t computes the average of
Th1d Obee0 sithe gradient over a 15X15 pel area centered at (-7,-8),
mov c,m firelative to the current pel
mov a,h
sui 3¢
cpi 4c
jnc Towrap
adi 40

lowrap: mov h,a
mov e n
mov a,c
sub e
Jjnc edged
der b
edged: mov a,l
cpi Of
jnc noadge
mov a,n
rar
jc noedge
rar
jnc contfin

noedge: mov a,l ithis section is skipped if the averaging area overlaps th2
sui Of tledga of the image
mov 1
mov a
mov e
add e

jnc d

b
c
a
3

3 0

b
k]
H]
own
inr
down: mov c,a
mov a,h
adi 3c
cpi 8¢
jc local
sui 40
local: mov h,a
: mov e,m
mov a,c
sub e
jnc contfin

der b
contfin: mov c,a

1hld Obecc

mov 4 ,m

inx h

mov e,m

add ¢

mov C,a

mov a,e

‘ FIGURE A~D. Local Contrast Subroutine




adc b

mov b,a
mov m,a
dcx h

mov m,c
inx h

inx h

shld Obecc
1hld Obace
dad b

shld Obece
pop D

ret
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FIGURE A-D.

(continued)
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Appendix E: The Horizontal Low=Pass Filter Subroutine

The Horizontal filter routine computes the weighted
sum of the nine most recent vertical results and its
output corresponds to location (-4,-4) relative to the most
recently received pel, It expects the low end filter
coefficient address and the vertical filter result pointer
to be in the register pairs BC and HL, respectively, and
begins by checking the fifth most recent vertical filter
results for framing indications. It then moves to VLOWS
pointer to register pair DE and loads the lows pointer in-
to register pair HL. For a "new page" indication,:it moves
the lows pointer to the first location of the next line
and simply stores the indication there. For a "new line"
indication it immediately puts the indication at the new
location indicated by the lows pointer. It also puts this
"new line" indication at the corresponding location on the
previous line * and then at the last possible location on
both lines. It leaves the lows pointer pointing to the
location just before the first one of the next line, thus
the next location loaded will be the first one of that line.**
It also modifies the controller's STATUS flag word such the
first location will be a sample point. The marking at the
end of the line are necessary to signal when a back reference

from the lows pointer has crossed a line boundary.

*Since the lows pointer is being moved, the interpolators would not be
able to fill in these.locations.

**The transmitter controller increments this pointer at the end of each
cycle.
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Appendix E (cont.)

In the absence of any framing indications this sets the
counter, stored on the stack, for nine iterations. It
then successively gets the next filter coefficient and
vertical filter result, multiplies them together, and ac-
cumulates the products in the location indicated by the

lows pointer,

It takes an average of about 260 instruction cycles
for this routine, corresponding to about 208 microseconds '

for thé 8@85A-2 operating at its maximum rate.
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hipf: mov e,1 4This is the horizontal low-pass filter.
mov a,l YIts results correspond to location (-4,-4), relative
sui 4 4to the most recently received pel
cpi 0f0
Jjnc okayed
adi 10
okayed:mov 1,a
mov a,m
cma
cpi 01
cma
mov 1,e
xchg
1h1d Obeea
jc nwfrm
jz frame
mvi ¢,0d0
hstart:mvi a,9
push psw
mvi m,0
cont: call multiply
add m
mov m,a
_pop psw
der a
rz
push psw
inr ¢
decr e
mvi a,0Oef
cmp e
jc cont
mov a,e
adi 10
mov e,a
jmp cont
frame: mov m,a
mov a,h
sui 04
cpi 94
jnc endint
- adi 14
endint:mov h,a
mvi m,0fe
mvi 1,0ff
ori 3
mov h,a
mvi m,0fe
adi 4
cpi 0a8
Jjc nhwrp
sui 14

FIGURE A-E. Horizontal Low=Pass Filter Subroutine
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nhwrp: mov h,a
mvi m,0fe
shld Obeea
pop psw
pop psw Yget STATUS word from stack
inr @ Yand set it such that the first pel of the next line
push psw Swill also be a sample point.
dex sp
dex sp
ret
nwfrm: mov a,h
adi 4
cpi Oa8
jc nhwp
sui 14
nhwp: ani Ofc
mov h,a
mvi 1,0
-mvi m,0ff
sh1d QObeea
.o ret |

FIGURE A-E. (continued)
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Appendix F: The Vertical.Low-Pass Filter Subroutine

The vertical filter routine computes the weighted sum
of the most recently received pel and the corresponding pels
from the eight preceding lines. It expects the high and
filter coefficient address, the ORIG data pointer, and
tﬁe VLOWS pointer to be present in the register pairs Bé,
DE, and HL, respectively.* It begins by setting a counter
stored on the stack, for nine iterations. It then suc-
cessively gets the next filter coefficient and appropriate
pel value, multiplies them together and accumulates the pro-

ducts in the location indicated by the VLOWS pointer.

Excluding the time required for the multiplication
routine, this routine takes an average of about 240 instruc-
tion cycles, corresponding to about 192 microseconds for the

8@85A-2 at its maximum rate.

*Framing indications are handled by the transmitter controller, which
will store these at the address indicated by the VLOWS pointer without
even calling this routine.
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TVIDf: v a,9 iThis is tnhe vertical low-pass filter routine.
push psw illts results correspond to location (0,-4), relative
mvi m,0 ito the current p=al
mov a,d
cpi 48
jnc roll
adi 0

roll: mov d,a

rol12: call aultiply
add m
mov m,a
pop psw
dcr a
rz
push psw
dex
dcr
dcr
dcr
der
mov a,d
cpi 28
jnc roll2
adi 24
mov d,a
jmp roll?2

o000

FIGURE A-F. Vertical Low-Pass Filter Subroutine
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Appendix G: The Vertical Interpolator Routine

The vertical Interpolator computes the average of the
most recently determined lows value and the correspond value
from the second line above it, corresponding to locations
(-4,-4) and (-4,-6) relative to the most recently received
pel, and puts the result in location (-4,-5). It expects
the lows pointer to be in register pair HL and, before
the average is computed, the lows value is checked for
a "new line" indication. If it is present, it is copied

directly into location (-4,-5) instead of the average.

It takes about 34 instructions cycles on the average,
which corresponds to 27 microseconds for the 8@85A-2 at

its maximum rate.
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yTnis is tha vertical interpolator routine. ' '

“vint:

noroll:

riin:

c
c
: mov a
4
9

mov ¢,m : t
mov a,h

sui 8

cpi Y4

jnc noroll

adi 14

mov b,n

mov h,a

mov a,c

cpi Ofe

Jjz Inedge

mov- a,m

sub ¢
rar
add
mov

sui
cpi
jnc riln
adi 14

mov h
mov m
mov h
ret

FIGURE A-G. Vertical Interpolator Subroutine
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Appendix H: The Horizontal Interpolator Subroutine

The horizontal interpolator takes the difference of
the most recently determined lows value, corresponding
the location (-4,-4) and (-8,-4), and linearly interpolates
the values for locations (-7,-4), (-6,-4), and (=5,-4).
If however, the attempt to reference back to location (-8,
-4) crosses a line boundary, no action is taken, preventing

the interpolator from writing over the end of line markers.

The routine takes about 45 instruction cycles on the
average, which corresponds to about 36 microseconds for

the 8@85A-2 at its maximum rate.
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%iThis is the horizontal interpolator routine.
hint: mov a,l sicheck for first pel of the line. If so, don't interpolate.

ora a
jnz hnt
mov a,h
rrc
jc hnt
rrc
rnc
hnt : mvi d,2 delse proceed
mov a
dex h
dcx h
dcx h
dex h
b

jmp intrpit
neg: rar

rar
intrplt:mov e,a
mov a,b
eoae: inx h
add e
mov m,a
der d
jp eoae
inx h dreturn pointer to its original state
ret

FIGURE A-H. Horizontal Interpolator Subroutine
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Appendix I: The Receiver

The section included in the program listing for the re-
ceiver controller and all of its subfunctions. These sub-
functions are almost identical to some of those already
presented and the controller routine was discussed in chapter
V, therefore further explanation is not included here. Also
included is the machine code listing with memory address as-

signments as they were in the simulator implementation.
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mvi a,9
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sta Ubebl store input byte in RWRD

iset to keep track of the number of bits left in the present word

sta Ubeb6 1and store the value

riows:

lda Obeb0 diget flag which indicates the type of data that is currently
jlexpected from the transmitter

rrc

jc roff d4if no transmission in progress then jmp

rrc .

Jjc rmsmth Yelse if line mismatch value is expected then jmp

rrc

Jjc rhighs Ylelse if first line of highs then jmp

rrc

Jc rhighs Yelse if second line of highs then jmp

lda Obeb6 Yelse lows expected; get bit counter value for input word
dcr a fland decrement it

rz 4if all bits exhausted then return

sta Obebt Yelse store its new value

lda Obebl 94most recently received byte from transmitter

ric figet the next bit from the LSB position

sta Obebl %and store the modified word

1da Obeb4 tget byte used for accumulating the input bits

ral Yshift in the bit just taken from the received word

sta Obeb4 Yand store the result

jnc rlows Vif the byte is still not full then iterate

Th1d Obeb2 9Yelise full. get address for storage

inx h

inx h

inx h

inx h

shld Obeb2

mov m,a

call rhint 4 horizontal interpolation

call rvint 8 vertical interpolation

mov a,h

ani 03 Wimask off the upper 6 bits of the version in the accumulator
adi Oba iand replace them with the pointer for the middle line

mov h,a %use this new pointer

call rhint fito iterpolate the corresponding values on the middle line
xchg

1h1d Obeb2 lrestore the orignal pointer

mov a,n  dand the value just stored there, to check for framing indicat
cma findications

cpi 01

mvi a,l

sta Obeb4 dset the bit accumulator to accept 8 bits next time also
jz endlw 4if new line indication then jmp

Jnc rlows 4if no framing indications then jmp

FIGURE A-I. Receiver Routines




rpage:

endlw:

fixup:

rmsmth:
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mvi 1,0 Yelse 'new page' indication

mov a,h  Yswitch the address pointer

xri 04 fito the beginning of the other line
ani Ofc

mov h,a

mvi m,0ff Yalso put the 'new page' indication there

shid Obeb2 4 store the pointer

mvi a,02

sta Obeb0 Yset the flag such that the line mismatch value is expected

rrc

sta Obeb4 Yand set the bit accumulator to accept 8 bits

jmp rmsmth

1da Obeb7 Yget the line mismatch value

add 1  Ythe value is added to the present value of the
Yladdress pointer

mvi m,0 Yzeroes are loaded into all location in this interval

inx h fmove pointer to the next address

xchg

mvi m,0

inx h

xchg

cmp e Yicomparison with the upper limit

jnz fixup

mvi m,0fe Ywhen finished, load last address with 'new line'

xchg

mvi m,0fe
xchg
mov a,h
ani Ofc 4set pointer back to beginning of line so that the values
fican be added to the incoming highs values
mov h,a
mvi 1,0
dcx h Ymove pointer back such that the first value taken
shld Obeb2 Ywill come from the first location of the line
1da Obeb0
rrc
rrc
sta Obeb0 Yiset flag such that one or two lines of highs are expected
mvi a,20
sta Obeb4 Yset input bit accumulator to accept 3 bits
jmp rhighs
;da Obeb6 Yget value from input bit counter
croa
rz Yif bits exhausted, then return
sta 0bebb . ' o
1da Obebl 9get the current input data word
ric ditake the bit from the LSB position
sta Obebl Yand put back the remainder

FIGURE A-I. (continued)
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1da Obeb4 dget input bit accumulator
ral fland Toad in the new bit
sta Obeb4
jnc rmsmth 4if not yet full then iterate
mov b,a Yelse full. save value in reg B
mvi 1,0 4set reg L=0
YThe line mismatch value is transmitted four consectutive times to reduce the
Yprobability of an error due to noise in the transmission channel.
i The rest of this program separates and adds these values together.If they are
iall the same, the two LSB's of the result will be zero. If not, then some error
fhas definitely occurred and the value is rounded to the nearest valid value.
ani 3 Yset upper 6 bits to zero
add 1
mov 1,a
mov a,b
rrc
rrc
ani
add
mov
mov
ric
ric
mov
ani
add
mov
mov
rlc
ric
ani 3
add 1
rrc
rrc
jnc noerr
inr a
noerr: sui 04 Yconvert it to a more convenient form
cma
inr a
ani 3f
sta Obeb7
mvi a,20

Q) e O
-
o

R —— o

sta Obeb0 aset flag to continue receiving the first Tows line of the
image

mvi a,1  Yset input bit accumulator to accept 8 bits

sta Obeb4

jmp rlows

FIGURE A-I. (continued)




-134-

roff: 1da Obeb6
der a
rz
sta Obeb6
1da Obebl
ric ’
sta Obebl
1da Obeb4
ral
sta Obeb4
cpi Off
jnz roff
1h1ld Obeb?2
mvi 1,0
mov a,h
ani Ofc
xri 04
mov h,a
mvi m,0ff
shid Obeb?2
mvi a,01
sta Obebd YSET INPUT BIT ACCUMULATOR TO ACCEPT 8 BITS
ric
sta Obeb0 Yset flag to expect the line misatch value
jmp rmsmth
rhighs: 1da Obeb6
dcr a
rz
sta Obeb6
1da Obebl
ric
sta Obebl
Tda Obeb4
ral
sta Obeb4
jnc rhighs
cme
rrc
rrc
rrc Yrotate value into the three msb's
sta Obeb4 Ystore temporarily back in the bit accumulator
1hld Obeb2 Yiget lows pointer
inx h
shld Obeb2 Yand update it
1da Obeb0
cpi 04 ficheck for highsl indication
Jnz hgh2 4if none, then jmp
hghl: mov a,h
ani 03 ,
adi Oba VMswitch six msb's of the lows pointer to the interpolated line
mov h,a

FIGURE A-I. (continued)
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hgh2: push h Adsave pointer on the stack
call rnoisep
lda Obeb4 Siget hghs value
s b {land subtract the PRN value from it
mov 1,a Yput result in low order byte of pointer for
mvi h,09 Yexpander lookup table
mov a,m Yand get the scaled value
pop h firestore the lows pointer
mov b,m 9Yand get the corresponding lows value.

add b .

out 07 9this should be the completely enhanced image data
mvi a,20

sta Obeb4 9Yreset FRAME in anticipation of next highs value
mov a,b

cpi Ofe 9Ycheck the lows value for framing indications
jc rhighs 4if none, then jmp
out 08 Yelse generate output framing pulse
Jnz rhighs Yif not the end of the line, then jmp
1hld Obeb2 Yelse reset the lows pointer, RLWS
mvi 1,0
mov a,h
ani Ofc
mov h,a
dcx h
shld Obeb2
1?a ObebO Yget and update RFLAG
ric
sta Obeb0
cpi 08 dcheck for highs2 indication
mvi a,20
~ sta Obeb4 Yset FRAME for 3-bit words
Jz rhighs 4if highs2 indication,then jmp
mvi a,01 delse prepare to receive lows
sta Obeb4 by setting FRAME for 8-bit words
mov a,h  Yand by setting RLWS for storage of the next lows line
xri 08 dswitch lows pointer to just before the first location of the
mov h,a Yother line
mvi 1,0fc Yidecrement it three more times, so that the next value loaded
will indeed be loaded into the first location of the line
shld Obeb2
jmp rlows
UThis is the end of the receiver's main program (i.e. the receiver controller)
The following are the subroutines used by this program
rnoisep: mov a,l
ani 07
mov 1,a
1da Obeb5
ani 07

FIGURE A-I. (continued)




ric
ric
ric
ora 1
ori 40
mov 1,a
mvi h,0b
mov a,m
ret
#This is the end of the routine which fetches the pseudo-random noise values
rhint: mov a,l Ycheck for the first pel of the line
ora a
jnz rhnt
mov a,h
rrc
jc rhnt
rrc
rnc Slreturn if the first location of the line
rhnt: mvi d,2 Yelse proceed
mov a,m
dcx
dex
dcx
dex
mov
sub

»M

OCUOUoSITST I

jc rneg
rar :
stc
cme
rar
jmp rintrplt
rneg: rar
stc
rar
rintrplt:mov
mov
reoae: inx
add
mov
der ¢
jp reoae
inx h  Yreturn pointr to its original state
ret
UThis is the end of the horizontal interpolator routine for the receiver, and is
Ylexactly the same as the one used in the transmitter.
rvint: mov c,m
mov b,h dsave upper byte of lows pointer
mov a,h
xri 04

v _ e
T

,a

a3 oo

FIGURE A-I. (continued)
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mov h
mov a
sub ¢
rar
add ¢
mov ¢
mov a
ani 0
adi Oba

mov m,C

mov h,b Yirestore pointer to its original state

ret ,
iThis is the end of the vertical interpolator for the receiver, and is identical
Yto the one used in the transmitter except for the way it treats 'new line'
ﬂ1nd1cat1ons and the po1nter man1pu1at1ons required

rinit: ~  Txi n,0bebl $HL reg points to RFLAG € Receiver Intialigation)
- oaaviom,l
inx h YHL reg points to RWRD
mvi m,0
inx h
inx h
inx h YHL reg-points to FRAME
mvi m,0
inx h YHL reg points to RNCNT, the receiver's line counter
mvi m,0
inx n YHL reg points to RCNT, the receiver's input bit counter
mvi m,0
inx h YHL reg points to RMTCH, the line mismatch value
mvi m,0
1xi h,2000
shld Obeb2 cGiinitialize receiver's lows pointer, RLWS
rat

FIGURE A-I. {(continued)
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Appendix J: I/0 routines

The I/0 scheme discussed in chapter VI requires the
addition of I/0 initialization and interrupt routines to
the software used for the simulator implementation. There
also need to be some additions made for the proper main-
tenance of the input output buffer areas. These later
additions necessitate making some minor changes to the
existing system so that these buffer areas are accessed
rather than the ports themselves. These were discussed in
chapter VI and are listed here in a manner that will hope-
fully be understandable without listing the entire systems
software.

Note that a tentative routine to drive an external
hardware multiplier (MLTPLY) has been included. This
routine requires little unde; 14 microseconds, assuming
the CPU is run at its maximum rate, or in this case 2§
instruction cycles. It replaces the current multiplication
routine, MULTIPLY. The external multiplier would be
expected to convert in at most 1.6 microseconds, a specifi-
cation that can be readily met with even a sequential-add
type of device. In fact, this specification can be halved
using several standard TTL components as shown in the
diagram (FIG.J2). The associated I/0 ports do not require
any additional interrupt and I/O routines since they are
not interrupting devices, but rather slave devices
responding to the CPU. They would be located, most likely,

on a separate board with the multiplier.
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- - e —— . —

di
mvi a,36 Yprogram the interrupt controller
out 040 ffor vectors to start at 64 and for a
mvi a,00 Yfour byte interval--for this example,at least. .
out 0cO :
ret Yitransfer control back po the main program
9This initialization routine would be called from the main
diprogram. The starting address for the vectors would
flactually be set such that it -did.not conflict with the
Ystorage space for the transmitter and receiver routines,
Yi.e._somewhere between 3 and 4k. B
di 4This is the location of the first interrupt vector
jmp int0
di
jmp intl
di
jmp int2
di
jmp int3
{iThe interrupt routines themselves follow
int0: push h
push psw
1h1d Obe34
in Ocl €from scanner (ABO)
mov T,a fIstore value in input buffer
inr :
mvi a,0f Ythe buffer area extends from 0be00 to ObeOf -
cmp 1 .
jnc fin0
“mvi 1,0 Ywrap pointer
fin0: shld Obe34
pop psw
pop h
ret
intl: push h
push psw
1h1ld Obe36
mov a,m
inr 1
out Ocl 4 to FACS (ABO)
mvi a,lf Ythe buffer extends from ObelQ to Obelf
cmp 1
jnc finl '
mvi 1,10 9dwrap pointer
finl: shid Obe36
pop psw
pop h
ret

init:

FIGURE A~J1. I/0 Routines
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int2: push psw
1da Obe38 Yithe output to the transmission channel
"~ 4is direct, due to time constraints
out 0c2 4Yto channel (AB1)
fin2: pop psw
ret
int3: push h
push psw
Thld Obe3a
in 0c2 Yfrom channel (AB1)
mov m,a
inr 1
mvi a,4f fithe buffer area extends from Obed0 to Obe4df
cmp 1
jnc fin3
mvi 1,40 Ywrap pointer
fin3: pop psw
pop h
ret

iThis is the subroutine for driving an extrnal multiplier.
mlitply: ldax b

out Oc4

ldax d

out 0Oc8

nop

in Oc8

mov m,a

ret

FIGURE A~-J1. I/O Routines(cont'd)
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FIGURE A=J2. MST Multiplier
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Appendix K: The Mdltiplication Subroutine

The program listing is for the multiplier used by
the transmitter in the simulator implementation and per-
forms according to the technique presented in chapter III.
It expects the register pairs BC and DE to containg poin-
ters to the two avalues to be multiplied and returns the

result in register A.

It takes about 142 instructions on the average, which
would correspond to about 114 microseconds at the 8@85A-2's

maximum rate.
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T uTnis is tna software multiplier routina. i.2. no 2xtarnal davicas
sware involved. [t multiplies the bytes indicated by the DE register
ipair and by the BC register pair and put the result into the
diaccunuiator. Its result is rounded to one byte.
multiply: push h

mov nh,b

mov 1,c
mov a,m
xchg
mov d,m
xchg
mvi 1,8
push d
push b
mvi e,0
stc
cme
mult: rar
mov d,a
mov a,h
jnc mnext
cme
add e
mov e,a
mnext: mov a,e
der 1
jz finim
rar
mov e,a
mov a,d
mvi b,0
jnc mult
mvi b,1
jmp mult
finim: dcr b
Jm fmult
inr a
fmult: pop b
pop d
pop h
ret

FIGURE A-K. Multiplication Subroutine
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Appendix L: Parameter Storage

The data storage for the various lookup tables and the

noise mask is listed below*.

4The first 256 bytes are for the compressor

0000 00 01 U6 OA 0D 10
13 1518 1A 1C 1E
1F 21 23 25
0010 26 28 29 2B 2C 2D
2F 30 31 32 34 35
36 37 38 39
0020 3B 3C 3D 3E 3F 40
41 42 43 44 45 46
47 48 49 49
0030 4A 4B 4C 4D 4E 4F
50 50 51 52 53 54
54 55 56 57
0040 58 58 59 5A 5B 5B
5C 5D 5E 5E 5F 60
60 61 62 63
0050 63 64 65 65 66 67
67 68 69 69 6A 6B
6B 6C 6D 6D
0060 6E 6E 6F 70 70 71
72 72 73 73 74 75
75.76 76 77
0070 78 78 79 79 7TA 7A
78 7C 7C 7D 7D 7E
7E 7F 7F 80
Ythis is the end-of the positive half of the table
0080 80 81 81 82 82 83
83 84 84 85 86 86
008C 87 87 88 88 89 8A
3A 8B 8B 8C 8D 8D
0098 8E 8E 8F 90 90 91
92 92 93 93 94 95
00A4 95 96 97 97 98 99
99 9A 9B 9B 9C 9D
00BO 9D 9E 9F A0 A0 Al
A2 A2 A3 A4 A5 A5
A6 A7
- OOBE A8 A8 A9 AA AB AC
AC AD AE AF BO BO
Bl B2
JoCC B3 B4 B5 B6 B7 B7
B8 B9 BA BB BC BD
BE BF

* The #'s in the left column are the start addresses for

each group of values (0000 maps to memory location 8000).



00DA

00E8

00F6

‘iThe next 256 bytes are for the- expander

0100

0110

0120

0130

0140

0150

0160

0170

0180,

018C

019A

01A8

01B6

C0 C1 C2 C3 C4 C5
C7 C8 C9 CA CB CC
CE CF |

00 D1 D3 D4 D5 D7
D8 DA DB DD DF El
E2 E4

E6 E8 EB ED FO F3
F6 FA FF 00

00 01 01 01 02 02

02 02 02 03 03 03 -
.04 04 04 04

05 05 06 06 05 07
07 08 08 09 09 OA

0A 0B 0B OC
0C 0D OD OF OF OF
10 11 11 12 13 13
14 15 16 16

17 18 19 19 1A 1B
1C 10 1E 1E 1F 20
21 22 23 24

25 26 27 28 29 A
2B 2C 2D 2F 30 31
32 33 34 35

37 38.39 3A 38 3D

54 .34 24714 F3 £3
46 47 49 4A

4B 4D 4E 50 51 53
54 56 57 59 5A 5C
50 5F 60 62

64 65 67 68 6A 6C
6D 6F 71 73 74 76
78 7A 7B 7F

81 85 86 88 8A 8C
8D 8F 91 93 94 96
98 99 98 9C 9t AO
Al A3 A4 A6 A7 A9
AA AC

AD AF BO B2 B3 B5
B6 B7 B9 BA BB BD
BE BF

Cl C2C3C5C6C7
€8 C9 CB CC CD CE
CF DO

D1 D3 D4 D5 D6 D7
D8 D9 DA DB DC DD
DE DF
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01C4

01D2

O1EQ

01F1

EO E1 E1 E2 E3 E4
ES E6 E7 E7 E8 E9
EA EA

EB EC ED ED EE EF
EF FO F1 F1 F2 F3
F3 F4

F4 F5 F5 F6 F6 F7
F7 F8 F8 F9 F9 FA
FA FA FB FB FC

FC FC FC FD FD FD
FE FE FE FE FE FF
FF FF 00

~ Ythe next 256 bytes are for
the Tuminance scale factor .

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

02A0

00 02 03 05 06 08
09 0B OC OE OF 11
12 14 15 17
18 1A 1C 1D 1F 20
22 23 25 26 28 29
2B 2C 2E ¥
31 33 34 36 37 39
3A 3C 3D 3F 40 42
43 45 46 48
49 4B 4D 4t 50 51
53 54 56 57 59 5A
5C 5D 5F 60
62 64 65 67 68 6A
68 6D 6E 70 71 73
74 76 77 79
JA 7C 7E 7F 81 82
84 85 87 83 8A &8
8D 8E 90 91
93 94 96 98 99 9A
98 9C 9C 9D 9% &
A0 Al A2 A2
A3 A4 A5 A6 A7 A8
A8 A9 AA AB AC AD
AD AE AF BO
Bl B2 B3 B3 B4 B5
B6 B7 B8 B3 B9 BA
BB BC BD BE
BE BF CO Cl1 C2 C3
C4 C4 C5C6 C7 C8
C9 CA CA CB
CC CD CE CF CF DO
D1 D2 D3 D4 D5 D5
D6 D7 D8 D9
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0280 DA DB DB DC DD DE
OF EO EO E1 E2 E3
E4 E5 E6 E6
02C0 E7 E8 E9 EA EB EC
EC ED EE EF FO F1
F1 F2 F3 F4
02D0 F5 F6 F7 F7 F8 F9
' FA FB FC FC FD FE
FF FF FF FF
02EQ  FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF
02F0O  EF DF CF BF AF 9F
8F 7E 70 60 4E 40
30 20 10 00
4The next 64 bytes are for the lTocal contrast scale’ factor

0300 1A 1C IF 21 24 26
29 2B 2E 30 33 36
38 3B 3D 40 -

0310 42 45 47 4A 4D 4F
66 66 66 66 66 66

' 66 66 66 66

0320 66 66 66 66 61 5C
57 52 4D 47 42 3D
38 33 2E 29

0330 24 1F 1A 1817 16
14 13 12 11 OF OE ,
0D 0D 0D OD ‘

" {The next 64 bytes are the values for the psuedorandom noise
0340 EF 00 F3 04 FO 02 y
‘F4 05 08 F7 OC FB .
09 F8 0D FC
0350 F5 06 F1 02 F6 07
F2 03 OE FD OA F9
OF FE OB FA
0360 FO 01 F4 05 EF 00
0C 05 OA F8 OD'FD
09 F7 OC FC '
0370 F7 08 F3 03 F5 Q7
- F2 03 10 00 OC FB
OE FD OA F9
0380
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