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Abstract

The mobile phone is always carried with the user and is always active: it is a very personal
device. It fosters and satisfies a need to be constantly connected to one's significant other,
friends or business partners. At the same time, mobile devices are often used in public, where
one is surrounded by others not involved in the interaction. This private interaction in public
is often a cause of unnecessary disruption and distraction, both for the bystanders and even
for the user. Nevertheless, mobile devices do fulfill an important function, informing of
important events and urgent communications, so turning them off is often not practical nor
possible. This thesis introduces Intimate Interfaces: discreet interfaces that allow subtle
private interaction with mobile devices in order to minimize disruption in public and gain
social acceptance. Intimate Interfaces are inconspicuous to those around the users, while
still allowing them to communicate. The concept is demonstrated through the design,
implementation and evaluation of two novel devices :

" Intimate Communication Armband - a wearable device, embedded in an arm-
band, that detects motionless gestures through electromyographic (EMG) sensing for
subtle input and provides tactile output;

" Notifying Glasses - a wearable notification display embedded in eyeglasses; it
delivers subtle cues to the peripheral field of view of the wearer, while being invisible
to others. The cues can convey a few bits of information and can be designed to meet
specific levels of visibility and disruption.

Experimental results show that both interfaces can be reliably used for subtle input and
output. Therefore, Intimate Interfaces can be profitably used to improve mobile human-
computer interaction.
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Chapter 1

Introduction

The functionality, connectivity and computational power offered by contemporary mobile

and wearable devices is advancing rapidly, however, their interfaces continue to mimic those

of desktop computers. Yet the conditions of use at the desk are very different from when

in a mobile context. Consequently, mobile interfaces recently received much attention from

the Human-Computer Interaction (HCI) community [73, 69, 53, 3]. Important issues of

the use of technology in a mobile context include: the amount of attention a user can

devote to the interface, the type of input that can be performed on the move, the limited

size of graphical displays, and the social acceptance of devices and interaction techniques.

The use of mobile devices often happens in public places (e.g. offices, libraries, museums,

theaters, restaurants) or on public transportation (such as buses and trains), where the user

is surrounded by others not involved in the interaction. Using a mobile device in a social

context should not cause embarrassment and disruption to the people in the immediate

environment. The problem is made evident from the number of signs that can be found in

public places inviting or ordering people to turn cell phones off (Figure 1-1). Deactivating

these devices is an extreme solution, as it completely annihilates the devices's functions

and advantages, and indeed users are not inclined to do so. The replacement of ring-

tones with vibrating alerts in mobile phones constitutes an example of a widespread subtle

interface to improve social acceptance, while still allowing access to the device functionality.



Unfortunately, this idea of subtlety and social acceptance has not yet been generalized and

is lacking in other parts of the interface design.

This thesis proposes Intimate Interfaces as a new class of interfaces that enable interaction

with mobile devices in a subtle, discreet and unobtrusive manner. Intimate Interfaces are

designed to enable very personal and private interaction with mobile devices, require min-

imal attention and, cause the least distraction and disruption, both to users and to those

around them.

Figure 1-1: Signs ordering people to turn off mobile phones as not to disturb others; com-
monly found in theaters, cafes, churches, trains and other public places.

1.1 Motivation: Sociology and Critical Design Perspectives

The mobile phone, like no other technological device besides, perhaps, the wristwatch, is

always carried with the user and is always active. It fosters a desire, if not even a need,

to be constantly connected and constantly in touch with one's significant other, friends



or business partners. In western countries each individual has at least one mobile phone,

consequently, the device is seen as very personal as it gives the ability to directly reach the

individuals rather than their houses or offices. Research in sociology thoroughly examined

how mobile phones are used and how they influence the customs and communication style

of their users [27, 70, 65, 49].

The degree of intimacy associated to mobile communication is well captured in a paper

by Proitz [70], who describes the daily communication routine in a couple of Norwegian

teenagers. The couple communicates in a way that they perceive as intimate, even though

at the beginning the electronic communication seemed to produce an intimacy that was dis-

connected from the real world (and perhaps did not exist in it). When the initial difficulties

were overcome, the couple kept exchanging up to 20-25 text messages per day. Many of

the messages were short and seemed to have phatic function, they were self-reports of daily

activity, such as: "I just woke up now", "I'm finished taking the shower", "I'm finished with

eating now".

Still on the theme of mobile phones and intimacy, Fortunati [27] points out that

"the mobile phone is a device that enables people, when they perceive the

surrounding environment as extraneous to them, to contact somebody of their

intimate circle, that is, to activate the reassuring procedure of recognition. In

other words, people react to the lack of informative immediacy of the place,

strengthening communicative immediacy with their social networks by means of

the mobile."

Fortunati suggests that in this way the mobile phone has positive effects on the individual's

personality:

"It is a personality that is able to govern space in a new way, overcoming

inertia and conversing with time, appropriating itself of its fastest extensions.

Secondly, it is a personality that has the power to construct a communicative

network to its own measure, and to handle it independently of where it happens



to be. So, it is a personality that manages to calm anxiety better than previously,

as now it is able re-establish contact with the world of security."

These benefits are especially relevant in a context of mobility and travel. However, the

benefits are gained at the considerable expense of an uncontrolled "privatization of public

space". The privatization refers to the appropriation of space that the individual performs

when talking on the phone in public, forcing one's own private conversation on others who

are physically around him, but not related to the remote communication. The beneficial

effects of mobile communication though, according to Fortunati, are due to phatic commu-

nication, rather than real information exchange:

"It can never be stressed enough how the phatic function of communication

(that is, pure contact), perhaps even more than information, manages to produce

this miracle. It is the possibility of contacting its own communicative network

at any moment that has the powerful effect of reducing the uncertainty that

mobility brings with it."

This remark suggests that enabling the individual to be in contact with his or her social

network, preserving the phatic communication provided by mobile phones, in a way that

does not require nor involve an "uncontrolled appropriation of public space" could be a way

to maintain the beneficial effects of mobile communication and to limit its disadvantages.

Intimate Interfaces are designed to serve this purpose, by being inconspicuous

to those around the users, while still allowing them to communicate.

According to this analysis, mobile communication can often be reduced to a matter of being

constantly aware of a connection with one's own social circle: "remote awareness". Often,

remote awareness has been explored in the context of Computer Supported Collaborative

Work (CSCW) and Ubicomp research, generally through desktop applications, tangible

artifacts [8] or ambient interfaces [17]. Not as much research has explicitly addressed remote

awareness through mobile devices. In a paper about "Provocative Awareness" [29], Gaver

reviews a number of critical design projects related to communication and remote awareness



between distant lovers, addressing how they differ from systems providing remote awareness

for CSCW. Vetere et al. [82] explored the same area through cultural probes, contextual

interviews and focus groups. Based on the results of the investigation and on participatory

design workshops, design sketches and prototypes were produced. Most of them involve

private communication and exchange of small amounts of information. In the same paper

it was noted that this type of use is often the result of user appropriation of technology,

rather than the result of conscious design of remote communication devices. Examples of

such appropriation process are the unexpected success of text messages (SMS) on GSM

networks, or the Italian "squillo" phenomenon ("squillo" is Italian for "ringing"): letting

someone else's mobile phone ring for just a few seconds, but cancelling before the phone is

picked-up at the other end, so that no call is initiated (and therefore no billing), this reveals

enough to the receiver to identify the author of the squillo, which can then be interpreted

in a variety of ways from "I am thinking of you" to "I am on my way" [26].

The use, or arguably abuse, of the mobile phone ringtone, though, can be an additional

source of disruption for those around the user, reinforcing the "uncontrolled appropriation

of public space" mentioned by Fortunati. On the contrary, remote awareness should be

inconspicuous. Disruption and frustration caused by surrounding people interacting with

mobile devices have been the focus of other critical designers in recent years. The design

firm Ideo together with the artist and designer Crispin Jones designed five "Social Mobiles"

[40]. The project explores five radical new ways to interact with mobile phones that enforce

respect for other people, as explained in one of the project annotations: "We are interested in

the frustration and anger caused by other people's mobile phones". The interfaces presented

by Ideo and Jones enforce respect of the others in a variety of ways: one of the designs gives

an electric shock to the listener if the speakers talks too loud; another one allows to create

audio interferences in the mobile phone conversation of someone who uses their phone

inappropriately; yet another prototype allows to communicate quietly by manipulating

knobs and buttons rather than talking. Agnelli and Drori [2] propose "a series of three

jackets intended to provoke thought and discussion about the idea of presence". The jackets

are in fact wearable interfaces for mobile phones and constrain phone conversations in a

way that makes the talker more aware of his physical surrounding.



The concept of "remote awareness" by definition requires low attention, as one can be

aware of someone else's presence in a peripheral way, while engaging in activities other than

watching the other person. Involvement in multiple activities at the same time has been

observed in human behavior well before the diffusion of mobile technology. In 1963 Goffman

[32] wrote:

"Men and animals have the capacity to divide their attention into main and

side involvements. A main involvement is one that absorbs the major part of an

individuals attention and interest, visibly forming the principal current deter-

minant of his actions. A side involvement is an activity that an individual can

carry on in an abstracted fashion without threatening or confusing simultaneous

maintenance of a main involvement. Whether momentary or continuous, simple

or complicated, these side activities appear tot constitute a kind of fuguelike

dissociation of minor muscular activity from the main line of an individual's

action."

In the same book Goffman also covers the distinction between dominant and subordinate

involvements:

"A dominating involvement is one whose claims upon an individual the so-

cial occasion obliges him to be ready to recognize; a subordinate involvement

is one he is allowed to sustain only to a degree., and during the time, that his

attention is patently not required by the involvement that dominates him. Sub-

ordinate involvements are sustained in a muted, modulate, and intermittent

fashion, expressing in their style a continuous regard and deference for the of-

ficial, dominating activity ad hand. Thus, while waiting to see an official, an

individual may converse with a friend, read a magazine, or doodle with a pencil,

sustaining these engrossing claims on attention only until his turn is called, when

he is obliged to put aside his time -passing activity even though it is unfinished.

Typically, it is expected that a main involvement will be a dominating one

and a side involvement a subordinate one, as when a worker smokes a cigarette



unthinkingly but only when and where the job allows. This relationship, how-

ever, is by no means invariable. Many dominating involvements, such as work

tasks, can be sustained automatically and unthinkingly for long periods, allow-

ing the individual to devote his main focus of attention to pursuits such as idle

gossip, which, however, involving, will be put aside when the task requires at-

tention. A telegrapher , for example, can tap out messages while sustaining a

conversational byplay with a fellow worker."

Attending to mobile devices, especially for the remote awareness or social connection appli-

cations described earlier, should be treated as a side and subordinate involvement. Intimate

interfaces are designed to support this modality and allow mobile device users to attend to

them in an intermittent fashion, leaving users able to easily switch back to the dominant

activity.

1.2 Background and Related Work in Mobile HCI

Thanks to circuit miniaturization and low power consumption that allows the use of smaller

and smaller batteries, mobile devices are increasingly wearable and hidden in fashion ac-

cessories. Recent technological developments in eyeglass displays [78, 59, 44] make them

interesting candidates for the next generation of mobile devices. The display technology is

integrated in standard eyeglass frames and lenses and it is barely noticeable to observers.

Unlike head mounted displays, eyeglass displays are unobtrusive and do not occupy the

wearer's entire field of view, preserving awareness of the environment [30]. Eyeglass dis-

plays create a virtual semitransparent screen in front of the user, with resolution between

320x240 and 640x480 pixels allowing the display of about 20 lines of text. This virtual

screen is "physically decoupled" from the mobile device it is connected to (e.g. the PDA).

This characteristic allows the big advantage of the screen size not to be constrained by the

device dimensions (i.e. big display and very small device, PDA or phone). Similarly, wear-

able audio displays, such as Bluetooth headsets and earphones are often worn continuously



and do not influence the size of the mobile device that can be kept in the user's pocket or

bag.

However, the decoupling of the device and display can make the interaction design prob-

lematic. Recent trends in UI design tend to associate the manipulation and display of

information. Examples include touch-screen displays, soft keys (keys placed next to a dis-

play, whose function can vary over time because it is indicated on the display), tilt-based

interfaces to navigate content in handheld devices [34, 38, 63, 69, 72], and tangible inter-

faces where interaction with digital content is performed through manipulation of physical

icons virtually linked to it [25]. Therefore, eyeglass displays, as well as other disembodied

interfaces, require a new interaction paradigm that does not strongly rely on physically

manipulating the mobile device. An alternative to display-centric interfaces is an interface

centred on the user's body. Gestural interaction has been proposed as an interaction tech-

nique for mobile devices [3], and it appears to be a suitable way of interaction with systems

based on eyeglass displays. The user performs gestures to issue commands, and the results

are displayed on a virtual screen.

Visible gestures, though, can negatively affect the social acceptance of the interface. Lums-

den and Brewster [53] question the social acceptance of speech-based and gesture-based

interaction. Speech recognition has been criticized as an interaction technique for mobile

devices because verbal communication is the most common form of interpersonal commu-

nication, so in many situations it would be awkward and inappropriate to start talking to

a computer. Hand and body gestures are also an important part of human to human com-

munication. Therefore, the same criticism of speech applies to interfaces based on evident

gestures. Gestures for mobile interfaces should then be as inconspicuous as possible.

Few researchers in mobile HCI addressed concerns related to the social acceptance of devices

and interactions. Rekimoto [73] refers to social acceptance, unobtrusiveness and support for

hands free operation as important features for wearable devices, but he limits the consid-

erations to the aspect of devices, rather than the actual interaction. Lumsden & Brewster

[53] refer to social acceptance as one of the concerns that mobile interface designers should

take into account, and they question what kind of gestures are considered acceptable. They



propose systems based on head nodding and hand gestures on a touch screen, however,

they do not evaluate their acceptability. Feldman et al. [24] propose ReachMedia, a system

embedded in a bracelet to retrieve and navigate information related to physical objects.

ReachMedia uses a short-range RF-id reader to retrieve information and recognize three

hand gestures to navigate. The system can be operated hands-free and recognize gestures

performed with very little movement. Marti and Schmandt [58] deal with the problem of

mobile phone calls interrupting face to face conversations with a combination of sensing and

subtle interfaces. Wearable, wireless networked sensor nodes detect face to face conversa-

tions among co-located individuals. If a phone call arrives to the mobile phone of someone

engaged in a face to face conversation, all conversation partners receive a subtle notification

through finger-rings that contain vibrating motors. The notification does not provide infor-

mation about which of the conversation partners is receiving a call. The rings also contain

a push button used to signal "unwanted interruption" -- if any of the conversation partners

presses the button this call is directed to voicemail.

In the WatchMe project [57] addresses remote awareness through mobile devices for a small

group of close friends or relatives. Each member of the group has a wearable wristwatch

device that senses his or her status through a variety of channels (such as GPS, acceleration

and audio). This information is represented with a controllable level of abstraction, for

example through the type of location (gym, bookshop) rather the exact geographic position,

and constantly broadcasted to the rest of the small group. All members disclose the same

type of information to each other, and when one looks at the status of one other, the latter

is notified of this, as to communicate "X is thinking of you". The system also offer the

option of "plausible deniability": the user can turn the sensing off and simulate being out

of network coverage or being in a preset state. However in this system the interaction takes

place through standard interfaces, so for example to be aware of someone else's status, and

to let them know "I am thinking of you", users has to devote their full attention to a visual

display.



1.3 Intimate Interfaces

This thesis presents the design and evaluation of novel interfaces and interaction techniques

for mobile human computer interaction that are subtle, discreet and unobtrusive. In this

context Intimate Interafaces are defined as interfaces that allow very personal and private

interaction with mobile devices, addressing some of the issues described in this section. It

has been suggested that wearable devices should be "as natural and (conceptually) unno-

ticeable as possible" if they are meant to be adopted in everyday and public situations [73],

Intimate Interfaces extend this concept: not only should the devices be unnoticeable and

natural, but also the interaction with them needs to be subtle, discreet and unobtrusive in

order to gain social acceptance.

The concept of Intimate Interfaces is demonstrated in this thesis through the design, im-

plementation and evaluation of two interface prototypes:

" Intimate Communication Armband - a wearable device, embedded in an arm-

band, that detects subtle motionless input gestures through electromyographic (EMG)

sensing and provides tactile output;

" Notifying Glasses - a wearable notification display embedded in eyeglasses; it

delivers subtle cues to the peripheral field of view of the wearer - the cues can

convey a few bits of information and are invisible to others.

Both devices take advantage of novel and essentially unexplored areas of investigation: EMG

sensing of motionless gestures in a mobile context, and peripheral vision for non-disruptive

notification.

The two devices do not occupy the users' hands, nor do they require hands for operation,

hence they are "hands free." More generally, the interfaces take advantage of channels that

are not often used - peripheral vision and brief contractions of a muscle - and they

support multimodality. User studies on the fragmentation of attention in a mobile context

suggest that these characteristics are beneficial for mobile interfaces in general, because

they facilitate attention switching between mobile device tasks and real-world tasks [64].



Intimate Interfaces are designed to support preliminary minimal interaction: they allow

users to receive notification cues and request more details about the notification source or

just poll the mobile devices to check their status in a minimal, low attention modality. In

this way users can acquire enough information to decide wether to ignore the notification or

to interrupt their current principal activity (their "primary involvement" using Goffman's

vocabulary [32]) and switch tasks, turning to a standard, higher bandwidth interface, such

as a phone or PDA's visual display or speaker, or even the screen and keyboard of a laptop.

Intimate Interfaces make information available to users without overwhelming them, and

allow them to request more details when they want and when they can afford to dedicate

more attention to it. This resonates with what was proposed by Weiser [85]: technology

should be able to easily shift between the periphery and the center of the users attention.

Intimate Interfaces aim at softening (or "calming", citing Weiser again [85]) the impact of

constant connectivity through mobile devices. Users are already inundated with notifica-

tions and information, and it can be expected that this stream will grow thanks to emerging

technologies such as location and proximity based systems, and the increasing bandwidth

availability on mobile networks. Intimate Interfaces are designed to make information access

not overwhelming, while still keeping it available. The introduction of such interfaces can,

of course, become problematic, especially if they are used directly to consume or produce

content, rather than to regulate access to higher bandwidth interfaces.

Interaction with Intimate Interfaces should be aimed at deciding whether or not to stop the

current activity and attend to the mobile device, rather than to try and attend to multiple

high attention demanding tasks at the same time (e.g. writing an email while conversing

or driving). Low disruption can easily be interpreted as secrecy, Hansson, Ljungstrand

and Redstr [33] suggest that for interruptions to be more socially acceptable they should be

public, so that co-located individuals can more easily understand and accept the behavior of

mobile technology users. The approach proposed with Intimate Interfaces is to leave to the

users the decision about whether and how to inform those around them of the interaction

with their mobile devices, starting from the observation that what is private can be filtered

and made public, but not viceversa.



1.4 Usage Scenarios

Subtle intimate interfaces are meant to be used in a preliminary phase of the interaction:

to allow users to minimally interact with the mobile system in order to understand whether

or not to suspend their current activity and fully attend to the mobile system through a

standard interface. This preliminary phase of interaction has to be designed to take into

account that the users' attention might be engaged in other tasks, that these tasks might

involve other individuals, or simply that users might be surrounded by co-located people

who should not notice or be disrupted by the interaction.

An example scenario of such a preliminary interaction using subtle, intimate interfaces is

as follows: Francesca receives a subtle notification about an incoming phone call while

she is in a discussion with her boss Paolo. She decides not to interrupt the conversation

and uses subtle input to reject the call and direct it to voicemail. This does not cost her

much attention, so she can do it while still paying attention to Paolo's argument, or even

while replying to him. Paolo does not notice the notification nor Francesca's reaction to it

and he is not interrupted. Later on, while still in the meeting Paolo also receives a subtle

notification about an incoming call. The cues conveys the information that it is his daughter

calling. Knowing that his daughter is pregnant, Paolo apologizes to Francesca explaining

that he's receiving an important call, he takes his mobile phone from his pocket (a standard

interface) and answers the call.

Most of the interaction with mobile devices takes place in a social context when surrounded

by other people. If a mobile phone rings during a face to face conversation most likely the

call will be ignored and returned later. In this case the phone ringing is an unnecessary and

unpleasant distraction. Vibrating alerts provide a certain improvement, but they are often

still audible which makes them as distracting as ring tones. In comparison, notifications

from the Notifying Glasses do not disrupt the people around us and can easily be ignored. If

the system also includes the EMG-based Intimate Communication Armband, users can not

only be subtly notified, but they can also react to the notification in a subtle, unobtrusive

way; for example, rejecting the incoming call by briefly contracting the upper arm.



The importance of subtle, unobtrusive and non-distracting notification cues is made even

more relevant by location-based and proximity-based services, which are receiving more

attention from both the academic and business communities. Many of these systems provide

relevant information when users are in physical proximity of an object [24] or place of interest

[79]. In these scenarios, subtle cues, such as the ones provided by the Notifying Glasses,

can let users know about available information without distracting them or disrupting the

people in their environment. If desired, users can visualize the full piece of information

through some other device (PDA, phone, foveal eyeglass display, earpiece, etc.).

As an example scenario, imagine Marco is running late for a business meeting, and he's

walking fast towards an underground stop on the way to his office. When he passes in

front of a bookshop he receives a subtle cue from his location-aware mobile phone. The cue

indicates that there is some relevant information related to shopping. He imagines that a

new book matching his interest profile must have recently arrived at the bookshop, however

he has no time to stop now, so he ignores the cue and keeps walking. When he is closer

to the underground stop he receives another notification cue; this one informs him that

some information about transport is available. Knowing his own context, he wants to know

more, so he takes his mobile phone out of his pocket (a standard interface) and reads an

alert, from its large high contrast display, saying that because of unplanned maintenance,

the undergrounds service is suffering from significant delays. He then stops a cab to go to

the office.

1.5 Outline

This thesis is divided into four parts. The first part (this chapter) provides a general in-

troduction to Intimate Interfaces, framing their definition within sociological observations

and prior research in mobile HCI. The concept is then demonstrated through the design,

implementation and usability evaluation of two Intimate Interfaces: the Intimate Commu-

nication Armband and the Notifying Glasses, presented respectively in the second and third

parts of this thesis. For each interface, related work, system design & implementation and



evaluation through user studies are described in separate chapters. Finally, the fourth part

of the thesis presents conclusive remarks about Intimate Interfaces in general.



Part II

Intimate Communication Armband
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Chapter 2

Background: Elect romyography

and Tactile Displays

This chapter introduces previous research related to the Intimate Communication Arm-

band: electromyographic sensing and its applications, particularly within the HCI domain,

and tactile displays. It must be underlined that no prior work exists on the use of elec-

tromyographic sensing of subtle gestures.

2.1 Electromyography

The electromyographic (EMG) signal is an electrical signal generated by muscle contraction.

Methods for effective recording and computer aided analysis of EMG signals have been the

object of study in the field of biomedical engineering for the last three decades [50]. Through

electromyography it is possible to sense muscular activity related to movement, but also

isometric activity: muscular activity not that does not produce movement [77]. An example

of isometric activity is pushing against a wall, muscles are activated, but the wall prevents

movement, similarly, isometric activity can be produced by flexing the muscles without

load, as when "showing off muscles". As detailed in Chapter 3, the sensing of isometric

activity has great potential for mobile interfaces.



The EMG signal can be recorded non-invasive using surface electrodes, or through needle

electrodes. Needle electrodes produce better signals because they are in close contact with

the source. While their use can be justified for medical applications, in a non-medical

context, such as the ones considered in this thesis, they would be highly impractical for the

discomfort caused to the user. Moreover, the advantages of needle electrodes are reduced

by current integrated circuit technology, that makes it is possible to connect high gain, low

noise amplifiers very close to the electrodes, thereby producing usable EMG signals from

surface electrodes, at least for the application considered in this thesis. In the rest of this

document it will be assumed that the signal is always acquired through surface electrodes,

applied in differential pairs, each pair constituting a channel.

The EMG signal is the result of the superposition of electric voltage generated by each

motor unit in a muscle. The use of surface electrodes records from a large number of motor

units per each channel, as a consequence, the resulting EMG signal can be represented as a

signal with Gaussian distributed amplitude, topically ranging from 100 pV to about 1 mV

[50].

Commercial surface electrodes are generally Ag/AgCl plates attached to the skin with

adhesive and covered with conductive gel (often solid gel for increased comfort). The gel is

used to improve the electrode to skin interface lowering the impedance seen from the sensor,

and reducing motion artifacts. Active or driven electrodes are sometimes used to create a

feedback control loop between the sensor and the body [84], this method also reduces motion

artifacts eliminating the need of conductive gel: in this case the electrodes are referred to

as dry. Advances in material technology are producing surface electrodes in forms that can

be more comfortable for consumer use, for example, electrodes embedded in flexible grids

[47] or even embedded in fabrics [66].

The typical biomedical analysis for diagnosis applications involves envelope detection, en-

ergy measurement (directly related to the force) and frequency characterization [51]. Con-

trol applications generally involve signal acquisition from a number of differential electrodes,

feature extraction and real-time pattern classification. The first examples of EMG based

real-time control systems can be found in the field of prosthesis control and functional neu-



romuscular stimulation. Hefftner et al. [37], for example, report successful results from a

system that can recognize two gestures generated from the shoulder and upper arm. The

system must be specifically calibrated for each subject and uses EMG signals from two

channels.

Recently Lukowicz et al. [52] presented a system based on wearable force sensitive resistors

to sense muscle activity. They show a correlation between the mechanical deformation of

the limb (measurable through force sensors placed on an elastic band adherent to the body)

and muscle activity, especially fatigue. This approach allows the recording of activity that

cannot be obtained through inertial sensors. Their approach is very interesting but it was

not tested on pure isometric activity recognition.

2.2 EMG for Human-Computer Interaction

A number of studies focused on the use of EMG signals for computer interfaces targeted at

users with physical disabilities. Putnam and Knapp [71] developed a reconfigurable system

to control generic graphical user interfaces. The system incorporates a continuous control

mode where the amplitude of the contraction is mapped to a parameter swing (sliders,

scrollbars) and a gesture recognition mode that discriminates between two gestures and can

be used for discrete selections. The gesture recognition is performed on a dedicated digital

signal processing (DSP) board and is based on neural networks. In addition, it requires

training for each user of the system. Barreto et al. [6] propose a system to control a

mouse-like point and click interface using facial muscles. Spectral features of EMG signals

are analyzed, in addition to the amplitude, to increase performance. The system is not

reported to require individual calibration for each user and it is implemented on a DSP

board.

Other examples of EMG based HCI include a number of interfaces for musical expres-

sion. For this type of application the signal is used in a continuous fashion (rather than

performing gesture recognition), the amplitude is mapped to a variety of sound synthesis

parameters. The systems presented in this context are often wearable and allow movement



of the performer on stage, yet they are not (explicitly) designed for the mobile (everyday)

context. Knapp and Lusted [46] present a generic battery powered platform to interface

EMG signals to MIDI systems. Tanaka and Knapp [77] complement EMG data with in-

ertial sensor information, so that both isometric (muscle tension resulting in no motion)

and isotonic (motion with constant muscle tension) activity can be monitored. Dubost and

Tanaka [22] developed a wearable wireless musical controller supporting pre-processing of

EMG signals and output interfacing with different standards (MIDI, RS232 and Ethernet).

Their system requires calibration for every user.

Recent studies focus on the use of EMG for the recognition of an alphabet of discrete

gestures. Fistre and Tanaka [43] propose a system that can recognize six different hand

gestures using two EMG channels on the forearm. The device is designed to control con-

sumer electronics and is described as portable. Testing in a mobile context has not been

reported. Wheeler and Jorgensen [86] report the development and successful testing of a

neuroelectric joystick and a neuroelectric keypad. Using EMG signals collected from four

and eight channels on the forearm they successfully recognize the movement corresponding

to the use of a virtual joystick and virtual numeric keypad. Gestures mimicking the use

of physical devices are successfully recognized using hidden Markov models. The system is

proposed as an interface for mobile and wearable devices, but an embedded implementation

is not reported, nor is testing in a mobile context.

In a different fashion, but still in the context of HCI, EMG signals have been used in con-

junction with other physiological signals (skin conductivity, blood pressure and respiration)

to detect the affective state of the user [36].

2.3 Tactile Displays

Tactile displays use a variety of techniques to stimulate the human sense of touch, includ-

ing piezo-electric actuators [69], vibrating motors (also known as "pager motors") [31] or

audio-like loudspeakers[76]. Tactile stimuli, especially if in unusual patterns, are highly

attention demanding [28](discussed in [69]), therefore, tactile display are commonly used



for notification, as in most commercial mobile phones. However, the tactile channel can

be used for higher resolution communication, using variations in the intensity, frequency,

duration and location of the stimuli. The use of tactile displays in the context of mobile

devices has been advocated by several authors [69, 31, 76].

Tan and Pentland [76] propose a directional display with nine actuators distributed in 3-by-

3 grid on the back of the user. The actuators are flat magnetic speakers modified to resonate

at low frequencies. The display was conceived to be wearable and to take advantage of the

"sensory saltation phenomenon", a perceptual phenomenon that allows to "simulate higher

spatial resolution than actual spacing of stimulators, yet mimic the sensation produced

by a veridical set of stimulators with thes same higher-density spacing"[76]. Gemperle et

al. [31] designed a wearable tactile display for navigation guidance based on an array of

vibrating motors distributed over the body. Gemperle et al. plan user studies to validate

the design, but no results are reported. Poupyrev et al. [69] reported the design of a novel

small, low voltage, fast response actuator based on layers of piezoceramic film. The actuator

is embedded in a commercial PDA and used to provide feedback for gesture recognition.

Experimental results show that the novel display is effective and improves the performance

of subjects controlling the gestural interface.

Vibrating motors have been often criticized for their limited expressive capabilities, espe-

cially compared to other actuators [69]. However, results from recent studies show that it

is possible to convey different messages through amplitude modulation of sinusoidal driving

signals. Brown et al. [10] report upt to 93% recongition rate for characteristics of "tac-

tons", tactile icons, using a high specification transducer in controlled conditions. Brown

and Kaaresoja report that even better results (up to 95% recognition rate) can be achieved

using the vibrating motor of a standard mobile phone [11].
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Chapter 3

Design and Implementation

The first Intimate Interface prototype is the Intimate Communication Armband. Its design

and implementation are described in this chapter. The process was carried out in an iterative

fashion and validated through users studies, as detailed in Chapter 4.

3.1 Design

The Intimate Communication Armband was conceived as a generic input/output peripheral

for mobile devices. It is worn on the upper arm, invisibly under clothes (Figure 3-1, and

senses explicit subtle gestures and provides localized tactile output. The Intimate Com-

munication Armband connects wirelessly via Bluetooth to a phone or PDA, sitting in the

user's pocket or bag. Being a generic i/o device, it emits signals every time a gesture is

recognized and it accepts signals to activate the tactile display. The mapping strategy to

connect these signals to specific interface actions and events is left open to the application

designer.

The Intimate Communication Armband does not occupy the users hands, and does not

require them to operate it, hence it is hands free. On its own it can be used for minimal

communication or remote awareness, as discussed in the first chapter. However, its greatest



Figure 3-1: The Intimate Communication Armband can be made invisible by hiding it
under clothing.

potential is realized when combined with a higher resolution hands free display - such as

headphones or loudspeakers or even high resolution eyeglass displays - so that it forms a

closed loop hands free system. This can be highly advantageous in a number of everyday

situations, for example when the user is carrying objects, or for specific domains of ap-

plications, such as maintenance, where the users hands are needed to perform a principal

task, and the mobile computing system is used for assistance. For example, an audio guide

could be read through headphones and an armband could be used to advance, pause or

rewind the system. The tactile display can be used to give feedback about a subtle gesture

being recognized, or it can deliver alerts and notifications, even though tactile notifications

require much attention (cfr. Section 2.3).

The concept behind the Intimate Communication Armband aims for wide acceptance as a

consumer electronic device. The design takes inspiration from the BodyMedia SenseWear

device, a commercial device used for monitoring of biosignals for health applications (Fig-

ure 3-2 a) , and at common wearable digital music players (Figure 3-2 b) , worn on the

upper arm when users practice sport.

From a technical point of view, the major challenge in the realization of the intimate com-

munication armband is the sensing of subtle motionless gestures. Standard "pancake"

vibrating motors are used for the tactile display. Even though more complex tactile actua-

tors could provide additional expression capabilities, basic vibrating motors offer a simple,

yet effective solution. Conversely, no readily available solutions existed for the sensing of



(a) (b)

Figure 3-2: (a) The Bodymedia SenseWear armband is a consumer electronics product for
personal health monitoring. (image from www.bodymedia.com)
(b) An armband to wear the Apple iPod digital music player. (image from
www.taoriver.com)

motionless gestures, as this is a novel and essentially unexplored field.

3.1.1 Motionless Gestures

The definition of a class of subtle or motionless gestures is based on the EMG signal's

ability to detect isometric muscular activity, i.e. muscular activity not related to movement.

Motionless gestures are defined as specific, isolated and explicit muscle contractions that do

not result in visible movement. For practical reasons only the subset of gestures that can

be distinguished from everyday muscle activation patterns. Previous studies on the use of

EMG for human computer interaction (mobile or not) do not explicitly consider subtlety,

leading to a different approach. Tanaka and Knapp [77] report as a limitation the fact that

in EMG signals muscular activity and movement are not always related. They remedy this

by complementing EMG with inertial sensor (gyros) data in a multimodal fashion. Fistre



and Tanaka [43] and Wheeler and Jorgensen [86] propose the use of EMG for hand gesture

recognition as an alternative to accelerometers or mechanical sensors for movement, but not

for subtle gestures.

Compared to other EMG based systems [43, 71, 86] the approach proposed here is to trade

resolution in terms of variety of gestures being recognized for:

" minimizing computational complexity

" robustness against false positives

* use of only one input channel

" avoiding calibration or system training for each user

Minimal computational complexity is essential to implement the real-time processing in a

low power embedded device, such as an 8-bit RISC microcontroller.

When compared to other types of sensing EMG presents a number of difficulties due to the

need for contact electrodes and their placement [73]. However, the advantages it provides

related to subtlety make it worth studying. Moreover, research in smart materials (cfr

Section 2.1) and non-contact sensing [80] are even more encouraging.

The system design was carried out as an iterative process centred on users. A number

of exploratory informal user studies were performed to insure that the system would be

natural and easy to use. Figure 3-3 summarizes the process.

As detailed in Section 2.1, the EMG signal is a bio-potential in the range of 100 piV to about

1 mV. The general system design for the subtle gesture sensor is illustrated in Figure 3-4

and it includes:

* surface electrodes to pickup voltage signals on the body

* signal amplifier and analog preconditioning stage

" analog to digital converter



Pilot Study 1

Pilot Study 2

Pilot Study 3

Formal Study

Selection of muscle
and generic definition
of gesture

Refinement of the
gesture definition and
creation of model and
detection algorithm

Tuning of model
-- ) parameters and

algorithm

Validation of results

Figure 3-3: Outline of the design process for the subtle gesture recognition.

" digital pattern recognition system

" interface with application on mobile device or PC

The signal preconditioning was performed through analogues rather than digital filters to

keep the complexity of the digital processor low. This choice was made based on the low

computational cost of the detection algorithm, which can run on a low-power 8-bit RISC

microcontroller. The use of a more complex detection algorithm would probably justify the

use of separate DSP chip or more powerful microcontroller, which could also handle the

signal preconditioning.

]
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Figure 3-4: Block diagram for the EMG subtle gesture recognition system.

3.2 Implementation

3.2.1 First Prototype

The first version of the system was developed at Media Lab Europe, in collaboration with

Samuel A. Inverso, Alberto Perdomo, Juan Jose Andres Prado and the support of Matt

Karau. The first EMG sensor hardware prototype was based on an Electro-EncephaloGram

(EEG) amplifier board developed at Media Lab Europe by the MindGames group for the

Cerebus project. An AVR AT Mega8 microcontroller was used to sample the signal and

transmit it via serial over Bluetooth to a host computer. An extra amplifier stage was

designed to adapt the output of the EEG amplifier to the AVR Analog to Digital Converter

(ADC) range. The AVR serial output was connected to a PROMI-ESD Bluetooth module

manufactured by Initum [41]. The system was powered from 3 rechargeable 9V batteries.

Because of their weight, the batteries could not be comfortably worn on the upper arm, so

they were connected with long wires and housed on a pocket worn around the waist. The

amplifier and microcontroller boards, as well as the Bluetooth module, but not the batteries

were housed in a box, illustrated in Figure 3-5



Figure 3-5: The first EMG sensor prototype (excluding batteries).

The design of the recognition algorithm and the definition of the gesture were carried out

in parallel to satisfy two requirements: the gesture should be (1) natural for people to

perform, and (2) different enough from normal muscle activity to avoid misclassification or

false positives.

The process started with a pilot study to select one muscle and subtle isometric contractions

that could serve the definition of motionless gestures. The subjects for this pilot were chosen

so that a range of different muscle volumes were tested. Initial candidates for the muscle

selection were: the temporalis, the biceps, the triceps, the forearm, the abdominals and the

calf. Factors considered for the decision included: ease of electrodes placement, quality of

the acquired signal and the type of activity that each muscle contributes during normal

movement, such as walking. The test revealed the biceps as the best candidate because it

lies superficially making the signal fairly immune to activity generated by other muscles,

and it is well defined even in non-athletes. The gesture was defined as a brief contraction,

such that it could be performed without being noticed, while the arm is unfolded, parallel

to the body while the user is standing.

A second informal study was conducted to refine the definition of the subtle gesture and

create a model and algorithm for its detection. New subjects participated in the study



and were chosen for a variety of muscle volumes. EMG signals were recorded from subjects

performing the selected contraction and compared with the signals generated by other types

of muscle activity, such as moving in an indoor space, lifting objects of various weights and

gesticulating while talking.

The subjects were informed that the purpose of the study was to define a subtle gesture that

could be used to control mobile devices. The gesture was described to them in a not detailed

way (just as a "brief contraction of the biceps, i.e. the upper arm, that would not be very

evident") so that they had some freedom in the way they performed it. This procedure

aimed at exploring whether such a definition of "brief contraction" would be consistent

across individuals, and to ensure that the gesture definition would be, to a certain extent,

natural to perform, rather than defining a gesture a priori and ask or force the users to

learn it.

3.2.2 Subtle Gesture Model

The model resulting from the second study, depicted in Figure 3-6, is based on the standard

deviation of the EMG signal, calculated with a sliding window of duration 0.2s overlapping

for 75% of its duration. The standard deviation was chosen to smooth the data and em-

phasize discontinuities in the energy of the electromyogram. The window size was selected

to be the longest possible without filtering out interesting features. A mathematical model

and a recognition algorithm for the brief contraction were then created heuristically from

the observation of the data. A brief contraction was observed to correspond to a peak in the

standard deviation of the signal. Given the noise-like characteristics of the EMG signal [50],

standard peak-detection techniques could not be employed. Rather, such peaks were mod-

eled as follows: a "beginning" interval of duration TB of low activity ("silence") followed

by a "middle" interval of high activity of duration TAI and then again low activity for an

"end" interval of duration TE. High activity and low activity were defined respectively as

the standard deviation of the signal being above a threshold H and below a threshold L. To

allow some tolerance in the model, the condition on the history is imposed on the average



of its values. The condition on the middle needs to be satisfied by 50% of the samples, and

the condition on the end by 70% of the samples.

Peak Model and Example Peak

Beginning
(average < 1)

.250 .500 .750 1.000 1.250 1.500

Time (seconds)

End
(70% of samples < L)

1.750 2.000 2.250

Figure 3-6: Model for the subtle gesture, and example gesture recording
algorithm.

detected by the

The model definition is more strict on the duration of the contraction than it is on the

gesture's intensity. This is because the preliminary study showed that the duration was

more consistent than the intensity across users, despite the fact that no specific indication

was given about either. One disadvantage of this model is that it requires the gesture to

be completed before the recognition can take place. The recognition could be made faster

by removing the end condition for the closure of the gesture; however, this would cause an

increase in the number of false positives.

The tuning of the five parameters of the model required a third informal study. New and

returning users were informally asked to test the system. The testing was conducted to

stress the system to produce false positives and false negatives. The iterations continued

until the number of false positives approached zero and the system recognized contractions



performed by any user.

3.2.3 Two Gestures: Long and Short

Once the recognition worked robustly on one gesture, the possibility of creating a gesture

alphabet of two gestures was explored. The gestures were defined as two short subtle

contractions of different durations. This corresponded to varying the value of the duration

of the middle interval TA in the model together with its tolerance. The results obtained at

this point were then validated with the first formal user study, described in Section 4.1.

For the development of the algorithm, the raw signal sampled at 80 Hz was streamed to a

2GHz Pentium 4 PC running Windows XP for recording and processing. The data analysis

and the development of the gesture model and detection algorithm was then performed

off-line using Matlab. The real-time detection used to provide feedback to the subjects

during the user study was implemented as a module in the BCI2000 software framework

[74], rather than on the embedded device itself to to allow real-time monitoring of the EMG

signal and classification output for the experiment.

3.2.4 Second Prototype

The first hardware prototype was extremely useful to show that it was possible to recognize

subtle motionless gestures through EMG signals, but it had a number of limitations. The

EEG amplifier used was not easily replicable, because based on a 4-layer board, which

required external manufacturing and because the design documentation was not always

easily accessible. In general, the performance and dimension of the system were suboptimal,

as it was assembled from circuits originally designed for other purposes and required supply

from bulky batteries. Therefore, the need for a second hardware iteration was immediately

clear. A full system redesign was initiated at Media Lab Europe by Alberto Perdomo

and Juan Jose Andres, however, this was completed shortly before the lab closure, so the

resulting system was not available to the author of this thesis for continuing the research.

A separate re-design was then started at the MIT Media Lab.



To limit interference between the analog and digital parts of the circuit, two separate Printed

Circuit Boards (PCB) boards were designed, and the analog and digital grounds connected

only in one point, between the analog board output and the ADC input. The new amplifier

design was based on a portable ElectroCardioGram (ECG) sensor [15]. The system uses

an integrated instrumentation amplifier in the first stage with a right leg driver feedback

stage to reduce noise. The right leg driver is a quite common design in biosignal amplifiers

[84]. After the first stage a 1st order high pass filter at 1.6Hz is used to eliminate DC

components followed by a 2nd order Sallen-Key active low-pass Butterworth at 48Hz with a

gain factor of 10. This stage performs further noise reduction and anti-aliasing for the digital

conversion. A final stage with unity gain is used to offset the signal by 1.6V, centering it

with respect to the ADC range. An LM2685 "Dual Output Regulated Switched Capacitor

Voltage Converter" from Analogue Devices was used to provide the +5V and -5V supply

for the analogue stage from a single cell 3.7V, 130mAH Li-Po battery used to power the

device. The circuit schematic is illustrated in Figure 3-7.

An Atmel 8-bit AVR microcontroller was again used for analog to digital conversion, gesture

recognition and to drive the vibrating motor included in the second prototype. The motor

was driven through Pulse Width Modulation (PWM) to allow fine tuning of the vibration

intensity. The microcontroller used in this case was the more recent and power efficient

AT Mega168. The PROMI-ESD Bluetooth module was replaced with the BlueGiga WT12,

a smaller surface mount module that provides a flexible and simple software API. The

"High Accuracy, Low Dropout" ADP3330 voltage regulator by Analogue Devices was used

to convert the battery voltage to the 3.3V required by the Bluetooth module and provide

a stable supply for the microcontroller. The board also included a C-MOS driver and a

protection diode for the vibrating motor, and two LEDs for displaying the microcontroller

status during debugging.

The two boards and the battery were housed in a box of about 3cm x 4cm x 2cm, which

was inserted into an elastic armband made for a commercial MP3 digital music player, as

shown in Figure 3-8.

The aim for the second prototype was to get the recognition running fully on the embedded
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Figure 3-7: Circuit schematic for the second generation EMG amplifier.

microcontroller. For the development phase, the raw signal was again streamed to a PC.

To remove the dependency from BCI2000, which is unnecessarily complex for the task,

the gesture recognition was initially ported on the Linux PC platform in C, using a C++

software framework for data acquisition over serial port (and serial over Bluetooth) and real-

time processing developed by the author. This framework allowed software development

in an environment more similar to the embedded platform and based on the same GNU C

compiler, but still allowing easy debugging.

The algorithm was implemented using accumulators and FIFO buffers to calculate the

moving average and variance; this was used in place of the standard deviation to save a

square root operation. The sampling rate was set to 160Hz, so that the 0.2s sliding window

used for the average and variance (same duration as in the first prototype) corresponded to

32 samples and divisions could be replaced with bit shift operations. The main difficulty in

porting the pattern recognition code to the AT Mega168 was reducing the usage of RAM

eattery nput +



Figure 3-8: The second generation EMG sensor inside an armband holder for a commercial
digital music player. The connector on the left of the photograph is used for recharging the
battery and also as a power switch.

to the amount available on the microcontroller. This required the careful selection of the

data types (8-bit, 16-bit or 32-bit integers) to match the precision of the data.

In the advanced stage of development, it was noticed that motion artifacts could produce

false positives, visual inspection of the signal recording showed that the artifacts produced

low frequency fluctuations not removed by the analogue high-pass filter. To reduce the num-

ber of false positives a simple zero-crossing counter was included in the detection algorithm,

a detection was recognized only if 10 or more zero crossings occoured over its duration (the

threshold value was found by trial and error with two subjects).
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Chapter 4

Evaluation

Three user studies were performed to validate the design of the electromyographic (EMG)

motionless gesture sensor and more in general of the Intimate Communication Armband.

The first study was aimed at assessing the very basic functionality of the EMG-based

controller: can the device reliably recognize gestures? Is it natural for people to perform

the gesture? Is the gesture easy to learn? Therefore, in the first study subjects were initially

asked to play with the device and familiarize themselves with it, subsequently they were

asked to perform a gesture every time they were prompted through an audio stimulus. The

gestures had to be performed while subjects were involved in a realistic, but safe mobile

task. Results from this first study showed that subjects quickly learn to reliably control the

device with little or no training, and that the system can reliably recognize the gestures (96%

correct detection). The following step was to study more complex interaction scenarios. In

a second study subjects interacted with an audio menu through subtle gestures. Two

conditions were compared: controlling the menu with just one armband controller or with

two controllers, one per arm. To experimentally test how visible the gestures are to others,

the same subjects observed a video clip of a trained user activating the system and were

asked to report when they believed the person in the video was performing a gesture.



4.1 Initial Study: Basic Gesture Recognition on Dominant

Arm

The first experiment was designed and run in collaboration with Samuel Inverso at Media

Lab Europe [18].

4.1.1 Experimental Design

Subjects performed five walking tasks using the wireless EMG device, one without contract-

ing (to determine the devices misclassification rate), and four while making contractions of

different durations. Each of these four contraction tasks was preceded by a short familiar-

ization session. While walking, participants navigated 24 meter laps around obstacles setup

in a regularly trafficked walkway in Media Lab Europe, see Figure 4-1. This setup was

similar to the one reported by Pirhonen et al. [68] who noted this mobile context allows

us to "take measurements of the usage of the device whilst the users were mobile but was

not as formally controlled as a laboratory study, which would lack realism and ecological

validity."

Start-+-

Stop<

Com uter
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Figure 4-1: Route walked by the subjects.

Subjects were given written instructions that informed them the study was assessing EMG

as a subtle interface for mobile devices and they would control the system using their biceps

while walking using a subtle contraction that could be performed with their arm relaxed at

their side. Subjects were also informed that the contraction recognized has a minimum and

maximum duration and a minimum strength requirement. No further instructions were



given for the subtleness of the contractions, thus it was subjective to the participant to

define subtly.

During each of the contraction tasks participants were prompted to contract with an audio

stimulus in the form of a MIDI piano tone delivered through wireless headphones. The four

contraction tasks are referred to as 'generic', 'short', 'long', and 'mixed' contractions. In the

generic task participants attempted to consistently make contractions that the system would

recognize. In the short task they attempted to consistently make the shortest contraction

the system would still recognize. In the long task they attempted to consistently make

the longest contraction the system would recognize. In the mixed task they attempted to

make both long and short contractions when given corresponding stimuli. Each task was

preceded by a short familiarization session. During the familiarization sessions participants

stood and only heard an auditory feedback when the system recognized a contraction. No

coaching or further feedback as to the amplitude or duration of the contraction was given

to the participants, so they were unaware of why the algorithm was or was not recognizing

the contraction. They were only aware if the contraction was recognized. This was also

true for the walking tasks.

In all contraction tasks the same real-time detection algorithm was used across participants

without calibration or modification, and it recognized contractions of duration between 0.3

and 0.8 seconds. If the system detected a muscle contraction participants were given audi-

tory feedback in the form of a MIDI trumpet tone delivered through wireless headphones.

No further feedback was given, thus when performing contractions participants were quanti-

tatively unaware of the contraction's duration. This minimal feedback was given to establish

if the subjects could learn to use the feedback without specific training.

Subjective workload was measured with the NASA TLX [35] scales after each walking

contraction task to assess demands imposed by the EMG controller and the different con-

traction types. Workload is important because in a mobile environment users have less

attention to spend on the interface and interaction technique because they are monitoring

and navigating their surroundings [68], an additional complexity is introduced when the

interaction technique uses the same body parts used while mobile. Therefore, an interface



and interaction technique with a lower workload will be more successful in a mobile context.

For the system setup, the participants skin was first prepared with an abrasive gel to ensure

signal quality. In pilot studies, it was found that pre-gelled electrodes did not require skin

abrasion unless users had applied skin creams or lotions earlier in the day. For consistency,

all participants were abraded in this formal study. After abrasion, disposable, sold-gel,

self adhering, Ag/AgCl 9mm disc surface electromyogram electrodes were applied in three

positions around the upper arm of the subject's dominant hand such that the one of the

differential pair electrodes was centred on the biceps brachii, the other differential electrode

was on the inside middle of the upper arm below the biceps, and ground was placed on the

middle outside of the upper arm see Figure 4-6. The electrodes were placed around the

upper arm to test the feasibility of embedding them in an armband. For participants 1, 2,

and 4 the reference and ground positions were swapped because the inner reference pressed

against their bodies while walking causing deflection artifact.

Differential
Electrode

Figure 4-2 Electrode placement used for the first user study.

After the electrodes were applied, the wireless EMG device was mounted to the upper arm

with an elastic band between the electrodes and elbow. The wireless EMG device streamed

10 bit values at 80 Hz over serial Bluetooth to a 2 GHz Pentium 4 PC running Windows XP.

The BCI2000 software framework [74], running on the PC, was used for signal processing

and stimulus presentation. While the contraction detection algorithm was simple enough to

run on the device's micro-controller, it was implemented under BCI2000 to allow real-time

monitoring of the EMG signal and classification output for the experiment.



4.1.2 Tasks

All subjects participated in all tasks: within-subjects design. The tasks proceeded in order

as follows, however, the short and long contraction tasks were performed in counterbalanced

order, such that a participant randomly performed short or long first. The tasks in detail

are:

1. Walking, No Contractions: While wearing the wireless EMG device participants

were instructed to walk ten laps at their preferred walking speed.

2. Standing, Familiarization, Generic Contractions: Participants were given the

wireless headphones, and told to briefly contract their biceps freely in order to familiarize

themselves with the system. The familiarization ended when either the participant was con-

fident interacting with the system or a fifteen minute time limit was reached. If participants

could not confidently use the system after the time limit they were verbally given feedback

as to why their contractions were not controlling the system. This was only necessary for

participants 2, 9, and 10; who were only told once to shorten their contractions, and then

they were quickly able to control the system.

3. Walking, Stimulus-Response, Generic Contractions: Subject's walked the ob-

stacle course and attempted to contract when they heard an audio stimulus through the

wireless headphones. Participants were randomly presented 15 (SD=5) stimuli.

4. Standing, Familiarization, Short Contractions: Similarly to generic contraction

familiarization, participants stood and only heard an auditory feedback when the system

recognized the contraction. The system recognized the same contraction duration as in the

first two tasks; it was subjectively up to the participant to define the short contraction.

Participants were again instructed the system recognized a contraction of certain duration

and they should explore the limits of the system. When they were comfortable making the

shortest contraction they thought the system would still recognize the experiment continued

with the next task.

5. Walking, Stimulus-Response, Short Contractions: Participants walked the obsta-



cle course again and attempted their short contraction when they heard an audio stimulus

through wireless headphones. Participants were randomly presented 15 (SD=5) stimuli.

6. Standing, Familiarization, Long Contractions: Participants stood and only heard

an auditory feedback when the system recognized the contraction. The system recognized

the same contraction as in the previous tasks, it was subjectively up to the participants to

define the long contraction. When they were comfortable making the longest contraction

they thought the system would still recognize the experiment continued with the next task.

7. Walking, Stimulus-Response, Long Contractions: Participants walked the obsta-

cle course again and attempted their longest contraction when they heard an audio stimulus

through the headphones. Participants were randomly presented 14 (SD=3) stimuli.

8. Walking, Stimulus-Response, Mixed Long and Short Contractions: Finally,

participants were instructed to walk the obstacle course again and make both short and long

contractions when they heard either a high pitched MIDI piano tone (short contraction)

or low pitched MIDI piano tone (long contraction) stimulus. Participants were randomly

presented 23 (SD=5) total stimuli: 12 (SD=3) short and 11 (SD=3) long.

4.1.3 Description

Participants were 10 adults: 5 women and 5 men, ages 23 to 34, all were colleagues from

Media Lab Europe who volunteered for the study. Subject 8 participated in a pilot study;

all others were naive.

4.1.4 Results

No false positives were detected while on-line during the first walking task. In addition,

the on-line recognition rates for the four contraction walking tasks were: generic 96%, short

97%, long 94%, and mixed 87%.

In the first familiarization task, participants were able to control the system in an average

of 3.75 minutes (SD=2.17), excluding the three participants who reached the fifteen minute



time limit and required additional feedback. The participants given feedback (2, 9 and 10),

all had the same difficulty that their contractions were too long. They were told once to

make their contractions shorter and then they were able to control the system in 11.75, 1.78

and 5.48 minutes respectively.

As mentioned in the Design Process, offline analysis was performed on the data from the

short and long contraction walking tasks to determine if short and long contractions are

separable into two gestures for control. Figure 4-3 shows the mean and standard deviations

for the short and long contraction durations. From the data, a duration boundary of 0.5

seconds was used to create a new recognition algorithm that recognized long and short con-

tractions separately. As with the original algorithm, only the first recognition was counted,

any additional recognition was ignored until the next stimuli. Applying this new short-long

detection algorithm to the mixed contraction data resulted in an overall accuracy of 51%,

with 55% shorts recognized and 47% longs recognized. The misclassification rate for shorts

as longs was 33%, and the misclassification rate for longs as shorts was 11%.
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Figure 4-3: Mean and standard deviation error bars for long and short contraction durations.
Closed circles indicate means for short and open circles indicate means for long.



4.1.5 Discussion

Users were able to control the system consistently with only the feedback that a contraction

was recognized. The generic contractions accuracy of 96% indicates EMG can be used

successfully as a controller.

The recognition of short and long contractions offline using the mixed data set was fairly

low. This may have occurred because the on-line algorithm recognized a small range of

contraction durations; therefore the longs may not have been sufficiently different from the

shorts for the participants to accurately produce them. The range of contraction durations

was set from pilot studies, which indicated most false positives occur from very long muscle

contractions, therefore a trade-off between reproducibility of long and short contractions

and increased false positives may occur if the range is widened.

It is important to note the durations of the short and long contractions are subjective

because the participants were not given feedback to their actual durations. Therefore the

participants trained themselves on what they considered were long and short contractions.

If the participants were given feedback for their contraction durations, they may learn to

consistently make different long and short contractions.

There were no significant differences in the subjective workload tests between contraction

tasks (one-way ANOVA F4,45=0.39,p<0.82). Though not reflected in the workload score,

after the experiments some participants stated they felt longs were more difficult than

shorts. In addition, we noticed the three participants that required feedback in the first

familiarization task became frustrated when they could not make the system recognize their

contractions; however, at the end of the experiment they were comfortable using the system.

4.2 Second Study, Experiment 1:

Controlling an Audio Menu with One or Two Arms

Once the first study confirmed the basic usability of EMG to recognize subtle gestures,

a second study aimed at exploring a more complex scenario was performed. In this case



subjects selected items from an audio menu through subtle gestures, performed with one

or two arms. While the first study assessed the EMG sensor as a single bit controller, the

second study examined how to express multiple bits of information, either by using two

controllers at the same time on different arms, or using a single controller to select one of

multiple options presented over time. Similar to the first study, the experiment evaluated

the system usability in a mobile context, so subjects performed tasks while in a simulated

mobile scenario, following once again the setup successfully employed by Pirhonen et al.

[68].

More formally, the hypotheses for this study are:

1. EMG-based recognition of subtle gestures can be used for complex interactions with

multimodal interfaces;

2. the interface bandwidth can be increased by using a single controller to select one of

multiple choices presented over time;

3. EMG controllers can be used concurrently on multiple muscles to increase the interface

bandwidth;

4. using multiple muscles is more efficient than using a single muscle, as there is less

time pressure;

4.2.1 Experimental Design

Using the wireless EMG device, the participants performed three walking tasks, one without

controlling any interface (to determine the subject's preferred walking speed), one while

controlling the audio menu with one arm and one while controlling the audio menu with

two arms. Each of the two menu controlling tasks was preceded by a short familiarization

session. While walking, participants navigated 8 meter laps around obstacles setup in a

regularly trafficked walkway at MIT Media Lab, see Figure 4-4. This setup was similar to

the one used in the first study and reported by Pirhonen et al. [68].



The walking speed of subjects during each task was used as an index for the effectiveness of

the interface. Petrie et al. [67] pointed out that if a mobile interface has a negative effect on

users, it will be reflected in them slowing down while walking. The same measure was later

used in other mobile HCI studies [68, 53]. Because subjects walked in laps of fixed length

the lap completion time was measured as a proxy for walking speed. The subjects' preferred

walking speed (PWS), i.e. the speed at which they walk while not using any mobile device,

was measured at the beginning of the experiment as a reference for comparison.

StartO-+ - -

% %0>
top- "* -

Comn uter
R Evaluator

Figure 4-4: Route walked by participants in Experiment 2.

Each session started with the placement of electrodes of the same type used in the first study:

disposable, sold-gel, self adhering, Ag/AgCl 9mm disc surface electromyogram electrodes.

Differently from the first study, the participants skin was not abraded before electrode

placement, as the improved amplifier (esp. by effect of the right leg driver feedback circuit)

eliminated signal artifacts due to skin creams or lotions noticed in the first study. Like in

the first experiment, the electrodes were placed around the upper arm, all at approximately

the same distance from the elbow, to test the feasibility of embedding them in an armband.

However, a new position was chosen to avoid the artifacts caused by pressure of the elec-

trodes against the torso noticed for some participants of the first study. The electrodes were

applied in three positions around the upper arm subject's dominant hand, such that one of

the differential pair input electrodes was centred on the biceps brachii, the other differential

electrode was on the outside middle of the upper arm, between the biceps and the triceps,

and ground was placed on the back of the upper arm, away from the muscle of interest (see

Figure 4-5). After the electrodes were applied, the wireless EMG device was mounted to



the upper arm with an elastic band between the electrodes and elbow.

Figure 4-5: Electrode placement used in the second user study.

Participants were given written instructions that informed them that the study was assessing

an EMG-based interface and they would control the system using their biceps while walking

using a subtle contraction that could be performed with their arm relaxed at their side. They

were also informed that the contraction recognized has a minimum and maximum duration

and a minimum strength requirement. Subjects were encouraged to try to perform the

contractions in a subtle way, without performing much visible movement while activating

the controller, however the experimenter explicitly said that performing gestures in a subtle

way is a matter of training, so if after a few attempts subjects could not easily perform the

gesture in a subtle way, they were suggested to fold their arm.

During the familiarization sessions, the wireless EMG device streamed 10 bit values at 160

Hz over serial Bluetooth to a 1.7GHz Pentium4-M PC running Linux. A custom-written

application, running on the PC, was used to visualize the signal and detect the gestures.

The experimenter visually inspected the signal streamed from the armband device to ensure

electrodes were in the correct positions. During this phase participants stood and received

tactile feedback, with associated audible noise, when the system recognized a contraction.

The system provided no further feedback as to the amplitude or duration of the contrac-

tion. Because the requirement for minimum training was already proved in the first study;

to speed up the procedure the experimenter coached participants if they could not learn

to control the system within the first two minutes of familiarization. Based on the signal

recording displayed on screen and knowledge of the detection algorithm, the experimenter

guided these subjects in performing longer, stronger or shorter gestures, sometimes suggest-



ing them to push or pull on pieces of furniture. In all cases, within two minutes of training

subjects were able to reliably control the device. During the familiarization, participants

were also asked to attempt to perform the gesture while walking around the obstacles used

for the subsequent phase of the experiment. The entire process did not exceed 15 minutes.

After the familiarization phase on the arm of the dominant hand, the same procedure was

repeated for the other arm. On the second arm subjects generally picked up the gesture

very quickly, and the second arm familiarization lasted at most 10 minutes.

Measurement of Preferred Walking Speed

After the familiarization phase on both arms, subjects were asked to wear a pair of different

armband devices (used to control the audio menu subsequently), and their preferred walking

speed was recorded: subjects were asked to walk for 10 laps and the experimenter recorded

the time to complete each lap.

Audio Menu

The audio menu used for the the experiment simulates what could be employed on a mobile

phone. The menu contained four items, all related to different ways to handle incoming

calls and they accessed sequentially from item 1 to item 4:

1. "Reject call"

2. "Ignore call"

3. "Reject call and send, 'I will call you back later.'"

4. "Reject call and send, 'In a meeting; call back if urgent."'

As the menu was navigated the description of the current item was read, just once, by a

computer voice synthesized through the AT&T Natural Voices Text-to-Speech Engine [4].

When a menu item was selected, the action was confirmed by the same voice.



Two conditions were used to access the menu:

" In the first condition, referred to as two-arm, subjects used the arm of the dominant

hand as "next" and the other arm as "select": every time a contraction was performed

with the dominant hand's arm the next item on the menu would become the current

one; a contraction with the other arm would select the current item. The first time

the next action was performed item 1 became the current item, if the same action

was performed on the last item the menu "wrapped around" and item 1 became the

current item.

" In the other condition, referred to as one-arm, the current item was automatically

advanced, two seconds after the item description was read. In this way subjects could

operate the interface just with one arm, used to select the current item. Subjects were

asked to chose one arm to control the interface, at the beginning of the task. Similar

to the first condition, the menu "wrapped around": after the last item the navigation

re-started from the top.

To simulate realistic conditions of use, subjects were prompted with audio stimuli mimicking

incoming calls. At randomized intervals of length uniformly distributed between 5 and 25

seconds, a synthetic voice of the same quality used for the menu items would announce an

incoming call. Each time one caller would be randomly selected with uniform distribution

from the following four: "Phone number 617 452 5695", "Prof. Smith", "Mom cell phone",

"Alex office". Subjects were informed of the four potential callers and were instructed to

react to each call following the instructions in Table 4.2.

It was generally necessary to explain to subjects that "reject call" would cause the caller

to notice that his or her call was rejected, while the "ignore call" option would give the

impression that the person called might not hear his or her phone ringing.

All 12 subjects participated in both tasks: within-subjects design. The one-arm and two-

arms tasks were performed in a fully counterbalanced order. During the two-arms task,

a total of 235 stimuli were presented to all subjects, corresponding to an average of 10.25



Caller
Phone number
617 ...

Prof. Smith

Your mother

Alex

Reaction
Reject the call

Ignore the call

Reject the call and send, "I
will call you back later."

Reject the call and send.
"In
a meeting, call back if ur-
gent."

Mnemonic Note
This is a number you do not know,
so you just want to reject the call
because you are busy.

This is your boss, you want to ignore
his call.

You are busy and cannot answer the
call, but you send a "call you back"
message not to alarm your mother.

Alex might need to contact you for
an emergency.

Table 4.2: Instructions and mnemonics for Experiment 2 in the second user study.

stimuli per subject (SD=1.055). For the one-arm task, a total of 112 stimuli were presented,

corresponding to an average of 9.33 stimuli per subject (SD=0.65). To limit the overall

duration of the study, the one-arm was stopped after two full cycles, from Item 1 to Item

4, which counted as a miss. In a similar way, the two-arms was disabled after 40 seconds.

The tasks were performed while walking laps as described above. The walking speed was

recorded and compared to the control case. Subjects heard the stimuli and the audio

menu item descriptions through wireless headphones. This ensured that variations in the

ambient noise of the laboratory did not have an effect on performance, and reduced the

noise generated by the vibrating motor.

4.2.2 Description

Participants were 12 adults: 8 women and 4 men all volunteers were recruited through

posters on the MIT campus and university mailing lists. All expressed interest to participate

in the study via email, demonstrating a minimum familiarity with computer systems, and

they were compensated $10 per hour. All subjects were naive in that they did not use an

EMG-based interface before.



Figure 4-6: One of the participants controlling the audio menu. Audio is heard through the
wireless headphones and the Intimate Communication Armbands are invisible under the
T-shirt sleeves.

4.2.3 Results

Overall, subjects performed correct selections of items from the audio menu for 226 of the

235 stimuli presented, corresponding to 96.2% correct selections. Incorrect selections were

performed in 6 cases (2.5%), in all except one of these an item adjacent to the correct one

was selected. In 3 cases (1.3%) no selection was made. In the two-arms condition subjects

performed correct selections for 120 of the 123 stimuli presented, corresponding to 97.6%

correct performance; in the same condition 2 erroneous selections (1.6%) and only 1 missed

selection (0.8%) occurred. In the one-arm condition subjects performed correctly for 106

of the 112 stimuli: 94.6%. The number of errors in this condition was 4 (3.6%) and 1 miss

(0.9%) occourred.

Out of the 12 subjects, 7 performed perfectly in both conditions (100% correct selections),

and other 2 subjects achieved a perfect score on at least one condition. Only 5 false positives

were detected during the entire experiment, but these did not affect the task performance as

they happened after a selection was made and before the subsequent stimulus. Additionally,

two times subjects reported that an incorrect selection (included in those reported above)



was made because of a false positive.

A one-way ANOVA showed no significant differences in the subject walking speed, when

comparing the data corresponding to the control condition, two-arms condition and one-

arm condition. Most of the subjects walked slower when operating the interfaces, however,

4 subjects walked faster in the two-arms than in the control condition, and 3 subjects

walked faster in the one-arm condition than in the control condition.

It was observed that 8 of the 12 subjects learned to control the device very quickly, and

that 4 naturally performed the gesture without much movement of the arm. When asked

at the end of the experiment, 7 out of 10 subjects expressed a preference for the two-arms

condition, generally because this provided more control and faster operation; only 2 out of

10 subjects preferred the one-arm condition and 1 did not express a preference. (note that

the sample for this preference is reduced to 10, as two of the samples were unavailable)

4.2.4 Discussion

Users were able to control the audio menu consistently while mobile. The overall accuracy of

96.2% indicates that EMG can be used successfully in complex and multimodal interfaces,

confirming hypothesis 1. In both conditions subjects performed with high accuracy, con-

firming that the interface bandwidth can be improved by either using multiple muscles or

using time-multiplexing strategies with a single controller (hypotheses 2 and 3). The higher

percentage of correct selections when two arms were used to control the interface, and the

preference expressed by the subjects confirm that the two-arm modality of interaction is

more efficient than the one-arm modality (hypothesis 4), of course with the extra expense

of another controller. However, the high percentage of correct selections when only one

arm was used (94.6%) suggests that time-multiplexing techniques can produce acceptable

results, even more than expected.

The subjects were involved in a walking task while operating the interface and their walking

speed was compared to a control condition where the subjects walked without performing

any other task. As discussed above, a reduction in walking speed is generally interpreted



as a sign of increased workload and need for attention on the secondary task [67, 68, 53].

Statistical analysis revealed the lack of significant differences between the two experimental

conditions, and between each of the two conditions and the control. This suggests that

controlling an EMG based interface, with one or two arms, does not involve a high workload

or amount of attention. However, further research is required for more conclusive findings.

Most of the subjects spontaneously reported that they enjoyed taking part in the experiment

and experiencing a novel and unusual way to control a computer interface.

4.3 Second Study, Experiment 2:

Assessing Noticeablilty of Subtle Gestures

One of the strongest motivations for the use of EMG in the context of mobile HCI is the

ability to sense isometric muscular activity, which enables the definition of input interfaces

that are subtle, unobtrusive and unnoticeable by those around the users. An experiment

was carried out to formally validate the hypotheses that:

1. Subtle gestures detected through EMG are not noticeable, at least when performed

by a trained user;

2. The gestures are particularly inconspicuous when the device is hidden under clothing.

4.3.1 Experimental Design

To test the two hypotheses, subjects were asked to watch a video recording of a trained

user activating the armband and to try and guess when the interface was being activated.

The video showed the experimenter himself, in front of a neutral background, performing

subtle gestures with his right upper arm, while talking with someone off screen, and it

had no audio. The video was divided into 3 scenes, showed without interruption one after

the other. In the first scene, a medium shot of duration 135 seconds, the experimenter



wears long sleeves, in the second one, with the same framing and a duration of 144 seconds,

with actor wearing short sleeves, while the last scene shows a close-up of the arm with

the electrodes and the armband device, and lasts 41 seconds. The video was shown on a

standard 17" LCD computer display, and the video window measured approximately 8"

by 6" at the center of the screen, under this window 5 buttons allowed subjects to rate

noticeability on a Likert scale (Figure 4-7). The same subjects who participated in the

second previous experiment took part in the video rating, immediately after completing the

two menu navigation tasks, so all were familiar with the EMG-based interface and the idea

of subtle contractions. Subjects were informed of the purpose of the experiment and were

given the following instructions:

You will see a video (with no sound) of someone wearing the EMG-detecting

armband on his right arm. The person in the video occasionally activates the

EMG interface performing a subtle gesture. Below the video you will see the

following sentence: "The person in the video is activating the EMG interface.."

and five buttons labelled:

"definitely"

"very probably"

"probably"

"possibly"

"not sure"

Please click on one of the buttons when you think that the person in the video

is activating the EMG interface.

4.3.2 Results

Guesses were considered correct if they were up to 1.5 seconds apart from the groundtruth.

Overall for the long sleeves section of the video, subjects correctly guessed when a contrac-

tion was performed for only 13.9% of the attempts (19 correct guesses over 137 attempts).

For the short sleeves section, 33.1% of the attempts resulted correct (47 correct guesses over



Figure 4-7: GUI used to rate the EMG video.

142 attempts). Finally, in the close-up case 75.9% of the attempts were correct (85 over 112

attempts). The subjects' confidence on correct guesses is reported in Table 4.3, where the

percentages of the correct guesses is reported for each level of confidence, so for example

36.84% in the "Long Sleeves" row and the "Definitely" column indicates that 36.8% of the

correct guesses in the long sleeves case were with maximum confidence on the Likert scale.

The same data is visualized in Figure 4-8.

Long Sleeves
Short Sleeves
Close-Up

% overall
correct

13.9%
33.1%
75.9%

definitely
36.84%
14.89%
58.82%

Table 4.3: Results of video

very probably
31.58%
21.28%
25.88%

probably
5.26%

23.40%
8.24%

possibly
21.05%
21.28%
2.35%

rating in the second user study.
75

not sure
5.26%

19.15%
4.71%
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Figure 4-8: Results of video rating in the second user study.

4.3.3 Discussion

The results show that subjects cannot easily guess when the interface is activated, confirming

that the interface is subtle. In the experiment subjects were told that the person in the

video would at some point activate the interface, in reality this information would not be

available, making the chance of noticing the interface even smaller. As expected (hypothesis

2), when the armband is hidden under clothing it becomes much less noticeable. Most of

the subjects informally reported that they found it difficult to tell when a contraction was

performed.

The results can be compared to the probability of a correct uninformed guess, that is the

probability of correct guess assuming that subjects did not look at the video and guessed

randomly. This situation can be modelled with the attempts having a uniform random

distribution. Considering each of the "long sleeves" and "short sleeves" sequences sepa-

rately, and remembering that an attempt is considered correct if it is within 3 seconds of

a contraction, a high enough number of attempts evenly spaced in time would give 100%

chance of correct guess. The minimum number of attempts for 100% chance of guessing



is N100% = DS / Da, where Ds is the duration of the sequence and Da is the uncertainty

interval, in this case 3 seconds. The "long sleeves" condition lasted 135 seconds, so Nioo%

= 45 attempts would give a 100% chance of guessing correctly.

During the experiment subjects cumulatively attempted to guess 137 times, corresponing

to an average of 11.4 attempts per subject, and to a 11.4 / 45 = 25.3% chance of correctly

guessing. In the "short sleeves" condition, 142 attempts were made corresponding to an

average of 11.8 attempts per subject, over 144 seconds, so Nioo% = 144 / 3 = 48 and the

uninformed guess chance is 11.8 / 48 = 24.6%.

Therefore, in the long sleeves condition the subjects guess performance, 13.9%, was much

worse than completely random,25.3%, implying that watching the video did not help guess-

ing, confirming that the contractions are unnoticeable. In the short sleeves case subjects

guessed is 8.5 percentage points better than chance, however overall fairly low. The results

of the close-up condition, where subjects guessed correctly most of the time confirm that

participants understood the task.

4.4 General discussion

The results from the two studies demonstrate that the Intimate Communication Armbad can

be reliably used in a mobile context. In both the initial and the audio menu experiments

novice subjects learned to use the system very quickly, with little feedback about their

performance. Subtle gestures proved to be effective in controlling a multi-modal interface

even when mobile. While expressing different subtle gestures with a single arm seems not

to be very reliable (at least with the current detection algorithm), subjects did not have

any problems in using multiple muscles at the same time, nor to use one single muscle to

select one of different options presented over time.

The gestures recognized by the armband device are indeed subtle, the results of the last

experiment show that it is hard for observers to guess when someone is performing a gesture.
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Part III

Notifying Glasses
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Chapter 5

Background: Peripheral Vision,

Displays and Notification Systems

The design of the Notifying Glasses - the second novel Intimate Interface presented in

this thesis - is based on previous research about peripheral vision and peripheral displays,

near-eye displays and notification systems. This chapter provides an overview of relevant

findings in these fields.

5.1 Peripheral Vision

Peripheral vision is at the edge of the field of view; it is very sensitive to movement and less

to detail and colour compared to central or foveal vision. In fact, the periphery of the retina

is richer with rods (visual perception cells responding to movement) and has fewer cones

(visual perception cells responding to colour) as compared to the center (fovea). Peripheral

vision is often used unconsciously and plays an important role in orientation and navigation

[87]. Even if not without criticism, research in cognitive psychology [48] suggests that

peripheral vision can generally be treated as a separate (albeit not independent) channel

from foveal vision.



5.1.1 Visual Field Narrowing

Peripheral vision is affected by "visual field narrowing": studies observed that peripheral

vision is temporarily reduced under conditions of high workload in the central visual field or

stress [75, 89]. Early studies suggest that the nature of this narrowing is perceptual: higher

workload on a task in central vision would temporarily induce "tunnel vision" [88]. More

recent studies [89] confirm the narrowing, but favor a "cognitive tunnelling" interpretation,

according to which the narrowing is related to attention rather than perception. Stokes,

Wickens and Kite [75] report that the tunnelling might be selective: it affects the recognition

of targets but not the orientation function of peripheral vision.

5.2 Peripheral Vision Displays

Early examples of peripheral displays were built and marketed in the late nineteen fifties

as instrument landing aids for aircraft [75]. These displays were electro-mechanical devices

designed to attract the attention of pilots while they were focused on other parts of the

aircraft instrumentation. Early laboratory experiments on aircraft peripheral displays were

reported in the early sixties by Brown, Holmquist and Woodhouse [9]. They compared

peripheral displays with traditional instrumentation and found that the latter performed

better. Later studies report performance improvement if peripheral displays are used to

show redundant information for tracking tasks [75]. A more recent peripheral display for

aircraft instrumentation is the Peripheral Vision Horizon Display (or "Malcolm Horizon

Display") [55], a laser projected line reproducing the horizon line. Overall human factors

literature shows interest for the potential advantages offered by peripheral displays, however,

their effectiveness has been often questioned (see [75] for a review). Recent studies [62]

report firmer performance improvements.



5.3 Near-eye Displays

In a different application domain than aviation, Ebrahimi and Kunov proposed a wearable

peripheral vision display to help lip-reading for profoundly deaf people [23]. The display is

embedded in eyeglasses and connected to an audio processing system. Speech features that

cannot be detected by lip-reading are visualized on the peripheral display, a 5 by 7 matrix

of LEDs positioned in the side of eyeglass frames. Significant improvement of lip-reading

performance for profoundly deaf patients was reported using the system.

Other near-eye displays, generally referred to as head-mounted displays (HMDs) or eyeglass

displays, have been reported since the nineteen sixties. These are graphic displays worn

near the eyes, generally creating the perception of a large display about one meter away

from the user. HMDs and eyeglass displays have been proposed both for specific and general

purpose applications [5], often with a mixed reality interface paradigm. In all cases, the

display has a limited field of view and it is positioned in the users foveal vision.

5.4 Ambient Peripheral Displays

Researchers in the area of HCI and ubiquitous computing referred to periphery and periph-

eral displays in a more general sense, referring to the periphery of attention. In 1995 Weiser

and Brown [85] introduced the concept of "calm technology" as technology that can easily

move between the periphery and the center of users attention. The authors point at the

art piece "Dangling String" as an early example of peripheral, calm technology. "Dangling

String" is a piece of plastic wire hanging from the ceiling and connected to a motor that

makes it spin according to the amount of traffic on an Ethernet network. According to the

authors, users can "attune" to the movement and noise of the string, but only notice sud-

den changes, informing them of irregularities in the network traffic. After Weiser, a number

of researchers and designers proposed a variety of peripheral interfaces, both as separate

devices [16, 21] or as part of a computer's graphical user interfaces (GUIs) [12, 54].

In the first case the devices are generally referred to as ambient displays: pieces of furniture



or architectural elements that change their appearance or move to display remote signals;

examples are light fixtures connected to the number of accesses to a web page [21] and

picture frames that display health and personal information of a remote person [16]. In the

other case, information - generally text - is displayed on the border of a computer screen

as part of a standard desktop graphical user interface; examples are "news tickers" [54] and

applications that show notifications for incoming email messages.

Heuristics have been proposed to evaluate ambient peripheral displays in the physical envi-

ronment [56] but not many user studies have been reported to date (with a notable exception

[17]). More systematic evaluation has been reported for peripheral displays within GUIs.

Maglio and Campbell [54] compared how three types of scrolling displays performed in terms

of distraction and memorability of information displayed measuring the performance drop

on a text editing primary task. They report that motion in the periphery can be profitably

used to signal display update, while continuous motion has a distractive effect without in-

creasing the memorability of the content displayed. Bartram et al. [7] studied how icons'

movement on computer screens can convey information and how much it negatively affects

users in terms of distraction. Motion was detected better than changes in colour and shape,

especially in the periphery. Contrary to Bartram et al.'s prediction, there was no significant

interaction between central workload and distraction caused by motion.

5.5 Notification Interfaces

While some of the peripheral displays tackle notification, recent research examines the

notification problem in the specific context of interaction with mobile devices. Hansson

et al. [33] propose a classification of mobile notification systems according to subtleness

and publicity. They suggest that it is desirable for notifications from mobile devices to be

not only subtle but also public so that people co-located with the user are aware of the

interaction. Following these guidelines the same authors propose the "Reminder Bracelet".

a prototype wristband on which LEDs blink to notify reminder cues from a PDA.

Marti and Schmandt [58] approach interruptions from a group voting perspective: each



member of a (co-located) conversation group wears a finger ring that vibrates when any of

the members has an incoming call, without indication of who the call is directed to. Any user

can block or veto the incoming call by subtly pressing a button also embedded in the ring.

Campbell and Tarasewich [13] explore the limits of minimal visual notification displays in

terms of amount of information that can be displayed and user comprehension and learning.

Two user studies are reported based on a desktop computer display simulating a small

number of multicolour LEDs, which could be embedded in mobile or wearable devices.

An alternative approach to notifications from mobile devices is that of intelligent context

aware filtering: the system combines data from environmental and body worn sensors, as

well as information about incoming alerts, to determine whether and how to deliver the

notification. Various prototypes [45, 39] use information from body worn accelerometers,

audio, and location to infer whether a notification is acceptable either from the user's

personal point of view and from the social point of view. Incoming notifications would then

be blocked or delivered through a modality judged appropriate both for the user and those

around them.

Vibrotactile displays provide a good solution for subtle notification. The Notifying Glasses

can provide an alternative modality of notification, especially because they overcome some

of the main limitations of tactile actuators (as discussed in Section 2.3): the fact that

they are highly attention demanding, often audible and that they involve significant power

consumption.
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Chapter 6

Design and Implementation

This chapter describes the design and implementation of the Notifying Glasses, the second

Intimate Interface prototype. Similar to the process follwed for the Intimate Communication

Armband, the design of the glasses was performed iteratively and validated through users

studies, which described in Chapter 7.

6.1 Design

The Notifying Glasses are a subtle notification display designed around ordinary eye-glass

frames. The frames were augmented with a low resolution visual display: two arrays of

four small red LEDs and four small green LEDs. Each array is placed at the end of the

glasses' arms, near the lens, as illustrated in Figure 6-1 and Figure 6-2. The LEDs are lit

at very dim intensity to display moving patterns in the wearers peripheral field of view,

without disruption to those surrounding them. The position of the display allows users to

easily monitor it glancing to the side without any occlusion in the foveal field of view. The

patterns are displayed in low intensity to minimize irritation in case of their persistence if

users decide not to react to the cue. The display was designed to utilize the visual field

narrowing phenomenon (as described in Section 5.1); if users are under high workload the



display should become unnoticeable. This makes the display naturally adaptive to users

cognitive workload and stress.

Figure 6-1: The Notifying Glasses.

The glasses were designed as an accessory or peripheral for mobile devices. They have a

Bluetooth interface so that they can be easily connected to existing mobile phones and PDAs

and be used as an alternative to ringtones or vibrating alerts. Different cues can be defined

through different colors or different patterns of movement. For example, different colors can

be associated to different caller groups, e.g. red cues for calls from work, green cues for calls

from the family, similar to what is commonly done with ringtones. By recognizing the color,

users can get more information about the source of the notification in an immediate way,

and make a decision about whether or not to attend to it, for example by answering the

phone. By adjusting the luminous intensity and velocity of cues it is possible to influence

their visibility, making them more or less noticeable. Less noticeable cues are less likely to

interrupt if the user is immersed in another activity, they are more likely to be noticed later

or not be noticed at all. In this way cues that are more visible can be used for notifications

that have higher priority, while notifications with lower priority can be prevented from

interrupting the user if he or she is immersed in another activity.

As discussed in Section 1, mobile devices are generally used in public spaces where users

are surrounded by co-located people generally not involved in the interaction. In some

cases users might even be engaged in person to person interaction with those around them.

Therefore, alerts from mobile devices should not be a cause of embarrassment and disrup-
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tion for the immediate environment. The disruptive effect of notifications should also be

minimized for the addressee: while users generally want to receive notifications [33] arbi-

trary interruptions can have a negative effect on performance [1, 20]. In this light, it would

be ideal to interrupt users only when they are not focused on other activities. Because

mobile devices are carried with users for most of the day the chances of an inopportune

interruption are even higher than when dealing with desktop computers. If incoming alerts

can be classified by priority or importance, a notification system should map these to levels

of disruption, making less important alerts result in less distracting cues.

Figure 6-2: Detail of the visual display. The LEDs are covered with a sand blasted screen
to diffuse the light, not shown in this image.

These requirements must be met by designing Intimate Interfaces that present the informa-

tion in a subtle non-obtrusive way and enable users to make the decision about if and how

to react to incoming notifications, rather than automatically filtering notifications based

on context. In general, context aware intelligent filtering could be used to determine the

importance of incoming information so that this factor can be made salient to users.

To summarize, a notification system for mobile devices should:

1. deliver noticeable cues to the addressee;

2. not disrupt the users immediate environment;



3. be subtle for the addressees without distracting them in sensitive situations;

4. allow adjustable degree of disruption

Hansson, Ljungstrand and Redstrm [33] suggest that for interruptions to be more socially

acceptable they should be public, so that co-located individuals can more easily understand

and accept the behavior of mobile technology users. In this thesis a different approach is

proposed: it should be left to the users whether and how to inform those around them, start-

ing from the observation that a private notification can be made public, but not viceversa.

It is not uncommon that mobile users want to ignore incoming notifications to continue the

interaction with co-located people, in this case a public alert would only be unnecessary

and distracting for the others.

6.2 Implementation

The initial prototypes for the Notifying glasses were conceived as complementary to a high

resolution foveal eye-glass display. The peripheral cues would pre-alert the user about the

availability of content for the foveal display, because a sudden or undesired activation of the

high resolution, and high attention-drawing display could cause too much distraction and

represent a danger for the user. Therefore the first version of the Notifying glasses included

a single red LED glued to the side of an eye-glass display by Micro-Optical [59). A second

LED was added on the opposite side to catch the wearer's attention even if he or she was

looking to either side of the glasses.

Initially, the LEDs were turned on to signal an active incoming call. It was soon realized

that this was not very efficient: if the luminous intensity was too low the signal would

not be noticeable, while increasing the intensity of the LED light became irritating for the

eye, and moreover it caused the skin of the wearer to visibly glow and become noticeable

to observers. The following step was to experiment with blinking and fading patterns on

the two LEDs, which showed to be promising: cues could be noticed more reliably, while

being invisible for those surrounding the wearer. Because peripheral vision is known to



be especially sensitive to movement, in a subsequent prototype the number of LEDs was

increased to 4 on each side, so that moving patterns could be displayed.

The current prototype includes LEDs of two different colors, red and green, four of each per

side. The display is controlled through the Bluetooth RFComm profile, a protocol supported

by many existing mobile devices and personal computers. The display's controller behaves

essentially as a sequencer: the intensity of each LED can be individually programmed to

follow a pattern.

Patterns, as well as start and stop commands, are sent to the display via Bluetooth using

a syntax defined by the author. The intensity of each LED is controlled through Pulse

Width Modulation (PWM) at 61Hz (to avoid the perception of flickering) and it ranges

from 0 (off) to a maximum of 127 corresponding to approximately 2 mcd (at the maximum

intensity each LED is driven with a 50% duty cycle, a current limiting resistor of 1K Ohm is

included in the circuit to reduce power consumption and because, given the short distance

between the eye and the LED, only low intensities are tolerable). Each LED luminousity

pattern is characterized by two intensity values that can be selected arbitraryly, and by 4

timing parameters that determine the linear interpolation of the intensity over the pattern

duration. Based on the PWM period, the time increments are by 16ms. This setup allows

the display of smooth moving cues by fading in one display element while the neighboring

one fades out, a technique similar to antialiasing in computer graphics.

An 8-bit Atmel ATMega88 microcontroller is used to drive the display, and a PROMI-

ESD Bluetooth module provides a wireless interface[41]. The sequencing and pulse width

modulation on 8 independent channels were implemented in C, as no readily available

convenient hardware solution was found to drive this number of independent PWM channels.

Each pair of red and green LEDs are connected to one of the microcontroller's output pins,

and controlled in a time division multiplexing fashion (each pair of LEDs of different colors

is connected in parallel with opposite polarities, so that by inverting the applied voltage

it is possible to turn on one or the other). The microcontroller board, Bluetooth module

and a single cell 3.7V, 130mAH Li-Po, are housed in a box of about 3cm x 4cm x 2cm,

and suspended on the back of the glasses through flat ribbon electrical wires that connect



the LEDs to the display driver. The software implementation is based on events, regulated

by one of the microcontroller's built-in timers, governing the turning on and off of the

LEDs. A simple round-robin scheduler was implemented to handle the recalculation of the

LEDs intensity according to the current sequence while still attending to the events and to

commands received through the serial link.

The total power consumption of the device is approximately 30 mW, attributable to the

various components as follows: the Bluetooth module consumes on the order of 10mW if

communicating for about 30% of the time (26mW when communicating, 3mW if not), the

microcontroller consumes about 12 mW, and the LEDs 7 mW or less assuming that they

stay on most of the time. A single cell 3.7V, 130mAH Li-Po battery is used to power the

device for several hours. The sum of LEDs and microcontroller consumption is significantly

less than a vibrating motor, which is at least 72mW [83], making the wearable peripheral

display an attractive alternative.

To demonstrate the functionality of the glasses, driver applications were implemented both

for a Linux PC and for SymbianOS-based mobile phones (both series 60 and UIQ), such as

the Nokia 6600 and the Motorola A1000. The phone application listens for incoming calls,

turns on the glasses when one occurs, and turns them off when the user answers the phone

or if the call is sent to voicemail. A demo mode is also available in which the mobile device

essentially functions as a Bluetooth remote control that can display a number of patterns

on the glasses. A derived application developed for the A1000 phone was used also as a test

stub for one of the usability experiments.



Chapter 7

Evaluation

To validate the design of the Notifying Glasses as an Intimate Interface formal usability

experiments were designed and run. In short, the purpose of the study was to analyze

how subjects reacted to peripheral visual cues delivered through the glasses, while they

were involved in other primary tasks. The initial experiments tested notification in realistic

conditions: subjects were asked to report the perception of visual cues received through

the glasses while they were engaged in everyday tasks such as walking or editing text on

a standard PC. The results of the study showed that the glasses are effective in delivering

notification cues and that the level of visibility and disruption of the cues can be adjusted

by modulating the luminous intensity and the velocity of the displayed patterns. These

results encouraged further investigation about the effects of variable workload on the per-

ception of peripheral visual cues and in particular to verify whether the cognitive narrowing

phenomenon (see Section 5.1) affected the use of the glasses. A second experiment using

more controlled condition showed that it is possible to design low visibility cues that are

less noticeable under high workload. These type of cues can therefore be useful to signal

non time-critical alerts, for which the cost of interruption is comparable or higher than the

information value (often the case for incoming messages in everyday situations). To probe

the bandwidth of the system, another experiment was designed to test the recognition of

cues of different colours and different movement directions.



More formally, the hypotheses for the study were:

1. subjects can perceive the visual cues delivered through the glasses while they are

involved in a primary task;

2. the noticeability of the cues can be influenced by their intensity and velocity of their

patterns;

3. the cues are less noticeable if received under conditions of higher workload;

4. multiple bits of information can be delivered through the glasses, encoded with dif-

ferent colours and movement patterns.

It must be emphasized that the all experiments described in this chapter were designed to

test the visibility of the cues, and not their effect on primary task performance, therefore

none of the experiments include a control condition where the primary task is performed

without interruption. The effects of notification on the primary task was assessed qualita-

tively verifying that subjects were not impaired from completing the primary task. Quanti-

tative measurement of performance degradation on the primary task can be interesting, but

only in comparison with the degradation caused by other notification systems. Comparing

different sensory modalities of interruption, though, involves different types of interaction

between the sensory channel used for the primary task and that used for the notifications

(e.g. visual-visual vs. visual-auditory) therefore this type of comparison was left out of the

current study and left for further investigation.

From the technical point of view, the experiments required the design and implementation

of software applications to display cues through the Notifying Glasses, measure the reaction

time and in some cases record audio. The software was developed in C++ in Linux. A multi-

threaded architecture was implemented to allow precise timing measurement and stimuli

presentation.



7.1 Experiment 1: Realistic Conditions

During this experiment subjects were required to react as quickly as possible to stimuli

presented on the wearable peripheral display while sequentially engaged in different primary

tasks. The experiment involved visual peripheral cues all of the same colour, red, but with

different characteristics in terms of light intensity and velocity. Moving patterns on the

display were designed as a combination of LED intensities and velocity of LED cycling:

"dim" brightness 8% of the maximum LED brightness; "bright" brightness 20% of the

maximum brightness; "slow" the four LEDs were lit in a cycle of period 1300 milliseconds;

"fast" the LEDs' cycle was twice as fast (period 650 milliseconds). These settings were

chosen through a pilot study.

7.1.1 Experimental design

A fully counterbalanced within-groups design was used where subjects were asked to report

the perception of cues from the wearable peripheral display while engaged in two primary

tasks: editing text on a personal computer and walking around obstacles in a trafficked

walkway of the Media Lab. The tasks were designed to ensure ecological validity for usage

of mobile devices. The comparison of a stationary task and a navigation task was considered

necessary given that peripheral vision plays a key role in obstacle avoidance and perception

of movement [87].

The editing task was performed on a laptop computer (14" screen, external mouse) using

a standard text editing application in two sessions lasting approximately 20 minutes each,

interleaved by the walking task. Four different pattern types were presented during the

editing task, resulting from the variation of speed and intensity: (dim, slow), (bright,

slow), (dim, fast) and (bright, fast). Presentations were in balanced random order and

at random intervals (uniform random distribution between 20 and 50 seconds). Subjects

were asked to report perception of peripheral visual cues by clicking on a button in the

computer graphical user interface, as illustrated in Figure 7-1. The text was an excerpt

from a scientific dissertation [42], modified to include errors in verb conjugation and word



order, in a similar manner to the study performed by Maglio and Campbell [54]. The text

was selected so that editing would require longer time than the duration of the experiment.
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used for text editing and the button in the smaller window (top-left) was used to report
perception of peripheral cues.

For the walking task, participants navigated 8 meter laps around obstacles set up in a

regularly trafficked walkway in Media Lab, see Figure 4-1. This setup was similar to the

one reported by Pirhonen et al. [68], who noted that it allows measurement while preserving

realism and ecological validity. The patterns presented during the walking task were of types

(dim, slow) and (bright, slow). Presentations were balanced in random order and at random

intervals. Subjects were asked to report perception of peripheral visual cues using a push-

button connected to the glasses through a wire. For both tasks the cues were turned off

when the subject reported seeing them or after a 30 second timeout. Reaction times were

recorded automatically.

7.1.2 Description

Ten subjects were recruited from MIT (students and staff) and were compensated $10 for

one hour of their time. All subjects had normal or corrected to normal vision (through



contact lenses), four used contact lenses.

7.1.3 Results

Overall 94.6% of the cues were noticed within 30 seconds of their presentation. Cues of type

(bright, slow) were noticed in more cases (96.5%) before the timeout, compared to other

types (95% of type (bright, fast), 94% of type (dim, slow) and 93% of type (dim, fast) were

noticed within 30 seconds of their presentation).

Cues of type (bright, fast) were noticed faster than the (dim, slow) type (means of 4.73 sec

SD = 0.36 and 6.63 sec SD = 0.36 respectively, two-way one-factor ANOVA and Tukey-

HSD p<0.001), both while walking and editing. The comparison of reaction times to all

the four cue types in the editing task (two-way two-factor ANOVA on cue intensity and

cue velocity) revealed that the bright cues were noticed significantly faster than dim cues

(p<0.001 and Tukey-HSD p<0.001), while the velocity did not have a significant effect.

The results are summarized in the cumulative distribution curves shown in Figure 7-2 and

Figure 7-3. These curves show the fraction of total number of presentations that were

perceived within a given time period; for example, in Figure 7-2, about 97% of all patterns

of type (bright, slow) were seen within 10 seconds, while only about 79% of those of type

(dim, slow) were detected by the same time.

7.1.4 Discussion

The results of experiment 1 confirm that the wearable peripheral display can be used to

deliver noticeable cues while users are engaged in everyday activities, even when mobile,

confirming the first hypothesis. Figures 7-2 and 7-3 show that 94% of the most visible

cues were always noticed within 15 seconds of their presentation. The gradual response

in reaction time confirms that the display is subtle in delivering cues. The distribution

curves associated with patterns of different brightness and speed confirm that it is possible

to adjust the level of disruption of the cues making them more or less noticeable, validating

the second hypothesis.



Experiment 1 - Editing & Walking
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Figure 7-2: Cumulative distribution curves for (dim, slow) and (bright, slow) patterns in
experiment 1. The data is relative to both the "Walking" and "Editing" tasks, as indicated
in the legend.

A number of subjects (six) spontaneously reported to periodically "check" for incoming

alerts, deliberately shifting their attention between the main task and looking for notifica-

tions. This behavior is similar to what Weiser [85] argued for calm technology: that it can

the be easily shifted between periphery and the center of attention. The shift is possible

thanks to the selectivity of foveal vision, while it would not be possible with audio or vi-

brotactile alerts, which tend to instantaneously capture the users attention [28] (discussed

in [69]).

7.2 Experiment 2: Variable Workload

The second experiment was designed to measure the effects of primary task workload on

the perception of the cues. To induce a different workload subjects were asked to read a

narrative text from a computer monitor at two different speeds. Each reading task lasted

pa
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Figure 7-3: Cumulative distribution curves for the editing task in experiment 1.

approximately 10 minutes and was repeated twice (same speed, same text), for a total of

4 conditions ({high speed, low speed} x {first time reading, repeated reading}). Subjects

were instructed to keep one of their hands on the computer's keyboard and press it as soon

as a peripheral cue was noticed.

7.2.1 Experimental Design

The experiment used repeated measures, within-subjects design, counterbalanced by unique

task and pattern. Patterns of types (dim, slow) and (bright, fast), all of the same color,

red, were presented during each of the sessions in balanced random order presentations

at random intervals uniformly distributed between 25 and 70 seconds. Cues were kept on

for a maximum of 15 seconds, if the timeout was reached the system passed to the next

presentation.

The text was the beginning of a short story [61] and it -was displayed on a standard 19" LCD



computer monitor using 14 point font. A software application was written in Java to show

the text two lines at a time and advance the content one line at a time automatically, a setup

commonly used for reading speed experiments [14]. At the beginning of the experiment,

using a different text [81], subjects were asked to adjust the display rate to be as fast

as possible while still allowing them to read and understand it. The resulting speed was

then used as "high speed" while half of the value was used as "low speed". Each subject

was then presented the text starting from the beginning at either high or slow speed, for

approximately 10 minutes. After the first presentation was repeated, the continuation of

the text (allowing 2 lines overlap) was displayed at the alternative speed. To ensure that

subjects actually engaged in reading, they were given 5 questions about the content before

the beginning of calibration, and were asked to answer them at the end of the experiment.

7.2.2 Description

Ten new subjects were recruited from the MIT population (students and staff) and were

compensated $10 for one hour of their time. All subjects had normal vision.

7.2.3 Results

Overall 94% of the cues were noticed within 15 seconds from their presentation. All of the

highly visible (bright, slow) cues were noticed before the timeout regardless of the primary

task. The less visible (dim, slow) cues where noticed 80% of the times while users were

engaged in the first time reading at high speed, the perception rises to 88% during repeated

reading at high speed and first time reading at low speed. and to 96% during the repeated

reading at low speed.

The notification cues were noticed faster when the users read at low speed than at high

speed (means of 0.99 sec SD=0.09 and 1.37 sec SD=0.09 respectively, two-way three-factor

ANOVA p<0.01, with factors cue type, reading speed, reading repetition, Tukey-HSD

p<0.01). Different cue types also caused significant differences in reaction times. Sub-

jects detected (bright, fast) cues quicker than (dim, slow) cues (means of 1.02 sec SD =
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0.09 and 1.34 sec SD = 0.09 respectively, p<0.05). Figure 7-4 shows the comparison of

reaction times marginal means for all the tasks and patterns used in the experiment, with

95% confidence level intervals (Tukey-HSD). All subjects were able to correctly answer the

questions about the text content.

(dimslow)
HS - 1st

(dim,slow)
HS - 2nd
(dim,sow)

LS - 1st
(dim,slow)
LS - 2nd

(bright,fast)
HS - 1st

(bright,fast)
HS - 2nd

(bright,fast)
LS - 1st

(brightfast)
LS - 2nd

Experiment 2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Reaction Time (seconds)

2.2 2.4

Figure 7-4: Comparison of mean reaction times for all the tasks and
2, with 95% confidence bars.

patterns of experiment

7.2.4 Discussion

The results of this experiment confirm the third hypothesis: the visibility of the peripheral

cues depends on the workload of the primary task. The data also reinforces the second

hypothesis: the level of disruption and visibility of cues can be controlled through their

brightness and velocity.

Figure 7-4 shows that different tasks cause significant differences to the perception of low

visible (dim, slow) cues, while the effect on the more visible (bright, fast) cues is not as

strong. Thinking of the primary task workload as a barrier for the perception of peripheral
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cues, this data suggests that the disruption level of different cues determines how high of a

workload barrier the cue can cross.

7.3 Experiment 3: Recognition of Multi-Colour Cues

The third experiment was designed to investigate the perception of cues characterized by

different colours and different moving patterns in relation to variation of primary task

workload. Similarly to the previous experiment, different workload was induced through

variable reading speed and repeated reading of the same text. However, because the results

from the previous experiment revealed that only "reading for the first time at full speed" and

"reading for the second time at half speed" produced significant differences in the reaction

time, only these two conditions were tested. Six different types of cues were used in this

experiment resulting from the combination of 3 different colours, red, green, red+green,

with 2 different moving patterns: front-to-back and back-to-front. Differently from the

previous experiments, intensity and velocity of the patterns were kept constant. At the

beginning of each session, subjects were shown the 6 different patterns and were asked to

identify them and chose a name to identify each pattern. Subjects were asked to react to

the perception of each pattern by pressing the computer spacebar and pronouncing aloud

the name that they had chosen for the pattern shown. The same computer used to display

the text and drive the glasses was used to record audio immediately after each cue was

presented. The cue identification audio clips were analyzed off-line manually.

7.3.1 Experimental Design

The experiment used repeated measures, within-subjects design. Patterns of the 6 types

described above were presented during each of the sessions in balanced random order pre-

sentations at random intervals uniformly distributed between 10 and 40 seconds. Cues were

on for a maximum of 15 seconds, if the timeout was reached the system passed to the next

presentation.
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The text was the beginning of a short story [60] and it was displayed on a standard 19"

LCD computer monitor using 14 point font. The same Java application developed for the

previous experiment was used to display text two lines at the time with constant display

speed. The same procedure described for the second experiment was follwed to determine

the full reading speed: using a different text [61] subjects were asked to adjust the display

rate to be as fast as possible while still allowing them to read and understand. The resulting

speed was then used as high speed while half of the value was used as low speed. Each subject

was then presented the text starting from the beginning at high speed, for approximately 20

minutes. The same text was then presented at half speed. To ensure that subjects actually

engaged in reading, they were given 5 questions about the content before the beginning

of calibration, and were asked to answer them at the end of the experiment. During both

the reading tasks, cues were presented through the glasses and subjects were requested to

report their perception by pressing the space bar and identify them verbally.

7.3.2 Description

Ten new subjects were recruited from the MIT population (students and staff) and were

compensated $10 for one hour of their time. All subjects had normal vision or corrected

normal vision.

7.3.3 Results

The color of the cues was successfully recognized for 97.4% of the cues, the direction for

93.3%, and the two characteristics were correctly recognized at the same time for 91.3% of

the cues. Only one of the cues was missed during the entire experiment. The confusion

matrices for color and direction of the cues are reported in Table 7.1 and Table 7.2. One of

the subjects identified all the cues correctly, while other 3 subjects correctly identified all

the colors.

In the "high speed" condition the color was recognized in 97.9% of the cases, direction

in 92.8%; 91.1% of the cues were correctly identified in color and direction. In the "slow
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speed" condition color was correctly identified for 96.9% of the cues, direction for 93.9% of

them, and both characteristics were symultaneously identified in 91.4% of the cases.

A 3-way ANOVA test revealed that the colour or direction of the cues does not influence the

reaction time, however, differences produced by the two different reading conditions have

statistical significance (p<0.05). The results are summarized in Figure 7-5

recognized as red recognized as green recognized as mixed
red cues
green cues
mixed cues

99.7%
0.6% 97.4%

4.9%

0.3%
1.7%

95.1%

Table 7.1: Confusion matrix for the color of the cues in Experiment 3. Note that the rows
do not always add to 100 because of the one cue that was missed.

recognized as fwd recognized as bwd
fwd cues
bwd cues

95.9%
9.0%

4.1%
90.8%

Table 7.2: Confusion matrix for the direction of the cues in Experiment 3. Note that the
rows do not always add to 100 because of the one cue that was missed.

Full Speed
Reading

Hal Speed
Reading

Reaction Time in Experiment 3

1.800 1.850 1.900 1.950 2.000 2.050
Time (seconds)

2.100 2.150 2.200

Figure 7-5: Comparison of mean reaction times for the two reading tasks of experiment 3,
with 95% confidence bars.
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7.3.4 Discussion

The high recognition rate demonstrates that the Notifying Glasses can be successfully used

to deliver multiple bits of information through subtle visual cues while users are engaged in

an another task. Critical information should be encoded in the cues color, as this feature

was better identified by subjects. In particular the confusion matrix for the color of the cues

shows that red is confused the least, followed by green. The use of both the colors at the same

time was not as successful, but still more accurately identified than direction of movement.

The cues direction was identified less reliably, even though correct recognition rate of 93.3%

suggests that this characteristic can still be used to encode less critical information. Even

though lower than the color recognition rate, the direction recogntion rate compares very

well to the maximum recognition rate obtained through tactile displays [11].

The perception of direction of movement seems to be highly dependent on the position of

the display on the user's face. At least two of the LEDs on each side of the glasses need to

be in the peripheral visual field of the user, for him or her to distinguish the direction of

movement. If this is not the case, because of the way the glasses sit on the user's face, it

will be necessary to glance at the side to identifiy the movement.

Contrary to expectations, when reading at half speed users reacted to the cues more slowly

and the overall recognition rate was lower. Probably these effects are due to the not coun-

terbalanced experimental design: all subjects read at full speed first and then at half speed.

This might have caused subjects to be more tired when reading at half speed or an habit-

uation effect to the presentation of cues. Further experiments with a fully counterbalanced

design need to be run to clarify this issue.
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Part IV

Concluding Remarks
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Chapter 8

Conclusion and Future Work

This thesis introduced Intimate Interfaces: novel interfaces that allow discrete and subtle

interaction with mobile devices, in order to enable users to access the benefits offered by

these devices without causing disruption to people around them.

Mobile devices allow personal and private communication from virtually anywhere and any-

time, however, they are often used in a public and social context, where users are surrounded

by others not involved in the interaction. Therefore, mobile users find themselves in simul-

taneous realities: the one, often public, where they are physically present and the other

one, often private, created by the remote communication. The coexistence of these public

and private conditions is often not easy. Currently the only solution is to suppress one of

the two, for example by turning off the mobile device or by ignoring the physical reality

and being disrespectful of co-located people. Intimate Interfaces are designed to soften this

contrast by allowing users to put mobile devices in the background, but still within reach.

The interfaces require low attention, can be used while involved in other activities, and are

easy to ignore.

The concept of Intimate Interfaces was explored through the design, implementation and

evaluation of two wearable interface devices: the Intimate Communication Armband and

the Notifying Glasses. Both devices are novel and based on essentially unexplored areas
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of investigation. They have wireless Bluetooth interfaces that allow them to be easily

connected to existing mobile devices and personal computers.

The Intimate Communication Armband uses electromyographic sensing to detect subtle

motionless gestures: explicit muscle contractions resulting in little or no movement. The

electromyographic sensor designed for the armband was evaluated through user studies.

Experimental results show that the gestures are reliably recognized without training, neither

for the recognition algorithm nor for users. Subjects were able to reliably control an audio

interface using one or two arms, without problems, while engaged in a walking task. An

experiment designed to evaluate the subtlety of the interface revealed that it is very difficult

for observers to guess when a trained user is performing subtle gestures. The armband device

also includes a tactile display, based on a vibrating motor, and can be made invisible by

being worn under clothes.

The Notifying Glasses take advantage of the characteristics of peripheral vision to deliver

subtle notification cues to the wearers, while being unnoticeable to those around them. To

validate the design of the glasses experiments where subjects were asked to report perception

of the cues while sequentially engaged in other activities were run. The results revealed that

the cues do not suddenly grab wearers' attention while still being generally visible; moreover,

they can be designed to meet specific levels of visibility and disruption, so that some of

them are noticeable only when the user is not under high workload, as highly desirable in

many practical circumstances. Subjects were able to reliably identify cues characterized by

different colors and different movement patterns, while engaged in another task.

The design of interfaces and interaction techniques for mobile devices should take into ac-

count social acceptance and allow devices to be active but not disruptive. The construction

and evaluation of the two prototypes proposed in this thesis demonstrates that it is possi-

ble to realize usable mobile interfaces that are intimate and subtle, and therefore socially

acceptable.
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8.1 Further Work

The work presented in this thesis is only probing a design space that should be explored

further, investigating the cognitive aspects related to Intimate Interfaces and developing a

model for minimal interaction with mobile devices: interaction through low-bandwidth and

low-attention interfaces that allow users to get just enough information to decide whether

or not to interrupt their current principal involvement and devote their full attention to

the mobile device. Such minimal interaction should allow a comfortable shift of technology

between the periphery and center of attention.

Future work should explore the design of more Intimate Interfaces. Auditory displays, tac-

tile actuators, gaze tracking, touch and light sensors, to name just a few, can all serve

as starting points to create new subtle input and output devices. The Intimate Commu-

nication Armband and the Notifying glasses should be integrated within specific mobile

applications, to provide for example subtle remote awareness. Higher level evaluation on

these applications should analyze how users adopt Intimate Interfaces for day to day use.

Further development should take advantage of the state of the art in hardware miniaturiza-

tion to reduce the size and weight of both devices. Future iterations of the prototypes should

take into account industrial design principles for better integration of form and function.

Issues specific to the individual devices are exposed in the following subsections.

8.1.1 Intimate Communication Armband

Further investigation should explore the use of more advanced analysis techniques for the

detection of subtle gestures, such as autoregressive modelling, which has been reported

to be successful in some EMG literature [37]. To improve the comfort of the device, dry

electrodes or electrodes embedded in fabric [66] should be included in the armband design.

The potentiality of localized tactile cues should be explored. Tactile stimuli on different

parts of the body can convey a large amount of information. Armbands should be paired,
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so that one vibrates when the other recognizes a subtle gesture, to form a simple intimate

communication system for remote awareness.

8.1.2 Notifying Glasses

Future prototypes of the glasses should allow the display of more colors, and include a bi-

dimensional display, to allow the visualization of moving patterns in multiple directions. A

light sensor can be employed to adjust the luminosity of the cues depending on the brightness

of the environment. Integration of input devices, such as push buttons, capacitive sliders

and touch sensors in the glasses' frames should the explored, to make the device a full

input/output system.

Future studies should analyze prolonged use of the glasses (through day-long or week-long

experiments), measure degradation of performance on primary task, comparing the effects

of peripheral visual cues with other modalities, such as audio or tactile cues. Issues related

to specific applications, such as spatial navigation, email or phone call alerts should also be

investigated.
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