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Abstract

This thesis is a collection of three theoretical essays that examine the role of time-inconsistent
preferences in informal banking. The first two chapters focus on specific banking institutions,
while the third studies individual welfare more generally.

In Chapter 1, I develop a model of rotating savings and credit associations (roscas) where
members are quasi-hyperbolic discounters. I show that, in this setting, roscas function as
commitment savings devices, and can survive in equilibrium even in the absence of formal
contracting or informal social sanctions.

In Chapter 2, I study the behavior of quasi-hyperbolic discounters who have access to credit
and a non-secure savings technology. I show that these agents might simultaneously save and
borrow to create optimal investment incentives for future selves.

Chapter 3 evaluates and compares the welfare outcomes for time-inconsistent agents under
several banking environments.
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Chapter 1

Hyperbolic Discounting and the

Sustainability of Rotational Savings

Arrangements

Summary 1 People across the developing world join rotational savings and credit associations

(roscas) to fund repeated purchases of nondivisible goods. When the scope for punishment is

weak, there is a natural question about why agents do not defect from these groups. This

paper models a rosca as a commitment savings device for hyperbolic discounters. Roscas are

attractive for two reasons: the possibility of getting the nondivisible good early (the standard

reason), and the externally imposed saving (valued only by time-inconsistent agents). We find

explicit conditions under which an agent strictly prefers to remain in a rosca, even in the absence

of formal contracting or social punishment. We show why, unlike with standard commitment

products, a hyperbolic discounter will never postpone joining a rosca. Finally, this paper makes

predictions about the relative survival of random and fixed roscas. Random roscas are more

resilient and beneficial than fixed roscas when information is limited and matching for new

roscas is fast.1

'I thank Jean-Marie Baland and Sylvain Chassang for additional comments on this chapter.



1.1 Introduction

Roscas (rotating savings and credit associations) are a prominent form of saving across much

of the developing world. This paper studies roscas from the perspective of hyperbolic discount-

ing, and models them as equilibrium phenomena in environments with no scope for formal

contracting or social punishment. The model allows us to solve some puzzles about the high

observed survival of roscas, and to derive implications for existence and sustainability under

varying underlying conditions.

1.1.1 Rosca Basics

A rosca consists of a group of individuals who meet at regular intervals. At every meeting,

each member contributes a fixed amount to the collective "pot." One member then takes the

entire pot home. A "rosca round" consists of exactly as many meetings as there are members.

Within a rosca round, each member gets to take the pot home exactly once. The order in

which members are given the pot can be determined in several ways. In this paper, we focus

on "fixed" and "random" roscas. In a fixed rosca, the order is randomly determined at the

first meeting of the rosca, and then repeated indefinitely through future rounds. In a random

rosca, the order is randomly determined at the start of each new round. Often, rosca members

who leave at; the end of a round are free to rejoin a rosca at a later date. However, people who

choose to leave during a round are punished more heavily-they are not allowed to rejoin any

future rosca and, if possible, punished with other forms of social sanctions.

Roscas are widespread across developing countries (and immigrant communities in developed

countries), and often survive in environments with poor contracting and limited or nonexistent

formal banking. Members of the Tidiane community in Senegal use them as a means to save for

annual pilgrimages to Mecca. In Philadelphia, women from the Ivory Coast join roscas to pay

for childbirths and funerals. Roscas can be found in several parts of Kenya, where the money

is put to various uses, from home repairs to the purchase of food and clothing. Levenson and

Besley (1996) point out that, in any given year, one-fifth of all households in Taiwan participate

in a rosca. Bournan (1995) cites several studies of African roscas where participation rates are



even higher, and are a significant saving vehicle.2

1.1.2 Theoretical Foundations

Following the model proposed by Besley, Coate, and Loury (1993), we assume that agents would

like to save for a nondivisible good. If they were to save alone, each would have to wait a certain

number of periods before she could consume the good. If agents instead join a rosca, they pool

their savings and allow some members to get the nondivisible good sooner. The likelihood of

an early nondivisible gives agents an incentive to join a rosca. This expected benefit, however,

does not persist after agents have actually joined. As Anderson, Baland, and Moene (2003)

show, when agents are exponential discounters, they will have an ex-post incentive to leave any

rosca. Consider an agent in a fixed rosca who has just received the nondivisible good. If she

now leaves the rosca, she can replicate the rosca outcome by saving alone (there is no longer a

positive probability of getting the good sooner through the rosca). Furthermore, if she prefers

a declining pattern of savings, she can do strictly better by saving alone. In a random rosca,

some agents have an even greater incentive to leave. Consider the first-ranked agent in a round.

If she leaves the rosca after receiving the nondivisible, she can ensure that she continues to be

"first-ranked" by walking out and saving alone. If she stays in the rosca, there is no guarantee

that she will again be ranked first in the next round.3 The authors conclude that, in the absence

of contracting, the threat of social punishment must be severe enough that an agent who would

otherwise choose to leave a rosca will now choose to continue participating.

1.1.3 Questions to be Answered

The above papers provide a compelling framework for understanding the ex-ante appeal and

subsequent sustainability of roscas, but they also lead to some interesting questions. First, there

is some evidence that roscas survive even when there is no credible threat of social punishment

(Gugerty, 2005). Why do agents not leave after receiving the nondivisible? Second, for any

given outside option, agents in random roscas have greater incentives to leave than agents in

2Roscas and other informal savings groups are the source of half the national savings in Cameroon. Savings
through roscas amount to 8-10% of Ethiopia's gross national product.

3By staying on in the rosca, the agent is effectively continuing to save at a negative interest rate.



fixed roscas do (the first-ranked member's expected value of staying on in a random rosca is

lower than anyone's expected value of staying on in a fixed rosca). Why do random roscas

exist? Third, even if the threat of social sanctions can be used to ensure participation within

a round, it is rarely the case that such threats persist between rounds. Then, why does the

last-ranked member in a fixed rosca stay on? If she were an exponential discounter, she should

leave at the end of a round if there is any probability that she will find a rosca that ranks her

higher (since, even if she does not find a rosca, she can save alone and do no worse than in her

original rosca).

1.1.4 Outline of Arguments

This paper is built on two key assumptions. First, agents in our model have time-inconsistent

preferences and are aware of it. There is empirical evidence that this is indeed the case-Gugerty

(2005) shows that members of her dataset most often cite self-control problems as the reason

for joining a rosca. 4 Second, we take seriously the fact that roscas are informal institutions

that exist even in environments where contracting and social networks are weak. We assume

that participation cannot be contracted upon and that social punishment is infeasible. Roscas,

then, can be viewed as commitment savings devices with particular advantages. Not only

do they improve savings behavior, but they can survive without social sanctions, and will

be adopted without postponement. Unlike with exponential discounters, roscas generate two

complementary benefits for hyperbolic discounters-value from high expected rank, and value

from commitment. The value from high expected rank ensures that agents will actually enter

a rosca, and the value of future commitment gives agents who receive the pot early a reason to

repay the "debt." Our arguments are developed in four broad parts.

First, we describe a sophisticated quasi-hyperbolic discounter who values the nondivisible

good, and we solve for her autarky equilibrium across the 3-parameter space5 . We show that,

as 1 goes down, the agent saves more slowly.

Second, we show how roscas can be effective commitment devices. Roscas provide com-

4Some quotes: "You can't save alone-it is easy to misuse money;" "Saving money at home can make you
extravagant in using it."

5The "0" refers to the agent's hyperbolic discount factor, by which she discounts her entire future in any
given period.



mitment in the following sense: if, when the agent is furthest away from the nondivisible, she

prefers to remain in the rosca, then she will always prefer to remain in the rosca. This is

because, as she gets closer to the nondivisible, the rosca locks in more of her savings and thus

reduces her incentive to leave. Furthermore, roscas have the particularly appealing property of

enticing agents to join without delay. With standard commitment devices, costs are incurred in

the present while benefits (in the form of matured savings) arrive in the future. This can cause

hyperbolic discounters to delay take-up of such devices, even if they value the commitment.

However, in the case of roscas, an agent knows that there is a likelihood of her being an instant

winner (she might get ranked first). We show that this ensures that the agent will not postpone

entry into a rosca.

Third, we study the rosca sustainability problem in a benchmark case. While we have

described how roscas can operate as commitment devices, we still need to establish conditions

under which the agent will actually choose to stay when she is furthest away from her next

nondivisible. In other words, when is the commitment offered by a rosca sufficiently valuable

to her? We assume there is a single provider of roscas who cannot make credible threats of

punishment. The only enforceable rule, then, is that any agent who leaves a rosca can never

rejoin. We find that there is always a parameter region in which an agent will never leave a

rosca, regardless of her rank within it. This is the region where the promise of good future

behavior (induced by the rosca) outweighs the agent's desire to over-consume in the present.

We also find here that the parameter region that supports random roscas is a strict subset of

the region that supports fixed roscas.

Fourth, we model roscas as noncooperative equilibria by lifting two assumptions of the

benchmark case-we vary the available information about agents' past rosca behavior, and allow

the generation of new roscas in any period (there is some exogenous probability with which

people get matched into new roscas). Roscas here are the outcomes of repeated games with

credible punishment strategies (which can be conditioned on reputation, to the extent that it

is available). The objective is to find equilibria that prevent frivolous defection, which involves

leaving one rosca in search of a higher rank in another.

This setup gives us two further insights. First, we find that even in completely anonymous

environments, roscas can survive if the probability of matching into new roscas is sufficiently low.



Second, we find conditions under which random roscas can be preferred to fixed roscas. To do

so, we model what is perhaps the most realistic reputational environment-" partial reputation."

This is the case where only the agents who leave without completing a round develop a bad

reputation-these agents can be barred from future roscas. This allows us to restrict our focus to

agents' desires to leave between rounds. The last-ranked member in a fixed rosca is permanently

last ranked, so she might have an incentive to leave after a round, in anticipation of a better

rank in a new rosca. Now, random roscas have a particular advantage over fixed roscas-by

re-randomizing at the start of every round, they internalize the attractiveness of the outside

option. There is no incentive for a member of a random rosca to leave between rounds. We

find that, under certain conditions, random roscas survive longer and increase welfare relative

to fixed roscas.

The paper is organized as follows. Section 2 provides a literature review. Section 3 charac-

terizes the autarky equilibrium. Section 4 discusses roscas as commitment devices, and studies

the entry problem. Sections 5 and 6 model roscas as equilibria in the benchmark case and

the decentralized case, respectively. Section 7 discusses empirical implications of the model.

Section 8 concludes.

1.2 Related Literature

The benefit of a fixed or random rosca is not immediately evident, since it provides no interest.

Furthermore, since the initial ordering is randomly determined, individuals cannot join with a

sole purpose of borrowing or saving. (Roscas that provide informal insurance typically allow

for bidding within a round." We focus on cases where this flexibility in allocation order is

not permitted.) Standard explanations of roscas rely on the individual's desire to purchase an

expensive, nondivisible good. As described above, Besley, Coate, and Loury (1993) show that,

in expectation, roscas allow individuals to purchase a nondivisible sooner than if each saved

alone. Anderson, Baland, and Moene (2003) point out the need for social sanctions in the

absence of contracting.

Several papers look at alternative explanations for rosca participation. Anderson and Baland

6 See, for example, Calomiris and Rajaraman (1998), Klonner (2005), and Klonner and Rai (2005).



(2002) find evidence that roscas are used by women to restrict their spouses' access to their

savings. In their model, women have a greater preference for the nondivisible than men, but

have limited power over expenditures within the household. If women were to save at home,

their husbands would direct too much of their savings towards immediate consumption. On

the other hand, if women save in a rosca, husbands have no access to their savings until the

pot is received. At this stage, assuming the woman has sufficient bargaining power to purchase

the nondivisible good, it is in fact purchased. In this setting, roscas can again be viewed as

commitment savings devices. The woman would like to save for the nondivisible, but she knows

that if she saves at home, she will not be able to save as fast as she would like to. A rosca, by

locking in savings, allows her to prevent over-consumption by her household in future periods.

Gugerty (2005) finds direct evidence that individuals use roscas to overcome their own time-

inconsistency.' In her dataset, self-control problems are cited as the most common reason for

joining a rosca (36% of the members say it is the primary reason). Based on anecdotal evidence,

there appears to be very limited scope for credible social sanctions. Gugerty's study is set in

a rural community in Kenya where banks, if available, are very far away. The average rosca in

her dataset is 6.5 years old, with the average round lasting a little under a year. She finds that

only 6% of members left the rosca is the last round studied. 37% of the roscas are fixed , 58%

are random, and the rest use other forms of negotiation/randomization. On the other hand,

Anderson, Baland, and Moene study a poor urban neighborhood near Nairobi, where 71% of

the roscas are fixed and 29% are random. Funds generated through roscas are more often spent

on goods with immediate benefits than on large durables.8

There is a wide range of empirical papers on roscas in several parts of the world. 9 Most

rely on an informal notion of social punishment to explain why agents don't defect. A recent

theoretical paper by Ambec and Treich (2005) shows how roscas can be efficient institutions,

ex-ante, when agents value commitment. However, the paper assumes contracts are binding and

that agents can commit to joining a rosca at a future date. The effectiveness of commitment

savings devices in other forms has also been studied widely, and the fact that agents with

7In a recent paper on Benin, Dagnclic and LeMay (2005) provide further evidence of roscas being used as
commitment devices.

sGugcrty (2005) finds that the largest proportions of rosca funds are spent on household cooking items, school
fees, and food. In Dagnelie and LeMay's (2005) dataset, only 19% of funds are spent on durable goods.

9In addition to papers mentioned above, see Bouman (1994), Handa and Kirton (1999), and Kimuyu (1999).



time-inconsistent preferences value commitment is widely understood. 10

In this context, the point of this paper is to show that roscas are effective commitment

devices even without "commitment" in the standard sense (in settings where agents cannot

pre-commit to join and cannot be forced, through contracts or social punishment, to continue

participating).

Quasi-hyperbolic discounting has been used as a substitute for standard exponential dis-

counting in several papers now. 11

1.3 Autarky Model

In this section, we assume the individual does not have access to a rosca, and study her behavior

in terms of equilibria played by her per-period selves.

1.3.1 Assumptions

* Infinitely lived, sophisticated quasi-hyperbolic discounter.

* Per-period non-stochastic income y; zero initial endowment.

* No borrowing; no interest.

* Two goods: consumption good (denoted c; price 1) and nondivisible good (denoted d;

price ky, where k is a positive integer)

* Saving has to be lump-sum, in multiples of y. (This assumption allows us to model

autarky equilibria using mixed strategies.)

* Per-period utility: u (c + bd), where u is strictly concave and is defined over the domain

[(0, oc), with u (0) = 0; b is some constant.

* Intertenmporal utility at time t:

o1For examples, see Ashraf, Gons, Karlan and Yin (2003), Thaler and Bernartzi (2004), and Ashraf, Karlan
and Yin (2005).

"1Originally proposed by Phelps and Pollack (1968), it has been developed in several papers by Laibson,
Harris, Rabin, and others. More recently, Krusell and Smith (2003b) characterize the mixed-strategy equilibria
in a Ramsey-style consumption-savings problem with lump-sum investment.



Ut = u (ct + bdt) + , EC 6iu (ct+i + bdt+i), where 3 E (0, 1) and 6 E (0, 1)

Finally, we assume that the nondivisible good is "desirable":

k-1

6k- 1u(b) > C6i (y) (1.1)
i=0

This ensures that, if the agent were an exponential discounter, she would repeatedly save all her

wealth for the nondivisible good (any other saving rule would violate either time consistency

or the condition above).

1.3.2 Equilibrium concept

We treat the individual as a time-indexed series of independent selves with utility functions

{Ut}, and assume they play a Markov Perfect Equilibrium. In any period, the agent observes

her total wealth, wt, and makes a decision about how much to save, st (st is a gross saving

decision). Wealth and savings are related in the following way: wt = st-1 + y. Since saving

is lump-sum and initial wealth is 0, it must be that wt = ay, where a E {1,2,3,...}. In any

state ay the action set is {0, y, 2y, ..., ay}, which includes all feasible levels of saving. A strategy

associates every state w = ay with a sequence of positive probabilities, (Po0 P1, P, P2..., Pa), that

sums to 1 and denotes a probability distribution over all feasible actions.

We can immediately restrict our state set to: {y, 2y, 3y,..., (k - 1) y}. Since the only incen-

tive to save is for the nondivisible, and since initial wealth is 0, there will never be an equilibrium

where the agent encounters wealth higher than ky. The agent with wealth ky will always save

0, regardless of future behavior.

A strategy is an equilibrium if and only if, for any state w E {y, 2y, 3y, ..., (k - 1) y}, every

action s that is played with positive probability satisfies:

sE max [u (w - s') + 06V (s' + y)]
. E{O,1,2,...,w}

Here, V (.) is the value function of the exponential discounter, defined recursively:

a

V (ay) = pj[f (ay -jy) + 6V ((j + 1)y)]
j=o



where

f (x)= u (x),if x < ky
u (b) , if x = ky

1.3.3 Predicting Equilibrium Choice

Multiple-self models with hyperbolic discounting typically lead to a multiplicity of equilibria.

In this section, we present some results that (1) allow us to restrict the set of strategies that

are candidates for equilibrium, and (2) predict which equilibrium will be chosen in the case of

multiplicity. The proofs of the following lemmas and proposition are in Appendix A.

Consider any strategy in which some saving occurs. For this to be an equilibrium, it must

be the case that all deviations (in terms of lower saving) at all levels of wealth are dominated.

It follows directly from concavity that if an agent with low wealth chooses to save a certain

amount, an agent with higher wealth cannot possibly wish to save any less. The stock must

always weakly rise until ky is reached.

Lemma 2 If at wealth w the agent (weakly) prefers to save s, then at any wealth w' > w the

agent will never save any s' < s with positive probability.

This means that in any equilibrium in which the nondivisible is purchased probabilistically,

an agent with wealth w will either save w or mix between w and w - y.

If' there are multiple equilibria in certain regions, we need to predict which among them

the agent will actually play. This is relatively straightforward if we establish that the best

equilibrium in any one state is also the best equilibrium in all other states. We can separate

equilibria into three broad categories-that in which the nondivisible is purchased with certainty

every k periods, those in which the nondivisible is purchased probabilistically, and those in

which the nondivisible is never purchased. Clearly, the full-saving equilibrium, when it exists,

dominates all other equilibria in all states (all future players save optimally, and the current

player voluntarily chooses to save). For a similar reason, any equilibrium with saving dominates

any equilibrium in which the nondivisible is never purchased. Finally, we need a rule to choose

between two equilibria when each involves probabilistic saving.

Lemma 3 Consider any two equilibria, A and B, in which the nondivisible is purchased with

some probability. (1) If the agent with wealth w saves w with higher probability in A than in



B, then VA (w + y) > VB (w + y). (2) VA (w + y) > VB (w + y), then the agent with wealth w

prefers equilibrium A.

Lemma 4 Consider any two equilibria, A and B, in which the nondivisible is purchased with

some probability. If VA (w + y) > VB (w + y), then VA (w + 2y) > VB (w + 2y).

From these lemmas, it follows that, between any two equilibria with probabilistic saving,

the one with higher saving at wealth y is preferred in all states. The agent always wants her

future selves to save more; and the more they save, the more she is willing to save in the current

period.

Proposition 5 There is always an equilibrium that is "optimal" in the sense that, at any level

of wealth that is reached in equilibrium, the agent does not strictly prefer to play any other

equilibrium.

1.3.4 Best Autarky Equilibria Across Parameter Regions

We are now in a position to find the most preferred autarky equilibrium for any value of /.

While it might not be the case that the agent actually plays the best possible equilibrium, we use

it a reasonable benchmark. Also, this stacks the odds against us (the better the autarky option,

the lower the agent's incentive to stay on in a rosca). We know that if / = 1, the agent behaves

exactly like an exponential discounter, and if 3 = 0, she never wishes to save any amount. To

map out the equilibria within these boundaries, we focus on the optimal equilibrium, which

involves the highest possible level of saving sustainable at wealth y, for every value of 0. We

find that there is always a region in which the agent behaves like an exponential discounter.

Once / gets sufficiently small, she no longer wishes to save today if she knows she would start

saving tomorrow anyway. Then, to re-induce saving, she plays a mixed strategy equilibrium

(which worsens the consequences of not saving, thereby giving her an incentive to save today).

Finally, there is always a region that cannot support any saving equilibrium.

A full-saving strategy is defined as the following: at any w E {0, 1, 2, ..., (k - 1) y}, the agent

saves w.

Lemma 6 Consider a strategy with full saving at all w > w'. If the agent at wealth w' (weakly)



prefers to save w' than to save any lower amount, agents at all higher levels of wealth strictly

prefer to save fully.

Proof. The strategy determines some continuation value V (.). If the agent at w' weakly

prefers to save fully, this means:

+6V (w' + y) 2 u (y) + /JV (w')

To prove the lemma, we need to show that V (x) is strictly convex for x > w'. Note that

V (x) = 6k-:xu (b) + 6k-x+lV (y). Since V (y) > 0, V is strictly convex. *

Proposition 7 Consider 3 as defined in Equation 1.2 below. When 3 E [/, 1), the full-saving

strategy is an equilibrium.

Proof. A set of necessary and sufficient no-deviation conditions must be satisfied for the full-

saving strategy to be an equilibrium. Specifically, at every wealth level w E {0, 1, 2,..., (k - 1) y},

the agent must prefer to save her entire wealth relative to any lower level of saving. If we can

show that, at each w, the agent prefers to save w over w - y, Lemma 1 ensures that all other

conditions will be satisfied. Thus, a full-saving equilibrium exists if and only if, for each w:

6bV (w + y) 2 u (y) + 36V (w)

By Lemma 4, a necessary and sufficient condition for all the above conditions is:

06V (2y) > u (y) + /3V (y)

u (y) 1 -6 k u (y)
S[V (2y) - V (y)] 6 k-1 [u (b)] 1 -6

1 -(y) (1.2)
= k-1 [u(b)] 1 - 6

Since u (y) > 0 and V (2y) > V (y), / is above 0. Also, expanding the term, we see that it must

be less than 1 if the nondivisible is good. w

The above proposition also tells us that at /, agents at higher levels of wealth still strictly

prefer to save fully if all future selves save. Therefore, when the full-saving equilibrium can



no longer be supported, we expect to find a region in which the agent with y plays a mixed

strategy, but all others save fully. Below /, to create incentives to save, the agent with wealth y

must play a strategy where she saves with some probability rl < 1. Then, she knows that if she

does not save today, there is a likelihood that she will not even save tomorrow. By worsening

the consequences of not saving today, she again becomes willing to save.

Proposition 8 When 3 < P (defined in equation 1.2), there is always a range of /-values

where (1) no full-saving equilibrium exists and (2) there is a mixed-strategy equilibrium that

involves mixing at wealth y and full-saving at all higher levels of wealth.

Proof. Consider / values below /. Full-saving equilibria cannot exist in this region (at the

cutoff 0, the agent with wealth y is indifferent between saving and not saving if all future selves

save fully). This proposition can then be proved in two steps. First, we show that if there is

full-saving at all levels of wealth above y, then the agent at y is willing to play a mixed strategy

in a region below P. Second, we show that in a subset of this region, all players at wealth above

y will in fact be willing to save fully (when a mixed strategy is played at y).

(a) Consider a mixed strategy in which the agent with wealth y saves y with probability 7l,

and 0 with probability 1 - ir1 . irl is determined by the following indifference condition:

/6V (2y; 7rl) = u (y) + Y6V (y; 7r) (1.3)

where,
V (y; 71) = 7ri [3V (2y)] + (1 - 7r) u (y) _ 7 16k-lu (b) + (1 - rl) u (y)

1 - (1 - 7ri) 1 - (1 -i)6 - k

and,

V (2y; 7rl) = 6k- 2u (b) + Sk-1V (y)

V (y; irl) and V (2y; n7r) are both continuous and increasing in nrl, but ý va(y;Vri) > ov(2y;ir)

Therefore, as nrl drops, the RHS of Equation 1.3 drops faster than the LHS. For every rl E [0, 1],

there is some 0 < 3 such that the indifference condition is again satisfied. For 7rl = 0, the



corresponding /-value, /, is given by:

( ( IU)(b)+ 6=u( ) (Y u (y)

u (y)

=k-lu (b)- 1-6

For / < /, there is no value of rl such that the agent is willing to save at wealth y. It must be

the case that 0 < / < P.

(b) We now need to establish that there is a region below / where players at higher levels

of wealth still have the incentive to save fully. As shown in Lemma 4, by concavity of u, all

agents at higher levels of wealth strictly prefer to save fully at the cutoff /:

3sV (3y; 1) > u (y) + /6V (2y; 1)

Since V (3y; 7rl) and V (2y; 7rl) drop continuously as 7r drops, there must be a /-region before

the inequality becomes an equality for the agent at wealth 2y. N

The above proposition establishes that there is always a region in which a mixed strategy is

played-in particular, a strategy in which there is full saving above y, and mixing at y. To see

how far this region extends, we need to know if full saving at wealth levels above y is sustainable

down to p. If this is the case, then 3 is the cutoff below which there will be no more saving in

equilibrium. However, if 6 is reasonably high, and u (b) sufficiently close to u (y), this will not

be the case. 12 Then, there will be a region in which the best possible equilibrium will involve

mixing between y and 0 at wealth y, mixing between 2y and y at wealth 2y (with the two

mixing ratios simultaneously determined), and full saving at all higher levels of wealth.

While explicit solutions for mixed strategy equilibria depend on actual parameter values (see

Appendix D for an example with k = 2), they can always be constructed using the following

rule: Moving down from /, solve for 7r at each / so that the agent at y is indifferent between

saving and consuming. Continue until some /3 where either (a) the agent at 2y is indifferent,

'2 As 6 gets high, the incentives to defect at 2y start to get almost as strong as the incentive to defect at y,
because the fact that we are one period closer to the durable good becomes less significant. See Appendix B for
an example.



or (b) 7l = 0. If (b), then define 3 = 01. If (a), continue below ý1, now solving for 7rl and r2

for indifference at y and 2y, respectively. Continue until some 12 where either (a) the agent at

3y is indifferent, or (b) 7r = 0. If (b), 1 = 12. By repeating these steps until (b) is satisfied,

there will be some i E {1, 2, ..., k - 1} such that Oi = p.

Ultimately, 8 is determined by the point at which the agent at y no longer wishes to save

(7r1 = 0). It is clear that ri must go to 0 before the mixing ratios for the other players do.

If this were not the case, it would mean that the agent at y would be saving at some 7rl > 0

while an agent at a higher level of wealth, ay, saved with 7ra = 0. Then, clearly it would not

be rational for agent y to save, since the nondivisible would never be bought.

Proposition 9 There is some 1_ E [1, p) such that, for 1 > 1, there is always an equilibrium

in which the nondivisible is purchased, and for 13' 8, the nondivisible can never be purchased

in equilibrium.(0 is defined in Equation 1.4, and 3 is defined in Equation 1.2.)

Proof. (1) By part (a) of Proposition 3, we know that if full saving is sustainable at wealth

higher than y, then 1 = P. Therefore, 1 must be a lower bound on 1 because, at 1 < 1, the

agent at y will never save.

(2) Take any 1' E [f, 1) such that there is a saving equilibrium at 1'. Then, there must

be a saving equilibrium at all P" > 0', since, given strategies at other states, each agent has a

strictly greater incentive to save at 1" than at 3' (proof in Appendix C). *

In Appendix C, we also show that for 1 E [P, /], the lifetime autarky utility for the agent

at wealth y is weakly concave in 1 (see Figure 2).

1.4 Roscas as Commitment Devices

When agents are hyperbolic discounters, it is natural to think of roscas as commitment savings

devices. We describe a rosca as a group of k people (k as defined in Section 3), where one

rosca round lasts k periods. The per-period contribution is y. This rosca can be either fixed or

random.

Consider an agent in a fixed rosca, in the period after which she has received the nondivisible.

Suppose she values the commitment provided by the rosca and chooses to stay. Then, she knows



that in all future periods she will continue to stay. This is because, for every additional period

that she participates in the rosca, more of her savings get locked-in (they are consumed by

someone else, so there is no way for her to access them). This argument can be similarly

applied to the first-ranked agent in a random rosca. If she chooses to stay in the rosca in the

second period, the lock-in property ensures that she will always choose to stay.

This value of commitment that a rosca provides also allows for an effective punishment

mechanism to ensure continued participation even without the threat of formal or social pun-

ishment. If an agent knows that once she leaves a rosca she can never return, she might strictly

prefer to stay even when she is furthest away from her next nondivisible. Conditions under

which this happens are discussed in Section 5.

1.4.1 Entry and Welfare

We measure welfare from the point of view of the agent in a hypothetical "period 0" before

she has access to a rosca. This is consistent with a social planner's measure of welfare, where

we assume the same 6 factor as above, but 0 = 1. Clearly, the social optimal requires that the

agent join a rosca in period 1.

Suppose there is no defection from a rosca once it forms. In this section, we study a single

agent's entry decision. An agent faces identical expected values from joining a random rosca or

a fixed rosca. In each case, she expects to get the nondivisible once every k periods, with some

uncertainty about her exact rank. The expected value is (b [1 + ].

A potential problem with commitment savings devices, especially when start dates cannot be

contracted upon, is that the agent might have an incentive to postpone entry. As O'Donoghue

and Rabin (1999) show, when tasks are costly in the present and have delayed benefits, a

hyperbolic discounter will procrastinate even though the welfare-maximizing outcome involves

completing the task immediately. One way to improve welfare is to place restrictions on dates

when a task can be completed. If an agent knows that she has only one chance to join a

commitment device, she will join. By a similar argument, sporadic access to commitment

devices might improve welfare (by inducing higher take-up), but in a growing population it is

still sub-optimal since newborns will occasionally have to wait until the next access date.

This problem disappears with roscas because of the randomization in ranking (in both fixed



and random roscas). We show below that the possibility of getting the nondivisible in the

current period ensures that the hyperbolic discounter will not want to postpone entry.13

Proposition 10 If an agent knows that she will always stay in a rosca once she joins, she will

never procrastinate while joining.

Proof. Suppose an agent can join a rosca in any period, and knows she will remain in it

forever once she enters. She will join in the first period of her life only if she would rather not

postpone by one period:

u(b)1 + > U( u (y) +
k 1 6 k(b 1-6

u(b)

u (y)

It is important to note that this condition does not depend on /. We can see that, as long as

the nondivisible is desirable, the condition is always satisfied. The desirability condition (from

Equation 1.1) is:

k-1

6k-u (b) > 6Jizu (y)
i=O

u (b) E-1 Ji

u (y) Sk-1

For 6 E (0, 1), it is always true that ½- > k. Therefore, if the nondivisible is desirable to

exponential discounters, then hyperbolic discounters will never choose to postpone entry into a

rosca. U

1.5 Sustainability-Benchmark Case

In this section, we assume that roscas have the following rule: any agent who leaves can never

rejoin a rosca. We also assume that roscas have no access to social sanctions or contracts. This

13This result relies on the assumption that goods yield immediate benefits (as is the case in many empirical
studies). However, even when goods are more durable, agents will be less likely to postpone entry into roscas
than other commitment devices.



can be interpreted as a case where roscas can only form at some central location, which allows

agents' past behavior to be monitored.

1.5.1 Fixed Roscas

Again, consider a rosca with k members, with one round lasting k periods, and with a per-

period contribution of y. In the first period of a rosca, an ordering is randomly determined

(and is maintained for all future rounds). Consider the last-ranked agent in the rosca. How

strong is her temptation to defect in the first period? If she has a strict incentive to stay on in

the rosca, it follows that she will always have a strict incentive to stay on.

If the agent were an exponential discounter, she would not have a strict incentive to stay

on, since she could replicate the rosca outcomes on her own. However, a hyperbolic discounter

can have a strict preference for a rosca even in the absence of social sanctions. This happens

when she values the commitment provided by the rosca highly enough that she is willing to

forego current consumption.

Proposition 11 Consider 0* as defined in Equation 1.5 below, and / as defined in Equation

1.2. Suppose a member of a rosca knows that the other members of the rosca will never defect.

Then, when the alternative is autarky, she strictly prefers to never defect if /E (E*,[3). If

< < 3*, there will be periods when she strictly prefers to leave. If 0 > 0, there will be periods

when she weakly prefers to leave.

Proof. Consider an agent's decision when she is k periods away from the next nondivisible.

For simplicitiy, denote the continuation value from autarky equilibrium at any level of wealth,

VA (.). Denote the continuation value from a strategy in which all future selves save fully, VF (.).

First consider the region, 3 E [3, /). If the individual defects from the rosca, she will have to

play autarky forever (and forego any contributions she has made to the rosca so far). Since in

autarky she is indifferent between saving and not saving at wealth y, her autarky utility will

be •61VA (2y), where VA (2y) involves probabilistic saving in at least some future periods. If

the agent remains in the rosca, her utility is 06VF (2y). Since VF (2y) involves optimal saving

by all future selves, it must be greater than VA (2y). Therefore, if the agent chooses to save

probabilistically in autarky, she will strictly prefer to remain in the rosca.



Second, we show that there is a region below P in which the agent still strictly prefers to

remain in the rosca. Consider the indifference condition at P. The agent at y is made indifferent

with r = 0:

SJVA (2y) = u (y) + 36u
1-6

The utility from a rosca, JSVF (2y), still strictly dominates the utility from autarky. The agent

continues to strictly prefer a rosca down to 0* that satisfies:

S*/u (y)**SVF(2y) = u(y) + i--1-6

6 [VF (2y) - __

Su(y) (1.5)

1-6k 1-

Since u (y) > 0, we know that 0* > 0. m

It is useful to note here that 0* < p.

Source of Commitment

A natural question here is: what exactly about the rosca provides commitment to the hyperbolic

discounter? A rosca comes with (1) a different kind of contracting and (2) illiquidity of savings.

We can consider two alternative commitment savings devices that separately perform these

functions of a rosca: a friend who promises to monitor your saving and credibly threatens to

stop helping if you under-save, and a fixed-deposit that locks up your savings until you reach a

target amount (in this case, ky).

In the (_, ,) range, illiquidity plays no role, since even in autarky the agent never dips into

her savings. As long as we are in a region where some saving occurs in equilibrium, access to a

fixed deposit cannot improve savings behavior. Here, a fixed rosca is very similar to a friend who

offers to "help". The fact that the rosca can offer a credible threat to deny access to defectors

creates a large enough wedge between the rosca and autarky equilibria to ensure participation.

Then, if the agent were able to play history dependent (instead of Markov) equilibria with

herself, she should be able to replicate rosca behavior. However, an individual's ability to play



such equilibria on her own is severely limited by the fact that the punishment strategy would be

dominated by the strategy along the equilibrium path. If she deviates under a history-dependent

equilibrium, she can easily renegotiate with herself to not play the punishment strategy, thus

making it an unlikely threat.

At lower levels of 0, the illiquidity provided by the rosca might become important. Consider

the region in which an agent stays in a rosca but would not save in autarky (3 < 0):

•0bk-u (b) su()+ U (y)
> u(y) +

1-6" -1-6

Now, suppose the agent had the helpful friend instead of the rosca. The above condition might

no longer be sufficient to ensure cooperation. She would also need to ensure, for instance, that

at wealth 2y she did not have an incentive to consume everything:

3 6 k-2u (b) (2y) + u (y)
k_5> >u(2y)+

1-6k 1-6

If u (.) is not very concave, and 6 is sufficiently high, then the second condition can fail even

if the first is satisfied. With 6 high, the agent does not benefit as much from being one period

closer to the nondivisible. On the other hand, if u is almost linear, the benefit of consuming 2y

can be enough to outweigh the fact that she will no longer save in the future. 14 However, even

when the illiquidity plays a role, it is useful only when combined with the contracting aspect of

a rosca. With a fixed-deposit instead of a rosca, the agent would simply not deposit any money

in the first place.

This section does not address the question of entry-clearly, the problem of postponement

would exist with the devices mentioned above. The focus here is on commitment, conditional

on having entered the savings device.

14 One can expand the region in which illiquidity plays a role if there is either an intermediate "temptation"
good or if income is stochastic. In each of these cases, the agent will have a greater incentive to dip into her
savings in autarky, and she might therefore further value the fact that a rosca will prevent her from doing so.



1.5.2 Random Roscas

The only difference between a random and a fixed rosca is that, in a random rosca, the ordering

is re-randomized at the start of each round. Consider an agent who has received the nondivisible

in period 1. In period 2, her expected value from staying in the rosca is 6 (b If in this

period, she stays in the rosca, she will always stay in the rosca, since this is the furthest away

from the nondivisible she can ever be.

Proposition 12 If 6 is sufficiently large, there is a /-region, bounded by (/an, Tran) , within

which an agent will always strictly prefer to remain in a random rosca (when the alternative

is autarky). The region will be a strict subset of the region in which an agent stays in a fixed

rosca: 3*an > 0*, /ran < /3

Proof. First, we show that the /-region that supports full participation in a random rosca

must be smaller than the equivalent region for a fixed rosca. The lowest expected value from

staying in a random rosca is smaller than the lowest expected value from staying in a fixed

rosca:
06k-1u (b) 0 6k-lu (b)

(1-6)k 1 - 6k

(This is always true for 5 < 1 and k > 1). In each case, the outside option (autarky) is identical.

Therefore, if an agent weakly prefers to stay in a random rosca, she will strictly prefer to stay

in a fixed rosca.

Second, consider the first-ranked agent's decision in the second period of a rosca round.

She will remain in the rosca if k3 1- b is higher than her autarky equilibrium. If there is a

region in which this is true, the lower bound, /Jan, must lie in (0, /3)and the upper bound, ran,

must lie in (p, /) . This is because, at / = 0 and / = /, autarky is strictly preferred, and for

/ E (0, /3), autarky utility is linear and increasing in p, and for 3 E [, $], autarky utility is

concave and increasing in. an is given by:

an 6 k-U (b) = u(y)+ au (y)= u (y) +(1 - 6)k 1-6
(1 - 6)u(y)

ran 6k-1u (b)- khu (y)



In Appendix E, we show that, for 6 --+ 1, 1 -- ) u(y) > 0. Thus, for any 6, however

large, there will be no autarky saving for 3 < (b)-k-1)u As --+ 1, an -0. This ensures

that, for sufficiently high 6, there will be a region in which an agent always prefers to remain

in a random rosca. *

The intuition for the above result is the following: as 6 gets large, the agent does not mind

the fact that her rank in the next round is uncertain (her expected value gets closer to the

expected value of staying on in a fixed rosca). The graphs below provide a summary of the

results from the sections above.

Random Rosca

* Fixed Rosca

No Saving Partial Full-- -- -- --- -- --- -- --- -- -- --- -- --- -- ----------- A

, i I I I /3
0 /3* =3 _ 1

Figure 1-1: Comparison of 3-regions that support random and fixed roscas. The lowest line
indicates the type of equilibrium played in autarky.
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Figure 1-2: Comparison of lifetime utilities across P. The thickest line is the utility of an agent
in a fixed rosca who is k periods away from her next nondivisible. The lower line of medium
thickness is the utility of an agent in period 2 of a random rosca, conditional on having received
the nondivisible in period 1. The thinnest (crooked) line is the autarky utility at wealth y. In
(/*, /), fixed roscas are preferred to autarky. In (P3*an, /ran), random roscas are preferred to
autarky.

1.



1.6 Roscas as Decentralized Equilibria

In the previous section, we have shown that it is possible for a hyperbolic discounter to strictly

prefer to remain in a rosca at all times if departure results in being banned from future roscas.

If all agents in a rosca are within the necessary parameter region, then no individual has an ex-

post incentive to leave if others choose to stay. In this section, we loosen two assumptions. We

limit the available information about an agent's past rosca behavior. This places a restriction

on what strategies can be conditioned on. We also allow the formation of new roscas in any

period. The rate at which this happens is pinned down by an exogenous probability with which

rosca aspirants get matched into groups of size k.

This gives us two key results. First, while we have shown that neither contracts nor social

sanctions are needed to prevent defection from a rosca, we would like to know how roscas might

survive if there is limited information about agents' past behavior. We find that, even under

complete anonymity, roscas can survive if the exogenous probability of finding new roscas is

sufficiently low. This follows directly from the commitment value to hyperbolic discounters.

If all agents were exponential discounters, even an infinitesimal probability of finding a higher

rank in a new rosca would create a strict incentive to leave.

Second, the previous section does not provide a reason for random roscas to exist (the

greatest incentive to defect from random roscas is stronger than for fixed roscas). In this

section we show that under limited reputation, when matching is fast, random roscas are more

resilient than fixed roscas. Suppose we have "partial reputation"-this is a case where agents

who have left roscas in the middle of past rounds are remembered as defectors, but agents who

leave after completing a round are indistinguishable from all others (this is reasonable-we are

most likely to remember the people who owe us money). This limits the problem of defection

during rounds, but leaves open the possibility that an agent might wish to leave after completing

a round. Now, a particular advantage of random roscas becomes salient. Since the ordering

is re-randomized at the end of each round, no agent has an incentive to leave a random rosca

between rounds. On the other hand, the last-ranked member of a fixed rosca knows that she

will be last-ranked forever. Therefore, she might still wish to leave at the end of a round, which

would keep her reputation intact and allow her to rejoin a new rosca with a higher expected

rank. This gives us conditions under which random roscas are both more sustainable and more



welfare-generating than fixed roscas.

1.6.1 Assumptions

We study three reputational environments. Under anonymity, agents' past behavior is com-

pletely invisible. Under partial reputation, agent's histories become public to the extent that

others know if they have ever defected from a rosca during a round. This can be thought of

as a black mark that defectors acquire (this is a natural outcome if memory is costly). Finally,

under full reputation, an agent's entire past rosca behavior is publicly known (strategies can be

conditioned on whether the agent has ever left a rosca, and if so, at which stage). The better

the reputational environment is, the easier it is for roscas to condition strategies on agents' past

behavior, thus increasing the sustainability of and total benefits from roscas.

We assume a large, growing population of identical hyperbolic discounters. For analytical

convenience, we restrict the agents to 3 E (P*, ). In this region, agents value a rosca and

would not save in autarky (so their actions are limited to rosca-related decisions). Finally, we

assume that in any period, an infinitesimal proportion of the population becomes completely

myopic (0 = 0) for life.

Timing and Strategies

We assume there are two rosca "pools"-the pool of agents looking for a new rosca (pool New),

and the pool of agents who wish to fill an open slot in an existing rosca (pool Old). The timing

of the game is as follows. Each period is divided into 5 sub-periods:

a) Agents in existing roscas choose whether to stay (Y) or leave (N). Agents who are not in

a rosca choose whether to move to Old (by default, they are in New).

b) Each existing rosca (defined as a rosca with at least 1 remaining member) with vacated

slots makes rank-specific offers to agents in pool Old. In pool New, some proportion, p,

of agents are randomly matched into groups of size k. (p is exogenously determined. We

assume this is an index of how easily people are able to find each other and form groups).

c) Agents accept (Y) or reject (N) offers of membership in roscas (in either pool).



d) New roscas randomly determine the ordering. Existing random roscas randomly determine

the ordering if a new round is starting.

e) Agents in roscas decide whether to stay (Y) or leave (N).

If any agent leaves a rosca or rejects an offer, she can only re-enter the pool in the following

period. Any rosca that is unable to fill its slots breaks up and agents re-enter the pool in the

following period.

In any period, the following actions are available to agents: those in an existing rosca observe

their state (profile of other members and distance to the next nondivisible) and must choose Y

or N in sub-periods (a), (c), and (e). Agents who are not in a rosca choose whether to move to

Old in sub-period (b). If they receive an offer, they choose Y or N in sub-period (c). Finally,

in sub-period (e), agents can again choose Y or N after learning their rank.

A rosca round starts in sub-period (d) of period 1 and continues for k periods. Then, for

example, under partial reputation, if an agent leaves in subperiod (c) of round 1 (before the

ordering is determined), she does not acquire a reputation as a defector.

A rosca strategy is a decision about how to choose members from pool Old if there is

an opening in the rosca (all members are aware of their rosca strategy). An equilibrium is

an action associated with each information set (for individuals) and a rosca strategy for each

rosca configuration, such that no agent has an incentive to deviate from her strategy at any

information set.

1.6.2 Outside Option

The problem of sustainability is directly affected by an agent's outside option. This is defined

as the expected lifetime utility for an agent who leaves a rosca in any period. Especially when

available information is low, an agent might know that she has a realistic chance of leaving a

rosca in which she has a low rank, and re-entering one with a higher expected rank.

Assume all roscas survive forever. Consider an agent in a fixed rosca who is k periods away

from the next nondivisible. Suppose she is free to leave the rosca and re-enter any other rosca

starting in the next period. If she is certain to get a new rosca (p = 1), clearly she prefers to

leave (if not, it would violate the assumption that 0 < 3*). We would like to find conditions



under which she will not leave her rosca. The agent will have a strict incentive to stay if p < p*,

where p* is defined by:

0 6k-1u (b) u(y)p+ * k()+ (1 - p*) u (y)

1- 6k 1-(1- p*) 6

Sp =_ k (1.7)

k(-6) 1- 6p + (6 - /)(y)

Similarly, consider the first-ranked agent in a random rosca that survives forever. If, by

leaving, she can find a new rosca with some probability p, she will only stay on in her current

rosca for p < P an, where P an is given by:

k ( u(b) +  + (1 - p)an) U(Y)
k6-1 u(1-6) = u (y) + [ k()J (1.8a)

(1k (1) - ) 1 -(1 - pan) 6

SPkan -1 + (6 -36) u (y)

It follows that Pran < P*.

1.6.3 Fixed Roscas

Anonymity

Here, we assume that strategies cannot be conditioned on any aspect of an agent's past behavior.

If there is an opening in a rosca, the rosca simply decides whether to make an arbitrary offer

to a person in the pool. Similarly, an agent has no information about the other members' past

rosca experience.

First we consider fixed roscas. We can show that if p is low enough, we can have equilibria

with roscas surviving over time. Without such limits on p, every agent will have an incentive to

leave her rosca immediately after receiving the nondivisible-she can consume her income today

and join a new rosca in the next period.

Proposition 13 Assume complete anonymity. Consider p* as defined in equation 1.7. Then,



strategies in which agents always stay in fixed roscas constitute an equilibrium only when p < p*.

Proof. Suppose p <_ p*. Consider the following strategy: Agents in roscas, or with rosca

offers, always play Y; agents outside roscas always enter New; roscas with openings randomly

make offers from Old. Then, by definition of p*, the outside option from defection is sufficiently

small that the agent who is k periods away from the next nondivisible prefers to remain in

the rosca. Therefore, every group of k agents who are lucky enough to form a rosca will never

separate.

(2) Suppose p > p*. By the definition of p*, a rosca cannot survive forever in equilibrium:

if all agents have a strategy of never leaving a rosca, then any individual who has just received

a nondivisible has a strict incentive to deviate. *

Partial Reputation

Under partial reputation, an agent develops a bad reputation if she has left during any round,

which is defined as starting in the sub-period in which the ordering is randomized in period 1,

and ending after round k (and continuing every k periods after that).

Now, the problems associated with anonymity are alleviated to some extent. It is possible

for agents to have strategies where they refuse to join roscas with people who have left during

a past round (believing that anyone who has done so is now a 0 = 0 type). However, such

strategies cannot stop the last-ranked member of a fixed rosca from leaving at the end of a

round. Since she cannot be distinguished from those who have never been in a rosca, she will

have an incentive to join a new rosca if p is high enough.

Proposition 14 Assume partial reputation. Consider p* as defined in Equation 1.7. Then,

strategies in which agents always stay in fixed roscas constitute an equilibrium only when p < p*.

Proof. (1) Assume p < p*. Then, agents can play the same equilibrium as under anonymity.

(2) Assume p > p*. Roscas cannot last forever with the same membership. Since there is

no strategy that can be conditioned on whether an agent left at the end of a round, the last

ranked player has a strict incentive to leave after a round if she knows that, in the future, all

agents will stay in a rosca forever. n



Full Reputation

In this section, we assume that strategies can be conditioned on whether an agent has left a

rosca in the past, and if so, at what stage of a round she left. Here, fixed roscas can be sustained

even with p = 1. Consider the following beliefs: Any agent who has ever left a past rosca is

now a 0 = 0 type. Consider the following strategies: a rosca with open slots accepts any people

who have never left a rosca before; agents outside roscas remain in New; agents in roscas or

with rosca offers always play Y unless there is a 0 = 0 type in the group. Since any agent who

leaves a rosca must play autarky, we know that no agent will leave. The strategies described

are an equilibrium, and the beliefs are justified.

1.6.4 Random Roscas

Under full reputation, random roscas cannot last longer than fixed roscas, since fixed roscas

survive forever at any p. Also, under anonymity, random roscas can never last longer than fixed

roscas. To see why, first note that, ifp P'a,,* and •> Ž an, then random roscas survive forever

and yield the same expected benefit as fixed roscas. Now, consider p > P'an. There can be

no equilibrium in which random roscas last forever. If they exist at all, they must disintegrate

with positive probability. Suppose there is such an equilibrium. It must be the case that the

first-ranked member plays a mixed strategy in the second period of a round, while all others

continue to play with certainty (if the first-ranked member is indifferent in the second period,

all other agents will strictly prefer to stay in the rosca). However, with any such strategy, the

first-ranked member will strictly prefer to leave-since she knows that her current rosca might

break up in the next round anyway, the outside option becomes relatively more attractive. To

see this, note that for p > Pran:

Su (bb (1- p) U (y)-
k (1- 5) <u(y)+- (-p)

This follows from Equation 1.8a. Any equilibrium with some survival must satisfy:

06k-1 () = u (y) + b Pan (V) + ( 1 - p *an) u (y)



where V is the expected value of being in a random rosca at the start of a round. Since V will

be smaller than i(b) this condition cannot be satisfied. Therefore, under anonymity, random

roscas cannot exist at all when p > Pran"

However, with partial reputation, when p is high, we find that random roscas can be more

resilient than fixed roscas, and also give greater utility to the participants. The intuition for

this result is the following. When p > p*, there cannot be a fixed rosca in which all agents stay

forever, because the last ranked member would have an incentive to leave. However, there is

no such incentive to leave a random rosca between rounds. Therefore, if 0 is such that agents

within the rosca prefer to stay rather than play autarky, then random roscas will survive forever,

and any agent's expected value from a rosca will be higher than it would be under fixed roscas

(see Figure 3 in Section 7).

Proposition 15 Assume partial reputation. If > \ r an, (as defined in Equation 1.6), then

random roscas can survive forever in equilibrium. If, in addition, p > p*, then random roscas

are strictly welfare improving relative to fixed roscas.

Proof. Consider the following beliefs: any agent who has left a rosca during a past round

has0 := 0. Consider the following strategies: a rosca with open slots accepts any people who

have never left a past rosca; individuals outside roscas enter New; agents in roscas or with

rosca offers play Y only if the other members have never left a past rosca.

Suppose there is an equilibrium with random roscas. It must be the case that the first-ranked

agent always prefers to remain in the rosca:

6•k -1u (b) > Y u (y)
> u (y) +(1 -6)k 1 -6

If this condition is satisfied, then random roscas will exist forever for any value of p.

Now suppose p > p*. Then, the expected value for any agent entering a rosca is: (+ - ).

If fixed roscas survived forever, this would be identical to the expected value from fixed roscas.

Since there is no such equilibrium, the expected value from fixed roscas must be lower. m



1.7 Empirical Implications

In this section, we look at how the results in previous sections can be related to our empirical

understanding of roscas. Our focus is on implications that are directly related to hyperbolic

discounting, including (1) comparative statics generated by the model, (2) predictions about

the survival of random and fixed roscas, and (3) comparisons between durable and nondurable

goods.

If hyperbolic discounting is indeed a primary explanation of rosca participation, then we

predict that members of long-lasting roscas will exhibit intermediate levels of time-inconsistency

in hypothetical preference reversal games. The actual size of the /-region within which roscas

survive depends on several parameter values. All else equal, roscas are more likely to survive

as the nondivisible gets more expensive relative to income. Also, roscas are more likely to

survive as the utility from small units of consumption increases relative to the utility from the

nondivisible (until the point where the nondivisible is no longer valued even by exponential

discounters).

In the previous section, we have seen how it is possible for roscas to survive as non-

cooperative equilibria. The defection incentive in these cases is created by the option value

of a higher rank in a future rosca. We see that in environments that are completely anony-

mous, fixed roscas can survive forever only if matching for new roscas is sufficiently low. When

there is some reputation, fixed roscas again survive when matching is sufficiently slow, but

random roscas can be welfare-improving when matching probabilities are high. When roscas

can access more information about an agent's past rosca behavior, equilibria with repeating

fixed roscas can exist even under perfect matching (see Figure 3).

This gives us some testable predictions. We conjecture that the likelihood of matching is

positively correlated with population density, which suggests that p rises as communities get

urbanized. When reputation is informal, the availability of information is likely to be inversely

correlated with urbanization (full reputation is a feature of very small rural communities, while

urban areas are more anonymous). Then, our model predicts that fixed roscas are more likely

than random roscas at fully rural and fully urban extremes. In semi-rural communities, we are

more likely to encounter conditions suited to the survival of random roscas.

The Anderson, Baland (2002) study, set in an urban neighborhood, finds that a majority of



roscas are fixed. The Gugerty (2005) study, set in rural Kenya, finds that a majority of roscas

are random. These patterns appear consistent with our predictions, but we would require more

information for a more accurate analysis.

p

1

R
F-,

0 *, P/*an

Figure 1-3: Partial Reputation (p is the exogenous probability of matching into new rosca
groups; assume Pan, is close to p*): In region A, only fixed roscas can survive forever. In region
B, fixed and random roscas can survive forever. In region C, no roscas survive forever (if any
roscas exist, they must be fixed). In region D, random roscas are more likely to survive, and
provide higher welfare than any fixed rosca equilibrium.

In this model, as in some previous models, we describe the nondivisible good as yielding a

one-period benefit. This is not an unreasonable assumption, since there is a range of empirical

evidence suggesting that rosca members often do not spend the money on durable goods.

However, it is useful to identify implications for rosca survival if agents save for durable goods

instead. When goods are durable, the benefits are spread across multiple periods, and agents

place less value on immediate consumption. This has two implications. First, as the good

becomes more durable, agents are more likely to postpone entry into roscas. Second, once an

agent is actually in a rosca, the conditions under which roscas survive will expand. Since the

benefit from a potentially higher rank in a new rosca is dampened, agents are more willing to



remain in an existing rosca than they would if they were purchasing nondurables. This implies

that, as goods get more durable, individuals may choose to delay entry into roscas but existing

roscas are more likely to survive over time.

1.8 Conclusion

We have shown that roscas can be effective commitment savings devices even without formal

contracting or social sanctions. Agents with self-control problems derive benefits from staying

in a rosca and improving their savings behavior. A particularly useful feature of roscas is

that hyperbolic discounters have no incentive to postpone take-up. Unlike other commitment

savings devices that yield delayed benefits, roscas always come with the possibility that an

agent might be an instant winner. The randomization of rank and subsequent commitment

play complementary roles-the first draws an agent into a rosca, and the second gives her a

reason to stay.

In this paper, we also highlight the relative advantages of fixed and random roscas. Within a

round, agents in random roscas have a weaker incentive to stay than they would in fixed roscas.

However, between rounds, agents in random roscas never have an incentive to leave, while late

ranked agents in fixed roscas might prefer to leave if they can join a new rosca. Empirically,

both random and fixed roscas exist in large numbers. We make predictions about the survival

of each, based on the depth of reputation and the speed of matching in a community.

This paper gives us several directions for further research. Models that allow for heteroge-

nous populations (for instance, exponential discounters, or agents who want different kinds of

goods) are likely to alter conditions under which roscas survive in the absence of contracting.

Also, there is scope for testing some of the predictions of our model, especially if convincing

measures of time-inconsistency, reputation, and matching speed can be constructed. However,

the overall idea of roscas as commitment savings devices seems to be realistic, and helps explain

their resilience across the developing world.



1.9 Appendix

1.9.1 Appendix A: Proofs for Section 3.3

Proof of Lemma 1. Suppose not. If at wealth w the agent saves s with positive probability,

it means:

u (w - s) + 06V (s + y) > u (w - s') + 06V (s' + y)

Now, if at wealth w' > w the agent saves s' with positive probability, it means:

u (w' - s) + f3V (s + y) < u (w' - s') + 06V (s' + y)

This implies that:

u (w - s') - U (w - s) < u (w' - s') - w (W' - S)

This violates strict concavity of u. *

Proof of Lemma 2. Suppose the agent with wealth w saves with higher probability in A

than in B, but both play a mixed strategy. Then, in each equilibrium, the following condition

must hold (for i E {A, B}):

/36V (w + y) = u (y) + /36V, (w)

Assuming the agent saves w with probability ri, we can solve for V, (w). Note that this means

she saves iv - y with probability 1 - 7ri.

V?(w) = ri [6Vi (w + y)] + (1 -7rj) [U (y) + 3V (w)]

V ri [SV (w + y)] + (1 - Tri ) (y)
1 - (1 - 7ri) 6

Reinserting this into the indifference condition and rearranging terms, we get:

/• (1 - 6) V (w + y) = [u (y)] [1 - 6 + -ri6 (1 - 0)] + /3u (y)

Comparing across equilibria, 7A > 7rB ý VA (w + y) > VB (w + y). Since in each case the



agents are willing to save, this also means that the agent with wealth w prefers equilibrium A

relative to B. m

Proof of Lemma 3. Assume VA (w + y) > VB (w + y). Now suppose the proposition is

false, and assume VA (w + 2y) > VB (w + 2y). The following chain of inequalities must hold:

1SVB (w + 2y) > SJVA (w + 2y)

> u(y) + 6VA(w+y) > u (y) + VB(w+y)

~ 6VB (w + 2y) > u (y) + 06VB (w + y)

Therefore, the agent with w+y saves with certainty, which means VB (w + y) = P/ 2VB (w + 2y).

Furthermore:

VA (w + y) < /62VA (w + 2y) < VB (w + y)

This contradicts our assumption. m

Proof of Proposition 1. 1. At least one Markov Perfect Equilibrium exists (Fudenberg

and Tirole, 1991).

2. Consider any two equilibria, A and B, each of which involves saving. If the agent at

wealth y saves with higher probability under A than B, then A is strictly preferred by the agent

at y (Lemma 1). Then, A is strictly preferred at all higher levels of wealth (Lemma 2).

3. Consider any two equilibria, A and B. Suppose the agent at wealth y saves with identical

probability, 7r, in A and B. This can happen in two ways: (a) 0 < 7r < 1 or (b) rr = 0. Consider

(a). Find the lowest level of wealth, 'j, at which saving probabilities differ (if this never happens,

A and B are identical). At ib, suppose 7rA > 7rB (where the probabilities are of saving &i). By

Lemma 1, VA (z + y) > VB (tb + y). It follows from Lemma 3 that VA (~i) > VB (d)). Therefore,

the agent at ib - y prefers A. Similarly, A is preferred to B at all levels of wealth. Now consider

(b). Under any two such equilibria, a higher level of wealth is never reached, so the agent is

always indifferent.

4. Consider any two equilibria, A and B. Suppose A involves saving but B does not. Then

VB (y) = u(1 . Since VA (y) > 0 and, at 7r_ = 0, VA(y) = = VB (y), we know that



VA (y) > VB (y). Since there is saving in A but no saving in B, we know:

06VA (2y) > u (y) + 06VA (y) > u (y) + 06VB (y) > 03VB (2y)

'Therefore, the agent at y prefers equilibrium A to B. Also, VA (2y) > VB (2y). At wealth 2y,

utility from equilibrium A is 06VB (3y), which is weakly greater than u (2y) + f3VA (y) and

a (y) + 06VýA (2y). Utility from equilibrium B is:

max {u (2y) + /6VB (y) , u (y) + 06VB (2y) , /3 VB (3y)}

'The first two possibilities are strictly dominated by the utility from A. Furthermore, it must

be the case that VB (3y) < VB (3y) (if not, the agent at wealth y in equilibrium B would have

an incentive to save). By iteration, at any higher level of wealth, iy, any possible utility from

equilibrium B' must be strictly dominated by /3VA (iy + y).

5. This gives us a complete and transitive ordering over any set of equilibria. Any equilib-

rium in which the nondivisible is ever purchased is always preferred to any equilibrium in which

the nondivisible is not purchased. Among equilibria in which the nondivisible is purchased, the

best involves the highest saving at y (or the lowest level of wealth at which a unique equilibrium

has higher saving than all others). m

1.9.2 Ap:pendix B: Example for Section 3.4

Suppose the nondivisible costs 3y. Then a full saving equilibrium exists as long as the agent at

y strictly prefers to save fully:

062u (b) 36 3 u (b)
1 -3 >u(y)+ 1_63

Once 0 falls low enough so that the above condition fails, the agent at y can start playing a

mixed strategy, which must satisfy:

652 u (b) + 063 V (y) = u (y) + 06V (y)



The RHS responds faster to 7r than the LHS does. If the agent at 2y continues to save fully,

the agent at y can be kept indifferent down to some (,, 0), which in this case corresponds to:

ps3u(y)362u (b) +
1-6

= y (y) + )
1-6

u (y)
6 [6u (b) - (1 + 6) u (y)]

If the agent at 2y is still willing to save fully at the (, 0) combination,

condition must hold:

then the following

A6
2u (y)/6u (b) + 1-6

> u (y) + (62u (b) +s6u (y)+-6

u (y)
6 [(1 - 6) u (b) + 6u (y)]

For both of these conditions to be simultaneously satisfied, we must satisfy:

(1 - 6) u (b) + 6u (y) u 6u(b)-(1 +6)u(y)

= (1 + 26)u(y) > (26 - 1) u (b)

which is only true if 6 is sufficiently small, or if u (y) is sufficiently large relative to u (b).

1.9.3 Appendix C: Mixed Strategy Equilibria

First (for Proposition 4), we show that i7r (irj) > 0, for all i,j E {1, 2, ..., k - 1}, j Z i. The

utility from saving is:

6JV (w + y)

The utility from not saving is:

u (y) + 36[riSV (w + y) + (1 - 7r) (u (y) + 6V (w)]

If some 7rj rises, then the utility from saving rises faster than the utility from not saving

does. To re-establish indifference, 7ri must rise.

Second, we show that the utility from autarky (from the point of view of the agent at wealth



y) is weakly concave over [3, 3]. Take 3 E (3i, 3ji 1). Recall that this is a region in which agents

at wealth iy and below play a mixed strategy. Since they are all indifferent, we know that for

u (y) + /6V (jy) = 36V (jy + y)

and for j > ýi:

V (jy) = 6 k-ju (b) + k -j+1  (y)

Combining these, we get:
sk-iu (b)

V (y) k=i
1 - Sk-

i+ 1

6k:'-u(b) iu(y) Sinceiiseaklywhich means that the lifetime utility at wealth y is: 1Since i is weakly
k -6u b)

decreasing in / and I _u.b is strictly increasing in i, lifetime utility is less responsive to /3 as

/3 rises, i.e. it is weakly concave.

1.9.4 Appendix D: The k = 2 Case

We solve an example in which k = 2. First, we provide explicit solutions for all key terms.

Then, we make specific assumptions about 6, u (y), and u (b), and graph the resulting values.

Here, 3 =- (_) and = = .u(y) For /3 (/3, ), the agent plays a mixed

strategy, where she saves with probability 7r at wealth y. The mixed strategy satisfies the

indifference condition:

36u (b) + /6 2 V = u (y) + 06V

S /36u (b) - u (y)

/3 - 062

V is also given by,
6wu (b) + (1 - 7r)u (y)

V= (1 - 6) (1 + r6)

where
/ u (b) 1 + /3

7 1 +3u(y) 5+/36

Then, in autarky, the agent's utilities from equilibrium (at wealth y) are given by:



O6u (b)
1 _ ,for j 2

u(y) [+ Ju (b) -u(y)] for E (,

p3u (y)
u (y)+ 1 , for- p

Now we look at roscas. The lower bound of the region in which the agent always prefers a

fixed rosca is:
(1- 62 )u(y)

6u (b) - (1 + 5) Ju (y)

In the region with no autarky saving, the agent always strictly prefers a random rosca if:

/3u (b) /3u (y)0 > u (y) +
2(1 - 6) 1 - 6

This determines /3an (assuming 6 is high enough):

_ 2(1 - 6) u (y)
3ran 6 (u (b) - 2u (y))

In the region with partial saving in autarky, the agent always strictly prefers a random rosca

if:
33u (b) [su (b) - u (y)

2(1-6) >u(y)+ 1  - 6

This determines $ran:

ran =2 u (b

Finally, under anonymity and partial reputation, fixed roscas survive forever if p < p*,

where:
S(1-5)( ,, ) -(1- +/3) u (y)

p /3 u (b_) 0& 2 u(b) U 3 (Y)
2(1-5 1-62

Let us assume that 6 = .95, u (y) = 1, u (b) = 2.5. This ensures that the nondivisible is

desirable to an exponential discounter. Then, / = 0.821, / = 0.702, 0* = 0.187. The lifetime



utilities from equilibrium (at wealth y) are:

24.3590, for/3 Ž >

47.5 3- 19, for 0 E (0, /)

190 + 1, for/3 < 3

'The agent will always strictly prefer to stay in a random rosca if / E (3*an, ran) = (0.211,0.8).

(See Figure 4 for a graphical summary of these results.)

Under the assumptions above, p* = 05. In Figure 5, we plot p* as a function of 3.

1.9.5 Appendix E: Approximations of Critical Values

To see how the critical /3 values relate to each other, we take first-order approximations for 6

close to 1. Let 6 = 1 - e, where E is very close to 0.

1 - 6k

6k-1 - 6k

k U (b)
-* u ()

u 1(b)

1 - (1 - e) k

(1- e)k - (1 - E)k

(y)(1 - 6)

(1 - _(1 - )) (1 - E)k-1 u (b) - (1 - E) u (y) E1 -(1 - e)k

u (y)(b) (k- 1)(y)>0u()-(k - 1) a(y)

- )) u (y)

u(b)- ((1- E)-(1 - E)k+l) u(y)

u (b)

-+ 0

- (1 - E)k)

(1 - 6) Sk- 1u (b) - 6U (y) (1 - S
k - l )

u (y) (1 - (1 - e))

(1- a6k) (1- ) u(y)

(6 k -- 1 -_ k) u (b ) - (6 - Sk+l) U (y)



L utility from fixed rosca

utility from random rosca

Autarky utility

Figure 1-4: The lowest utility from a random rosca is lower than the lowest utility from a fixed
rosca. The region in which a random rosca survives is smaller than the region in which a fixed
rosca survives.
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The comparative statics suggested by these approximations are discussed in Section 7.
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Chapter 2

A Behavioral Model of Simultaneous

Borrowing and Saving

Summary 16 We present a model in which agents choose to simultaneously save and borrow

money in equilibrium. The model describes the behavior of sophisticated hyperbolic discounters

who have access to a non-secure savings technology. The combination of savings and a loan

generates incentives for future selves to invest optimally, by punishing over-consumption rela-

tively more severely. We show that these results cannot hold if agents are time-consistent, or if

savings are fully secure.1

1 The puzzle tackled in this chapter was proposed by Dean Karlan.



2.1 Introduction

Why would an individual simultaneously save and borrow when the interest rate on saving

is no higher than on borrowing? Given the prevalence of such behavior, several economic

explanations, both traditional and behavioral, have been proposed. Traditional explanations

usually rely on the option value of savings-under risky conditions, an agent might maintain

savings for use in case of an emergency (if, for example, there are transaction costs with taking

a loan on short notice, or if bankruptcy laws don't require the agent to repay a loan even

if there are assets in the bank). Behavioral explanations, most notably Laibson, Repetto and

Tobacman (2001), focus on illiquid savings as a self-control device. Agents lock assets for future

consumption while smoothing short-term consumption with high-interest credit card debt.

In this paper, we suggest an alternative model. The model is motivated by a similar phe-

nomenon observed among participants in FINCA, a microcredit organization in Peru. We argue

that, in this specific context, existing explanations of simultaneous borrowing and saving are

insufficient. As in Laibson et al, agents have time-inconsistent preferences, but in this model

savings serve_- a different purpose. We exploit the fact that savings with FINCA are not entirely

secure--this allows agents to generate uncertainty that can improve the behavior of future selves.

We show that the combination of an non-secure savings technology and a future investment

opportunity can induce an agent to borrow and save simultaneously, and that this behavior is

not optimal if either of these elements is absent. We also show that access to non-secure savings

can make an agent better off than if savings are always secure.

2.2 Motivating Background

FINCA provides banking services to the very poor in the cities of Lima and Ayacucho. The

majority of its clients are women who own and operate small informal businesses. Individuals

are allowed to take out loans which must be repaid over a 4-month loan cycle. The average loan

is $203, and is typically used for business investment purposes (often inventory). All borrowers

are required to also maintain a savings account. The saving is intra-group-i.e. an agent who

saves is giving a loan to some other FINCA member. Savings and borrowing take place at the

same fixed interest rate. When agents save internally, they effectively get a lower return than



they pay on their loans because there is some risk of their savings being defaulted upon. For

any agent who does not repay a loan, the punishment (apart from the seizure of assets from

the savings account) includes expulsion from future access to the bank.

A significant proportion of borrowers maintain savings that are above the required minimum.

At any time, 15% save more than they borrow (30% have done this at some time). This

behavior is most common in Ayacucho, where incomes are relatively low and access to credit is

mostly limited to moneylenders who charge high interest rates. In his work on FINCA, Karlan

finds that those who save and borrow simultaneously tend to express greater than average risk

aversion in hypothetical questions.

2.3 Description of the Model

In this section, we argue against alternative explanations and broadly describe the intuition of

our model. The goal of our model is to explain an individual's decision to make a savings and

borrowing decision at the same time and in the same bank.

The possibility that savings are maintained for their option value is unlikely for two reasons.

First, since the lender organization is the same as the borrower, it is not possible for an agent

to default on a loan while still having access to her savings in the case of a negative shock.

Second, savings are relatively illiquid during a loan cycle. Then, if an agent has a sudden need

for liquidity, it is not clear that it is easier for her to access her savings than it is to simply

take out a fresh loan from the bank. Since alternative banking services are very limited, it is

unlikely that a savings account with FINCA would be useful as collateral for other banks.

It also seems that, unlike in Laibson, Repetto and Tobacman, agents are not using savings

for their illiquidity. In their model, agents save to ensure consumption in the distant future,

and take out high-interest loans if they suffer income shocks. However, in our context, while

savings are not liquid within a loan cycle, they can nevertheless be used to pay back loans at

the end of a cycle. Also, agents make the decision to maintain debt and savings simultaneously,

so the loans are not a response to an unanticipated shock after savings have been locked up.

In our model, the agent is a quasi-hyperbolic discounter who has the opportunity to make

an investment in the middle of her life. While her early selves would like her to invest, she is



unwilling to make the sacrifice when the opportunity presents itself. The problem for the agent

when young, then, is to leave enough liquid assets for her future selves while also creating an

incentive to invest. We find that, in some cases, this can be done optimally by saving in the

bank while also borrowing from it. In this model, saving is a source of uncertainty. If the agent

saves her assets in the bank while leaving a large amount of borrowed money for future selves,

those selves must decide whether to indulge their present-biased preferences and consume or to

consume less and invest. If the money was not borrowed (or if savings were entirely secure), the

middle-aged agent might choose to indulge. Now, however, indulgence becomes more costly-

since it; is possible that the agents savings will not be repaid, she risks being unable to pay back

her own loans if she over-consumes today. If the punishment for default is sufficiently high, she

will choose to invest. The young agent is able to use banking to generate costly punishments

for "bad" behavior, thus ensuring that her future selves invest optimally. As long as savings

are sufficiently secure (but not fully), the agent will simultaneously save and borrow.

2.4 Model

2.4.1 Assumptions

There is one individual who lives for 3 periods. As shown in the timeline below, there is no

consumption in period 0 but banking decisions must be made at this time. In period 1, the

agent; can consume but also has the opportunity to invest. In period 2, savings mature, loans

are repaid, and the agent consumes her remaining assets.

0 1 2

i t

Banking decision Investment decision Consumption
Saving decision Loan repayment
Consumption decision

Figure 2-1: Timeline



The agent has an endowment w in period 0. The price of investment is p, and the monetary

benefit of investment is b. The agent has a per-period utility function u, which is strictly concave

and differentiable, with u (0) = 0 and u' (0) finite. The agent is a quasi-hyperbolic discounter

with 6 = 1 (the exponential discount factor) and 0 < p < 1 (the hyperbolic discount factor).

If banking services are used, savings and borrowing takes place at an exogenous interest

rate r (R - 1 + r), such that x in period 0 yields Rx in period 2. If an agent saves within the

bank, they are not repaid to her with some probability e. This is also taken as exogenous at

this stage. If an agent does not repay her loan in full, she faces a punishment of F. This can be

interpreted as sanctions (financial or monetary), restricted access to future banking services, or

seizure of durable assets. This is in addition to the bank collecting any amount that the agent

has saved (at home or with the bank). We assume that F is large enough that it is always

worth reducing consumption to avoid default.

2.4.2 Exponential Case

As a benchmark case, we assume 1 = 1. Here, an agent has time-consistent preferences and

behaves like an exponential discounter. If there is no banking, the agent will invest in period 1

(we assume from here on that it is worthwhile to invest):

maxu (w -p - s) + u (b + s) > 2u (
s>0 2J

Now suppose the agent has access to banking as described above. If there was no investment

to be made, she would save si (in the bank) and 82 (in period 1) to satisfy:

max [u (w - 81 - s2) + (1 -e) u(si + Rs 2 ) + EU (81)]
81,82

She will not borrow any money since this will be seized in case of default anyway (we are

assuming punishment is sufficiently large that she will not default).

Now we bring back the possibility of investment. The agent will borrow to fund consumption

in period 1:

max [u (w - p + 1) + u (b - RI)]
1>0



Assume R is low enough here that there is no incentive to save.

2.4.3 No Investment Case

Now we turn to the agent of interest-the quasi-hyperbolic discounter (3 < 1). First, we analyze

behavior in the absence of the investment opportunity. Since we are considering the case

without banking, there is no action the period 0 agent can take. The agent in 1 will save si for

consumption in period 2 according to:

u' (w - si) = PLu' (s) (2.1)

This will involve lower saving that the period 0 agent would like.

Now suppose banking is available. The agent in 0 would like to improve period 2 consump-

tion. First, why would she not borrow money? Suppose she borrowed money in 0. She would

do this only if it would induce agent 1 to save more. The agent in 1 will save more than in

the no-banking case only if there is inducement in the form of a period 2 threat. In this case,

we need to slhow that any outcome that would be achieved by a combination of borrowing and

saving can be achieved (or improved on) by simply saving less and borrowing 0.

Proposition 17 When there is no investment to be made, the agent will never borrow in period

0.

Proof. Suppose the agent in 0 saves some amount so and borrows 1 > 0. The period

1 wealth, IW1 , is w - so + 1. The agent in 1 will consume some 0 < cT < W 1 and save

ST = W 1 - c:l > Ri (to avoid default in the bad state). From the period 0 perspective, lifetime

utility is:

u (c) + (1 - e)u (Rso + s* - RI) + eu (s - RI) (2.2)

Now, consider the same so as above, but change the loan to I = 0. The period 1 wealth

is W1 = w- so. Consider the following consumption and savings in period 1: c1 = c* +

(R1 - 1) ; s= sT - R1. This is an outcome where the agent in 1 consumes what was previously

interest on the loan, while leaving period 2 consumption unchanged. This gives us a lower



bound on welafare from the period 0 perspective (if the agent in 1 deviates from this plan, it

will be to transfer more consumption to period 2).

Utility from the period 0 perspective is bounded below by:

u (c* + (RI- )) + (1 -)) e) (Rso + s* - RI) + eu (s* - RI) (2.3)

The utility in 2.3 is strictly higher than the utility in 2.2. N

Then, the agent in 0 will save so to satisfy:

max 0 [u (w - so - si) + (1 - E) u (si + Rso) + 6u (si)]

s.t. si E arg max [u (w - so - si) + (1 - e) U (s + Rso) + -Eu (S1)]
si >O

2.4.4 Investment Case without Banking

We assume here that, in the absence of banking, the agent in 1 will not invest:

u (w - s*) + pu (s*) > u (w - p) + pu (b)

where the LHS is the agent's optimal saving behavior as described in Equation 2.1.

2.4.5 Behavior with Banking

This is the case of interest. Since an investment needs to be made in period 1, good behavior

requires that the agent have enough available money for it, and that there be sufficient incentive

for her to do so. First, we know that agent 0 can simply use saving to at least ensure the no-

investment banking outcome described above. Assume again that F is high enough that the

agent will repay the loan if at all possible. We use backward induction to analyze this problem.

The agent in period 2 has wealth W2 = sl + f (i) + Rso if her savings are repaid, and

W2 = sl + f (i) if her savings are defaulted upon. Here, f (i) is the output from investment,

which is either 0 or b. Suppose also the agent owes a loan repayment of size R1. If W2 > R1,

she will repay the loan, and get utility u (W 2 - RI). If she defaults, her utility is u (W 2 - F).



W2

Figure 2-2: Period 2 utility

Now consider the decision in period 1. Her current wealth is W1 = w + 1 - so. She chooses

to consume some amount co to maximize her discounted sum of period 1 and period 2 utilities.

If co is small enough, the investment is made.

If the agent in period 0 could control future behavior, she would choose some loan I to

compensate agent 1 for the cost of investment, while ensuring that investment actually does

happen. However, given that agent 1 is free to make her investment decision, if she is sufficiently

hyperbolic she would rather consume more (and not invest) than consume the amount necessary

to invest. If this is the case, agent 0 must choose from the following options:

1. Give up on investing, and simply save some amount for agent 2.

2. Borrow more (some i > 1) so that the agent in 1 is willing to invest.

3. If E is low enough, borrow more than 1 but also save some amount so. This creates a

threat for the period 1 agent-if she does not invest, there is a possibility that she will

be unable to pay her loan in period 2. If F is large, this threat can create incentives to

invest.

To see when c might be the best option, consider the tradeoff that agent 1 has to make.

Suppose si is the amount she chooses not to consume (if s, > p, then the investment is made).

Her utility from current consumption is:



SI

Figure 2-3: Period 1 utility

Suppose the agent in 0 only took a loan. Then, the period 2 utility is given by the thick

curve below. The lowest segment is the region in which the agent in 2 might default. The

middle segment is the case where there is no chance of her defaulting, but investment has not

taken place. The uppermost segment is one in which the agent invested in period 1. Suppose

agent 1's optimal choice is sa, so that there is no punishment for default but the investment is

made.



S1

Figure 2-4: Period 2 utility as a function of period 1 saving

Suppose the agent in 0 saves more and borrows more. Now, period 2 utility is represented

by the thin curve. If agent 1 continues to save only Sa, she might face punishment in period

2. To prevent this, she must raise the amount she saves. Here, it can become optimal for the

agent to invest. Note that if e is low, the final outcome is close to the optimal outcome (from

the perspective of period 0).

In this case, saving creates the incentive to invest, while borrowing is used to actually fund

the investment.

Proposition 18 There is a parameter region in which the agent will save so > 0 and borrow

I > 0 in period 0.

Proof. First, consider the optimal outcome under investment:

Uinv-max = max [u (w +- p) + u (b - RI)] (2.4)
1>0



Now, consider the optimal outcome under no investment:

Unoinv-max = max [u (w - so - si) + (1 - ) (Rso + s) + EU (S)] (2.5)

By the assumption that investment is worthwhile, Uinv-max > Unoinv-max.

Consider the outcome if the agent does not plan to invest. She will save some so that

satisfies:

Unoinv = max [u (w - so - si (so)) + (1 - s)u(Rso + si (so)) + EU (si (so))] (2.6a)
so

s.t. si (so) = arg max [u (w - so - s1 (so)) + 0 (1 - e) u (Rso + si (so)) + •Eu (81 (so))]
81

Since the agent in 1 is maximizing a different utility function than in 0, Unoinv < Unoinv-max <

Uinv-max

Consider the case where 3 is low enough that Uinv-max is not achievable. To induce saving,

the agent can take a loan I > I that satisfies (assume F is large enough that default is not

desirable):

max [u (w+1-s) +u (s -Ri)] = [u(w+ -p)) +u (b-Rti] (2.7)

This gives the following utility:

Uinv-loan = (w + i- p) + u (b - RI)

Uinv-loan < Uinv-max.

The optimal pure-saving or pure-borrowing strategy yields a utility that is lower than the

true optimal by some amount D, which is given by:

D = Uinv-max - max { Uinv,-loan, Unoinv }

There is a lower bound on D that does not depend on e (set e = 0 in Condition 2.6a). We

now show there is a special case where simultaneous borrowing and saving can raise utility.

Consider borrowing 1 = I + w and saving so = w. Then, for any non-investment outcome



(si < p), agent l's utility is:

u (w + 1- si) + 0 [(1 - e)u (si - R) -+ U (-F)] (2.8)

If the agent invests (assuming 1+ w < b), her utility is:

u (w + [- p) + 3 [(1 - e)u (b - R) + E• (b - R ([+ w))] (2.9)

If F is large enough, the agent will choose to invest. If e is small enough, the agent in 0

prefers this outcome to any pure borrowing or pure saving outcome.

We now have sufficient conditions under which simultaneous borrowing and saving domi-

nates:

* + w :-< b

* ý is sufficiently low that D is large.

* E is suffl•ciently low.

* For 3 and E that satisfy above conditions, F is sufficiently high.

The actual optimal point will not involve pinning the agent in 1 to the original optimal

consumption. Consider a deviation that leads to a change in cl. If the agent lowers 1, she must

raise so to maintain incentives for agent 1 to invest (and vice versa). First, we consider a drop

in I and a corresponding rise in so. This lowers W1, which results in a lowering of cl and raising

of c2 . While this brings the marginal utilities of consumption between the two periods closer

to each other, it also lowers the total amount of wealth to be shared. Alternatively, consider a

rise in I and a drop in so. While this raises cl and lowers c2 (thus pushing marginal utilities

further apart), the change in cl is greater than the change in c2.

To determine the actual savings-loan combination used in equilibrium, let so (1) be the level

of savings required to maintain investment incentives for any l. The marginal utility from



raising 1 (from a period 0 perspective) is:

u' (1 - p) + (1 - E) u' (b + Rso) Rs' (1) - R

The agent will choose I and so so that the above term is 0.

It is useful to note here that if, instead, the individual only had access to secure savings (at

a lower interest rate), then she would never choose to borrow and save simultaneously. In this

case, it is impossible for agent 0 to create a discontinuity in period 2 utility that gets exacerbated

if agent 1 over-consumes. To induce her future self to save, she will have to create incentives by

lowering the relative marginal cost of saving in period 1. Rather than use the costly device of

saving and borrowing, she will simply borrow to the point where agent 1 is willing to save. This

is because, in either case, the period 0 agent must appeal to the period 1 agent's incentive to

invest without a new threat being created. To see this, consider any loan-savings combination

that induces investment. As shown in the proposition below, the agent in 0 can reduce both

loan and savings in such a way that total wealth rises (less money is burned), and the benefits

accrue to the period 1 agent. If the agent in period 1 has money at her disposal, her incentive

to invest remains intact. Thus, investment continues to happen with less money wasted due to

simultaneous saving and borrowing.

Proposition 19 Suppose the agent can borrow at interest rate r (R - 1 + r) and can save at

interest rate t (T = 1 + t), where r > t. Then she will never save and borrow simultaneously.

The proof of this proposition is in the appendix.

2.5 Comparative Statics

2.5.1 Example

We use a simplified example to make cross-sectional predictions about the survival of simul-

taneous saving and borrowing in equilibrium. Consider individuals who have a linear utility

function: u (c) = c. Let the initial endowment w be normalized to 1.



If the agent in 0 does not plan to invest, she will either save her entire endowment or nothing

at all. If (1 -- ) R > 1, she will save 1. Otherwise she will save 0. This yields the following

utility from the period 0 perspective: UN = max {1, (1 - e) R}.

Now we consider the investment opportunity. Since the per-period utility functions are

linear, the agent would prefer not to borrow. Since b > p, the investment is always preferred.

This gives us the optimal utility level:

Uo = max {b + 1 - p,b + R(1- E) (1- p)}

Now we look at the intra-personal equilibrium in the absence of banking. The agent in

period 1 must decide whether to consume 1 or invest p and consume 1 - p. She will choose to

invest if: p ::- Ob. Suppose this condition fails. Now consider a pure loan to induce investment

(we assume that F is large enough that the agent will never default). Then, the agent in 1 will

invest if investment dominates just repaying the loan. Agent l's utility from just repaying is:

S 1+ I - RI, if I <
UN =

U1 1 + 1 - OF, otherwise

Agent 1's utility from investment is:

(1 + 1 - p) + f (b - R) , if l < I+r

I (l + 1 - (RI - b)), if b < +b-

I + 1 - p - OF, otherwise



1

I-p +f3b

I
1/r (1-b-p)/r

Figure 2-5: Agent 1's utility as a function of loan size.

Since b > p, there will always be a loan that can induce investment. The smallest possible

loan size, IA, is given by:

(l + 1-p) + (b-R) 1 + 1-RI

p - 3b
> IA R( )R (1 - 0)

This yields the following utility for agent 0: UL = b + + 1 - p) - R -) Uo.

Now consider a loan 1 and savings of so. We are interested in conditions under which this

will raise agent O's utility. Agent 0 will either choose to leave agent 1 with no consumption, or

allow agent 1 to consume all leftover funds. Suppose she chooses to leave agent 1 with no extra

consumption. Then W1 = 1 - so + 1 = p. Assume the agent in 0 will never take a loan so large

that it cannot be repaid even under investment. Consider agent 1's utility from just repaying



(without investing):

UN s  p - RI + (1 - e) Rso, if I <--

p + 0 (1 - e) R (so - i) - BeF, otherwise

Her utility from repaying through investment is:

Uis = 0 [b - RI + (1 - e) Rso]

We know that -1• > RO1) This determines agent O's optimal savings-loan combination:

p - Ob
IB = ;sB = l-p B+ 1

R(1 - 3)'

If agent 0 prefers to allow the agent in 1 to consume the uninvested amount, she will not

save any amount. Then, if the agent simultaneously saves and borrows, her utility in period 0

is: b- RIB + (1 -)R(1 -p +B).

2.5.2 Implications

We are now in a position to predict the agent's optimal behavior based on exogenous parameter

values: 0, b, p, R, e. The utility of the agent in period 0 from (a) no investment, (b) pure loan,

and (c) loan and savings, is:

(a) max {1, (1 - e) R}

(b) b-R R1- ) - -
(R (I - 3) R (1 - 0)

(c) b-R ( -b +(1-)R - -p
R(I - 0) (R(1 - )

This gives us the following implications. First, the relative values of (b) and (c) depend

entirely on (1 - e) R. If E goes down or R goes up, the agent is more likely to use simultaneous

saving and borrowing (if she chooses to invest). If (1 - e) R < 1, then the agent will either

engage in no banking, or will invest using a pure loan. If (1 - e) R > 1, then the agent will

either save her entire wealth, or will use a combination of saving and borrowing to invest.



To find conditions under which the agent will invest at all, we compare (b) and (c) to (a).

Interestingly, we find that, in all cases, if R rises, the agent is more likely to invest. This is

because it is now easier for the agent to create incentives for future selves to save. Also, as we

would expect, the agent has a greater incentive to invest as the investment gets cheaper relative

to the benefits.

Finally, as long as the punishment for default is sufficiently large, the agent is more likely

to invest as e drops. We see, then, that the hyperbolic agent is able arrive arbitrarily close to

the optimal outcome if there is a very small possibility that her savings will not mature. The

actual value of E would depend on the number of agents in this setting who were not susceptible

to punishment for default.

2.6 Conclusion

We have attempted to solve a puzzle of simultaneous borrowing and saving by providing a new

rationale for this phenomenon. When agents are sophisticated hyperbolic discounters, access

to a non-secure source of saving can be useful-by creating the threat of a large punishment

in the event of default, the agent can induce her future selves to invest. Actual utility loss in

equilibrium is limited if the probability of default is low.

We have shown that, in this setting, simultaneous borrowing and saving cannot be optimal

if agents have time-consistent preferences. We have also shown that, if savings are secure, an

interest rate differential cannot explain this behavior. The agent is always better off when she

simply borrows to fund investment. When there is a small chance that savings will disappear,

the agent can find herself better off than if savings mature with certainty.

2.7 Appendix

2.7.1 Appendix A: Differential Interest Rates

Statement of Proposition 3: Suppose the agent can borrow at interest rate r (R _ 1 + r) and

can save at interest rate t (T = 1 + t), where r > t. Then she will never save and borrow

simultaneously.



Proof. The agent in 0 will either plan for the investment to be made, or not. If the

investment is not made, clearly the optimal strategy is to save some amount so such that:

u' (w - so) = u' (Tso)

In this c;ase, no loan will be taken.

If' the agent in 0 takes a loan, it must be to induce investment in period 1. Suppose the

agent borrows I > 0 and saves so > 0. It must be the case that the investment is made in

period 1. The utility from period 0 perspective is:

u (w - so + 1 - si) + u (b + si - p + Tso - RI)

Now suppose we lower I and so such that Aso = Al. The period 1 incentive to save rises.

Utility from the period 0 perspective must go up. m
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Chapter 3

Time-Inconsistency in Informal

Credit Markets: A Welfare Analysis

Summary 20 We study the relationship between informal banking markets and the welfare of

hyperbolic discounters. We consider three settings that are relevant to developing economies-

monopolistic banking, commitment saving, and competitive banking. Welfare is defined as the

discounted sum of utilities from a hypothetical "period 0" perspective. First, with a monopolist

banker, agents fare better when lending contracts cannot be enforced. Second, a single mon-

eylender can cause zero takeup of any sustainable commitment saving product. Nevertheless,

the availability of commitment saving has the desirable effect of lowering the moneylender's

interest rate. Third, in a competitive banking environment, agents borrow less than they would

from a monopolist. The equilibrium loan size drops further if contracts are vulnerable to rene-

gotiation. In either case, competition raises the hyperbolic agent's welfare relative to monopoly.

3.1 Introduction

This paper is a study of the welfare implications of time-inconsistency in informal credit markets.

While time-inconsistency (in various guises) is now widely invoked in the literature, the study

of its role in developing economies has been a more recent phenomenon. Several empirical and

experimental papers find evidence for behavioral biases and time-inconsistent preferences in the

banking sectors of developing countries. However, the fact that agents are "behavioral" and



that markets respond to this does not in itself help inform us about welfare. In this paper, we

focus on simple banking environments to try and understand when, in the presence of time-

inconsistency, a banking service provider might exploit an agent's temptation at the expense of

the agent's lifetime welfare. Our ultimate objective is to arrive at implications for policy and

experiments.

While a major purpose of credit and saving is to smooth consumption and facilitate in-

vestment, it is also recognized as a source of commitment for time-inconsistent agents. Here,

we abstract away from uncertainty and ask how credit markets can provide commitment in

settings where contracting possibilities and banking facilities are limited. We consider three

settings-monopolistic moneylending, paternalistic commitment saving, and competitive credit

markets. We study how the level of competition as well as the level of contracting ability in

a market can affect welfare. We find that when there is a monopolist banker, an expansion in

the set of available contracts can lower welfare. We also try to answer the question of why,

in practice, there is a gap between the desire for commitment saving and the provision of it.

We show that the presence of a single moneylender can result in zero takeup of well-meaning

commitment savings. However, this should not be viewed as a failure of the commitment sav-

ings product-the availability of it can result in lower interest rates charged by the moneylender,

thus improving welfare. Finally, we also consider competitive credit markets. We show that

while competition creates pressure to return surplus to the client, it also exposes contracts to

renegotiation. While the list of settings studied here is not exhaustive, we hope they capture

some aspects of informal banking in developing countries. In this paper, we avoid what are

perhaps the most commonly studied forms of informal banking-microcredit and microfinance.

While there have been several stories of success and failure in both areas (see, for example,

Morduch, 1999 and 2000), our main focus here is on those environments where loan repayment

is harder to enforce.

The question of welfare under hyperbolic discounting is not well resolved. Given that

an agent's intertemporal preferences vary during his lifetime, useful welfare criteria tend to

privilege an agent of a particular age. One approach would be to simply take the preferences

of the agent at the start of his life as his true preferences, and compare lifetime outcomes from

his perspective. However, this is unsatisfactory since it (somewhat arbitrarily) legitimizes early



myopia while rejecting the same preferences later in life. In this paper, we follow O'Donoghue

and Rabin (1999) in assuming that an agent's true lifetime welfare is as evaluated just before

he actually starts making decisions, in some hypothetical "period 0" of his life. This can be

interpreted as, say, the preferences parents have over their children's lives. This approach is

also reasonable if we are interested in thinking about how people might vote on future changes

in policy such as new banking structures and new forms of contract enforcement.

The paper is split into the following sections: literature review, outline of arguments, mod-

eling assumptions, benchmark analysis, monopolist banker, commitment savings, competitive

banking, and conclusions.

3.2 Related Literature

'This paper relates to two broad areas in the literature on time-inconsistent preferences.

First, several models of saving and credit under time-inconsistency highlight an agent's need

for commitment and tendency to overborrow. For example, Laibson (1997) and Harris and

Laibson (2000) have extensively studied lifetime saving under hyperbolic discounting. Krusell

and Smith (2003) solve a Ramsey-style model when agents are time-inconsistent. O'Donoghue

and Rabin (1999) focus on an individual's tendency to procrastinate when faced with costly

(but desirable) tasks. Kocherlakota (1996) develops a notion of renegotiation-proofness under

Ihyperbolic discounting.

Second, the development literature on microcredit is increasingly interested in commitment.

Ashraf, Gons. Karlan, and Yin (2003) provide a survey of commitment savings products and

related research. Ashraf, Karlan, and Yin (2005) find, in a field experiment, that agents most in-

terested in commitment savings devices are those who face relatively greater time inconsistency

in their preferences and are aware of it. Among other papers, Dagnelie and LeMay (2005),

Gugerty (2005), and Thaler and Bernartzi (2004) provide empirical evidence of the value of

commitment in a range of informal financial settings.



3.3 Outline of Arguments

We assume an agent lives for three periods, and must decide whether to consume a nondivisible

good. This good is expensive and cannot be purchased unless the agent saves (or borrows).

The agent is a sophisticated quasi-hyperbolic discounter-he has time-inconsistent preferences

and knows that his future selves do too. The cases of interest are ones where he values the

nondivisible good but is tempted to defer the savings burden to his future selves. We evaluate

the agent's welfare from the perspective of a hypothetical "period 0;" i.e. assuming he was an

exponential rather than a quasi-hyperbolic discounter. We assume that the banker does not

suffer from a time-inconsistency problem-his objective is to maximize his wealth as measured

at the end of period 3.

There are two key points that drive the results in this paper. First, when an agent saves,

less surplus can be extracted from him than when he borrows. This is because, when an agent

borrows, he is much more willing to pay in terms of future utility for increased consumption

today. Second, while competitive markets give more of the surplus to the consumer, the total

available surplus might be lower than in monopolistic markets. This derives from the fact that,

unlike a competitive firm, a monopolist can credibly promise not to renegotiate.

We first study a benchmark case with an exponential discounter in the absence of banking.

This allows us to establish conditions under which the nondivisible good is valuable (as opposed

to merely being a temptation good), and to describe the agent's optimal behavior from the

period 1 perspective. Then we turn our attention to the quasi-hyperbolic discounter. This

agent would like his future selves to save for the good, but is reluctant to sacrifice current

consumption. This gives us a parameter region in which the good is valuable but is never

purchased in subgame perfect equilibrium.

We then turn to banking. First, we consider the case of a monopolist banker. There are two

sub-cases here-one where no lending contracts can be enforced, and ones where both saving

and lending contracts are available. When the monopolist cannot lend, he must choose whether

to offer saving (or no service at all). With a pure saving contract, the change in the agent's

welfare is ambiguous. We then show that the agent's welfare drops further when the ability

to contract on lending increases. The intuition for this result survives even when there is no

nondivisible good-if the banker can lend to the agent, then he is able to lend at a rate that is



particularly disadvantageous to the agent's future selves, thus lowering the borrower's lifetime

welfare. However, we see that the presence of the nondivisible good can exacerbate the welfare

loss. The good effectively operates as a temptation good by making the agent willing to sacrifice

even more for the utility benefit today.

In the succeeding section, we continue to assume the presence of a single banker (who

can offer both saving and debt), but allow for the entry of an NGO that provides commitment

saving (here we make the assumption that NGOs often lack the information necessary to provide

loans). We show that, even if the NGO provides saving at the highest sustainable interest rate,

there might be no takeup of the product. Since, all else equal, the hyperbolic discounter prefers

credit to saving, the monopolist banker can simply lower the interest rate enough to still induce

the agent to purchase his product rather than the NGO's. However, the fact that the banker

lowers his interest rate means that the presence of an NGO can have an indirect, positive effect

on welfare even if no agent actually takes advantage of the commitment saving on offer.

Finally we look at competitive credit markets, and take more seriously the possibility of

renegotiatiorn through secondary markets.

3.4 Assumptions

An agent lives for 3 periods, i c {1, 2, 3}. He has a non-stochastic income in each period, which

we normalize to 1. His per-period utility function, u (c), is strictly concave and differentiable,

with u' (0) =:- x. The agent can either consume his income directly or purchase a nondivisible

good (only one such good can be purchased over a lifetime). This good has a price of p and

yields a monetary benefit of b, where 3 > p > 2 and b > p.

The agent is a sophisticated quasi-hyperbolic discounter. In any period i, he evaluates his

lifetime utility as:
3

Vi u--ti- + Z Uj
j=i+l

where 0 < :< 1. We implicitly assume there is no other discounting. Then, his utility from

his period 0 perspective, which we describe as his welfare, is given by:

W = ul + U2 + U3



Any banker or NGO in this setting is constrained by the extent of contract enforceability.

In our model of a monopolistic banker, he is assumed to have a large amount of liquid wealth

that he is willing to loan. His objective is to maximize his wealth at the end of period 3. We

assume that NGOs and competitive banks have access to external credit markets where they

can save and from which he can borrow at some interest rate r > 0. While an NGO's objective

is to maximize the agent's welfare, a competitive bank (like the monopolist) wishes to maximize

it's wealth at the end of period 3.

3.5 Benchmark Case: No Banking

In this section, we first find the agent's optimal behavior assuming 0 = 1, and then characterize

the intra-personal equilibrium for , < 1.

3.5.1 Non-Hyperbolic Agent

When / = 1, the agent's knows that his optimal plan in period 1 will be carried out by his

future selves. If he did not save, he would simply consume his income in each period:

W = V1 = 3u(1)

If he saves for the nondivisible, he will evenly share the cost in periods 1 and 2 (since he cannot

reduce his period 3 consumption below b):

W = V1 = 2u(1 - 2 + + (b)

The agent will choose to start saving in period 1 if:

u(b) > 3u(1) -2u (1 p- 2 (3.1)

We assume from now on that Condition 3.1 holds.



3.5.2 Hyperbolic Agent

Hyperbolic Optimum

First, we consider the agent's optimal behavior from two perspectives. From the period 0

perspective, welfare is maximized when behavior matches that of the non-hyperbolic agent

described above. Consider now the optimal from the period 1 perspective. If he does not save

for the nondivisible, his utility is:

V1 = u(1) + 20u (1)

If he saves, he would like to save according to the following maximization problem:

s 1 = arg max [u (1 - s1 ) -+ u (2 - p + si)]
81>0

We assume from here on that even the hyperbolic agent prefers to save:

u(1 - j1) +t Pu (2 - p + s1) + u (b) > u (1) + 23u(1) (3.2)

Condition 3.2 is stronger than Condition 3.1.

To predict actual behavior, we treat the individual as three independent time-indexed agents

and use backward induction to solve for the Subgame Perfect equilibrium. In periods 1 and 2,

the agent makes a decision of how much money, si, to send on to the next period. This decision

is a function of the current wealth, si_1 + 1.

:Period 3

Since, by assumption, b > p, the period 3 decision is straightforward. If s2 > p - 1, then he will

purchase the good, yielding V3 = u (1 + s2 - p + b). If s2 < p - 1, then the good is unaffordable.

Here, V3 = vu (1 + S2).



Period 2

We take sl as given and evaluate the decisions made by the agent in period 2. First, suppose

there was no option of a nondivisible good. Then he would choose 82 to maximize V2:

V2 = max [u (1 + si - s2) + u(1 + s2)]

Now we reintroduce the possibility of the nondivisible. If saves for the nondivisible, his utility

is given by:

V2 = max [u (2 + si - 92) + pu (b + 2 + 1 -p)]

He will save for the nondivisible only if the following condition holds:

u (2 + si - A2) + Pu (b + A2 + 1 - P) >_ u(1 + 81 - S2) +f-U(1 + 2) (3.3)

Proposition 21 There is some 0 < s in" < 1 such that, for all st > sninn, the nondivisible will

be purchased in equilibrium.

Proof. Since b - p > 1, we know that at any si, the optimal 92 must be lower than

the optimal A2. By the envelope theorem, when sl goes up, the RHS increases at the rate

u' (1 + sl - 92) and the LHS increases at a higher rate, u' (2 + sl - 82). Therefore, if at any sl

the LHS>RHS, this inequality will continue to hold for all higher values of si. U

Period 1

A necessary condition for the agent to save at all is that the nondivisible be purchased. Given

our assumptions, we also know that the agent will never save an amount that creates a period

2 incentive to save 82 > p. Then, there must be some snax that creates an upper bound on his

willingness to save in period 1, which is given by:

u(1 - s"ax ) + -u (2 + s•' - p) + pu (b) = u (1) + 2/u (1) (3.4)

Proposition 22 There is a parameter region in which the nondivisible is desirable to the hy-

perbolic discounter (Condition 3.2 is satisfied), but s'ax < slin, where s"ax is determined by



Condition 3 4 and s' in is determined by Condition 3.3.

The proof of this proposition can be given by example. The special case studied in the

appendix satisfies the conditions described in the statement of the proposition.

This is the parameter region we are most interested in. It suggests the agent's willingness to

save for the nondivisible if he has access to the appropriate commitment technologies. Saving

could improve his welfare both from her period 1 and period 0 perspectives. We now consider

the role of banking services.

3.6 Monopolist Banker

We assume there is only one banker in a particular region. His objective, then, is to offer a

contract that maximizes the period 1 agent's surplus, and then extract all of it.

3.6.1 Limited Contract Enforceability

This is the case where the banker does not have the capacity to enforce loan repayments. He

can, however, specify savings contracts of the form {tl (sa), t 2 (Sa - t1 , Sb)}, where tl, t 2 > 0 are

payments made to the agent if he saves so and sb in periods 1 and 2 respectively. The banker

will provide pure commitment saving-by offering the agent in period 1 the option of making

his savings illiquid, he provides him with an opportunity to purchase the nondivisible.

Banker's Optimal Contract

There are three autarky cases that we need to consider: (a) the nondivisible is not purchased,

(b) the nondivisible is purchased but not optimally from the period 1 perspective, and (c) the

nondivisible is purchased and the period 1 optimal plan is implemented. In case (c), the agent

is not willing to pay for any saving service. In cases (a) and (b), however, the banker will

offer commitment saving. The access to illiquidity can improve the agent's saving pattern, thus

raising surplus for the period 1 agent, which can then be extracted by the banker. Since the

only incentive to save is for the nondivisible, the banker will offer a contract which involves

saving s, and Sb in periods 1 and 2 respectively, with a yield of p - 1, just enough for the



nondivisible to be purchased in period 3. The banker will solve:

max [sa + Sb - (p - 1)SaSb

s.t. u (1 - sa) + P (1 - Sb) + Pu (b) Ž VYautarky (3.5a)

u(1 - sB) + pu (b) _ u (1) + pu (1) (3.5b)

We interpret Constraint 3.5a as an individual rationality constraint-the agent in period 1 must

be at least as well off as he would be in autarky. Constraint 3.5b is the incentive compatibility

constraint-the agent in period 2 must actually be willing to save the remaining amount towards

the nondivisible.

The solution to the above maximization problem will result in the following offer to the

agent: if he saves sa and Sb in periods 1 and 2 respectively, he will get p - 1 in period 3. For

any other amounts saved, he will get 0 in period 3. In terms of our earlier notation, Sa = si

and sb + Sa = S2. The reason such a contract can improve performance over autarky is that,

by making the saving illiquid, the temptation for the agent in period 2 to overconsume rather

than save is dampened (s'n in is goes down). Note that the agent is never actually being forced

to make a payment. The incentive to do so comes directly from the modified tradeoffs that

emerge under illiquidity.

What will the actual optimum look like? Suppose IR is the binding constraint. Then sa and

Sb will be chosen to equalize u' (1 - sa) and pu' (1 - Sb). But at this point, IC might fail-the

agent in period 2 might be willing to sacrifice locked savings in order to consume her income

today. Then, the maximal sb is determined by IC, and then the highest possible sa is selected

based on IR.

Agent's Welfare

Regardless of which constraint ultimately binds, we can place an upper bound on the utility

from period 1 perspective: the agent will never have a higher utility than his optimal savings

path gives him. Also, by definition, he will be no worse off than in autarky.

True welfare, however, might be lower than in autarky. Consider case (b) in the previous

subsection. If the agent in period 1 was unsatisfied with the saving pattern in autarky, it might



.have been the result of an excessively high (from his perspective) s8 • i n . Access to a bank allows

him to save less in period 1 and more in period 2. This might lower true welfare if the autarky

savings path. was more equally balanced between periods 1 and 2.

However, in case (a), when there is no saving in autarky, monopolistic commitment saving

can only increase welfare. Since IC is satisfied:

u(1 - sg) + pu(b) > u(1) + Ou (1)

Su(1 - SB) + u(b) > u(1)+ u(1)

because 'u (b) > u (1). Then, since IR is satisfied:

u(1 - sa) + O[u (1 - Sb) + u (b)] > u(1) + 0 [u (1) + u (1)]

=: u(1 - sa) + [u(1 - Sb)+ u (b)] > u (1) + [u (1) + u (1)]

We see in the next section that, even if commitment saving lowers welfare relative to autarky,

the outcome under monopolistic credit is always worse for the agent. Under commitment

saving, the agent making the banking decision is giving up current consumption to fund future

consumption. Since he has present-biased preferences, he is reluctant to make this trade-off,

which constrains the amount of surplus than can be extracted by the banker.

3.6.2 Full Contract Enforceability

Now the banker can also offer loans. First, we show that the banker can always do better with a

loan than with a savings contract. Consider the optimal saving contract in the previous section.

Now suppose the banker offers a loan of p - 1 in period 1 with repayments sa and sb in periods

2 and 3. The agent strictly prefers the loan contract and is willing to pay more for it.

Banker's Optimal Contract

A loan contract is one where the agent is offered a loan 1, with repayment Sb and sc in periods

2 and 3 respectively. Assume that, except in the case of bankruptcy, the client's repayment is

enforceable by the bank. We assume that, when a contract is signed, the bank can credibly



commit not to renegotiate.

First suppose there was no nondivisible. The banker's objective is:

max [8b + sc - ]
I,Sb,Sc

s.t. u(1 + 1) + pu (1 - Sb) 3uL(1 - 8c) Vautarky (3.6)

The first-order conditions give us the following: First, Sb =c -- s. Since the agent would

like to equalize marginal utilities across all future periods, an equal saving plan will maximize

the amount the banker can charge for the loan. Second, u(+ = Since the agent is au'(l+s) -= . Since the agent is

hyperbolic discounter, he will choose a lower marginal utility in period 1 than in future periods.

Third, the agent must be made indifferent between the contract and autarky (Constraint 3.6).

The constraints are illustrated in the diagram below. The maximum repayment that the

banker can extract for any loan I is given by the indifference constraint. The banker's profits

are maximized at the greatest difference between the constraint and the s = 1 line. This gives

some optimal loan l* and repayment s*.

1

s*

rerence constraint

l* 1

Figure 3-1: For any loan size 1, the indifference constraint shows the maximum repayment, s,
than can be charged.



Now we reintroduce the nondivisible. The banker's maximization problem is:

max [2s - 1]
1,s

s.t. V (1, s) > Vautarky

where V (1, s) = u (1 + 1) + 2u (1 - s), if I < p- 1

u(b+ (l + 1 -p))+ 2ou (1 - s), if I> p- 1

This creates a discontinuity in the indifference constraint, as shown in the diagram below (the

thick, discontinuous line is the new constraint). Now, the loan size might be smaller than

before, but can be accompanied by a higher repayment.

- 1/I/d

difference constraint

p-1 l* I

Figure 3-2: The thick line is the new indifference constraint under the presence of the nondi-
visible good.



Agent's Welfare

Proposition 23 When a bank is able to enforce loan contracts, the agent's welfare is strictly

lower than when the bank can only offer commitment saving.

Proof. We have shown in the previous section that, under commitment saving, the change

in welfare is ambiguous. Consider the two cases: (a) welfare under saving is higher than in

autarky, and (b) welfare under saving is lower than in autarky.

(a) It is sufficient to show that welfare under credit is always lower than in autarky. Let

the consumptions under autarky and credit be {cl, c, c2, 3} and {cl, c2, C3 } respectively. By the

indifference constraint: u (Cl) + 0 [U (C2) + U (C3)] = U () + /3 [U (2) + U (3)]. Since cl > E1,

u (cl) > u (El), and / < 1, it must be that u (cl) + [u (c2) + u (C3 )] > U() + [ ( 2 ) + (3)].

(b) Let the consumption under commitment saving be {i1, 2, 63 }. In this case, u (cl) +

[u (c2) + u (c3 )] > u (61 )+[u (62 ) + u (63 )] and u (cl)+/3 [u (c2 ) + u (C3)] 1)+/3 [u (62) + u ( 3)].

Since cl > a1, and given the indifference constraint, it must be the case that u (Cl)+[u (c2) + u (c3)] >

U(Cl) + [U (C2) + U (C3)] -

It is notable here that access to the nondivisible does not directly figure into the above proof.

This is because the banker is always able to write a contract that leaves the period 1 agent

no better off than in autarky. The nondivisible good, instead of improving the agent's utility,

now functions more as a temptation good-by allowing the agent to consume it in period 1, the

banker is able to take more of his future income. The graph below depicts the relationship

between period 1 consumption and welfare under a monopolistic credit regime.

If the presence of the nondivisible leads to higher total consumption in period 1, then the

agent's welfare has been lowered by the presence of the nondivisible.

3.7 Paternalistic Commitment Saving

We now consider commitment saving. Suppose there is an NGO that has access to external

banking at some interest rate r. We assume the NGO lacks the resources necessary to enforce

loan repayment, so it can only offer commitment saving. It's goal is to maximize the agent's

welfare while balancing it's own budget. For convenience, in this section we assume r = 0. The

NGO solves:



welfare

----------------------------------------------- Autarky welfare

Welfare under credit

Sr. Icnrdr crndrit -.. c ltarkv
V I  I,•. , , v I• ,.

Figure 3-3: As period 1 consumption rises under banking, the agent's welfare drops relative to
autarky.

max [u (2 - p + Sb) + u(1 - Sb) + u (b)]

s.t. u (2 - p+ Sb) + 3u(1 - Sb) + /3u(b) > Vautarky

u(1 - Sb) + u (b) > u(1) + Ou (1)

This yields some period 1 saving Sa = Sb + 1 - p and Sb. If they are both between 0 and 1,

the NGO can offer a contract that implements exactly this saving path. By offering illiquidity,

the agent in period 2 has a greater incentive to save. This raises both welfare and utility from

the period 1 perspective.

3.7.1 NGO and Monopolist Moneylender

On the face of it, sustainable commitment saving seems like a good idea. Given that it is

even attractive to the agent who must make the decision to join (and given the evidence that

there is actual demand for it), the dearth of commitment savings programs around the world is

somewhat surprising. In this section, we provide a possible reason for the failure of commitment

saving. The presence of a monopolistic moneylender can, for two reasons, drive agents away

from commitment saving.

w lAr



Period 2 Renegotiation

The first problem is that of renegotiation. Consider an agent who has taken up the commitment

saving product. The only advantage (over autarky) that this product offers is illiquidity, which

leads the period 2 agent to behave differently than he would otherwise. However, consider

the decision of the agent in period 2. He is willing to pay the monopolist banker to make his

savings from the previous period liquid. The banker can, in effect, make all illiquid savings

liquid, rendering commitment savings worthless. The problem of renegotiation is discussed

more formally in the section on competition and secondary markets.

It might be possible for the NGO to overcome this problem, either by making final payments

in terms of a good that cannot be resold, or by making it difficult for the agent to verify that

he has illiquid assets. However, we see in the following section that a fundamental problem in

period 1 remains.

Period 1 Problem

Consider any contract offered by the NGO. It involves saving sa = Sb + 1 - p in period 1 and

Sb in period 2, with a return of p - 1 in period 3. The banker can always provide a contract

that is strictly preferred by the agent in period 1 (for example, a contract in which the agent

gets p - 1 in period 1 and pays s, and sb as above in periods 2 and 3). Therefore, if there is a

moneylender, the agent will never take up commitment saving.

However, the presence of commitment saving, by changing the outside option, can never-

theless raise welfare by limiting the banker's ability to extract surplus. Consider Constraint

3.6. Commitment saving raises the right hand side of the constraint:

u (1 + 1) + Pu (1 - Sb) + • (1 - Sc) > Vcommitment Vautarky

Therefore, the banker must reduce s to induce the agent to take up a credit contract. Then,

even though commitment saving fails in terms of takeup, it is successful in lowering the interest

rate charged by the moneylender and consequently raising the agent's welfare.

The above analysis has taken place entire under the assumption of a low external interest

rate. If r is sufficiently high (and returns are directly given to the agent), then commitment



saving might be able to defeat the moneylender in both periods. However, we have seen above

that this is impossible if r is low.

3.8 Competition and Secondary Markets

In this section we assume a competitive moneylending environment. There are several mon-

eylenders who have access to funds at r = 0.

3.8.1 Equilibrium Contracts

In competitive equilibrium every contract, {l, Sb, sc}, offered by a bank must satisfy 1 = Sb + sc.

Suppose the banks could offer contracts in period 1 with no risk of renegotiation in period 2.

'The contract offered would maximize the agent's period 1 utility:

max [u (1 + f (1)) + 3u (1 - Sb) + /3 (1 - Sc)]
l,sb,Sc

s.t. 1 = Sb+Sc

where f(1) = 1,b(lifl-p),ifl<pp--
b + (1 + 1- p), ifl2 I p-1

The first order conditions of this problem pin down Sb = s, = ½, with the optimal loan size

being I = p, or an interior solution that satisfies u'(1+f) = . This means that the equilibrium

loan size under competition is (weakly) smaller than under a monopolist moneylender.

However, in a competitive market the possibility of renegotiation must be taken more se-

riously. Any contract that is a solution to the problem above is vulnerable to renegotiation-a

banker has an incentive to offer the period 2 agent a new debt repayment plan that trans-

fers more of the burden to period 3. If this is not preventable, a renegotiation-proof period 1

contract must satisfy an additional constraint:

max [u(1 + f (1)) + 3u(1 - Sb) + /u(1 - sc)]

s.t. I = Sb+Sc

u' (1 -b) = u' -Sc)

The first-order conditions for this problem are = ) and a loan size = p or an interior



solution that satisfies u'(+f( ) = '(+fl)) +1 > 3. The equilibrium loan size will now besmaller than above, since the marg(1inal repayment) cost of every additional loan unit is higher.

smaller than above, since the marginal repayment cost of every additional loan unit is higher.

sible)

Figure 3-4: Comparison of utility in current and future periods as a function of the loan size.

3.8.2 Welfare

Proposition 24 Under competition, the agent's welfare

olist moneylender.

is always higher than under a monop-

Proof. Let the consumption paths under monopoly, competition with renegotiation prob-

lem, and competition without renegotiation problem be {cl, c2, c3 }, {cl, c2, C3} and {~i, a2, 63}

respectively. We have shown above that cl > c1 > cl. By the indifference constraint,

u (Cl) + 0 [ (C2) + U (C3)] = Vautarky. Since u (cl) < u (cl) and u (l) + + [u (62) + U 3)] >

Vuatarky and P < 1, it must be the case that U (Cl)+ [u (c2)+ u (c3)] < U (1l)+ [u (C2 ) + (C3)].

The same argument can be made for {c1, c2, 3) in place of (c1, c2, E3 .

J



3.9 Conclusion

In this paper., we have attempted to characterize banking equilibria and assess their welfare

impacts under three different kinds of banking regimes. We focus solely on hyperbolic discoun-

ters. We show that when the only banking services are provided by a monopolist (and there

is no uncertainty), agents are better off if the banker is not able to enforce loan contracts.

The presence of a monopolist moneylender can also drive out sustainable commitment saving

programs. However, we argue that zero takeup of commitment saving should not be reason

enough for such programs to be discontinued-by forcing the moneylender to lower his interest

rates, they can help raise the welfare of hyperbolic agents. Finally, we characterize the problem

of renegotiation in secondary markets that might affect competitive banking environments. We

show that agents borrow less under competition than under a monopoly, and further reduce

their loans if contracts have to be safeguarded against renegotiation.

This suggests several areas for continued research. It would be useful to study settings

with heterogenous agents (in terms of both preferences and risk) and consider the ability of

monopolist bankers to price discriminate. In addition, banking contracts might be affected if

the banker can also contract with the agent in other economic spheres. There is also room for

analyzing in greater detail the role of external interest rates on equilibria in informal banking

markets. Finally, there is probably much to be learned from a longer-horizon analysis, which

includes the accumulation of wealth across generations as well as the banking decisions of

individuals who face more distant deadlines than we have studied above. In particular, it seems

that the problem of renegotiation in competitive markets might be particularly severe in an

infinite horizon setting. If several firms compete to provide commitment saving, for example,

there might be an over-provision of this service. Agents who, if compelled, would have taken

up commitment saving very early, might now procrastinate indefinitely.

3.10 Appendix

3.10.1 Appendix A: Example with Log Utility

Suppose u (c) := Inc. Additionally, we assume p = 2 and / = ½. For convenience, denote

u (b) - B.



First, we look at what an exponential discounter would do. If he does not consume the

nondivisible, he consumes his income each period: VI = W = 3u (1) = 0. If he consumes

the nondivisible, he shares the cost evenly. Welfare is 2u (1 - P-) + u (b) = 21n (32) + B.

Assume it is worth consuming the nondivisible: B > -2 In (3-) = 1.39 ( which means b > 4).

Now, consider the hyperbolic discounter. If he does not consume the nondivisible, he con-

sumes his income in each period: V1 = W = u (1) + 2ou (1) = 0. If he were to consume the non-

divisible, his optimal saving path would be the following: save sl and s2 (cumulative) such that:

s2 = p - 1. First-order conditions give us si = max 1 + O3 (si = ( ). Assuming an interior

solution, this would give: V1 = In 1-p+2) +,31n ) +B (V = -. 41-.55+ B-1.92

and W In 1-p2) + In (-p) + B < 2n (3) +B. Still, let us assume that the agent

prefers to save for the nondivisible than not: In 1 + p In + 3B > 0 (i.e. b > 6.8).

To find the equilibrium, we first look at period 2 behavior in the absence of a nondivisible.

He solves: max [u (1 + sl - s2) + u(+ s2)]. This gives FOC: 1 - 1 s2 =

max -1+ ,0. His utility is: If sl > ,then V2 =ln 1  1+pn ,;Ifs < •<

then V2 = In (1 + Si). If instead he saves for the nondivisible, he gets: V2 = u (2 + sl - p) + QB

(= In Si + B) compare this to autarky (In (1 + si)). This determines a value of s* above which

the agent is willing to save for the nondivisible (to get s*: In - + 1) = ; s* = ). In
1 e 1

period 1, the agent's only incentive to save is for the nondivisible. Let's assume that, if he

saves, the agent in period 2 will in fact save for the good. Agent in 1 is willing to save if, at

s8, he is better off than not saving: u (1 - s*) + pu (2 + s* -p) + OB > 0. If this condition

holds, then nondivisible will be bought. If s* is less than the agent's optimal saving, then final

outcome will be optimal from period 1 perspective. But if condition fails, then the nondivisible

will not be bought, even though it is optimal (in terms of total welfare, and in terms of agent

l's optimization) to do so. This condition fails if B < 2.13 > b < 8.4
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