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ABSTRACT

This thesis analytically examines the effects of a
tracking notch filter controller on the stability and
performance of active radial magnetic bearing systems.
Previous research has shown that notch filter control of
magnetic bearings helps reduce vibrations caused by mass
imbalance of the rotor that occur at the rotational
(synchronous) frequency. Furthermore, it has been shown
that the notch filter causes the system to become unstable
for rotational frequencies near critical frequencies of the
system, i.e. loop crossover frequency or shaft resonant
frequency. The goal of this thesis has been to gain a more
thorough analytical understanding of the mechanism by which
the tracking notch filter at the rotational frequency
attenuates the synchronous vibrations caused by rotor
imbalance and how the stability of the system changes with
rotational frequency.

Three rotor models with centrally located rotor are
examined with respect to their translational dynamics.
They are 1) rigid shaft, 2) Jeffcott rotor model (flexible
shaft) with shaft relatively stiff compared to the
bearings, and 3) Jeffcott rotor model with shaft relatively
soft compared to the bearings. Control systems for these
models employ feedback of bearing position. Rotor position
feedback is also examined for the third model, assuming no
spillover effects. The results show that the notch filter
causes the system to become unstable over a range of
rotational frequencies below the lowest system critical
frequency. The notch filter can be used to attenuate the
synchronous disturbance without causing instability for
rotational frequencies above the lowest system critical
frequency.

Thesis Supervisor: Dr. Derek Rowell

Title: Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Because of their many advantages over conventional ball

or roller bearings, applications are increasingly being

found for actively controlled magnetic bearings. Since

magnetic bearings suspend the rotating structure without

contact, no friction is present and the absence of bearing

surface wear gives greatly extended reliability. In many

applications, the power needed to levitate the shaft is

negligible compared to the energy consumed by friction in

conventional bearings. Furthermore, magnetic bearings

eliminate the need for lubrication systems which cannot be

used in hostile environments of extreme temperatures or

pressures. Perhaps most importantly, since the rotor is

actively suspended, the dynamic behavior of the bearing can

be customized to suit the requirements of the particular

application.

The most common magnetic bearings consist of an array

of closely spaced electromagnets, each imposing an

attractive force on the rotor. The combined force is

adjusted, based on the rotor position, to maintain the air

gap between rotor and stator. Small inductive sensors

provide the position signal. Using local feedback, where

the bearing force is a function of the position time-

history at the bearing, the dynamic behavior can be made

similar to that of a conventional bearing. The actively

controlled magnetic bearing can produce stiffness and

damping forces proportional to the position and velocity of

the rotor at the bearing, just as conventional bearings do.

The use of magnetic levitation to suspend rotating

bodies, although not a new idea, has been made possible by

the advent of control system theory. The earliest magnetic

bearings were used in conjunction with conventional

bearings because magnetic bearings are inherently unstable

by themselves [Geary 1964]. It was predicted earlier by
0



Earnshaw that two bodies could not be statically stable if

the attractive force between them varies as the inverse of

the square of the distance separating them [Earnshaw 1842],

as does the ferromagnetic force. It was later shown that

feedback control of any unstable translational axes could

result in stable suspension [Beams 1946].

The type of feedback control used for a bearing depends

on the requirements of the application. When axial

position must be closely controlled, an active axial

bearing is used, as shown in Figure 1.1. The magnets in

the stator act on a disk perpendicular to the shaft to

maintain the axial air gap. This type of bearing is

radially passive: radial stability is provided by the

arrangement of the fringing rings, relying on the natural

tendency of the rotor and stator to align themselves.

Since the rings are unstable in the axial direction, they

must be actively controlled in this axis.

FRINGING AXIAL
RINGS \ AIR GAP

STATOR _ ELECT ROMAGNE T

POSITIONSENSOR
ROTOR

ROTATION

Figure 1.1 Active Axial, Passive Radial Magnetic Bearing
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Figure 1.2 shows a radially active bearing, used in

supporting radial loads. Both the x and y radial axes must

be actively controlled whereas the axial direction is

passively stable.

A schematic diagram of a radially active bearing

control loop is shown in Figure 1.3. The position sensor

provides a signal to the controller which responds by

countering the radial motion of the rotor with an

appropriate control signal to the electromagnet. The

electromagnet applies a force to the rotor proportional to

the control signal, thus maintaining the air gap between

the rotor and stator. Identical control loops exist for

all four of the bearing electromagnets.

One application of active magnetic bearings, made

possible by the flexibility of the control system, is in

vibration control. Unlike conventional bearings, in which

the stiffness and damping characteristics are closely

linked by the physical characteristics of the bearing

material, magnetic bearings may be given a wide range of

,GNET

f
Figure 1.2 Active Radial, Passive Axial Magnetic Bearing



CONTROL ELECTRONICS

POSITION
SENSOR

Figure 1.3 Active Radial Bearing Control Loop Schematic

different dynamic characteristics. For example, it has

been demonstrated that active radial magnetic bearings

mounted at the midspan of a transmission shaft can be

effectively used as pure dampers to control radial

vibrations of the shaft [Nikolajsen 1979].

A common cause of radial vibrations is rotor imbalance.

No matter how accurately a rotor is machined, the inertial

axis is never perfectly aligned with the geometric axis.

When rotated freely, such a rotor naturally chooses to

rotate about its inertial axis. However, when rotated on

bearings, rotation is constrained to its geometric axis.

Synchronous vibratory forces are then generated by the

bearings and conducted to the stator structure.

In dealing with rotor imbalance, the approach to

bearing design depends on the objective. For applications

where precise rotation about the geometric axis is

required, such as turbine rotors and precision lathes,

rotor deflection can be limited by choosing extremely stiff

BEARING



bearings. On the other hand, for some applications, such

as flywheels, it may be more important to eliminate the

vibratory forces transmitted by the bearings to the stator

structure. This has been successfully accomplished by

Societe De Mecanique Magnetique using actively controlled

magnetic bearings [Habermann 1985]. The vibratory bearing

forces are eliminated by selectively filtering out the

position signal at the rotational speed, since this is the

frequency of the vibration. Such a control loop with a

tracking notch filter in the feedback path is shown in

Figure 1.4. The effect of the filter is to eliminate

bearing stiffness at the rotational speed, allowing the

rotor to choose its rotational axis and rotate freely about

its inertial axis. However, for any other frequency of

disturbance, the bearing provides sufficient stiffness to

maintain the air gap between rotor and stator and provide

system stability.

Figure 1.4 Vibration Control using Tracking Notch Filter



Active magnetic bearings with notch filters are

currently being introduced to reduce the rotor synchronous

vibrations. Tracking notch filters are used since they can

act at any rotational speed, however, the notch filter must

be disabled near rotor critical speeds, i.e. loop crossover

frequency or shaft resonant frequency, in order to maintain

stable operation. It can be surmised that the phase shift

of the notch filter is responsible for the region of

instability but the exact nature of the constraints placed

on the controller design by the notch filter are unknown.

The objective of this thesis is to define the effect of

the tracking notch filter on the stability and performance

of an active radial magnetic bearing system. The approach

taken is to model rigid and flexible rotors with a mass

imbalance in Chapter 2. Control systems will be designed

to allow active radial magnetic bearings to provide stable

suspension of these plants and to give some generally

desirable frequency response in Chapter 3. An attempt will

be made to generalize the plant models and controller

designs in order to make the results meaningful and

applicable to a wide range of applications. Once

reasonable systems have been developed, the tracking notch

filter will be introduced in Chapter 4. Its effect on the

system stability and the synchronous response of the system

as a function of rotational speed will be studied in

Chapters 5 and 6 respectively. The approach and results

will be summarized and conclusions will be drawn in Chapter

7.



CHAPTER 2

MODEL DESCRIPTION

2.1. Rigid Rotor Model

Simplification of the synchronous response problem to

its most basic form is desirable because results are easily

attainable and may be applied directly to more complex

models. The simplest model of rotor imbalance is a rotor

of mass m mounted on a rigid massless shaft. Such a model

is shown in Figure 2.1. The rotor geometric center joins

the plane of the rotor at point S and is offset from the

rotor center of mass (M) by a distance e. Bearing forces,

Fb/2, act on the shaft ends and are assumed to be

identical.

Complex coordinates are used here to describe the

location of a point in the x-y plane using a single

variable as follows:

Z = x + iy 2.1

i/r

Z

Y
X

I cL

Figure 2.1. Rigid Rotor Model Geometry
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where x and y represent the x and y coordinates of the

point. As a result of this conversion, half as many

equations are required to completely describe the system.

From Newton's second law, the position of the center of

mass may be written directly as:

Zm = Fb/(ms2 ) 2.2

where Zm is the complex coordinate of point M, s is the

complex Laplace variable, and Fb is the complex force the

bearings apply to the shaft. Since the shaft is assumed to

be massless, the force applied by the bearings is identical

to the force the shaft applies to the rotor. The rotor

position can be written relative to the mass center as:

Zs = Zm + eeJ)t 2.3

where e is the mass imbalance distance, as previously

stated, and 0 is the rotational speed of the rotor. By

ignoring the synchronous term in equation 2.3 and combining

with equation 2.2, the unforced transfer function may be

written:

Zs/Fb = 1/(ms2 ) 2.4

Its frequency response is shown in Figure 2.2.

The synchronous response problem occurs when the center

of mass does not coincide with the geometric center. This

is shown in block diagram form in Figure 2.3. This

representation assumes that the position measured by the

bearing is the rotor center of rotation. This resembles a

disturbance rejection problem where Zm is desired for

measurement but only Zs  is available; however, the

disturbance term is well understood. The disturbance

magnitude is equal to the imbalance distance (e) and the

disturbance frequency is equal to the rotational speed (0),

16
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Figure 2.3. Block Diagram of Rigid Rotor with Mass Imbalance
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hence the name synchronous disturbance.

The assumption of a rigid shaft is a good one for cases

in which the shaft stiffness is much greater than the

bearing stiffness, however, rotor systems are frequently

designed with the bearings stiffer than the shaft. In

these cases, a flexible rotor model is necessary.

2.2. Jeffcott Flexible Rotor Model

The Jeffcott rotor model consists of a centrally

located unbalanced disk attached to a massless elastic

shaft with spring constant ks . This model was chosen

because of its simplicity and its widespread use in

describing the dynamics of flexible rotors [Jeffcott 1919].

The Jeffcott model figures prominently in Gunter's survey

of work in the field of rotor dynamics [Gunter 1966] and is

used throughout Johnson's thesis on the control of flexible

rotors using magnetic bearings [Johnson 1985]. The history

of modeling the flexible rotor and the evolution of the

Jeffcott model are not given here but are well outlined by

Gunter [1966] and Johnson [1985].

Figure 2.4 illustrates the geometry of the Jeffcott

model. The elastic restoring force due to shaft bending is

modelled as acting along an axis central to the shaft and

will be referred to as the shaft elastic axis. The plane

of the rotor intersects the shaft elastic axis at point S,

which is offset from the rotor center of mass, M, by a

distance e.r- The intersection of the shaft elastic axis

and the plane of the bearing is named the bearing center.

Its projection onto the plane of the rotor is labelled

point B. The shaft deflection, 6, is the distance between

points B and S.

Figure 2.5 shows a projection of the geometry of Figure

2.4 onto the x-y plane. For simplicity, the origin is

defined as the bearing center (B).

The Jeffcott model can predict several phenomena of

flexible rotors including synchronous and asynchronous



-CL

Figure 2.4. Jeffcott Rotor Model Geometry

vibrations, depending on the assumptions made in

formulating the problem. An assumption which will be made

in this paper is that the rotor precesses with the same

angular velocity as its rotational speed, 0. This behavior

is called "synchronous precession". In other words, the

plane of shaft flexure (containing line SB in Figure 2.4)

rotates at the same angular velocity as the line between

the rotor center of mass and the point connecting the shaft

flexible axis to the rotor (line MS). The lines are offset

in phase by the angle p. Assuming rigid bearings, an

expression can be derived for the synchronous rotor

deflection, 6, due to mass imbalance and is given by

I



Y

I- V

Figure 2.5. Planar Projection of Jeffcott Rotor Geometry

[Gunter 1966]:

Er
6 = 2.5

((s/0) 2 - 1)2 - (cs/mQ) 2

where

6 = deflection of the shaft

er = mass imbalance distance

ws = natural bending frequency of the shaft-rotor

system

= rotational speed

cs = internal damping of the rotor

m = rotor mass

This function is shown in Figure 2.6, a graph of

normalized rotor deflection versus normalized rotational

speed. For low levels of damping, the rotor deflection

becomes very large at ws, widely referred to as a rotor

20
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Figure 2.6. Rotor Deflection versus Rotational Speed

critical frequency. Since the rotor deflection at this

frequency is due to shaft bending, it will be referred to

as the rotor flexible frequency in this thesis, so as not

to be confused with the critical frequency due to bearing

flexibility. At higher rotational speeds, the rotor

deflection approaches the imbalance distance (Er). The

phase angle (B) also changes with rotational speed and is

given by (Gunter 1966]:

S= arctan /m
= arctan . ...(ws/0) 2 - 1 2.6

This relation is shown in Figure 2.7. At low rotational

speeds the rotor center of mass (M) is nearly in phase with

/
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Figure 2.7. Phase Angle between Mass and Rotational Centers
versus Rotational Ppeed
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the rotor centerline SB. Near the rotor flexible frequency

(ws), the center of mass leads the rotor centerline by 90

degrees and very large shaft deflections are observed. At

high speeds, the center of mass is 180 degrees out of phase

with the rotor centerline and the deflection is the mass

imbalance distance (Er). The result is that the center of

mass is stationary and coincident with point B as point S

rotates about the mass center. To summarize, at low speeds

the center of rotation is the rotor elastic (in this case

geometric) center (S), requiring the center of mass (M) to

spin about S. At high speeds, the center of rotation

becomes the center of mass. In these conditions, the

geometric center must spin about M.

The following pages present a brief derivation of the

equations of motion of the Jeffcott rotor model assuming no

shaft internal damping and an unspecified bearing force.

Shaft internal damping is neglected here since it leads to

asynchronous precession or rotor whirl, a phenomenon not

addressed in this paper. The coordinate system used is

shown in Figure 2.8, a planar projection of the Jeffcott

shaft and rotor. This model assumes mass imbalance

Er

M ROTOR

A\

Figure 2.8. Planar Projection of Jeffcott Coordinate System



distance er between the rotor center of mass (M) and the

intersection of the elastic axis with the plane of the

rotor (Er). It is further assumed that the shaft elastic

center at the bearing (Eb) is offset from the center of

bearing force (Cb) by a distance Eb and a phase angle ab
relative to the mass-imbalance distance (shown projected

onto the plane of the bearing). Similarly, the center of

bearing measurement (Sb) is offset from Eb by distance es

and phase angle as .

In describing the positions of the various points with

respect to each other, it becomes expedient to use complex

coordinates. Application of Newton's second law to the

rotor gives a relation between the shaft force on the rotor

and the position of the center of mass:

Zm = Fs/(ms2 ) 2.7

Since the shaft is assumed massless, Hooke's law applied to

the shaft gives:

Fs = ks(ZEb - ZEr) 2.8

The result of misalignment between the shaft elastic

axis (Eb) and the center of bearing force (Cb) is that the

force applied by the bearing (Fb) causes torque

fluctuations in the shaft. Since this misalignment causes

no translational motion and the rotational dynamics of this

model are ignored, point Cb does not enter into the

equations of motion. It may be written that:

F s = Fb. 2.9

Combining equations 2.3 and 2.5 gives:

Zm = Fb/(ms2 ). 2.10



This result is identical to the rigid rotor formulation,

where bearing force is proportional to center of mass

acceleration.

The difference between the two models lies in the

position feedback parameter. Whereas the rigid rotor

position feedback was simply the mass center with a

synchronous disturbance, the flexible rotor model uses the

bearing center of measurement (Sb) as a feedback. This is

given as:

ZSb = ZEb + se j(nt + as) 2.11

Combining equations 2.4, 2.5 and 2.7 gives:

ZSb = Fb/ks + ZEr + esej(nt + as) 2.12

The position of the mass center (M) relative to the elastic

center (Er) is given as:

Zm = ZEr + erejot 2.13

Combining equations 2.8 and 2.9 gives:

ZSb = Zm + Fb/(mws 2) + cejnt 2.14

where:

ec = es e j as - er 2.15

The magnitude of cc, a complex number, does not represent a

single distance, but is a combination of mass imbalance and

measurement error distances.

The center of mass and center of measurement may be

better understood when written in transfer function form.

Equation 2.6 becomes:



Zm/Fb = 1/(ms 2 ) 2.16

Combining equation 2.10 with equation 2.12 gives the

unforced transfer function:

ZSb/Fb = (Ws2 +s 2 )/(ms2ws 2 ) 2.17

The frequency response of equations 2.12 and 2.13 is given

in Figure 2.9. The mass center behaves as a double

integrator with phase of -180 degrees and gain decreasing

with frequency by 40 db/decade. The bearing center has the

same response as the mass center at frequencies below the

shaft flexible frequency (ws). Above ws, the bearing

center has a constant gain of 1/ks and 0 phase.

50-

-50

-100...... .-50 ------
Fb

-150
10-1 100 101 10 2  

103

WS

-50

-100

. -150

i I . I L --- ----- -------------- -:---I-------:----------------2 0 0  . . . .. . . . I I I I I . .. . . . .
10-1 100 101 102 10 3

Frequency (rad/sec)

Figure 2.9. Flexible Rotor Synchronous Frequency Response

(ZSb/Fb, Zm/Fb)

26

~ii -- --- ---- ---- ---- ------ ---- ---- ---- ---- ---- ----

0. I



In general, the transfer function of a rotor system is

a function of both frequency and rotational speed, G(s,n).

When studying synchronous behavior, the frequency of

interest is the rotational frequency, therefore the

frequency response is evaluated at this frequency,

G(s,n)|s=jn. This will be referred to as the synchronous

frequency response because it is only a function of the

rotational frequency. In this case however, the frequency

response shown in Figure 2.9 is independent of rotational

speed, therefore identical to the synchronous frequency

response.

This analysis of the Jeffcott flexible rotor may be

compared to Gunter's relations for deflection and phase in

the following manner. The synchronous frequency response

of the flexible rotor from bearing force (Fb) to mass

center (Zm) and bearing center (ZSb) is given in Figure

2.9. The shaft is essentially rigid below the flexible

frequency; there is no shaft deflection (6 = 0) and no

difference in phase between mass and bearing centers (p = 0

degrees). This co.responds to rotation about the geometric

axis. Above the flexible frequency, the two points are out

of phase (p = 180 degrees). The synchronous frequency

response also shows that at high rotational speed, bearing

position is proportional to bearing force by a factor 1/ks.

Since the bearing position is proportional to bearing force

at high rotational speed, no centripetal force can be

acting on the shaft because centripetal force is a function

of speed-squared. In that case, the rotor must rotate

about its mass center and the shaft deflection be equal to

the combined imbalance distance (ec). The absence of shaft

damping from this model causes an infinitely deep resonance

to occur at the flexible frequency (ws). In other words,

no amount of bearing force at ws can change the bearing

position.
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CHAPTER 3

CONVENTIONAL CONTROLLER DESIGN

To restate the ultimate objective of the controller,

the bearings should not provide stiffness at the rotational

frequency, thus allowing the rotor to spin about its

inertial axis. This may be achieved by using a tracking

notch filter to attenuate the position signal to the

controller at the rotational speed.

First, it is necessary to design conventional control

laws for the plants described in the previous chapter, i.e.

controllers without notch filters. Once conventional

controllers are designed, the stability characteristics and

performance in rejecting the synchronous disturbance caused

by mass imbalance can be used as a baseline in comparison

to systems with tracking notch filters. The objective of

this chapter is to define the requirements which the

conventional controllers must meet and to show how each of

them meets these requirements. The following chapter will

discuss the characteristics of notch filters to give an

idea of what changes the addition of a tracking notch

filter will have on these conventional control systems.

The conventional control laws will need to meet general

requirements, typical of actual magnetic bearing systems,

and be sufficiently general so that the results can be

easily applied to a variety of specific applications. Such

requirements may include d.c. stiffness, crossover

frequency, relative stability or damping, and disturbance

rejection. The stability of the resulting system will be

shown using Bode and Nyquist plots. The performance of the

conventional control laws in rejecting the mass imbalance

disturbance will be compared to the performance of the

notch filter control laws in the chapters on notch filter

controllers.

A proportional-integral-derivative (PID) control law

was chosen for this study because it is simple to
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implement, and as a result, widely used. For the system to

meet the design requirements, proportional, integral or

derivative control action may be selected for any range of

frequencies. For instance, in bearing design, high d.c.

stiffness is desirable to maintain rotor position under the

influence of gravity and other low frequency disturbances.

In that case, integral action would be called for at low

frequencies to give high gain at low frequencies. Double

integrator plants requires derivative control action around

the crossover frequency to give the system phase margin,

necessary for stability. Since differentiation over a wide

frequency range is not physically realizable, the range of

derivative action centered at the crossover frequency will

be limited to one decade.

The bearing crossover frequency (wc) approximately

represents the bandwidth of the bearing-rotor system, i.e.

the control system responds to disturbances in rotor

position below wc but not above it. The crossover

frequency is determined, in the case of conventional ball

or roller bearings, by the bearing stiffness and is usually

chosen to be above the highest frequency of bearing

position disturbance to which the rotor must respond. For

conventional bearings, the d.c. stiffness is directly

linked to the crossover frequency. In magnetic bearing

systems, the crossover frequency is chosen based on the

same criteria as conventional bearings but is determined by

the system gain. Since the system gain may be made a

function of frequency by PID control, the crossover

frequency may be chosen independently of the d.c. gain.

3.1. Rigid Rotor Controller

The requirements of the rigid rotor controller, as

outlined above, are stability and some crossover frequency

which is.typical of an actual magnetic bearing system. The

loop gain and phase is shown in Figure 3.1. A double

integrator plant, as in this case, may be controlled by
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lead-lag compensation or derivative action centered at the

crossover frequency. Note that the extent of derivative

action determines the amount of phase margin, hence the

system relative stability. Low frequency integral action

helps raise the low frequency gain without affecting the

system stability significantly.

Polar plots can also be used to represent the open loop

frequency response graphically. An advantage of polar

plots over Bode plots is that the magnitude and phase

information is condensed into one graph. This advantage

will prove especially useful in the stability analysis of

the system with the notch filter included. As a grounds

for later comparison, a Nyquist plot of the present system

is given in Figure 3.2 on modified logarithmic axes. The

axes are modified to condense information closer to the

origin without changing the location of the unit circle.

Therefore this plot may still be used to determine system

stability by observing the total number of encirclements of

the point (-1 + Oj). A brief background of the Nyquist

stability criterion and justification for the modified axes

used here are given in Appendix A.

The modified Nyquist plot of this system consists of

the open loop transfer function plotted on the real and

imaginary axes. The part of the curve corresponding to

negative frequencies is simply the reflection about the

real axis of the curve for positive frequencies and is

given as a dotted line. The number of open loop poles at

the origin determines the number of semicircles at

infinity, in this case three. Since the systems to be

studied have no zeroes in the right half s plane, the

number of counterclockwise encirclements of the point (-1 +

Oj) corresponds to the number of open loop poles in the

right half s plane. The number of encirclements of the

point (-1 + Oj) may be found by following the curve in the

direction of increasing frequency, starting at zero. By

this method, it is apparent that the rigid rotor and



controller are stable.

This system's performance in rejecting the synchronous

mass imbalance disturbance can be found by taking the

closed loop frequency response from synchronous mass

imbalance disturbance (ceeJt) to the center of mass

position (Zm) and ignoring the position command input. The

notation here refers to Figure 2.3. The synchronous

frequency response of the closed loop system is given in

Figure 3.3. In this case, neither plant nor controller are

functions of rotational speed (n), therefore the closed

loop frequency response is identical to the synchronous

frequency response. It shows that the system does not
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reject the synchronous mass imbalance disturbance below the

crossover frequency (wc). Above wc, the closed loop

frequency response resembles that of the open loop system;

the gain decreases at 40 db/decade. The synchronous mass

imbalance disturbance is increasingly attenuated with

increasing rotational speed above the crossover frequency.

In other words, when the system gain is below unity, the

bearing stiffness is insufficient to maintain the air gap

constant in response to the synchronous forcing function

caused by the mass imbalance. As a result, the rotational

axis gradually migrates from the geometric axis to the

inertial axis.

3.2. Flexible Rotor Controller

Control of the flexible rotor plant is unique because

there are two distinct outputs which may be fed back. A

block diagram of the plant, shown in Figure 3.4, reveals

that either bearing or rotor position may be used. The

transfer function from bearing force to rotor center of

mass position is given in equation 2.12 and the unforced

transfer function between bearing force and bearing

position is given in equation 2.13. The measured bearing

position (ZSb) includes a complex imbalance distance (ec).

Similarly, locating the position sensor at the rotor

introduces measurement error and offsets the measured

position (Zs) from the actual center of mass (Zm) by a

distance (e), using the same notation as for the rigid

rotor model.

Feedback of the rotor position is not widely used

because of the existence of "spillover effects". This term

refers to phenomena in which the higher flexible modes of

the rotor shaft are destabilized because the sensor and

actuator are not "colocated", that is the position sensor

is located at the rotor whereas the magnetic bearing acts

at the bearing. This arrangement only controls the

position of the rotor and does not account for shaft motion
I
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due to higher vibrational modes. In this case, however,

the shaft is assumed to be massless and therefore without

higher modes. Initially, feedback of the bearing position,

i.e. local feedback, will be discussed.

3.2.1. Bearing Feedback

The synchronous frequency response of the plant is

given in Figure 2.9. Since this controller will use

bearing position for feedback, the stability analysis

should use the transfer function from bearing force (Fb) to
bearing position (ZSb). The frequency response shows that

an infinitely deep resonance exists at the shaft flexible

frequency (ws). At frequencies below ws, the rotor mass

dominates the dynamics since the shaft is essentially rigid

at low frequencies. At frequencies above ws, the bearing

force goes primarily to bending the shaft rather than

moving the rotor mass. Consequently, the gain at high

frequency is constant and equal to the shaft compliance

(1/k s ) .

Design of the control law for the flexible rotor

requires an approach similar to that used in the design of

the rigid rotor controller. Stability is provided by

derivative action and the crossover frequency is chosen to

meet the desired requirements. The crossover frequency

(wc) is determined by the bearing stiffness, or controller

gain, and may be chosen to be either above or below the

shaft flexible frequency (ws). These two cases will be

addressed separately since they call for different
controller designs. A system with the bearing crossover
frequency (wc) greater than the shaft flexible frequency
(ws) physically represents the shaft relatively soft, or

flexible, compared to the bearings. Conversely, when the

crossover frequency is less than ws, the bearings are soft

relative to the shaft.
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3.2.1.1. Stiff Shaft/Soft Bearings

The loop gain and phase of a system with a stiff shaft

relative to the bearings and bearing feedback is shown in

Figure 3.5. This system may be stabilized using the same

control as for the rigid rotor model because the resonance

at ws occurs above the crossover frequency (wc) and can

have no influence on system stability. Integral control

action at low frequency gives high gain and a loop phase of

-270 degrees at low frequency. One decade of derivative

action at wc increases phase, giving phase margin as

before. In this case, it may be desirable to include

integral action at high frequency as well, to enhance

rejection of high frequency noise by reducing the gain.

However, this was omitted since it is peripheral to the

study of the tracking notch filter.

The design of this control law is justified by

referring to the Nyquist plot shown in Figure 3.6. The

effect of the resonance is limited to the interior of the

unit circle, thus preventing the resonance from causing any

encirclements of the point (-1 + Oj). This result

justifies the use of the same controller for the "stiff

shaft" model as for the rigid rotor model. This makes

sense intuitively since the rigid rotor model is just a

degenerate case of the stiff shaft model.
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3.2.1.2. Soft Shaft/Stiff Bearings

A system with a soft shaft relative to the bearings

imposes new requirements on the controller design. The

loop gain and phase of such a system are shown in Figure

3.7. The control law must allow the bearings to respond in

two regimes; when the shaft is essentially rigid, at speeds

below the flexible frequency (ws), and when shaft bending

predominates, at speeds of ws and above.

To stabilize this plant, two actions must be taken.

First, the plant must be rolled off in a stable manner,

i.e. using integral control action at high frequency. This

makes the loop phase -90 degrees at the crossover

frequency. Secondly, since loop phase just below the

flexible frequency (ws) is -180 degrees, one decade of

derivative control action is added to give phase margin and

a stable crossover at this frequency. Although integral

control action was used at low frequency for the rigid

rotor and the stiff shaft plants, it will be omitted from

this controller since it does not significantly affect the

synchronous response characteristics, as will later be

shown. This results in a loop phase at low frequency of

negative 180 degrees. It is also desirable to show that

integral action at low frequency is not necessary for

stability.

Using only phase and gain margins from the open loop

synchronous frequency response, shown in Figure 3.7, to

determine the system stability is tricky because of the

existence of multiple crossovers (at ws and wc) and a

sudden shift in phase near the shaft flexible frequency

(us).
In this case, the stability is easier to quantify using

the Nyquist plot, shown in Figure 3.8. Without integral

control action at low frequency, the Nyquist curve now

approaches the origin from the negative real axis. The

resonance causes the curve to pass through the origin and

to the other side, representing zero gain at ws and a shift
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in phase of 180 degrees. Derivative action at wc acts to

deflect the curve below the point (-1 + Oj) by adding phase

in this area. High frequency integral action causes the

curve to enter the origin with a phase of -90 degrees. The

two poles at the origin of the s plane map to one

encirclement of the origin at infinite radius. The total

number of encirclements of the point (-1 + Oj) is zero,

resulting in a stable system.

3.2.2. Rotor Feedback

By measuring rotor position directly, the flexibility

of the shaft is not observed by the controller. Since this

plant shares the same transfer function as the rigid rotor

model, the same controller can be used for both [Johnson

1985]. For simplicity, this controller will omit low

frequency integral action. Derivative action at the

crossover frequency stabilizes the system as before. The

system loop gain and phase show good stability, as seen in

Figure 3.9. This is corroborated by the Nyquist plot,

shown in Figure 3.10. Once again, the causes of spillover

are not included in this model of rotor position feedback.

To review, the control laws derived in this chapter are

sufficient to control the magnetic bearing systems for

which each was designed. Each system meets requirements

such as bearing crossover frequency, stability, d.c. gain

and has some level of performance in rejecting the

synchronous disturbance due to mass imbalance. From Figure

3.3, it appears that the synchronous disturbance is only

rejected above the crossover frequency and increasingly so

with increasing frequency. Thus, there is a trade-off

between crossover frequency location and synchronous

disturbance rejection. Performance of these systems in

rejecting the synchronous mass imbalance disturbance will

be discussed further in the chapter on notch filter

controllers.
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CHAPTER 4

NOTCH FILTER CHARACTERISTICS

An alternate means of increasing the performance, as

previously discussed, is by the addition to the control law

of the tracking notch filter at the rotational speed. This

chapter gives a brief description of the capabilities and

characteristics of notch filters. A notation is provided

here which will be used throughout the following chapters,

where the addition of the notch filter to the control loop

will be examined.

A notch filter is a band-reject filter which attenuates

over a very narrow frequency range. It is generally used

to reduce the amplitude of a signal at a specific

frequency. Notch filters are typically implemented by the

ratio of two resonant structures. The particular notch

filter design used here is the ratio of two second order

polynomials. This may be represented dynamically as;

s 2 + 2 (nwos + wo2

Gn(s) = s2 + 2(dwos + wo2 4.12 + 2Edwos + o0
2

where en and (d represent damping coefficients and wo is

the center frequency of the notch. A particular notch

filter design can be characterized by its depth at wo and

the Q factor, representing the steepness with which the

gain drops off near wo.

The notch gain at wo is simply the ratio of the two

damping terms;

D = Gn(jwo) = n/ed 4.2

The depth of the notch is typically chosen depending on the

desired amount of attenuation at wo. From equation 4.2, a

notch with infinite attenuation (zero gain at wo) must be

designed with zero damping in the numerator. This places



two zeroes on the imaginary axis of the s plane. The

frequency response of notch filters with varying depths and

a constant value of Q are shown in Figure 4.1. An apparent

trend is that the maximum variation in phase near wo

increases with increasing notch depth, approaching a

maximum variation of 180 degrees for a notch of infinite

depth.

In designing a notch, the notch steepness is determined

based on the distribution of the signal to be attenuated

around wo. If the signal contains frequency components

over a relatively wide range, a broad notch may be chosen

in order to attenuate at wo as well as its neighboring

frequencies.

The notch steepness is indicated by the paraxneter Q,

where;

1 wo
Q = = 4.3

2(d w2 -W1

and where Ol and w2 are the frequencies where the magnitude

response is -3 dB [Huelsman, 1971). The greater the value

of Q, the steeper the drop in gain near the center

frequency. Figure 4.2 shows the frequency response of

notches with varying values of Q at a constant depth. The

maximum amount of phase shift is independent of Q, whereas

the abruptness of the phase change increases with Q.

Tracking notch filters have the advantage that they are

not limited to a constant center frequency. They are

capable of attenuating over a frequency range which varies

with time. The filter receives the desired center

frequency as an input and tracks it. This is particularly

useful in attenuating the synchronous disturbance, since it

occurs at the rotational frequency of the shaft. The

transfer function of the notch filter which tracks

rotational speed (a) becomes:
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s 2 + 2(nOs + 02

Gn(St) = 4.4G2 + 2(dOs + 02

A block diagram of the system with the addition of the

tracking notch filter is shown in Figure 1.4. With the

addition of the notch filter, the loop transfer function of

this system becomes dependant on rotational speed. With

this dependance on rotational speed, the term synchronous

frequency response takes on a distinct meaning.
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CHAPTER 5

NOTCH FILTER CONTROLLER STABILITY

This chapter will first explore the stability

limitations imposed by the addition of the tracking notch

filter to the control loop. For each of the control

systems discussed so far, the unstable speed ranges will be

defined and any dependence on notch filter design such as

depth (D) and steepness (Q) will be discussed. Once stable

operating regions have been defined, the following chapter

will discuss the improvement in performance (rejection of

the synchronous mass imbalance disturbance) caused by the

notch filter over a range of rotational frequencies.

The addition to the control loop of the tracking notch

filter, having a transfer function dependent on rotational

frequency, likewise gives the open loop system transfer

function a dependence on rotational frequency. The loop

gain and phase of the rigid rotor system with a notch

filter is shown in Figure 5.1 for a rotational frequency of

10 radian/second. The loop gain is reduced by the notch

depth (D) at the rotational frequency (0) and the loop

phase is shifted near 0 according to the notch filter

parameters Q and D (reference Figures 4.1 and 4.2). As

discussed in Chapter 2, the synchronous frequency response

is the frequency response evaluated at the rotational

frequency, G(s,0) s=j0. The synchronous loop gain and

phase of the system above are shown in Figure 5.2. The

only effect the notch filter has is to reduce the

synchronous loop gain uniformly by the notch depth, in this

case 40 db. The synchronous loop phase is unaffected by

the addition of the notch filter because the notch

introduces no phase shift at the rotational frequency (0).

The phase shift introduced by the notch filter can

destabilize the control loop over certain ranges of

rotational frequency. Generally, instability is caused

when the phase lost by the notch filter at a crossover

46



101 102 103 104

Rotational Frequency (rad/sec)

Figure 5.1. Loop Frequency Response, Rigid Rotor,

Filter Controller (0 = .05wc)
Notch

100

S 50 o  101 . n. . . n3 .

5 0 . . . . .  . . . .  . ..

0 -100
100 101 102 in-3 13A4

A W-L UIV

WC

-100

4) -200

CLS-250 0. 101 .1 ..- 1010--..--- . --- 4

S-300

Figure 5.2.

Rototional Frequency (rad/sec)

Synchronous Loop Frequency Response, Rigid

Rotor, Notch Filter Controller

nnn
zuu

100

0

100
10

100

(2

0C.

o.0
0

0

-Jv
CL

i

1



frequency exceeds the phase margin of the conventional
control system. In other words, instability usually occurs
when the loop phase of the system with the notch filter
drops below -180 degrees at a system crossover frequency.

5.1. Rigid Rotor Control System

The bounds of the unstable speed range will be shown
here to be a function of the notch parameters Q and D.
Initially, a nominal notch filter design is chosen and the
unstable speed range will be defined by examining the loop
gain and phase and Nyquist plot with the nominal notch
filter for a variety of different rotational frequencies
(n). This nominal notch filter will have a depth of 40 db
and Q factor of 5. Once the cause of instability is
clarified, the effect of notch Q and depth (D) on the

extent of the unstable speed range will be estimated.

The transition of the system from stable to unstable
and back again is made clear by observing the system
frequency response as the rotational frequency is gradually
increased from a low value. Figure 5.1 shows the loop gain
and phase of the rigid rotor system (reference Figure 3.1)
with the nominal notch filter design at a rotational

frequen-y chosen relative to the crossover frequency at n =

.05wc. The notch filter causes roughly 90 degrees of
additional phase loss at frequencies just below 0, but
since the notch depth is insufficient to drive the loop
gain at n (synchronous loop gain) below unity, the system
is stable. The Nyquist plot of this system is shown in
Figure 5.3. Compared with the Nyquist plot of the rigid
rotor system without the notch filter (reference Figure

3.2), it is apparent what the notch filter adds to the
Nyquist curve. The notch pulls the curve toward the origin
at the rotational frequency (0) and gives a wide phase
shift in this vicinity; clockwise at frequencies below 0
and counterclockwise above 0. The net result is no
additional encirclements of the point (-1 + Oj), therefore
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a stable system.

The next case is when the rotational frequency is o =
.1•c. This value of rotational frequency was chosen
because the loop gain begins to dip below unity here, as
shown in Figure 5.4. At the two crossover frequencies of
loop gain near 0, the loop phase is less than -180 degrees.
This is more easily seen on the Nyquist plot of this
system, shown in Figure 5.5. The notch filter causes the
Nyquist curve to enter the unit circle at approximately
negative 270 degrees and leave the unit circle at slightly
less than -180 degrees. Since the curve did not pass to
the inside of the point (-1 + Oj), the point has no
additional encirclements and the system is still stable,
but just barely so. Any further increase in the rotational
frequency would reduce the phase at the crossover
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frequencies of loop gain, causing encirclements of the

point (-1 + Oj), resulting in an unstable system.

The range of frequencies between the point where the

synchronous loop gain crosses over and the system goes

unstable is a function of both the loop gain and phase of

the conventional control loop and the notch filter design.

Generally, the stable range of frequencies above the

crossover frequency of the synchronous loop gain is small

and depends on the loop phase of the conventional control

loop being below -180 degrees at this point. When it is,

the loop phase at both crossover frequencies of loop gain

near 0 will also be below -180 degrees, not encircling the

point (-1 + Oj).

The frequency at which synchronous loop gain crosses

over is a function of the loop gain and notch depth.

Selection of a notch filter which is not as deep as the one

used above would decrease the unstable range of frequencies

in two ways. First, the frequency at which the synchronous

loop gain crosses over is increased as notch depth is

decreased. Second, since deeper notch filters result in

more phase shift at the frequencies neighboring the center

frequency (reference Figure 4.1), the onset of instability

with increasing rotational frequency would be delayed by

using a less deep notch. However, by reducing the notch

depth excessively, the performance is also reduced, as will

be discussed later. By varying the notch Q factor, the

distance between the two frequencies at which loop gain

crosses over can be changed, but the phase at these

frequencies remains unchanged (reference Figure 4.2),

therefore having a negligible effect on the unstable speed

range.

Figure 5.6 shows the loop gain and phase with the

rotational frequency chosen as 0 = .2wc. The figure

reveals that the first crossover of the loop gain

corresponds to a loop phase of roughly -270 degrees. The

second crossover, at a frequency slightly above Q, has a



loop phase of more than -150 degrees. It is apparent from

the Nyquist plot, shown in Figure 5.7, that the notch pulls

the Nyquist curve to the inside of the point (-1 + Oj),

adding two encirclements of that point and destabilizing

the system.

The loop gain and phase of the system with a rotational

frequency (0) identical to the crossover frequency (wc) is

shown in Figure 5.8. The stability here is easier to

determine because the loop gain crosses over at only one

frequency. Since the loop gain at this frequency is

slightly greater than -180 degrees, the system has positive

phase margin and is stable. The Nyquist plot, given in

Figure 5.9, shows that the curve now passes to the outside

of the point (-1 + Oj), causing no encirclements and

leaving the system stable. The rotational frequency at

which the system becomes stable again may be decreased by

increasing the phase margin of the conventional control

loop. At higher values of rotational frequency, the

effects of the notch filter are confined to the interior of

the unit circle where it cannot affect system stability.

In summary, it has been shown that the range of

unstable rotational frequencies begins just after the

synchronous loop gain (loop gain at 0) crosses over

(reference Figure 5.2). This frequency may be increased by

decreasing the notch depth. The unstable region ends just

before the rotational frequency (0) equals the crossover

frequency of the conventional control loop (wc).

By plotting loop phase and gain margins as functions of

normalized rotational frequency (O/wc), the results of the
Nyquist plots may be shown on a single figure, as given in

Figure 5.10. From the Nyquist plots, the phase margin may

be interpreted as the angle from -180 degrees that the

curve crosses the unit circle. Positive phase margin

corresponds to the curve entering the unit circle with more

than -180 degrees phase, i.e. below the point (-1 + Oj).

Likewise, the gain margin is the distance from the point
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(-1 + Oj) along the negative real axis to the intersection

of the curve and the axis, where positive gain margin

represents intersection of the curve and the real axis

inside the unit circle. As shown in Figure 5.10, there can

be multiple values of both phase and gain margin. Gain

margin has a single value at low frequencies but has three

after the part of the Nyquist curve representing the notch

filter dips below the negative real axis, giving two

additional intersections. The phase margin has a single

constant value until the synchronous loop gain crosses over

(the curve first dips inside the unit circle). At that

point, two additional values of phase margin appear. The

unstable region begins when one value each of the phase and

gain margin changes sign, as indicated on the figure. This

signifies the Nyquist curve crossing to the inside of the
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point (-1 + Oj) for the first time. The unstable region

ends when all values of the phase margin become positive

again, corresponding to no encirclements of the point (-1 +

Oj). All values of the gain margin but one become positive

for high rotational frequency, representing the effects of

the notch filter entering the interior of the unit circle.

The stability can also be thought of in terms of

eigenvalue damping and frequency as functions of rotational

frequency, as shown in Figures 5.11 and 5.12. These plots

are derived from the root locus as a function of rotational

frequency. Figure 5.11 shows that the minimum eigenvalue

damping approaches the numerator damping factor of the

tracking notch filter (Cn) at low rotational frequency.

For the nominal notch filter design, the numerator damping

factor (Cn) equals 0.001 and the denominator damping factor

(Cd) equals 0.1. As rotational frequency is increased and

exceeds the crossover frequency of the synchronous loop

gain, the minimum eigenvalue damping becomes negative,

destabilizing the system. Above the crossover frequency

(wc), the minimum eigenvalue damping becomes positive and

approaches the value of the notch denominator damping

factor (Cd), giving a stable system. Figure 5.12 shows

that one eigenvalue frequency equals the rotational

frequency whereas the other is roughly equal to the

crossover frequency (wc). It is no surprise that these

poles, generated by the notch filter, are responsible for

determining the system stability.

These results may be shown algebraically by writing the

characteristic equation and simplifying for extreme values

of rotational frequency (0). Since the synchronous

frequency is of interest, the value of the frequency (w) is

assumed identical to that of the rotational frequency (0).

For small values of 0, higher order terms of n and w may be

ignored, leaving as the characteristic equation:

s2 + 20Cns + 02 = 0 5.1
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where s = jw. For large values of rotational frequency,
only the higher order terms of 0 and w are kept and the
rest are ignored, leaving:

S2 + 20Cds + 02 = 0 5.2

The transient response of this system to a unit step
input in bearing position reference for a rotational
frequency of 0 = 2wc is given in Figure 5.13. This value
of rotational frequency is chosen because the notch filter
has little effect on the overall stability once it is
substantially above the crossover frequency (wc). The step
response for rotational frequencies below the crossover of
synchronous loop gain, i.e. the low speed stable region, is
similar since the notch filter does not affect stability in
this range of frequencies either. The phase margin is
constant for values of rotational frequency above wc, as
seen in Figure 5.10.
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5.2. Flexible Rotor Control System

5.2.1. Bearing Position Feedback

Notch filter control of a rotor system for which the

shaft is relatively stiff compared to the bearings has

essentially the same stability characteristics as for the

previous system, in which shaft flexibility is ignored. As

shown in Chapter 3, the effect of the resonance induced by

shaft flexure is entirely within the unit circle and has no

effect on system stability (reference Figure 3.6).

The following pages will focus on the stability of the

system with a soft shaft relative to the bearings and the

addition of the tracking notch filter. Bearing feedback

will be examined here and rotor feedback in the next

section. The approach here will be identical to the one

used above. Using the nominal notch filter, rotational

frequency will be increased while periodically observing

the loop gain and phase and Nyquist plot for changes in

stability.

At low values of rotational frequency (0), the system

is stable. Figure 5.14 shows the loop gain and phase with

the rotational frequency (0) chosen relative to the

flexible frequency (ws) to be 0 = .05ws. As before, the

system is stable for frequencies below the crossover of the

synchronous loop gain. The Nyquist plot is shown in Figure

5.15. As previously mentioned in Chapter 3, low frequency

integral control action was omitted from this controller,

causing the Nyquist curve to approach the origin at low

frequency along the negative real axis, corresponding to a

phase of -180 degrees (reference Figure 3.8). The effect

of the notch filter is, once again, to pull the Nyquist

curve toward the origin at 0, giving a clockwise phase

shift at frequencies below 0 and a counterclockwise phase

shift above 0. At low values of rotational frequency, the

curve enters the unit circle at approximately the same

location as when the notch filter was omitted from the
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controller, resulting in no encirclements and a stable
system.

Figure 5.16 shows the loop gain and phase for o = .1ws.
At this value of rotational frequency, the synchronous loop

gain is below unity. The two crossover frequencies of loop
gain near n correspond to values of loop phase which
straddle -180 degrees. The Nyquist plot, given in Figure
5.17, shows that the point (-1 + Oj) becomes encircled
almost immediately after the synchronous loop gain crosses
over. This is because the loop phase of the conventional
controller is -180 degrees at low frequency. The lack of
low frequency integral action also causes the crossover

frequency of the synchronous loop gain to be reduced by
reducing the loop gain of the conventional controller.
Therefore, the unstable region of rotational frequencies is
slightly larger than for the rigid rotor system examined
above.

Figure 5.18 shows the loop gain and phase for the

rotational frequency equal to the flexible frequency. The

crossover frequencies of loop gain correspond to values of

loop phase above -180 degrees. The Nyquist plot, in Figure

5.19, shows that the curve once again passes beneath the

point (-1 + Oj), giving a stable system. The system

remains stable for rotational frequencies above the
flexible frequency (ws) because loop phase of the
conventional controller remains above -90 degrees. This is
shown in Figure 5.20, for which 0 = 5ws. Since the maximum
phase excursion due to the notch filter is 90 degrees, the
loop phase at the crossover frequencies of loop gain never
drop below -180 degrees. In terms of the Nyquist plot,

shown in Figure 5.21, the effect of the notch filter will

be restricted to the positive real half and negative

imaginary half of the s-plane, not allowing any
encirclements of the point (-1 + Oj).

Figure 5.22 gives the minimum eigenvalue damping of the
soft shaft system with bearing feedback as a function of
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normalized rotational frequency (o/ws). It shows that the

minimum eigenvalue damping equals the notch numerator

damping factor (Un) at low frequency and becomes negative

between the crossover of the synchronous loop gain and the

flexible frequency (ws), similarly to the rigid rotor

system. At super-flexible frequencies however, instead of

approaching the value of the notch denominator damping

factor (Ed), the minimum eigenvalue damping is much lower.

This is because the low phase margin at the flexible

frequency provides an eigenvalue with damping lower than

that of the notch filter open loop pole.

The low phase margin at the flexible frequency (ws) can

be seen in the response of the rotor position to a unit

step in bearing position reference for a rotational

frequency of 0 = 5ws , given in Figure 5.23. The rotor

position rings at approximately 3.2 radian/second, the

value of the crossover frequency just below the flexible

frequency (ws) (reference Figure 5.20). The low phase

margin at this frequency causes the system to undergo

lightly damped oscillations at this frequency. Loop phase

may be increased at this frequency by increasing the extent

of derivative control action, however, this would increase

the frequency at which the bearing position rolls off (the

highest crossover frequency shown in Figure 5.20). This

should be avoided since it has an adverse effect on the

system performance, as will be discussed in the chapter on

system performance.

5.2.2. Rotor Position Feedback

Ignoring the effects of spillover in this simple model,

the same rotor system as used above can be stabilized more

effectively by using the rotor position instead of bearing

position for feedback. Although the shaft is soft compared

to the bearings, the loop transfer function has no

resonance at the flexible frequency (ws) because the

effects of the shaft flexibility are not seen by the
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controller (reference Figure 3.9).

The effect of the nominal notch filter design on system

stability is basically the same as for the rigid rotor

system studied previously. Figure 5.24 shows the loop gain

and phase with a rotational frequency of 0 = .05wc. The

Nyquist plot, in Figure 5.25, shows that the synchronous

loop gain has not crossed over, resulting in no

encirclements of the point (-1 + Oj).

Figure 5.26, showing loop gain and phase for rotational

frequency of 0 = .lwC, reveals that synchronous loop gain

has crossed over at this rotational frequency. As for the

soft shaft controller with bearing feedback, the unstable

region begins immediately after synchronous loop gain has

crossed over, as seen in Figure 5.27.

Figure 5.28, loop gain and phase for rotational

frequency of 0 = wc, shows only one crossover frequency of
loop gain with a corresponding loop phase of more than -180

degrees. Figure 5.29, the Nyquist plot, shows that the

system has become stable again and the effect of the notch

filter has entered the interior of the unit circle.

Figure 5.30 shows that the minimum eigenvalue damping

as a function of normalized rotational frequency (O/wc) is

similar to that of the rigid rotor system, shown in Figure

5.11. The minimum eigenvalue damping above the loop

crossover frequency (wc) approaches the value of the notch

filter denominator damping factor (ed)- For rotor

feedback, there is sufficient phase margin at the flexible

frequency (wc) since the resonance at this frequency is not

seen by the controller.

Figure 5.31 shows the response of rotor position in

this system to a unit step in rotor position reference for

a rotational frequency of 0 = 2wc (the same frequency as

for the step response of the bearing feedback system, shown

in Figure 5.23). The ringing at the flexible frequency is

much reduced, another indication that the phase margin at

this frequency is better than for the system with bearing
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feedback.

In summary, the range of rotational frequencies of the

flexible rotor system for which the notch filter

destabilizes the system lies just below the lowest critical

frequency of the loop. The lowest critical frequency is

the flexible frequency (ws) for systems with bearing

feedback and soft shaft relative to the bearings, since the

flexible frequency occurs below the crossover frequency

(wc). Conversely, the lowest critical frequency is the

crossover frequency when the shaft is stiff relative to the

bearings. Systems with rotor feedback are unstable for

values of rotational frequency just below the crossover

frequency, regardless of shaft stiffness since the shaft

flexible frequency is not a critical frequency in the loop

transfer function. Generally, the range of unstable

frequencies extends from the lowest crossover frequency of

synchronous loop gain to the lowest critical frequency,

either the loop crossover frequency (wc) or the shaft

flexible frequency (ws).
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CHAPTER 6
NOTCH FILTER CONTROLLER PERFORMANCE

The purpose of the notch filter controller is to allow
the center of mass to remain stationary by making the

bearings not respond at the rotational frequency. This

chapter will examine the effectiveness of the notch filter

in reducing the response of the rotor center of mass to the

synchronous forcing function caused by mass imbalance. One

measure of performance of the notch filter controller is

the synchronous closed loop transfer function from

synchronous forcing function to center of mass position.

The difference in attenuation of the synchronous

disturbance by the notch filter controller and by the

conventional controller will be used in this chapter to

define the performance of the notch filter controller.

6.1. Rigid Rotor System

Figure 6.1 shows the synchronous closed loop gain of

the rigid rotor system with the two types of controller

(conventional and notch filter), measured from synchronous

forcing function to center of mass position. The closed

loop transfer function of a single input, single output

feedback system is defined as:

G
Gcl = 6.1

1 + GH

where G represents the feedforward transfer function and H

represents the feedback transfer function. The feedback

transfer function of this particular system is unity

(reference Figure 2.3) and the feedforward transfer

function is equivalent to the synchronous loop gain. The

derivation of the synchronous closed loop transfer function

is addressed further in Appendix B. Recall that the

synchronous loop gain is identical to loop gain when the
73
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controller has no tracking notch filter, i.e. no dependence

on rotational frequency. For rotational frequencies well

below the crossover frequency of loop gain (wc), the

synchronous loop gain is large (reference Figure 3.1).

From equation 6.1, the synchronous closed loop gain (Gdl)

is approximately unity at low frequency. For rotational

frequencies substantially above the crossover frequency

(wc), the synchronous loop gain is small, resulting in a

synchronous closed loop gain approximately equal to the

synchronous loop gain at high rotational frequencies.

The same rules apply in defining the synchronous closed

loop gain of the rigid rotor model with a notch filter

controller. The addition of the nominal notch filter with

a depth of 40db places the synchronous loop gain uniformly

40db below the synchronous loop gain of the system with the

conventional controller. As before, the synchronous closed

loop gain is unity below the crossover of synchronous loop

gain and equal to the synchronous loop gain above this

frequency. From Figure 6.1, the synchronous closed loop

gain of the system with notch filter controller is lower

than the system with the conventional controller by the

notch depth (40db) at high frequency and begins to
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attenuate at the crossover frequency of synchronous loop

gain rather than the crossover of loop gain (wc).

As was shown in Chapter 5, this system with a notch

filter controller may not be operated for rotational

frequencies extending approximately from the crossover of

synchronous loop gain to the crossover of loop gain (w)
because of stability constraints. Since the notch filter

controller is stable and effective in improving the system

synchronous response only for rotational frequencies above

the loop gain crossover frequency (wc), this defines the

useful range of this controller. The amount of improvement

in system synchronous response due to the notch filter is

approximately equal to the notch depth in this useful range

of rotational frequencies.

6.2. Flexible Rotor System

6.2.1. Bearing Position Feedback

The performance of a flexible rotor system in which the

shaft is relatively stiff compared to the bearings is

essentially identical to that of the rigid rotor system.

The useful range of rotational frequencies of the notch

filter controller includes rotational frequencies above the

loop gain crossover frequency (wc).

The more interesting case is the flexible rotor system

for which the shaft is soft relative to the bearings. The

synchronous closed loop gain of this system with the

conventional and notch filter controller is shown in Figure

6.2. The synchronous disturbance caused by mass imbalance

begins to become attenuated by the conventional controller,

as measured at the center of mass, for rotational

frequencies above the flexible frequency (ws). The

synchronous closed loop gain with the nominal notch filter

controller begins to attenuate at the crossover frequency

of synchronous loop gain but the improvement in performance

is not fully equal to the notch depth until the rotational
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frequency (2) is much higher than the flexible frequency

(Os).
Figure 6.3 shows a block diagram of this system where

the following transfer functions are represented

symbolically; the notch filter (Gn), the controller (Gc),

the rotor (Gm) from bearing force (Fb) to center of mass

position (Zm) and the rotor (Gb) from bearing force to

bearing center (Zb). The synchronous closed loop transfer

function of this system from synchronous forcing function

caused by mass imbalance (Ds) to center of mass position

(Zm) is given as:

Zm GnGcGm
Gcl -= =-_ _ 6.2

Ds  1 + GnGcGb

The loop gain from synchronous forcing function to bearing

position, GnGcGb, for this system with a conventional

controller, i.e. Gn equal to 1, is given in Figure 3.7.

The loop gain from synchronous forcing function to center

of mass position, GnGcGm, with a conventional controller is

shown in Figure 6.4. From these frequency responses, the

magnitude of the synchronous closed loop gain, given in
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Figure 6.3. Block Diagram, Flexible Rotor System, Bearing

Feedback, Notch Filter Control

equation 6.2, can be evaluated as a function of rotational

frequency. The real quantity of interest is the amount of

improvement the nominal notch filter provides as a function

of rotational frequency. This is given by the ratio of the

synchronous closed loop gain with the nominal notch filter

to the synchronous closed loop gain without the notch

filter, i.e. Gn = 1. The resulting expression is:

Gn(l + GcGb)
Pn = 6.3

(1 + GnGcGb)

By evaluating the expression Pn as a function of

rotational frequency, the improvement in performance due to

the notch filter can be quantified. For rotational

frequency well below the flexible frequency (ws), the term

GnGcGb is large and the value of Pn is unity. Thus, at

rotational frequencies well below the flexible frequency,

the synchronous disturbance is not attenuated with a

conventional controller or with a notch filter controller

(reference Figure 6.2). At very high rotational
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Conventional Controller

frequencies, for which the gain GcGb is very small, the
gain of Pn is equal to Gn, the value of the notch depth
(D). This result is consistent with the improvement in
performance due to the notch filter for the rigid rotor
system at high rotational frequencies.

Figure 6.2 shows that the amount of improvement is less
than the full notch depth for rotational frequencies above
the flexible frequency (ws) for which the gain GcGb is
large. In this region, the term GnGcGb is less than unity
but relatively large compared to Gn, therefore Pn is
approximately equal to Gn(1 + GcGb), a value greater than
Gn. For the plant, controller and nominal notch filter
used here, the value of Pn is shown in Figure 6.5 as a
function of rotational frequency. Thus, the effectiveness

of the notch filter is reduced for values of rotational
frequency below the highest crossover frequency of loop
gain from synchronous disturbance to bearing position
(GcGb), shown in Figure 3.7 to occur at approximately 230
radian/second. It was mentioned in Chapter 5 that
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increasing this crossover frequency was undesirable. The

reason is that it reduces the notch filter effectiveness

for rotational frequencies below this crossover frequency.

To summarize the flexible rotor system with rotor

feedback, the range of unstable rotational frequencies lies

roughly between the lowest crossover frequency of
synchronous loop gain and the lowest critical frequency.
The range of rotational frequencies for which the notch

filter improves the system synchronous response lies above

the lowest critical frequency, in the case of a soft shaft,

above the flexible frequency (ws). For rotational

frequencies above the highest crossover frequency of
bearing position, the notch filter performance in

attenuating the synchronous disturbance approaches the

notch depth. Thus the useful range of rotational
frequencies of the notch filter controller lies above the

lowest critical frequency. The level of notch filter
performance depends on the loop gain of bearing position
(reference Figure 3.7).

6.2.2. Rotor Position Feedback

The stability and performance are enhanced by using
0
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rotor position feedback because it reduces the complexity

of the flexible rotor plant to the level of the rigid rotor

model. The synchronous closed loop gain of this system

from mass imbalance forcing function to center of mass

position is given in Figure 6.6 both with and without the

nominal notch filter. It shows that the notch filter

effectiveness in reducing the synchronous response of the

mass center exists for rotational frequencies above the

crossover frequency of synchronous loop gain and is equal

to the notch depth. From the previous chapter however, the

unstable region extends from the synchronous loop gain

crossover frequency to the loop gain crossover frequency

(wc). Therefore the useful range of rotational frequencies

with rotor feedback lies above the loop gain crossover

frequency (wc).

An advantage of rotor position feedback is that it

makes notch filter performance independent of Gb and the

highest crossover frequency of bearing position. Notch

performance is always equal to the notch depth. Rotor

feedback also eliminates some mechanisms of synchronous

disturbance by measuring the position closer to the actual

center of mass. As discussed in the previous chapter, the

stability using rotor feedback is also improved, however

the effects of spillover must be considered.

"'UNSTABLE .
0 CONVENTIONAL

CONTROLLER
S-50.................

-100 -..... . .. .... .- .NOTCH FILTER
. CONTROLLER

-150
10-1 100 101 102 10 3

Rotational Frequency (rad/sec)

Figure 6.6. Synchronous Closed Loop Gain, Flexible Rotor

(Soft Shaft), Rotor Feedback, Conventional and Notch Filter

Controllers
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CHAPTER 7
SUMMARY AND CONCLUSION

This thesis has examined the effects of a tracking
notch filter controller on system stability and performance
in reducing rotor response to the synchronous forcing
function caused by mass imbalance. The approach has been
to design conventional PID controllers for the different

rotor models and then to examine the changes in stability
and performance caused by the addition of a tracking notch
filter to the conventional controllers. This chapter will
summarize the approach and the results from each of the
rotor models and present general conclusions based on the
combined results.

To summarize the goal of the tracking notch filter
controller, radial vibrations caused by rotor imbalance can
be minimized by not allowing the bearings to produce forces
at the rotational frequency. The notch filter attenuates
the position feedback signal at this frequency to permit
the rotor to spin about its center of mass, thus
eliminating the source of these radial vibrations.
Conventional controllers were designed to act on bearing
position feedback for the three rotor models used. These
models include a rigid rotor model, a flexible rotor model
with a stiff shaft relative to the bearings, and a flexible
rotor model with a soft shaft relative to the bearings. A
controller was also designed to act based on rotor position
feedback for the flexible rotor model with soft shaft.

The effect on system stability of the tracking notch
filter was found to be a function of rotational frequency.
Generally, the notch filter caused the system to become
unstable between the lowest crossover frequency of
synchronous loop gain, i.e. the loop gain evaluated at the
rotational frequency, and the lowest critical frequency of
the loop. The rigid rotor system has only one critical
frequency at the loop gain crossover frequency (wc), which
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is a function of rotor mass and bearing flexibility. The

flexible rotor model in which the shaft is relatively stiff

compared to the bearings is also unstable for rotational

frequencies just below the crossover frequency of loop gain

(wc), since this frequency is lower than the other critical

frequency, the shaft flexible frequency (wc). The flexible

rotor system in which the shaft is relatively flexible

compared to the bearings becomes unstable over a range of

rotational frequencies below the shaft flexible frequency,

since this frequency is below the loop gain crossover

frequency in this case. The use of rotor position feedback

for the rotor model with a soft shaft showed stability

characteristics similar to the rigid rotor system because

the shaft flexible frequency is not a critical frequency in

the loop transfer function of this system.

Performance of the notch filter in increasing

attenuation of the synchronous forcing function caused by

mass imbalance was evaluated for all the rotor models

discussed. Generally, the conventional control systems

provide attenuation for rotational frequencies above the

lowest critical frequency. The notch filter controller

provides additional attenuation at rotational frequencies

above the lowest crossover frequency of synchronous loop

gain. However, since the range of rotational frequencies

between the synchronous loop gain crossover frequency and

the lowest critical frequency cause unstable operation, a

useful range of the notch filter controller was found as

existing for rotational frequencies above the lowest

critical frequency. Generally, the notch filter controller

increases the attenuation in its useful range of rotational

frequencies by approximately the notch depth. The

exception to this is the system with soft shaft and bearing

position feedback. In this case, the improvement in

attenuation is less than the full notch depth for values of

rotational frequency over which bearing gain (Gb) is not

attenuated. The lightly damped poles at the flexible
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frequency prohibit reducing the bearing gain in the useful

range without reducing the damping of these poles and
causing the system to oscillate at the flexible frequency.

Note that this is a characteristic of the conventional

controller, not the notch filter.

The advantage of rotor feedback control of the soft
shaft rotor system is that the effects of shaft flexibility

do not have an impact on stability or performance. There
are no lightly damped poles at the flexible frequency and

the improvement in notch performance is always equal to the

notch dqph in the useful range. Furthermore, the useful

range of the notch filter controller can be chosen by

changing the 1.;op gain or bearing stiffness, and is not

imposed by the plant. However, since the rotor position

sensor and bearing actuator are not colocated, other shaft

flexible modes may be destabilized, referred to as
spillover effects.

Increasing the notch depth gives additional

attenuation in the useful range of rotational frequencies,

but it also increases the range of unstable rotational

frequencies by reducing the crossover frequency of
synchronous loop gain. Since a rotor system with magnetic

bearings is likely to undergo transient changes in
rotational speed, passing through the unstable range of
frequencies would be necessary. The obvious solution to
this problem is to disable the tracking notch filter below

its useful range of rotational frequencies, since it serves

no purpose there. The notch filter is enabled for
rotational frequencies above the lowest critical frequency

to attenuate the synchronous forcing function caused by
mass imbalance. Handling the unstable range of rotational
frequencies in this manner, a very deep notch filter may be
chosen for its performance advantage without regard to its
effect on increasing the unstable range of frequencies. It

was shown that notch steepness, or Q factor, would have
little effect on stability, therefore it can be chosen to



optimize bearing response to frequencies neighboring the

synchronous frequency.

Tracking notch filter controllers are currently being

used in conjunction with magnetic bearings to attenuate

synchronous vibrations caused by rotor imbalance.

Furthermore, previous research has shown that the notch

filter causes the system to become unstable for rotational

frequencies near critical frequencies of the system and

that the notch filter must be disabled for these ranges of

rotational frequencies. The goal of this thesis has been

to provide a more thorough understanding of the mechanism

by which the tracking notch filter attenuates the

synchronous vibrations caused by rotor imbalance and how

the stability of the system changes with rotational

frequency. The contribution of this thesis is in defining

the range of unstable rotational frequencies and how the

dynamics of rotor, shaft and controller affect the

performance of the notch filter.
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Notation

B Bearing center on the rotor disk
C Output of generic transfer function

Cb Center of bearing force
Cs  Shaft internal damping

D Depth of notch filter

e 2.7183

Eb Shaft elastic axis at bearings

Er Shaft elastic axis at rotor
F Characteristic equation

Fs Shaft force applied to rotor

Fb Bearing force applied to shaft
Fx Bearing force in x direction

Fy Bearing force in y direction

G Feed forward transfer function

Gb. Rotor transfer function Fb to ZSb
Gcl Closed loop transfer function
Gcls  Synchronous closed loop transfer function
G1  Loop transfer function

Gls Synchronous loop transfer function
Gm Rotor transfer function Fb to ZM
Gn Notch filter transfer function

H Feedback transfer function

j Square root of -1

ks  Shaft spring constant

m Rotor mass

M Rotor center of mass
M' Rotor center of mass projected on bearing
n Integers greater than 0

N Number of clockwise encirclements of origin

Pn Notch filter performance of soft shaft plant
Q Notch filter steepness
R Input of generic transfer function
s Complex Laplace variable
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S Rotor elastic center

Sb Bearing center of measurement

t Time

x Horizontal coordinate perpendicular to y

y Horizontal coordinate perpendicular to x

z Vertical coordinate

Z Complex coordinate

ZCs Complex position bearing force center

ZM  Complex position mass center

ZEb Complex position shaft elastic axis, bearing

ZEr Complex position shaft elastic axis, rotor

ZS  Complex position measurement center,rotor

ZSb Complex position measurement center, bearing

as  Phase angle, measurement center

ab Phase angle, bearing center of force

p Phase angle, mass and elastic centers

6 Shaft deflection distance

£ Mass imbalance distance rigid rotor

eb  Bearing center of force misalignment

ec Complex imbalance distance

Er Mass imbalance distance, flexible rotor

Cs Measurement center misalignment

w Frequency

e1 Frequency at which notch gain is -3db

W2 Frequency at which notch gain is -3db

(o Notch filter center frequency
Cs  Shaft flexible frequency

0 Rotational speed

a 3.1416

(d Notch filter denominator damping factor

(n Notch filter numerator damping factor
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Appendix A

Modified Nyquist Plot

This appendix details the modifications made to the

Nyquist Stability criterion in order to make Nyquist plots

more easily generated by computer. A short summary of the

Nyquist stability criterion is necessary to show that the

modified version gives the same results.

Nyquist Stability Criterion

Consider a system whose closed loop transfer function

is:

C(s) G(s)
= A.1

R(s) (1 + G(s)H(s))

For stability, the roots of the characteristic equation,

F(s) = 1 + G(s)H(s) = 0 A.2

must all lie in the left half s plane. The Nyquist

stability criterion relates the open loop frequency

response, G(s)H(s), to the number of closed loop poles and

zeroes which lie in the right half s plane.

For a given continuous closed path in the s-plane

which does not go through any singular points, there exists

a corresponding closed curve in the F(s) plane where F(s)

is the characteristic equation defined in equation A.2.

The relationship between the contour in the s-plane and the

F(s) plane is said to be a conformal mapping. The number

of poles and zeroes in the s plane enclosed by the contour

determine the number and direction of encirclements of the

origin in the F(s) plane. The total number of clockwise

encirclemrnts, N, of the origin of the F(s) plane, as a

contour in the s plane is made in the clockwise direction,

is equal to the number of zeroes minus the number of poles
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of F(s) inside the contour in the s plane. This is called
the mapping theorem.

The Nyquist criterion is the mapping theorem applied
to control systems. The contour in the s plane encloses

the entire right half plane. The number of clockwise
encirclements of the point (-1 + Oj) in the G(s)H(s) plane

is equivalent to N. In other word, a system must have the
same number of counterclockwise encircleii•nts of (-1 + Oj)
as there are open loop poles in the right half s plane,
otherwise the system is unstable.

For an open loop transfer function with a factor 1/sn

(where n = 1,2,3,...), the contour in the s plane excludes
the origin by tracing a semicircle of infinitesimal radius
around it. The corresponding plot of G(s)H(s) has n
clockwise semicircles of infinite radius. In the s-plane,
the contour approaches the origin along the negative
imaginary axis and takes a right turn to begin its
semicircle around the origin. This maps to a contour in
the G(s)H(s) plane approaching infinity and making a right
turn to begin n semicircles around the origin. This is
because angles are preserved in conformal mappings.

Modified Nyquist Plot

The Nyquist stability criterion provides insight to
control problems but the Nyquist plot is often difficult to
generate when it extends to infinity. For the purpose of
condensing this information closer to the origin and
maintaining the significance of the point (-1 + Oj),
G(s)H(s) is plotted on a different set of axes. The new
axes defined on and outside the unit circle are 1 + log
(base 10) of the real and imaginary parts of G(s)H(s) (e.g.
the coordinates of the point (10 + Oj) becomes (2 + Oj));
inside the unit circle, the axes remain the same. Since
the point (-1 + Oj) has not changed location, the
significance of encirclements of this point is maintained.
This plot can be used to determine system stability but
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care must be taken when reading gain or phase information

from it since the scales may be confusing.



Appendix B

Closed Loop Synchronous Frequency Response

The transfer function of a rotor system is generally a
function of both frequency and rotational frequency,

Gr(s,O). Consequently, the loop transfer function of an
active magnetic bearing-rotor control system is a function

of frequency and rotational frequency;

Gl(s,Q ) = GH B.1

where G represents the feedforward transfer function and H
represents the feedback transfer function and is assumed to
be unity here. When the synchronous behavior of this
system is of interest, the loop transfer function may be
evaluated at the rotational frequency to give the
synchronous loop transfer function,

GIs(0) = Gl(s,0)is=j0 B.2

The closed loop transfer function of this control
system is given as;

G1
Gcl(s,n) = B.3

1 + G1

Likewise, the closed loop transfer function may be
evaluated at the synchronous frequency to give the
synchronous closed loop transfer function;

Gcls(n) = Gcl(s,n)fs=jo B.4

The synchronous closed loop transfer function may also
be defined as;

Gls
Gcls(n) = B.5

1 + G1s



In other words, the synchronous closed loop transfer

function is a function of the synchronous loop transfer

function (equation B.5), just as the closed loop transfer

function is a function of the loop transfer function

(equation B.3). The synchronous closed loop transfer

function is the synchronous response of the system, i.e.

the degree to which the output responds to the synchronous

disturbance caused by mass imbalance. The synchronous loop

transfer function is useful in estimating the value of the

synchronous closed loop gain. When synchronous loop gain

is above unity, the synchronous closed loop gain is unity

and the system follows the synchronous disturbance.

However, when synchronous loop gain is attenuated,

synchronous closed loop gain has approximately the same

shape and the output does not respond to the synchronous

disturbance.


