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THE ROLE OF DAMAGED DNA RECOGNITION PROTEINS IN THE
GENOTOXICITIES OF ULTRAVIOLET LIGHT AND THE ANTICANCER DRUG
CISPLATIN

by
DANIEL KELLY TREIBER

Submitted to the Division of Toxicology on September 29,1993, in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

DNA damaging agents can be mutagenic, carcinogenic, and effective as
anticancer drugs. The cellular processes that contribute to these varied
effects are poorly understood, but it is reasonable to speculate that an early
event involves the recognition of DNA damage by cellular proteins. The
results presented in this dissertation suggest that damage recognition
proteins can contribute to cell survival and, interestingly, to cell death. A
human ultraviolet light-damaged DNA recognition protein {(UV-DRP) is absent
in some xeroderma pigmentosum complementation group E cells suggesting
a role in DNA repair. The binding specificity of the UV-DRP has been
characterized as a first step toward elucidating a possible role in DNA repair.
It is shown that the UV-DRP binds selectively to a minor UV-induced lesion,
the pyrimidine (6-4) pyrimidone photoproduct (6-4 photoproduct). The major
UV-induced photoproducts, cyclobutane pyrimidine dimers {CPDs), are not
recognized by the UV-DRP. These findings suggest mechanisms to explain
the preferential repair of 6-4 photoproducts in human cells. In other studies,
it was demonstrated that the nucleolar transcription factor human upstream
binding factor (hUBF), a critical regulator of rRNA synthesis, binds with
striking affinity (K, ~60 pM) to DNA modified by the anticancer drug
cisplatin. This value is comparable to that of hUBF for the rRNA promoter
(Ki(apm ~ 18 PM). Furthermore, | observe that the hUBF-promoter interaction is
cooperative and, consequently, highly sensitive to the antagonistic effects of
cisplatin adducts. These results suggest that cisplatin could disrupt
regulation of rRNA synthesis by a transcription factor hijacking mechanism
that may contribute to the anticancer efficacy of this drug.

Thesis Supervisor: Dr. John M. Essigmann

Title: Professor of Toxicology and Professor of Chemistry
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Several studies have revealed the existence of proteins in eukaryotic
cells that bind specifically to DNA damaged by chemical or physical agents.
DNA damage recognition proteins (DRPs) have been reported for a growing
list of DNA modifications, including platinum crosslinks (Donahue et
al.,1990; Pil and Lippard, 1992; Brown et al.1993), 1,AM%-ethenoadenine
(Rydberg et a/.,1991), G:T mismatches (Jiricny et a/.,1988),
apurinic/apyrimidinic (AP) sites (Lenz et a/.,1990), N-acetyl-2-aminofluorene-
guanine adducts (Moranelli and Lieberman, 1980), and ultraviolet light (UV)-
induced photoproducts (Feldberg and Grossman, 1976; Chu and Chang,
1988; Hirschfeld et a/.,1990). The cellular function of many DRPs is
unknown, but it is reasonable to speculate that some of these proteins may
play roles in DNA repair (Chu and Chang, 1988; Hirschfeld et a/.,1990;
Rydberg et a/.,1991), or in other biological activities related to the
genotoxicity of the agent under investigation (Donahue et a/.,1990; Pil and
Lippard, 1992; Brown et a/.,1993).

The goal of my thesis research was to elucidate the role of DRPs in
the genotoxicities of UV light and the anticancer drug cisplatin. A body of
indirect evidence suggests that a UV-damaged DNA recognition protein (UV-
DRP) may be a component of a versatile mammalian excision repair complex.
The UV-DRP is overly expressed in human cells that display resistance to the
anticancer drug cisplatin; these cells also exhibit an enhanced capacity to
reactivate cisplatin-damaged plasmids (Chu and Chang, 1990). Furthermore,
the UV-DRP is induced 2-4 fold above constitutive levels in primate cells
pretreated with UV (Protic et a/.,1989). These cells also reactivate UV-
damaged plasmids with increased efficiency. The most compelling result
linking the UV-DRP to DNA repair is the apparent absence of this activity in

cells from two related persons afflicted with the human DNA repair disorder
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xeroderma pigmentosum (XP) (Chu and Chang, 1988). More specifically,
these individuals belonged to genetic complementation group E. The
generality of this finding has recently been challenged because UV-DRP
activity is detected in a number of XP-E cell lines derived from Japanese
patients (Kataoka and Fujiwara, 1991; Keeney et a/.,1992). It is possible,
however, that these recently tested cell lines contain a form of the UV-DRP

that is defective in a function other than DNA binding.

In my work the substrate specificity of the UV-DRP was examined as
an initial step in elucidating a possible role for it in DNA repair. In the case
of the UV-DRP, the true physiological substrate was not known before my
study because UV induces many forms of DNA damage, including
cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone
photoproducts (6-4 photoproducts). Each of these photoproducts causes
distortions in DNA architecture (Husain et a/.,1988; Franklin et a/.,1985;
Rycyna and Alderfer, 1985; Kemmink et a/.,1987a) and is believed to be
both cytotoxic and mutagenic (LeClerc et a/.,1991; Protic-Sabljic et
al.,1986; Brash et a/.,1987a; Glickman et a/.,1986; Brash and Haseltine,
1982). The relative repair rates of these lesions in mammalian cells (Mitchell
et al.,1985; Mitchell et al.,1990; Thomas et a/.,1989) and cellular extracts
(Wood, 1989) have been shown to be biased by a factor of 4-12 in favor of
repair of the 6-4 photoproducts. The results of my studies show that the
UV-DRP binds selectively to 6-4 photoproducts and may thereby contribute

to the efficient repair of these lesions.

The second major topic of study described in this dissertation is an
evaluation of the mode of toxicity of the anticancer drug cisplatin. Cisplatin

is a highly effective antitumor drug used to treat a variety of cancers. The
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mechanism of action of this drug is unclear, but it is likely that DNA is the
critical intracellular target (Fraval et a/.,1978). It is of importance to
understand the mechanism of action of cisplatin in order to design rationally
chemotherapeutic drugs of increased potency. We and others have
reasoned that the recognition of cisplatin DNA adducts by cellular proteins
may be an early event that modulates the genotoxicity of this drug. Several
cisplatin damaged DNA recognition proteins (cis-DDP DRPs) have been
discovered recently (Donahue et a/.,1990; Pil and Lippard, 1992; Bruhn et
al.,1992; Brown et al.,1993; Clugston et a/.,1992), but their role in the
genotoxicity of cisplatin remains elusive. Our studies have shown that a
family of proteins homologous to the non-histone chromosomal protein
HMG1 binds selectively to DNA modified by cisplatin (Bruhn et a/.,1992; Pil
and Lippard, 1992; Brown et a/.,1993), and there is no evidence to suggest
that these proteins are part of a DNA repair complex. This observation has
led us to propose novel, non-mutually exclusive, mechanisms that contribute
to the efficacy of cisplatin. One model suggests that cis-DDP DRPs
fortuitously recognize the DNA structure induced by cisplatin lesions and
thereby shield adducts from DNA repair enzymes (Donahue et a/.,1990). As
a consequence, adducts persist in the genome to mediate a genotoxic
effect. Recent genetic studies in yeast are consistent with this model and
established for the first time that an HMG1-related protein can modulate the
toxicity of cisplatin (Brown et a/.,1993). A second model proposes that cis-
DDP DRPs function normally as critical regulatory proteins, such as
transcription factors. In this model, cisplatin adducts act as molecular
decoys to titrate a regulatory protein away from its natural site of action.
Presumably, such a process would disrupt cellular homeostasis and
contribute to genotoxicity. | report in this dissertation that the nucleolar

transcription protein human upstream binding factor (hUBF), a critical

15



regulator of ribosomal RNA (rRNA) production (Bell et a/.,1988), binds to
cisplatin adducts and rRNA promoter sequences with similar affinities.
These data are consistent with the possibility that cisplatin adducts inhibit
the function of hUBF by acting as molecular decoys. This mechanism, if

operative, could contribute to antitumor efficacy.
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A. DNA LESIONS FORMED BY ULTRAVIOLET LIGHT AND THE
ANTICANCER DRUG CISPLATIN

1. Ultraviolet light (UV)-induced DNA photoproducts

Irradiation of DNA with 254 nm light results in the formation of
dimeric photoproducts occuring between adjacent pyrimidines (Py) in the
same DNA strand (Figure 1). The most common photoproduct is the cis-syn
cyclobutane pyrimidine dimer (CPD) in which the 5,6 double bonds have
been saturated to form a cyclobutyl ring. CPDs form at all dipyrimidine
sequences, but the efficiency of dimer formation at any particular
dipyrimidine sequence is largely influenced by the flanking sequence context.
In general, dimer formation is favored in runs of pyrimidines with the favored
site of formation of CPDs at adjacent thymines (Brash and Haseltine, 1982).
The next most common photoproduct is the pyrimidine (6-4) pyrimidone
photoproduct (6-4 photoproduct), which occurs at roughly one-third the
frequency of CPDs (Friedberg, 1985). The primary site of 6-4 photoproduct
formation is at Py-cytosine (PyC) and CC sequences positioned 3’ to runs of
pyrimidines. 6-4 photoproducts form rarely at other dipyrimidine sites,
including TT sequences (Lippke et a/.,1981). The structure of a TC 6-4
photoproduct has been determined by nuclear magnetic resonance (NMR)
(Franklin et a/.,1985). As shown in Figure 1, the 6-4 photoproduct has an
unusual structure in which the 6 position of T is convalently linked to what
was the 4 position of the 3’ neighboring C. The 5,6 double bond of T, but
not C, is saturated, and the exocyclic amino group from the 4 position of C

has been transferred to the 5 position of T.

CPDs are believed to cause distortions in DNA architecture. The
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construction of oligonucleotides containing site-specific cis-syn TT CPDs has
facilitated structural studies. NMR studies with short duplexes containing a
centrally located cis-syn CPD indicate that, although weakened, base pairing
between dimeric Ts and complementary A’s is intact (Taylor et a/.,1990;
Kemmink et a/.,1987b). Weakened base pairing is evidenced by a change in
the helix - coil equilibrium. The ability of B-form DNA to accomodate cis-syn
CPDs may reflect the observation that the Ts of a CPD retain the anti
glycosyl conformation. Indeed, the rare trans-syn CPD, in which the 5’ T is
in a syn glycosyl conformation, is more helix destabilizing (Taylor et
al.,1990). Model building and energy minimization studies suggest that the
cis-syn CPD bends the helix by 27° toward the major groove and also causes
a local helix unwinding of 20° (Pearlman et a/.,1985). This prediction was
supported by ligation experiments with oligonucleotides containing site-
specific CPDs (Husain et a/.,1988). In these experiments, 32-mer
oliogonucleotides containing a site-specific CPD were multimerized by using
DNA ligase, and the formation of DNA circles was monitored. The bending
and unwinding angles were calculated by determining the multimer length
that was optimal for circle formation. In a more recent study, however, the
bending angle induced by a site-specific CPD was found to be much less
severe, ~7° (Wang and Taylor, 1991). In these later studies the bend angle
was measured by multimerizing CPD-containing duplexes and monitoring the
electrophoretic mobility of the ligation products as a function of length. In
this approach, the phased CPDs yield DNA bends that are additive, and the
bend angle is calculated by comparing the electrophoretic mobility of the
multimers containing CPDs to the mobility of control, unmodified multimers.
It thus appears that CPDs do induce DNA bending, but the bend angle is still
a matter of dispute. (Husain et a/.,1988; Franklin et a/.,1985; Rycyna and
Alderfer, 1985; Kemmink et a/.,1987a)
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The degree of helix distortion induced by 6-4 photoproducts is unclear
because oligonucleotides containing these lesions were synthesized only
recently (Smith and Taylor, 1993). The NMR structure of the TC 6-4
photoproduct suggests that these lesions are likely to induce significant helix
distortions as evidenced by the observation that the pyrimidine and
pyrimidone rings occupy perpendicular planes. Furthermore, unlike the case
with CPDs, a moiety important for base pairing (the exocyclic amino group

of C) is disrupted in 6-4 photoproducts (Franklin et a/.,1985).

2. Cisplatin-DNA adducts

cis-Diamminedichloroplatinum(ll) (cis-DDP or cisplatin) reacts with
DNA to form a variety of DNA adducts (Figure 2). In aqueous solution the
labile chloride ligands of cisplatin are displaced by water molecules, and this
process occurs efficiently only if the ambient chloride concentration is low.
The aquated platinum species reacts with the N7 position of purines to form
DNA adducts. The chemistry of cisplatin-DNA interactions has been
reviewed extensively (Sherman and Lippard, 1987). The spectrum of DNA
adducts formed by cisplatin, and their relative abundance, have been
determined through the use of chromatographic and NMR spectroscopic
procedures (Fichtinger-Schepman et a/.,1985). The most abundant DNA
adduct formed by cisplatin { ~65% of the total adducts) is a 1,2 intrastrand
crosslink formed at adjacent guanine residues (G'G). Intrastrand crosslinks
at AG sequences are also abundant (~25%), and 1,3 intrastrand crosslinks at
GNG sequences represent only ~5% of the total adducts formed (N = any
nucleotide). Intrastrand crosslinks are also noted but constitute only ~1% of
the adduct population. The geometric isomer of cisplatin, trans-

diamminedichloroplatinum(ll) (trans-DDP) cannot, for steric reasons, form the
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1,2 intrastrand crosslinks that constitute the majority of the cisplatin
adducts. The GNG adduct is the most predominant lesion formed by trans-
DDP. Interestingly, trans-DDP is much less toxic than cisplatin and is not an
effective anticancer drug. This observation has lead to the hypothesis that
the 1,2 intrastrand crosslinks at GG and AG sites are responsible for the

therapeutic activity of cisplatin (Pinto and Lippard, 1985).

It is clear that cisplatin DNA adducts are helix distorting lesions. The
X-ray crystal structure of a dinucleotide GG sequence containing a cisplatin
crosslink reveals that the planes of the bases are completely destacked to
accomodate the square planar platinum coordination complex; the angle
between the planes of the bases is 76-87° (Sherman et a/.,1985). Although
the structure of duplex DNA containing a cisplatin adduct has not been
solved, electrophoresis studies with site-specifically modified DNA fragments
have revealed important features of the induced distortion (Bellon et
al.,1991; Bellon and Lippard, 1990). Cisplatin G'G and A'G adducts bend
and unwind the helix by 34° and 13°, respectively. The GNG adduct bends
the helix to a similar extent, but the unwinding angle is larger (23°). The 1,3
trans-DDP adduct at a GNG sequence also bends the DNA, but the bend
appears to be flexible making it impossible to measure the angle by the
electrophoresis mobility approach. Although these structures appear to be
quite similar, it is noteworthy that the subtle differences in DNA bending and
unwinding may be of consequence to the processing of these lesions by
DNA repair enzymes and to their recognition by HMG box proteins (vide

infra).
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B. CYTOTOXICITY AND MUTAGENICITY OF UV PHOTOPRODUCTS AND
CISPLATIN ADDUCTS

1. Cytotoxicity and mutagenicity of UV photoproducts

CPDs and 6-4 photoproducts are believed to be cytotoxic and
mutagenic in E. coli and mammalian cells (LeClerc et a/.,1991; Protic-Sabljic
et al.,1986; Brash et a/.,1987a; Glickman et a/.,1986; Brash and Haseltine,
1982), although the relative potency of these photoproducts as
premutagenic lesions is a matter of debate. The major UV-induced mutation
is a C to T transition occuring at CC and TC sites, and mutations at TT
sequences are rare. In E. coli, mutational hotspots occur at photoproduct
formation hotspots, and the frequency of mutations at particular sites
correlates better to the frequency of 6-4 photoproducts than to the
frequency of CPDs (Brash and Haseltine, 1982). Irradiated phage lamda
DNA rendered devoid of CPDs by photoreactivation induce the same
frequency of mutations as the non-photoreactivated control DNA.
Photoreactivation did, however, increase the viability of the phage DNA
(Wood, 1985). These results have been emphasized by those proposing
that 6-4 photoproducts are the primary premutagenic lesions induced by UV.
The studies also suggest that both types of photoproducts can reduce

viability.

Many workers believe that CPDs are the primary premutagenic lesions
in E. coli and mammalian cells, in spite of the evidence cited above. UV
irradiated shuttle vectors that are passaged through mammalian cells have
provided insight into the nature of the major premutagenic UV photoproduct.

In monkey cells it was determined that photoreactivated shuttle vectors
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induced 80% fewer mutations than the analagous non-photoreactivated
plasmid (Protic-Sabljic et a/.,1986). In agreement with these studies,
photoreactivation reduced the mutation frequency of irradiated shuttle
vectors by 90% in human cells (Brash et a/.,1987b). Interestingly, in the
human cell study it was shown that mutation hotspots did not correlate with
the photoproduct formation hotspots. This contrasts with the results
reported in E. coli discussed above and may suggest differences in
mechanisms of lesion bypass in the two species. Recently, Taylor has
argued that deamination and tautomer bypass of TC and CC CPDs lead to
the major UV-induced mutations, C to T transitions (Jiang and Taylor,

1993). The evidence provided in support of these mechanisms was that TU
pyrimidine dimers code as TT, and if U were derived from the deamination of
cytosine, the result would be a T to C mutation. Although these results are
consistent with the proposed mechanism, it is clear that additional studies

are required to provide more conclusive evidence.

2. Cytotoxicity and mutagenicity of cisplatin DNA adducts

The critical intracellular target of cisplatin is generally accepted to be
DNA. An early and profound effect of cisplatin treatment is the inhibition of
DNA synthesis (Harder and Rosenberg, 1970). RNA and protein syntheses
are also inhibited, but DNA synthesis is preferentially reduced. Cisplatin
adducts inhibit the replication and transcription of DNA templates in a
variety of prokaryotic and eukaryotic in vitro systems (Corda et a/.,1991;
Heiger-Bernays et a/.,1990; Pinto and Lippard, 1985). Although these
observations suggested the importance of DNA as a critical target for
cisplatin, the most convincing evidence supporting this hypothesis is that

DNA repair deficient cell lines are hypersensitve to cisplatin (Fraval et
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al.,1978). In addition, some cisplatin resistant cell lines exhibit an increased
capacity to repair cisplatin adducts and to reactivate cisplatin modified
plasmids (Eastman and Schulte, 1988; Chu and Chang, 1990).

It is not immediately clear how the inhibition of DNA replication can
cause cell death. In fact, recent evidence suggests that the inhibition of
DNA synthesis does not correlate to the level of cell death after a single
cisplatin treatment (Sorenson et a/.,1990). In addition these same workers
noted that cisplatin-treated cells become arrested in the G2 phase of the cell
cycle where they remain for several days. Some cells eventually recover and
begin to cycle, but others die. The dying cells have the hallmark qualities of
cells undergoing apoptotic (or programmed) cell death. More specifically,
the DNA of dying cells is degraded in a specific manner that is manifested as
a nucleosome ladder in agarose gels. These results suggest that an event in
G2 triggers cell death by apoptosis, but the signal transduction pathway
leading to this type of cell death is unclear. It is likely that DNA damage
and/or strand breaks are signals that trigger cell cycle arrest. Strand breaks
apparently signal the arrest of gamma irradiated cells in the G1 phase of the
cell cycle, and P53 is involved in the signal transduction pathway (Kastan et
al.,1992). It is likely that a similar cell cycle checkpoint system exists in the
G2 phase that contributes to apoptotic cell death induced by cisplatin.
Taken together, these observations suggests that cycling cells, which must
pass through G2, should be more sensitive to cisplatin than stationary cells
that rest in the GO phase of the cell cycle. This is indeed the case;
stationary cells are less sensitive to cisplatin than are exponentially growing
cells (Fraval and Roberts, 1979).

Cisplatin adducts are premutagenic lesions in E. coli and mammalian

24



cells (Brouwer et al.,1981; de Boer and Glickman, 1989). Recent studies in
E. coli with site-specifically modified phage genomes have shown that the
A'G, G'G, and GNG' adducts are all SOS-dependent premutagenic lesions
that cause a preponderance of A/G to T tranversions at the 5’ base of the
crosslink (Bradley et a/.,1993). Interestingly, the A"G adduct is a more
potent premutagenic lesion than the G'G adduct by a factor of 5-10
suggesting the desirability of platinum based drugs that form fewer A'G
crosslinks. Recent studies in E. coli with an orally active platinum-based
drug that forms A'G lesions with lower efficiency than cisplatin are
consistent with the hypothesis that G'G adducts are less mutagenic than
A’G adducts (K. Yarema, personal communication). Hopefully these studies
will lead to the design of new platinum anticancer drugs that cause fewer

genotoxic side effects.

"The mutagenicity of this adduct has been characterized recently by K. Yarema in our
laboratory (manuscript in preparation).
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C. THE REPAIR OF UV PHOTOPRODUCTS AND CISPLATIN ADDUCTS IN E.
COLI AND MAMMALIAN CELLS

1. E. coli

Both types of pyrimidine dimers and the three major platinum adducts
are repaired by the E. coli UvrABC excision nuclease (Page et a/.,1990;
Sancar and Rupp, 1983). CPDs can also be repaired by a photoreactivating
enzyme, photolyase, that does not act on 6-4 photoproducts (Brash et
al.,1985). T4 endonuclease V (T4 Endo V) is both a CPD-specific
glycosylase and an apurinic site (AP site) endonuclease that acts upon CPDs
to generate a strand break that can then be repaired by other bacterial
enzymes (Nickell et a/.,1992). By contrast, it appears that the major
pathway for the repair of cisplatin adducts is excision repair mediated by the

UvrABC excision nuclease.

The UvrABC repair nuclease binds to sites of DNA damage and then
incises the DNA helix in the region flanking the adduct. More specifically,
the eighth phosphodiester bond 5’ to the lesion and the fourth or fifth
phosphodiester bond 3’ to the lesion are incised (Sancar and Rupp, 1983).
Other gene products displace the damaged oligonucleotide, synthesize DNA
to fill in the gap, and ligate the 3’ end to seal the repair patch. Many studies
have aimed to determine the mechanism of the UvrABC repair nuclease. A
leading model proposes that UvrA dimers act catalytically to deliver a
monomer of UvrB to the site of damage. In doing so, the damage
recognition subunit, UvrA, binds transiently to DNA in a complex with UvrB.
UvrA then dissociates from the complex, and a stable UvrB - DNA complex

is formed. Subsequently, UvrC recognizes the UvrB-DNA complex and

26



performs the incision reaction (Orren and Sancar, 1989). Several
observations support this model. First, the protein DNA complex incised by
UvrC contains only UvrB. Second, UvrB - DNA complexes form efficiently in
the presence of catalytic amounts of UvrA. Since UvrB does not bind to
damaged DNA in the absence of UvrA, this result suggested a catalytic, as

opposed to a stoichiometric, role for UvrA.

2. Mammalian cells

The mammalian excision nuclease also repairs both types of UV
photoproducts and the three most abundant types of cisplatin DNA adducts.
The process of nucleotide excision repair is considerably more complex in
mammalian cells than in E. coli. Whereas the incision step of DNA repair in
E. coli requires three gene products, at least seven gene products are
required to complete this step in mammalian cells. The mammalian
homologs of E. coli uvr a, b, and ¢ mutants are the seven xeroderma
pigmentosum complementation groups, A-G. Xeroderma pigmentosum is a
human disorder characterized by extreme UV sensitivity and an
overwhelming predisposition to skin cancer. The molecular basis of this
disease is a defect in DNA repair. Since each XP complementation groups
has a defect in the incision step of excision repair, it appears that at least
seven gene products are required to complete this step. Although the genes
for many of these complementation groups have apparently been isolated (all
except groups E and F), the function of the respective gene products is still
unknown, although some are putative helicases (XP-B, XP-D) (Weeda et
al.,1990; Bootsma and Hoeijmakers, 1993), and another, which contains a
putative zinc finger domain, binds selectively to UV-damaged DNA (XP-A)
(Robins et a/.,1991). An intriguing recent finding demonstrated that the
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putative XP-B gene product is identical to a basic transcription factor, BTF2,
which is required for transcription by RNA polymerase Il (Schaeffer et
al.,1993). This finding may help to establish the molecular basis for the
preferential repair of DNA lesions in the coding strand of actively transcribed
genes (Mellon et a/.,1987). The cause of another DNA repair disorder,
Cockaynes syndrome, is believed to be a defect in transcription-coupled
repair. Further evidence supporting a possible role for BTF2 in transcription
coupled repair is the observation that XP-B patients also suffer from

Cockaynes syndrome.

Although the genes encoding many of the proteins involved in
mammalian excision repair have been isolated, the biochemistry of excision
repair remains poorly understood. In the last several years an in vitro DNA
repair assay has been developed that employs crude human cellular extracts
(Robins et al.,1991). This assay is valuable in isolating DNA repair proteins
because biochemical complementation between extracts from different XP
groups can be achieved in this system. [n addition, the assay is useful for
examining the repair of specific types of DNA lesions, including UV
photoproducts and cisplatin adducts. Results from the in vitro repair assay
have shown that 6-4 photoproducts are more efficiently repaired than CPDs.
More specifically, photoreactivation of the UV-irradiated DNA that was used
as the substrate for repair replication did not significantly reduce the repair
signal (Wood, 1989). This result is consistent with in vivo studies which
measured the repair of CPDs and 6-4 photoproducts by using antibodies
raised against UV-damaged DNA (Mitchell et a/.,1985). The repair protein
that is responsible for the biased repair of 6-4 photoproducts is currently
unknown, but, as shown in this dissertation, a damaged DNA binding protein

that is absent in XP-E cells may be involved. The protein encoded by the
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XP-A gene may also contribute to the selective repair of 6-4 photoproducts
because it, too, has affinity for UV-damaged DNA (Robins et a/.,1991).

The in vitro DNA repair assay has also been used to examine the
repair of cisplatin DNA adducts. Studies with globally modified platinated
DNA revealed that most of the repair synthesis was due to adducts other
than the abundant G'G and A"G intrastrand crosslinks (Calsou et a/.,1992).
In agreement with this finding, other workers have shown that the cisplatin
G G adduct is refractory to repair by cellular extracts (Szymkowski et
al.,1992). In vivo studies generally support the hypothesis that G'G adducts
are poorly repaired. Most in vivo studies show that G'G adducts are
removed rapidly in the time period immediately following the cisplatin
treatment; however, repair activity becomes diminished at later time points,
and a significant fraction of the adducts persist for several days (Terheggen
et al.,1987). The inefficient repair of cisplatin adducts may contribute to
antitumor activity. This hypothesis seems reasonable in light of the results
cited above showing that cisplatin is more toxic to proliferating cells than to
resting cells. Presumably, resting cells can survive, even if DNA repair is
inefficient, because they are not committed to cell division and thus do not
proceed through the stage of the cell cycle (most likely G2) in which the
process of cell death is triggered. By contrast, inefficient repair of cisplatin
would be expected to be deleterious to cycling cells that are committed to
passage through all phases of the cell cycle. Furthermore, the efficient
repair of DNA adducts of a cisplatin isomer, trans-DDP, has been proposed
to explain the ineffectiveness of this drug to combat cancer (Ciccarelli et
al.,1985; Heiger-Bernays et a/.,1990).
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D. THE ROLE OF DAMAGED DNA RECOGNITION PROTEINS IN THE
GENOTOXICITIES OF UV LIGHT AND CISPLATIN

Damaged DNA recognition proteins (DRPs) are a class of proteins that
binds selectively to damaged DNAs. DRPs have been reported for a growing
list of DNA modifications, including platinum crosslinks (Donahue et
al.,1990; Pil and Lippard, 1992; Brown et a/.,1993), 1,A?-ethenoadenine
(Rydberg et a/.,1991), G:T mismatches (Jiricny et a/.,1988),
apurinic/apyrimidinic (AP) sites (Lenz et a/.,1990), N-acetyl-2-aminofluorene-
guanine adducts (Moranelli and Lieberman, 1980), and ultraviolet light (UV)-
induced photoproducts (Feldberg and Grossman, 1976; Chu and Chang,
1988; Hirschfeld et a/.,1990). Studies leading to the identification of DRPs
generally have the goal of isolating DNA repair enzymes since the initial step
in repair is most likely at the level of damage recognition. This presumption
is accepted as being valid since the best studied repair complex, UvrABC,
has a damage recognition component, the UvrA protein. In the case of
some DRPs there is a clear connection to DNA repair (Rydberg et a/.,1991;
Chu and Chang, 1988; Clugston et a/.,1992); however, other DRPs are
probably not involved in DNA repair and may actually contribute to the
genotoxicity of the DNA damaging agent being examined (Donahue et
al.,1990).

We have proposed three models to explain the role of DRPs in the
genotoxicities of DNA damaging agents (Figures 3-5). Model 1 (Figure 3)
proposes that DRPs are DNA repair proteins that act, like UvrA, as the lesion
recognition subunit of a repair complex. In this case, the DRP would serve
to enhance the survival of damaged cells. A body of indirect evidence

suggests that a UV-damaged DNA recognition protein (UV-DRP) may be a
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component of a versatile mammalian excision repair complex. The UV-DRP
is overly expressed in human cells that display resistance to the anticancer
drug cisplatin; these cells also exhibit an enhanced capacity to reactivate
cisplatin-damaged plasmids (Chu and Chang, 1990). Furthermore, the UV-
DRP is induced 2-4 fold above constitutive levels in primate cells pretreated
with UV (Protic et a/.,1989). These cells also reactivate UV-damaged
plasmids with increased efficiency. The most compelling result linking the
UV-DRP to DNA repair is the apparent absence of this activity in cells from
two related XP patients (Chu and Chang, 1988). More specifically, these
individuals belonged to genetic complementation group E. The generality of
this finding has recently been challenged because UV-DRP activity is
detected in a number of XP-E cell lines derived from Japanese patients
(Kataoka and Fujiwara, 1991; Keeney et a/.,1992). It is possible, however,
that these recently tested cell lines contain a form of the UV-DRP that is

defective in a function other than DNA binding.

The possible role of the UV-DRP in DNA repair has not been
established but, based on genetic evidence in yeast, the protein has been
hypothesized to be the human homolog of photolyase (Patterson and Chu,
1989), an enzyme that catalyzes the chemical reversal of CPDs back to
normal dipyrimidine sequences in DNA. Although the UV-DRP lacks the
ability to photoreactivate DNA /n vitro, it may help to recruit repair
complexes to sites of DNA damage (Patterson and Chu, 1989). In support
of this model, the binding of E. coli photolyase to CPDs has been shown to
stimulate the excision of these lesions by the UvrABC repair complex in vitro
(Sancar et al.,1984). Another model suggests that the UV-DRP may
perform a damage recognition function analogous to that of UvrA (Hirschfeld
et al.,1990).
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The second model (Figure 4) proposes that DRPs are anti-repair
proteins. In this model, the DRP functions naturally in a process unrelated to
DNA repair and fortuitously recognizes the adduct induced DNA structure.

In this context, a consequence of DRP binding is the shielding of DNA
adducts from repair enzymes. The DRP may hinder the accessability of
adducts to repair enzymes or, alternatively, could alter DNA structure in
such a manner that the adduct is no longer recognized by repair proteins.
Below | present evidence to support the feasibility of this model as it applies

to the toxicity of cisplatin.

We and others have reported a class of eukaryotic proteins that bind
specifically to DNA damaged by the anticancer drug cisplatin {Chu and
Chang, 1988; Donahue et a/.,1990; Toney et a/.,1989; Bruhn et a/.,1992;
Clugston et a/.,1992; Pil and Lippard, 1992; Brown et a/.,1993; Hughes et
al.,1992). In only one of these reports is there evidence to suggest that the
cis-DDP DRP is involved in DNA repair. More specifically, human single
stranded DNA binding protein (hSSBP), which is known to have a role in
DNA repair (Coverley et a/.,1991), has been shown to be a ¢is-DDP DRP
(Clugston et a/.,1992). All of the remaining cis-DDP DRPs that have been
cloned, or otherwise identified, are homologous to the abundant
chromosomal protein HMG1. Indeed, HMG1 itself binds selectively to
cisplatin modified DNA (Pil and Lippard, 1992). The homologous region in
this family of proteins is a recently identified, novel DNA binding domain
referred to as the HMG box (Jantzen et a/.,1990). The HMG box is present
in several putative transcription factors including human upstream binding
factor (hUBF), the testis determining factor (SRY), and the lymphoid
enhancing factor (LEF-1) (Jantzen et a/.,1990; Giese et a/.,1991; Harley et

al.,1992). It is important to note that the normal cellular function of the
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HMG1-related cis-DDP DRPs, which include SSRP1, HMG1, and IXR1 (Bruhn
et al.,1992; Brown et al.,1993), remains a mystery; although there is
evidence to suggest that HMG1 has a general role in transcription and in
maintaining chromatin structure (Einck and Bustin, 1985). To date there are
no known DNA repair proteins that are homologous to HMG1 suggesting
that the HMG class of cis-DDP DRPs have a role in cisplatin toxicity that is
unrelated to DNA repair.

We have proposed that HMG proteins can act as anti-repair proteins
(Bruhn et a/.,1992). Recent genetic studies in yeast are consistent with an
anti-repair role of HMG box proteins. A yeast HMG box protein, IXR1, that
binds selectively to cisplatin-modified DNA confers sensitivity to cisplatin. In
mutants lacking this protein, lower levels of cisplatin adducts are observed
and the sensitivity to cisplatin is decreased by a factor of two (Brown et
al.,1993). Further support of the anti-repair model stems from the
observation that the poorly repaired cisplatin adducts are high affinity
binding sites for cis-DDP DRPs, whereas the efficiently repaired lesions are
ignored by cis-DDP DRPs (Szymkowski et a/.,1992; Donahue et al.,1990; Pil
and Lippard, 1992).

The third model (Figure 5) proposes that cis-DDP DRPs function
normally as critical regulatory proteins that are titrated away from their
natural sites of action by cisplatin adducts. Presumably, if the function of
the titrated protein were more critical to the viability of tumor cells than to
normal cells, then the proposed "decoy effect” could contribute to antitumor
efficacy. This model, although unproven experimentally, seems feasible
since many HMG box proteins are indeed transcriptional regulators. In this

dissertation, | provide evidence to suggest that the nucleolar transcription
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factor hUBF may become titrated away from its natural sequence element by

cisplatin adducts.
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Figure 1. Structure and properties of the major UV-induced Photoproducts
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Figure 2. Cisplatin DNA adducts
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Figure 3. Model 1: DRPs are part of a repair complex.
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Figure 4. Model 2: DRPs are anti-repair proteins.
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Figure 5. Model 3: DRPs are regulatory proteins that are diverted by

cisplatin adducts.
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ll. MATERIALS AND METHODS
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A. Materials

1. Enzymes and chemicals

Restriction endonucleases, DNA ligase and polynucleotide kinase were
purchased from New England Biolabs or Pharmacia. The Klenow fragment
of E. coli DNA polymerase | was obtained from Boehringer Mannheim
Biochemicals or New England Biolabs and poly(dI-dC) - poly(dI-dC) from
Pharmacia. DNase | (DPFF grade) was from Worthington and Hygromycin B
from Sigma. Taq polymerase was from Perkin Elmer Cetus. T4
endonuclease V (T4 endo V) and E. coli photolyase were kindly provided by
R.S. Lloyd (Vanderbilt University) and C. Walsh (Harvard University),
respectively. Media, nutrient supplements, and fetal calf serum (FCS) for

human cell culture were obtained from GIBCO and Sigma.

2. Cell Lines

Human lymphoid lines [XP-A (GM02250D), XP-D (GM02253D), and
XP-E (GM02450D)] and a fibroblast cell line [XP-E (GM2415B)] were
obtained from the N.I.G.M.S. Human Genetic Mutant Cell Repository. Hela
cells were obtained from M. Chow and P. Sharp (M.I.T.) and the human
hepatoma cell line Hep G2 from R. Rothstein (The Children’s Hospital,
Boston, MA). The Raji lymphoma cell line was obtained from the American

Type Tissue Collection.

3. Plasmids

pSBr208 containing human rRNA promoter sequences was provided
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by M. Jantzen and R. Tjian (University of California, Berkeley). pCMVg-
galactosidase was a gift of R. Tepper (Massachusetts General Hospital) and
the Epstein-Barr virus (EBV)-based vector EBV-B108 was from B. Sugden
(University of Wisconsin). pT7-RNHMG1 was from M. Bianchi (University of
Milan), pcDNA1 was purchased from Invitrogen, and HEK1001 "bottom"
was kindly provided by S. Bruhn (M.L.T.).

4. Proteins and Antisera

Affinity-purified HeLa human upstream binding factor (hUBF) was
provided by M. Jantzen and R. Tjian (University of California, Berkeley).
Rabbit antisera raised against rat HMG1 or human SSRP1 were generous
gifts of P. Pil and S.J. Lippard (M.1.T.). Goat anti rabbit IgG antibodies
conjugated to alkaline phosphatase, and the appropriate colorometric or
chemiluminescent substrates were purchased from Promega and BioRad,

respectively.

5. Site-specifically platinated 100 bp DNA constructs

100 bp DNA fragments, either unmodified, or containing a single,
centrally located cisplatin 1,2 intrastrand crosslink at a d{(GpG) sequence
were generously provided by P. Pil and S. J. Lippard (M.I.T.) or by A.
Barrasso (M.l.T.) The sequence of the adducted strand is: 5'-CAG ATC
GAT GGA CTA GCC AGC TGC CTT GAT ATC ACG TCA GTC TCC TTC
TG'G TCT CTT CTC AGT CGA TGA TAT CGC TCC AGC TGT TGA CTA
CCC GGG TAC T-3'. G G indicates the position of the cisplatin crosslink.

B. Methods
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1. Cell Cuiture

Lymphoid cell lines were grown in suspension in RPMI 1640 medium
containing 15% heat-inactivated fetal calf serum (FCS) and 2 mM L-
glutamine. Fibroblast cell lines were grown in minimal essential medium
(MEM) supplemented with 20% FCS, 1x vitamins, 1x essential amino acids,
and 1x non-essential amino acids. Hela cells were grown in suspension in
S-MEM supplemented with 5% FCS and 2 mM L-glutamine. Hep G2 cells
were grown in D-MEM containing 10% FCS. Attached Hela cells were
grown in D-MEM containing 10% FCS and 1x non-essential amino acids.
The Raji lymphoma line was grown in RPMI 1640 medium containing 15%
FCS and 2 mM L-glutamine. All cultures contained a 1x
penicillin/streptomycin mixture. Raiji cells were maintained at 0.5-2x10°

cells/ml. Suspension Hela cells were maintained at 0.5-4x10° cells /ml.

2. Cellular extract preparation

Nuclear extracts were prepared according to a published procedure
(Dignam et a/.,1983). Protein concentrations were determined by the
BioRad Bradford assay (Bradford, 1976). Whole cell extracts on small
numbers of cells were prepared by a sonication procedure (Samson et
al.,1986). 2x10° cells were harvested, washed with ice-cold phosphate
buffered saline, resuspended in 500 ul of sonication buffer (50 mM Hepes
(7.8), 0.5 mM dithiothreitol, T mM EDTA, 5% glycerol, 0.5 mM
phenylmethylisulfonyl flouride), and sonicated for 10 sec at the lowest power
setting with a Branson probe sonicator. Lysates were centrifuged for 10
min at 12,000 x G, and the supernatant was concentrated to 50 ul in an

Amicon centicon-10 filtration unit. Extracts were stored at -80° C.
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3. Preparation of UV-treated p422 probes

M13mp18 replicative form DNA was digested with Aval, and the
resulting fragments were labeled with [a-*?P]dCTP (5000 Ci/mmole, New
England Nuclear) by using the Klenow fragment of DNA polymerase |. Both
strands of each restriction fragment are radiolabeled by this procedure. The
labeled fragments were separated by using native polyacrylamide gel
electrophoresis (PAGE), and the 422 base pair (bp) fragment, designated
p422, was electroeluted with an Amicon Centrilutor. Labeled probes were
irradiated on a chilled surface with a 15-W germicidal lamp (maximum
output at 254 nm) at a fluence of 5 J/m?sec until the desired dose was

achieved (fluence measured with a UVX-25 sensor).

4. Preparation of UV-treated synthetic oligonucleotide probes

Sixty nine-mer oligonucleotides T, T,C, and A (vide infra) were
synthesized on an Applied Biosystems 381-A DNA synthesizer. Oligomers
were purified on 10% denaturing (7 M urea) polyacrylamide gels and
electroeluted as above. Urea was removed from oligomers by several
distilled water washes in Amicon Centricon 10 microconcentrators. T, T,C,
and A were end labeled with [y-*?P]JATP (3000 Ci/mmole, New England
Nuclear) by using polynucleotide kinase. Unincorporated label was removed
by centrifugation through G-25 spun columns. Labeled strands were
annealed to unlabeled complementary strands, and the resulting duplexes
were purified by native PAGE to remove contaminating single stranded DNA.

UV-irradiation was as described above.

5. Analytical electrophoretic mobility shift assays
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DNA-protein complexes were detected by using a published procedure
(Carthew et a/.,1985). End labeled probes either unmodified, UV-treated, or
cisplatin modified (10* cpm p422 or 7 X 10* cpm 69-mer synthetic probes
Ts, T,C, and A) were incubated in the presence of crude nuclear extracts (10
ug protein) and poly(dI-dC) - poly (dI-dC) (6 ug protein) for 15 min at 37°C in
binding buffer (2 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-
HCI) (pH 7.5), 10 mM NaCl, 50 mM ethylenediaminetetraacetic acid (EDTA),
1% glycerol, and 0.2 mM dithiothreitol) in a final volume of 15-25 ul.
Protein-DNA complexes were then resolved on 4% (p422) or 6% (69-mer
probes) polyacrylamide gels [29:1 acrylamide/N,N’-
methylenebis(acrylamide)]. Gels were electrophoresed in Tris-glycine buffer
(50 mM Tris-HCI (pH 8.5), 380 mM glycine, 2 mM EDTA) for 4 hr at 30 mA.
Gels were dried and autoradiographed overnight at -80°C with an
intensifying screen. In some cases gels were imaged and bands quantified
by using a Molecular Dynamics Phosphorimager. The level of binding was
calculated under the assumption that the DNA in the B2 protein/DNA
complex was occupied by twice the number of UV-DRP molecules as the

DNA in the B1 complex (vide infra).

6. Preparative electrophoretic mobility shift assays

Purification of UV-DRP-bound T,C probes was achieved by scaling up
the protein-DNA binding reaction by one order of magnitude. Electrophoresis
was performed for 14 hr to separate the UV-DRP-specific band from a non-
damage-specific band. The UV-DRP-specific band and the non-protein
bound band were excised from the gel and electroeluted. Gel-purified bound
and free probes were deproteinized by a phenol:chloroform:isoamyl alcohol

(29:29:1) extraction. Deproteinized material was extracted with chloroform,
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ethanol precipitated, and resuspended in buffer containing 10 mM Tris-HCI
(pH 8.0) and 1T mM EDTA (TE).

7. Photolyase treatment of UV-irradiated DNA

End-labeled p422 bp probe DNA (25 ul at 5,000 cpm/ul) treated with
a UV dose of 1.5 kJ/m? was incubated in the presence of E. coli photolyase
(170 ng) in 50 mM Tris-HCI (pH 7.4), 100 mM NaCl, 1 mM EDTA, 100 -
ug/ml gamma globulin, and 10 mM 2-mercaptoethanol in a final volume of
50 uyl. Samples were incubated under yellow light (>400 nm) for 30 min to
allow enzyme binding and then photoreactivated for 1 hr under a 15-W
General Electric F15T8.BLB Black Light (peak emission at 366 nm) at a
fluence of 6.5 J/m?sec (fluence measured with a UVX-36 sensor).
Photoreactivated DNA was then phenol:chloroform extracted, chloroform

extracted, ethanol precipitated, and resuspended in TE buffer.

8. 6-4 photoproduct and cyclobutane pyrimidine dimer assays

6-4 photoproducts were detected as alkali-labile sites in irradiated
DNA (Mitchell et a/.,1990; Franklin et a/.,1982). Piperidine (Fisher) was
diluted freshly in distilled water before use and added to end labeled DNA
samples to a final concentration of 1 M. Samples were heated at 90°C for
0.5 hr. In some cases it was necessary to extend the incubation time to
several hr. Piperidine was removed by vacuum centrifugation and samples
were washed by resuspension in distilled water followed by vacuum
centrifugation. Washed samples were resuspended in TE buffer. Piperidine
treated samples were subjected to denaturing PAGE to quantify and to map

6-4 photoproducts. Chemical sequencing reactions (Banaszuk et a/.,1983)
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were used as calibration standards. CPDs were detected as T4 endo V-
sensitive sites in DNA. End labeled DNA fragments were treated with T4
endo V (1 ul of a 0.02 mg/ml solution of enzyme in TE and 100 yg/ml BSA)
in the presence of 10 mM Tris-HCI (pH 8.0), 50 mM EDTA (pH 8.0), 50 mM
NaCl, and 1 mg/ml BSA at 37°C for 1 hr. Digestion products were analyzed
by denaturing PAGE. The T4 endo V reaction was shown to proceed to
completion by 1 hr. The average number of photoproducts in irradiated
p422 was calculated by quantitating the fraction of strands refractory to T4
endo V or piperidine and applying the Poisson distribution equation, P,=e™,
where x is the average number of photoproducts per strand and P, is the

fraction of strands lacking a photoproduct.

9. Radiolabeling DNase | Footprinting Probes

The EcoR1-BstEll fragment of pSBr208 containing the -208 to + 78
region of the human rRNA gene was labeled with 3P for footprinting studies.
The noncoding strand was 3’ end-labeled by using the Klenow fragment of
DNA polymerase |. pSBr208 was with digested with BstEll, extracted with
phenol:chloroform, chloroform, and then precipitated with ethanol.
Linearized pSBr208 (0.24 pmole) was treated with 5 units of New England
Biolabs Klenow enzyme in the presence of 75 uM dTTP and 100 u Ci of
each a*’P-dATP, a*?P-dCTP, and a*?P-dGTP. The specific activity of the
labeled dNTPs was >6,000 Ci/mmole. The labeling procedure was most
efficient if the labeled dNTPs were used on the day of manufacture. The
reaction (35 ul total volume) was performed in 1x Kienow buffer, supplied
by New England Biolabs. The reaction proceeded for 30 min at 25° C at
which time a chase of unlabeled dNTPs was added. The final concentration

of each dNTP was 150 yM. The cold chase was incubated for 30 min at
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25° C, and the reaction was terminated by heating for 15 min at 75° C.
After cooling the reaction to room temperature, NaCl was added to a final
concentration of 100 mM as were 20 units of EcoR1. Digestion proceeded
for 2 hr at 37° C. The labeled footprinting probes were gel purified by PAGE

(5%), and the specific acitivity was determined by scintillation counting.

The 5’ end of the noncoding strand of the rRNA promoter was labeled
by using polynucleotide kinase. pSBr208 was digested with EcoR1, and the
5’ phosphate was removed with calf intestinal phosphatase. The DNA was
phenol:chloroform extracted and precipitated with ethanol. Digested
pSBr208 (0.96 pmole) was 5’ end-labeled by using polynucleotide kinase in
the presence of 300 y Ci of y*?P-ATP (>6,000 Ci/mmole). The kinase was
inactivated for 15 min at 65°, and NaCl was added to a final concentration
of 100 mM. The DNA was digested for 2 hr at 60° C with BstEll to
generate the footprinting probes. The probes were then gel purified by
PAGE (5%).

The adduct containing strand of G'G-100 and the analogous strand of
Un-100 were 5’ end labeled by using polynucleotide kinase. Thirty ng of
each fragment was treated with kinase in the presence of 50 u Ci y*2P-ATP
(>6,000 Ci/mmole) for 1 hr at 37° C. Kinase was inactivated for 15 min at
64°C, and the 5’ end of the unadducted strand was removed by digestion
with Aval for 2 hr at 37°. Unincorporated label and the 10 bp Aval
fragment were removed by using G-25 spun columns (Boehringer

Mannheim).

10. DNase | footprinting assays
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Purified HeLa hUBF at a concentration of 4.0 nM was stored in 20 ul
aliquots at -80° C in TM*0.1 M KCI (50 mM Tris-HCI (7.9), 17.5 mM MgCl,,
1 mM dithiothreitol (DTT), 20% glycerol, 100 mM KCI, and 0.1% Nonidet-
P40). DNase | (Worthington DPFF grade) was dissolved at 2.5 mg/ml in
water and stored in 10 ul aliquots at -80° C. hUBF and DNase | were
thawed in an ice water bath immediately before use. hUBF was diluted, if
necessary, in binding buffer (25 mM Tris-HCI (7.9), 14 mM MgCl,, 0.5 mM
dithiothreitol, 10% glycerol, 50 mM KCl, 0.05% Nonidet-P40, 2.5 mM
CaCl,). DNase | was diluted 1/500 in ice-cold water immediately before use.
Footprinting reactions (50-60 ul) were performed in 1x binding buffer and
contained 103%-10* cpm of the appropriate labeled probe (final DNA
concentration 0.7-50 pM, depending on the experiment). The reactions
were started on ice by the addition of hUBF followed by gentle mixing (e.g.,
flicking the tube). All steps involving hUBF were performed using siliconized
test tubes tubes and pipette tips (USA Scientific. The mixture was
incubated for 10 min at 30° C and allowed to cool to room temperature for 5
min. DNase | (generally 2 ul of a 1/500 dilution of the 2.5 mg/ml stock) was
added, the reaction was mixed gently and incubated for 1 min at room
temperature. Staggering the samples by 15 sec facilitated this procedure.
The DNase | reaction was terminated after 1 min by adding 100 ul of DNase
| stop buffer (20 mM EDTA, 1% SDS, 0.2 M NaCl, and 50 ug/mi yeast total
RNA) and vortexing. Samples were extracted with phenol:chloroform,
ethanol precipitated, and resuspended in formamide containing xylene cyanol
and bromophenol blue. Resuspended samples were transferred to new
tubes and subjected to scintillation counting. The samples were denatured
by heating to 90° C for 3 min and loaded on wedged (0.4-1.0 mm)
sequencing gels (6% or 12% for promoter footprints and G'G-100

footprints, respectively) in 0.8 cm wells. Gels were prerun for 30 min at 70
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W, loaded, and run at 70 W (constant power) until the xylene cyanol was
three quarters of the way to the bottom (promoter footprint) or until the
bromophenol blue was to the bottom (G G-100). Gels were fixed for 20 min
in 20% methanol/20% acetic acid, dried, and exposed with an intensifying
screen to preflashed Kodak XAR film at -80° C. Gels were also analyzed by

using a Phosphorimager.

11. Plasmid constructions

CMV-rHMG1 was constructed by subcloning the ~700 bp Nde1/Hindlll
fragment of pT7-RNHMG1 into the EcoRV site of pcDNA1. Both the sense
(S) and antisense (AS) orientations were obtained. CMV-hHMG1 was
constructed by inserting a polymerase chain reaction (PCR) fragment of the
human HMG1 cDNA (-1 to +179) into the BamH1 site of pcDNA1. Again,
both orientations were obtained. EBV-SPA was constructed by subcloning
the Hindlll/Fok1 fragment of pcDNA1 encompassing the splice and
polyadenylation sequences into a Hindlli/Sal1 digest of EBV-B108. EBV-
rHMG1 was prepared by subcloning the BamH1 fragment of CMV-rHMG1
into the BamH1 site of EBV-SPA and both orientations were obtained. EBV-
SSRP1-5" was constructed by subcloning the ~600 bp EcoR1 fragment of
HEK 1001 "bottom" into the Hindlll site of EBV-SPA and both orientations

were obtained.

Restriction mapping was used to verify each construct and to
determine the orientation of the subcloned fragment. All mini plasmid
preparations were made by using the Promega Magic Miniprep system.
Large scale plasmid preparations were made by using Qiagen Maxi Prep

columns. pcDNA1-based and EBV-SPA-based plasmids were maintained in
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E. coli strains MC1061/P3 and DH5, respectively.

12. Western blot analysis

Whole cell extracts (10 ug) prepared by a sonication procedure were
boiled for 2 min in SDS-PAGE sample buffer and loaded on 8% (SSRP1) or
12% (HMG1) discontinuous gels. The Biorad minigel/minitransfer unit was
used in these studies. Minigels were run at 200 V for 1 hr, and the proteins
were transferred to nitrocellulose according to the protocol provided with the
transfer unit. The blocking, antibody probing, and alkaline phosphatase-
based colorometric/chemilumiscent detection steps were performed by using
commerically available systems from Promega (colorometric) and Biorad
(chemiluminescent). Human HMG1 was detected by probing the protein
blots for 30 min with a 1/1000 dilution of rabbit serum raised against rat
HMG1. Human SSRP1 was detected by probing the protein blots for 30 min
with a 1/500 dilution of rabbit serum raised against human SSRP1. All other

procedures were provided by the commercial supplier.

13. Transient transfection of Hela cells.

A suspension culture of exponentially growing HelLa cells was
harvested and resuspended in room temperature D-MEM containing 10%
FCS and 1x non-essential amino acids to a concentration of 1.25x10’
cells/ml. The cell suspension (0.4 ml, 5x10° cells) was mixed with 35 ug of
the test vector (antisense, sense, parental), 5 ug of the reporter construct,
CMV-B-galactosidase, and added to a 0.2 cm electroporation cuvette
(Biorad). Electroporation was performed by using a BTX electroporator. The

electroporator settings were: Voltage = 246 volts, Timing Resistance = 13
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ohms, Capacitance = 1150 ufarads. These settings combined with the
conductivity of the culture media resulted in a voltage decay time constant
of ~7 ms. After pulsing, the samples were allowed to recover for 10 min at
room temperature in the cuvette. Subsequently, the cell suspension was
diluted into 10 ml of media and plated on 100 mm dishes. Fresh media was

added after 12 hr, and the cells were harvested after 35 hr.

14. Stable transfection of Raji cells.

A suspension culture of exponentially growing Raji cells was
harvested and rsuspended in room tempertature RPMI 1640 containing 15
% FCS and 2 mM L-glutamine to a concentration of 1.25x107 cells/ml. The
cell suspension (0.4 ml, 5x10° cells) was mixed with 10 uyg of the
appropriate EBV plasmid (vide infra) and added to a 0.2 cm electroporation
cuvette. The electroporator settings were: Voltage = 200 V, Timing
resistance = 13 ohms, Capacitance = 1,200 ufarad. These settings
combined with the conductivity of the culture media resulted in a voltage
decay time constant of ~7 ms. After pulsing, the samples were allowed to
recover for 10 min at room temperature in the cuvette. Subsequently, the
cell suspension was diluted in 10 ml of media an transferred to an upright T-
25 flask. After 48 hr, the cells were diluted into fresh media containing
hygromycin B (200 ug/ml) and plated in 96 well dishes at 10, 100, and
1000 cells/well, or transferred to a new flask to initiate a culture of pooled
clones. Hygromycin B-resistant clones were scored after 2-4 weeks, and
several clones were isolated and expanded into cell lines. All manipulations
of hygromycin B-resistant clones were performed in the presence of this

selective agent.
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15. B-galactosidase assays

Solution-based and /n situ f-galactosidase assays were performed as
described (Ausubel et a/.,1993).
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IV. AN ULTRAVIOLET LIGHT DAMAGED DNA RECOGNITION PROTEIN
ABSENT IN XERODERMA PIGMENTOSUM GROUP E CELLS BINDS
SELECTIVELY TO PYRIMIDINE (6-4) PYRIMIDONE PHOTOPRODUCTS
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A. RESULTS

1. Identification of a human UV-damaged DNA recognition protein (UV-DRP)

A protein was present in human nuclear extracts that retarded the
electrophoretic mobility of UV-damaged DNA fragments. This protein, the
UV-DRP, has been observed by others by gel mobility shift assays (Chu and
Chang, 1988; Hirschfeld et a/.,1990) and is possibly a protein observed
earlier by other techniques (Feldberg and Grossman, 1976). The
proteinaceous nature of the UV-DRP was established by demonstration that
the activity was abolished by pronase but not by RNase A. Binding of the
UV-DRP to an irradiated (1.5 kJ/m?) 422 bp fragment (p422) excised from
M13mp18 DNA resulted in two low mobility complexes, B1 and B2, that
were not observed if extracts were probed with undamaged DNA. The
relative mobility of B1 and B2 is believed to reflect the number of UV-DRP
molecules bound per molecule of probe (i.e., two molecules of protein per
probe in B2 and one molecule per probe in B1). The binding of a non-
damage specific protein to p422 was precluded by performing the binding
reactions in low salt and buffer concentrations (2 mM Tris'HCI, 10 mM
NaCl), conditions that enabled binding of the UV-specific protein but were
not favorable for binding of the non-specific DNA binding protein.
Furthermore, the level of UV-DRP binding was increased by 4-5 fold if a high
concentration of EDTA (50 mM) were included in the binding reactions. This
finding has been observed by others and may be attributable to inhibition of
UV-DRP activity by the presence of trace amounts of zinc in the binding

buffer (Gilbert Chu, personal communication).
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The initial focus of these studies was to determine if the UV-DRP
activity was caused by the same protein(s) that were responsible for the
reduced mobility of cisplatin-modified DNA fragments in gel shift assays
performed in our laboratory by Brian Donahue and in the laboratory of Dr.
Gilbert Chu (Chu and Chang, 1988; Donahue et a/.,1990). To address this
issue, competitive gel mobility shift assays were performed (Figure 6) in
which binding to UV-damaged DNA was competed with either unlabeled,
UV-damaged DNA or unlabeled, cisplatin-modified DNA (lanes 9-16). The
converse experiment was also performed in which the cisplatin-damaged
DNA recognition protein (cis-DDP DRP) activity was competed with both
competitor DNAs (lanes 1-8). Lanes 1 and 9 show the mobilities of the
cisplatin-modified and UV-treated probes, respectively, in the absence of
nuclear extract. It is noteworthy that the electrophoretic mobility of the
platinated probe is greatly reduced, even in the absence of extract, relative
to the UV-damaged probe. This slower mobility is attributed to the positive
charge of cisplatin adducts, to the DNA bending induced by bifuntional
cisplatin DNA crosslinks, or both effects. The cis-DDP DRP activity is
shown in lane 2 in the absence of any competitor DNA, and the UV-DRP
activity is likewise shown in lane 10. It should be pointed out that each of
these reactions contain a significant excess of the nonspecific competitor
DNA poly(dI-dC) *poly(dI-dC) in order to mask the effect of nonspecific DNA
binding proteins present in the crude nuclear extracts. As shown in lanes 3-
8, the cis-DDP DRP activity is efficiently competed by platinated DNA, but
not by UV-treated DNA. Inlanes 11-16 it is clear that the UV-DRP activity
is competed strongly by UV-treated DNA, whereas cisplatin-modified DNA is
a poor competitor. If the protein(s) responsible for the UV-DRP and c/s-DDP
DRP activities were identical, then it would not be possible to obtain this

pattern of competition; therefore, it was concluded that the two activities
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were due to distinct proteins.

We suspected that the UV-DRP activity detected in Figure 6 was
identical to that reported to be lacking in two cell lines from XP patients
belonging to complementation group E (Chu and Chang, 1988). A survey of
several human cell lines, both repair proficient (Hep G2 and HelLa) and
deficient (XP-A, XP-D, and XP-E), confirmed this notion because the binding
activity was present in all extracts except those from XP-E cells (Figure 7).
This result establishes that the factor characterized is indeed the one lacking
or defective in certain XP-E lines. By contrast, the cis-DDP DRP activity was

found in XPE and further supports the conclusions of Figure 6.

2. Substrate specificity of the UV-DRP

Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone
photoproducts (6-4 photoproducts) are the major lesions formed in UV-
treated DNA (see Figure 1). We hypothesized that the UV-DRP recognizes
structural distortions in DNA caused by one or both of these photoproducts.
An initial goal was to estimate the relative contribution of each lesion to UV-
DRP binding. A UV dose-response relation was generated that compares
UV-DRP binding to the relative frequency of CPDs and 6-4 photoproducts in
UV-irradiated probes (Figure 8). It is well established that 6-4 photoproducts
are alkali-labile, and in the presence of hot piperidine will degrade to form a
single strand break (Franklin et a/.,1982). By contrast, CPDs are stable to
hot piperidine, but are sensitive to T4 endonuclease V (T4 endo V). T4 endo
V possesses both glycosylase and apurinic (AP) site endonuclease activity
and acts on CPDs to form single strand breaks (Nickell et a/.,1992). Hence,

piperidine lability and T4 endo V sensitivity can be used in DNA nicking
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assays to measure the levels of 6-4 photoproducts and CPDs, respectively.
In such assays, the relative number of adducts is determined by measuring
the fraction of the DNA that remains unnicked and, hence, contains zero
adducts. Once the "zero fraction” is known, the Poisson relation can be

used to calculate the average number of photoproducts per DNA fragment.
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In Figure 8, nicking assays and gel mobility shift assays were performed on
labeled DNA probes that were UV-irradiated to a range of final doses. UV-
DRP binding was dose dependent and did not show a plateau in the range of
doses tested. This response did not parallel the formation of CPDs, which
formed as a logarithmic function of dose that reached a plateau at 5.0
kJ/m2. Conversely, 6-4 photoproducts accumulated as a linear function of
dose in a manner that more closely mirrored the binding curve. The most
striking feature of this result is the steady increase in UV-DRP binding at
doses above the CPD equilibration point - an effect that can best be
explained by the existence of non-CPD binding sites. These data are
consistent with the formal possibility that 6-4 photoproducts are recognized

by the protein.

E. coli photolyase in the presence of near UV light repairs CPDs, but
not 6-4 photoproducts, with high efficiency (Brash et a/.,1985). We used
enzymatic photoreactivation to prepare a p422 substrate (1.5 kJ/m?) that
lacked CPDs. Photolyase was added to DNA samples and the reaction
mixture was exposed to yellow light for 30 min (enzyme binding step) and
then to near UV light for 1 hr (photoreactivation step). Samples were
deproteinized and desalted before being used in subsequent experiments.
Photoreactivated DNA was refractory to T4 endo V digestion (Figure 9A),
thereby showing that the photolyase reaction had proceeded to completion
and that the probes were devoid of CPDs. Conversely, p422 not treated
with photolyase was cleaved by T4 endo V yielding a characteristic
distribution of truncated products. The UV-DRP recognized CPD-free probes
and non-photoreactivated probes equally well (Figure 9B). Binding to CPD-
free probes was not due to residual photolyase as photoreactivated samples

incubated in the absence of nuclear extract showed no low mobility bands
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(lane 5B-1). UV-DRP binding was a linear function of UV dose between 0.1

and 5.0 kJ/m? (see Figure 8); hence, one would expect that
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removing a putative major recognition site from DNA treated with 1.5 kJ/m?
would reduce binding significantly. Since photoreactivation had no such
effect, the most straightforward conclusion is that CPDs are not major
binding cues of the UV-DRP.

The next goal in this work was to assess the importance of 6-4
photoproducts in UV-DRP binding. The following experiments were done in
collaboration with Mr. Zhenghuan Chen. In the absence of an enzyme that
can repair 6-4 photoproducts specifically (such an enzyme has apparently
been disovered very recently; refer to discussion), it was deemed useful to
employ three nearly identical 69-mer oligonucleotides: T, T,C, and A.
Sequences were chosen such that adjacent pyrimidines are found exclusively
in five bp "UV boxes" that reside near the center of the oligonucleotides.
GC clamps on both ends of the oligomers increased the annealing efficiency
but did not alter the outcome of experiments performed with these
sequences. These oligonucleotides permitted an evaluation of the relative
importance of CPDs, 6-4 photoproducts, and non-dimer damage in UV-DRP
binding. The oligonucleotide A contains no adjacent pyrimidines and
therefore cannot form pyrimidine dimers. The T; probe has a run of Ts,
making it an excellent target site for CPD formation; 6-4 photoproducts form
rarely at TT sequences (Mitchell et a/.,1990; Lippke et a/.,1981) and, hence,
irradiation of this probe should yield a product that contains mainly CPDs.
The T,C sequence differs from T, by a single T to C transition, which
provides a TC sequence following a run of pyrimidines. Such sequences are
known hotspots for the formation of 6-4 photoproducts (Brash and
Haseltine, 1982; Lippke et a/.,1981). As a result, T,C should have a much
higher frequency of 6-4 photoproducts than either A or Ts..
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Photoproduct analysis of irradiated Ty T,C and A revealed that these
sequences formed the predicted distribution of photoproducts (Figure 10).
T4 endo V analysis of T; showed that this sequence has a high frequency of
CPDs mapping primarily to the 3’ TT sites in the UV box (lane 7).
Conversely, 6-4 photoproducts were not detected in the T; oligomer as UV
specific piperidine cleavage products were not observed (compare lanes 9
and 10). The T,C sequence formed both CPDs and 6-4 photoproducts
(lanes 13 and 15, respectively). CPDs were most abundant in the central TT
sites, but were also evident in the flanking TT and TC dipyrimidines. The
exclusive hotspot for the formation of 6-4 photoproducts was the TC site as
evidenced by a UV specific piperidine cleavage product (lane 15) migrating 1
nucleotide above the corresponding C in the chemical sequencing lane (lane
17). This banding pattern was not surprising because piperidine cleavage of
TC 6-4 photoproducts present on a 5’ end-labeled fragment has been shown
to yield a product that has a reduced mobility relative to sequencing
standards (Brash et a/.,1985). As expected, the A oligomer contained
neither CPDs nor 6-4 photoproducts (lanes 1-4). When irradiated UV box
oligonucleotides were incubated with HelLa nuclear extracts, two low
mobility protein/DNA complexes formed (Figure 11). The higher mobility
complex (NS) is due to a non-damage dependent DNA binding protein,
because it was observed with unirradiated probes (lanes 1 and 3). The
slower migrating of the two bands (B1) is due to the UV-DRP; it was UV-
specific (lane 2), and it was not formed when XP-E cells were the source of
nuclear extracts (lane 4). A UV dose-response experiment was performed to
compare binding of the UV-DRP to T;, T,C, and A. Results from this
experiment are in Figure 12 and illustrate that T,C was a superior substrate
for the UV-DRP by a five to seven fold margin at all doses tested. In

agreement with the photoreactivation studies, T; and A were equally poor
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substrates. On the basis of these findings it was speculated that the major
UV-DRP binding site is the 6-4 photoproduct while a cryptic non-pyrimidine
dimer photoproduct(s) represents a rare or low affinity class of binding sites.
Once again, there was no evidence to suggest that CPDs are recognized. If
6-4 photoproducts represent the major class of UV-DRP binding sites, then it
follows that protein-bound DNA should contain these lesions. The aim of
the next experiment was to determine whether 6-4 photoproducts were
disproportionately represented in the material retarded in gel shift assays
(UV-DRP-bound T,C). Since a small fraction (2-6%) of the total T,C used in
a gel shift assay becomes incorporated into a protein-DNA complex, it was
necessary to scale up the assays by an order of magnitude in order to
generate sufficient bound DNA for analysis. Preparative gel-shift reactions
were electrophoresed longer than normal to maximize separation of the
damage dependent and damage independent complexes. The UV-DRP-
bound DNA was purified and subjected to T4 endo V or piperidine treatment.

A similar protocol was followed for unbound DNA.

A prolonged exposure of these DNAs to piperidine revealed that UV-
DRP-associated material was enriched for 6-4 photoproducts mapping to the
UV box sequence of T,C (Figure 13 Top). The enrichment was substantial
in that 90% of bound T,C contained a 6-4 photoproduct (detected as an
alkali-labile site) at this position relative to 20% for the unbound material
(the mode of data analysis is explained in the Figure 13 legend). The major
site of 6-4 photoproduct formation was at the TC sequence as evidenced by
the electrophoretic mobility of the piperidine cleavage product relative to
standards (not shown, refer to Figure 10). A minor cleavage product, ~ 1
nucleotide smaller than the more abundant fragment, was also enriched in

the bound population..
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This fragment is possibly the consequence of a rare 6-4 photoproduct
occurring between the third and fourth Ts. These findings demonstrate
clearly that the UV-DRP can distinguish between DNA possessing or lacking
6-4 photoproducts. Photoproduct frequencies in bound T; and A
oligonucleotides were not determined because these sequences are
recognized by the UV-DRP so weakly that it was not possible to obtain
sufficient material for analysis.

T4 endo V analysis of T,C complexed, and uncomplexed, with the UV-DRP
showed that free and, to a lesser extent, bound T,C contained CPDs
mapping to the UV box region (Figure 13 Bottom). As predicted from Figure
10, the internal TT sequences in the UV box were hotspots for CPD
formation, and CPDs formed to a lesser extent at the flanking TT and TC
sites. Interestingly, bound T,C was impoverished by two foid for the CPD
photoproducts relative to free T,C (as evidenced by 11% degradation of T,C
by T4 endo V in the bound fraction vs. 22% degradation in the free
fraction). In light of the concomitant enrichment for 6-4 photoproducts, this
result may be attributable to two non-mutually exclusive phenomena. First,
the UV-DRP may not bind with high affinity to a UV box containing both a
CPD and a 6-4 photoproduct. Second, the presence of a 6-4 photoproduct
in the UV box may significantly lower the propensity of upstream Ts to form
CPDs. The UV-DRP did not appear to promote the formation of strand
breaks nor AP sites in bound DNA. The UV-DRP-bound DNA exhibited the
same mobility in denaturing gels as full length control DNA. The lack of AP
sites in this DNA is evidenced by its resistance to the AP endonuclease

activity of T4 endo V.
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Figure 6. A human UV-DRP is distinct from a protein that binds to DNA
modified by the anticancer drug cisplatin. End-labeled 422-bp fragment
modified with c/s-DDP at r,= 0.038 was incubated in the presence of 10 ug
of HelLa nuclear extract and 0.1-10 ng of unlabeled M13mp18 modified with
either cis-DDP at r,= 0.041 (lanes 3-5) or UV at 1,500 J/m? (lanes 6-8).
Binding in the absence of competitor is shown in lane 2, and DNA incubated
in the absence of extract is shown in lane 1. End-labeled 422-bp fragment
treated with UV at 1,500 J/m? was used in lanes 9-16. Unlabeled UV-
modified M13mp18 modified with cis-DDP was added to the reactions in
lanes 14-16. Binding of the UV-modified DNA binding factor is shown in
lane 10, and the labeled UV-modified 422-bp fragment incubated in the
absence of extract is shown in lane 9. Binding reactions in this experiment
were performed in 50 mM Na,EDTA, which is optimal for the UV-modified
DNA binding factor.
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Figure 7. UV-DRP activity in DNA repair proficient and deficient cell lines.
p422 irradiated to a final UV dose of 1.5 kJ/m? was incubated in the
presence of 10 ug of nuclear extract from various human cell lines. A: XP-A
lymphoblasts (GM02250D), D: XP-D lymphoblasts (GM02253D), E: XP-E
fibroblasts (GM2415B), 2: Hep G2, H: HelLa. The mixture was subjected to
native PAGE and autoradiographed. Binding of the UV-DRP to irradiated
probes is evidenced by the formation of two low mobility bands, B1 and B2.
Note the absence of UV-DRP activity in XP-E extracts (lane E)
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Figure 8. Correlation of UV-DRP binding to the frequency of CPDs and 6-4
photoproducts in irradiated p422. p422 was UV-irradiated to various
degrees and subjected to either photoproduct analysis or electrophoretic
mobility shift assays. CPDs were detected as T4 endo V-labile sites,
whereas 6-4 photoproducts were detected as alkali-labile sites apparent after
a 0.5 hr treatment with 1 M piperidine at 90°C. Quantitation of strand
breaks was as described in Material and Methods. UV-DRP binding was
measured by using analytical electrophoretic mobility shift assays. UV-DRP
binding is reported in arbitrary phosphorimager units (PIU). For each curve,
the individual points are the average of duplicate trials.
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Figure 9. UV-DRP binding to photoreactivated p422. (A) Photoreactivation
of p422. p422 irradiated to 1.5 kJ/m? was digested with T4 endonuclease
V (Endo V) following photoreactivation by photolyase (lane A-4) or a mock
treatment (lane A-2). The reaction products were subjected to denaturing
polyacrylamide gel electrophoresis (PAGE) and autoradiographed. The
nested set of T4 endo V digestion products in lane A-2 is indicative of the
distribution of CPDs in irradiated p422. The sensitivity of p422 to T4 endo
V was precluded by a prior photolyase treatment (lane A-4). In lanes A-1
and A-3, unirradiated p422 shows the lack of nonspecific digestion by T4
endo V (the doublet that appears under the 422N band, best seen in lane A-
1, is probably double stranded probe that had reannealed). These data also
show that the photolyase pretreatment did not produce CPDs. (B) Binding
of the UV-DRP to photoreactivated p422. Irradiated p422 from (A) that had
been photoreactivated (lane B-2; this fragment was enriched for 6-4
photoproducts) or mock treated (lane B-3; this fragment contained both
CPDs and 6-4 lesions) was incubated with 10 ug of HelLa nuclear extract
and subjected to native PAGE. Nuclear extract was omitted in lane B-1 to
show the absence of binding by residual photolyase.
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Figure 10. Characterization of UV box oligonucleotides. The relevant
portions of the UV box oligonucleotide sequences are shown to the right.
Sixty nine-mer oligonucleotides T,C, T5;, and A were designed such that
adjacent pyrimidines are absent in both strands except in the "UV boxes"
shown in large type near the center of each sequence. A contains no
adjacent pyrimidines as the UV box was replaced with a purine/pyrimidine
stretch. Ten bp GC clamps are present on the ends of each oligonucleotide,
and the intervening DNA sequences between the GC clamps and the UV box
were ATATGCGTACATGTGCG for the region upstream of (5’ to) the UV box
and ACGCACGCACGTACATGTGCACGTGTAT for the region downstream.
The autoradiogram to the left shows the photoproduct distribution in
irradiated UV box oligonucleotides. Control and irradiated (10* J/m?) UV box
oligonucleotides were treated with either T4 endo V (Endo V) for 1 hr at
37°C or with 1M piperidine (PIP) for 0.5 hr at 90°C to determine the
distribution of CPDs and 6-4 photoproducts, respectively. The resulting
cleavage products were resolved on a DNA sequencing gel adjacent to the
appropriate chemical sequencing markers. Lanes 1-6, A, lanes 7-12, T,, and
lanes 13-18, T,C. T4 endo V analysis of irradiated oligonucleotides is
shown in lanes 1 (A), 7 (Ts), and 13 (T,C) and a similar analysis of
unirradiated oligonucleotides is shown in lanes 2 (A), 8 (T;), and 14 (T,C).
Analysis of piperidine treated irradiated oligonucleotides is shown in lanes 3
(A}, 9 (Tg), and 15 (T,C) and in lanes 4 (A), 10 (T;), and 16 (T,C) a similar
analysis of unirradiated oligonucleotides is shown. C+ T chemical
sequencing reactions are shown in lanes 5 (A), 11 (Tg),and 17 (T,C), and

A + G reactions are shown in lanes 6 (A), 12 (T), and 18 (T,C).
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Figure 11. Binding of the UV-DRP to irradiated T,C. T,C, either untreated
(lanes 1 and 3) or irradiated (1 kJ/m?, lanes 2 and 4), was incubated with
Hela (lanes 1 and 2) or XP-E (GM02450D) (lanes 3 and 4) nuclear extracts
and subjected to native PAGE. A damage specific low mobility band (B1) is
present in the Hela sample (lane 2) but not in the XP-E sample (lane 4). A
non-damage specific low mobility band (NS) is evident in both Hela and XP-
E reactions (lanes 1 and 3). Some other minor non-damage specific bands
are apparent in all four lanes; we have not pursued these activities as they
are unrelated to DNA damage.
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Figure 12. UV dose-response analysis of UV-DRP binding to UV box
oligonucleotides. UV box oligonucleotides T,C, T; and A were irradiated to
doses of 0.1-20 kJ/m? and incubated with 10 ug of HelLa nuclear extract.
The mixtures were then analyzed by native PAGE. The amount of probe
incorporated into the B1 complex (Figure 11) was quantified and is reported
in arbitrary phosphorimager units (PIU).
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Figure 13. Photoproduct analysis of UV-DRP-bound T,C. Top. 6-4
photoproduct analysis. T,C, either non-protein bound (Free, lanes 1-5) or
associated with the UV-DRP (Bound, lanes 6-10), was purified from a
preparative electrophoretic mobility shift assay and subjected to 1 M
piperidine at 90°C for 0.5-6.0 hr. Equal amounts of each reaction mixture
were analyzed by denaturing PAGE. The two major degradation products
map to the UV box as determined by comparison to standards (not shown,
refer to Figure 10). The percentage of T,C containing a 6-4 photoproduct in
the UV box was determined by quantifying the radioactivity of the two major
cleavage products after 6 hr and dividing by the amount of full length DNA
(69 nucleotides; 69N) in the O hr lane. Nonspecific degradation of the full
length probes by piperidine necessitated this mode of data analysis as it was
not feasible to measure the photoproduct frequency accurately by
monitoring the disappearance of full length probes. Bottom. CPD analysis
of UV-DRP-bound T,C. Bound and Free T,C were purified as in A. These
samples were digested by T4 endo V and subjected to denaturing PAGE
(fanes 5 and 6). Equal amounts of DNA were loaded in each lane. The four
major cleavage products mapped to the UV box as determined by
comparison to standards (not shown, refer to Figure 10). The percentage of
T,C containing a CPD in the UV box was determined by quantifying the
amount of full length DNA (69N) remaining after digestion and dividing by
the amount of full length DNA in the T4 endo V-treated, unirradiated control
(lane 4). In lanes 1-3, the DNAs were not digested with T4 endo V to show
that the cleavage products in lanes 5 and 6 were caused by neither UV light
nor UV-DRP binding.
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B. DISCUSSION

1. ldentification of a human UV-DRP

Several groups have reported an activity in human cell extracts that is
characterized by tight binding to UV-damaged DNA. The first such study
was performed fifteen years ago by Feldberg and Grossman (Feldberg et
al.,1982). The activity was purified, but lacked enzymatic activity, had an
elusive substrate specificity, and was present in each of the xeroderma
pigmentosum complementation groups that were examined; however, only a
subset of the XP groups was tested. For the above mentioned reasons,
these investigators were at a loss to explain the significance of the UV-DRP
activity. More recently Chu and coworkers apparently rediscovered the UV-
DRP activity and, importantly, obtained evidence that suggested a possible
role in DNA repair processes. More specifically, Chu and Chang (Chu and
Chang, 1988) discovered that the UV-DRP activity was absent in two cell
lines from XP group E (XPE) patients. The UV-DRP activity identified in my
thesis research is similarly lacking in XPE cells (Figure 7) and is most likely
identical to the protein studied by Chu and coworkers. My work focused on

the identification of the substrate specificity of this protein.

A cisplatin-damaged DNA recognition activity (cis-DDP DRP) has been
reported by Dr. Chu’s group and our laboratories. This factor, which was
shown to be proteinaceous, reduces the electrophoretic mobility of
platinated DNA probes (Chu and Chang, 1988; Donahue et al.,1990).
Competition experiments done by me showed that the UV-DRP and c¢is-DDP
DRP activities are due to different proteins (Figure 6). Moreover, the cis-

DDP DRP activity was present in XPE cells further establishing that it is
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independent of the UV-DRP activity. It is likely that the c/s-DDP DRP activity
is multifactorial in nature, whereas the UV-DRP is most likely a single
polypeptide. To date, at least seven eukaryotic proteins have been identified
that bind to cisplatin-modified DNA. These proteins include HMG1 and
HMG2 (Pil and Lippard, 1992; Hughes et a/.,1992), SSRP1 (Bruhn et
al.,1992), IXR1 (Brown et a/.,1993), hUBF (this work, chapter V), SRY (E.
Trimmer, personal communication), and human single strand binding protein
(hSSBP) (Clugston et a/.,1992). With the exception of hSSBP, all of these
proteins contain at least one region of homology to the abundant
chromosomal protein HMG1. This region, the HMG box, is known to be a
novel DNA binding domain (Jantzen et a/.,1990). Some HMG proteins,
including hUBF (Jantzen et a/.,1990) and SRY (Harley et a/.,1992), are most
likely transcriptional regulators and others, such as HMIG1 and HMG2 (Einck
and Bustin, 1985), have a more elusive function that is likely to be related to
maintaining chromosomal structure; however, there is no evidence to
suggest that any protein with an HMG1 homology is involved in DNA repair.
By contrast, hSSBP is known to be involved in human nucleotide excision
repair (Coverley et a/.,1991). It is not certain which, if any, of these
proteins is(are) responsible for the cis-DDP DRP activity, but more than one
may be involved. It thus appears that the electrophoretic mobility shift
assays with cisplatin-modified DNA can detect both repair proteins and
proteins that fortuitously recognize kinked DNA structures. The role of

these proteins in cisplatin toxicity is explored further in chapter V.

As alluded to earlier, the UV-DRP activity is likely to be the
consequence of a single polypeptide. Two groups have reported the
purification of the UV-DRP from human and monkey sources (Hwang and

Chu, 1993; Abramic et a/.,1991). The proteins appear to be identical based
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on both molecular weight (125 kDa) and their ability to recognize UV-
damaged DNA. However, some differences are noteworthy. The monkey
protein is apparently a homodimer in solution and exhibits only a 17-fold
preference for UV-treated double stranded DNA over unmodified DNA. The
human protein behaves as a monomer in glycerol gradients and has a striking
(10,000-fold) preference for UV-damaged DNA. These incongruities may, in
part, reflect differences in the assay conditions and the experimental designs
in the two studies. These proteins are also most likely identical to a UV-DRP
purified from human placenta by Feldberg several years ago (Feldberg et
al.,1982).

The UV-DRP is presumably a component of a versatile DNA repair
complex. The results reported herein concur with those of others that the
UV-DRP is lacking in some XPE cell lines (Figure 7). Since each XP group is
deficient in the incision step of DNA excision repair, the UV-DRP may be
part of the preincision complex, possibly at the level of damage recognition,
a role analogous to that of the E. coli UvrA protein (Orren and Sancar,
1989). The UV-DRP is induced 2-4 fold above constitutive levels in primate
cells pretreated with UV or other agents that block DNA polymerases or
cause DNA damage (Protic et a/.,1989). These cells also reactivate UV-
damaged plasmids with increased efficiency. The UV-DRP is overly
expressed in human cells that display resistance to the anticancer drug
cisplatin; these cells also exhibit an enhanced capacity to reactivate
cisplatin-damaged plasmids (Chu and Chang, 1990). This result seemed at
first to be paradoxical in light of the competition experiment of Figure 6
which showed that the UV-DRP activity did not recognize cisplatin-modified
DNA with high affinity. Cisplatin adducts are apparently UV-DRP substrates,
although the relative affinity for UV-damaged DNA is much higher (Chu and
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Chang, 1988).

The UV-DRP is most likely the defective/missing protein in XPE cells.
A caveat exists in that the UV-DRP activity is found in some XPE cell lines
derived from Japanese patients (Kataoka and Fujiwara, 1991; Keeney et
al.,1992). It is possible, however, that these recently tested cell lines
contain a form of the UV-DRP that is defective in a function other than DNA
binding. Clearly, caution must be exercised until more definitive genetic
evidence is obtained. A cDNA clone has recently been isolated that
apparently encodes the monkey UV-DRP (Takao et a/.,1993). The predicted
amino acid sequence shows homology to a slime mold protein of unknown
function, but no homology was found to any proteins, including DNA repair
proteins, of known function. Interestingly, northern analysis showed that
the XPE cell lines defective in UV-DRP activity expressed a cognate mRNA
of the correct length. DNA sequence analysis of UV-DRP alleles in the
various XPE cell lines should definitively establish if the UV-DRP is the XPE

protein.

2. Binding specificity of the UV-DRP

The major goal of the work presented in this chapter was to determine
which, if either, of two UV-induced photoproducts is a binding site for the
human UV-DRP. We have found that this DRP binds almost exclusively to 8-
4 photoproducts and has no apparent affinity for CPDs. Several lines of
evidence support this conclusion. UV-irradiated DNA rendered devoid of
CPDs by enzymatic photoreactivation showed no loss of affinity for the UV-

DRP (Figure 9). Furthermore, experiments with UV box oligonucleotides
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showed that T,C sites, but not T; sequences, formed high affinity UV-DRP
binding sites upon irradiation (Figure 12). Subsequent photoproduct analysis
revealed that the UV-DRP-bound T,C oligonucleotides were enriched by 4-5
fold for 6-4 photoproducts as compared to the unbound fraction (Figure 13).
Consistent with these findings was the observation that the level of UV-DRP
binding to a random sequence probe correlated with the frequency of 6-4

photoproducts, but not CPDs (Figure 8).

These findings both support and extend what has been reported in the
literature with regard to the binding specificity of the UV-DRP. The first UV-
DRP studies in the late 1970s were unable to establish the nature of the
high affinity UV-DRP binding site although photoreactivation studies similar
to those presented here also suggested a minimal role for CPDs. 6-4
photoproducts were essentially unknown entities at that time and hence
were not considered as potential binding sites. Studies with the primate UV-
DRP similarly ruled out CPDs and also showed that a synthetic
oligonucleotide containing a single CPD at a TT sequence was not bound
(Hirschfeld et a/.,1990). The authors of this work speculated on the basis of
this indirect evidence that the 6-4 lesions were possibley high binding sites
for the UV-DRP. The results reported herein establish directly that the 6-4
lesion is indeed the primary UV-DRP binding site. Recent studies with the
human UV-DRP also concluded that CPDs at TT sequences are not UV-DRP
binding sites; however, photoreactivation studies on UV-damaged probes
that had been irradiated to a range of final doses suggested that minor CPD
species at dipyrimidine sequences other than TT may be substrates (Hwang
and Chu, 1993). The results are not at odds with the resuits presented here

since the affinity of the UV-DRP for non-TT CPDs was not rigorously tested.
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Both CPDs and 6-4 photoproducts are believed to distort the DNA
helix and hence the UV-DRP does not simply seem to be recognizing general
DNA distortion with high affinity. It is unclear at present how the UV-DRP
differentiates between these lesions, but chemical and structural data
suggest that the two types of photoproducts induce dissimilar helix
irregularities. Hydrogen bonding moieties critical to base pairing are
chemically disrupted in 6-4 photoproducts but not in CPDs (Franklin et
al.,1985), and NMR studies with dinucleotides suggest that 6-4
photoproducts, in which the pyrimidine and pyrimidone rings occupy
perpendicular planes, cause a perturbation in DNA structure more severe
than that of CPDs (Franklin et a/.,1985; Rycyna and Alderfer, 1985;
Kemmink et a/.,1987a). Whether the grossly distorted structure observed
for the 6-4 photoproduct dinucleotide is also manifested as a similar
alteration in double stranded DNA is unknown. Circle formation studies with
duplex DNA containing CPDs shows that these lesions bend (~30°) and
probably unwind (14-20°) the helix (Husain et a/.,1988). However, more
recent evidence in which the CPD-induced bend was estimated by the
reduced electrophoretic mobility of DNA fragments containing phased CPDs
suggests that the bend angle is much lower, ~7° (Wang and Taylor, 1991). It
is possible that subtle differences in the degree of helix bending, unwinding,
and melting induced by the two classes of photoproducts mediate
differential recognition by the UV-DRP. Such differences have been
hypothesized to explain the differential recognition of various structurally
similar cisplatin-DNA crosslinks by a human cisplatin-DRP (Donahue et
al.,1990) and the chromosomal protein HMG-1 (Pil and Lippard, 1992). Itis
also noteworthy that competition experiments have shown that cisplatin
modified DNA competes for UV-DRP binding, but only 10-fold more
efficiently than unmodified DNA (Chu and Chang, 1988), and that some
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CPDs may be recognized weakly (Hwang and Chu, 1993). The UV-DRP
most likely recognizes a variety of DNA distortions, but it is clear that 6-4
photoproducts are recognized with the highest affinity of any lesion yet

tested.

In general it is not understood how DNA excision repair enzymes
recognize a diverse array DNA damage. This observation stems mainly from
studies with the versatile E. coli uvrABC excision repair complex. This repair
system recognizes and repairs a wide spectrum of DNA modifications.
Recognized lesions include those likely causing major perturbations of the
helix, such as 6-4 photoproducts and benzolalpyrene diol epoxide N-2-
guanine adducts, as well as damages producing more subtle effects, such as
0O°%-methylguanine. Indeed, damage recognition by UvrABC can not be
ascribed to any one class of DNA distortion. All kinked DNA structures, for
example, are not recognized, nor are mismatched base pairs. Lesions that
disrupt base pairing however, such as 0% methylguanine, are recognized
With this precedent in mind, it is possible that the specificity of the UV-DRP
in damage recognition will not correlate with the severity of a single type of
DNA distortion alone. It is more likely that the efficiency of damage
recognition is dictated by the number of structural determinants that are
disrupted by a particular lesion. Lesions that both kink DNA and disrupt
base pairing, for example, may be better substrates than those that only
disrupt base pairing. More subtle changes, such as effects on DNA
dynamics are also likely to be involved. This subject has been extensively

reviewed by Van Houten (Van Houten, 1990).

The UV-DRP also has detectable affinity for non-pyrimidine dimer UV

damage as evidenced by the observation that irradiated oligonucleotides
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lacking adjacent pyrimidines showed a weak, but significant, level of binding
to the UV-DRP (Figure 8). The modest binding of the UV-DRP to these
probes suggests that the non-dimer photoproduct(s) is either rare or
recognized with low affinity. The chemical nature of the photoproduct(s)
responsible for this activity is unknown, but interstrand crosslinks are not
likely candidates because they were not detected by denaturing PAGE.
Pyrimidine glycols and pyrimidine hydrates may be UV-DRP binding sites, but
we have yet to address this issue. The relative contribution of this
unidentified photoproduct(s) to overall UV-DRP binding in random DNA
sequences is likely to be considerably lower than in the case of the UV box
oligonucleotides in which sequences that permit 6-4 photoproduct formation

are underrepresented.

3. The UV-DRP may contribute to the efficient repair of 6-4 photoproducts

The binding specificity of the UV-DRP is of possible importance to the
mechanism by which mammalian DNA repair complexes remove 6-4
photoproducts more efficiently than CPDs. The relative repair rates of these
lesions in mammalian cells (Mitchell et a/.,1985; Mitchell et a/.,1990;
Thomas et a/.,1989) and cellular extracts (Wood, 1989) have been shown to
be biased by a factor of 4-12 in favor of repair of the 6-4 photoproducts.
The protein(s) responsible for this differential repair are currently unknown.
The UV-DRP could play an active role in the physical delivery of repair
complexes to sites in DNA containing 6-4 photoproducts. Acting in this
manner the UV-DRP would function analogously to the E. coli uvrA protein.
This model, however, is inconsistent with the XP-E phenotype. XP-E cells
exhibit a reduced, but still significant, level of DNA repair and UV resistance

when compared to normal cells (Lehmann et a/.,1977; Andrews et
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al.,1978), suggesting that a non-vital component of the repair machinery is
defective in this complementation group. Other XP groups have a more
severe repair deficiency and are likely to be lacking, or have defects in,
proteins as essential to DNA repair in mammalian cells as uvrA is to the E.

coli excision nuclease.

Alternatively, the UV-DRP may, as hypothesized previously (Patterson
and Chu, 1989), increase the efficiency of excision repair by the mode
proposed for the E. col/i photolyase, which enhances the rate of the UvrABC
catalyzed excision of CPDs in vitro (Sancar et al.,1984). By this model, the
UV-DRP would occupy DNA regions containing 6-4 photoproducts and act
as an antenna to recruit repair complexes. The antenna function of the UV-
DRP could be mediated by protein-protein interactions, or by inducing
structural changes in the DNA (e.g., bending and/or unwinding) that increase
accessibility to repair proteins. This model is consistent with the XPE
phenotype because it predicts a repair-enhancing role that may increase the
overall rate of repair but is not necessary for the repair complex to function
with near normal efficiency. The observation that CPDs are not bound by
the UV-DRP does, however, contradict the hypothesis that this protein is an
evolutionary descendent of yeast photolyase, an enzyme that
photoreactivates CPDs (Patterson and Chu, 1989).

Interestingly, it has been reported recently that two UV-DRP activities
are present in Drosophila melanogaster (Todo et a/.,1993). One of these
proteins recognizes only CPDs and does, indeed, have the ability to
photoreactivate these lesions. The second UV-DRP does not bind to CPDs
and, in the presence of fluorescent light, apparently catalyzes the conversion
of 6-4 photoproducts to another structure that no longer has the hallmark

qualities (e.g., alkali lability) of 6-4 lesions. It remains unclear if this
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photoreactivating activity converts 6-4 photoproducts to normal bases or to
another type of lesion. The human UV-DRP which, as shown here, also
binds selectively to 6-4 photoproducts apparently lacks photoreactivation
capabilities (Todo et a/.,1993). It is tempting to speculate that the human
and Drosophila 6-4 photoproduct binding proteins are evolutionarily related,
but the human protein has lost its ability to photoreactivate and serves a

non-vital role in enhancing the repair of 6-4 lesions by the excision nuclease.

If the model based on the photolyase analogy presented above is
valid, then it also follows that XP-E cells should lack the repair bias in favor
of 6-4 photoproducts that exists in normal cells. The literature contains data
showing that the repair of 6-4 photoproducts is deficient in XP-E cells
(Mitchell, 1988). A deficient repair of CPDs is also evident in these cells,
but the extent of the deficiency is unclear as conflicting data have been
reported (Mitchell, 1988; Zelle and Lohman, 1979). Further repair studies

are clearly required in order to test the proposed model conclusively.

The data cited above suggest that XP-E cells may be somewhat
deficient in CPD repair. The UV-DRP may be involved indirectly in CPD
repair by facilitating the release of repair complexes from 6-4 photoproducts
subsequent to the DNA incision event. This process would effectively
increase the turnover number for the repair complex and lead to the
enhanced repair of all photoproducts. A similar model was proposed to
explain the stimulation of UvrABC activity by photolyase (Sancar et
al.,1984). This model is not necessarily consistent with the UV-DRP having
a role in the biased repair of 6-4 photoproducts and may necessitate the
existence of other protein(s) that mediate this phenomenon. Recent results

with the putative XPA correcting factor (XPAC) reveal that this protein binds
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selectively to UV-damage DNA (Robins et a/.,1991); however XPAC, unlike
the UV-DRP, does not demonstrate a dramatic preference for UV-damaged
versus undamaged DNA. It is possible that XPAC also binds selectively to
6-4 photoproducts and contributes to the selective repair of these lesions.
Since the XPA phenotype is quite severe relative to that of XPE, the XPA

protein may have a function homologous to UvrA in damage recognition.

In summary, the results show that a human UV-DRP has 6-4
photoproducts as a primary high affinity binding site in irradiated DNA. We
showed that the factor does not demonstrate any significant binding to
CPDs, although an as yet unknown form of non-pyrimidine dimer damage
seems to be a rare or low affinity binding cue. It is possible that this protein
mediates the efficient repair of 6-4 photoproducts in UV-damaged DNA.
Alternatively, the UV-DRP could be of more general importance in the repair
of UV damage by increasing the rate at which repair complexes dissociate
from 6-4 photoproducts subsequent to DNA incision. The methodologies we
have employed could be of broad use for determining the binding

specificities of other DRPs.
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C. CONCLUSIONS

The binding specificity was defined of a human ultraviolet light-
damaged DNA recognition protein (UV-DRP), the activity of which is absent
in some xeroderma pigmentosum complementation group E cells. UV-DRP
binding to irradiated DNA was better correlated to the level of alkali-labile
pyrimidine (6-4) pyrimidone photoproducts (6-4 photoproducts) than to the
level of cyclobutane pyrimidine dimers (CPDs). Furthermore, UV-damaged
DNA rendered devoid of CPDs by enzymatic photoreactivation showed no
loss of affinity for the UV-DRP suggesting that these lesions are not high
affinity binding sites; these data are consistent with other reports on this
protein. A major role for 6-4 photoproducts in UV-DRP binding was
suggested in studies showing that irradiated oligonucleotides containing a
T,C UV box sequence, which efficiently forms a TC 6-4 photoproduct, was
a superior substrate for the UV-DRP when compared to a similar irradiated
oligonucleotide having a T; sequence. The latter sequence forms CPDs at a
much higher frequency than 6-4 photoproducts. T,C-containing
oligonucleotides complexed with the UV-DRP were separated from the
unbound oligonucleotide fraction and the frequencies of 6-4 photoproducts
in the two DNA populations were compared. The UV-DRP-bound fraction
was highly enriched for the 6-4 lesion over the unbound fraction supporting
the conclusion that 6-4 photoproducts are the principal binding cues for the
UV-DRP. The binding specificity of the UV-DRP may be of importance to the
mechanism by which mammalian repair complexes selectively excise 6-4

photoproducts.
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D. FUTURE EXPERIMENTS

1. Role of the UV-DRP in the repair of 6-4 photoproducts

The repair of CPDs and 6-4 photoproducts in XPE cells needs to be
tested rigorously. In normal cells, 6-4 photoproducts are repaired much
more efficiently than CPDs, and it is of interest to see if the same is true in
XPE cells that lack the UV-DRP. The repair bias in favor of 6-4
photoproducts may not exist in XPE cells that lack the UV-DRP activity. In
addition, repair studies should be performed with XPE cells that possess the
UV-DRP activity to determine if the presence or absence of UV-DRP binding
activity alters the repair spectrum. Presumably, XPE cells that exhibit UV-
DRP binding activity have a form of the UV-DRP that is altered in a domain
unrelated to damage recognition. Binding of the UV-DRP may be
unproductive since a downstream function, such as interactions with other
repair proteins, is lacking. If this is the case, then UV-DRP binding may

actually impede repair complexes from excising 6-4 photoproducts.

2. Structural studies

Structural features of the [UV-DRP - 6-4 photoproduct] complex
should be elucidated by footprinting studies. We have attempted these
studies but the lack of pure protein was prohibitive. Many other interesting
studies are apparent but also require either the UV-DRP gene or purified UV-
DRP protein. Until one or both of these reagents is obtained further studies

are rather limited.
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V. DNA-PLATINUM COMPLEXES ARE MOLECULAR DECOYS FOR THE
NUCLEOLAR TRANSCRIPTION FACTOR hUBF
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A. RESULTS

1. ldentification of human upstream binding factor as a damage recognition

protein for cisplatin modified DNA.

Several eukaryotic proteins homologous to the high mobility group
chromosomal protein HMG1 bind to DNA modified by clinically effective
platinum anticancer drugs, including cis-diamminedichloroplatinum(ll)
(cisplatin) (Hughes et a/.,1992; Bruhn et a/.,1992; Pil and Lippard, 1992;
Brown et al.,1993). The existence of this family of proteins has suggested
novel mechanisms by which the efficacy of platinum drugs could be
mediated (Donahue et a/.,1990). The current models include (1) that
protein-bound adducts would be shielded from DNA repair enzymes and (2)
that the sequestered proteins would be unable to perform their natural

functions.

Evidence in support of the first model was suggested by genetic
studies in yeast (Brown et a/.,1993). More specifically, a yeast cDNA
encoding an HMG box protein that binds specifically to cisplatin modified
DNA was isolated, and a strain was constructed in which both copies of this
gene were disrupted. The gene is referred to as /XR7 (intrastrand crosslink
recognition). Although the in vivo function of the IXR1 protein has not been
reported, it appears that it is not essential as the knockout strain (ixr7) was
viable. Toxicity assays showed that the ixr7 was two-fold resistant to
cisplatin relative to the wild type strain. However, the sensitivity of ixr7 to
trans-diamminedichloroplatinum(ll) (trans-DDP) and ultraviolet irradiation was
unchanged. Furthermore, ixr7 accumulated three-fold fewer cisplatin

adducts than the wild type strain after a single dose of the drug. These
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results are consistent with a mechanism by which the IXR1 protein shields
cisplatin adducts from repair enzymes. The model is by no means
established, however, since it is also possible that the uptake of cisplatin is

reduced in ixr7.

The second model for the role of HMG box proteins in the mechanism
of cisplatin proposes that essential HMG box proteins are sequestered by
cisplatin adducts. The adduct-bound proteins are unable to perform a critical
cellular function. Early southwestern blot and gel mobility shift studies
performed by Drs. Jeffrey Toney and Brian Donahue showed that a human
protein of ~97 kDa binds selectively to cisplatin modified DNA (Toney et
al.,1989; Donahue et a/.,1990). Ms. Xiaoquan Zhai repeated the
southwestern experiments using high resolution gradient gel electrophoresis
and found that the 97 kDa species resolved into a doublet of 97 kDa and 94
kDa. | proposed that the protein responsible for this doublet was the
nucleolar transciption factor human upstream binding factor (hUBF). hUBF
contains 4-6 regions of homology to HMG1 (Jantzen et a/.,1990) and exists
as both 97 kDa and 94 kDa species owing to alternative splicing events
(Chan et a/.,1991). hUBF is a critical positive regulator of rRNA synthesis
(Bell et a/.,1988). To confirm that hUBF binds selectively to cisplatin
modified DNA, Ms. Zhai performed southwestern analysis on in vitro
translated hUBF. The results showed that hUBF binds to cisplatin modified
DNA but not to unmodified DNA or DNA treated with the clinically
ineffective compound trans-DDP. We proposed that cisplatin adducts may
act as molecular decoys for hUBF and thereby disrupt the synthesis of rRNA.
Since rRNA synthesis is critical for proliferating cells (Tata, 1968), this
mechanism, which | have termed "transcription factor hijacking”, could

possibly contribute to the antitumor efficacy of cisplatin.
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2. Binding of hUBF to rRNA promoter sequences

In order to test the proposed transcription factor hijacking mechanism,
it was first necessary to compare the affinity of hUBF for the rRNA promoter
and a cisplatin adduct. The affinity constant (also referred to as the
dissociation constant (K, )) for the hUBF - rRNA promoter interaction had yet
to be determined by groups studying RNA polymerase | transcription factors.
A collaboration was established with Dr. Hans-Michael Jantzen of Dr. Robert
Tjian’s laboratory. These coworkers provided me with purified hUBF and
with the gene encoding this transcription factor. hUBF binds to a large, GC-
rich region upstream of the start site for rRNA transcription. The region
contains two genetically-defined elements (the CORE and upstream control
element (UCE)) that are critical for RNA polymerase | initiation (Haltiner et
al.,1986). hUBF - promoter interactions are not efficiently detected by gel
mobility shift assays. Binding is, however, detected by DNase | footprinting
analysis. Upon the binding of hUBF to DNA fragments containing the rRNA
promoter, a region in the UCE (positions -75 to -115) is protected from
DNase I. In addition to the protected region, position -95, which is centered
within the protected region, becomes hypersensitive to the nuclease as does
position -21 in the CORE element (Bell et a/.,1988); thus the DNase |
footprinting assay provides a useful quantitative tool for measuring binding

constants.

The K, is defined as the equilibrium concentration of uncomplexed

protein when 50% of the DNA binding sites are occupied.

K, = [DNA]IPROTEIN]/[DNA-PROTEIN] (Eq.1)
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In many cases of protein-DNA interactions, one assumes that the
concentration of free protein at equilibrium [PROTEIN] is equal to the total
amount of protein added to the binding reaction. Since the concentration of
DNA-protein complexes at equilibrium [DNA-PROTEIN] is generally much
lower than the total concentration of protein added, this assumption is often
valid. The validity of this assumption is determined by two parameters: (1)
the K; and (2) the concentration of the DNA probe in the reactions. Point
(2) is limited by the specific activity of the probe being used. If the DNA
probe concentration is well below the K, then the assumption that total
protein = free protein is a good one. If the probe concentration exceeds the
K, then a significant fraction of the total protein added is bound and the K|
must be estimated by subtracting the concentration of bound protein from
the total protein concentration. This method, however, that the
stoichiometry of binding is known and, furthermore, that the protein
concentration can be measured with high accuracy. The latter is often
difficult to achieve since the concentrations of purified transcription factors
are often low and are determined by techniques, such as silver staining, that

are only semi-quantitative.

Initial attempts at determining the K, of the hUBF-promoter interaction
revealed that the affinity was sufficiently high to make it impossible t make
the simplifying assumption that total protein = free protein at the probe
concentration being used. The probe concentration in these studies was 50
pM, and the hUBF concentration required to give half-maximal binding was
100 pM. Hence, it was clear that protein excess was not being achieved.
The stoichiometry of binding is not known, and the concentration of hUBF is
estimated roughly by silver staining. For these reasons, it did not seem

feasible to use the experimentally simpler "subtraction” method to determine
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the K,. It was necessary to reduce the concentration of DNA in the binding

reactions so that protein excess could be achieved.

Several parameters of the binding reaction were altered to achieve
protein excess. The goal of these experimental manipulations was to lower
the concentration of the probes below 1 pM, while maintaining at least
1,000 cpm of 3P in each reaction; this value is the lower limit of
radioactivity that can be detected in a footprinting experiment. The major
change from the conventional method of binding analysis was to 3’ end label
the footprinting probes by using the Klenow fragment of DNA polymerase |
in the presence of three a-*2P dNTPs (dATP, dCTP, and dGTP). The
polymerase step filled in, at least in part, the underhang on the probes,
which had four base 5’ overhanging ends. This procedure can generate a
probe that contains as many as four molecules of *2P. It should be noted
that this procedure proceeded to 50-80% completion, and required that
radiolabeled nucleotides be used on the day they were manufactured. A
specific activity of at least 12,000 ci/mMole was obtained routinely. By
contrast, the standard labeling method, 5’ end labeling with polynucleotide
kinase, incorporates only one 3?P per probe molecule. The second
experimental parameter modified for this experiment was to increase the
total reaction volume was increased, and the total number of cpm used was
decreased. Taken together, these changes allowed the probe concentration

in footprinting reactions to be reduced from 20 pM to 0.7 pM.

An hUBF - promoter binding isotherm was constructed under
conditions of protein excess by using the high specific activity probes
described above. Preliminary time course studies showed that the binding

equilibrium was established under standard binding conditions. At a fixed
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concentration of hUBF, no significant change in binding was observed
between 5 and 100 min incubations. The standard 10 min incubation was
deemed suitable for these studies. The binding isotherm is shown in Figure
14, and reveals that hUBF binding increases sharply over a narrow
concentration range (7-78 pM hUBF)2. Since low amounts of radioactivity
were used in this experiment, it is somewhat difficult to visualize the DNase
| protection in the -115 to -75 region of the (UCE). What is quite clear,
however, is the enhanced cleavage that occurs at position -95 as the result
of hUBF binding. The intensity of the -95 band was quantified by
Phosphorimager analysis to generate the binding curve. The enhanced
cleavage at position -21 in the CORE element is not shown in this figure, but
the appearance of this enhanced cleavage follows a similar protein
dependency as the enhanced cleavage at -95. The high affinity nature of
this interaction is evidenced by the low concentration of hUBF required to
give half-maximal binding (18 pM hUBF).

The hUBF-promoter interaction also appears to be cooperative. A
cooperative interaction between DNA and protein results in a steep binding
isotherm. In a cooperative binding isotherm the fraction of DNA bound (Y)
increases from 0.1 to 0.9 over a narrow range {within one order of
magnitude) of protein concentrations. This is clearly the case for hUBF-
rRNA promoter interactions. The data yield a Hill constant of 2.7, which
also suggests cooperativity. Hill constants greater than 1 indicate positive

cooperativity. It is also noteworthy that the data cannot be fit to equation

)1t should be noted that at the higher hUBF concentrations, the binding appears to
decrease. This is a common artefact of DNase | footprinting. At high protein
concentrations, nonspecific binding globally inhibits DNase | and diminishes the specific
footprinting pattern. In some experiments this problem was overcome by increasing the
DNase | concentration at some hUBF concentrations.
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(1), which does not take into account cooperativity. The data fit better to
an equation that describes cooperative binding of two monomeric protein
species to two DNA binding sites and assumes that the microscopic binding
constants are similar; even this curve, however, is not as steep as the
experimentally determined hUBF-promoter binding isotherm. This
observation may reflect difficulties and assumptions associated with
measuring binding by DNase | footprinting. Alternatively, the binding of
hUBF to the promoter may be more complicated. hUBF dimers, for example,
may be the ultimate DNA binding species. Consequently, the
monomersdimer equilibrium would be coupled to the DNA binding
equilibrium. In this type of multiple-equilibria system, binding isotherms can
be extremely steep as evidenced by the binding of phage P22 Arc repressor

tetramers to a recognition sequence (Brown and Sauer, 1993).

The finding that hUBF apparently binds cooperatively to the rRNA
promoter lends insight into the mechanisms by which rRNA transcription is
regulated. Also, importantly, it suggests that small changes in hUBF
concentrations within cells can greatly alter promoter occupancy. This
effect is directly relevant to a mechanism by which cisplatin-DNA adducts

act as molecular decoys to divert hUBF from rDNA sequence elements.

3. Characterization of hUBF-cisplatin adduct interactions

The southwestern analysis described above showed that hUBF, like
several other HMG box proteins, binds selectively to cisplatin modified DNA.
Southwestern analysis is a useful qualitative technique, but is not a very
effective quanititative tool for measuring binding constants. Gel mobility

shift assays with hUBF are ineffective at monitoring promoter binding, and it
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seemed likely that they would also be ineffective at detecting platinated
DNA binding. For these reasons, DNase | footprinting was employed to
characterize hUBF-promoter complex formation. For such studies to be
informative, it is essential to employ a DNA substrate that has a single, site-
specific platinum lesion. Such a substrate was prepared by P. Pil and S.
Lippard, and, more recently, by A. Barrasso (Pil and Lippard, 1992). This
100 bp DNA fragment contains a single-centrally located cisplatin (cis-
[Pt(NH,),]1*) 1,2-intrastrand d{GpG) crosslink in which the N7 atoms of
adjacent guanines are coordinated to the Pt atom. This DNA fragment is
referred to as G G-100.®> hUBF was added to G'G-100 and the analogous
unmodified sequence (Un-100), and DNase | analysis was performed on the
adduct containing strand. The results were striking as a distinct protected
region is observed in the 14 bp region flanking the cisplatin adduct (Figure
15, lanes 1&2). This result provides direct evidence that hUBF recognizes
the bent (34°) (Bellon and Lippard, 1990) and underwound (13°) (Bellon et
al.,1991) DNA structure induced by the lesion. No protection was afforded
to the unmodified sequence (lanes 3&4). The cisplatin adduct is centered
within the protected region, although the phosphodiester bond immediately
5’ to the lesion remains nuclease sensitive. This footprinting pattern
resembles that observed in the UCE element upon hUBF binding in which a
protected region symmetrically flanks a nuclease-sensitive site (Figure 14).
The similar footprinting patterns may reflect conformational homologies
between the [hUBF - UCE] and [hUBF - G'G-100] complexes.

The formation of [hUBF - G"G-100] complexes is exceptionally

3 The G'G intrastrand crosslink was chosen for these studies because previous work
has shown that 1,2 intrastrand crosslinks at both AG and GG sites, but not 1,3 intrastrand
crosslinks at GXG sites, are recognized by cisplatin-damaged DNA recognition proteins.
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favorable. DNase | protection assays estimate the apparent dissociation
constant (Ky,,,)* to be 60 pM (Fig. 15). For comparison, the [HMG1 - G'G-
100] complex has a Ky, of 370 nM (Pil and Lippard, 1992). The kinked
DNA structure induced by G'G may mimic a DNA conformation that occurs
during the formation of a stable [hUBF - promoter] complex and thereby
precludes a sequence requirement. Unlike the case for promoter binding,
hUBF binding to the single cisplatin lesion does not appear to be cooperative
as the data fit equation (1). It is striking that promoter sequences are only
three-fold better substrates for hUBF than are cisplatin adducts. This
similarity in affinity makes it reasonable to suggest that adducts can act as
molecular decoys for hUBF in a cellular milieu. Since the cellular levels of
hUBF and cisplatin lesions are similar (~5x10%/cell) (Reed et a/.,1993; Bell et
al.,1988), the decoy effect could result in a significant reduction in the

guantity of hUBF available for promoter binding.
4. hUBF-promoter interactions are antagonized by cisplatin adducts.

The results presented above showed that hUBF interacts specifically
with both the rRNA promoter and a single cisplatin adduct. Indeed, similar
footprinting patterns were detected on both types of DNA probes, and the
relative affinities of the interactions were similar. These observations
suggested that cisplatin adducts could efficiently reduce promoter binding by
a decoy mechanism. As shown in Figure 16, G G-100 does indeed
efficiently antagonize hUBF-promoter interactions. The reduced intensity of
bands at positions -21 and -95 in the CORE and UCE elements and the

*The Kyapp is defined as the concentration of free protein at which 50% of the DNA is
bound. This simplification was made since the actual binding equations for the interactions
being studied have not been determined rigorously.

103



reappearance of bands in the -75 to -115 region illustrate this effect (lanes
7-12). At a saturating concentration of hUBF, the formation of promoter
complexes is completely inhibited by a platinum adduct concentration of
5x10° M. It is noteworthy that this level is well below the adduct levels in
cancer patient DNA (10*10%cell, or 107-10® M) (Reed et a/.,1993).

The results also indicate that hUBF can be competed away effectively
with the unmodified DNA fragment, Un-100, albeit with less efficiency than
with G'G-100. Although there is no evidence of a specific interaction of
hUBF with unmodified DNA in the footprinting studies (Figure 15), Un-100
was a 10-30 fold weaker competitor of hUBF binding than G'G-100 (Figure
16). This result is not surprising since HMG box proteins often exhibit a
significant affinity for random DNA sequences (Giese et a/.,1992).
Nonspecific binding was examined further by using unmodified, random-
sequence DNAs of various lengths as competitors. On a mass basis,
chicken erythrocyte (CE) DNA averaging 175 bp in length was a ~ 4-8 fold
more potent competitor than Un-100. The length dependence suggests that
hUBF requires a large tract of DNA for binding. This is consistent with
studies on Xenopus UBF which showed that a minimal binding site is ~60-80
bp (Putnam and Pikaard, 1992). If 100 bp were the minimal hUBF binding
site, then CE DNA would be ~75-fold more effective as a competitor than Un-
100; a single molecule of CE DNA would represent 75 overlapping
nonspecific binding sites. The 4-8 fold difference in efficiency between CE
DNA and Un-100 suggests that a minimal hUBF binding site is 80-90 bp,
which is in agreement with the Xenopus UBF results. Accordingly, Un-100
likely contains 10-20 overlapping nonspecific hUBF binding sites. By
comparison, G'G-100 contains only 1 specific binding site. When these

numbers are taken into consideration, it is evident that hUBF has a 100-600
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fold preference for a platinated versus an unplatinated site.

Interestingly, calf thymus DNA averaging 1,000 bp was 5-10 fold
more effective as a nonspecific competitor of hUBF activity than CE DNA.
This finding cannot be explained solely by comparing the number of available
nonspecific binding sites on the two types of fragments; such arguments
could only explain a 2-fold difference since a minimal hUBF binding site is
apparently 80-90 bp, or one-haif the length of the CE DNA. It is possible
that extremely long tracts of DNA allow multiple hUBF species to bind
cooperatively and to assemble a stable nucleoprotein superstructure.
Indeed, Xenopus UBF binds cooperatively to enhancer repeats, and the
degree of cooperativity is positively correlated to the number of repeats.
This finding suggests that multiple UBF molecules can interact cooperatively
provided that DNA length is not limiting (Putnam and Pikaard, 1992). A

similar phenomenon may occur with nonspecific binding.
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Figure 14. TOP, The -115 to -75 region of the rRNA promoter becomes
DNase | resistant upon hUBF binding. Enhanced nuclease sensitivity is
observed, however, at positions -95 and -21 (Bell et a/.,1988). Promoter
binding at hUBF concentrations ranging from 7-78 pM is shown and is most
easily visualized by the increased DNase | sensitivity of the -95 position in
the upstream control element (UCE). Bottom, hUBF binding in the top panel
was quantitated by measuring the intensity of the enhanced cleavage at -95,
and relative binding is reported to the left in arbitrary Phosphorimager units
(PIU). To the right the data are expressed as the apparent fractional
saturation (Y). A Hill plot of these data yielded a best fit line (r=0.997)
with a Hill constant (n,) of 2.7. A Hill constant >1 indicates positive
cooperativity.

METHODS. Top, DNase | footprint reactions were performed on the
noncoding strand of the rRNA promoter in the presence of affinity-purified
Hel.a hUBF as described (Jantzen et a/.,1990) with the following exceptions.
The footprinting probe was 3’ end-labeled by using the Klenow enzyme in
the presence of three a-**P dNTPs (dATP, dCTP, and dGTP). Since this
labeling procedure often does not proceed to completion, the bands appear
as doublets. The probe concentration in each reaction was 0.7 pM (10°
cpm). Bottom, Quantitation was performed by Phosphorimager analysis.
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Figure 15. A, A 100 bp DNA fragment containing a single, centrally
located cisplatin (cis-[Pt(NH;),12%) 1,2-intrastrand d(GpG) crosslink (G"G-
100), is protected from DNase | cleavage in the presence of hUBF (compare
lanes 1&2). The relevant sequence is shown to the left, and the protected
residues are displayed within the box. The broken line indicates a residue
immediately 5’ to G'G that remains DNase I-sensitive. The analogous
unmodified 100-mer, (Un-100) gives the same DNase | cleavage pattern
both in the presence and in the absence of hUBF (lanes 3&4). B, The
DNase | protection assay described in panel a was used to characterize hUBF
binding to G'G-100. Y is the fractional saturation of G'G-100. The data fit
the equation K, [hUBF][G"G-100] / [hUBF-G G-100] when K, 60 pM. The
K,is indicated by the broken line.

METHODS A. The adduct-containing strand of G'G-100 and the analogous
strand of Un-100 were 5’ end labeled by using polynucleotide kinase. The
concentration of affinity purified HeLa hUBF (Bell et a/.,1988) was estimated
by silver staining. hUBF was added to the labeled DNA fragments to a final
concentration of 400 pM in binding buffer (25 mM Tris-HCl (7.9), 14 mM
MgCl,, 0.5 mM dithiothreitol, 10% glycerol, 50 mM KCI, 0.05% Nonidet-
P40, 2.5 mM CaCl,), and the mixture was incubated for 10 min at 30° C.
The DNA fragments were at a final concentration of 90 pM (10* cpm). The
subsequent DNase | and electrophoresis steps were essentially as described
(Jantzen et al.,1990). B, hUBF was added to G'G-100 to final
concentrations of 6-400 pM. G G-100 was present at 20 pM (10° cpm).
Quantitation was performed by using a Molecular Dynamics
Phosphorimager. Y was estimated by monitoring the intensity of three
bands in the protected region at each [hUBF]. The best fit line was
generated by utilizing Microsoft Excel.
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Figure 16. The ability of G'G-100 to compete with rRNA sequences for
hUBF binding has been evaluated. Promoter binding is visualized by DNase |
footprinting as in Figure 14 except that the enhanced cleavage at -21 in the
CORE is shown. hUBF was added to all samples, except the negative
control (lane 1), to a final concentration of 168 pM. This level of hUBF is
safely above that which results in an apparent fractional saturation (Y) of 1
in the positive control (lane 2). Un-100 (lanes 3-6) and G'G-100 (lanes 7-
12), were added as unlabeled competitors to the final concentrations listed.
The competitive effect was estimated by measuring Y of the promoter
probe. Y values are shown at the bottom. Lanes 1and 2 were used as
standards to calculate Y in lanes 3-12.
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B. DISCUSSION

1. Specific binding of hUBF to DNA containing a single cisplatin 1,2
intrastrand d(GpG) crosslink.

Specific binding of hUBF to cisplatin modified DNA has been
demonstrated in three different assay systems: southwestern analysis,
DNase | footprinting (Figure 15 ), and promoter binding competitions (Figure
16). The affinity of this specific interaction is striking (Kd =60 pM) (Figure
15), and the critical DNA contacts occur in the 14 bp region flanking the
G G crosslink (Figure 15 ). Other HMG box proteins have been shown to
bind selectively to cisplatin-modified DNA, including HMG1,2 (Hughes et
al.,1992; Pil and Lippard, 1992), SSRP-1 (Toney et a/.,1989; Bruhn et
al.,1992), IXR-1 (Brown et al.,1993), and SRY (E. Trimmer, unpublished
results). In all of these cases, however, specific binding was detected by
techniques that do not specify the critical protein-DNA contacts. In addition,
the specific binding constant has been determined only for HMG1 (Pil and
Lippard, 1992), where the observed K, (370 nM) was four orders of
magnitude higher than for hUBF.

hUBF contains at least four (Jantzen et a/.,1990), and possibly six (E.
Chan, personal communication) HMG boxes. By contrast, HMG1 has two
HMG boxes (Bianchi et a/.,1992). The relative affinity of hUBF and HMG1
for cisplatin adducts is likely to reflect the disparity in HMG box content.
Ms. Zhai in our laboratory has shown that the affinity of hUBF for cisplatin
adducts is greatly reduced when HMG boxes are sequentially deleted, and at
least two boxes are required for specific binding. Additional HMG boxes are

likely to increase the binding affinity by altering the rates of both association
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and dissociation. First, the presence of multiple boxes may increase the rate
of association by increasing the local concentration of DNA binding domains.
Second, the dissociation rate could be reduced because the adduct-specific
binding would be stabilized by cooperative nonspecific interactions occuring
in the flanking DNA region. Since the HMG box is a nonspecific DNA
binding domain, it can be predicted from these arguments that hUBF would
also have a higher nonspecific binding component than HMG1. This
prediction is supported by the competition experiment (Figure 16) which
showed that hUBF has a 100-600 fold preference for a platinated site over
an unplatinated site. This corresponds to a nonspecific binding constant
(K,s) of 6-36 nM. The affinity of HMG1 for an unmodified 100 bp DNA
fragment was much lower, K., = 10 M (Pil and Lippard, 1992). Itis
noteworthy that the fold-preference of both HMG1 and hUBF for a platinated

versus an unplatinated site is similar, ~ 100-fold.

The footprinting data show that hUBF makes specific DNA contacts in
the 14 bp region flanking the G'G lesion. Furthermore, the adduct is
approximately centered within the protected region suggesting that the DNA
binding domain(s) is symmetrically placed relative to the adduct. Since the
protected region spans ~ 1.5 helix turns, it appears that hUBF binding is not
restricted to one face of the DNA. The interaction may also occur
preferentially in the minor groove on the convex side of the DNA bend; other
HMG proteins, including LEF-1, bind in the minor groove (Giese et al/.,1992).
Footprinting reagents such as hydroxyl radicals may ultimately prove useful
in further resolving the positions of DNA-protein contacts. It is interesting
that the phosphodiester bond immediately 5’ to the G'G is not efficiently
protected from nuclease cleavage. The G G lesion both bends (34° toward

the major groove) (Bellon and Lippard, 1990) and unwinds (13°) (Bellon et
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al.,1991) the helix. hUBF recognizes this structure and may induce further
bending upon binding; however, the elbow of the bend does not appear to
be an important contact point and remains exposed to the solvent. This
footprinting pattern qualitatively resembles the pattern observed when hUBF
binds to the UCE element of the rRNA promoter (Figures 14&15). [hUBF -
UCE] complexes are characterized by a distinct DNase |-protected region that
symmetrically flanks a nuclease hypersensitive site. It is likely that the
nuclease hypersensitive site results from protein-induced DNA bending.
Indeed, DNase | activity is sensitive to the width of the minor groove
suggesting that DNA bends can alter nuclease susceptibililty (Brown and
Sauer, 1993). Hence, two markedly different binding targets, a single G G,
and the UCE, yield similar fooprinting patterns upon hUBF binding®. More
specifically, a putative bend site is flanked symmetrically by regions of
nuclease resistance. This result suggests a possible structural homology
between the [hUBF - G'G-100] and [hUBF - UCE] complexes. DNA bending
and wrapping are likely to be common features of these complexes. Indeed,
HMG box proteins are known to recognize specific DNA sequences,
structures, or both, and to alter DNA conformation. HMG1 and SRY
recognize DNA cruciforms, and mtTF1, LEF-1 and SRY bind to, and bend,
specific sequences (Ferrari et al.,1992; Fisher et a/.,1992; Giese et al.,1992;
Harley et a/.,1992). An NMR structure of an HMG box has recently been
solved and shows that this domain has a unique "L" shape (Weir et
al.,1993). Basic amino acids are located on the concave face of the L, and
may be responsible for DNA binding. It is possible that bent DNA structures
can fit snugly into the L-shaped binding pocket, but further studies are

5The sequence of G'G-100 was compared to the UCE and CORE elements of the rRNA
promoter by using a Pustell sequence analysis program. G G-100 shares no homology with
either the UCE or CORE elements.
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required to test this model.

In order to elucidate the mechanism by which hUBF recognizes
cisplatin adducts, it is useful to review the current models proposed to
explain DNA recognition by HMG box proteins. HMG box proteins have
been categorized into three classes (Ferrari et a/.,1992). The first class
consists of HMG1 and 2 and related low molecular weight, high abundance
proteins. HMG1 is a sequence-independent DNA binding protein that is
known to interact specifically with DNA containing sharp angles, such as
cruciform structures (Bianchi et a/.,1989). Negatively supercoiled DNA is
recognized preferentially by HMG1, and protein binding results in DNA
unwinding which has been attributed to the acidic tail domain (Sheflin et
al.,1993). The second class of HMG box proteins is characterized by
sequence specific binding to promoter sequences. The testis determining
factor SRY and the lymphoid enhancing factor LEF-1 fall into this class and
are most likely to function as specific RNA polymerase Il transcription
factors (Harley et a/.,1992; Giese et a/.,1991). SRY can also bind to DNA
cruciforms showing that structure and sequence-specific DNA recognition
are not mutually exclusive (Ferrari et a/.,1992). Structure-specific binding by
LEF-1 has yet to be reported but is likely to occur. The third class of HMG
box proteins includes general transcription factors for polymerase | and
mitochondrial sequences, including hUBF and mtTF1 (Fisher et a/.,1992).
mtTF1 and hUBF bind selectively to regions upstream of polymerase | start
sites, but a consensus binding sequence has yet to be identified in either
case. As shown in this dissertation, hUBF also binds selectively to bent
DNA structures. The same is likely to be true for mtTF1. This HMG class
has an intermediate phenotype that is characterized by a relaxed sequence

specificity - "long region-specificity” may be an apt description. Certain long
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DNA regions may transiently form tertiary structures that are recognized by
this HMG class. This "transient structure” mechanism could explain the lack
of a consensus binding sequence for hUBF. It is clear from this discussion
that structure, not sequence, binding specificity is intrinsic to HMG box
proteins. Another common property of HMG box proteins is the ability to
bend and/or wrap DNA. LEF-1 is an appropriate example for this discussion
because it binds to a short, linear consensus sequence and induces a
dramatic DNA bend of ~130° SRY behaves similarly (Giese et a/.,1992).
Indeed, the bending theme is conserved throughout the HMG family because
bent structures are recognized ubiquitously and linear DNA structures

become bent upon binding.

2. hUBF recognizes specific DNA sequences and structures.

A set of models has been devised to reconcile sequence and
structure specific binding by HMG box proteins (Ferrari et a/.,1992) (Figure
17 ). The lock and key model may explain structure-specific recognition.
DNA distortions match the shape of the HMG binding pocket and favorable
DNA protein contacts can occur. It is possible that further bending of the
DNA substrate occurs after binding with a concomitant rearrangement of
protein structure. It is clear that similarly bent structures can be recognized
with vastly different affinities. The 1,3 GTG cisplatin crosslink is not
recognized by HMG1, although it produces a bend similar to G'G. The
unwinding angles induced by these lesions are different, however, and
suggest that a combination of bending and unwinding contributes to
recognition (Bellon et a/.,1991). It is peculiar that subtle differences in
unwinding can dramatically alter recognition when it is considered that DNA

cruciforms, which contain much sharper angles (60° and 120° ) than G G,
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are also recognized. It is clearly of interest to determine if the bend angle

induced by G G is augmented upon complexation with HMG box proteins.

The induced fit model is intended to explain both sequence and
structure recognition by HMG box transcription factors. In this model, the
HMG protein binds to a linear sequence and induces a DNA bend. The free
energy generated by favorable DNA-protein contacts and by allosteric
changes in the HMG protein drives the complex formation. It is possible that

"bendable” DNA sequences are involved in this type of recognition.

The "transient structure” model may be invoked to explain the
recognition of rDNA sequences by hUBF. The long GC-rich regions upstream
of the rRNA promoter may form transient bent, or otherwise distorted,
structures that are "captured” by hUBF. A caveat is apparent regarding this
particular example. A specific HMG box from hUBF is both necessary and
sufficient for recognition of this sequence to occur (Jantzen et a/.,1992),
whereas any of the hUBF HMG boxes can participate in cisplatin adduct
recognition (as shown by Ms. Zhai in our laboratory). It is possible that the
specific box required for promoter binding has partial characteristics of the
LEF-1 and SRY boxes and therefore can recognize sequence cues in addition

to structural distortion.

The results of my work show that hUBF, like SRY, binds to both
specific structures and to putative sequence cues. The models presented
above suggest that the [DNA - HMG Box] complexes formed via both
sequence-specific and structure-specific interactions will have similar
conformational features. The findings that [WUBF - G'G-100] and [hUBF -

UCE] complexes yield similar DNase | footprinting patterns and have similar
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dissociation constants support this prediction. The high affinity interaction
between hUBF and G G-100 suggests that the specific DNA distortion
induced by G'G mimics a DNA structure naturally occuring in rDNA, or a
favorable DNA structure that is formed during the assembly of promoter

complexes.

3. Binding of hUBF to rRNA promoter sequences

This work is the first study in which the thermodynamics of [hUBF -
Promoter] complex formation have been described quantitatively. Although
the appropriate reagents for such studies have been available for some time,
the high affinity nature of the interaction and the relative difficulty
associated with quantitating DNase | footprinting experiments have served
as roadblocks. The problems associated with achieving "protein excess” in
these studies resulted from the high affinity nature of the interaction. This
obstacle was overcome by preparing probes with the high specific activity
required to detect the low DNA concentrations present in the assay.
Furthermore, quantitation of the binding was rendered trivial by the recent

development of Phosphorlmager technology.

The affinity of hUBF for the rRNA promoter is very high (K,=18 pM,
see Figure 14) and, importantly, binding is cooperative. Several previous
studies hinted that hUBF may bind cooperatively. First, Xenopus UBF,
which is highly homologous to hUBF, binds cooperatively to repeats of an
enhancer sequence that is located upstream of the Xenopus rRNA start site
(Putnam and Pikaard, 1992). The Ky, for this interaction is ~ 10 nM. Since
the organization of the human and Xenopus rRNA promoters is quite

different, this result did not insure that hUBF would also bind cooperatively.
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Second, the importance of protein-protein interactions in promoter binding
was established; deletion of a putative dimerization domain from the N-
terminus of hUBF abolished promoter binding in the footprinting assay
(Jantzen et a/.,1992). In addition, there is sequence homology between
regions of the UCE and CORE elements suggesting that these regions may
be functionally linked (Bell et a/.,1988). It is tempting to speculate that
binding of hUBF to one of these elements facilitates binding to the other

element through protein-protein interactions.

Cooperative binding of hUBF to the rRNA promoter is likely to have
several important consequences for the regulation of ribosome production.
The in vivo consequences of cooperativity are not immediately clear,
however, since most of the transciptional activation studies with hUBF have
been performed in vitro. There are 400 rRNA genes in a diploid human cell,
whereas the estimated number of hUBF molecules is 50,000 (Bell et
al.,1988). Immunostaining studies have shown that hUBF is detectably
localized only in the nucleolus (Jantzen et a/.,1990) and is associated with
rDNA at all stages of the cell cycle (Chan et a/.,1991). These studies also
show that hUBF levels are not reduced concomitantly with the
transcriptional activity of rRNA genes. Taken together, these studies
suggest that hUBF is not the limiting factor regulating rRNA synthesis.
Many cooperative protein-DNA interactions contribute to the tight regulation
of transcription. Since the formation of cooperative complexes is a steep

function of ligand concentration, subtle changes in ligand concentration can

8 It is unclear if these immunostaining studies are of sufficient sensitivity to detect
hUBF that is diffused throughout the nucleous. Indeed, it is possible that hUBF is only
detected in the nucleolus where it is concentrated on the rDNA. If this is the case, then the
conclusion that hUBF is exclusively located in the nucleolus would require reevaluation.
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dramatically alter activity. Hence, cooperativity confers exquisite sensitivity
to many biological regulatory systems. With these comments in mind, it is
not clear why a factor that is apparently in excess would exhibit
cooperativity. It must be emphasized, however, that the data suggesting
hUBF is in excess stem from crude estimations of abundance extrapolated
from protein purification schemes. Furthermore, the high levels of
nonspecific binding exhibited by hUBF (Figure 16) suggest that a significant
fraction of intracellular hUBF may be bound nonspecifically. It thus remains
possible that the concentration of hUBF available for promoter binding is in

the range of the K; where cooperativity would be an important effect.

The most probable limiting factor in rRNA transcription is the
selectivity factor, SL-1; this factor is apparently present in catalytic amounts
relative to hUBF (Bell et a/.,1988). SL-1 alone does not bind to the rRNA
promoter, but once hUBF has bound SL-1 binds sequentially to form a
cooperative complex that is competent for transcription (Bell et a/.,1988).
Recent studies have shown that SL-1 is a multiprotein complex that includes
the TATA binding protein, which was once thought to be exclusively a

polymerase Il transcription factor (Comai et a/.,1992).

Cooperative binding of hUBF may be important for reasons unrelated
to the tight regulation of rRNA synthesis. Cooperativity may (1) be
important for the nucleolar targeting of hUBF or (2) displace transcriptional
repressors from rDNA sequences. It is unclear how hUBF is transported to
the nucleolus. It has been suggested that accumulation occurs due to the
increased affinity of hUBF for rDNA sequences (Jantzen et a/.,1990). This
suggestion is inconsistent with hUBF’s high nonspecific binding activity;

however, specific, cooperative binding may contribute to affinity-driven
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accumulation. Nonspecific binding appears to be favored by the availability
of long tracts of naked DNA (see discussion above). Since DNA is coated
with protein in vivo, long tracts of naked DNA will be rare, and nonspecific
binding may be significantly reduced. Alternatively, the high nonspecific
binding of hUBF may surprisingly be of value to nucleolar localization.
Nonspecific binding may result in the facilitated linear diffusion (tracking) of
hUBF to target sequences. The prokaryotic DNA repair enzyme T4 Endo V is
more efficient at locating damaged substrates under assay conditions that
favor nonspecific binding, and a tracking mechanism seems to be involved
(Nickell et a/.,1992). In this model, tracking would occur until the target site
is reached, and the cooperative binding phenomenon would serve to "lock

in" specific complex formation.

hUBF does not appear to contain a consensus nucleolar localization
sequence. Studies with mouse UBF showed that the acidic tail domain was
critical for nucleolar localization (Maeda et a/.,1992). Another study showed
that the acidic tail of hUBF was required for protein-protein interactions with
SL-1 to occur (Jantzen et a/.,1992). Perhaps cooperative interactions
between hUBF and SL-1 enhance nucleolar targeting. A caveat to this
model, however, is that SL-1 is apparently far less abundant than hUBF.
Furthermore, the mouse UBF studies were performed on mutants that were
also lacking the N-terminal dimerization domain; the acidic tail may only be

required for nucleolar targeting in the absence of dimerization.

There is evidence to suggest that a "repressor displacement” process
contributes to transcriptional activation by mouse UBF. In these studies,
hUBF was shown to activate transcription efficiently only when crude RNA

polymerase | fractions were used. The interpretation is that transcriptional
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repressors are present in crude polymerase preparations that bind to DNA
and are displaced by hUBF. The putative inhibitor protein has recently been
identified as the Ku antigen - a protein of ambiguous function (Kuhn et
al.,1993). Cooperative interactions occuring during hUBF binding may
provide the free energy required for repressor displacement. Alternatively,
cooperative interactions between hUBF molecules may facilitate the
formation of a nucleoprotein superstructure that is required for productive

interactions to occur with SL1, RNA polymerase 1, or both.

4. Cisplatin adducts may be molecular decoys for hUBF in vivo.

hUBF binds to rRNA promoter sequences and cisplatin adducts with
comparable affinity. This result suggests that adduct binding can occur in
the intracellular environment. One argument against adduct binding in vivo
is the high level of nonspecific binding by hUBF. Since the number of
nonspecific binding sites is orders of magntude higher than the numbers of
both cisplatin lesions and rRNA promoters, nonspecific binding would be
expected to largely inhibit specific binding. Promoter binding occurs in vivo,
so there must be a mechanism (possibly tracking, vide supra) that allows
nonspecific binding to be evaded. Presumably, specific binding to adducts
could exploit similar mechanisms. The issue of nonspecific binding is
common with HMG box proteins and it is often unclear how proteins with
such high nonspecific binding affinities can find their specific genomic

targets. LEF-1 exemplefies this paradox (Giese et a/.,1991).

As discussed in the results section, the number of platinum adducts
formed in cancer patient DNA is similar to the number of cellular hUBF

molecules. It is thus possible that adduct binding could significantly reduce
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promoter binding and disrupt nucleolar targeting. Since hUBF-promoter
interactions are cooperative, reductions in available hUBF could have a
profound effect on promoter occupancy (such an effect is evident in the
competition experiment, Figure 16). The validity of these predictions
ultimately depends on the normal intracellular concentration of unbound
hUBF which, in turn, depends on the degree of nonspecific binding. If, for
example, unbound hUBF is in vast excess in the nucleolus, then large
decreases in hUBF concentration caused by adduct binding would be
required to alter promoter binding significantly. If nonspecific binding is
significant, then the concentration of unbound hUBF may be in the range of
the K. In this case, promoter binding would be sensitive to even subtle

changes in unbound hUBF concentrations.

Another relevant issue is the availabilty of cisplatin adducts for hUBF
binding. hUBF is not the only HMG protein known to recognize adducts, and
it is possible that other HMG proteins, such as HMG1, would shield adducts
from hUBF. In the case of HMG1, this effect does not seem likely. HMG1
is ~ 10-fold more abundant than hUBF, but has a binding affinity for adducts
that is four orders of magnitude lower than that observed for hUBF. This
suggests that HMG1 would not effectively compete for adduct binding sites
with hUBF. The abundance and binding constants of other HMG box
proteins that bind to cisplatin adducts is not known making it difficult to

speculate further on this issue.

An abnormal nucleolar morphology has long been recognized as a
hallmark of transformed cells, suggesting that nucleoli may be attractive
targets for chemotherapy (Busch and Smetana, 1970; Egan and Crocker,

1991). We propose that cisplatin adducts target nucleoli by diverting hUBF.
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If this hijacking mechanism is operative in cisplatin-treated cells, then a
dramatic effect on rRNA production should be evident. Proliferating cells
have higher demands for rRNA and would be particularly sensitive to
inhibited rRNA production (Larson et a/.,1991). The synthesis of ribosomal
proteins and rRNA is coupled such that productive ribosome assembly can
occur in the nucleolus. The diversion of hUBF may disrupt ribosome
assembly by upseting the delicate balance of rRNA and ribosomal protein in
the nucleolus. Since mature ribosomes have a long half life (up to 10 days)
(Larson et al.,1991), reduced ribosome synthesis may not have an
immediate impact on cellular welfare, but could inhibit proliferation.
Unfortunately, the literature contain few studies monitoring the effect of
cisplatin on rRNA production; however, it is clear, however, that total RNA
and mRNA production are decreased dramatically in cisplatin-treated cells
(Harder and Rosenberg, 1970; Sorenson et al.,1990). Since at least 50% of
newly synthesized RNA in proliferating cells is ribosomal, the observation
that total RNA production is reduced most likely reflects decreased rRNA
synthesis. Nucleolar segregation, a morphological change associated with
inhibited rRNA synthesis, is also observed in cisplatin treated cells (Jones et
al.,1985). These results are consistent with the hijacking model, but hardly
provide proof since many processes are inhibited in cisplatin-treated cells.
DNA synthesis, protein synthesis, and mRNA synthesis are also inhibited
(Harder and Rosenberg, 1970). In general, effects on a multitude of
intracellular processes are observed and make it difficult to ascribe any one
effect to a specific mechanism. Furthermore, cisplatin DNA adducts can
inhibit RNA polymerases directly by blocking the extension of nascent RNA
chains (Corda et a/.,1991). Ms. Zhai is performing several experiments to
test the proposed hijacking mechanism directly (refer to the "Future

Experiments"” section).
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5. hUBF may shield cisplatin adducts from DNA repair enzymes.

Molecular hijacking of hUBF by cisplatin lesions would be expected to
disrupt the regulation of rRNA synthesis. A concomitant effect would be the
blocking of DNA repair enzymes from accessing sites of damage. It is clear
from the DNase | cleavage pattern of [hUBF - G'G-100] complexes that the
14 bp region flanking the adduct is nuclease-resistant. This result suggests
that the human excision nuclease may also be inefficient at recognizing and
repairing hUBF-bound lesions. In support of this notion, the prokaryotic
UvrAB repair complex binds to G'G with an affinity (Kyg,,,) >1 nM) that
would be insufficient to displace hUBF (Visse et a/.,1991; Visse et a/.,1992).
In addition, G'G lesions are repaired poorly by human cell extracts
(Szymkowski et a/.,1992; Calsou et al.,1992) suggesting that repair
replication on globally platinated DNA occurs primarily at less abundant 1,3
GTG intrastrand crosslinks. Perhaps the binding of HMG box proteins in the
extracts shields GG lesions from repair enzymes. HMG1 is not a likely
candidate protein because it is not detected in repair extracts (P. Pil,
personal communication). Furthermore, if repair extracts are supplemented
with purified HMG1, the repair of globally platinated DNA is unaltered (D.
Bissett, personal communication). hUBF levels in repair extracts have not
been measured. A possible caveat to the shielding model is that the repair
of G'G in crude extracts can be rescued by the addition of purified UvrABC
repair proteins (Szymkowski et a/.,1992). This result suggests that G'G is
accessable to repair enzymes; however, it is possible that an excess of Uvr
proteins was added and was thus able to mask lesions from HMG proteins.
Careful protein titration and time course studies are required to interpret this

result more conclusively.
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Cisplatin G'G adducts are repaired in mammalian cells. The efficiency
of repair, however, is a matter of dispute. Studies with cancer patient DNA
and rodent organs show that efficient repair (75% removal) occurs during
the first 21 hr, but the remaining lesions are persistent (Fichtinger-Schepman
et al.,1987; Fichtinger-Schepman et a/.,1990; Terheggen et a/.,1987).
These studies did not take into account, however, adduct dilution resulting
from DNA replication. Adducts are removed less efficiently from the
unreplicated DNA of chinese hamster ovary cells (Fraval and Roberts, 1979;
Jones et a/.,1991) and murine leukemia cells (Gibbons et a/.,1990) (40%
removal after 24 hr), although repair in an active hamster gene was 50%
more efficient. In general the data are consistent with a shielding
mechanism since inefficient repair is noted in cases where DNA replication
has been considered. In the cases where repair is apparently efficient, a
biphasic repair curve suggests that a fraction of the lesions is refractory to
removal - a shielding mechanism could be invoked to explain this
phenomenon as well. Alternatively, an intrinsic property of excision repair
complexes may preclude the efficient repair of G'G lesions. Indeed, the
UvrABC complex repairs the G G lesion with the lowest efficiency of the
platinum adducts tested (Page et a/.,1990). Preferential repair of one class
of UV-induced photoproducts is also evident in human cells (refer to the
preceeding chapter of this document). A shielding model is not likely to
explain this effect, however, since the poorly repaired photoproduct is not

recognized by any known human damage recognition proteins.

Inefficient repair of DNA adducts may contribute to the therapeutic
efficacy of cisplatin. DNA repair-deficient cells derived from xeroderma
pigmentosum patients are hypersensitive to cisplatin proving that inefficient

DNA repair increases toxicity (Fraval et a/.,1978). Likewise, elevated DNA
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repair is observed in some cisplatin-resistant cell lines (Eastman and Schulte,
1988). These results are significant because proliferating cells are more
sensitive to cisplatin than stationary cells (Fraval and Roberts, 1979). More
specifically, stationary cells treated with cisplatin, allowed to recover for 1-3
days, and plated for colony forming ability, recovered from the cisplatin
insult during the incubation period in a time-dependent manner. Conversely,
the cisplatin treated proliferating cells had a lower survival. These resulits
suggest that cell cycling is required for death to occur. Consequently,
inefficient repair would be selectively deleterious to cycling cells, such as

those of tumors.

6. The role of hUBF hijacking in apoptotic cell death.

Concomitant negative effects on both DNA repair and rRNA
transcription are predicted by the proposed hUBF hijacking mechanism.
Cisplatin may kill cells by triggering apoptotic cell death (Sorenson et
al.,1990). Since the signal transduction pathway leading to drug-induced
apoptosis is unknown, it is difficult to speculate how reduced DNA repair or
reduced rRNA synthesis would contribute to this phenomenon. Presumably
an event occuring in the G2 phase of the cell cycle induces apoptosis
because cisplatin treated cells arrest at G2 for several days and
subsequently recover, or become apoptotic {Sorenson et a/.,1990). Itis
reasonable that indicators of cellular welfare, such as rRNA levels, or the
integrity of the genome contribute to the onset of apoptosis. The signal
transduction pathway leading to G2 arrest and apoptosis is unclear. It is
suspected, however, that pb53 is a G1/S checkpoint factor (Kastan et
al.,1992). Other toxic agents that are less effective anticancer drugs than

cisplatin also induce apoptosis (Eastman, 1993). This result indicates that
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attributes other than the capacity to induce apoptosis may contribute to
chemotherapeutic efficacy. The hUBF hijacking mechanism may be
important to these currently unknown processes, perhaps by limiting
availability of an essential protein or substrate. It is also noteworthy that a
cell could not become resistant to the effects of hUBF hijacking by altering
hUBF levels; increased levels of hUBF may rescue rRNA production but
would also lead to further inhibition of DNA repair. Likewise, decreased
levels of hUBF may partially restore DNA repair, but would have negative

effects on rRNA synthesis.

7. Implications for novel drug design.

Molecular decoys that inhibit the function of disease-specific proteins
are currently being developed as potential therapeutic drugs. One strategy is
to construct double stranded oligonucleotides that contain a recognition site
for a disease-specific DNA binding protein. Recent advances in this
technology include the development of DNA dumbell structures that have
increased potentcy owing to reduced nuclease sensitivity (Chu and Orgel,
1992). The finding that DNA with a specific cisplatin-induced distortion can
act as a molecular decoy for a nucleolar transcription factor suggests that
other DNA damaging agents may induce structures recognized by a variety
of DNA binding proteins. [t is reasonable that this will be true since several
non-HMG transcription factors are known to induce DNA bending upon
binding. Furthermore, the specificity of recognition is exquisite - the similar
DNA structures induced by various cisplatin adducts are recognized with
vastly diffferent affinities by HMG box proteins. This result suggests that
drugs that induce similar, but nonidentical structural distortions may have

different specificities as decoy agents and may confer programability to the
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approach. In addition cells could be treated directly with the drug and the
ultimate decoys would be created inside the cell and would thereby
circumvent the drug delivery problems associated with therapeutic

oliognucleotides.
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C. CONCLUSIONS

The toxicity of DNA damaging agents is widely believed to result from
the formation of lesions that block polymerases or disrupt the integrity of the
genome. A mechanism heretofore not addressed is that specific forms of
DNA damage may divert critical regulatory proteins from their natural sites
of action. This work has shown that the nucleolar protein hUBF, a critical
regulator of rRNA transcription, binds with striking affinity (Kd ~60 pM) to
DNA modified by the potent anticancer drug cisplatin, and the specific
interaction is characterized by a distinct DNase | footprint in the 14 bp
region flanking the adduct. This footprinting pattern is similar to the one
observed when hUBF binds to rRNA sequences and suggests that the two
complexes have conformational homologies. Furthermore, we observe that
the hUBF-promoter interaction is cooperative and, consequently, highly
sensitive to subtle changes in hUBF concentration. This result, taken
together with the cellular levels of both cisplatin adducts and hUBF,
suggests that cisplatin could disrupt regulation of rRNA synthesis by a
transcription factor hijacking mechanism. Diminished rRNA production
would be selectively deleterious to proliferating cells. In addition, the
binding of hUBF to cisplatin adducts would be expected to inhibit DNA repair
enzymes and thereby contribute to the clinical efficacy of cisplatin. This
study also suggests a novel strategy for the design of therapeutic molecular
decoys. Transcription factor decoys generally consist of short duplexes
containing recognition sites for sequence specific binding proteins. DNA-
platinum complexes represent a new class of molecular decoys. Drugs that
form DNA adducts recognized by disease-specific proteins may ultimately be
of therapeutic value and may allow the drug delivery problems associated

with synthetic oligonucleotides to be circumvented.
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D. FUTURE EXPERIMENTS

1. In vivo testing of the transcription factor hijacking mechanism.

If the transcription factor hijacking mechanism is correct, then rRNA
production should be depressed in cisplatin-treated cells. Unfortunately,
cisplatin adducts can block transcription directly by inhibiting polymerases
from progressing along the DNA template. For this reason it is not feasible
to treat cells with cisplatin, monitor rRNA production, and to then draw

conclusions about the validity of the hijacking model.

The construction of a plasmid that expresses proteins from a
polymerase | promoter has been reported recently (Palmer et a/.,1993).
This was a significant breakthrough since earlier vectors harboring
polymerase | promoters were transcribed, but the messages were not
translated efficiently. This construct could be of significant value for testing
the proposed model because it will allow one to separate the polymerase-
blocking and transcription factor hijacking effects of cisplatin on
transcription. In these studies, cells are treated with cisplatin, washed, and
transfected with the polymerase | promoter construct. As an internal
control, a polymerase |l reporter gene construct would be cotransfected that
does not require hUBF for expression. If the proposed hUBF hijacking
method is operative, one would expect to see a selective dimunition of the
signal from polymerase | promoter-driven reporter gene. A similar
experiment could be performed using cells that were not treated with
cisplatin. The two reporter plasmids would be contransfected with a vast
excess of cisplatin-modified salmon sperm DNA. Presumably, the platinated

salmon sperm DNA could hijack hUBF and prevent efficient expression of the
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polymerase | promoter-driven reporter gene.

The nucleolar localization of hUBF can be exploited to test the
hijacking mechanism. hUBF can be detected in situ by immunostaining and
fluorescence microscopy. We have obtained the proper reagents to perform
these studies. If cisplatin adducts are diverting hUBF, then nucleolar
localization should be lost, and the staining should be evident throughout the
nucleus where the cisplatin adducts are localized. Fibrillarin is a nuclear
protein that most likely does not bind to platinated DNA and should retain
nucleolar localization upon cisplatin treatment; fibrillarin will serve as a
negative control in these studies. All of the aformentioned studies are being

pursued by Xiaoquan Zhai in our laboratory.

2. Does hUBF block the activity of DNA repair enzymes?

The repair blocking model can be tested by using purified UvrABC
proteins or mammalian cell extracts competent for DNA repair. In both
cases, DNA substrates damaged with cisplatin can be preincubated with an
excess of hUBF and then added to repair reactions. The UvrABC system is
more amenable to these studies because it contains only purified
components and is known to repair cisplatin G'G lesions. The repair of G'G
in mammalian extracts is inefficient and the effects of hUBF binding could be

below the limit of detection.

The host cell reactivation assay may also be of use in these studies.
In this assay, damaged plasmids expressing a reporter gene are transfected
into human cells, and the amount of repair can be assessed by measuring

the activity of the reporter protein. The validity of this assay is underscored
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by the inability of repair-deficient cell lines to express genes from damaged
plasmids. In these experiments, hUBF would be preincubated with damaged
plasmids prior to transfection, and the reactivation assay would be employed
to monitor repair. Several control experiments are necessary to show that

hUBF-bound plasmids are taken up by transfected cells.

3. Can cisplatin adducts substitute for rRNA promoter elements?

The results presented in this thesis show that hUBF binds to cisplatin
adducts and the UCE element of the rRNA promoter with near equal
affinities. In addition, the two footprinting patterns are similar suggesting a
structural homology between the complexes. These observations raise the
intriguing possibility that adducts can functionally substitute for sequence
elements. | propose experiments in which critical sequence elements of the
promoter are removed and replaced with cisplatin adducts. The various
constructs can be tested for promoter activity using the polymerase |

plasmids described above.

4. Structural studies

The DNase | footprinting pattern revealed some structural features of
[hUBF - G'G-100] complexes. The footprinting pattern on the unadducted
strand should also be determined, and other reagents, such as hydroxyl
radicals, can be used to give more detailed footprinting patterns.
Methylation protection assays may help elucidate if hUBF makes primarily
major or minor groove contacts. It is also of interest to see if a single HMG
box from hUBF can bind to the adduct and yield a DNase footprinting

pattern. The minimal DNA sequence length in the region flanking the adduct
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should also be determined. If the system is simplified by using only the
minimal protein and DNA regions required for binding, then it may ultimately

be possible to do detailed spectroscopic studies.
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VI. ANTISENSE RNA APPROACHES TO STUDYING THE FUNCTION OF
TWO CISPLATIN DAMAGED DNA RECOGNITION PROTEINS, HMG1 AND
SSRP1
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A. RESULTS

1. Transient expression of antisense HMG1 RNA in human cells

The role of human cis-DDP DRPs in mediating the genotoxicity of
cisplatin is not known. Cell lines that lack a particular cis-DDP DRP would
be valuable tools for addressing this issue. One method for reducing the
expression of genes is through the use of antisense RNA/DNA. This subject
has been discussed in a recent review paper (Stein and Cheng, 1993).
Antisense RNA is complementary to the normal cellular mRNA and most
likely disrupts protein expression by annealing to, and inactivating, the
mRNA. In this chapter, antisense RNA has been employed to study the role
of HMG?1 in cisplatin-mediated toxicity.

Several transient expression vectors were designed to study the effect
of antisense HMG1 RNA on human cells. In transient expression studies,
the vectors producing the antisense RNA were transfected into human cells,
and 24-72 hr later the cells were harvested and the protein of interest was
quantified. The plasmids constructed for these studies are shown in Figure
18 and are derived from the parental vector pcDNA1. The salient features
of pcDNA1 are as follows: (1) High level expression is driven by the
cytomegalovirus immediate early promoter and (2) the expressed RNA is
fused to a vector-encoded RNA sequence that contains an intron and a
polyadenylation signal. Splicing and polyadenylation may increase the
stability of the expressed RNA. CMV-rHMG1(AS) and CMV-rHMG1(S)
contain a 5'-truncated version of the rat HMG1 gene in either the sense or
antisense orientation, respectively. The 45 nucleotides at the 5’ end of the

rHMG1 cDNA (including the start codon) are absent in this construct. As a
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result, CMV-rHMG1(S) does not express HMG1. This deletion was
intentional since CMV-rHMG1(S) was designed to serve as a control for the
antisense vector and not as an HMG1 expression vector. CMV-hHMG1(S)
and CMV-hHMG1(AS) contain the -1 to + 179 region (one-third) of the
human HMG1 cDNA.

Human Hela cells were transfected with the sense, antisense, and
parental (pcDNA1) vectors by using electroporation’. After ~48 hr the cells
were harvested, extracts were prepared, and HMG1 levels were measured
by western blotting. The HMG1 levels in the antisense and control samples
were indistinguishable. In addition, no truncated HMG1 species were noted
in the sense sample that might have resulted from translational initiation at
internal methionine codons. Although electroporation is an efficient
transfection procedure, most of the cells that survive the procedure do not
take up and express exogenous DNA. If only 10% of the cells surviving the
transfection express antisense RNA, then HMG1 levels in the cell population
as a whole would appear unchanged. The transfection efficiency was
measured by electroporating HelLa cells with CMV-B-gal and staining the
cells jn situ for enzyme activity. The results of this experiment showed that
~15% of the cells were transfected. It was concluded that the transfection
efficiency was too low to detect antisense RNA-mediated reductions in
HMG1 levels.

An interesting effect was discovered serendipitously when CMV-8-gal
was cotransfected with the antisense HMG1 vectors. The antisense vectors

were transfected in a molar excess of CMV-$-gal to insure that all cells

"Prior to these experiments, the transfection procedure was optimized by using the
plasmid CMV-B-gal which expresses a useful reporter gene, f-galactosidase.
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expressing f-galactosidase were concomitantly expressing antisense HMG1.
The results of this experiment are in Figure 19 and reveal that 8-
galactosidase expression was reduced by 40% in cells transfected with the
antisense rat HMG1 construct. Expression of the sense RNA did not effect
enzyme production. This effect was reproducible and was also apparent,
albeit to a lesser degree, with the human HMG1 antisense construct. The
human vector encodes a smaller portion of the HMG1 gene and may not

inhibit HMG1 expression to the same extent.

2. Construction of Epstein-Barr virus based episomal vectors for the stable
expression of antisense HMG1 and SSRP1 RNA.

The goal of these studies was to create cell lines that constitutively
express antisense HMG1 or SSRP1 RNA. The aim was to obtain the highest
possible expression of antisense RNA to lower significantly the cellular levels
of HMG1 or SSRP1. Epstein-Barr virus (EBV) based episomal vectors are
ideal for studies that require stable, high level RNA expression. Vectors that
harbor an EBV replication origin maintain a high copy number (10-100
copies/cell) in cell lines that express the EBV nuclear antigen (Sugden et
al.,198b5). Dr. Bill Sudgen kindly provided an EBV-based vector that confers
hygromycin B resistance to transfected cells. The appropriate cell line for
these studies was the Raji Burkitt lymphoma line which expresses the EBV
nuclear antigen and thereby maintains EBV vectors as high copy number
episomes. In addition, this vector has a novel version of the CMV immediate
early promoter that is ~ 10-fold stronger than commonly used CMV-based

promoters (Bill Sugden, personal communication).

Several EBV-based vectors were constructed from the parental
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plasmid (EBV-B108) that was provided by Dr. Sugden (Figure 18). EBV-SPA
was constructed by subcloning the polylinker, splice, and polyadenylation
sequences from pcDNA1 into EBV-B108. EBV-SPA served as the parental
vector for all future constructions. The 5’-truncated rat HMG1 sequence
described in the transient assays discussed above was subcloned in both
orientations into the polylinker of EBV-SPA. These vectors are named EBV-
rHMG1(S) and EBV-rHMG1(AS).

It was also of interest to lower the cellular levels of the human SSRP1
protein. SSRP1 is a c/s-DDP DRP that was cloned and sequenced through
the collaborative efforts of several individuals from our laboratory and that of
Dr. Lippard (Toney et a/.,1989; Bruhn et a/.,1992). The normal cellular
function is unknown, and the antisense approach was intended to elucidate
the role of SSRP1 in the genotoxicity of cisplatin. The 5’ EcoRI fragment of
the SSRP1 cDNA (position - 174 to +447)% was subcloned into EBV-SPA in
both orientations. These vectors are named EBV-SSRP1-5'(S) and EBV-
SSRP1-5’(AS).

3. Stable expression of HMG1 antisense RNA

Raji cells were transfected with either EBV-rHMG1(AS), the cognate
sense construct, or the parental vector EBV-SPA. Forty eight hr post
transfection the cells were diluted into selective media containing 200 ug/ml
hygromycin B. For each transfection, the cells were selected as pooled

clones or plated at limiting dilution in 96 well dishes to facilitate the isolation

8This EcoRl fragment contains the 5° 20% of the SSRP1 coding sequence
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of clonal cell populations. Twelve days after plating in selective media an
unusual effect on survival was noted. The concentration of viable cells in
the pooled clone population was much lower in the samples transfected with
EBV-rHMG1(AS) and (S) than in the EBV-SPA sample. Surviving cells were
not found in a control sample that was transfected with a vector lacking the
hygromycin B resistance gene. This result indicated that expression of the
rHMG1 cDNA in either orientation leads to significant toxicity. Clone
formation in the 96 well dishes also reflected the putative toxic effect of
HMG1 RNAs: the sense and antisense constructs yielded only 3-8% and
15-33% of the clones obtained with EBV-SPA, respectively (Table 1). This
effect was reproduced in four transfections with different plasmid
preparations, and the pattern of survival was consistent: EBV-

SPA> >rHMG1(AS) >rHMG1(S).

Cell populations derived from pooled or individual clones were
harvested and crude extracts and poly A* RNA were prepared. Western
blotting revealed that the antisense and control cell lines expressed similar
levels of HMG1. A total of 29 cell lines was examined, including 12 that
harbored the antisense episome. The expression of truncated HMG1 species

was not detected in cell lines harboring the sense HMG1 construct.

4. Stable expression of SSRP1 antisense RNA

Raiji cells were transfected with EBV-SSRP1-5'(AS) and the two
control vectors, and selected in hygromycin B as above. As with the HMG1
constructs, a toxic effect of the SSRP1 constructs was noted, albeit less
severe. The sense and antisense plasmids yielded 80% and 45% of the

clones obtained with EBV-SPA (Table 2). This transfection was perfomed
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only once, but there was good agreement between the duplicate
transfections, and the survival values obtained for the pooled and isolated

clone populations were in agreement. The pattern of relative survival can be
summarized as EBV-SPA >SSRP1-5(S) > >SSRP15'(AS).

The levels of SSRP1 in the cell lines harboring the antisense and
control episomes was compared by western blotting. A total of six
antisense SSRP1 cell lines were examined, four derived from isolated clones
and two derived from pooled clones. The level of SSRP1 in these cell lines
was indistinguishable from the level observed in control lines harboring the

sense or parental episome.
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Figure 18. Antisense RNA plasmid constructs
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Figure 19. Antisense HMG1 RNA inhibits g-galactosidase activity. A
reporter gene construct construct, pCMV-B-galactosidase, was cotransfected
with vectors expressing rat HMG1 RNA and a control construct (pcDNA1).
Enzyme activity was measured after 35 hr and is reported in arbitrary units.
pcDNA1, parental control vector. CMV-rHMG1(S), sense rat HVIG1 RNA.
CMV-rHMG1(AS), antisense rat HMG1 RNA.
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Table 1. Transfection efficiency of EBV constructs expressing rat HMG1

RNAs

Wells with Hyg" | Wells with Hyg" | Relative

PLASMID clones clones transfection
(100 cells/well) (1000 cells/well) | efficiency

EBV-SPA 14/96 96/96 100%
17/96 96/96

EBV-rHMG1(S) | 0/96 42/96 <5%
1/96 76/96

EBV-HMGT(AS) | 3/96 96/96 16%
2/96 96/96

Table 2. Transfection efficiency of EBV constructs expressing human

SSRP1 RNAs

Wells with Hyg" | Wells with Hyg" | Relative

PLASMID clones clones transfection
(100 cellis/well) (1000 celis/well) | efficiency

EBV-SPA 78/96 96/96 100%
85/96 96/96

EBV-SSRP1-6S) | 73/96 96/96 81%
78/96 96/96

EBV-SSRP1-SAS) | §6/96 96/96 46%
42/96 96/96
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B. DISCUSSION

1. Antisense HMG1 RNA inhibits the expression of a reporter gene

Transient transfections in Hela cells showed that the expression of a
reporter gene, B-galactosidase, was reduced when an antisense HMG1
construct was cotransfected (Figure 19). This phenomenon resulted from a
specific antisense RNA-mediated event since control transfections with the
cognate sense construct had no effect on B-galactosidase expression.
Presumably, reduced HMG1 levels negatively affected the expression of the
reporter gene. Unfortunately, the low transfection efficiency achieved in this

experiment precluded this hypothesis from being tested directly.

Three models are proposed to explain the reduced-expression
phenomenon. First, reduced HMG1 levels may be toxic to transfected cells,
and dead or dying cells would not express a cotransfected reporter gene
with high efficiency. This model is not consistent with the data, described
above, of the stable transfection experiments that employed EBV vectors. In
these studies the sense HMG1 construct was more toxic than the antisense
construct. Hence, if toxicity were involved then the sense construct should
have caused the reduced-expression effect as well. However, it may not be
reasonable to compare the transient and stable transfections directly since
the time scales and the DNA constructs differed in the two systems. A
second model proposes that HMG1 facilitates the transfer of the reporter
gene construct from the cytoplasm to the nucleus, where transcription
occurs. Reduced HMG1 levels would negatively affect reporter gene
expression because nuclear targeting would be diminished. There is

evidence in the literature to support this model. To give one example,
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liposome-mediated cell transfections are more efficient if HMG1 is mixed
with the reporter gene construct (Kaneda et a/.,1989). The authors
speculated that HMG1 binds to the plasmid DNA and acts to facilitate its
nuclear localization. A third model proposes that HMG1 is a general
transcription factor. In this case reduced HMG1 levels would have a globally
negative effect on transcription. There is indeed evidence to suggest that
HMG1 has a general role in transcription as evidenced by the observation
that antibodies against HMG1 reduce transcription in vitro (Singh and Dixon,
1990). Additionally, HMG proteins 14 and 17 interact preferentially with
nucleosomes containing actively transcribed sequences (Einck and Bustin,
1985).

2. HMG1 RNAs are toxic to Raji cells

Vectors expressing sense or antisense HMG1 RNA were toxic to Raji
cells. Interestingly, the sense RNA was significantly more toxic than the
antisense RNA. Antisense-mediated toxicity was not surprising since HMG1
is likely to have a critical cellular function. In support of this hypothesis, the
yeast homolog of HMG1 is essential for viability (Haggren and Kolodrubetz,
1988). The sense RNA has a 45 N deletion that encompasses the initiation
codon; as a result the full length HMG1 cannot be expressed. It is possible
that truncated HMG1 species were produced from translational initiation at
internal methionines. HMG1 deletion mutants may have a dominant-
negative effect on the function of normal cellular HMG1. In one possible
scenario, HMG1 mutants would effectively compete with wild type HMG1
for DNA binding but would not be able to execute a critical subsequent
function. This model seems feasible since an internal methionine codon is

near the 5’ end of the truncated sense RNA. A caveat is that truncated
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HMG1 species were not evident in cell lines harboring the sense construct.
A similar lack of truncated products was noted in Hela cells transiently

transfected with sense HMG1 plasmids.

It is noteworthy that several hygromycin B-resistant clones were
isolated that harbored the HMG1 sense or antisense constructs. These cell
lines had normal HMG1 levels and did not appear to express truncated
HMG1 species. Since expression levels can vary widely from clone to clone,
it seems most likely that the "interesting" clones expressing high levels of
antisense RNA or truncated HMG1 species were lost from the population. A
similar effect has been reported previously with EBV vectors that express a
toxic gene product (Hammerschmidt et a/.,1989). These results suggest
that HMG1 has an essential function. Antisense studies are still possible but
will require new strategies and plasmid constructs (refer to the Future

Experiments section).

3. SSRP1 may be an essential gene product

A 50% reduction in survival was noted with a vector expressing
antisense SSRP1 RNA. By contrast, the sense RNA was minimally, if at all,
toxic. The toxic effect of antisense SSRP1 RNA was evident in duplicate
transfections within a single experiment, but the experiment should be
repeated to substantiate this observation. Cell lines harboring the antisense
episome expressed normal levels of SSRP1, suggesting that the SSRP1-
deficient cell lines may have been lost from the population. It is also
possible, however, that the antisense SSRP1 RNA may not reduce SSRP1
levels. The construct used in these studies expresses only 20% of the

SSRP1 coding region. Perhaps a longer antisense RNA is required for
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inhibition of SSRP1 expression.

The function of SSRP1 is unknown, but the results reported here
suggest that whatever that function may be is critical. The mouse homolog
of SSRP1 binds to V(D)J recombination sequences suggesting a possible role
in gene rearrangement or recombination (Shirakata et a/.,1991). It is unclear
if V(D)J binding is specific or fortuitous. In my opionion the binding is
fortuitous since most HMG proteins bind promiscuously to a variety of DNA
sequences and structures. In addition, SSRP1 mRNA is ubiquitously
expressed and does not have tissue specificity. This argues against a
specific role in V(D)J recombination but does not rule out a more general
function in recombination. A possible role of SSRP1 in transcriptional
regulation has also been suggested. The chicken homolog of SSRP1 was
shown to recognize an enhancer sequence in the collagen Il gene (Wang et
al.,1993). Although this is an interesting result, it does not demonstrate a

role in transcriptional regulation.
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C. CONCLUSIONS

It appears that HMG1 has an essential function in human cells.
Expression of a truncated sense or antisense version of the HMG1 RNA
resulted in significant toxicity. These experiments did not reveal how the
sense RNA mediates toxicity, but a dominant negative effect has been
proposed. In addition, a general role for HMG1 in transcription was
suggested in transient transfection studies; antisense HMG1 RNA inhibited
the expression of a cotransfected reporter gene. The role of HMG1 in

cisplatin-mediated toxicity remains elusive.
The studies with SSRP1 antisense RNA were less complete but

suggested that this gene may also be essential. The cellular function of

SSRP1 as well as its role in cisplatin toxicity remain a mystery.
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D. FUTURE EXPERIMENTS

The antisense studies should be performed with inducible promoters,
which may allow the toxicity problem to be circumvented. One of the
problems associated with the transient transfection studies is the low
transfection efficiency in that only 15% of the cells surviving the
transfection procedure take up and express a reporter gene construct. It
would be of use to isolate the transfected cells. If the antisense plasmids
are cotransfected with the B-galactosidase construct, then fluorescence
activated cell sorting may facilitate the isolation of a homogeneous cell

population consisting of transfected cells.
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