
The Influence of Morphology on Polyurethane Foam

Heat Transfer

by

Jeffrey Stewart

B.S.E.Sci., Penn State University (1992)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1994

© Massachusetts Instittute of Technology, 1994. All Rights Reserved.

Author ......... ........... ......................... ......................
Department of Mechanical Engineering

January 14, 1994

Certified by ........................................ ........ .................................
Professor Leon R. Glicksman

Department of Mechanical Engineering
Thesis Supervisor

A ccepted by ................................................................................
Profesor Anin Sonin

C airman, Graduate Tliesis Committee
Dkartmtnent of Mechanical Engineering

MAR0899ITS INSft en

MAR 08 1994 E





The Influence of Morphology on Polyurethane Foam Heat Transfer
by

Jeffrey Stewart

Submitted to the Department of Mechanical Engineering on
January 14, 1994, in partial fulfillment of the requirements for the

degree of Master of Science in Mechanical Engineering

Abstract

To better understand the impact of foam structure on heat transfer, the geometry of
polyurethane foam is analyzed. Specifically, means to measure and characterize
parameters that affect solid and radiative conductivity are developed. The predicted
thermal conductivity based on measured morphology characteristics are compared to
measured thermal conductivities for a series of foams. In conjunction with these
comparisons, parameters of solid polyurethane that affect radiative conductivity are
analyzed.

A two-dimensional solid conductivity program is presented to calculate the solid
conductivity given Scanning Electron Microscope or confocal microscope images of the
foam. The increase in solid conductivity due to anisotropy is apparent in results from this
program.

From measured intercept area distributions, the actual cell size distribution is
calculated. For each of the small celled foams, the distribution is narrow, close to the
mean intercept length. From numerical analysis of extreme cell segregation, less than
11 % error in the extinction coefficient calculated from the mean cell diameter is expected
due to cell size distribution.

A means to measure the fraction of solid in the strut from strut cross sectional areas is
derived. For the small-celled foams analyzed, the fraction of solid in the strut decreases
from0.67 to 0.34 as mean cell diameter decreases from 0.363mm to 0.109mm. Smaller
celled foams blown with HCFC-141b and perfluoropentane show a redistribution of
polymer from the struts to the cell walls as cell size decreases.

Predictions of total conductivity from morphology measurements and transmission
measurements agree within 11% to measured total conductivities for six small-celled
foams. Redistribution of polymer from the struts to the cell walls and large blowing agent
conductivities account for the lack of thermal improvement with smaller cell sizes even
though the radiative conductivity decreases from 1.96mW/mK to 1.12mW/mK.

Thesis Supervisor: Leon R. Glicksman
Title: Professor, Mechanical Engineering
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Chapter 1

Introduction

1.1 Background
Closed cell polyurethane foam is used extensively in the appliance and roofing

industry as a thermal insulant because of its low thermal conductivity compared to other

conventional insulating systems. Thermal conductivity is a measure of the insulating

ability of the material, with lower thermal conductivity indicating the better performing

insulant. It is a ratio of the thermal flux across a material to the applied temperature

gradient. The thermal conductivity of freshly made closed cell foam insulation is roughly

half that of fibrous or cellular glass insulation [1].

The insulating ability of closed cell foams derives from the large fraction of trapped

low-conductivity gas. That is, high molecular weight gases such as CFC-11 are trapped in

pockets or cells as the foam is formed. The thermal conductivity of such gases is typically

a third of the conductivity of air [1]. Then, since these gases comprise a large volume

fraction of the foam, the conductivity of the foam can be as much as one-half the

conductivity of low density fibrous insulation.

In the past the recommended trapped gas, or blowing agent, has been CFC-11.

However, there is now great concern over the destructive influence that CFC-11 has on the

Earth's ozone layer. In response, governments and industry have called for the use of

alternative blowing agents that exhibit similar thermal properties as CFC-11 without the

environmental impact. Unfortunately, CFC-11 has the lowest thermal conductivity of

most known blowing agents. As a result, foams blown with alternative gases such as

HCFC-141b, CO2, or HCFC-123a will not exhibit the same insulating ability as CFC-11.

The purpose of research that has been underway at MIT since 1982 is to consider other



modes of heat transfer in the closed cell foams and develop means to reduce these modes.

Ideally, the loss in foam insulating ability due to alternative blowing agents can be offset

by reducing other modes of heat transfer.

1.2 Literature Review and Objectives
There are three modes of heat transfer in closed cell polyurethane foams. One mode is

conduction across the gases trapped in the foam cells. The second is conduction through

the solid polymer surrounding the trapped gas, the cell walls and strut-like members that

define the outline of the cells. These will be described in further detail in Chapter 2. There

is also radiation across the foam. Gas conduction comprises roughly 40% to 50% of the

total with radiation and solid conduction contributing to the balance in roughly equal

proportions.

In the past, models of heat transfer based on simplified geometries were developed.

However, these neglected radiation and generally underestimated the total heat transfer

because of it. Some of the earlier inclusions of radiation in the heat transfer model by

Doherty et al. [2] and by Skochdopole [3] modeled radiation by treating cell walls as

series of opaque plates with separation distances of the order of the cell diameter. Treating

cell walls as opaque plates again seriously underpredicted the total heat transfer. The cell

walls are in actuality highly transparent as was shown by Glicksman et al. [4] who

measured the transmissivity of foam cell walls 1.5gm thick, still three times thicker than

most conventional cell walls. As can be seen in figure 1.1 even this section is highly

transparent. Williams and Aldo [5] included the effects of transparent cell walls, but

ignored the effects of the struts, the thick linear elements resulting from the intersection of

three cell walls. The struts, as shown later in work by Glicksman and Torpey [6] dominate
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Figure 1.1: Transmission of Radiation Through Polyurethane Cell Wall 1.5nm Thick

the radiative process accounting for most of the absorption. Glicksman and Torpey [6]

modeled the total heat transfer in foams including the effects of transparent cell walls and

blackbody struts on radiation. Glicksman et al. extended this relation [7] to account for

the effects of cell wall absorption.
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From the work of Glicksman et al [7], it was proposed that a reduction in foam cell

size, the size of bubbles encompassing the trapped gas, reduces the radiative conductivity

as well as the overall conductivity. Unfortunately, the overall conductivity of some small

celled foams produced by ICI Polyurethanes have not shown the expected decrease in

overall conductivity. The purpose of this research therefore was to further examine the

model as well as to characterize the small celled foams measured and account for the lack

of thermal improvement with reduced cell size. The objectives of this work are threefold.

The first goal is to accurately characterize the microscopic geometry of the foam, such

parameters as cell size, cell size distribution, the distribution of solid in the cell borders,

and cell anisotropy. The second goal is to determine how changes in these geometric

parameters, or in the morphology, affect the conductivity components in the foam.

Specifically, is the overall conductivity of the foam reduced by some changes in the

morphology? The final purpose is to further explore methods that characterize the solid

and radiative conductivity components. Since most measurement techniques either

interfere with the conductivity environment or are incapable of extracting individual

components, calculation of solid or radiative conductivity now requires combinations of

optical and thermal measurements and use of models to characterize the solid or radiative

conductivity. There is a need therefore for a technique to directly describe either radiative

or solid conductivity.



Chapter 2

Heat Transfer Model

2.1 Conductivity Components
There are three mechanisms of heat transfer through polyurethane foam: conduction

through the gases trapped in the foam cells, conduction across the solid polymer enclosing

the cells, and radiation across the foam. Gas conductivity is the largest contribution being

usually 40-50% of the total for foams filled with low conductivity gases. Natural

convection does not play any significant role until the foam cell sizes reach about 4 or

5mm, roughly ten times larger than the typical foam cell size [1].

Except in cases where low emissivity boundaries are used, past work by Glicksman et

al. [8] have shown that ignoring coupling between the heat transfer components provides

an accurate description of heat transfer. That is, each conductivity component can be

considered separately, and simply added to account for the total conductivity across the

foam.

dT
q = -k dT (2.1)total = foam dx

k k + k + k (2.2)foam solid gas radiation



It will be shown later that the radiative process for optically thick media like polyurethane

foam will act as a diffusion process and there is an effective expression for the radiative

conductivity (kradiation).

2.2 Foam Morphology
The foam structure, or morphology, has a great impact on the heat transfer properties.

Relationships between thermal conductivity and some of the most important

characteristics, such as the void fraction, the mean cell diameter, the anisotropy of the

cells, and the fraction of solid in the strut, have been formulated in past work at MIT and

are presently being examined.

The void fraction, or porosity, is the fraction of total foam volume occupied by

trapped gas. In terms of densities of the solid polymer (Ps), of the ambient air (Pa), of the

trapped gas (pg), and of the foam (pf), the void fraction is

Pa - P 9

For low density foams, expression 2.2.1 can be simplified

S= 1 - Pf (2.4)
PS

The shape and size of the cells defining the foam are of great importance in

determining the conductivity components. Some emphasis has been placed on defining

the shape of the cells [9,10]. Rather than being spherical in shape, polyurethane cells are

better described by regular polyhedra. Reitz [11] has shown that the shape of



polyurethane foam cells can be accurately defined by a pentagonal dodecahedron which is

shown in figure 2.1.

cell walls

Figure 2.1: Pentagonal Dodecahedron Foam Cell Shape

Several measured and statistical quantities could be termed the cell diameter.

However, the cell diameter used should be one that relates the physical properties of the

foam to the heat transfer process. As will be shown in Chapter 4, for radiative

conductivity this physical property is the surface area to volume ratio of the foam. As

described in Quantitative Stereology [12], the cell diameter is a quantity related to the

surface-to-volume ratio



3.46
d = (2.5)

This mean cell diameter is displayed in figure 2.1. It relates the true number of particles

per unit volume (Nv) to the number of particles per unit area (NA) when the foam is

intersected by a section plane[12].

NA =NVd (2.6)

Underwood also calls it the mean projected height for a system of particles [12]. This

terminology stems from the derivation of equation 2.6 which is given in Appendix A. It

relates spatial quantities and planar quantities when a system of cells are intersected by

random test planes. For spherical particles, it is the mean sphere diameter.

Another important parameter in describing the heat transfer process is the distribution

of the solid polymer through the foam. As represented in figure 2.1, the solid surrounding

the cell can be thought of as divided between two regions. The solid region that separates

two cells, the cell walls, is in many cases approximately a constant thickness region on the

order of lgm. The second region is where three cells intersect. There is a thickening of

the walls in this region resulting in much thicker rodlike regions called struts. These two

regions influence both conduction through the solid polymer and radiation in different

ways. Therefore it is worthwhile to describe the fraction of material in the struts and the

fraction in the cell walls. For typical CFC-11 blown foams of diameter greater than

0.3mm, the strut mass fraction (fs) is usually on the order of fs=0.8. For phenolics and

HCFC blown polyisocyanerate foams, Page [13] found the strut mass fraction to be closer

tofs=0.6.



A final parameter that has an important influence at least on the conduction through

the solid polymer is the degree of anisotropy of the foam cells. For most polyurethane

foams, there is a preferred rise direction when the foam is blown. This results in cells with

an elongated axis with the other axes being isotropic as in figure 2.2. This anisotropy can

be included in the heat transfer model with the term relating the major to minor axes, a/b.

Figure 2.2: Major and Minor Axes Used to Describe Cell Elongation

2.3 Gas Conductivity
Of the three conductivity components, the gas conductivity is the largest component.

It is an intricate quantity in that not only do the physical properties of the component gases

present have to be accurately considered, but the effects of diffusion of the blowing agent

out of the cells and diffusion of air into the cells have to be considered to determine the

gas concentration distribution. Since the emphasis of this work is the solid conductivity

and radiation properties of small-celled foams, the Lindsay Bromley expression was used

to calculate the gas conductivity as a function of the local gas concentration. It is an



expression that has been found to be accurate to within 5% of experimental values for gas

mixtures containing CFC [1]. Therefore, the gas conductivity is described by

kgas = 8kmix

where

N

kmix

i= 1

Yikgi
N

SyjAij
j=1

(2.7)

(2.8)

1
A.. -IJ 4 1+

S i 1/2 2 S

i M 3/4 (1 + -) (1+ )

1 - M S. SiS(1+ ) (1+T T
Sij = (1. 5 Tbi) (1. 5 Tbj)

yi is the molar fraction of the ith component,

N is the number of components,

kgi is the thermal conductivity of the pure ith component,

gi is the viscosity of the pure ith component,

Mi is the molecular weight of the pure ith component,

(2.9)

(2.10)



T is the absolute temperature, and

Tbi is the absolute boiling temperature of the ith component at 1 atmosphere pressure.

2.4 Solid Conductivity
Solid conductivity for typical polyurethane foams accounts for roughly 25% of the

total heat transfer. Therefore, considerable effort in the past has been placed on relating

this conductivity component to the foam morphology [14,15,16]. Modeling struts as rods

randomly oriented in three dimensions, Schuetz [14] determined the solid conductivity

due to struts in an isotropic foam to be related to the morphology as

ks- struts - fs (1 - 8) (2.11)

Similarly considering random plates in three dimensions, Schuetz determined the solid

conductivity due to the cell walls in an isotropic foam to be

2
ks - cw - kp ( -fs) (1 - 8) (2.12)

where kp is the solid polymer conductivity (kp=0.263 W/mK), fs is the mass fraction of

solid material in the struts, and 8 is the void fraction of the foam. These expressions are

upper limits for the conduction heat transfer; lower limit expressions for the conductivity

differ by less than 20% percent [1]. The solid conductivity model was then modified to

account for anisotropy [1]

k= 3 kp 2(1-fs ) () 1/4+f (2.13)s 3 PI)( sf



2.5 Radiative Conductivity
In addition to conduction through the solid and trapped gas, there exists radiative heat

transfer through polyurethane foam. The situation is simplified in that foams are highly

absorbing material. It will be shown that this will reduce the radiative process to a

diffusion one, yielding an effective radiative conductivity similar to solid and gas

conductivity.

Consider radiation incident upon a thin slice of polyurethane foam of thickness dx as

in figure 2.3. The decrease in spectral radiant intensity passing through this thin slice is

related to a parameter known as the extinction coefficient (K?). The extinction coefficient

provides a measure of the amount of attenuation of radiant energy within a material. The

attenuation of incident radiant energy is

dix = -Kxixdx (2.14)

differential element of foam

iX(x)

di)

dx

iX(x+dx)

Figure 2.3: Radiant Energy Incident Upon Differential Thickness of Foam



As long as the medium is homogenous so that K) does not vary with position and the

medium is cold so that it emits negligible radiation, this expression can be integrated to

yield

ix(L) -KxL
- e (2.15)

iko

for a thickness L of foam. Here, iX0 is the intensity of radiation incident on the foam

sample. The ratio of intensity to incident intensity is also the transmissivity, or t1 , of a

specimen of foam of thickness L.

The extinction coefficient can also physically understood as the reciprocal of the mean

free path length of a photon of energy, or the average distance a photon of energy travels

in the material before being absorbed, lmf. The extinction coefficient can also be

understood as the sum of coefficients that express distinct modes of attenuation. These are

the absorption coefficient a, and the scattering coefficient o,. The absorption coefficient

describes attenuation of energy due to the material absorbing the energy. The scattering

coefficient accounts for energy that is redirected or scattered out of the path of radiation.

So the extinction coefficient can also be understood as

KX = ah + G (2.16)

The nondimensional optical thickness of a material T2 is the thickness of the material

times the extinction coefficient

, = KL (2.17)



The optical thickness can be viewed as the ratio of material thickness to photon mean free

path. (T2=L/Imf). For an optically thick material (t2>>1), the diffusion process described

below is applicable.

2.6 Radiative Equation of Transfer
In an optically thick medium, radiant energy emitted within an area is reabsorbed and

reemitted by the surroundings. In this way, although direct radiation incident upon a

sample of foam is absorbed within the first millimeter of foam, the radiant energy

propagates through the foam in infinitesimal increments of absorption and reemission.

One only needs to look at a differential element to describe the radiative process, reducing

the integro-differential equations of radiation to differential ones and the properties

affecting the radiative process to local ones.

With true optically thick material with negligible phonon conduction and steady state

one-dimensional radiation flux across it, a linear T4 profile across the foam results as in

figure 2.4. Similarly, since ib is proportional to T4 , a linear profile in the black body

intensity of emitted radiation results. That is

lb = Cox (2.18)



T4
or
lb

Figure 2.4: T4 (or ib) Profile in Optically Thick Material

Now at any point x,

di
- -Ki+Ki b (2.19)

dx

where i is the intensity at x, K is the extinction coefficient of the foam, and ib is the

blackbody intensity at x. Combining equations 2.18 and 2.19 and integrating,

1
i (x) = ib (- ) = ib (x- lf) (2.20)

Along any path, the intensity at a point x is equal to the blackbody intensity at one mean

free path upstream of x (see figure 2.5).



Imf

i(x)

ib(x-lmf)

Figure 2.5: Intensity at Location x in Absorbing Media (Foam)

Consider the flux crossing a plane A as shown in figure 2.6. The net flux crossing this

plane is

qR = qR (+x) - qR (-x) (2.21)

where

Figure 2.6: Radiant Flux at Any Plane x in Optically Thick Medium

qr



= i+ (0) cos(0)dw
+()

= i_ (0) cos (0) do
-0)

Equation 2.21 then becomes

qR= i+ (0)
+0)

cos (0) do - fi(O) cos (0) dw

From equation 2.20, i_(O) and i+(O) can be written

i+ () = ib (x - lmf)

i_ () = ib (x +l Imf)

(2.25)

(2.26)

respectively. Expanding ib(x) using Taylor series expansion limiting this to the first three

terms,

2x
2

dib
ib ( x )  = ib (O ) +x(--) X=x = 0

dx2 (2.27)

and realizing that x+ and x_ are respectively

cos (0)
x =+ K (2.28)

qR (+X)

qR (-X)

(2.22)

(2.23)

(2.24)



cos (8)
x= 

K

Then i+,() and i_(0) are

cos (0)
i+ () = ib(O) K-

dib

dx-
1 cos () 2

x=O 2 K

cos (0)
i_ (0) = ib (

0 ) + K- b K
dib

dx =O
x-

1
2

cos () 2 d2 b
( K ) d 2j

x

Substituting these expressions into equation 2.24, assuming K does not vary with 0, and

integrating yields

[ ib (0) 1 dibqR2 3K dx x=-1 2 3K dx x=O
C 2i, d

8K dx2 X= 0

ib (0) 1 dib

2 3K dx x=o 8K dx2 x= }

(2.32)

47t dib
qR = 3KR dx

4 deb
3KR dx

4 d(c T 4)
qR 3 KR dx

16y3 dT
R= 3 KR dx

(2.29)

2
dx x-0

(2.30)

(2.31)

=0

(2.33)

(2.34)

(2.35)



This is the Rosseland diffusion equation for isotropic media which holds for nongray

media if KR is defined as the Rosseland mean extinction coefficient or

1 1 eb,
b d (2.36)

KR KX (k) (. eb
0

The Rosseland mean extinction coefficient weighs spectral attenuation by the amount of

blackbody energy at that wavelength compared to the rest of the spectrum. This definition

derives from

1 deb f1 deb (2.37)
KR dx K dx

debX deb deb

Using the chain rule defining dx deb , recognizing that debdx isdx deb dx
independent of wavelength and can be removed from both sides of the equation, the

expression for the Rosseland mean extinction coefficient results. So an effective radiative

conductivity term kr can be defined

k 16 7 (2.38)
r  

3 KR

and added to the solid and gas conductivity component terms to yield an effective thermal

conductivity of optically thick polyurethane foams. For more explanation of radiative



heat transfer in absorbing/emitting/scattering media, the reader is referred to Thermal

Radiation Heat Transfer[17].

2.7 Morphology Impact on Extinction Coefficient
To judge the impact of foam structure on radiative conductivity, consider first the

impact of strut regions on radiative conductivity then the impact of the cell wall regions.

The reader is referred to [1] and Torpey [16] for the original derivations.

For the struts, consider randomly oriented members with a cross section as in the SEM

photograph in figure 2.7. Torpey [16] found the strut cross-sectional area to be roughly

2/3 the area of the enclosing triangle of side a shown in the picture, or 0.29a 2 . For such

randomly oriented linear elements, the extinction coefficient can be expanded as,

K = CLvQ (2.39)



Figure 2.7: SEM photograph of Strut Cross Section

where C is the strut projected area per unit length, Lv is the strut length per unit volume,

and Q is the efficiency factor. The efficiency factor is the ratio of the effective cross

sectional area for extinction of radiation to the geometric cross sectional area. For larger

celled foams, the efficiency factor has been found to be close to unity [16] as it would be

for blackbody elements where the dimensions are much greater than the wavelength of

energy (,). It is a parameter that will be more closely examined in Appendix H for

35



smaller celled foams. With the strut axis normal to the direction of heat transfer

propagation, the strut projected area per unit length is

3
C = -a = 0.955a (2.40)

To express the length-to-volume ratio, a cell shape has to be assumed. For the

pentagonal dodecahedron with each strut shared by three cells, Lv can be expressed as

8.62LV = (2.41)
V d2

where the cell diameter is related to the surface-to-volume ratio as described in equation

2.5.

To account for random orientations of struts, rather than all being aligned in the heat

transfer direction, the projection of the length-to-volume ratio in the heat transfer direction

is used, after averaging over all possible alignments one obtains,

L = Lv (2.42)

The strut mass from strut volume considerations can be related to the mass from

overall density considerations or

0.29a2 LpV = fsPfVf (2.43)

which can be rearranged to express the strut edge length a in terms of measurable

properties of the foam



a = (2.44)
0.29LV

So combining expressions 2.40, 2.41, 2.42, and 2.44 into equation 2.39 yields the strut

contribution to extinction coefficient as a function of foam geometry

4.10 0sP/Ps
K Q (2.45)

The cell wall contribution to the extinction coefficient can also be expressed in terms

of the morphology of the foam and in terms of the extinction coefficient of the solid

polyurethane polymer K,. For a detailed description of the derivation of the impact of

morphology on the cell wall extinction coefficient, see [18]. In the optically thin limit

(Kwtcw<<l where tcw is the cell wall thickness) neglecting reflections at the gas/cell wall

interface, the homogeneous extinction coefficient is

KH= -f) f(2.46)

where the term in brackets is the ratio of volume occupied by the cell walls to the total

foam volume. The term homogeneous extinction coefficient means the hypothetical

extinciton coefficient of a homogeneous material occupying the same volume as the foam

with the same attenuation as the collection of cell wall. In the optically thick limit

(Kwtcw>>1), radiation originates from neighboring cells and the emissive power incident

on a cell can be expanded using a Taylor series [1]. For isotropic cells ignoring reflection

and scattering and assuming cells to be pentagonal dodecahedrons, the extinction

coefficient can be expressed in terms of the geometry as



-2Kt3.46 1 - e
K - (2.47)

d + e- 2 Kwt

where the cell wall thickness is

(1 -jfs) Pdt = (2.48)
3.46p s

As the optical thickness approaches the optically thin limit, equation 2.47 yields the same

results as equation 2.46.

The extinction coefficient for foams with optically thin cell walls can therefore be

expressed in terms of the morphology. The extinction coefficient is the sum of the

extinction coefficient due to the struts plus the extinction coefficient due to the cell walls

or

K = Kstruts + Kcell walls (2.49)

4.10 sP/Ps ( -fs)Pf
K= Q+ LK (2.50)d p w

Parameters such as cell size, the solid polymer extinction coefficient, and fraction of

solid in the strut will be analyzed in greater depth in Chapter 4. Methods to measure these

parameters will be explored and the impact of varying these on the foam conductivity will

be shown as well as the results predicted by equations 2.36, 2.38, and 2.50.



Chapter 3

Solid Conductivity and Morphology Influence

3.1 Attempts to Model Solid Conductivity
Two methods to obtain the contribution of the solid conductivity were considered. The

first consists of modeling the two-dimensional solid conductivity from actual foam

geometries with a system of linear equations. The development, implementation, and

results of this approach is described in the next few sections. The second method is based

on measuring the electrical conductivity across the foam and relating this to the solid

conductivity. This technique will be described in Sections 3.11 through 3.15.

3.2 Solid Conductivity Matrix Theory
If one were to cut a volume of foam with an imaginary section plane parallel to the

heat transfer direction, a section plane would appear with solid borders connecting nodal

intersections (see figure 3.1). These solid borders could be either cell walls or struts that

are intersected by the test plane. The nodes are where cells intersect. For this matrix

program, locations where borders intersect y=O or y=Ay are also defined as nodes,

boundary nodes. That is, as in figure 3.2, border b does not intersect another border at y=O

but instead extends below y=O. The boundary node n is defined at y=O as shown in the

figure. When boundary conditions are imposed, something will be said of the temperature

at these border nodes which will allow one to solve for the solid conductivity. Of course

when an actual intersection of borders occurs at y=O or at y=Ay, this intersection will also

be treated as a boundary node.

The resulting section gives an accurate picture of the foam morphology in two

dimensions. On this section plane, the solid conductivity would follow the tortuous path

of solid borders from the higher temperature boundary to the lower temperature boundary.



And although this is a two dimensional representation of the three dimensional picture,

this should give a fair indication of solid conduction in the foam and of the influence of a

preferred rise direction as long as the section is aligned with the temperature gradient.

3.3 Conductivity Matrix Equations
To solve for the full conductivity in the section plane, first look at how heat flows

across the borders, which again can be either cell walls or struts intersected by the test

plane. A solid border connecting nodes i and j is shown in figure 3.3. Neglecting

interaction of solid conduction with radiation heat transfer and gas conduction, heat

transfer along this strut would then be

k.jAi (T -T T.)
q L = (3.1)

ij

where

kij = conductivity of solid member, i.e. kpolymer (W/mK)

Ti,T j  = temperature at nodes ij (K)

Lij = length of solid border (m)

qij = heat transfer from node i to node j (W)

Aij = two-dimensional cross-sectional area

which is the thickness of the border times

unit depth for two dimensions (m2
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(a) volume of cells intersected by section plane
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Figure 0.1: Section Plane Yielding Two-Dimensional Geometry Used with Solid
Conductivity Model



y=O

Figure 0.2: Boundary Node Defined at y=O or y=Ay Boundaries

Figure3.3: Solid Border Between Nodes of Two-Dimensional Foam Section



Turning attention now to the nodes, the energy balance for any node i at steady state

neglecting other forms of heat transfer is

out qij =0 (3.2)

where the summation is carried out over all nodes j directly connected to node i by solid

borders. Or, substituting expression 3.1 for the heat transfer out of the node,

ki i (Ti - T) 0 (3.3)

L 1

where again the summation is performed for all nodes j directly connected to node i.

Rearranging equation 3.3 in terms of the temperatures,

L _____ 1) i k+L T = 0 (3.4)
LJif + " Lik i(k+ 1)

where nodes k and k+l are connected to node i. The summation is over all nodes

connected to node i, and if a node k+n is not connected to node i, the Tk+n term is zero in

equation 3.4.

After writing similar equations for all nodes, a matrix equation relating the

temperatures at the nodes to the net heat transfer out of the nodes can be written:



[c] =IQ] (3.5)

where [C] is the connectivity matrix such that

k ikA i=j, summed over nodes k
ikk directly connected to node i

k ii
C k. AA nodes i and j are connected (3.6)

1j i iji and i j
L·1Lij

0 nodes i andj are not connected

[T] is a one-dimensional vector comprised of the nodal temperatures Tj. The [Q] matrix is

a one-dimensional vector that has all entries equal to zero for internal nodes, not boundary

nodes.

3.4 Boundary Conditions

To solve this matrix equation, boundary conditions have to be invoked. That is,

something has to be said of the rate of heat transfer or of the temperature at the boundary

nodes where y=O or y=Ay as in figures 3.1 and 3.2. A first simple boundary condition is to

consider the temperature gradient across the entire foam and use it to fix the temperatures

at both boundaries. First, a one-dimensional linear temperature profile across the foam is

assumed. Such an assumption is an extension of the locally linear temperature profile

assumed in the Rosseland radiation equation derivation. Next, a temperature gradient

from typical thermal conductivity testing equipment is used. Specifically, the 50K (AT)

temperature difference across the At=1" (0.0254m) foam panels quoted by Bhattacharjee,

et al [19] was used. Then, for a two-dimensional section of length Ay in the heat transfer



direction as represented in figure 3.1 and for a linear temperature profile, the temperature

difference across the boundary nodes is

ATtotalAY (50K) Ay
At 0.0254m (3.7)

Since the thermal testing was done at T=283K and many properties are reported at

T=300K, the temperature at the lower nodes is set to a temperature near this condition

TL=290K. Then the temperature at the upper boundary nodes can be set to

TU=TL + AT.

These boundary conditions have to be incorporated into the matrix equation 3.5.

As with the energy balance of equation 3.2, an energy balance for boundary nodes can be

expressed.

qout = ij (3.8)

where now, the heat transfer out of the boundary node is no longer zero. But the

temperature at the boundary node, Ti is known. Inserting the conductive rate of heat

transfer along each border into equation 3.8, the energy balance for any boundary node is

LkijA i kikAik _ (ki (k+ 1) Ai (k+ l)... = i (3.9)
L T i + ...- L Tk ". .LiT(k+1) "" = out,i (3.9)
(I ik i(k+1)

where again nodes k and k+ 1 represent those nodes connected to node i by borders, the

temperature terms for nodes not directly connected to node i are zero, and qout,i is the

unknown rate of heat transfer at the boundary. This equation is appended to the matrix

equation for every boundary node. The appended matrix equation becomes



[M] [T] = [b]

The entries of [M] are

kikAik

Lk ik
k

L..

0

if i=j
Summed over
nodes k connected to node i.

if nodes i and j are
connected

if nodes i and j are not
connected

(3.11)

The entries of [T] are the temperatures at the nodes. With the boundary equations

appended to equation 3.5, this vector includes both known and unknown temperatures.

That is, Ti is known if node i is a boundary node, Ti is unknown otherwise. The entries of

[b] are

bi= qOtbq out, i
if node i is not a boundary node

if node i is a boundary node

This system of linear equations is solved for the unknown qout,i's for the boundary nodes

as well as for the unknown Ti for the internal nodes. Remember that the temperatures at

the boundary nodes are known. So a solution routine was set up to rearrange knowns in a

single vector and unknowns in a single vector and then solve for the resulting matrix

equation. This matrix equation was solved using a simple Gauss-Seidel solver. After the

heat transfer rate at the boundaries are determined, the rates of heat transfer at the lower

M..=
sy

(3.12)

(3.10)



boundary are summed and the rates of heat transfer at the upper boundary are summed.

Both sums should be the same for conservation of energy in the foam section. Then from

the Fourier relation, the solid conductivity is

k (• qboundary) Ay (3.13)k = (3.13)
s A AT

where for the two-dimensional section, the cross-sectional area is the total length of the

section perpendicular to the heat transfer direction or Ax. So the effective solid

conductivity from a two-dimensional section of foam can be calculated from

k ( q boundary) A (3.14)AxAT(3.14)
s, Ax T



3.5 Conductivity Model Validation

To determine how well the solid conductivity matrix program determines the

conductivity of a two-dimensional section, several simple geometries where an analytical

solution can be determined were run with the program and tested against the analytical

results. Specifically, Mark Schuetz [14] solved the analytical conductivities for three

simplified geometries. The first was a collection of cubic foam "cells" in an inline

geometry (see figure 3.4(a)). The second geometry was an array of these cubic cells in a

staggered arrangement (figure 3.4(b)). Finally Schuetz looked at an array of these cubes at

an oblique angle to the heat transfer direction, specifically at 450 to the heat transfer

direction (see figure 3.4(c)). These three geometries were run with the solid conductivity

program and the results were compared to Schuetz's results.

000 0000000 00000000101 111
0000000000 I 00E0000 100000~u10000000 000000000
(a) inline cubic geometry (b) staggered cubic geometry

(c) oblique (453 cubic geometry

Figure 3.4: Geometries Used to Compare Solid Conductivity Program with Schuetz's
Analysis

To be consistent with Schuetz's work, some program parameters had to be specified.

The first parameter that had to be determined was the cross-sectional areas of the solid



borders. For the two-dimensional case, this area is the thickness of the solid borders.

From Schuetz's analysis, assuming all of the polymer is in the cell walls, the border

thickness t, cell diameter d, and void fraction 8 for a two-dimensional cubic geometry are

related

d26 = (3.15)
(d+ t) 2

So, for a certain void fraction and cell diameter the cell border thickness can be set to

1
t = d ( 1) (3.16)

The second parameter that has to be determined for the Schuetz analysis and the

computer model to be consistent is the gas conductivity. Schuetz's analysis actually

looked at the coupled gas and solid thermal conductivity across the cells. The solid

conductivity matrix program implicitly assumes that the solid and gas conductivities can

be uncoupled. This is similar to the gas conductivity term being ignored or set to zero in

Schuetz's analysis.

For each geometry, Schuetz looked at the repeating element, or symmetric part of the

cell that was repeated to form the array. Using the electrical analogy to heat transfer

(V=IR) where V=AT, I=q, and R=1/kA, Schuetz determined the resistances to heat

transfer across the repeating element. From this he determined the overall solid and gas

conductivity for the repeating element and thus for the entire array. To deal with elements

perpendicular to the heat transfer direction, Schuetz considered the upper and lower limits.

The upper limit was the case where conductivity across these perpendicular elements were

considered infinite, thus contributing as much as possible to heat transfer. The lower limit



considered the conductivities along these perpendicular elements to be zero, thus

providing as much resistance to heat transfer as possible.

The first geometry considered is the inline cubic geometry where the cubic cells are

aligned as in figure 3.4(a). The repeating element for this geometry is pictured in figure

3.5(a). The upper and lower limit analogous electrical circuits are depicted in figure 3.5(b)

and 3.5(c). Considering the upper limit, these thermal resistances are

t
2 tR 2(3.17)sl (d + t) k s (d + t)

ks 2

d

Rs2 t kst (3.18)
k- s

1
Rg (3.19)

g

In this analysis consider kg approaching zero which means Rgj approaches infinity. Then

the overall resistance between isotherms T, and T2 is, with kg approaching zero,

RUL = Rs+ 1 1 = R s l +Rs2 (3.20)

Rs 2 + Rg 1
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(a) repeating element

(b) upper limit equivalent circuit (c) lower limit equivalent circuit

Figure3.5: Repeating Element and Equivalent Circuits for Inline Cubic Geometry

Considering the lower limit, the thermal resistances become

/
4
7

t/2

Rg2

sl

Rg2



d+t
2 d+t

s3 t kst
kSks2

t
2 t

R d kd (3.22)
s4 d ksd

k-sks2

Rg2 = Rgi1 o*o (3.23)

and with Rgl approaching infinity, the overall resistance is

1 1 -1
RLL = ( + R )  = Rs3 (3.24)RS3 RA + Rg2

For both the upper and lower limit, the conductivity is related to the overall resistance (R

being RUL or RLL)

d+t

2 1
ks dt (3.25)

s d+ t R

2

The geometry in figure 3.4(a) was run with the solid conductivity matrix program for

different void fractions and different cell diameters. The calculated solid conductivity as a

function of void fraction was then compared to that predicted by the repeating element

analysis. The results are shown in figure 3.6 and in Table 3.1.
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Figure 3.6: Comparison of Inline Cubic Geometry Solid Conductivity from Matrix
Program and from Schuetz's Analysis
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Matrix Solid Conductivity Lower Limit Analytical
(W/mK) Conductivity (W/mK)

0.85 0.0205 0.0205

0.9 0.0135 0.0135

0.93 0.00938 0.00937

0.95 0.00666 0.00666

0.97 0.00398 0.00398

0.99 0.001318 0.001318

Table 3.1: Comparison of Matrix Solid Conductivity and Analytical Results for Inline
Cubic Geometry

As can be seen, the solid conductivity matrix results are the same as predicted by the

lower limit analysis. Upon closer inspection of the two solution methods, the

correspondence between the lower limit and the matrix solution should be expected. As

seen in figure 3.7, the cross-sectional area for heat transfer is different in the lower region

of the cell for the upper and lower limit cases. In the upper limit case, with conductivity

being as large as possible, the cross-sectional area is the entire (d+t)/2 segment. In the

lower limit, since there is no lateral heat transfer, the effective cross section for heat

transfer is the t/2 member. Similarly, in the solid conductivity program, the endpoints of

the transverse member are at the same y location and are therefore at the same

temperature. So the temperature gradient across the transverse element is zero, heat

transfer across the member is zero, and the member does not contribute to heat transfer.

That is, the cross-sectional area for heat transfer becomes the t/2 member.
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(a) cross-sectional area in the lower limit case
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(c) cross-sectional area in the conductivity matrix case

Figure 3.7: Cross Sectional Areas for Heat Transfer in Upper Limit, Lower Limit, and
Matrix Program Cases

The next geometry which Schuetz considered was the staggered cube alignment where

the cells are once again cubes but aligned as in figure 3.4(b). The repeating element for

this geometry is shown in figure 3.8. The upper limit for this staggered geometry is

exactly the same as for the inline cubic geometry. That is, for conductivities of infinity

perpendicular to the heat transfer direction, isotherms are lines of constant x. However,

due to the tortuosity of the geometry, the lower limit conductivity is considerably lower

than the lower limit of the inline geometry especially when kg-O.

I



Isotherm T2

Isotherm T 1

Figure 3.8: Repeating Element for Staggered Cubic Geometry

The detailed description of this lower limit geometry is outlined in Schuetz's work

[14]. In summary, the lower limit takes advantage of the fact that the conductivity

problem is a linear one and can be treated as the superposition of two simpler problems.

The requirement being that the differential equations and boundary conditions of the sum

of the two simpler variables are the same as the staggered geometry's governing equations

and boundary conditions. The lower limit considered then is the sum of the lower limits of

these two component cases. These component cases are shown in figure 3.9. The sum

solution of the lower limits of these cases is then

d
d+ t 2 2.5d+ 2t

RA = 2 ( ) +  (3.26)
kst kst kst
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Figure 3.9: Cases Superimposed for Staggered Geometry Lower Limit

d t
RB = 2 d) + oo (3.27)

S kg d kSd

where again, to compare with the solid conductivity model, kg approaches zero so RB

approaches infinity. By superposition of the solutions it is meant that the overall flux for

the staggered case is the flux of case A plus the flux of case B. That is

gas
K \\KK
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T 1 - T2  T 1 - T2  T1 - T2
q+ = qA +  B R R R (3.28)

TA RB s+g

which gives an expression for the overall thermal resistance

-1

1 1 -1
R = (- + (3.29)

s+g R R

which reduces to Rs+g=RA for the limit of kg approaching zero. Then the solid

conductivity lower limit for the staggered geometry is

d+t 2 2k d - - (3.30)
R s+g A

s+g 2

For the staggered geometry, the solid conductivity predicted by the model as a

function of void fraction is compared to the analytical conductivity of Schuetz in figure

3.10 and Table 3.2. The matrix program values and the lower limit values agree within

3.6%. The small discrepancy is due to a problem unique to this test case. The present

solid conductivity model treats the cross sectional area of every border as the same. In

these test cases, the area is the thickness, t, of a cell border. This is true even for borders

on the sides of the test image as shown in figure 3.11. In the analytical result from the

repeating element, only one-half of the thickness is used in analyzing every cell. So the

thicknesses of the borders on the side of the image are different in the two cases (see figure

3.11). Once the matrix program can be extended to include the thickness of every border

individually, the border areas used in the analytical results can be incorporated into the

matrix program. So for all practical purposes, the results of the matrix program and the

lower limit analytical results can be considered equivalent.
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Figure 3.10: Comparison of Staggered Cubic Geometry Solid Conductivity from Matrix
Program and from Schuetz's Analysis
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Matrix Solid Conductivity Lower Limit Analytical
(W/mK) Conductivity (W/mK)

0.85 0.01688 0.01668

0.90 0.01114 0.010909

0.93 0.007754 0.007551

0.97 0.003298 0.003189

0.99 0.0010954 0.001058

Table 3.2: Comparison of Matrix Solid Conductivity and Analytical Results for Staggered
Cubic Geometry

Looking at the methods used in each case, the agreement between the lower limit results

and the matrix program results makes some intuitive sense. Having a finite solid

conductivity, struts perpendicular to the heat transfer direction have to have a temperature

gradient along their lengths for there to be heat transfer from the lower to upper boundary.

Therefore, isotherms for the solid conductivity model are not lines of constant x as in the

upper limit case. With gas conductivity being negligible in the lower limit case, one can

see that the lower limit reduces to case A which is the same case solved by the solid

conductivity model.
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Figure 3.11: Differences in Side Border Thicknesses for Staggered Geometry Validation

For a final comparison of a simple geometry with analytical results developed by

Schuetz, the oblique cubic geometry which is shown in figure 3.4(c) is considered. An

angle of 450 is chosen for simplicity of analysis. This geometry provides the feature that

nodes at the same y are not directly connected and each border is obliquely oriented to the

heat transfer direction. The repeating element for this geometry is shown in figure 3.12.

For this geometry, both the upper and lower limits converge to the same solution, which

can be considered the exact analytical solution for this geometry. The resulting

conductivity for this geometry is

k lymert

k = k + polymer (3.31)s+g g d
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(a) repeating element

(b) idealized repeating element

Figure 3.12: Repeating Element for Oblique Cubic Geometry

Again the case where kg approaches zero is considered to compare to the solid

conductivity model. This limiting case yields the analytical conductivity for the 450 cubic

geometry



k polymer
t

k=
s d

(3.32)

The results from the solid conductivity program compared to this analytical result as a

function of void fraction are shown in figure 3.13 and in Table 3.3. As can be seen, the

solid conductivity program predicts the same solid conductivity as the analytical

prediction.

Analytic solution from repeating element

Model results
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Figure 3.13: Comparison of Oblique Cubic Geometry Solid Conductivity from Matrix
Program and from Schuetz's Analysis



Matrix Solid Conductivity Lower Limit Analytical
(W/mK) Conductivity (W/mK)

0.70 0.051347 0.051345

0.80 0.031048 0.031043

0.90 0.014225 0.014226

0.97 0.004036 0.004036

Table 3.3: Comparison of Matrix Solid Conductivity and Analytical Results for Oblique
Cubic Geometry

3.6 Foam Solid Conductivity Prediction

The solid conductivity model was next used with morphology images from actual

foams supplied by ICI Polyurethanes. Specifically, two-dimensional optical sections of

foams were digitized using a confocal microscope (see Section 3.6 where the confocal

microscope is described). The digitized system of nodes and borders were then inputs to

the solid conductivity matrix program. The program outputted the rate of heat transfer out

of the lower boundary of the image and the rate of heat transfer into the upper boundary,

which both should be equal for conservation of energy. Using either one of these heat

transfer rates and the geometry of the image, the two-dimensional solid conductivity can

be predicted.

3.7 Confocal Images

Since the solid conductivity model is a two-dimensional routine, an acceptable two-

dimensional foam geometry has to be used with the program. SEM micrographs of foam

geometry add a depth-of-field problem that would have to be accounted for in considering

what are two-dimensional features of the foam. This can be seen in figure 3.14. Here,



not only are cell boundaries seen, but also the interior of the cells with boundaries of cell

faces. That is, a projection of the three-dimensional cell features are seen, not a planar

section of the foam. The confocal microscope was therefore investigated as a means of

achieving a two-dimensional foam section without a depth-of-view problem.

In brief, the confocal microscope consists first of a scanning laser with a high numeric

aperture condenser lens that focuses the light into a small section of the sample [20]. This

illuminating setup causes the sample to autofluoresce, or emit energy at a certain

wavelength range. In our case the laser causes a sample to autofluoresce at a wavelength

of 488nm. A filter in the collecting portion of the microscope allows only the spectrum of

energy in which the sample autofluoresces to be detected. In collecting the

autofluorescence, the confocal microscope uses a high numeric objective lens to focus on

the section autofluorescing.

The amount of light reaching the image also depends on the stops. These are openings on

an opaque screen as in figure 3.15. The screen prevents light from out-of-focus sources

and from severely scattered rays from reaching the image (see figure 3.15), improving

detail and reducing background light. There are two stops, an illumination stop reducing

the light coming from the source and an image stop reducing the amount of light reaching

the image. When both stops are made small enough, imaging information will come from

a sharply peaked region around the in-focus object plane.

The illumination stop is filled with light from the laser and focused through the high

numerical aperture condensor lens on a small portion of the sample. The sample section

is imaged with an identical numerical aperture objective lens, through a diameter D image

stop. Remember that if the stops are large, fluorescent light from other portions of



Figure 3.14: SEM Photograph Showing Depth-of-Field

the sample (out-of-focus images) intercepted by the illumination beam will pass through

the image stop and obscure the image (the dashed path in figure 3.15). The lateral

resolution is AX=D/M where D is the diameter of the image stop and M is the lens

magnification. The axial resolution or depth-of-field is AZ=Dcot(a)/M where a is the lens

aperature[20]. For ax=64 0 which is a typical example in water immersion cases, to get a

1 pm depth-of-field with 63X magnification, the stop diameter should be 66gm [20].

66



Unfortunately only a 1lim diameter section of sample (the lateral resolution) can be

imaged at a time. This is where the confocal microscope improves the image obtainable

from a conventional light microscope. The stop sizes are reduced to very small

diameters. The small field of view is scanned around the specimen in order to image the

larger structure. In our particular confocal setup the laser itself is moved and scans around

the specimen rather than the specimen being moved as in some other setups. The confocal

microscope's computer records sequentially the small patches imaged as the laser scans.

A view of the larger structure is then assembled from the patches line by line by the

computer and displayed on the video screen. This allows one to image larger structures,

such as several cells, with the small depth-of-field scanned in each patch. Proper

combinations of lenses and stops allows the depth of focus of such a section to reach as

small as 100 nanometer optical thickness. A schematic of this basic operation of the

confocal microscope, as presented by Shuman et al [20], is shown in figure 3.15.

------------- out-of-focus light (opaque screen blocks)
ray passing through the stops (in-focus)

objective
lens

foam
sample

indesor
ns
umination
op

Figure 3.15: Schematic of Confocal Microscope Operation



This setup allows a photomicrograph of a section of foam with a small depth of field to be

recorded. A typical resulting optical section of foam is displayed in figure 3.16.

Note also the potential of the confocal microscope to reconstruct the three-

dimensional view of the foam structure by reconstructing an image from patches not only

from a lateral scan, but also from scans in the axial dimension as well. Such three-

dimensional reconstructions are outlined by Schuman [20].

Figure 3.16: Typical Image Recorded with Confocal Microscope (10X Magnification)



3.8 Imaging Technique

Several foams were prepared so that resulting confocal images displayed cells with

elongated and isotropic dimensions showing. With the first samples examined, only the

mechanical parameters of the confocal microscope were used to try to enhance the image

such as increasing the gain of the equipment, playing with computer filters, and decreasing

the aperture of the confocal microscope filter. However, the autoflourescence of the foam

cell walls did not register well with these images. So the foam samples were later

prepared in a fluoroscene dye, which adds autofluorescence in the wavelength range of

interest. This increased the amount of autofluorescence and allowed an image with an

even smaller depth-of-field. Once an acceptable optical section of foam had been

collected, the section displayed by the confocal microscope computer screen was digitized

to disk.

3.9 Preparing Optical Sections for Solid Conductivity Model

Upon further optimization of the present technique, the digitized confocal images will

be used as input into a computer code that recognizes the locations of nodes and borders.

This will allow automation of the solid conductivity model. However, at present, the two-

dimensional images from the confocal microscope have gaps in cell walls and other

problems that leave such automation presently unworkable. So for now there is an

intermediate step in the use of confocal two-dimensional images to predict the solid

conductivity component. This step is the use of an image analysis software, presently

NIH Image 1.47, to determine the locations of nodes and borders.

The digitized confocal images are transferred to the image analysis software. After

setting the scale for the photomicrograph which is a function of the lenses of the confocal



microscope, borders are marked by hand. That is, the software includes a cross-hair tool

that marks x-y location in the image. By marking the endpoints of a border, it and the

endpoint nodes defining it are marked. The endpoints of every border are labeled in this

manner. Once all borders have been labeled, the x-y coordinates of the border endpoints

are written to a file. As can be seen in the solid conductivity matrix program included in

Appendix B this file allows borders and nodes to be located and the solid conductivity to

be determined.

Also shown in Appendix B is a code that automates the node and border finding

functions directly from the digitized images. That is, the intermediate step of marking x-y

coordinates is eliminated using images with clearly defined borders. At the present,

suitable images have not been found so the intermediate x-y marking step is still

necessary.

Note that for the present model, one paramter has to be assigned that should, in future

versions of the program, be obtained directly from the digitized images. This parameter is

the border area, Aij in expression 3.11, which was considered the border thickness, t, in the

validation cases. Once suitable digitized images can be found, the node finding routine

can be expanded to calculate the border thickness of each individual border. However, for

the present situation where x-y coordinates of border endpoints are marked using IMAGE,

the thickness is assigned and is considered the same for every border. The thickness is

determined in the following manner. The section image is considered to be of a

differential depth, dz, as shown in figure 3.17. The borders are assumed to have this same

depth also. So the border area is

Aij = (t) (dz) (3.33)

The total dimensions of the borders are now related to the foam overall density. That is,



msolid PsolidVborders
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(3.34)

border of thickness t

Figure 3.17: Idealized Confocal Image Volume Showing Differential Depth Used in
Calculating Border Areas

The volume of the borders are the border areas times the total length of borders, LT,

Vborders = LTAij = LTtdZ

while the volume of the image is

(3.35)

tN



Vimage = AxAydz (3.36)

Then the foam density can be written as

PsolidLTtdz PsolidLTt

Pf= AxAydz AxAy (3.37)

Rearranging to express the border thicknesses

pAxAy _ AxAy(1-)t - (3.38)
PsolidLT LT

So the length of all of the borders are summed and the border thickness is calculated.

3.10 Solid Conductivity Model Results for Foams Analyzed

Two-dimensional foam solid conductivities were calculated using the above technique

from several confocal images of planes parallel and perpendicular to the heat transfer

direction. Images displaying the plane parallel to the heat transfer direction were gathered

from samples cut perpendicular to the rise direction of the foam, the elongated direction.

Similarly images displaying the plane perpendicular to the heat transfer direction were

obtained from samples parallel to the rise direction as in figure 3.18. Typical images of

both planes are shown in figures 3.19 and 3.20. These results are displayed in Table 3.4,

graphically in figure 3.21 where predicted solid conductivity is plotted against void

fraction. Each foam represents a different void fraction. The number of data points at

each void fraction represents different confocal images of the same foam. The degree of

anisotropy measured for each foam sample (see Chapter 4) is also displayed in the figure.

The trend with these foams is that as void fraction increases, the solid conductivity



image of plane parallel to heat
transfer direction

image of plane perpendicular to heat
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heat transfer
direction
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Figure 3.18: Sketch of Section Orientations Used to Obtain Confocal Images Parallel
and Perpendicular to Heat Transfer

in the rise direction (parallel to the heat transfer) decreases. Also shown in figure 3.21 is

the result of Schuetz's analysis of two-dimensional conduction through randomly oriented

cell walls [14]. The analysis is



Figure 3.19: Typical Confocal Image Showing Plane Parallel to Heat Transfer
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Figure 3.20: Typical Confocal Image Showing Plane Perpendicular to Heat Transfer
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Plane Parallel
Foam or Predicted

Designation Foam Void Anisotropy Perpendicular Solid
Fraction a/b to Heat Conductivity

Transfer (mW/mK)
Direction

863/13/1 0.9710 1.70 Perpendicular 1.59

863/13/1 0.9710 1.70 Perpendicular 1.74

819/16/1 0.9713 1.70 Perpendicular 1.94

819/16/1 0.9713 1.70 Perpendicular 1.95

819/16/2 0.9718 1.80 Perpendicular 2.37

785/206 0.9734 1.11 Perpendicular 3.10

678/21/47 0.9741 1.35 Perpendicular 2.44

785/204 0.9765 1.29 Perpendicular 2.49

785/204 0.9765 1.29 Perpendicular 3.38

863/13/1 0.9710 1.70 Parallel 4.73

863/13/1 0.9710 1.70 Parallel 5.02

819/16/1 0.9713 1.70 Parallel 3.48

819/16/1 0.9713 1.70 Parallel 3.81

819/16/1 0.9713 1.70 Parallel 4.35

819/16/1 0.9713 1.70 Parallel 4.40

819/16/2 0.9718 1.80 Parallel 3.75

819/16/2 0.9718 1.80 Parallel 4.04

819/16/2 0.9718 1.80 Parallel 4.33

819/16/2 0.9718 1.80 Parallel 4.44

819/16/2 0.9718 1.80 Parallel 4.59

678/21/47 0.9741 1.35 Parallel 2.86

678/21/47 0.9741 1.35 Parallel 2.87

Table 3.4: Solid Conductivities of ICI Foams
Model

Predicted by Solid Conductivity Matrix



Table 3.4: Solid Conductivities of ICI Foams Predicted by Solid
Model

Conductivity Matrix

plane parallel to heat transfer
plane perpendicular to heat
transfer

0.975

void fraction
0.960

Figure 3.21: Predicted Foam Solid Conductivities from Confocal Images and from
Schuetz Two-Dimensional Analysis (Note: Anisotropy, a/b, Given for Each Foam)

Plane Parallel
or Predicted

Designation Foam Void Anisotropy Perpendicular Solid
Fraction a/b to Heat Conductivity

Transfer (mW/mK)
Direction

678/21/47 0.9741 1.35 Parallel 2.89

678/21/47 0.9741 1.35 Parallel 3.38

1

0.970



shown in Appendix C. Schuetz determined that

ksolid - kpolymer 2(3.39)

This analysis assumes random cell wall orientations, so does not account for anisotropy.

One can see that the two-dimensional analysis captures the conductivity features of the

matrix solutions for the elongated direction or the plane parallel to the direction of heat

transfer. Anisotropy should increase the conductivity from Schuetz's isotropic results. In

the foams with the largest degree of anisotropy, which are the foams with void fractions of

0.9710, 0.9713, and 0.9718 respectively, this increase from the isotropic predictions is

apparent. In the foam with the small degree of anisotropy, with a void fraction of 0.9741,

the conductivities from the matrix program are only 16% lower than the analytical result

in the worst case and 0.9% lower in the closest case.

A comparison of conductivities from the images of the two planes helps quantify the

effects of cell orientation on solid conduction. From figure 3.21 notice that as the void

fraction increases (amount of anisotropy decreases), the ratio of conductivity in the plane

perpendicular to the heat flux to the conductivity in the plane parallel to the heat flux

increases from 37% to between 72% and 85%.

To see how these results compare to the predictions of theory, consider the three-

dimensional anisotropic model of solid conductivity (equation 2.13).

ks/H = 3 k + 2 (1 -fs) () 1/4] 3.40)3 P f q



This is for conductivity in the rise direction. The expression for conductivity in the plane

perpendicular to heat transfer is

(1 - 8)
ks = 3 kp + 2(1-f s )

The ratio of conductivity in the plane parallel to heat transfer to conductivity in the plane

perpendicular to heat transfer as predicted by the three-dimensional model is then

asý

f s Z

+2(1-f s )

+ 2(1-f s )

a
b)

b
a

1/4

(3.42)1/4

For the six foams analyzed, the predicted ratio of solid conductivity in the plane parallel to

heat transfer to the plane perpendicular to heat transfer is presented in Table 3.5.

foam fs a/b ks/k s

NBE 0.34 1.35 1.198
678/21/47

NBE 0.65 1.11 1.080
785/206

NBE 0.54 1.80 1.496
819/16/2

NBE 0.77 1.70 1.539
819/16/1

NBE 0.36 1.70 1.382
863/13/1

NBE 0.67 1.29 1.211
785/204

Table 3.5: Predicted Solid Conductivity Ratios from Equation 3.42

b 1/4]
(3.41)[ffs a



These predicted ratios are plotted versus anisotropy factor, a/b, in figure 3.22. Also shown

in the figure are the ranges of calculated solid conductivity ratios (K /K ) from the two-

dimensional matrix program. These ranges are represented by the error bars in the figure.

Note that the two-dimensional results exaggerate the influence of anisotropy in each case.

So care must be taken in extending the quantitative results of the two-dimensional

program to the three-dimensional analysis.

range
calculated by2D program
based on
measured foam
cross sections

3.5

3.0

2.5

Ks// 2.0

K1.5

1.5

o ratios predicted
by 3D theory
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1.00 1.25 1.50 1.75 2.00

Anisotropy (a/b)

Figure 3.22: Comparison of Calculated Solid Conductviiy Ratios (Plane Parallel to Heat
Transfer Direction to Plane Perpendicular to Heat Transfer Direction) to Solid Conduc-

tivity Ratios Predicted by Three-Dimensional Theory

It is believed that the decrease in solid conductivity with increasing void fraction for

the plane perpendicular to the heat flux is due to anisotropy. That is, consider how

anisotropy affects the cell walls parallel and perpendicular to the temperature gradient.
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The influence of anisotropy will be discussed for cubic foam cells but the same effect of

anisotropy on foam structure should be the seen with other cell shapes. Treat isotropic

foam cells as a collection of two-dimensional cubes with cell walls of thickness t as in

figure 3.23(a). Here, the solid conductivity parallel to the temperature gradient is equal to

the solid conductivity perpendicular to the temperature gradient because there is the same

amount of solid polymer to conduct heat in both directions. Consider now an anisotropic

cell with a major axis parallel to the temperature gradient. For the cells to keep the same

density at the same cell wall thickness t the cell walls perpendicular to the temperature

gradient will become shorter as in figure 3.23(b). There is now more solid polymer

aligned parallel to the temperature gradient in the anisotropic cells than in the isotropic

cells. The number of cell walls per unit volume has increased in the direction of the

temperature gradient. Therefore there is greater solid conductivity parallel to the

temperature gradient. By the same argument, there is less solid polymer aligned

perpendicular to the temperature gradient with greater degrees of anisotropy. This results

in lower solid conductivity perpendicular to the heat transfer direction with greater

degrees of anisotropy. Both trends with anisotropy are seen in the results of figure 3.21.
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Figure 3.23: Collection of Idealized Foam Cells (a) Isotropic; (b) Anisotropic

From measurements of polymer distributions in optical microscope photographs,

Torpey similarly concluded that anisotropy redistributes polymer from the plane

perpendicular to heat transfer to the plane parallel to heat transfer [16]. His results

indicated that anisotropy would increase the conductivity in the plane parallel to heat

transfer while decreasing the conductivity in the plane perpendicular to heat transfer.



This analysis does not yet account for relative distribution of solid polymer between

the struts and cell walls. Such a factor is accounted for in the theoretical solid

conductivity model. As will be shown in Chapter 4, the amount of solid in the cell walls,

which is higher than was anticipated, significantly affects the solid conductivity

component. Once the solid conductivity matrix program can be automated, this effect can

be incorporated into the analysis in the border area variable.

3.11 Electrical Conductivity Measurement Theory
Before the solid conductivity program was developed, the use of electrical

conductivity measurements to separate the heat transfer components was attempted. In

the early stages of this project, the need for a direct and simple test to accurately assess

either the solid or radiative conductivity became apparent. Means to directly examine the

radiative contribution were analyzed, but none found to directly measure the radiation

without a probe or technique that would alter the radiation environment and skew the test

results. The use of electrical conductivity to measure the quantity analogous to the solid

conductivity term was much more appealing in that it is a simple test that would not alter

the foam makeup or environment.

The use of electrical conductivity to measure the thermal conductivity is an extension

of the use of the analogy between electrical and thermal conduction already stated in

section 3.4. That is, when subjected to a potential, either a voltage in the case of electrical

conduction or temperature difference in the case of thermal conduction, a flux ensues,

either electrical current or heat flux, with the material providing a resistance. Thus an

analogy between thermal resistance (1/kA) and electrical resistance (1/oA) exists.

Furthermore, since the electrical conductivity of the gas in the foam cells is much lower

than that of the solid polyurethane in the struts and cell walls it can be treated as negligible

[21]. Then the electrical conductivity really becomes analogous to thermal conductivity

through the solid struts and cell walls. This analogy is only strictly true if the polymer acts



as an ohmic conductor, not exhibiting the polarization and high surface conductivity of

dielectrics which unfortunately is not the case as will be shown in Section 3.12. The

reasoning then is that if the electrical resistance across a foam can be measured, by

calibrating the resistance measurements with thermal conductivity measurements, a direct

test for the solid thermal conductivity is available.

The electrical resistance across liquid foams which are good conductors has already

been extensively analyzed [22]. In a foam comprised of gelatin struts and cell walls,

where most of the material is located in the cell walls, Lemlich experimentally measured

the foam resistance. He also derived a relationship predicting the electrical conductivity

of the foam based upon the foam structure. These foams are solely rod-like members or

100% struts. This relationship is

G A Lf xs - struts V
3-(3.43)

G 3

where

of = foam electrical conductivity (Q2-1)

as = solid electrical conductivity (Q2-1)

Axs = cross-sectional area of strut (conducting member)

Lv = total length of struts per unit volume

The predicted relationship agrees with Lemlich's data well [23] at low foam densities.

Even though these results were carried out for liquid gelatin foam, the author claims that

the technique also applies to "solid foam of sufficiently low density and sufficiently open

cell structure as to approach a lattice" [22].

Assuming that electrical conductivity does provide a reasonable analogy to solid

thermal conductivity, how would the foam electrical conductivity relate to the solid foam

morphology? The reader is referred to the article in the Journal of Colloid and Interface



Science [22] where Lemlich relates the electrical conductivity through an array of struts to

the strut dimensions (equation 3.43). Comparing two polyurethane foams where the solid

electrical conductivities (as) are the same and the structures are 100% struts, the ratio of

electrical conductivities is

15fl AxslLV1 (3.44)
f2 Axs 2 V2(3.44)

The mass fraction of polyurethane in the struts is related to the dimensions of the strut

(see equation 2.43)

psLvAxs
f P (3.45)

where Ps is the density of the solid polyurethane and pf is the density of the foam.

Substituting the mass fractions for the strut dimensions (AxsLv) and recognizing that ps is

the same for both foams, the ratio of electrical conductivities through the struts of two

foams is simply related to the foam morphologies,

Ofl _ fslPfl
(3.46)

f2 fs2 Pf 2
Note that other structural properties like anisotropy factor are assumed to be the same for

both foams.

3.12 Polyurethane as a Dielectric
Experimentally, several factors have to be established for the electrical conductivity

analogy to be useful. First, it has to be established that the conductivity of polyurethane

foam can be measured. Next it has to be established whether the measured conductivity of

polyurethane follows a simple relation as Lemlich proposed for aqueous foams, or



whether spurious effects overwhelm the measured value. Finally, a clear relation between

the thermal and electrical conductivities has to be established to calibrate electrical

measurements for thermal measurement use.

Unfortunately, difficulties arise in establishing the first experimental factor, being able

to measure the resistance of polyurethane foam. Polyurethane is a dielectric, a material

that as an insulator has a conductivity well below 10-82-1cm-1 . Furthermore, as a

current is applied to a dielectric, bound charges such as reorienting dipoles contribute to

the apparent current for a time. This causes the apparent measured current to decay

exponentially as in figures 3.25 through 3.27. For more detailed information on the actual

processes involved in the current decay associated with dielectrics, the reader is referred to

[24] or any of the other many sources on dielectric responses to applied fields.

Equipment to measure the electrical resistance of polyurethane must not only be able

to measure the resistance as the field is directly applied, but the "steady" value after much

of the polarization current has decayed. Steady is taken with care here since it is not at all

obvious whether this steady current is not the result of further polarization with a time

constant much larger than the amount of time of measurement. It is steady electronic or

ionic conduction that is needed however for there to be an analogy to heat transfer

processes.

We again get back to the problem of dielectrics having by their nature a very low

conductivity. For standardization purposes, in the literature the conductivity that is

reported is that after the electric field has been applied to a sample for one minute. Even

with this short arbitrary choice of electrification, highly sensitive equipment is needed.

The Encyclopedia of Electrical Insulating Materials [25] reports one minute

conductivities of polyurethane foam less than 10-15 Q-lcm-1. Insulating Materials for

Design and Engineering Practice [26] reports one minute conductivities less than

10-14Q- 1cm-1 . With a typical testing slab of area 6"x6" (232.26cm 2) and thickness

0.02" (0.0508cm), this would correspond to having to measure a resistance of



t 10
R =p = 2.2x10 0 (3.47)

Since megohmeters do not typically measure resistances this high, and since the steady

resistance is expected to be several orders of magnitude smaller than this, we resorted to

measurements on a DC electrometer and amplifier.

As described in "Measurement of Multimegohm Resistors" [27], a vibrating reed DC

electrometer and amplifier is a combined device that converts DC potentials into AC

potentials by means of the vibrating reed. The AC potential is then amplified and rectified

and the resulting DC resistance becomes measurable. The General Radio Type 1230A DC

Electrometer and Amplifier used in this experiment allowed measurements up to 5x10 14Q

Since the measured current is so low and sources of error can be on the order of or

greater than the desired current, a special test setup is required. First, the foam sample has

to be shielded from outside stray currents. Even electromagnetic interference caused by

passing one's hand over an exposed sample causes the measurements to jump drastically.

So the electrodes are placed in a closed metal box insulated from ground as in figure 3.24.

Next, the effects of contact resistance has to be carefully avoided. Therefore, to ensure

contacts between the brass electrodes of the electrometer and the sample, aluminum

electrodes are attached to the surfaces of the sample using a paper-thin layer of silicon

vacuum grease. Better, but much more expensive, contacts can be fabricated by thermally

depositing a layer of gold, silver, or platinum on the sample surfaces or by painting on a

layer of silver paint as outlined in the ASTM dielectric measurement guide [28]. To

further ensure that proper contact was achieved, plates ranging in weight from 4 to 13.5

pounds were placed upon the electrodes to apply pressure. The complete test setup is

again shown in figure 3.24.
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3.13 Electrical Test Procedure
After the foam specimen had been cut to the proper dimensions of 6"x6" and thickness

near 1/4", the aluminum electrodes were applied to the foam faces by means of a thin layer

of Dow Corning silicon grease. The electrometer was warmed up for several hours and

then short circuited to accommodate for any drift potential. The specimen was then placed

between the brass electrodes, weights, if any, placed on the electrode, and the top

shielding plate placed on the test box. The current was then applied to the specimen and

allowed to exponentially decay until the current did not change noticeably for several

hours. In a few instances, the current was allowed to decay for two days. During the

course of current decay, measurements were periodically taken to chart the exponential

decay.

3.14 Electrical Test Results
Since equation 3.46 predicts that the steady electrical conductivity would be directly

proportional to the foam density, three foams of densities 32kg/m3, 45kg/m 3, and 60kg/m 3

were tested. The characteristics of the morphologies of these foams are listed in Table

3.6.

Cell
Density Cell Strut AreaFoam Diameter 2 f
(kg/m) (mm)(mm s

(mm)

1 32 0.422 4.49E-4 0.84

2 45 0.402 3.59E-4 0.53

3 60 0.527 5.29E-4 0.34

Table 3.6: Characteristics of Foams Used in Electrical Conductivity Tests

Typical resistance versus time curves for each of the foams are displayed in figures

3.25 through 3.27. The conductivities of each foam with applied weights is shown in



figure 3.28.
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Figure3.28: Electrical Conductivity Vs. Foam Density for Different Applied Pressures

As can be seen in figure 3.28, the conductivity does increase with increasing foam

density. However, even allowing for a considerable mass redistribution as foam density

increases, the observed conductivity increase is much greater than expected. This can be

seen in Table 3.7 where the ratios of the measured 60kg/m3 electrical conductivity to the

measured 45kg/m3 conductivity and to the 32kg/m3 conductivity are listed. Also listed

are the conductivity ratios predicted by equation 3.46 with the measured strut mass

fractions, with the mass fractions remaining constant, and with the mass fractions

increasing linearly from fs=0.3 at pf=32kg/m3 to fs=0.9 at pf=60kg/m3

-il IC
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Predicted
Predicted Predicted

ratio from
Ratio from Ratio from

Ratio of Equation Equation Equation
conductivity 3.46 3.46 3.46

ratio Measured using using using
Measured Constant
Strut Mass Strut Mass Increasing

Strut Mass
Fractions Fractions

Fractions

60/Y45 1.33 0.855 1.33 2.07

060/(32 7.87 0.759 1.88 5.63

0Y45/(Y32 5.90 0.887 1.41 2.71

Table 3.7: Predicted vs Measured Conductivity Ratios

For calibration with thermal conductivity, the solid polyurethane conductivity would

have to be measured as well. ICI Polyurethanes sent a solid polyurethane laminate of the

same chemistry as the solid polymer in foams but without the surfactants and catalysts

found in foams. This 15"x15" 0.17" thick block was then tested for electrical

conductivity. The conductivity history for this solid polyurethane is shown in figure 3.29

with two test runs shown. The conductivity was determined to be 3.25x10-17-lcm -1.
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Figure3.29: Solid Polyurethane Electrical Conductivity History

3.15 Electrical Conductivity Conclusions
In looking at the data, a problem arises. The conductivity ratios are well above the

expected ratios, even accounting for a large mass fraction redistribution. Adding to the

problem is the fact that the solid electrical conductivity is not much larger than foam

conductivities as would be expected but instead is lower than the denser foams.

It was at this point that the technique was reanalyzed. The influence of moisture on the

measured conductivity has not been taken into consideration. Contact resistance is not
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thoroughly eliminated. The influence of trace impurities could also be the dominating

factor. The setup could be adjusted to eliminate the effects of changes in humidity.

Specimens can be dried in a desiccated oven for several weeks at temperatures above

373K and below 403K for several days and then stored in a desiccated bell jar. This was

done with some later samples but it is likely that moisture again played a significant role

as the tests were in progress and the samples were exposed to ambient humidity. To

eliminate the possibility of moisture during testing the setup can be wrapped in a plastic

glove bag. Then a dry gas such as N2 could be circulated around the specimen for the

duration of the testing. Contact resistance could be minimized by implementing the

electrodes paints used in electron microscope work or thermally evaporating electrodes

onto the specimen.

Judging from the time necessary to adapt the setup and the expense involved in

eliminating contact resistance, electrical conductivity experts at the National Institute of

Standards and Technology (NIST) were consulted as to the mechanisms of conductivity

and methods to eliminate errors. According to Fred Mopsik [29], in the experience of

testing at NIST it is not likely that it is electronic/ionic conduction but rather a

polarization, the buildup of space charge, that is causing the apparent conductivity. The

only polymer with which NIST has seen true electronic/ionic conduction are some

dielectric epoxies. Furthermore, warnings were given that the possible errors could be the

compound effect of polyurethanes sensibility to both impurities and to moisture. Given

that the goal of implementing this technique is to provide a simple measurement on

production foams, further development of this technique was halted. Further work could

be done to see if indeed the errors are accounted for solely by moisture and contact

resistance, which could be eliminated in the setup and allow for the simple measurement

technique posed. It is likely however that a simple measuring technique is not possible

from this method.



Chapter 4

Radiative Conductivity and Morphology Influence

4.1 Direct Transmission Measurement of Radiative Conductivity
The first approach to determining the radiative conductivity of small-celled foams is

one that has been developed over the course of a decade at MIT. The method is to

measure the optical properties of the polyurethane foam and calculate the radiative

conductivity from the model described in Chapter 2. This in conjunction with thermal

measurements of the overall heat transfer and with morphology measurements of the foam

allows a full description of the conductivity components. So, to determine the radiative

conductivity, the transmissivity of the foam in the infrared spectrum is measured, allowing

the calculation of the extinction coefficient. The infrared spectrum is important since, for

a source radiating at 300K, roughly 95% of the energy is in the infrared spectrum.

The procedure of calculating the extinction coefficient from transmission data is as

follows. First several samples of a foam are sliced very thin (0.021" to 0.06"), but using a

technique that minimizes surface damage. Surface damage from the tearing of cell walls

causes scattering of radiation and skewing the transmission results [18]. Next the spectral

transmissivities of several samples of a foam having different thicknesses are measured

and recorded using an infrared spectrometer. The thicknesses of these samples are

measured using a paper micrometer. Finally, using the data from several samples of

different thicknesses, the Rosseland mean extinction coefficient is calculated.

Several techniques have been explored at MIT in providing foam sections of uniform

thickness while at the same time trying to minimize surface damage that causes scattering.

Cutting foam slices using a cryogenic microtome appears to satisfy both requirements

[14]. The reader is referred to Mark Schuetz's thesis [14] as to a full description of the



equipment. Basically, the microtome allows a foam sample to be mounted on a moveable

stage. The stage temperature is set to 248K while the ambient chamber is at 238K. The

moveable stage then slides down to a stationary blade that slices through the sample. The

process of freezing the sample and then slicing helps to prevent the tearing of cell walls

that accompanies slicing foam samples with a razor at room temperature or by cutting the

sample with a low-speed saw.

Once several thicknesses of foam have been sectioned on the microtome, the

transmission characteristics of each sample is recorded using a Nicholett IR44

Spectrometer. Much of the operation of the IR44 Spectrometer is discussed by

Mozgowiec [18]. The spectrometer consists of a high temperature source emitting

infrared radiation as sketched in figure 4.1. Mirrors collect this radiation into a beam. The

beam is sent through a chamber purged of carbon dioxide and water. Two beams are

collected and recorded by the spectrometer. The first, which is collected before the sample

is set in place is the background spectrum. The second beam which is collected is passed

through the sample. A set of mirrors collects a finite solid angle of radiation leaving the

sample. The collection angle and beam divergence which define the solid angle reaching

the detector (shown in figure 4.2) were both determined to be between 150 and 400 by

Mark Sinofsky [15]. Prisms break both beams down into spectral elements while

detectors measure the intensity of radiation as a function of wavelength. The

transmissivity is the ratio of intensity collected from the sample to the intensity of the

background. The spectral transmissivities are then displayed and recorded as functions of

wavenumber which is the inverse of the wavelength. The spectral range of the Nicholett

Spectrometer is 400cm - 1 to 4800cm - 1 (25gm to 2.1 m). This covers roughly 85% of the

energy emitted by a source at room temperature (T=300K).
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The first step in operating the spectrometer is to allow it to purge water and carbon

dioxide from the sample chamber for 10 minutes. After the resolution and number of

scans used to get an average result are set, 2cm- 1 and 128 respectively, the background

spectrum is collected. This is done only once. Next, the first sample is loaded in the

chamber and the chamber is given time to purge. The transmissivity of the sample is

recorded, displayed, and stored to disk in a form similar to that shown in Appendix D. A

sample transmissivity spectrum is shown in figure 4.3. Following the first sample, each of

the other samples are loaded and their transmissivities recorded in the same manner.

4-

3- I I I I

1000 2000 3000 4000
wavenumber (cm -1)

5000

Figure 4.3: Sample Spectral Transmissivity (Foam NBE 819/16/2, Thickness=0.30")

A rough wavelength averaged transmissivity can be obtained from the spectrometer.

Specifying the wavenumber range over which averaging is to take place and using the

"integrate" command, the spectrometer outputs a "peak area", Ap. The peak area is the
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value of the area above the spectrum shown in figure 4.3 (on a zero-to-one scale) to a

horizontal line at a transmissivity of one. The units of the area are obtained by multiplying

the units of wavenumber by the transmissivity on a zero-to-one scale. For example, if the

spectrum in figure 4.3 were a horizontal line at 10% transmittance, the peak area from

400cm-1 to 2000cm-1 would be

A = (2000cm -400cm - ) (1 - 0.1) = 1440 (4.1)

The average transmissivity is then

A
t= 1- (4.2)

112-111

where (@12--11) is the wavenumber range over which averaging takes place. In the plot of

-In(t) versus sample thickness, the slope is a measure of the wavelength average

extinction coefficient. As shown in Appendix G for the results of the six foam samples

tested, this rough approximation provides a rather good estimate of the Rosseland mean

extinction coefficient.

The sample thicknesses are then measured using a paper micrometer. The paper

micrometer allows thickness measurements to be made with an accuracy of 0.001". The

transmissivity files from the spectrometer are then modified by deleting the header and

inserting the sample thickness at the top of each file (see Appendix D).

All of the transmissivity files for a given foam are then used as input for the program

"Rosseland" which is given in Appendix D. With L the thickness of a sample, K , the

spectral extinction coefficient, and tr the spectral transmissivity, the extinction coefficient

is calculated for each wavenumber interval of width Arl=5.79cm-1 such that



In (Z )
K = (L (4.3)

The average of the spectral extinction coefficient for the different slices is calculated

making sure that at zero thickness the transmissivity would be zero. The spectral

extinction coefficients are then Rosseland averaged. That is, the Rosseland mean

extinction coefficient is determined from

1 a"e b'A

KR +ae b A (4.4)

AXb

This procedure was followed for six small-celled foams provided by ICI. Extinction

coefficients were measured parallel to the rise direction or perpendicular to the foam

facers as shown in figure 4.4. This direction would correspond to the direction of heat

transfer for foams placed in situ and corresponds to the cell's elongated direction as can be

seen in SEM photographs showing this direction (figure 4.5). First samples were cored

with a 21/32" cork borer parallel to the rise direction. The cored sample was then cut with

the cryogenic microtome as described earlier yielding thin slices as shown in figure 4.4.

These samples were then measured in the spectrometer with the beam parallel to the rise

direction, or the cell's elongated direction. A few of the foams, which are marked, fell

apart when sectioning with the microtome was attempted. So for these, sections were

obtained using razor blades at room temperature, so some error due to surface damage

102



slice from
nicrotome
(measured in
;pectrometer) - ..

cored foam
sample 4,, •:,

. /facer
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Figure 4.5: SEM Photograph Showing Elongated Direction (Parallel to Rise Direction or
Orientation Axis)

should be expected. The extinction coefficients for four of the foams were also measured

perpendicular to the heat transfer (rise) direction. The extinction coefficients measured

parallel and perpendicular to the heat transfer direction are listed in Table 4.1. Also listed

in Table 4.1 are the correlation coefficients for the extinction coefficients. These are a

factor from 0 to 1 that describe how much individual sample measurements deviate from
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the calculated slope (extinction coefficient). A factor of 1 indicates perfect correlation.

The calculation procedure for the correlation coefficient is listed in the code in Appendix

D. Even though extinction coefficients measured in both directions are listed, predictions

of the radiative conductivity are based on the extinction coefficient parallel to the rise

direction, K11.

mean
cell K11 correlation K correlation

foam perff.
diameter (cm -1)  coefficient (cm-) coefficient

(mm)

NBE 0.109 61.0 0.9161 65.0 0.8470
678/21/47

NBE 0.188 49.0 0.9925 -- --
785/206

NBE 0.192 40.7 0.9545 50.5 0.9448
819/16/2

NBE 0.238 38.4 0.8741 -- --
819/16/1

NBE 0.284 27.0 0.8277 35.5 0.9872
863/13/1

NBE 0.363 34.9 0.8544 36.9 0.9820
785/204

Table 4.1: Extinction Coefficients Calculated from Measured Transmission Data

Measurements parallel to the heat transfer direction are also shown in Table 4.14 at the

end of the chapter along with the results of morphology measurements explained in

following sections. Notice that the radiative conductivity calculated from the Rosseland

equation using the measured extinction coefficient decreases with cell size. This can be

seen in figure 4.6.
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Figure 4.6: krad Predicted from Rosseland Equation and Transmission Measurements

4.2 Measurement of Solid Polymer Extinction Coefficient
In past work, there has been a wide variation as to what should be considered the solid

polymer extinction coefficient, Kw in equation 2.50. Values have ranged from 1100cm - 1

to 1633cm -1 [1]. Recent measurements conducted at ICI Polyurethanes [30] indicated

that Kw was closer to 300cm- 1. A further cause of concern stemmed from the fact that

radiative conductivity data from Cunningham and Sparrow indicated an even lower solid

polymer extinction coefficient (see figure 4.7). So measurements of the solid polymer

extinction coefficient were carried out at MIT in conjunction with ICI Polyurethanes to

more accurately assess the solid polymer extinction coefficient.
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Figure4.7: Comparison of Radiative Conductivity Measured by Cunningham and
Sparrow [31] with Theory Using Earlier K, Values

The values of K, reported in the literature, 1100cm -1 and 1633cm -1, were calculated

from transmission measurements of a 36gm large cell foam membrane and of 1.5gm free

rise bun film respectively [1]. The transmission characteristics of these two polyurethane

films is reproduced from [4] in figure 4.8. The reason why these measurements are

suspect are different for each sample. It is likely with the 1.5gm film that since the film is

so thin that attenuation due to reflection is considerable. An estimate of reflectivity from

the complex index of refraction measured by Mark Torpey [16] at each wavelength was

calculated (see Appendix E) and subtracted from the measured
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Figure 4.8: Transmission Measurements of Large Cell Foam Membrane and Free Rise
Bun Film [4]

spectral extinction coefficient. The modified Rosseland averaged extinction coefficient

accounting for the estimated reflectivity was 612cm- 1. The extinction coefficient

calculated from the 36p.m large cell foam membrane is suspect because the membrane is

too thick. That is, it is difficult to get an accurate assessment of the extinction coefficient

in the wavenumber range 1100cm -1 to 1700cm - 1 because little energy is transmitted in this

Is in ?In5rri



range. So it was decided to measure the extinction coefficient from films of thicknesses

between the range reported in the literature.

ICI Polyurethanes provided four thin specimens of solid polyurethane. Micrometer

thickness measurements of these samples carried out at ICI were provided and are listed in

Table 4.2 [30]. Measurements of the solid polymer extinction coefficient were carried out

for Sample 1 at ICI. The spectrometer used covered a wavenumber range of 4000cm-1 to

300cm 1 (2.5Rtm to 33jim wavelength). Roughly 96% of the blackbody energy from a

source at 283K lies in this spectral range. The calculated Rosseland average extinction

coefficient was determined to be 280cm-1. The spectral profile of this measured extinction

coefficient is shown in Appendix G. When truncated to the spectral range of the

spectrometer used at MIT (4000cm -1 to 415cm -1 which represents roughly 85% of the

energy emitted by a blackbody at 283K), the Rosseland average extinction coefficient was

determined to be 310cm- 1 [30].

Thickness
Sample

(gm)

1 26.5

2 33.8

3 25.1

4 28.3

Table 4.2: ICI Measurements of Solid Polyurethane Extinction Coefficient

Using the same technique applied in Section 4.1, the solid polymer extinction

coefficient was measured at MIT for each sample. The extinction coefficient profiles with

respect to wavelength are shown in figure 4.9. The results of the extinction coefficient

measurements are displayed in Table4.3
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Sample KR
(cm-1)

1 347

2 323

3 359

4 347

Table 4.3: MIT Measurements of Solid Polyurethane Extinction Coefficient

Using the mean Rosseland averaged extinction coefficient of 337cm-1, the comparison

of predicted radiative conductivity (fs=0.8, pf-35kg/m3, and ps=1240kg/m 3) with the data
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of Cunningham and Sparrow is shown in figure 4.10. The comparison of predicted

radiative conductivity with a Rosseland mean extinction coefficient of 280cm-1 is also

shown. Note that the agreement with measured radiative conductivities is much better

than with the larger values of the solid polymer extinction coefficient. A Rosseland mean

extinction coefficient of 337cm -1 for the solid polymer will be used in tandem with

equations 2.2, 2.38, and 2.50 to predict the overall conductivity of the six foams provided

by ICI in Chapter 5.

4.3 Morphology and Radiative Conductivity
From equations 2.7, 2.13, 2.38, and 2.50, one can see that a detailed relationship

between the foam structure and the conductivity components has been developed. So to

see how well this model predicts conductivity as cell-sizes decrease, the morphology is

measured, the conductivity components calculated, and then the components are

compared to measured thermal and optical properties. The influence of some parameters

on conductivity are rather well documented, such as the effects of mean cell diameter and

the fraction of solid in the struts. The influence of others are not yet developed such as the

influence of cell size distribution, anisotropy of the cells, and the
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Figure 4.10: Comparison of Cunningham and Sparrow Data with Theory (K,=337cm-1)

solid polymer extinction coefficient. So there are three goals to the morphology work of

this chapter. First is to measure parameters like mean cell diameter for six foams provided

by ICI using the methods already developed and to see if the predicted thermal

conductivities compare well with measured values. Next, for parameters whose influence

is well modeled but which have not yet been clearly measured such as the fraction of solid

in the strut and solid polymer extinction coefficient measurement techniques are explored.

Finally, both means of measurement and the influence of parameters like cell size

distribution and extinction efficiency are detailed. The effects of parameters measured in
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this chapter on the solid conductivity component and on the overall heat transfer will be

presented in Chapter 5.

4.4 Mean Cell Diameter Measurement
Measurement of the mean cell diameter, as can be seen from equation 2.5 entails

measuring the surface-to-volume ratio of the foam. Scanning Electron Microscope

(SEM) photographs showing the plane parallel to the heat transfer direction are taken of

foam samples as described in Mozgowiec [18]. A typical SEM photograph is pictured in

figure 4.11. Shown in the figure, are lines drawn parallel and perpendicular to the

orientation axis. The number of intersections with cell boundaries per unit length of line

(NL) is related to the mean intercept length as described in Quantitative Stereology [12].

That is, for an isotropic structure, the mean intercept length is the inverse of the number of

intersections per unit length

S 1
NL1 (4.5)N

In determining the number of intersections, if a test line passes through a cell wall, it is

counted as one intersection. If the test line is tangent to a cell wall, it is counted as one-

half of an intersection. If a test line intersects a strut, where three or more cells come

together, it is counted as one and one-half of an intersection. As outlined in Quantitative

Stereology [12], the surface-to-volume ratio is

2

S 2 I 2 N L (4.6)
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For structures like foam cells which have an orientation axis, the number of intersections

with cell walls parallel and perpendicular to the orientation axis are counted (NL// and

NL I respectively). Then the surface-to-volume ratio is

SV = 1.57 1NLI + 0.429NL (4.7)

The mean cell diameter is then calculated using equation 2.5. The results of the mean cell

diameter calculations for the six small-celled foams sent by ICI are shown in Table 4.14

along with the predicted radiative conductivity.

4.5 Fraction of Solid in the Struts Measurement
The effect on radiative and solid conductivity of polymer distribution between the cell

walls and strut regions is well developed theoretically (equations 2.13 and 2.50).

However, whether this parameter changes drastically with smaller-celled foams or not is

not clear. The fraction of solid in the struts, f, as measured by Mark Mozgowiecs and by

Melissa Page is plotted versus decreasing cell size in figures 4.12 and 4.13. Both

measured cell wall thicknesses from which an estimate of the fraction of solid in the strut

can be calculated, as will be shown below. A general trend with smaller-celled foams is

not apparent from these figures. So fs measurements for the smaller-celled foams is

necessary.
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Figure 4.11: SEM Photograph Showing Sv Calculation Method
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Figure 4.12: Fraction of Solid in Strut Measured By Mark Mozgowiec [ 18]
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Figure 4.13: Fraction of Solid in Strut Measured by Melissa Page [ 13]

Presentlyfs is calculated from SEM images of cell wall thicknesses,t. The relationship

between fs and t is outlined in Page [13]. With thickness measurements perpendicular to

cell walls, the fraction of solid in the struts is

Svt
fs = 1 1 (4.8)s 1-8
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However, the method is limited by large variations in measured thicknesses. Both Page

[13] and Mozgowiec [18] cite cell wall thickness variations of a factor of three in some

foams. A technique to measure fs with greater precision was analyzed in this project and

the trend of fs with smaller cells examined. This technique involved relating the strut

cross sectional area observed in SEM photographs tofs.

To relate strut cross-sectional area measurements to f, first look at the definition of

strut mass fraction. The fraction of solid in the struts is the ratio of total mass in the struts

to the total mass of the polymer or

mstrut
f - (4.9)

total

The total mass of the polymer is the total mass of the foam minus the total mass of the gas

trapped in the foam or

mtotal = fVf-pgVg = Vf(Pf- pg) (4.10)

The mass of the struts is the density of the solid polymer multiplied by the total volume of

polymer in the struts or

strut P strut = sAstrutLtotal (4.11)

where Astrut is the cross sectional area of the strut which is assumed to be the same for all

of the struts, and Ltotal is the total length of the struts in the foam. Taking the length of

each strut to be equivalent to Lstrut and the total number of struts being Nstrut, Ltotal can be

written as
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Ltotal = LstrutNstrut (4.12)

Using these definitions and rearranging, equation 4.9 can be written

Ps (Nstrut L

fs p - g Vf strut strut(4.13)

For a pentagonal dodecahedron, Lstrut is an edge length of a face, which is related to the

mean cell diameter

d
Lstrut 2.57 (4.14)

The number of struts Nstrut per foam volume can be expressed in terms of the number of

struts per cell and the number of cells per volume or

Nstrut Nstrut Ncell
(4.15)

Vf cell Vf

For typical foams, each cell has three neighbors, so the number of struts per cell has to be

divided by the three cells. So for pentagonal dodecahedron foam cells with 30 struts per

cell,

Ntrut strut,pd _ 30(4.16)
cell 3 3

The number of cells per unit volume, Ncell/Vf, can be expressed in terms of the measured

surface-to-volume ratio of the foam. That is, the surface-to-volume ratio is the number of

cells times the internal surface area (Sinternal) of the cell divided by the total volume or
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NcellS internal Ncell 2 Scell)
S (4.17)V V Vf f

The factor of one-half comes from Underwood's definition of the surface-to-volume ratio

[12]. In defining the surface-to-volume ratio in terms of the number of intersections per

unit test line (NL), the internal surface areas are treated as two-dimensional surfaces

separating space-filling cells. That is, two cells share the same cell wall surface area. The

surface area per cell is one-half the surface area of a single stand-alone cell (Scell).

Equation 4.17 can be rearranged to yield

Ncell V2Sv s(4.18)
f cell

For a pentagonal dodecahedron, the measured surface-to-volume ratio is 3.46/d where d is

the cell diameter. The surface area of a single cell is 3.126d2. So for several pentagonal

dodecahedron cells,

3.46
N 2( )cell 2 d 2.214

Vf 3.126d 2  d 3

Combining expressions 4.15, 4.16, and 4.19, the number of struts per unit volume is

Nstrut Nstrut Ncell 2.214 22.14
S cell V 10 -3 (4.20)V cell Vf d3 d

In terms of measurable geometric properties of the foam like cell diameter (d), foam

density (8), and strut cross-sectional area (Astrut), the fraction of solid in the strut is
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Ps 22.14 df = PfPg ( (2 ) ( d)A (4.21)
s -5g) d3 2.57 Astrut

Since the foam density pf is much greater than 8pg this measure of strut mass fraction is

roughly

(Ps 8.62
Is d2 ) Astrut (4.22)

This relationship is useful when measurements are made of strut cross sectional areas

with the SEM. A typical SEM photograph of strut cross sectional area is shown in figure

4.14.

The cross section pictured on an SEM photograph may not be normal to the length of

the strut, but may be a cut at some other angle as shown in figure 4.15. So to account for

angular orientations, several strut cross sections are measured for each foam. Then, the

actual cross sectional area can be related to the average measured cross sectional area as

will be shown below.



Figure 4.14: Typical SEM Photograph of Strut Cross-Sectional Area
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Projected Strut
Cross Sections

Figure 4.15: Cross Section of Strut Intersected at Different Orientations
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To derive a relationship between measured average strut cross sectional area and the

actual strut cross sectional area, consider the strut intersected by a plane, the base of a

hemisphere, in figure 4.16.

Figure 4.16: Sections (Aint) Used To Represent Average Intercepted Orientation

The area of intersection between the strut and the hemispherical base, Aint, represents

the sectional areas when struts are intersected by random planes. It is related to the true

cross sectional area of the strut, A, by

Aint = AsecO (4.23)
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The strut projects a differential element onto the surface of the hemisphere, dAH. Finding

the average section area is the same as weighing the intersected area from each orientation

by the fraction of total hemispherical area that this element represents and summing over

all possible orientations. That is,

AdA
Ait (4.24)

f dAH
AH

the differential element dAH is

dAH = r2 sinOdedp (4.25)

So the average intersected area is

_2t = ~ 2=Jn =A sec Or2 sinOdOd(p
Aint 2 (4.26)

f0=0 r2sinededp

Carrying out the integration gives the average area as a function of A,02,
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In secO2 1
Ai = l-csec2 )A (4.27)

The reason this expression is written in terms of a maximum angle 02 rather than

integrated to it/2 is that mathematically the intersected area becomes infinitely large with

02=7r/2. In real SEM work this would correspond to the cross sectional area incorporating

the entire length of the strut. Mathematically then, the expression for Aint becomes

infinite. Practically however, there is a maximum 02 to which one measures. The key is

to determine this maximum angle from the statistical distribution of measured areas and

then to use expression 4.27 to get the true strut cross sectional area from the average

measured strut cross sectional area.

The maximum area measured, considering all struts to be of the same cross sectional

area, should correspond to the plane that intersects the strut at angle 02. This maximum

area is then

Amax = A sec02 (4.28)

Then the ratio of maximum to average measured area is a function of 02 only. That is,

Amax sec02
R - = (4.29)

Aint In sec021

1 - cos 2

So to determine the cross sectional area of struts from SEM photographs the following

procedure is used. First measure a number of strut areas from a local area having similar

cell sizes like the one pictured in figure 4.17. Determine the average area and the ratio
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Figure 4.17: SEM Photograph of Local Area Having Similar Cell Sizes

of maximum to average area. From the ratio, determine 02 using expression 4.29.

Knowing 02 and the average measured area, the cross sectional area of the strut is simply

(1 - cosO2)A = Aint In lsec21 (4.30)
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It is this area that is appropriate for the fraction of solid in the strut calculation.

Fraction of solid in the strut calculations using this method were compared to results

Page [13] obtained for two foams using cell wall thickness measurements. Cell wall

thicknesses were also measured for two of the foams provided by ICI. The comparison of

results for the two methods are shown in Table 4.4. Considering the variations in cell wall

thicknesses that were measured in each sample, the agreement is good.

%

fs difference
fs (from cell from cell

foam (from strut
wall wall

thickness) thickness
calculation

Page #21 0.73 0.84 -13.1

Page #27 0.68 0.66 + 3.0

NBE 0.65 0.71 - 8.5
785/206

NBE 0.77 0.83 - 7.2
819/16/1

Table 4.4: Comparison of Fraction of Solid in Strut from Strut Area and from Cell Wall
Thickness Measurements

There are shortcomings to this method that have to be kept in mind. The most

important is that usually 3 or 4 struts appear on any SEM photo with enough resolution to

get an accurate measurement of area. So the method becomes time consuming and

expensive in terms of SEM use to get a statistically large enough sample, which more

than five strut areas appear to provide Other things that should be kept in mind are the

assumptions used in the derivation, most importantly that all struts have the same cross

sectional area. The benefits of this method include a greater confidence in the results than
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from measuring cell wall thickness and a measurement technique that is less tedious than

finding a suitable cell wall thickness at high magnification.

Several strut cross sectional area distributions and the SEM photos from which they

were measured are in Appendix G. The fractions of solid in the struts derived from

equation 4.22 and from the measured results for the six foams provided by ICI

Polyurethanes are listed in Table 4.14 at the end of the chapter. The variation of f, with

cell size is shown in figure 4.18. With the possible exception of foam NBE 863/13/1

( fs=0.48) , the redistribution of polymer from the struts to the cell walls as cell size

decreases can be seen. The redistribution decreases the extinction due to the struts while

at the same time increasing the extinction due to the cell walls. Whether this increases or

decreases the total radiative conductivity depends upon the relative change in each

component. The predicted radiative conductivity for constant fs=0.8 and pf=35kg/m 3 is

plotted in figure 4.19 along with the predicted radiative conductivity with the measured

mass fractions. Note that in the intermediate cell sizes, the measured redistribution of

polymer decreases the radiative conductivity while increasing it at small cell sizes. How

this redistribution affects solid conductivity will be discussed in Chapter 5.
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Figure 4.18: Measured Fraction of Solid in Strut versus Foam Cell Size
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4.6 Comparison of Predicted and Measured Extinction Coefficients
Now that the fraction of solid in the strut and mean cell diameter have been measured,

the extinction coefficient predicted from equation 2.50 can be compared to the measured

extinction coefficients of Section 4.1. The extinction coefficients predicted from equation

2.50 and from the data in Table 4.14 are shown in Table 4.5. Both extinction coefficients

are also plotted versus cell size in figure 4.20.

Table 4.5: Extinction Coefficients from Transmission
Morphology Calculations

Measurements and from

132

mean cell Kpredicted
foam diameter meas' red from

(cm ) morphology
(mm) (cml1

NBE 0.109 61.0 40.9
678/21/47

NBE 0.188 49.0 31.8
785/206

NBE 0.192 40.7 30.6
819/16/2

NBE 0.238 38.4 27.8
819/16/1

NBE 0.284 27.0 20.9
863/13/1

NBE 0.363 34.9 16.8
785/204



O from transmission measurements
A from morphology
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Figure 4.20: Comparison of Extinction Coefficients from Morphology and from
Transmission Measurements

Notice that the morphology predictions underpredict the transmission measurements. Two

possibilities for discrepancy were considered. The first is the possibility that highly

anisotropic scattering might skew the transmission measurements. This is discussed in the

following section. The second is the possibility that the extinction efficiency factor is not

unity for the smaller celled foams. The analysis of the extinction efficiency factor from

Mie Scattering Theory is discussed in Appendix H. Another possible cause of
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discrepancy is additional scattering due to reflections at the cell wall surfaces. The impact

of such reflections should be examined in future work.

4.7 Scaling of Measured Extinction Coefficients For Anisotropic
Scattering

In the derivation of the Rosseland equation, isotropic scattering is assumed [15]. Scat-

tering in foams is actually an anisotropic process as will be shown below. As described by

Sinofsky [15] the measured extinction coefficient which includes anisotropic scattering

can be scaled to the P-1 approximate extinction coefficient which can then be used with

the isotropic Rosseland equation to describe the radiative behavior. If not scaled, for

strongly forward scattering material, such as fiberglass, the Rosseland equation could

underpredict radiation by as much as 60% [15].

The directional nature of scattering is represented by the phase function 0(0) which is

the normalized ratio of intensity scattered in the 0 direction to the intensity scattered in the

same direction if scattering were isotropic. Consider energy scattered from an element

oriented in the 0i direction. Intensity scattered from this element in the 0 direction is

related to the total intensity scattered from the element

dIs (, Oi) = -dIsA (Oi 4( (4.31)

The total intensity scattered from the Qi element is

dIs (i) = dI • ( O i) do (4.32)
ei=4 nh

integrated over the solid angle
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do = sin0d0dq

Then

dIsk (0, Oi)
S(0, 0i) = 1 )4n)

(4.34)

dIsx (0, Oi) do
O).=4 t

The denominator is actually the increase in intensity if scattering were isotropic, so

dIsX (, Oi)

dI (, i) isotropicisotropic

(4.35)

The phase function is normalized so that

1 f (0) d( = 1
0,i=4 1:

(4.36)

Based on the phase function, one can define the fraction of energy scattered in the

forward direction due to anisotropy. This is the forward fraction, FX

= 0/2 X (0 ) sinOdO

F( = (4.37)O 1 (80) sinOdO

If F% > 0.5, the material is forward scattering. If Fh < 0.5, the material is backward

scattering. If F? = 0.5, the scattering is isotropic.

The phase function for polyurethane foam at 9gm wavelength was measured by

Schuetz and Glicksman[8] and found to be forward scattering.
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Knowledge of the albedo, Q2, is also needed to scale anisotropic measurements to be

used with the isotropic Rosseland equation. The albedo is the relative size of scattering in

a material or

0 = (4.38)

The albedo for small celled polyurethane foam was measured by Kuhn et al [33]. Their

results indicate that a good approximation of the albedo is O?=0.6 for wavelengths less

than 6p~m and QX=0.2 for wavelengths greater than 6tm.

Now the P-1 extinction coefficient scales the extinction coefficient according to the

severity and direction of anisotropy. If F, > 0.5, a material propagates more radiant

energy than isotropically scattering media because more energy is directed in the forward

direction. The P-1 extinction coefficient is therefore lower than the true extinction

coefficient since less energy is attenuated with a forward scattering material.

From knowledge of albedo and phase function, a scaled spectral scattering coefficient

can be defined [32]

(,P1 = o (1 - < cos0> ) (4.39)

where the asymmetry factor <cos0>X is

<cosO>X = -Z 1f () cosd (coso) (4.40)

The P-1 extinction coefficient is then

Kp 1 = P I + aX (4.41)
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which can then be used with the Rosseland equation. Lee and Buchias [32] showed that

this method is quite accurate.

From the phase function measured by Mark Schuetz for polyurethane foam [14], Mark

Sinofsky determined the foam forward fraction to be F=0.68 [15]. The forward fraction

F=0.75 was the closest to this value for which extinction ratios were presented for

different albedos. Using the approximate albedo derived from Kuhn et al [33](see figure

4.21) and the ratios of Kmeasure/Kp- presented in Sinofsky [15] for a forward fraction of

F=0.75, the spectral extinction coefficients were scaled. Then the Rosseland mean P-1

extinction coefficient was calculated. P-1 extinction coefficients for the six foams

provided by ICI are listed in Table 4.6. Also shown in Table 4.6 are the extinction

coefficients predicted from the morphology.

foam
(mean cell Kmeas/Kp-1 Kmeas/K- Kme Kpme Kmorphqlogy
diameter) < 6m > 6gm (cm - ) (cm - ) (cm-')

NBE 1.20 1.09 61.0 54.6 40.9
678/21/47
(0.109mm)

NBE 1.20 1.09 49.0 44.7 31.8
785/206
(0.188mm)

NBE 1.20 1.09 40.7 37.1 30.6
819/16/2
(0.192mm)

NBE 1.20 1.09 38.4 35.0 27.8
819/16/1
(0.238mm)

NBE 1.20 1.09 27.0 24.6 20.9
863/13/1
(0.284mm)

Table 4.6: P-1 Extinction Coefficients from Extinction Coefficients Calculated from
Transmission Measurements
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foam
(mean cell Kmeas/K-1 Kmeas/KP- Kme s  Kpi Kmorphqlogy
diameter) < 6m > 6m (cm ) (cm- ) (cm)

NBE 1.20 1.09 34.9 31.8 16.8
785/204
(0.363mm)

Table 4.6: P-1 Extinction Coefficients from Extinction Coefficients Calculated from
Transmission Measurements

The predictions of overall conductivity in Section 5.4 will use the uncorrected

extinction coefficients measured from the transmission characteristics. In Section 5.9 the

impact of scaling the measured extinction coefficients on predicted overall conductivities

will be explored.
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Figure 4.21: Albedo of Polyurethane Foam Measured by Kuhn et al[33]
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4.8 Anisotropy Measurement and Effect on Conductivities
The degree of foam cell anisotropy and a first look at its affect on radiative

conductivity was investigated. The influence on solid conductivity, as outlined in Chapter

2 will be discussed in Chapter 5. As outlined in Chapter 2, the affects of anisotropy can be

included with the ratio of major to minor cell axes a/b where a and b are shown in figure

2.2. With oriented cells modeled as ellipses, this anisotropy factor is the same for any

section cut by a plane parallel to the orientation axis. So the ratio of major to minor axes

for sections such as SEM or confocal images should be the same as the ratio for the three

dimensional cells. The anisotropy factor for oriented cells can then be computed from the

measured quantities (NL// and NLI ). That is, the mean major axis (2a) is proportional

to 1/NL// while the mean minor axis (2b) is proportional to 1/NLIL with the same

proportionality constant. Then the anisotropy factor can be derived

a 1/NL// NLI
e - /NL NL (4.42)b 1 /N N

The anisotropy factor for the foams supplied by ICI are shown in Table 4.14 at the end

of the chapter. One noticeable trend is that as the cell size becomes smaller, the degree of

anisotropy decreases considerably. That is, the smaller celled foams are more isotropic

than the larger celled foams.

Anisotropy of foam cells mean that the extinction coefficient varies with angle from

the orientation axis. So the influence of anisotropy can be easily incorporated into the

radiative heat transfer model by accounting for an extinciton coefficient that varies with

angle. Going back to equation 2.32, it is assumed that the extinction coefficient K is not a

function of 0 to derive the Rosseland equation for a gray isotropic body. The integration

yields
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4 deb
qR -3K dx (4.43)

The integration can also be carried out for K that varies with 0, the situation when

anisotropic foams are encountered. The first and third terms of qr(+x) and qr(-x) still

cancel in expression 2.32 assuming that K(0) equals K(0+it). With K(0) the net radiant flux

in both directions is

deb /2 cos20sinOdO
q = -4 ( b) (4.44)

0

A measure of how well the isotropic Rosseland equation predicts the actual

anisotropic radiative flux is the ratio qanis'qisot. That is, for some measured or calculated

K, compare the ratio of flux predicted by equation 4.43 to the true anisotropic flux of

equation 4.44. Note that the angular dependence of the extinction coefficient with respect

to the orientation axis or rise direction has to be known. If known, or assumed, the ratio of

fluxes can be written

deb '/2 cos 20sinde0 7r/2 Ccos 20 sinOdO

qanis dx J0  K (0) 0 K (0)
Sde-1(4.45)

isot -4 /3K 3 K)

So the amount of error in predicted flux from using the isotropic Rosseland equation with

some measured extinction coefficient can be quantified by the ratio qanis/qisot. This was

done numerically for a simple assumed variation of K(0). For simplicity of angular

orientation, assume a harmonic function K(0)



K (0) = KOcos 2 + K90 sin2 0

where KO and K90 are the extinction coefficients in the rise direction and at right angles to

the rise direction respectively. Axial symmetry around the rise direction axis is assumed.

Note that the harmonic form reduces to the isotropic extinction coefficient K when the

foam is isotropic, or Ko=K9 0 =K.

The first comparison looked at use of the isotropic Rosseland equation with extinction

coefficients presently used in foam heat transfer analysis. The extinction coefficient

measured parallel to the rise direction, or KO, is currently used as the isotropic Rosseland

extinction coefficient as described in section 4.1. For several ratios of Ko/K90 and the

assumed harmonic distribution of K(O), the radiative flux ratio qanislqisot was determined.

The results are shown in Table 4.7 and graphically in figure 4.22.

K0 /K90  qanis/qisot

0.333 0.606

0.500 0.739

0.667 0.843

0.833 0.928

1.000 1.000

1.167 1.062

1.333 1.117

1.500 1.166

1.667 1.210

1.833 1.251

2.000 1.288

Table 4.7: Ratio of Anisotropic to Isotropic Radiative Fluxes (Use Extinction Coefficient
Measured Parallel to the Rise Direction in the Isotropic Rosseland Equation)
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K0/K90  qanis/qisot

2.167 1.322

2.333 1.353

2.500 1.383

2.667 1.410

2.833 1.436

3.000 1.460

3.167 1.483

3.333 1.505

Table 4.7: Ratio ofAnisotropic to Isotropic Radiative Fluxes (Use Extinction Coefficient
Measured Parallel to the Rise Direction in the Isotropic Rosseland Equation)

2.0 -

1.5-

1.0-

0.5 I I I

1 2 3

Figure 4.22: Ratio of Approximate to Exact Radiative Flux (Use Extinction Coefficient
Measured Parallel to the Rise Direction in Isotropic Rosseland Equation)
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As can be seen, substantial errors could result if the anisotropy resulted in an extinction

coefficient of the form of equation 4.46 and one used K0 with the isotropic Rosseland

equation. If this were the case and KO were 2/3K90 , the isotropic Rosseland equation

would overpredict the actual anisotropic radiative flux by 18%.

Consider using the arithmetic average of the extinction coefficients parallel and

perpendicular to the rise direction, KO and K90 , which can easily be measured. Errors are

significantly reduced for the case of the harmonic function K(O) if one were to use this

average, Kavg= 1/2(KO+K9g), with the isotropic Rosseland equation. This can be seen in

Table 4.8 and in figure 4.23 which again compares the anisotropic to the isotropic fluxes

for different Ko/K9 0 ratios.

Table 4.8: Ratio of Anisotropic to Isotropic Radiative Fluxes (Use Kavg in Isotropic
Rosseland Equation)

KO/K90 qanis/qisot

0.333 1.211

0.500 1.109

0.667 1.054

0.833 1.021

1.000 1.000

1.167 0.986

1.333 0.978

1.500 0.972

1.667 0.968

1.833 0.966

2.000 0.966

2.167 0.966

2.333 0.967

2.500 0.968

2.667 0.969



KO/K90  qanis/ qisot

2.833 0.971

3.000 0.973

3.167 0.976

3.333 0.978

Table 4.8: Ratio of Anisotropic to Isotropic Radiative Fluxes (Use Kavg in Isotropic
Rosseland Equation)

1.3 -

S1.1

1.0-

0.9 -

1 2 3
Ko/K 90

Figure 4.23: Ratio of Approximate to Exact Radiative Flux Using Kavg in Isotropic
Rosseland Equation
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The isotropic radiative flux is overpredicted by only 5% if K0 is 2/3K90 . For the special

case of a harmonic function of K(O), the arithmetic average extinction coefficient is the

same as the P-1 approximate extinction coefficient

nt/2

Kpl = 2 f K() cosesinede (4.47)

0

For other forms of K(0) this equality would not be true and using Kavg and Kpl in the

isotropic Rosseland equation would yield different results. The appeal of using Kavg with

the isotropic Rosseland equation is that it should provide good agreement with the exact

anisotropic radiative flux with only two measurements.

We next conducted a look at how the anisotropy of the cells affects the radiative

properties of the actual foams provided by ICI. That is, for four foams of a measured

anisotropy factor, we determined the difference between the extinction coefficients in the

anisotropic (KO) and in the isotropic directions (K90 ). The results of the transmission

measurements for these foams are provided in Table 4.9.

mean cellmean cell anisotropy K0  K90foam diameter anisotropy 1  -1 KK 9 0
a/b (cm - )  (cm - )  K(mm)

NBE 0.109 1.35 61.0 65.0 0.94
678/21/47

NBE 0.192 1.80 40.7 50.5 0.81
819/16/2

NBE 0.284 1.70 27.0 35.5 0.76
863/13/1

NBE 0.363 1.29 34.9 36.9 0.95
785/204

Table 4.9: Measured Extinction Coefficients Showing Influence ofAnisotropy
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One apparent trend of the data in Table 4.9 is that foams with a smaller degree of

anisotropy (a/b) have a lower variation of extinction coefficient between the isotropic and

anisotropic directions.

Next we measured the extinction coefficient of two foams at 450 to the orientation

axis (K45 )to get an idea of the functional variation of K(0). If K(0) were harmonic, the

extinction coefficient at 450 to the orientation axis should be equal to Kavg=l/2 ( K+K9 0).

The comparison between Kavg and K45 is provided in Table 4.10. From this data, K(6)

does not appear to be harmonic but more elliptical, meaning having a value closer to K90

for a wider range of 0. From Table 4.10 it is clear that the arithmetic average of the

extinction coefficients Ko and K90 in conjunction with the isotropic Rosseland equation

would not provide a good approximation to the anisotropic flux.

Foams that show a large degree of anisotropy warrant a closer inspection of actual

K(0) variation to see how well the isotropic model handles anisotropic radiative flux and

what combination of measurable extinction coefficients provide the best approximation to

the actual anisotropic extinction coefficient.

foam anisotropy K0  K90  K K45
a/b (cm - 1) (cm) (cm- ) (cm )

NBE 1.8 40.7 50.5 45.6 47.4
819/16/2

NBE 1.70 27.0 35.5 31.3 35.0
863/13/1

Table 4.10: Comparison of Extinction Coefficients Measured at 450 to Rise Direction and
Values Predicted if Harmonic Function K(O)
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4.9 Statistical Distribution of Cell Sizes
With radiation treated as a local process related to the mean cell diameter of the foam

the possibility exists that a widely varying distribution of cell sizes could greatly affect the

extinction coefficient. If the cell sizes varied enough, the validity of a single extinction

coefficient to represent the properties of the whole foam would be questionable. We

carried out a first look at this to determine the influence of cell segregation. The details of

this analysis are described in Section 4.10 after a description of how to determine the cell

size distribution. Consider a segregated distribution between two cell sizes in parallel to

the direction of heat flow (figure 4.24) with foam density constant in both sections. We

compared the true foam conductivity of segregated cells and the foam conductivity using

the average cell diameter as a function of volume fraction of cells of diameter d1 . Use of

mean cell diameter underpredicts the true foam conductivity by as much as 9% if the

volume fractions of cells of each diameter are equal (wl=0.5, dl=0.1mm, d2=0.4mm in

figure 4.24). So part of this project included an analysis of the cell size variation in a foam

and how measured cell size variations would likely affect the extinction coefficient.

wl'A (1-wl)-A

d, d2 q

Figure 4.24: Foam Consisting of Segregated Cells
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The calculation of foam cell size distribution from SEM or confocal micrographs is

not as straightforward as measuring the distribution of diameters on the micrograph. Even

if all foam cells are spheres with exactly the same diameters, a random section plane

through the foam will cut cells at different section planes from the cell center yielding a

distribution of sizes on the micrograph. This is depicted in figure 4.25. Adding

complexity to the problem is an actual distribution of cell sizes. Now a random section

plane will not only cut a sphere at different locations from the center, but will cut cells of

different sizes at different locations from the centers. The problem created is depicted in

figure 4.26. As shown in the figure, two cells of different diameter could yield a section of

the same diameter.

Fortunately, methods to obtain actual size distributions from section planes were

developed in the 1950s and 1960s primarily by metallurgists interested in the grain sizes

of metals. Several techniques exist and are reviewed in Underwood's Quantitative

Stereology [12]. The techniques cover diverse systems of measurement, from measuring

section diameters, intercepted chord lengths, to measured section areas to develop the cell

distribution and agree quite well with each other. The methods do vary considerably in

assumptions necessary for the analysis and in complexity. The method chosen calculates

size distribution from measured section areas. This method is most useful for a few

reasons. Unlike many others, this method works for particles of nonspherical shapes.

Previous work [9,10] indicate that polyurethane foam cells are best described by

polyhedral shapes such as the pentagonal dodecahedron. Another important reason why

this method was chosen is that it is a rather easy method to implement with computer

code. Most of the other methods that could handle nonspherical shapes become unwieldy

once a nonspherical shape is used.
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(a) Intersection of Plane with Volume Filled with Spheres
of Radius R

(b) Intersected Areas on Section Plane

Figure 4.25: Distribution Resulting from Spheres of Same Diameter
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(a) Intersection of Plane with Volume Filled with Spheres
of Different Radii

(b) Intersected Areas on Section Plane
Note: Spheres 2 and 4 have different radii but produce

same section areas

Figure 4.26: Distribution Resulting from Spheres of Different Diameters
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Assumptions in the method are for the most part flexible enough to encompass foam

distributions. These include particles being of the same shape like a collection of spheres,

a collection of cubes, or a collection of pentagonal dodecahedrons. The shape of the

particle must be one such that a section plane intersects the body only once, which is true

for all convex bodies. The distribution of particles in space have to be statistically

uniform throughout the test volume to ensure that the frequency of cells of a certain size,

the number per unit volume, has a constant value for a large enough sample. This

assumption appears to be true in foams. The mean cell diameter for different SEM images

and for different confocal microscope images for the same foam does not vary greatly and

for the images examined, the foam cell diameters are concentrated in size around the mean

cell diameter. This may not be true near the surface of foams but appears to be true in the

foam interior. The last assumption is the only one that might be violated. This assumption

is that the particles are randomly oriented in space. As has been pointed out in section 4.8,

this is certainly not true for foams which have an orientation axis and elongated direction.

However, an extension of the present method has been developed that allows the

determination of cell size distribution of oriented cells based on sections perpendicular to

the orientation axis. This method will be described in further detail.

The assumption of the cells having the same shape simplifies the analysis of the

morphology considerably. With all cells of one shape, there is only one parameter that is

needed to specify the size distribution. This parameter is the diameter of the cells (d). As

is explained in Quantitative Stereology, it is the same diameter that has been defined in

Chapter 2 or in Section 4.4 in the heat transfer equations as the cell diameter and is shown

in figure 2.1.



With a parameter to define the particle cell sizes, the governing equation that relates

number of particles of a certain size per section plane (NA) to the number of particles per

volume (Nv) is quite simple.

NA = Nvd (4.48)

The derivation of this is presented in Appendix A. Now since it would be impractical to

measure the continuous section plane size distribution (NA), the cell size distribution is for

classes of particles. Characterizing each class is the section area. That is, particles with

section areas within certain bounds are grouped into the same cell size class. Increasing

the number of classes increases the approximation to the actual distribution, although it

also increases the number of measurements necessary.

Now consider a single particle of a given shape as in figure 4.27. For all of the section

planes through the particle there is a certain section plane that yields the maximum section

area. That is, even though several section planes might intersect the particle giving the

maximum section area, these sections must have the required shape. For a cubic cell as in

figure 4.27 there are two section planes that yield the maximum section area. But both

yield section areas that are rectangles with sides a and a4F For a pentagonal

dodecahedron, the maximum section area has a hexagonal shape. In measuring cell areas

in the analysis, it is important to have a large enough number of sections to get the

sectional area with both the greatest area and the shape of the maximum area through the

body.
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a

Figure 4.27: Maximum Section Area Intersected by Section Plane for Cubic Cell

Still consider a single particle that is intersected by a large number of random planes..

A number of intersected areas, or section areas will result. Grouping these section areas

into class intervals, a distribution of section areas characteristic of and only dependent on

a body shape will result. The section area distribution of a pentagonal dodecahedron is

different from the section area distribution of a sphere and from the distribution describing

any other shape as is shown in figures 4.28 and 4.29.
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Figure 4.28: Section Area Probability Distribution for Pentagonal Dodecahedron
Derived from [34]
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Figure 4.29: Section Area Probability Distribution for Sphere Derived from [12]

Important to the determination of cell size distribution is the fact that this area ratio

distribution is applicable if a single particle is intersected by random planes or if a random

plane intersects a large number of equal sized randomly oriented particles.

Again, the area distribution cut by a random plane, or number of particles per section

plane (NA) versus A/Aa, is unique and completely determined by the particle shape. F.C.

Hull and W.J. Houk [34] determined experimentally the A/A,, distribution if pentagonal

dodecahedrons are intersected by a random test plane. Their results are shown in figure

4.28.

In establishing the matrix equations derived from relationship 4.48 used to solve for

the cell size distribution, the following subscript notation will apply.
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o j: relating to sphere of diameter j (actual cell diameter)

* i: relating to section area diameter i (intersected section diameter)

Using these subscripts, equation 4.48 can be rewritten as

(NA) ij
Nvjvi= d. (4.49)

That is, the number of particles per unit volume of size j are equal to the number of

sections of all sizes obtained from particles of size j divided by the cell diameter of size j.

NAij is the number of sections of size i from particle j.

Now define the probability that a section plane will intersect a particle of sizej to yield

a section of diameter di, Pi. From its definition, this probability is

(NA)
P.. = (4.50)

iJ 2(NA)

Combining expressions 4.49 and 4.50, the following relationship can be established

NAi= PijN jd (4.51)

That is, the number of particles per unit area of section size i originating from particles of

size j is equal to the probability of a section plane intersecting a particle of size j to yield a

section of size i times the total number of sections per unit area from particles of size j,
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which is the number of particles per unit volume of size j times the diameter of the

particles of size j.

Summing over all particles gives the number per area of sections of size i, which is the

measurable quantity from confocal or SEM images

NAi= (NA) ij = Pij jd (4.52)

J J

This can be written in matrix notation as

[NA] = [A] [Nv] (4.53)

where

A .. = P ..d. (4.54)

Taking the number of class intervals i equal to the number of measured section intervals j,

equation 4.53 is directly solvable as

[Nv] = [A] - 1 [NA] (4.55)

Even though these equations do not deal with the anisotropy of the foam cells, they

were used for a first look at the cell size distribution in foams. The procedure was as

follows. First, section areas were measured using IMAGE 1.47 (described in Chapter 3).

The maximum section area and total area of sections were calculated. Ten classes of

A/Ama x were formed and the number of sections per total area in each A/A,, class (NAi)

were determined. The area of each class interval (Aj) is the mean A/Aa x of each class

times the maximum area (Amax). For a sphere, the class diameter (dj) is
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AA.
d. =2 2- (4.56)

and for a pentagonal dodecahedron it is

2 A.
d .2.57 (4.57)

J 5.161

calculated from Underwood's mean projected area and mean projected height data [12].

The probability of intercept (Pij) is calculated from the assumed shape's NA versus

A/Ama curve.Then Aij is calculated

A.. = P .. d. (4.58)

The distribution of cells (Nvj's) in the class intervals (dj's) is solved using a matrix solver

(MATLAB in this case) using equation 4.55.

Results of cell size distributions for three foams provided by ICI Polyurethanes are

shown in figures 4.30 through 4.32. How these distributions affect the extinction coeffi-

cient will be discussed later in this section.
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Figure 4.30: Foam NBE 819/16/2 Cell Size Distribution
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Figure 4.31: Foam NBE 819/16/1 Cell Size Diatribution
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Figure 4.32: Foam NBE 678/21/47 Cell Size Distribution

With the cells well mixed in the foam, the same mean cell diameter as defined in

Chapter 2 should be predicted from these results. The proper mean of the distribution

should relate the extinction coefficient predicted by the distribution to that predicted by the

mean cell diameter of Chapter 2. That is, from Chapter 2, the extinction coefficient is

expressed as

4.1 _sP/Ps Pf
d + ( - fs) K (4.59)

avg Ps

For well mixed cells, the extinction coefficient is



K= wiKi

where wi is the volume fraction of cells of size i or

and

N Tid 3 /6

4.1 sP/P sK.= +(1di

So for well mixed cells

IN d.

VI I

4.1 ,sP/P
sS

di

S= (4.1 sP/Ps )

2
Nid •• 3 + (1 -fs)

1Nd

Equating the extinction coefficients for the well mixed case and for the mean cell diameter

and rearranging yields
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(4.60)

(4.61)
Nvid

N vaf
1

-fs) PKwPs
(4.62)

3
Nvid i

I

(1 -fs) Pf K) (4.63)

Pf K
PK
Ps

(4.64)



SNvj.d
d a (4.65)

avg .d

This value calculated from the cell distribution should be equal to that calculated from the

surface-to-volume ratio of Section 4.4. The comparison of the two for the cell

distributions of figure 4.30, 4.31, and figure 4.32 is provided in Table 4.11.

davgdavg davg
d (from surface-to-volume

foam (from distribution) calculation)calculation)
(mm)(mm)

NBE 819/16/2 0.187 0.192

NBE 678/21/47 0.113 0.109

Table 4.11: Mean Cell Size from Distribution and Surface-To-Volume Measurement

In actuality, the foam cells are not isotropic bodies, but rather oriented structures,

which violates the assumption of random orientation. Therefore, the cell size distribution

analysis was modified to account for oriented structures. That is, a method to describe the

cell size distribution of ellipses of a known anisotropy factor (a/b in Section 4.9) was

developed. This method employs examination of sections perpendicular to the rise

direction (see figure 4.33) and use of the relation 4.48.

Just as with other assumed cell shapes like spheres and pentagonal dodecahedrons a

means to determine the probability of intersecting an ellipse to yield a certain section area

had to be developed. The development of this probability function is described in

Appendix F. The probability of obtaining section areas in A/A,, classes is shown in

figure 4.34.
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Figure 4.33: Section Areas Used in Anisotropic Size Distribution Analysis
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Figure 4.34: Fraction of Section Areas of Size A/A,, When Ellipse Intersected by Planes
Perpendicular to Orientation Axis

Again, as with the method to measure isotropic distributions, section areas are

measured, the difference being that only areas on section planes perpendicular to the

orientation axis are measured. The number of sections per total area measured in each

A/A, ax class are calculated in the same manner as with the random section method.

The particle class diameters are found in the following manner. For each class interval

j, the area representing that class is equal to the mean A/Ar , of that interval multiplied by

Am. The minor axis radius, bj, which was displayed in figure 2.2 is
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b. ' (4.66)
J

To relate the class diameters, dj, to bj first consider equation 2.5 which relates the cell

diameter to the surface to volume ratio. Since the surface-to-volume ratio is 1/2 the ratio

of surface area to volume of an individual particle, Sj/Vj (see internal surface area

definition in Section 4.5), then the class diameter can be expressed as

S3.46 6.92
dj (4.67)1 1 S./V.

The surface area and the volume of a single elliptical particle are defined by Underwood

[12] in terms of the major and minor axes radii. Therefore, Sj/V ca n be written as

a.
S 2n (b ) (bj + sin-l1 )

j 4 2(4.68)V. 4 2aj)
3 i(a)(b

where E is defined in terms of the anisotropy factor, e,

E= I=-1 (4.69)
F e

and equation 4.68 can be rewritten in the form

S 3 ej 3 1 + sin-E) (4.70)
V. 2eb.
V i

and the cell class diameter can be written as
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6.92
d. = (4.71)

1(1 + e sm)in- 1eb. e

So now that the class diameters are defined, the number of section areas per total area

are defined, and the probability of intersecting ellipses perpendicular to the orientation

axis (the major axis) to yield certain section area ranges are defined, the matrix equation

4.55 can now be solved. That is, matrix elements NAi are known, the elements Aij equals

dj Pij, and the number of cells in each class are

[Nv] = [A]-1 [NA] (4.72)

The cell size distributions based on the anisotropic cells approach were calculated for

four of the foams provided by ICI. The distributions are shown in figures 4.35 and 4.36.

Also shown in Table 4.12 is the comparison of mean cell diameter calculated from the

distribution compared to the mean cell diameter calculated from the surface-to-volume

ratio.
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Figure 4.35: Foam NBE 819/16/2 & NBE 678/21/47 Cell Size Distributions
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Figure 4.36: Foam NBE 819/16/1 & NBE 863/13/1 Cell Size Distributions
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d davg
avg (from surface-to-volume

foam (from distribution)
(mm) calculation)

(mm(mm)

NBE 819/16/1 0.248 0.238

NBE 819/16/2 0.192 0.192

NBE 678/21/47 0.149 0.109

NBE 863/13/1 0.287 0.284

Table 4.12: Mean Cell Size from Distribution and Surface-To-Volume Measurement

4.10 Effect of Cell Distribution on Extinction Coefficient
How these cell size distributions might influence the extinction coefficient of the

foams was analyzed. Worst case segregations where cells of different diameters are

grouped into distinct regions are considered. The first considers regions with different cell

diameters in parallel to the heat transfer as in figure 4.37(a) and the second considers these

regions in series as in figure 4.37(b). In each section, the density is assumed to still be the

overall foam density. The analysis only strictly holds for isotropic cells since the relation

between the extinction coefficient and anisotropic cells has not been fully explored. But

this restriction will be relaxed to also determine how the cell size distributions measured

from the anisotropic cells might influence the overall extinction coefficient.
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Figure 4.37: Extreme Cases of Foam Cell Segregation

To consider how the cell segregation affects the extinction coefficient of the first case,

consider the flux across the cells.

q 2
+ ".. =Yqi = Atotalkavg

(Ti - T2)
qi = Aiki t

and

ki = ksolid +k gas ' "radiation,i
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where

(T 1 - T 2 )

t
(4.73)

(4.74)

(4.75)

didi+l



ksolid and kgas can be seen in Chapter 2 to be independent of cell size, so they are the same

for each section of cells. They are calculated in this analysis from equations 2.7 and 2.13.

The radiation term is

160~T3
krad =16a 3  (4.76)

i

where

4.1 _sP/Ps PfKi d + ( 1 - fs) PsKw (4.77)

so combining equations 4.73 and 4.74

(T1 - T2) (T1- T2)
Aiki t Atotalkavg t (4.78)

Rearranging yields

A.
k avg A ki (4.79)

SAtotal

Defining the volume fraction (wi) as the total volume of cells of size i per total volume of

foam and recognizing that the width (t) of each section is the same, one can write the

relation

Vi N .d A.t A.
I vI I i _- -- (4.80)W Vtotal Njd3  Atotalt A total

i
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Substituting this expression into equation 4.79

3

kavg V 3 N k
I Nd

kavg is now

kavg = k + k +
avg solid gas

and so the effect of segregated cells on the extinction coefficient can be written

3 (k - k -k )avg solid gas

Doing a similar analysis for cells segregated in series to the heat transfer, the flux

across the foam is

T1 -T 2

wiVtotal

I kiA

(4.84)
T1 - T2
Vtotal

kavgAavg

where again

k= = k + k + ki = ksolid + kgas radiation, i

Rearranging, the average conductivity is

(4.85)

172

(4.81)

16713
3 K

avg

(4.82)

K avg
16 T3

(4.83)



1
k = __

avg -

i

(4.86)

The effect of segregation on the extinction coefficient is again expressed by equation 4.83.

For the cell distributions from the isotropic shape factors and from the ellipse shape

factor shown, the extinction coefficient due to segregated cells in these two worst case

scenarios were calculated. They were also compared to the extinction coefficients from

the mean cell diameter predictions and from the well mixed case (given by equation 4.77).

These results are shown in Table 4.13. For each of the three cases, the percent error in K

predicted from the mean cell diameter is also displayed.

K avg Kavg
davg d well mixed in parallel in series

(mm) av. (cm l ) /  (cm - 1) / (cm -1) /
(cm i) % error % error % error

NBE 0.287 22.07 21.93 21.02 21.15
863/13/1
ellipse + 0.64% + 5.00% + 4.35%

NBE 0.248 27.27 26.35 24.58 24.85
819/16/1
ellipse + 3.49% +10.94% + 9.74%

NBE 0.192 31.50 31.60 30.53 30.67
819/16/2
ellipse -0.32% + 3.18% + 2.71%

NBE 0.149 42.60 32.73 31.72 31.86
678/21/47
ellipse +30.16% +34.30% +33.71%

NBE 0.187 31.50 32.40 31.37 31.51
819/16/2
pent. dodec. -2.78% -0.41% -0.03%

Table 4.13: Cell Distribution Effects on Extinction Coefficient



K avg avg
davg d well mixed in parallel in series

(mmf) av (cm -1) / (cm -1) / (cm -1) /
% error % error % error

NBE 0.113 42.60 40.96 36.44 36.63
678/21/47
pent. dodec. + 4.00% +16.90% +16.30%

Table 4.13: Cell Distribution Effects on Extinction Coefficient

As can be seen in Table 4.13, for most of the distributions the cells were concentrated

so closely to the mean cell diameter that there is little impact in ignoring the distributions.

In fact, in the foams other than NBE 678/21/47 the maximum error in K predicted from the

mean cell diameter is 11%. The K overprediction using the mean cell diameter for foam

NBE 678/21/47 is significant however. The differences could be partially accounted for

by the difference in mean cell diameters predicted from the distribution and from the

surface-to-volume ratio (see Tables 4.11 and 4.12). Further investigation into the effects

of cell size distributions in smaller celled foams like NBE 678/21/47 would be

recommended.
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4.11 Statistical Look at Total Conductivity Versus T3

All of the means to calculate radiative conductivity presented in this chapter involve

the intermediate calculation of radiative conductivity from a model. That is, transmission

measurements requires interpretation of the radiative behavior from Beer's Law and the

Rosseland equation. Prediction from morphology measurements require the intermediate

theory of the interaction of struts and cell walls with electromagnetic radiation to estimate

the radiative conductivity. So in a vain similar to the attempts to measure the solid

conductivity, direct measurement techniques of the radiative conductivity were examined.

One of the most seemingly direct measurement techniques, calculation of radiative

behavior from the temperature dependence of the measured overall conductivity was

explored in detail.

Looking at the form of the total conductivity across a foam specimen,

k = kg + k-fk + 2 (1-f ) () 1/4 +16 (4.87)
g 3 p sbb jb b 3K

one can see that the radiative term can be determined from the variation of the total

conductivity with temperature. That is, assuming that the gas and solid conductivity terms

are independent of temperature, the slope of conductivity versus T3 should give a measure

of the extinction coefficient. Since

dk 160
dT 3K (4.88)

dthe extinction 3coefficient of the foam should then beK

the extinction coefficient of the foam should then be



160
K = (4.89)

dk
3( )

d73

Ideally then, the radiative conductivity can be determined from the slope of the variation

of conductivity with T3. The practicality of this technique was explored.

It has to first be established that the gas and solid conductivity terms are not strong

functions of temperature. If kp and kg are not functions of temperature, both solid and gas

conduction terms can be treated as constant with temperature. Over the range where most

foam conductivity measurements would be made, data published by. Bhattacharjee et al.

I[19] indicates that from T=00 F to T=1500 F, kg increases 20%. Torpey [16] measured the

variation of kp with temperature. Again in the range of temperatures where the foam

conductivity change would be measured, the solid conductivity changes 20%. This is

shown in figure 4.38. This is compared to roughly a 60% change in the radiative

conductivity term in the same range. Even though the change in gas and solid

conductivity with temperature is not insignificant, consider as a limiting case that all of the

change in total conductivity with temperature is due to radiative conductivity.

A practical measurement problem arises even considering the ideal case of equation

4.87. The magnitude of the change in overall conductivity for most foams is small, on the

order of the experimental uncertainty of some of the best thermal conductivity measuring

instruments.
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Figure 4.38: Conductivity of Solid Polyurethane as Measured by Torpey [ 16]
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conductivities calculated from equation 4.87 at T=256K and at T=300K are 0.0189 W/mK

and 0.0204 W/mK respectively. The ratio of the conductivity change to the average

conductivity (kavg=1 9 .65 mW /mK) is

Ak
- 7.15% (4.90)

kavg

which is on the same order of magnitude as the accuracy of the best equipment available.

According to Yarbrough at Oak Ridge National Laboratory [35], such thermal

conductivity measurement equipment usually have uncertainties on the order of 2%.

With the possibility of experimental errors overwhelming the accuracy of the

technique, a numerical calculation was run to determine the number of measurements that

would be needed to get an accurate measure of the radiative conductivity.

For typical property values, total conductivity values versus temperature were

calculated from equation 4.87. For the most promising extreme, assume that kg and kp are

constant with temperature. Next random errors are added to the conductivity values such

that the standard deviation of the errors equals the uncertainty of typical measurement

equipment. The procedure to add such random errors is as follows.

The normalized cumulative area under a normal distribution curve with standard

deviation o(k) is shown in figure 4.39. Here a(k) os equivalent to the uncertainty of the

measurement equipment, 2% for the Oak Ridge thermal conductivity measuring

equipment. F(k) is the area under the normalized curve,

1 1 k-k
F (k) = I+ erf ( ) (4.91)

2 2 that

such that
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lim F(k) = 1
k -> oo

(4.92)

To add random errors that yield a standard deviation of a(k), random numbers are

generated from 0 to 1 using a conventional random number generator, in this case the

Fortran subroutine outlined in [41]. This value is equivalent to F(k). Then equation 4.91

is solved for k with a given value of k the correct conductivity based on an assumed

temperature, kg, kp, etc.

k K

Figure 4.39: Normal Distribution Curve Showing F(k) (shaded area)

For the typical values of kg, kp, fs, etc. given above(i.e.kg = 13.5mW/mK, kp =

0.263W/mK) , the conductivities at certain temperatures were calculated. For example, if

looking at the slope from conductivities calculated at every 20K beginning at T=280K

and ending at T=340K, at each temperature the conductivity would be (from equation

4.87)
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w (1 - 0.9718) w 16/ T
k = (0.9718) (0.0135 ) + (0.263 ) [0.8 i + 2 (1 - 0.8) (1.5) ] + 1- (4.93)

mK 3 mK 3K

k = 0.01312 +0.003517 W + 1.3745x10- 3  (4.94)
mK mK

Then, using the procedure developed in the last paragraph, random errors are added to

the conductivities at every temperature. The error at each temperature is derived from a

normal distribution with the simulated conductivity as the mean and the accuracy of the

conductivity testing equipment (2% in this case) as the standard deviation. Each

simulated trial measurement of radiative conductivity consisted of one measurement at

each temperature level. At each temperature, the simulated conductivity was determined

as the true value plus the random error. A best fit line was obtained for these

measurements at different temperatures. Note that when this trial is repeated, a different

set of simulated data is obtained with a different best fit slope. The best fit slopes of all of

the trials are then used to obtain a mean and standard deviation for the slope. The

standard deviation of the slope gives a measure of the of the accuracy of the technique.

For the example of four conductivities calculated at every 20K, the simulated conductivity

versus temperature-cubed curve is shown in figure 4.40. Also displayed in the figure are

four cases where random errors are introduced to the simulated conductivities.

The least squares best-fit slope through the points having random errors is determined.

Assuming that for each sample that the tests with temperature could be run a few times to

obtain a few slopes, the mean of the best-fit slopes is compared with the true slope,

16a/3K.

Two measurement parameters were varied to judge their impact on the final error in

predicted extinction coefficient from the mean best fit slopes of conductivity versus

temperature cubed. The first was the number and ranges of temperatures at which
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conductivities would be measured to obtain a slope. The second was the number of best fit

slopes used to obtain a mean best fit slope. Conductivities with simulated measurement

errors at 280K, 300K, 320K, and 340K were first considered. The case of three simulated

measurements at each of these temperatures was considered with the mean of the three

slopes compared to the true slope, 16a/3K. The cases of 7, 15, and 30 simulated slopes

were also considered, with the mean slope for the 7 simulated slopes, mean slope for the

15 simulated slopes, etc are compared to the true slope, 16a/3K. Next, conductivities

were calculated at 10K intervals beginning at 270K and ending at 350K. Again random

errors were added to obtain 3,7, and 15 best fit slopes and the mean slope in each case (3

best fit slopes, 7 best fit slopes, etc.) was compared to the true slope, 160/3K.

Conductivities were calculated at 30K intervals beginning at T=270K and ending at

T=360K. Random errors were added to obtain cases with 2,3,5,7, 10, and 20 best fit

slopes. Finally the conductivities at 10K intervals between 240K and 400K were used to

look at errors in the mean of 2, 3, 5, and 7 best fit slopes.
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Figure 4.40: Calculated Conductivities with Simulated Measurement Errors

The error of the mean slope versus the number of measurements necessary, i.e. the

number of temperatures at which measurements are taken per slope times the number of

slopes measured, is shown in figure 4.41. Again, this is for 2% standard deviation in the

thermal conductivity measuring equipment. The different cases are for different number

of conductivity measurements per slope. For 10% accuracy then in calculating the

radiative conductivity from the slope of k versus T3 , about 20 total measurements seem to

be required. For 5% accuracy, about 40 to 80 total measurements are needed.
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Figure 4.41: Error in Predicted Slope Resulting from Simulated Measurement Error as a
Function of Number of Conductivities Measured

With each conductivity measurement taking one hour [42], the amount of time to

determine the radiative conductivity of a foam to within 5% is approximately 40 to 80

hours. This is under ideal conditions:. one hour measurement time, equipment with 2%

precision, and minimal change in the gas and solid conductivities with temperature. So it

is likely that 40 to 80 hours is a conservative estimate of the time required to determine

the radiative conductivity of one foam sample. In addition, this is the ideal case with kg

and kp invariant with temperature. As was shown earlier, this is not the case, which
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provides additional uncertainty in the results. Therefore, as a quick and simple way to

determine the radiative contribution to total heat transfer, the measure of conductivity

versus temperature-cubed does not appear to be a viable alternative.
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krad (from

mean cell krad (from morphology)
foam density Kmea.// diameter fsoropy Kas) (W/mK)

(kg/m3) (cm7 ) a/b(mm) (W/mK) equations
2.38 and 2.50

NBE 32.1 61.0 0.109 0.34 1.35 1.124E-3 1.675E-3
678/21/47

NBE 33.0 49.0 0.188 0.65 1.11 1.399E-3 2.156E-3
785/206

NBE** 35.0 40.7 0.192 0.54 1.80 1.684E-3 2.241E-3
819/16/2

NBE** 35.6 38.4 0.238 0.77 1.70 1.784E-3 2.467E-3
819/16/1

NBE** 35.9 27.0 0.284 0.36 1.70 2.539E-3 3.287E-3
863/13/1

NBE 29.2 34.9 0.363 0.67 1.29 1.964E-3 4.090E-3
785/204

Table 4.14: Measured Transmission and Morphology Characteristics and Radiative
Conductivities Predicted from Both

samples cut with razor at room temperature
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Chapter 5

Total Conductivity

5.1 Overall Thermal Conductivity Measurements
The ultimate goal of the theory and measurements is to be able to predict the actual

foam conductivity. The overall thermal conductivity measurements of the six foams

provided by ICI will be examined. For these foams, the overall conductivity appears to

reach a minimum at a cell diameter of 0.2mm rather than continue decreasing with cell

size as can be seen in figure 5.1.

0.025

0.020

0.015

> 0.010
==

0.005

0.000

cell diameter (mm)
0.4

Figure 5.1: Measured Overall Conductivity

It is important to see what the conductivity model, equation 2.2, predicts will be the trend

of conductivity with these foams.
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5.2 Gas Conductivity Calculation
As was described in Chapter 2, three conductivity components are calculated with the

model. The first is the dominant gas conductivity component. The Lindsay Bromley

equation 2.8 is used for these calculations with the molar fractions provided by ICI. The

molar fraction of gases at the time of conductivity testing are shown in Table 5.1. A

uniform concentration throughout the foam was assumed.

mol %
mol % mol % mol %

foam Air C02 HCFC-141b perfluoro
pentane

NBE 40.73 3.38 --- 55.89
678/21/47

NBE 0.00 31.30 --- 68.70
785/206

NBE 3.77 35.05 61.18
819/16/2

NBE 3.32 32.08 64.60
819/16/1

NBE 4.18 26.16 69.66
863/13/1

NBE 2.90 97.10
785/204

Table 5.1: Gas Composition of ICI Foams

Since perfluoropentane and HCFC-141b have only recently been explored as foam

blowing agents, the thermal properties on these gases are not as well defined as those of

CFC blowing agents. The best data to date that could be found for these gases were used,

but a certain amount of uncertainty arises. The properties important for calculation of the

gas conductivity are the gas's thermal conductivity, boiling point, viscosity, and molecular

weight. These properties are listed in Table 5.2.
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thermal boiling viscosity molecular
gas conductivity point (kg/ms) weight

(W/mK) (K)

air [36] 2.45E-2 82 18.43E-6 29

C02 [36] 1.51E-2 194.6 15E-6 44.01

HCFC-141b 8.80E-3 305.2 11llE-6 117
[39]

perfluoro- 1.05E-2 303 1 E-6 288.04
pentane
[37]

Table 5.2: Properties of Constituent Gases of ICI Foams

Using the gas properties of Table 5.2 and the molar fractions quoted in Table 5.1, the

Lindsay Bromley expression predicts the following gas mixture conductivities. The gas

conductivities for the six foams are presented in Table 5.4 at the beginning of

section 5.4 where all of the predicted foam thermal properties are listed.

foam kmix
(mW/mK)

NBE 16.4
678/21/47

NBE 12.5
785/206

NBE 11.7
819/16/2

NBE 11.5
819/16/1

NBE 11.2
863/13/1

NBE 15.4
785/206

Table 5.3: Predicted Gas Mixture Conductivities Assuming Uniform Concentration
Throughout Foams



5.3 Solid Conductivity Calculation
The solid conductivity component was next calculated from the model presented in

Chapter 2 and from the morphology measurements of Chapter 4. The results of these

calcuations are shown in Table 5.4.

Note the effect that polymer redistribution from struts to cell walls as cell size

decreases has on the solid conductivity. This can be seen in figure 5.2 where the solid

conductivity as predicted with a constant fraction of solid in the strut is compared to the

solid conductivity predicted with the mass redistribution. The changing fs increases the

solid conductivity from what would be expected without polymer redistribution because

more of the polymer is in the cell walls.

U.UU0

0.004
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o

0.001

0.000
0.0001 0.0002 0.0003

cell diameter (m)
0.0004

Figure 5.2: Predicted Solid Conductivity Versus Cell Size
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5.4 Comparison of Predicted and Measured Total Conductivities
The calculated gas and solid conductivities are added to the predicted radiative

conductivity component (see Table 4.14) to provide a predicted total conductivity. This

predicted total conductivity is also displayed in Table 5.4.

Table 5.4: Comparisonof Predicted Overall Conductivities to
Conductivities

Measured Overall

There are two calculated total conductivities listed for each foam. The first considers the

case where the morphology measurements are used to predict the extinction coefficient.

The second calculated conductivity considers the case where the transmission

measurements are used to predict the extinction coefficient. The comparison of predicted
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krad overall k overall k
from krad predicted predicted from from

foam morphology from measuredfoam morphology from ksolid ks morphology transmission measured
(mean cell equations transmission ga r prediction overall k

prediction predictiondameter) 2.38 and measurements mWK mWK of krad kra mW/mK
mW/mK mW/mK of krad krad

2.50 (mW/mK) (mW/mK) (mW/mK)(mW/mK)

NBE 1.67 1.12 4.13 16.0 21.8 21.2 19.7
678/21/47
(.109mm) +10.7% + 7.61%

NBE 2.16 1.40 3.27 12.1 17.6 16.8 18.6
785/206
(.188mm) -5.38% - 9.68%

NBE 2.24 1.68 4.43 11.4 18.0 17.5 18.1
819/16/2
(.192mm) -0.55% - 3.31%

NBE 2.47 1.78 3.85 11.1 17.4 16.8 17.4
819/16/1
(.238mm) + 0.00% - 3.45%

NBE 3.29 2.54 4.90 10.9 19.1 18.3 18.4
863/13/1
(.284mm) + 3.80% - 0.54%

NBE 4.09 1.96 3.02 15.0 22.2 20.0 21.1
785/204
(.363mm) + 5.21% -5.21%



total conductivities with measured total conductivities are shown in figure 5.3.
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Figure 5.3: Comparison of Predicted and Measured Overall Thermal Conductivities

Predictions of the overall conductivity from both the morphology measurements and from

the transmission measurements indicate the lack of thermal improvement with smaller cell

sizes. The lack of improvement can be seen to stem from both the increase in solid

conductivity due to polymer redistribution as well as from changes in the gas conductivity

component in Table 5.4 as well as in figure 5.4 where predicted overall conductivity, solid

conductivity, gas conductivity, and radiative conductivity from the morphology

measurements are displayed. Note for the smallest foams, radiation is far less important

than solid conduction Uncertainties in radiation have a modest influence on overall

conductivity while solid conduction shifts due to lower percentage of solid in the struts
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has a much larger effect. It can be seen from Table 5.4 that most of the predicted

conductivities are within 6% of the measured conductivities and that all of the values are

within 11%. The predicted values capture the trend in the measured data. An analysis of

the error and measurement uncertainties follow in the next section.

o overall conductivity
o gas conductivity
O solid conductivity
m radiative conductivity (predicted from

morphology)
i~ ,r~
U.ULiJ

0.020 -

0.015 -

0.010 -

0.005 -

0.000 -
0.00

I

0.0002

cell diameter (m)

I
0.0003 0.0004

Figure 5.4: Predicted Conductivity Components from Morphology

5.5 Uncertainty In Measured Overall Thermal Conductivity
First consider the uncertainty in the measured overall thermal conductivity.

Correspondence with Yarbrough at Oak Ridge National Laboratory indicates that the
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precision of the best thermal conductivity measuring equipment is roughly 2% [35] . This

will be used as a conservative estimate for the measured overall thermal conductivity.

5.6 Uncertainty in Predicted Gas Conductivity
Next consider the errors in the measurements leading to the predicted thermal

conductivity. The largest source of error is the uncertainty in the gas thermal conductivity

component. There is an error in considering the gas composition to be uniform throughout

the foam. Numerical work by Glicksman et al. [1] has indicated that using the average

gas concentrations, as was done in this analysis, can lead to uncertainties of 6%.

However, a greater amount of error is likely due to uncertainties in the component gas

properties as will be outlined below.

The properties for air and CO2 are well defined in most standard heat transfer

textbooks [36]. So for these conductivity components, the 2% precision of measurement

equipment can be taken as a conservative estimate of the uncertainty in their values. The

same cannot also be said of the blowing agents HCFC-141b or perfluoropentane.

For HCFC-141b, most sources in the literature quoted a thermal conductivity of

10.0mW/mK measured at 250 C [38]. Property data obtained from ICI also indicated this

value, as well as a value of 8.8mW/mK measured at 100C. Since overall conductivity

measurements were carried out at 100C, the HCFC-141b thermal conductivity reported at

this temperature was used. The difference between the value reported in the literature and

the value reported at 100C, 1.2mW/mK, can be considered an estimate of the uncertainty.

Foams blown with perfluoropentane have a much greater uncertainty associated with

them. Since perfluoropentane is not widely used as a blowing agent, little is reported of its

properties. An approximate value of the thermal conductivity of this gas, 10.5mW/mK,

was quoted from ICI Polyurethanes but this was stressed to be an approximate value [39].

Nor did contacted suppliers of the gas have data available on either thermal conductivity

or viscosity. So, a conservative estimate of the uncertainty in the gas thermal conductivity



is roughly 10% until more information becomes available in the literature.

Error bounds for the foam gas conductivity component is calculated from the gas

conductivity uncertainties in the following manner. Consider the gases in the lower error

bounds to have a conductivity equal to the reported value minus the precision error. Use

these gas conductivities with the Lindsay Bromley equation. The same is done for the

upper error bounds except that the conductivity of the component gases are set equal to the

reported value plus the uncertainty. Error bounds for the gas conductivity of the six foams

are shown in Table 5.5. Note that uncertainties in the conductivity of air and CO 2 do not

greatly affect the results but those of HCFC-14 lb and perfluoropentane do. This can be

seen directly in the narrow error bounds for foam NBE 785/204 which is composed

entirely of air and CO 2 and in the larger error bounds for all of the other foams.

lower predicted upper
bounds value of boundsfoam

kgas kgas kgas
(mW/mK) (mW/mK) (mW/mK)

NBE 15.2 16.0 16.8
678/21/47

NBE 11.4 12.1 12.9
785/206

NBE 10.5 11.4 12.1
819/16/2

NBE 10.2 11.1 11.9
819/16/1

NBE 9.9 10.9 11.7
863/13/1

NBE 14.7 15.0 15.3
785/204

Table 5.5: Uncertainties in Predicted Gas Conductivities

It should again be stressed that this gas uncertainty analysis only considered the likely
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dominant source of error. It is therefore a conservative estimate of uncertainty since

factors like gas concentration gradients, open cells at the surface, and uncertainties in

using the Lindsay Bromley expression have not been included. For a further discussion of

such errors, the reader is referred to [1].

5.7 Uncertainty in Predicted Solid Conductivity
For the solid conductivity component, the largest source of error is the fraction of solid

in the strut, f, calculation. Even though measurement of strut areas provide greater

precision in determining fs, there is still considerable uncertainty due to variation in

measured areas. Therefore, the impact of the strut area distribution on calculatedfs and on

the predicted solid conductivity was analyzed. Since fs depends on the mean area

measured, determine the uncertainty from the standard deviation of the strut area

distribution. That is, multiply an area one standard deviation below the mean by the

correction factor used to determine A from Aint . Use this corrected area value with

equation 4.22 to determine a lower limit fs. Do the same with an area one standard

deviation above the mean to calculate an upper limit to fs. The upper and lower limit

fiaction of solid in the strut are displayed in Table 5.6. A greater fraction of solid in the

strut decreases the solid conductivity since it decreases the contribution from the cell

walls. So the upper limit fs provides a lower limit estimate of the solid conductivity while

the lower limit fs provides an upper limit estimate of the solid conductivity. These
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estimates are shown in Table 5.6.

mean lower uppermean standard lower upper lower upper
strut limit limit

foam deviation limit limit
area 2 k ks

(gm )  s(mW/mK) (mW/mK)

NBE 15.74 3.27 0.27 0.406 3.98 4.28
678/21/
47

NBE 92.93 26.56 0.47 0.84 2.83 3.69
785/206

NBE 102.72 43.20 0.31 0.76 3.90 4.98
819/16/2

NBE 168.70 46.98 0.55 0.98 3.33 4.39
819/16/1

NBE 150.46 65.24 0.20 0.51 4.53 5.30
863/13/1

NBE 279.98 47.08 0.56 0.79 2.78 3.25
785/204

Table 5.6: Uncertainties in Predicted Solid Conductivities

5.8 Uncertainty in Radiative Conductivity Predicted from Morphology
Two parameters contribute to the uncertainty in the radiative conductivity predicted

from equation 2.38 and 2.50. The first is the measured mean cell diameter, d, and the

second is the calculated fraction of solid in the struts,fs. To determine the uncertainty in

the mean cell diameter, the mean cell diameter from surface to volume meaurements were

carried out for several SEM and confocal images. The average mean cell diameter as well

as the standard deviations in measured values are reported in Table 5.7. Note that for each

foam, there is not more than a 9% standard deviation in the calculated mean cell diameter.

196



mean standard
cell % stamdard

foam deviation
diameter deviation

(mm)(mm)

NBE 0.109 0.009 8.2
678/21/47

NBE 0.188 0.015 7.9
785/204

NBE 0.192 0.012 6.3
819/16/2

NBE 0.238 0.008 3.4
819/16/1

NBE 0.284 0.022 7.7
863/13/1

NBE 0.363 0.008 2.3
785/206

Table 5.7: Uncertainties in Measured Mean Cell Diameters

From the values reported in Table 5.7 and in Table 5.6, one can see that errors in the

calculation of fraction of solid in the strut dominate the errors in predicted radiative

conductivity. So how the upper and lower limits offs affect the radiative conductivity will

be considered. That is, consider the radiative conductivity lower limit with the upper limit

Js and the radiative conductivity upper limit with the lower limitf . How the uncertainty

bounds of fs affects the extinction coefficient predicted from the morphology, and how

this changes the radiative conductivity is displayed in Table 5.8. Notice from the table

that there is at most a 16% uncertainty in the radiative conductivity due to the dominant

measurement error of fs.
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extinction extinction
extinction coefficient coefficient
coefficient from from

foam from upper limit lower limit
morphology s s fs(cm-) fs(cm-1)

(cm -1)

% error krad % error krad

NBE 40.9 0.27 0.41 43.9 37.8
678/21/47

- 7% + 8%

NBE 31.8 0.47 0.84 34.0 29.1
785/204

-6% +10%

NBE 30.6 0.31 0.76 33.6 26.5
819/16/2

-9% +16%

NBE 27.8 0.55 0.98 29.1 26.0
819/16/1

- 4% + 7%

NBE 20.9 0.20 0.51 22.3 18.8
863/13/1

-6% +11%

NBE 16.8 0.56 0.79 17.1 16.5
785/206

- 2% + 2%

Table 5.8: Uncertaintiesin Radiative Conductivities Predicted from Morphology
Measurements

5.9 Uncertainty in Radiative Conductivity Predicted from Transmission
Measurements

The largest source of error in predicting the radiative conductivity from transmission

measurements appears to stem from neglecting anisotropic scattering. Mozgowiec

calculated the uncertainty in the extinction coefficient associated with transmissivity and

foam slice thickness measurements. He found such uncertainty to be between 3.3% and



8% [18]. As seen in the calculation of P-1 extinction coefficients in Section 4.7, the

uncertainty due to neglecting anisotropic scattering is closer to 10%. Therefore, let the

P-1 extinction coefficient represent a conservative lower bounds for the uncertainty in the

extinction coefficient. Similarly, let the extinction coefficients measured parallel to the

orientation axis represent the upper bounds of the extinction coefficient.

5.10 Comparison of Measured and Predicted Values Accounting for
Uncertainties

The three conductivity components with their uncertainties accounted for with error

bars are displayed for the two predicted results in figures 5.5 and 5.6. The predicted total

conductivities with uncertainties are also compared to measured total conductivities with

uncertainties in these figures. Figure 5.5 shows the predicted results with uncertainties

with the radiative conductivity predicted from morphology while figure 5.6 shows the

predicted results with the radiative conductivity predicted from transmission data. The

uncertainties in the predicted overall conductivities are the root-mean-squares of the

uncertainties of each of the components. That is, for uncertainties (g for the gas

conductivity, us for the solid conductivity,arl for the radiative conductivity predicted

from morphology measurements, and 0 r2 for the radiative conductivity predicted from

transmission measurements, the overall uncertainty is

Stotal = G + (5.1)total g s r
where or is either ar1 or cr2 depending on whether the predictions from morphology

measurements or from transmission measurements are being calculated. Note that even

with conservative estimates of uncertainties, the ranges of predicted and measured overall

conductivities overlap in all but two cases and the predicted values follow the overall

measured trend.
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Figure 5.5: Comaprison of Total Conductivity Measured and Predicted from Morphology
Measurements (Note: Uncertainties in Gas Conductivity, Solid Conductivity, and

Radiative Conductivity Components Also Shown)
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Figure 5.6: Comaprison of Total Conductivity Measured and Predicted from
Transmission Measurements (Note: Uncertainties in Gas Conductivity, Solid

Conductivity, and Radiative Conductivity Components Also Shown)
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Chapter 6

Conclusions and Recommendations

1. As cell size decreases, radiative conductivity decreases. Anisotropic scattering

might have a greater impact on the radiative flux, but the radiative conductivity is

negligibly small compared to the other components. Therefore, increased scattering does

not account for the lack of thermal improvement at smaller cell sizes as suggested by

Kuhn et al. [33]. A lack of thermal improvement at smaller cell sizes results from an

increase in gas conductivity and from a redistribution of polymer from the struts to the cell

walls. This redistribution increases the solid conductivity component offsetting any gains

from a decrease in radiative conductivity.

2. A program that calculates the effective two-dimensional solid conductivity from

actual confocal microscope images of a foam's structure has been developed. Predictions

of solid conductivity for test cases of simple geometries agree with analytical solutions.

Results from foams indicate that they are markedly affected by anisotropy. Foams

showing a high degree of anisotropy (a/b of about 1.7) display great disparity between

conductivity in the direction parallel to the rise direction and conductivity in the direction

perpendicular to the rise direction. Foams of little anisotropy (a/b of about 1.3) show little

differences in two-dimensional solid conductivity for the two directions. Once two-

dimensional images showing all of the cell walls with little-depth of field can be

confidently produced with the confocal microscope, the solid conductivity program should

be extended to automate the determination of nodes and borders as well as characteristics

like the border thicknesses.
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3. The confocal microscope provides an adequate two-dimensional image of the foam

structure if foams are stained with fluorescent dyes. However, cell walls are not clear

enough at the present for the solid conductivity program to automate the determination of

nodes and borders. With some manual inputs, images from the confocal microscope can

be used to obtain a two-dimensional picture of the foam. Future work should explore

some combination of dyes, computer imaging filters, or some other means to improve the

images from the confocal microscope. Initial investigation into shattering of the foam at

cryogenic temperatures (using liquid nitrogen) and staining with a fluorescent dye

suggests improvement in confocal microscope images. Such improved images without

the depth-of-field problem posed by the SEM will allow automation of calculations like

the effective two-dimensional solid conductivity and cell size distributions.

4. The dielectric nature of polyurethane as well as sensitivity to humidity and

impurities makes the calculation of solid conductivity from electrical conductivity

measurements impractical.

5. Determination of solid polymer extinction coefficient from thin film transmission

measurements indicate a value of 300cm -1 (337cm -1 with a spectrometer wavelength

range of 2gm to 25gm and 280cm - 1 with a spectrometer wavelength range of 2gm to

33gm).

6. A method to determine the fraction of solid in the strut from SEM photographs of

strut cross-sectional areas has been formulated. fs calculations from this technique were

found to agree within 15% to calculations from cell wall thickness measurements. This

method is recommended instead of the conventional cell wall thickness measurement

technique. Strut areas are easier to detect than cell wall thicknesses (which must be

viewed perpendicular to the width of the cell walls). Cross-sectional areas also do not
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show the wide distribution in measured values found with cell wall thickness

measurements.

7. Numerical analysis indicates that ignoring anisotropy in radiative conductivity can

lead to a considerable overprediction of the radiative flux. Measurements indicate that

foams with larger degrees of anisotropy have larger variations in extinction coefficients

parallel and perpendicular to the rise direction. Further analysis of how the extinction

coefficient varies with direction is recommended. This will provide information on how

well the isotropic Rosseland equation predicts the anisotropic flux as well as what

combination of measured extinction coefficients should be used for greatest accuracy.

8. Measurement of cell area distributions appearing on SEM or confocal images

provides a means to calculate the true cell size distribution in the foam. A technique to

calculate the cell size distribution for anisotropic foams from SEM or confocal

photographs perpendicular to the rise direction has been formulated.

9. Considerations of nonopaque struts, Q not equal to unity, does not account for the

discrepancy between extinction coefficients calculated from the morphology and from the

transmission measurements. Analysis of the extinction efficiency does reveal that the

extinction efficiency is not less than unity for very small cell sizes as indicated by Kuhn et

al [33] but is instead larger than unity. This would indicate that the actual radiative

conductivity predicted by theory and an extinction efficiency of unity overpredicts the

actual radiative conductivity.
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Appendix A Derivation of Mean Intercepted Height

The relationship

NA = Nvd (A.1)

is derived from an inspection of how section planes intercept a particle or cell in space.

The derivation is based on one presented in Quantitative Stereology [12].

A sample cube of length I is cut from a polydispersed system of convex particles in

space. Consider nT parallel test planes of total area

AT = nT 12  (A.2)

that penetrate the cube as shown in figure A. 1. All of the test planes are parallel to one

side of the cube. A projection plane is next erected perpendicular to the test planes and

parallel to two cube faces. This projection plane is also displayed in figure A. 1.
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Figure A.1: Particle Intersected by Test Planes and Projection of Particle on Projection
Plane

Consider one particle inside the cube. The number of test planes intersecting this one

particle (nx) is equal to some fraction f of the total number of test planes (nT) or

n x = n Tf (A.3)

The fraction fis a lineal ratio defined by the ratio

H'
f-= (A.4)

Where, as depicted in figure A. 1, H' is the projected height of the particle in the test cube

on the projection plane.

Now look at the ratio nJAT, or the number of planes intersecting the particle per total

area of intersecting planes. This ratio can be expressed in terms of the projected height of
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the particle and the length of the sample cube from expressions A.2 and A.3. That is,

nx nTH'/I H'
AT nT12 13(A.5)

To look at the mean projected height of a system of convex particles, first group the

particles into class intervals based on size. Then the number of intersections of Ni

particles in the ith class interval per unit area of test planes (NAi) is, from equation A.5

1
(NA) i (NiH'i) (A.6)

VT i

Summing over particles of all classes, the total number of intersections with particles

of every class (NA) is

NA = (NA) NiH'i (A.7)

Dividing both sides of equation A.7 by N, the total number of particles in the test sample,

NA 1 iNH' + N 2H'2 +N 3 H'3 +... (A.8)

N V T  N (A.8)

The expression in brackets is an arithmetic average of the projected heights or the mean

projected height H'. It is this quantity we have described as the mean cell diameter. By

rearranging expression A.8

N
NA VH'NVH' = Nd (A.9)VT

one can see that the mean projected height relates the total number of particles per unit

volume (Nv) to the number of particles intersected per unit test area (NA)-
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Appendix B Solid Conductivity Matrix Program

Recall the final form of the two-dimensional solid conductivity matrix equations

relating node temperatures to fluxes at the nodes (Section 3.4)

[M] [T] = [b]

Here

kikAik

Lk ik
k ij i

L

i=j, summed over nodes k directly
connected to node i

i j
nodes i and j are connected and

nodes i andj are not connected

0

qout, i

if node i is not a boundary node

if node i is a boundary node

(B.3)

Ti is the temperature at node i. Both vectors [T] and [b] are comprised of unknown and

known values.

To set up the matrices in a form solvable by a direct matrix solver like a Gauss-Seidel

routine, rearrange the matrix equation so that it is a matrix times a vector of unknowns

equals a vector of knowns. This intermediate form of the equations will be dimensionally

inhomogeneous, but easier for common routines to solve. To rearrange the vectors, look

at the energy equations at the boundaries
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(B.1)

ii (B.2)

b i=



(B.4)= ut, i

Rearrange these equations such that all of the knowns are on the left hand side and all of

the unknowns are on the right hand side. This form of the equation looks like

(kikAikAik...ki(k+)A i(k+kij T (B.5)

ut, i Lik i(k ) (k+ + 1) . Lij

For every boundary node i, the above equation is appended to the matrix equation. The

appended matrix equation then becomes

[Y] [x] = [Z]

where

(B.6)

-1
kikAik

k ik

k i ii

L0

0

qout, i

i=j and node i is a boundary node

i=j, summed over nodes k directly
connected to node i (node i is not a
boundary node)

nodes i and j are connected and i j

nodes i andj are not connected

if node i is not a boundary node

if node i is a boundary node
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Il

(B.7)

(B.8)

( kijAij i+ kikAik Tk...1) Ai (k + 1)L •_ Li Li(k+ 1)(k+)
ij ik i(k+1)



0
kikAik )T

k Lik i

if node i is not a boundary node

if node i is a boundary node
(B.9)

This is the system of linear equations that is solved by the matrix solver in the solid

conductivity program listed next.
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input border endpoints
into XI1(I), YI(I), X2(I)
Y2(I)

(Sub: NODE_FILEOPEN)

determine location of nodes
XNODE(I), YNODE(I)
(Sub: NODE_LABEL)

if boundary node, set
KNOWN(I)=-C(I,J)*TEMP(J) C(I,J)=-I
SO HAVE [Y],[x], [Z] MATRICES SET
(Sub: FULL_CONNECTIVITY)

Solve matrix problem and output [x[

Figure B.1: Flowchart for Program "Solid_Conductivity"
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for every node i, scan through every
border j to find other nodes connected
to it (determines node i is an endpoint of
border j and finds other endpoint)

C(I,I)= * 1/LK

C(I,K)=I/LK (length of bordei
K)

(Sub: CONNECT SETUP)

find total length of borders (Ltot)
find area of borders (AREA)
input solid conductivity of polymer

(SOL_COND)

C(I,J)= C(I,J)*SOL_CON*AREA
(Sub: FULL_CONNECTIVITY)

sets temperature of nodes at y=O to
T LOWER

sets temperature of nodes at y=DELTA_Y
T UPPER

(Sub: BOUNDARY_TEMP)



Figure B.2: Flowchart for Program "Connect"

PROGRAM SOLIDCONDUCTIVITY
PARAMETER(MAX_STRUT=1200,MAX_NODES=600)
REAL X I (MAX_STRUT),X2(MAX_STRUT),Y1 (MAX_STRUT),Y2(MAX STRUT)
REAL XNODE(MAX_NODES),YNODE(MAX_NODES),C(MAX_NODES,MAX_NODES)
REAL AREA,SOLID_COND,KNOWN(MAX_NODES),TEMP(MAX NODES)
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INTEGER ICOUNT

CALL INPUT(NUM_NODES)
NUM_STRUTS=NUM_NODES/2.
CALL NODE_FILE_OPEN(X1 ,X2,Y 1,Y2,NUMSTRUTS)
CALL NODE_LABEL(X1,X2,Y1 ,Y2,NUM_NODES,XNODE,YNODE,ICOUNT)
CALL CONNECT_SETUP(XI ,X2,Y1 ,Y2,XNODE,YNODE,ICOUNT,NUM_NODES,C)
CALL FULL_CONNECTIVITY(C,ICOUNT,X 1,X2,Y1 ,Y2,NUM_STRUTS)
CALL BOUNDARY_TEMP(TEMP,ICOUNT,XNODE,YNODE)
CALL BOUNDARY(C,ICOUNT,KNOWN,XNODE,YNODE,TEMP)
CALL MATRIX(C,KNOWN,ICOUNT)
END

SUBROUTINE INPUT(NUM_NODES)
C------------------------------------
C Input of number of border endpoints marked in IMAGE. That is, if 140 borders are marked,
C there are 280 nodes in the file. The true number of nodes will be less than this since several
C border mark each node.
C------------------------------------
INTEGER NUM NODES
WRITE(6,*) 'ENTER THE NUMBER OF NODES IN FILE (NUMBER OF XY PTS)'
READ(6,*) NUM_NODES
RETURN
END

SUBROUTINE NODE_FILE_OPEN(X1 ,X2,Y 1,Y2,NUM_STRUTS)
C------------------------------------
C Opens file having x-y endpoints of borders marked. Reads both endpoints of each border (file
C is sequential list of borders)
C------------------------------------
PARAMETER(SCALEFACTOR = 1.E-6)
REAL X (NUM_STRUTS),X2(NUM_STRUTS),Y 1 (NUM_STRUTS),Y2(NUM_STRUTS)

OPEN(UNIT=27,FILE='strutnodes',STATUS='UNKNOWN')
REWIND(27)
DO 10 I=1,NUMSTRUTS
READ(27,*) X1(I),YI (I)
READ(27,*) X2(I),Y2(I)
X1(1) = X1(I) * SCALE_FACTOR
X2(I) = X2(I) * SCALE_FACTOR
Y1(I) = Y1(I) * SCALE_FACTOR
Y2(I) = Y2(I) * SCALE_FACTOR
10CONTINUE

CLOSE(27)
RETURN
END

SUBROUTINE NODE_LABEL(X1,X2,Y1,Y2,NUM_NODES,XNODE,YNODE,ICOUNT)
C-----------------------------------------
C Determines actual number of nodes in image by mrking nodes, checking if unknown node has
C already been marked, and if not, marking it as a node
C-----------------------------------------
PARAMETER(SCALE_FACTOR = 1.E-6)
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REAL X1 (NUMNODES),X2(NUM_NODES),Y 1 (NUM_NODES),Y2(NUM_NODES)
REAL XNODE(NUMNODES),YNODE(NUM_NODES)
REAL XERR,YERR,XDIF,YDIF
INTEGER FOUND,NUM_NODES,NUM_STRUTS

WRITE(6,*) 'WHAT ERROR BOUNDS FOR X OF NODES (m)?'
READ(6,*) XERR
WRITE(6,*) 'WHAT ERROR BOUNDS FOR Y OF NODES (m)?'
READ(6,*) YERR

ICOUNT=0
NUM_STRUTS=NUM_NODES/2.
DO 10 I=I,NUM_STRUTS
FOUND = 0
DO 20 J=1,ICOUNT
XDIF=ABS(X1(I) - XNODE(J))
YDIF=ABS(Y1(I) - YNODE(J))
IF(XDIF.LE.XERR.AND.YDIF.LE.YERR) THEN
FOUND=1
ENDIF
20CONTINUE

IF(FOUND.NE. 1) THEN
ICOUNT=ICOUNT+1
XNODE(ICOUNT) = X1(I)
YNODE(ICOUNT) = Y1(I)
ENDIF
FOUND = 0
DO 30 J=1,ICOUNT
XDIF=ABS(X2(I) - XNODE(J))
YDIF=ABS(Y2(I) - YNODE(J))
IF(XDIF.LE.XERR.AND.YDIF.LE.YERR) THEN

FOUND=1
ENDIF
30CONTINUE

IF(FOUND.NE. 1) THEN
ICOUNT=ICOUNT+1
XNODE(ICOUNT)=X2(I)
YNODE(ICOUNT)=Y2(I)
ENDIF
10CONTINUE

RETURN
END

SUBROUTINE CONNECT_SETUP(X1 ,X2,Y 1 ,Y2,XN,YN,ICOUNT,NN,C)
C------------------------------------
C COMBINATION OF SUBROUTINES CONNECT_SETUP AND FULLCONDUCTIVITY
C For every node found in subroutine NODE_LABEL, determines the elements Yij (of
C [Y][x]=[Z]) for all nodes connected to it. This is determined by finding what borders have
C the node as an endpoint
C------------------------------------
PARAMETER(MAX=600,SCALE_FACTOR = 1.E-6)
REAL C(MAX,MAX),X1 (NN),X2(NN),Y 1(NN),Y2(NN)
REAL XN(NN),YN(NN)
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REAL XERR,YERR,XDIF,YDIF NUM_STRUTS,XDIF2,YDIF2,DIST,INVLEN
INTEGER ICOUNT,NN

DO 10 1 = I,ICOUNT
DO 20 J= 1 ,ICOUNT
C(I,J) = 0.0
20 CONTINUE
10CONTINUE

WRITE(6,*) 'WHAT ERROR BOUNDS FOR X OF NODES (m)?'
READ(6,*) XERR
WRITE(6,*) 'WHAT ERROR BOUNDS FOR Y OF NODES (m)?'
READ(6,*) YERR

NUMSTRUTS=NN/2.
DO 30 I=1 ,ICOUNT
DO 40 J=1 ,NUM_STRUTS
XDIF=ABS(X 1 (J)-XN(I))
YDIF=ABS(Y1 (J)-YN(I))
IF(XDIF.LE.XERR.AND.YDIF.LE.YERR) THEN
DO 50 K=1,ICOUNT
XDIF2=ABS(X2(J)-XN(K))
YDIF2=ABS(Y2(J)-YN(K))
IF(XDIF2.LE.XERR.AND.YDIF2.LE.YERR) THEN
DIST=SQRT((X 1 (J)-X2(J))*(X 1 (J)-X2(J))+(Y1 (J)-Y2(J))*(Y1 (J)-Y2(J)))
INVLEN = ./DIST
C(I,K)=C(I,K) - INVLEN
C(I,I)=C(I,I) + INVLEN
ENDIF
50CONTINUE

ENDIF
40CONTINJUE
30CONTINUE
DO 55 I=1,ICOUNT
DO 60 J=I,NUM_STRUTS
XDIF=ABS(X2(J)-XN(I))
YDIF=ABS(Y2(J)-YN(I))
IF(XDIF.LE.XERR.AND.YDIF.LE.YERR) THEN
DO 70 K=I,ICOUNT
XDIF2=ABS(XI (J)-XN(K))
YDIF2=ABS(Y 1 (J)-YN(K))
IF(XDIF2.LE.XERR.AND.YDIF2.LE.YERR) THEN
DIST=SQRT((X 1 (J)-X2(J))*(X 1 (J)-X2(J))+(Y1 (J)-Y2(J))*(Y1 (J)-Y2(J)))
INVLEN = 1./ DIST
C(I,K)=C(I,K) - INVLEN
C(I,I)=C(I,I) + INVLEN
ENDIF
70CONTINUE

ENDIF
60CONTINUE
55CONTINUE

RETURN
END
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SUBROUTINE FULL_CONNECTIVITY(C,ICOUNT,X1,X2,Y1,Y2,NUMSTRUTS)
PARAMETER(MAX=600)
REAL C(MAX,MAX),AREA,SOLID_COND,DELX,DELY,VF
INTEGER ICOUNT,NUM_STRUTS
REAL X1(MAX),X2(MAX),Y1(MAX),Y2(MAX),DIST,LTOT

WRITE(6,*) 'ENTER X DIMENSION OF PICTURE (m)'
READ(6,*) DELX
WRITE(6,*) 'ENTER Y DIMENSION OF PICTURE (m)'
READ(6,*) DELY
WRITE(6,*) 'ENTER VOID FRACTION OF FOAM'
READ(6,*) VF
WRITE(6,*) 'ENTER SOLID POLYMER CONDUCTIVITY (W/mK)'
READ(6,*) SOLID_COND

LTOT=0.0
DO 5 I=1,NUM_STRUTS
DIST=SQRT((X 1 (I)-X2(I))*(X 1 (I)-X2(I))+(Y 1 (I)-Y2(I))*(Y 1 (I)-Y2(I)))
LTOT=LTOT+DIST
5CONTINUE

AREA = (1 -VF)*DELX*DELY/LTOT
WRITE(6,*) 'CELL WALL THICKNESS FOR 2-D MODEL = ',AREA

DO 10 I=1,ICOUNT
DO 20 J=l,ICOUNT
C(I,J)=C(I,J)*SOLIDCOND*AREA
20CONTINUE
10CONTINUE
RETURN
END

SUBROUTINE BOUNDARY(C,ICOUNT,KNOWN,XNODE,YNODE,TEMP)
PARAMETER(MAX=600,INIT=- 1.)
REAL C(MAX,MAX),KNOWN(MAX),XNODE(MAX),YNODE(MAX)
INTEGER ICOUNT,NBOUNDARY,INODE
REAL TEMP(MAX)

OPEN(UNIT= 15,FILE=' node_locations.dat',STATUS=' UNKNOWN')
REWIND(15)
DO 5 I=1,ICOUNT
WRITE(15,*) 'NODE',I,' AT',XNODE(I),YNODE(I)
5CONTINUE

CLOSE(15)
DO 10 I=1,ICOUNT
KNOWN(I)=0.
10CONTINUE

DO 30 I=1,ICOUNT
DO 40 J=I,ICOUNT
IF(TEMP(J).NE.INIT.AND.I.EQ.J) THEN
KNOWN(I)=-C(I,J)*TEMP(J)
C(I,J)=-I.
ELSE IF(TEMP(J).NE.INIT.AND.I.NE.J) THEN
KNOWN(I)=KNOWN(I) - C(I,J)*TEMP(J)
C(I,J) = 0.
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ENDIF
40CONTINUE
30CONTINUE

RETURN
END

SUBROUTINE BOUNDARY TEMP(TEMP,ICOUNT,XNODE,YNODE)
C------------------------------------
C Determines which nodes are boundary nodes and rearranges knowns to known vector [Z] and
C unknowns to unknown vector [x]
C------------------------------------
PARAMETER(MAX=600,T_LOWER=290.,DELTA_X_TOTAL=0.0254)
PARAMETER(DELTA_T_TOTAL=50,YERR=7.E-6,INIT=-1.)
REAL TEMP(MAX),HTRATE,DELTA_Y,DELTA_T,T_UPPER
REAL XNODE(MAX),YNODE(MAX)
INTEGER ICOUNT

WRITE(6,*) 'ENTER TOTAL PICTURE LENGTH IN HEAT TRANSFER DIRECTION'
WRITE(6,*) 'in m.'
READ(6,*) DELTA_Y

HTRATE=DELTA T TOTAL/DELTA X TOTAL
DELTA_T=HTRATE*DELTA Y
T_UPPER=T_LOWER+DELTA_T

DO 5 I=1,ICOUNT
TEMP(I)=INIT
5CONTINUE

DO 10 I=1,ICOUNT
YDIF=ABS(YNODE(I)-0.0)
IF(YDIF.LE.YERR) THEN
TEMP(I)=T_LOWER
WRITE(6,*) 'NODE',I,XNODE(I),YNODE(I)
WRITE(6,*) 'ON LOWER BORDER, TEMP = ',TEMP(I)
ENDIF

YDIF=ABS(YNODE(I) - DELTA_Y)
IF(YDIELE.YERR) THEN
TEMP(I)=T_UPPER
WRITE(6,*) 'NODE',I,XNODE(I),YNODE(I)
WRITE(6,*) 'ON UPPER BORDER, TEMP = ',TEMP(I)
ENDIF
10CONTINUE

RETURN
END

SUBROUTINE MATRIX(C,KNOWN,ICOUNT)
C-----------------------------------------------
C Gauss Matrix Solver determining unknown elements of [x]
C-----------------------------------------
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PARAMETER(MAX=600,LIMAUG=MAX+1)
REAL A(MAX,LIMAUG),X(MAX),C(MAX,MAX),KNOWN(MAX)
INTEGER N

WRITE(6,*) 'IN SUBROUTINE MATRIX ...'
CALL MATRIXSET(A,KNOWN,ICOUNT,C)
CALL GAUSS(A,X,ICOUNT)
CALL OUTPUT(X,ICOUNT)
END

SUBROUTINE MATRIX_SET(A,C,N,CPREV)
PARAMETER(MAX=600,LIMAUG=MAX+1)
REAL A(MAX,LIMAUG),C(MAX),CPREV(MAX,MAX)
INTEGER N
DO 10I=1,N
DO 20 J=1,N
A(I,J)=CPREV(I,J)
20CONTINUE
10 CONTINUE

DO 30 I=1,N
A(I,N+1) = C(I)
WRITE(6,*) A(I,N+1)
30 CONTINUE

RETURN
END

SUBROUTINE GAUSS(AUG,X,N)
PARAMETER(MAX=600,LIMAUG=MAX+1)
REAL AUG(MAX,LIMAUG),X(MAX),MULT
INTEGER N,I,J,K,PIVOT

DO 70 I=1,N
IF(AUG(I,I).EQ.0) THEN
PIVOT=0
J=I+1
30IF((PIVOT.EQ.0).AND.(J.NE.N)) THEN

IF(AUG(J,I).NE.0) PIVOT = J
J=J+l
GO TO 30
ENDIF
IF(PIVOT.EQ.0) THEN
WRITE(6,*) 'MATRIX IS SINGULAR'
STOP
ELSE
DO 40 J= 1,N+1
TEMP=AUG(I,J)
AUG(I,J)=AUG(PIVOT,J)
AUG(PIVOT,J)=TEMP
40CONTINUE

ENDIF
ENDIF
DO 60 J=I+1,N
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MULT=-AUG(J,I)/AUG(I,I)
DO 50 K=I,N+1
AUG(J,K)=AUG(J,K)+MULT*AUG(I,K)
50CONTINUE
60CONTINUE
70CONTINUE

X(N)=AUG(N,N+1)/AUG(N,N)
DO 90 J=N-1,1,-1
X(J)=AUG(J,N+1)
DO 80 K=J+1,N
X(J)=X(J)-AUG(J,K)*X(K)
80CONTINUE
X(J)=X(J)/AUG(J,J)
90CONTINUE

RETURN
END

SUBROUTINE OUTPUT(X,N)
C----------------------------------
C Ouputs temperature (for internal nodes) or flux (for boundary nodes) for every node. Fluxes
C at boundaries are then summed to determine solid conductivity.
C----------------------------------
PARAMETER(MAX=600)
REAL X(MAX)
INTEGER N

WRITE(6,*) 'IN SUBROUTINE OUTPUT ...'
OPEN(UNIT=1 3,FILE='conductivity_solution.dat' ,STATUS='UNKNOWN')
REWIND(13)
DO 10 I=I,N
WRITE(13,*) 'X ',I,' = ',X(I)
10 CONTINUE

CLOSE(] 3)
RETURN
END

The following Fortran code listed is a routine that determines the borders and nodes

directly from the image file. The image file is considered a text file where the pixel value

in black (255) or white(0) is an element in a 768x512 array which is the same size as the

array of pixels in the image. In the future, this input routine can be expanded to directly

read the unaltered binary image file. the following algorithm is used. The program scans

from left to right until it hits a border. The program scans up and down the border until it

hits the border's end nodes. The end nodes are recorded. Then the program checks

whether the border has already been found (if so, the duplicate is erased). Then the
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program goes back to the original scanning line and continues to scan for other borders.

Once the end of the picture is hit, the program moves up one pixel and begins to scan

again from left to right. Once completed, all of the borders and nodes are recorded in a file

to be used with the program 'SOLID_CONDUCTIVITY'

PROGRAM CONNECT
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR= 10,YERR= 10)
PARAMETER(BORDER=O,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK1/XMAX,YMAX

INTEGER PIXEL(MAXY,MAXX),ISTRUT,HIT_EDGE,X,Y
INTEGER XN 1 (MAXSTRUT),XN2(MAXSTRUT),YN 1 (MAXSTRUT)
INTEGER YN2(MAXSTRUT)
INTEGER XMAX,YMAX
REAL STRUTLENGTH(MAXSTRUT)

ISTRUT=1
CALL INITIALIZE(XNI 1,XN2,YN1 ,YN2,STRUT_LENGTH,PIXEL)
CALL PIXEL_FILE_OPEN(PIXEL)
Y=1

DO WHILE(Y.LE.YMAX.AND.ISTRUT.LE.300)
X=1
DO WHILE(X.LT.XMAX)
CALL INCREMENT(X,Y,PIXEL)
IF(X.LT.XMAX) THEN
HIT_EDGE=0
cWRITE(6,*) 'x = ',X,'XMAX = ',XMAX
cWRITE(6,*) ' y = ',Y,' YMAX =',YMAX
cWRITE(6,*) 'NUMBER OF STRUTS',ISTRUT
CALL FIND_NODE(XN1,XN2,YN1,YN2,PIXEL,ISTRUT,HIT_EDGE,X,Y)
CALL FIND_STRUT LENGTH(STRUT_LENGTH,ISTRUT,XN 1,XN2,YN1 ,YN2)
IF(HIT_EDGE.NE. 1) THEN
CALL CHECK(XNI,XN2,YN 1,YN2,ISTRUT)
ENDIF
ENDIF
X=X+PIXEL_SHIFT
ENDDO
Y=Y+1
ENDDO
CALL OUTPUT(XN1 ,XN2,YNI ,YN2,STRUT_LENGTH,ISTRUT)
END

SUBROUTINE INITIALIZE(X 1,X2,Y 1,Y2,LENGTH,PIXEL)
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK 1/XMAX,YMAX
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INTEGER I,J,X 1 (MAXSTRUT),X2(MAXSTRUT),Y 1(MAXSTRUT),Y2(MAXSTRUT)
INTEGER PIXEL(MAXY,MAXX)
INTEGER XMAX,YMAX
REAL LENGTH(MAXSTRUT)

WRITE(6,*) 'IN SUBROUTINE INITIALIZE ...'
DO 10 I=I,MAXSTRUT
Xl (I)=0
X2(I)=O
Y1 (I)=0
Y2(I)=0
LENGTH(I)=0
10CONTINUE

DO 20 I=1,YMAX
DO 30 J=1,XMAX
PIXEL(I,J)=O
30CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE PIXEL_FILEOPEN(PIXEL)
C------------------------------------
C Subroutine that opens digitized black/white image 'section.tsv'
C------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCKI /XMAX,YMAX

INTEGER PIXEL(MAXY,MAXX),I,J
INTEGER XMAX,YMAX
WRITE(6,*) 'IN SUBROUTINE PIXEL_FILE_OPEN ...'

OPEN(UNIT=19,FILE='section.tsv' ,STATUS='UNKNOWN')
REWIND(19)
READ(19,*) YMAX,XMAX
DO 10 I=1,YMAX
READ(19,*) (PIXEL(I,J),J= 1,XMAX)
10CONTINUE

CLOSE(19)
RETURN
END

SUBROUTINE INCREMENT(X,Y,PIXEL)
C------------------------------------
C Subroutine that increments from left to right until border is hit
C-----------------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP ERROR=5)
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PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK1/XMAX,YMAX

INTEGER FIND_BORDER_FORWARD,X,Y,PIXEL(MAXY,MAXX)
INTEGER XMAX,YMAX

cWRITE(6,*) 'IN SUBROUTINE INCREMENT...'
X=FIND_BORDER_FORWARD(X,Y,PIXEL)

RETURN
END

INTEGER FUNCTION FIND_BORDER_FORWARD(X,Y,PIXEL)
C------------------------------------
C Function that moves location to right until border is hit
C-----------------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255, SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK1/XMAX,YMAX

INTEGER FOUND,X,Y,PIXEL(MAXY,MAXX)
INTEGER XMAX,YMAX

FOUND=-1
DO WHILE(X.LT.XMAX.AND.FOUND.EQ.(-1))
IF(PIXEL(Y,X).EQ.BACKGROUND) THEN
X=X+1
ELSE IF(PIXEL(Y,X).EQ.BORDER) THEN
FOUND=l
ENDIF
ENDDO
IF(X.GE.XMAX)THEN
X=XMAX
ENDIF
FIND_BORDER_FORWARD = X
RETURN
END

INTEGER FUNCTION FIND_BORDER_REVERSE(X,Y,PIXEL)
C------------------------------------
C Function that moves location to left until border is hit
C------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK1/XMAX,YMAX

INTEGER FOUND,X,Y,PIXEL(MAXY,MAXX)
INTEGER XMAX,YMAX

FOUND=-1
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DO WHILE(X.GT. 1.AND.FOUND.EQ.(-1))
IF(PIXEL(Y,X).EQ.BACKGROUND) THEN
X=X-1
ELSE IF(PIXEL(YX).EQ.BORDER) THEN
FOUND=1
ENDIF
ENDDO
[F(X.LE. 1) THEN
X= 1
ELSE IF(X.GE.XMAX) THEN
X=XMAX
ENDIF
FIND BORDER REVERSE = X
RETURN
END

SUBROUTINE FIND_NODE(X1,X2,Y1 ,Y2,PIXEL,ISTRUT,HIT_EDGE,X,Y)
C----------------------------------------------
C Subroutine that moves up and down border until comes to border endpoint. This is found by looking
C at the nearest neighbor border and where the 2 converge is the endpoint of the border -- or a node.
C------------------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=O,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCKl/XMAX,YMAX

INTEGER X1 (MAXSTRUT),X2(MAXSTRUT),Y1 (MAXSTRUT),Y2(MAXSTRUT)
INTEGER PIXEL(MAXY,MAXX),ISTRUT,HIT_EDGE,X,Y
INTEGER FIND_BORDER_FORWARD,FINDBORDER_REVERSE
INTEGER XT1 ,XT2,XT3,YT1 ,YT2,YT3,DIST 2,DIST I3,DIST,ODIST,XORIG,YORIG
INTEGER BORDER_WIDTH_FORWARD,BORDER_WIDTH_REVERSE
INTEGER XMAX,YMAX

cWRITE(6,*) 'IN SUBROUTINE FIND_NODE...'
XORIG=X
YORIG=Y

XTI=X
X=X+BORDER_WIDTH_FORWARD(XT1 ,Y,PIXEL)
IF(X.GT.XMAX) THEN
HIT_EDGE=1
X = XORIG
Y = YORIG
RETURN
ENDIF

XT2=FIND_BORDERFORWARD(X,Y,PIXEL)
IF(XT2.GE.XMAX) THEN
HIT_EDGE=2
XT2 = XMAX
ENDIF

DIST12= XT2 - (XT 1 +BORDER_WIDTHFORWARD(XT 1,Y,PIXEL))
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X=XT1 - BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)
XT3=FIND_BORDER_REVERSE(X,Y,PIXEL)
DIST13= (XT1-BORDER_WIDTH_REVERSE(XTI,Y,PIXEL)) - XT3

IF(DIST12.LE.DIST13) THEN
DIST = DIST 12
ELSE
DIST = DIST13
ENDIF
ODIST = DIST

DO WHILE(DIST.GT.SEP_ERROR)
Y=Y+1
IF(Y.GT.YMAX) THEN
HIT_EDGE= 1
X = XORIG
Y = YORIG
RETURN
ENDIF
X= XTI - PIXEL_SHIFT
IF(X.LT.1) THEN
HIT_EDGE=I
X = XORIG
Y = YORIG
RETURN
ENDIF

XTI = FIND_BORDER_FORWARD(X,Y,PIXEL)
IF(XT 1.GT.XMAX) THEN
HIT_EDGE=
X = XORIG
Y = YORIG
RETURN
ENDIF

X=XT 1 + BORDER_WIDTH_FORWARD(XT 1,Y,PIXEL)
XT2=FINDB ORDER_FORWARD(X,Y,PIXEL)
IF(XT2.GE.XMAX) THEN
HITEDGE=2
XT2 = XMAX
ENDIF
DIST12 = XT2 - (XTI+BORDER_WIDTH_FORWARD(XT1,Y,PIXEL))

X = XTI - BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)
XT3= FIND_BORDER_REVERSE(X,Y,PIXEL)
DISTI3 = (XT1 -BORDER_WIDTH_REVERSE(XT I,Y,PIXEL)) - XT3

ODIST=DIST
IF(DIST I2.LE.DIST 13) THEN
DIST=DIST12
ELSE
DIST=DIST13
ENDIF

227



ENDDO

X1(ISTRUT) = XT1
Y1(ISTRUT) = Y

X=XORIG
Y=YORIG
XT1 =X
X = X + BORDER_WIDTH_FORWARD(XT1,Y,PIXEL)

XT2 = FIND_BORDER_FORWARD(X,Y,PIXEL)
DIST 12 = XT2 - (XT 1 +BORDER_WIDTH_FORWARD(XT 1,Y,PIXEL))

X = XT1 - BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)
XT3=FIND_BORDER_REVERSE(X,Y,PIXEL)
DIST13 = (XT1-BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)) - XT3

IF(DIST 12.LE.DIST 13) THEN
DIST=DIST12
ELSE
DIST=DIST 13
ENDIF
ODIST = DIST

DO WHILE(DIST.GT.SEPERROR)
Y = Y-1
IF(Y.LT.1) THEN
HIT_EDGE=1
X = XORIG
Y = YORIG
RETURN
ENDIF
X = XTI - PIXEL_SHIFT

IF(X.LT.1) THEN
HIT_EDGE=1
X = XORIG
Y = YORIG
RETURN
ENDIF

XTI = FIND_BORDER_FORWARD(X,Y,PIXEL)
IF(XT 1.GT.XMAX) THEN
HIT_EDGE=1
X = XORIG
Y = YORIG
RETURN
ENDIF

X = XT1 + BORDER_WIDTH_FORWARD(XT1,Y,PIXEL)
XT2 = FIND_BORDER_FORWARD(X,Y,PIXEL)
IF(XT2.GT.XMAX) THEN
HITEDGE = 2
XT2 = XMAX
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ENDIF
DIST12 = XT2 -( XT1+BORDER_WIDTH_FORWARD(XT1,Y,PIXEL))

X = XT1 - BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)
XT3 = FIND_BORDER_REVERSE(X,Y,PIXEL)
DIST13 = (XT1-BORDERWIDTH_REVERSE(XT1,Y,PIXEL)) - XT3

ODIST = DIST
IF(DIST12.LE.DIST13) THEN
DIST = DIST12
ELSE
DIST = DIST13
ENDIF
ENDDO

X2(ISTRUT) = XTI
Y2(ISTRUT) = Y

IF(DIST.LE.SEPERROR) THEN
ISTRUT= ISTRUT + 1
ENDIF
X = XORIG
Y = YORIG

RETURN
END

SUBROUTINE FIND_STRUT_LENGTH(LENGTH,ISTRUT,X 1,X2,Y1 ,Y2)
C-------------------------------- ----
C Determines length of border that was just determined
C---------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=O,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
PARAMETER(SLMIN=20.0)
COMMON/BLOCK 1/XMAX,YMAX

REAL LENGTH(MAXSTRUT),DELTA_X,DELTA_Y
INTEGER ISTRUT, X1 (MAXSTRUT),X2(MAXSTRUT),Y1 (MAXSTRUT),Y2(MAXSTRUT)
INTEGER XMAX,YMAX

cWRITE(6,*) 'IN SUBROUTINE FIND_STRUT_LENGTH ...'
DELTA_X = X2(ISTRUT-1) - X1(ISTRUT-1)
DELTA_Y = Y2(ISTRUT-1) - Y1(ISTRUT-1)
LENGTH(ISTRUT-1) = SQRT(DELTA X*DELTA_X + DELTA_Y*DELTA_Y)

IF(LENGTH(ISTRUT- 1).LT.SLMIN) THEN
ISTRUT=ISTRUT- 1
ENDIF
RETURN
END
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SUBROUTINE CHECK(X1,X2,Y1,Y2,ISTRUT)
C------------------------------------
C Subroutine that determines if border is already found
C---------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XR= 10,YR= 10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
PARAMETER(SLMIN=1 0.0)
COMMON/BLOCK1/XMAX,YMAX

INTEGER X1 (MAXSTRUT),X2(MAXSTRUT),Y 1 (MAXSTRUT),Y2(MAXSTRUT),ISTRUT
INTEGER L_STRUT,I
INTEGER XD1 ,XD2,XD3,XD4,YD1 ,YD2,YD3,YD4
INTEGER XMAX,YMAX
REAL LENGTH

cWRITE(6,*) 'IN SUBROUTINE CHECK ...'
L_STRUT = ISTRUT - 1

DO 101 = 1,L_STRUT-1
XD 1=ABS(X 1(L_STRUT) - X1(I))
XD2=ABS(X2(L STRUT) - X2(I))
XD3=ABS(X1(L_STRUT) - X1(I))
XD4=ABS(X2(L_STRUT) - X1(I))

YDI=ABS(Y1(L_STRUT) - Y1(I))
YD2=ABS(Y2(L_STRUT) - Y2(I))
YD3=ABS(Y1(L_STRUT) - Y1(I))
YD4=ABS(Y2(L_STRUT) - Y1(I))

IF(XD1 .LE.XR.AND.XD2.LE.XR.AND.YD 1 .LE.YR.AND.YD2.LE.YR) THEN
ISTRUT = ISTRUT - 1
RETURN
ELSEIF(XD3.LE.XR.AND.XD4.LE.XR.AND.YD3.LE.YR.AND.YD4.LE.YR)THEN
ISTRUT = ISTRUT - 1
RETURN
ENDIF
IOCONTINUE

IF(X1 (L_STRUT).EQ.X2(LSTRUT).AND.Y 1 (L_STRUT).EQ.Y2(L_S TRUT)) THEN
ISTRUT = ISTRUT -1
ENDIF

RETURN
END

SUBROUTINE OUTPUT(X1,X2,Y1 ,Y2,LENGTH,ISTRUT)
C-----------------------------------------
C Outputs borders found, length of border, and (x,y) coordinates of border's endpoints
C-----------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
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COMMON/BLOCK 1/XMAX,YMAX

INTEGER X1(MAXSTRUT),X2(MAXSTRUT),Y 1 (MAXSTRUT),Y2(MAXSTRUT),ISTRUT
REAL LENGTH(MAXSTRUT)
INTEGER I,J,LAST_STRUT
INTEGER XMAX,YMAX

WRITE(6,*) 'IN SUBROUTINE OUTPUT ...'
LAST_STRUT=ISTRUT - 1

OPEN(UNIT=1 1,FILE='connect_output.dat',STATUS='UNKNOWN')
REWIND(11)
WRITE(11,*) 'NUMBER OF STRUTS = ',LAST_STRUT
DO 101 = 1,LAST_STRUT
WRITE(11,*) 'STRUT ',I,'STRUT LENGTH = ',LENGTH(I)
WRITE(l1,*) 'XNODE1 = ',X1(I),'YNODE1 = ',Y1(I)
WRITE(11,*) 'XNODE2 = ',X2(I),'YNODE2 = ',Y2(I)
10CONTINUE

CLOSE(11)
RETURN
END

INTEGER FUNCTION BORDER_WIDTH_FORWARD(XT1 ,Y,PIXEL)
C--------------------------------- ---
C Increments forward to end of border so that border of mroe than 1 pixel width is not treated as
C 2 borders really close
C------------------------------- ----
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR= 10)
PARAMETER(BORDER=0,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK 1/XMAX,YMAX

INTEGER XT1 ,Y,PIXEL(MAXY,MAXX)
INTEGER A,AINC
INTEGER XMAX,YMAX

AINC = 1
A = XTI + AINC
FOUND = -1

DO WHILE(A.LT.XMAX.AND.FOUND.EQ.(-1))
IF(PIXEL(Y,A).EQ.BORDER) THEN
AINC = AINC + 1
A = XTI + AINC
ELSE IF(PIXEL(Y,A).EQ.BACKGROUND) THEN
BORDER_WIDTH_FORWARD = AINC
FOUND = 1
ENDIF
ENDDO
RETURN
END
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INTEGER FUNCTION BORDER_WIDTH_REVERSE(XT1,Y,PIXEL)
C------------------------------------
C Increments backward to end of border so that border of mroe than 1 pixel width is not treated as
C 2 borders really close
C------------------------------------
PARAMETER(MAXX=600,MAXY=600,MAXSTRUT=900,XERR=10,YERR=10)
PARAMETER(BORDER=O,BACKGROUND=255,SEP_ERROR=5)
PARAMETER(PIXEL_SHIFT=5)
COMMON/BLOCK1/XMAX,YMAX

INTEGER XTI ,Y,PIXEL(MAXY,MAXX)
INTEGER A,AINC
INTEGER XMAX,YMAX

AINC = 1
A = XTI - AINC
FOUND = -1

DO WHILE(A.GT. 1.AND.FOUND.EQ.(- 1))
IF(PIXEL(Y,A).EQ.BORDER) THEN
AINC = AINC + 1
A = XTI - AINC
ELSE IF(PIXEL(Y,A).EQ.BACKGROUND) THEN
BORDER_WIDTHREVERSE = AINC
FOUND = 1
ENDIF
ENDDO
RETURN
END
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Appendix C Schuetz's 2D Solid Conductivity Analysis

Consider for the two-dimensional solid conductivity the case where the solid is in the

form of sticks oriented at every angle. The total length of sticks in any direction within a

small angle dO is constant. This is what is meant by "random sticks".

Look at the upper limit of conductivity on this geometry, isotherms are assumed

horizontal. That is, the conductivity of the solid is assumed infinite in the direction

perpendicular to heat flow. This is displayed in figure C. 1. Because the isotherms are

horizontal lines, the temperature gradient must be constant under steady state conditions.

All sticks at the same angle 0 may be lined up end to end with no effect on the heat

transfer so as to form continuous "bridges" crossing the thickness of the sample. Because

there is an equal length of sticks at any 0, there are more bridges at small angles than at

large angles. The heat flow across a single bridge at angle 0 is given by:

t (T 1 - T2)
q (6) = k (c.1)P L

cosO

If n(O) is the number of bridges at 0 per unit angle per unit volume, and if 1(0) is the

length of a bridge at 0, define a constant, X, such that:

X = n (0) 1(0) = constant (C.2)

From the geometry of the situation

L1 (0) (C.3)cos 0
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Isotherm

q

xL

(a) Random Sticks (Reproduced from [14])

(b) Sticks Aligned to Form Bridges (Reproduced from [14])

Figure C.1: Geometry Showing Upper Limit Conductivity of Random Sticks

therefore
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Acos0
n(0) -= (C.4)

L

Physically, X is the total length of all sticks at 0 per unit volume, per unit angle, and is

therefore a constant for random sticks, as defined here. The total solid conduction is the

integral of the heat flow per bridge, times the number of bridges per unit volume per unit

angle, times the volume, over all angles 0.

27tc kpt(T 1 - T2) cosO0 cos0
qsolid = (A * L) ( L L •• )dO (c.5)

0=0

Integrating we find:

A (T1 - T2)
solid = L kpt, (C.6)

But X is related to the foam porosity.

27t

1-6 = tx d t= d k2 (C.7)

0=0

Solving for X and substituting into equation C.6,

A (T1 - T2 ) 1- 6
qsolid ( kp (2 ) (C.8)

For the gas (ignoring the volume of the solid):

A (T 1 - T2 )
qgas = L kg (C.9)

But in our analysis, just looking at the solid conductivity component to compare to the
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solid conductivity program, ignore the gas conductivity (effectively treating kg as zero).

Then from equations C.8, we may find the effective solid conductivity of the medium,

given by:

ksolid kp ( 2) (C.10)

If one were considering both effective conductivity components (kgas+ksolid) this

could be determined by combining equations C.8 and C.9 to yield

1-8
ksolid + kgas = k ( ) + kg (C.11)

It is the two-dimensional solid conductivity predicted by equation C. 10 that is

compared to the results of the solid conductivity matrix program of Section 3.9.
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Appendix D Rosseland Extinction Coefficient Program

First shown in this appendix is a sample transmission data file from the spectrometer.

Next is the modified transmission data file. This modified data file is input to the Fortran

code listing which follows, "Rosseland", which calculates the Rosseland average

extinction coefficient.

INSTRUMENT = IR44
FILETYPE = UNSPECIFIED
FIRST PT = 4800.47
LAST PT = 399.32
# POINTS = 4564
# SCANS = 256
DATE = 8/12/93
TIME = 10:23:41
SAMPLE NAME =
SAMPLE FORM =
CHEMIST NAME =
ZEROFILL = 1
APODIZATION = WENDEL RHINE
DATA =
0.0197 0.0199 0.0199 0.0195 0.0198 0.0189
0.0179 0.0184 0.0185 0.0185 0.0189 0.0192
0.0190 0.0194 0.0196 0.0195 0.0187 0.0179

761 Rows of Transmissivities

0.0151 0.0143 0.0150 0.0159 0.0158 0.0156
0.0155 0.0151 0.0150 0.0158 0.0168 0.0164
0.0163 0.0178 0.0177 0.0175

Figure D.1: Sample Transmission Data File from the Spectrometer
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0.028 sample thickness (inches)

0.0197 0.0199 0.0199 0.0195 0.0198 0.0189
0.0179 0.0184 0.0185 0.0185 0.0189 0.0192
0.0190 0.0194 0.0196 0.0195 0.0187 0.0179

761 Rows of Transmissivities

0.0151 0.0143 0.0150 0.0159 0.0158 0.0156
0.0155 0.0151 0.0150 0.0158 0.0168 0.0164
0.0163 0.0178 0.0177 0.0175

Figure D.2: Sample Modified Transmission Data File
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input transmission
data file

for each wavenumber range,
obtain Kx =-ln(transmission)/thick
(in subroutine EXC)

solve for Rosseland mean
extinction coefficient

I

Figure D.3: Flowchart for Program "Rosseland"
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program rosseland
c

cThis program calculates the Rosseland mean extinction coefficient
cfor foam samples. The input data is obtained from a Nicolet IR44
cinfrared spectrometer, which records transmissivities as a function
cof wavenumber.
c

c

cVARIABLE LIST
c
cnsam number of sample slices for a particular foam
c w thickness of each slice
ctr transmissivity of a particular foam slice at a
c particular wavenumber
cn number of wavenumber intervals used in the integration
ceta wavenumber
cdeta wavenumber interval length
ckfeta wavenumber-specific extinction coefficient, obtained
c by force-fit method (see subroutine)
ckbeta wavenumber-specific extinction coefficient, obtained
c by a best-fit method
cc l,c2 constants used in the integral
csb Stefan-Boltzmann constant
ct temperature of sample in degrees Rankine, taken as
c room temperature
ckrf,krb final Rosseland mean extinction coefficients obtained
c by force-fit and best-fit methods, respectively
ccorrf wavenumber-specific correlation coefficients to check
c corrb the validity of the force-fit and best-fit methods
c
c
real tr(15,2000),trs( 15),kbeta,krb,w( 15),kfeta,krf,a,b
character*(15) filename
c
cThe following files are obtained from the IR44 software. Each file
crepresents transmission data for a single foam slice. The first number
cin the file is the slice thickness in inches, and the remaining number
care the transmissivities for successive wavenumber intervals.
c
write(6,*) 'INPUT NUMBER OF TRANSMISSION FILES'
read(6,*) nsam
idummy= 10
do 4 i=l,nsam
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write(6,*) 'INPUT NAME OF FILE (place 1 space before name)'
read(6,3) filename
write(6,2) filename
3format(lx,al5)
2format(//,'Filename is',a20,/)
open(idummy,file=filename,status='old')
idummy=idummy+1

4continue
data c 1,c2,t/. 18892e8,25898,528./
data sb,n,deta/1.712e-9,276,5.7872/
pi = acos(-1.)

open(6,file='fl 8.out' ,status='unknown')
write(*,5)
5format(t4,'K(forced)',tl8,'Corr.',t30,' K(best fit)',t45,'Corr.' ,/)

c
CSlice thicknesses are stored in an array
C:

do 10 il=10,nsam+9
read(il,*)w(il-9)
10continue

c
cTransmissivities are stored in a two-dimensional array. The first
cindex is the slice number, and the second is the transmissivity for
ceach wavenumber interval.
c
do 30 iw=1,760
do 20 is=10,(nsam+9)
il=is-9
i2=iw-484
c
cThe spectrometer file contains transmissivities at wavenumbers outside
cthe desired range. These values are read into dummy variable(q).
C
if(iw.le.484) then
read(is,*)q
else
read(is,*)tr(i 1 ,i2)
endif
20continue
30continue

c
c
cThe following loop numericallly integrates wavenumber-specific
cextinction coefficients to obtain two Rosseland mean coefficients:
cone for the force-fit slope and one for the actual-fit slope.
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C

do 50jl=l,n
do 40 j2= 1,nsam
trs(j2)=tr(j2,j 1)
40continue
c
cObtain the extinction coefficient for each wavenumber interval.
c
call exc(trs,w,nsam,kfeta,corrf,kbeta,corrb)

c
eta=2000.-j 1*deta

a=(pi*cl *c2*((eta/10000)**4))/(2.*sb*(t**5))
b=exp(c2*(eta/10000)/t)
sumkb=sumkb+((a*b)/(kbeta*(b-1.)*(b-1.)))*deta
sumkf=sumkf+((a*b)/(kfeta* (b- 1.)*(b- 1 .)))*deta
sum=sum+((a*b)/((b- 1.)*(b- 1.)))*deta
C
cSum correlation coefficients for force-fit and actual-fit extinction
ccoefficients to be averaged later.
c
sumcorrf=sumcorrf+corrf
sumcorrb=sumcorrb+corrb
c
write(6,45) kfeta,corrf,kbeta,corrb
.45format(t6,f6.2,tl7,f6.4,t33,f6.2,t44,f6.4)
50continue
C:
cThe Rosseland mean extinction coefficient is actually the ratio of
ctwo integrals (see analysis).
c
krf=sum/sumkf
krb=sum/sumkb
c
write(6,60)krf
write(6,70)sumcorrf/n
write(6,80)krb
write(6,70)sumcorrb/n
60format(//,t3,'extinction coefficeint - force fit: ',f6.2)
70format(t3,'average correlation: ',f6.4,//)
80format(t3,'extinction coefficeint - actual fit: ',f6.2)

stop
end
c
c
cSubroutine exc calculates the extinction coefficient from the slopes
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cof lines fitting the -ln(transmissivity) vs. thickness data in two
cways: one (kf) uses a line that is forced through the origin, and the
cother (kb) uses the conventional least-sqares best-fit line without
cregard to its intercept. The correlation coefficients for these two
ccases (rf,rb) are also calculated.
c
subroutine exc(tau,x,n,kf,rf,kb,rb)
real kb,tau(15),x(15),kf,icept

sumx2=0.
sumxy=0.
sumx=0.
sumy=0.
sumym=0.
sumycb=0.
,;umycf=O.
c
cObtain sums from data points for force-fit and best-fit slope
cequations.
c
do 100 j=1,n
if(tau(j).le. .0001) then
tau(j) = .0001
endif
y=-log(tau(j))
sumx2=sumx2+(x(j)*x(j))
sumxy=sumxy+(y*x(j))
sumy=sumy+y
sumx=sumx+x(j)
100continue

c
c
kf=sumxy/sumx2
kb=(n*sumxy-sumx*sumy)/(n*sumx2-sumx*sumx)

c
c'icept'is the y-intercept of the best-fit line. It is not needed in
cthis program, but is included for completeness.
c
icept=(sumy*sumx2-sumxy*sumx)/(n*sumx2-sumx*sumx)
ym=sumy/n
c
cObtain sums of deviations to obtain correlation coefficients
c
do 110 i=1,n
if(tau(i).le. .0001) then
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tau(i)=.0001
endif
y=-log(tau(i))
ycf=kf*x(i)
ycb=kb*x(i)+icept
sumym=sumym+(y-ym)*(y-ym)
sumycb=sumycb+(y-ycb)*(y-ycb)
sumycf=sumycf+(y-ycf)*(y-ycf)
110Ocontinue

sigy2=sumym/(n- 1)
sigyxb2=sumycb/(n-2)
sigyxf2=sumycf/(n--2)
Cwrite(6,112) sigyxb2,sigyxf2,sigy2
11 2format(t5,f5.4,t 15,f5.4,t25,f5.4)

if(sigyxf2.ge.sigy2) then
rf=O.
if(sigyxb2.ge.sigy2) then

rb=O.
goto 130
endif
go to 120

endif
if(sigyxb2.ge.sigy2) then
rb=0.
rf=( 1.-(sigyxf2/sigy2))**0.5
goto 130
endif

C
ccorrelation coefficients
C1
rf=( 1 .-(sigyxf2/sigy2))**0.5
I120rb=( 1 .-(sigyxb2/sigy2))**0.5
1 30return

end
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Appendix E Extinction Coefficient of 1.5ptm Film
Accounting for Reflectivity

A first account of the influence of reflectivity on the measured transmissivity for a

solid sample is carried out in the following manner. The relationship between extinction

coefficient and transmissivity (equation 4.3)

-In ((ZE,)
K, = (E. 1

assumes that all of the attenuation of energy is due to absorption or scattering by the bulk

material. That is, the intensity incident on the material is considered after any energy has

been reflected from the surface as in figure E. 1.

k(O) ix

Figure E.1: Intensities Before and After Reflection from Sample Surface

Then the transmissivity appropriate to use with equation E. 1 to calculate the extinction

coefficient is
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" - ih'(0) (1 - P;) ix (0) (E.2)

The spectrometer in calculating the transmissivity does not account for reflections off

of the surface but measures the "apparent transmissivity"

a, = (0) (E.3)
Za,l= ix(O)

So to relate the transmissivity used with equation E. 1 to the transmittance outputted

from the spectrometer in cases where reflectivity is important, rearrange expressions E.2

and E.3 to yield

a, (E.4)h - 1 -px

The reflectivity is a quantity dependent upon several parameters such as incident angle

and whether the surface reflects in a diffuse or bidirectional fashion. An approximate

estimate of this quantity in terms of the complex index of refraction of solid polyurethane

(nX2=nX2+iKX?2) can be derived if one considers radiation normally incident to the surface

with reflectivity being a bidirectional process and radiation leaving the surface also

normal to the surface. This relation is presented in Siegel and Howell [17]

(n 2 - n1) + ( 12 2- 1 )
Pn= 2 2 (E.5)(nX2 + nl) + (KX2 +KX 2()

where nX1=n)l+iKXI is the complex index of refraction of air which is approximately

nl=l+i(O). So the spectral reflectivity is roughly equivalent to
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pXn =

(n2 2 - 1) 2 + (K1 2 )2

2 2(n, 2 +l1) + (l•, 2 )
(E.6)

The values of the complex index of refraction of solid polyurethane measured by Mark

Torpey were used and are presented along with the wavelength in Table E. 1. Also in Table

E.1 are the spectral reflectivities calculated from equation E.6, the apparent

transmissivities of the 1.5gtm solid polyurethane film, and the transmissivity adjusted for

reflectivity calculated from equation E.4.

(m n2 )C2 PX 1aC•,

6.5 1.4169 0.2450 0.040 0.61 0.64

7.0 1.516 0.0857 0.043 0.74 0.77

7.5 1.458 0.0718 0.036 0.77 0.80

8.0 1.4111 0.1874 0.035 0.73 0.76

8.5 1.5644 0.0805 0.049 0.72 0.76

9.0 1.4809 0.1944 0.043 0.68 0.71

9.5 1.6600 0.1257 0.064 0.69 0.74

10.0 1.6574 0.0557 0.062 0.77 0.82

11.0 1.6201 0.0072 0.056 0.85 0.90

12.0 1.6398 0.0216 0.059 0.86 0.91

13.0 1.7798 0.0294 0.079 0.86 0.93

14.0 1.7394 0.0082 0.073 0.89 0.96

15.0 1.8504 0.0 0.089 0.89 0.98

16.0 1.8921 0.0 0.095 0.87 0.96

18.0 1.9718 0.0 0.107 0.90 1.01

Table E.1: Adjustment of 1.5gm Thin Film Transmissivity for Reflections from Surface
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(Xn n2 K)2 PTaX Ta %

19.0 1.9985 0.0 0.111 0.90 1.01

20.0 2.1098 0.0 0.127 0.91 1.04

21.0 2.0976 0.0 0.126 0.90 1.03

22.0 2.1121 0.0 0.128 0.90 1.03

23.0 2.2656 0.0 0.150 0.93 1.09

24.0 2.2556 0.0 0.149 0.93 1.09

25.0 2.2751 0.152 0.94 1.11

30.0 2.4454 0.176 0.95 1.15

Table E.1: Adjustment of 1.5gm Thin Film Transmissivity for Reflections from Surface

Since the transmissivities at wavelengths above 16gm are greater than unity when

accounting for approximate reflectivities, only extinction coefficients in the wavelength

range 6gm to 16gm (the spectral range within which roughly 60% of the blackbody

energy from a source at 300K lies) were Rosseland averaged. The extinction coefficient

accounting for approximate reflectivity is 612cm- 1 rather than the 1100cm -1 reported

without accounting for reflectivity. This value is even lower if one approximates the

transmissivities to be near unity in the wavelength range above 16gm.
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Appendix F Derivation of Section Probability Distribu-
tion for Ellipse

Consider an elliptical cell with both minor axes b and a major axis a as displayed in

figure F. 1. The probability of sections perpendicular to the major axis (the orientation

axis) having areas between area A and A2 is equivalent to the fraction of total section

areas that these areas represent. That is

A Ax
P(A:A1 

> A > A 2) = (F. i)

This is the same as considering the surface of revolution of the ellipse and determining

the area fraction of the shaded region in figure E2. The probability of a section lying in

this shaded region is

P (A: A > A > A 2) Ax (F.2)

Due to symmetry, this is the same problem as finding the fraction in figure E3

yAx
P (A:A 1 > A > A2) = (F.3)

Now the surface of revolution is given by

2 2

x - 1 (F.4)2  2
a b

This means that in the differential limit for Ax,

a
atab

yAx = y (x) dx = ab(F.5)
x=O
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Figure F.1: Elliptical Cell

Figure F.2: Ellipsoid Surface of Revolution
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x-direction
y=b

x=a
x P

Figure F.3: Symmetrical Portion of Surface of Revolution

To determine y(x)Ax, consider the differential case where the slope of y(x) can be

approximated as a linear slope

y(x) Ax = y (x) Ax + [y (x) - y (x + Ax) ] Ax = y (x) Ax + ( ) Ax2
2 2 dx

(F.6)

So the probability that the section area is in the range of A1 and A2, given by equation F3

can be rewritten using equations E5 and F.6 as

P (A: A > A > A2)
S4Axy

n ab

From equation F.4, the following relations can be incorporated into expression F7

dy
dx

2 2
ay b2

4
2nx

(dy/dx) Ax 2

ab
(F.7)

(F.8)
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Ax ay Ay (F.9)
b2 1 2

1 yS2FbLb '
Define z=y/b (dz=dy/b and Az=Ay/b) such that for the region considered, z goes from

unity to zero as x goes from 0 to a. Then using the expressions F.8 and F.9 and the

definition of z, the probability that a section area lies in the differential area class A1 to A2

is

4 zAz 2zAz 2

P (A: A > A > A 2 )= - 2 (F. 10)

1 1

So using a spreadsheet with Az=0.001 (Az<<1) the probability of a section area lying

in a certain differential diameter range was calculated. Then, the probabilities that section

diameters lie within diameter ranges for A/Am, classes described in Section 4.9 were

determined by summing the probability distributions for the differential diameter classes

within that range. The results are shown in Section 4.9.
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Appendix G SEM Photographs and Measurements

This appendix is organized by foam. That is, relevent data for the results in chapters

three and four are presented for foam NBE 678/21/47, then for foam NBE 785/206, etc.

For each foam, the following data is presented

(1) The results of the transmission measurements for the six foams analyzed.

The plots of -ln(transmissivity) versus sample thickness are shown. Here, the

transmission is calculated from the peak areas from the spectrometer as

described in Section 4.1. Also in these figures are the slopes that represent the

calculated Rosseland mean extinction coefficients. There are ten plots, one for

each foam where the transmission was measured parallel to the rise direction,

or direction of heat transfer. There are also plots for measurements made

perpendicular to the rise direction for four foams.

(2) SEM photographs from which mean cell diameters and anisotropy are

calculated. Sample calcuations are provided for mean cell diameter and

anisotropy. Listed are the image from which calculations are made, the mean

number of intersections per length of line parallel to the heat transfer direction,

the mean number of intersections per length of line perpendicular to the heat

transfer direction, the calculated surface-to-volume ratio, the mean cell

diameter from equation 2.5 and the degree of anisotropy from equation 4.42.

(3) The SEM photographs showing strut cross sectional areas used in

estimatingfs. The strut cross sectional area distributions measured from such

SEM photographs as well as the mean strut cross sectional areas mesured, the

ratio R of maximum to mean measured areas (as described in Section 4.5), the

calculated true strut cross sectional area (from equation 4.30), and the resulting
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fraction of solid in the strut.

(5) Characteristics of section area distributions used to calculate the cell size

distributions of section 4.9 with ellipse shape factors. The maximum section

area is presented as well as the number of section areas per total area for ten

classes of A/Aa x .

(7) After all of the data presented for the foams, the solid polyurethane

extinction coefficient measured by ICI Polyurethanes is presented as a function

of wavelength.
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Foam NBE 678/21/47

PARALLEL TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.1: Transmission Data for Samples Tested
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PERPENDICULAR TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.2: Transmission Data for Samples Tested
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Figure G.3: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.4: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.5: SEM Photographs of Strut Cross Sectional Areas
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Table G.1: Cell Morphology Measurements

mean cell
NL/ NL S cell anisotropy

image 1 -1 1 diametera(mm l) (mml) (mml) amb(mm)

G.4 13.85 15.60 30.45 0.114 1.13

Table G.2: Measured Strut Area Distribution

strut cross
sectional

areas (jgm 2)

18.17

13.63

12.12

16.97

21.22

17.82

15.84

10.64

15.28

Table G.3: Parameters in Calculation offsfrom Strut Cross Sectiional Area Distribution

260

calculated
ratio of strut cross fraction of

mean maximum sectional solid in the
measured

to mean area strut
area

( •m2) area (equation (equation
R 4.30) 4.22)

(Am2)

15.74 1.35 11.98 0.34



Table G.4: Measured Section Areas Perpendicular to Rise Direction (Amax= 18878gm2)

N/A
A/Amax (gm-2

0.9-1.0 3.896e-5

0.8-0.9 3.033e-5

0.7-0.8 1.331e-5

0.6-0.7 5.0848e-5

0.5-0.6 3.9204e-5

0.4-0.5 4.81411e-5

0.3-0.4 1.1204e-4

0.2-0.3 6.1592e-5

0.1-0.2 4.5536e-5

0.0-0.1 2.4506e-5
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Foam NBE 785/206

PARALLEL TO HEAT TRANSFER

0.03 0.06 0.09

THICKNESS (cm)

Figure G.6: Transmission Data for Samples Tested
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Figure G.7: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.8: SEM Photographs of Strut Cross Sectional Areas
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Figure G.9: SEM Photographs of Strut Cross Sectional Areas
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Table G.5: Cell Morphology Measurements

mean cell
NU/ NL m c Sell anisotropy

image 1) lmm 1 diameter(mm) (mm ) (mm) (m) a/b
(mm)

G.7 7.53 7.91 15.66 0.221 1.05

Table G.6: Measured Strut Area Distribution

strut cross
sectional

areas (gm2)

117.77

81.87

124.96

71.81

68.22

Table G.7: Parameters in Calculation offsfrom Strut Cross Sectiional Area Distribution

calculated
ratio of strut cross fraction of

mean
maximum sectional solid in the

measured
to mean area strut

area
2 area (equation (equation

R 4.30) 4.22)
(Rm 2)

92.93 1.34 71.17 0.65
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Foam NBE 819/16/2

PARALLEL TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.10: Transmission Data for Samples Tested
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PERPENDICULAR TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.11: Transmission Data for Samples Tested
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Figure G.12: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.13: SEM Photographs of Mean Cell Diameter and Anisotropy

270



Figure G.14: SEM Photographs of Strut Cross Sectional Areas
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Table G.8: Cell Morphology Measurements

NL// NLI- Smv amean anisotropy
image (mm 1) (mm- 1) ( 1) diameter ab/

(mm)

G. 13 7.48 10.70 20.02 0.173 1.43

Table G.9: Measured Strut Area Distribution

strut cross
sectional

areas (gm2 )

98.94

176.80

64.88

87.87

85.10

Table G.10: Parameters in Calculation offsfrom
Distribution

Strut Cross Sectiional Area

273

calculated
ratio of strut cross fraction of

mean maximum sectional solid in the
measured

to mean area strut
area

2 area (equation (equation
R 4.30) 4.22)

(gm
2

102.72 1.72 64.85 0.54



Table G.11: Measured Section Areas Perpendicular to Rise Direction
(Ama= 0.0681mm2)

274

N/A
A/Amax (mm-2

0.9-1.0 0.7758

0.8-0.9 1.5618

0.7-0.8 0.0

0.6-0.7 1.0946

0.5-0.6 1.5531

0.4-0.5 11.50195

0.3-0.4 32.43357

0.2-0.3 103.7919

0.1-0.2 161.4312

0.0-0.1 46.70818



Foam NBE 819/16/1

PARALLEL TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.16: Transmission Data for Samples Tested
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Figure G.17: SEM Photographs of Mean Cell Diameter and Anisotropy

276



4ý 11

Figure G.18: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.19: SEM Photographs of Strut Cross Sectional Areas
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Figure G.20: SEM Photographs of Strut Cross Sectional Areas
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Table G.12: Cell Morphology Measurements

mean cell
image N NLI SV diameter anisotropyimage -1 -1 -1 diameter(mm-) (mm(m m (mmmm) a/b

(mm)

G.18(b) 5.94 7.82 14.83 0.233 1.32

Table G.13: Measured Strut Area Distribution
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Table G.14:: Parameters in Calculation offsfrom Strut Cross Sectiional Area
Distribution

281

calculated
ratio of strut cross fraction of

mean
maximum sectional solid in the

measured
to mean area strut

area
are2 area (equation (equation

R 4.30) 4.22)
(pm2

168.70 1.23 139.0 0.77



Foam NBE 863/13/1

PARALLEL TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.21: Transmission Data for Samples Tested
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PERPENDICULAR TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.22: Transmission Data for Samples Tested
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Figure G.23: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.24: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.25: SEM Photographs of Strut Cross Sectional Areas
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Figure G.26: SEM Photographs of Strut Cross Sectional Areas
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Table G.15: Cell Morphology Measurements

mean cell
image (mmN (mm) diameter a/b

(mm) (mmn) (mmm a/b
(mm)

G.24 3.75 6.76 12.20 0.283 1.80

Table G.16: Measured Strut Area Distribution

strut cross
sectional

areas (gm2)

84.63

104.11

129.77

225.89

169.82

253.23

221.16

133.11

88.74

221.85

108.10

65.13
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Table G.17: Parameters in Calculation offsfrom Strut Cross Sectiional Area
Distribution

calculated
ratio of strut cross fraction of

mean
maximum sectional solid in the

measured
to mean area strut

area
(gn 2) area (equation (equation

R 4.30) 4.22)
(gm2)

150.46 1.68 96.67 0.36

Table G.18: Measured Section Areas Perpendicular to Rise Direction
(Amax= 79271.1gm2

N/A
A/Amax (gm-2

0.9-1.0 4.2456e-7

0.8-0.9 4.2456e-7

0.7-0.8 2.1228e-6

0.6-0.7 2.1228e-6

0.5-0.6 5.51928e-6

0.4-0.5 4.67016e-6

0.3-0.4 5.51928e-6

0.2-0.3 3.39648e-6

0.1-0.2 5.51928e-6

0.0-0.1 5.51928e-6
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Foam NBE 785/204

PARALLEL TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.27: Transmission Data for Samples Tested
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PERPENDICULAR TO HEAT TRANSFER

0.05 0.10 0.15

THICKNESS (cm)

Figure G.28: Transmission Data for Samples Tested
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Figure G.29: SEM Photographs of Mean Cell Diameter and Anisotropy
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Figure G.30: SEM Photographs of Strut Cross Sectional Areas
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Table G.19: Cell Morphology Measurements

NL// NL1 SV mean cell anisotropy
image NL N S1V diameter(mm ) (mm) (mm) ma/b

(mm)

G.29 4.47 5.58 10.68 0.324 1.25

Table G.20: Measured Strut Area Distribution

strut cross
sectional

areas (gm2)

237.04

326.54

314.44

241.88

Table G.21: Parameters in Calculation offsfrom
Distribution

Strut Cross Sectiional Area
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calculated
ratio of strut cross fraction ofmean maximum sectional solid in themeasured
to mean area strutarea

(jm 2) area (equation (equation
R 4.30) 4.22)

279.98 1.17 241.9m2

279.98 1.17 241.92 0.67



Appendix H Mie Analysis of Extinction Coefficient

The extinction efficiency, considered unity in the present analysis of extinction

coefficient, was examined in closer detail. There were two motivations for studying this

parameter more closely.

The first motivation is the discrepancy between measured and predicted extinction

coefficients seen in figure 4.20. That is, if the extinction efficiency is greater than unity,

the possibility exists that neglecting this parameter in the predictions of extinction

coefficients from morphology underpredicts the actual extinction coefficient. If the

extinction efficiency is anything other than unity, the expression 2.50 is

4.1 spJ/P (1 -fs) Pf
K =s Q + K (H.1)

d PS

The second motivation is the possibility of the extinction efficiency being much lower

than unity which would indicate a much higher radiative conductivity than predicted by

theory. That is, consider the strut diameters of the foams analyzed. The struts will be

considered circular cylinders so that theoretical analysis of extinction efficiency can be

carried out (there is no known theoretical model of the interaction of electromagnetic

waves with cylinders of triangular cross section). Since the true cross sectional areas of the

struts are closer to triangular shape rather than circular, this analysis is not strictly true

and future work should consider the influence of the actual triangular cross section of the

struts on this analysis. The strut diameters can be related to the measured strut cross

sectional areas measured in Appendix G

/4
d = xs (H.2)

For the smallest celled foam NBE 678/21/47 this translates to a diameter of 3.9gim. A
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rough estimate of the optical thickness of this foam yields t2=Kwd=O. 13. It is therefore

questionable (see.Section 2.8) whether struts of this size can be treated as opaque. For

nonopaque bodies, the extinction efficiency Q is not likely to be unity. Analysis of this

parameter then requires the exact interaction of such particles with electromagnetic waves.

For particles of size on the order of the wavelength of the electromagnetic radiation, a

detailed description of the interaction with electromagnetic radiation is given by the Mie

Scattering Theory which is decribed in detail in [41]. The concern from Mie theory is that

at very small strut diameter, the extinction efficiency approaches zero which would

indicate that a decrease in cell size is accompanied by an increase in the radiative flux.

Kuhn et al [33] report such a trend with polystyrene foams at strut diameters smaller than

4gm. It was therefore important to see whether the efficiency factors for the small celled

polyurethane foams were much smaller than unity and approaching zero.

As can be seen in the derivation of Mie analysis [41], calculation of the extinction

efficiency is a very complex analysis for a single particle, let alone for a collection of

randomly oriented particles. A code developed at Owens Corning does however

determine the extinction efficiency and resulting radiative conductivity for a collection of

randomly oriented struts based on Mie Scattering Theory[42] . So calculations from this

code were obtained for struts ranging in diameter from 3gm to 20gm.

The necessary input for the Owens Coming calculations is the complex index of

refraction of polyurethane. The complex index of refraction can be calculated from

reflection and transmission measurements of solid polyurethane [16]. This parameter was

therefore calculated from reflection data obtained by Torpey [16] and from the

transmission data described in Section 4.2. The calculated complex index of refraction

used with the Owens Coming Mie analysis is listed as a function of wavenumber at the

end of the appendix.

Using the complex index of refraction, the extinction efficiency of foams of different

diameters were calculated at Owens Corning. The results are shown in Table H. 1 where
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the strut diameters, the extinction efficiencies Q, the radiative conductivity calculated

from the exact electromagnetic interaction [41], and the radiative conductivity calculated

from the theory with an extinction efficiency of unity are listed. The theoretical prediction

for struts of circular cross section is developed by Torpey [16] and given by

krad - 13 • JD (H.2)

where for the Owens Corning calculations the solid density ps is 62.4 pcf, the foam

density pf is 0.55 pcf, the temperature T is 300K, and the strut diameter D is varied.

radiative radiative
strut conductivity conductivity

extinction predicted predicteddiameter
(itm) efficiency by Mie by equation

Theory H.2
(Btu in/ft2F) (Btu in/ft2F)

3.05 1.459 0.0286 0.0196

4.06 1.225 0.0319 0.0260

5.08 1.111 0.0362 0.0326

6.10 1.012 0.0397 0.0392

7.11 0.957 0.0437 0.0457

8.13 0.9373 0.0490 0.0523

9.14 0.9398 0.0550 0.0585

10.16 0.9406 0.0614 0.0653

12.19 0.9520 0.0745 0.0783

.14.22 0.9710 0.0887 0.0913

-16.26 0.9890 0.1033 0.1044

18.29 1.003 0.1178 0.1174

20.32 1.013 0.1322 0.1305

Table H.1: Extinction Efficiencies of Struts Calculated by Mie Theory
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Notice that the extinction efficiencies have not begun to approach zero, but are instead

increasing. This would indicate lower radiative flux at smaller cell sizes than predicted

from equation 2.50 until the extinction efficiency begins to decrease and approach zero at

some smaller strut diameter.

How this would affect the six small celled foams was next considered. That is, the

extinction coefficients calculated from the morphology characteristics and equation H. 1

were compared to the extinction coefficients calculated without regards to extinction

efficiency and from the transmisison measurements. These results are listed in Table H.2

where the extinction efficiencies for the foams are linearly interpolated from the strut

ranges of Table H. 1.

K

A strut K K (Q from
foam (x diameter Q (Q=1) measured Mie

(m m) (cm -1) (cm - 1) Theory)

(cm 1)

NBE 11.98 3.90 1.262 40.9 61.0 50.3
678/21/47

NBE 71.17 9.52 0.940 31.8 49.0 30.1
785/206

NBE 64.85 9.09 0.9397 30.6 40.7 29.1
819/16/2

NBE 139.0 13.30 0.9620 27.8 38.4 26.9
819/16/1

NBE 96.67 11.09 0.9460 20.9 27.0 20.2
863/13/1

NBE 241.92 17.55 0.998 16.8 34.9 16.8
785/204

Table H.2: Extinction Efficiency Influence on Predicted Extinction Coefficient

Two results can be seen in Table H.2. The addition of extinction efficiency to theory

does not account for the discrepancy between extinction coefficients measured from
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spectrometer data and those predicted from morphology. Further investigation is needed

into the cause of this discrepancy. Also radiative flux at these lower cell sizes which is

inversely related to the extinction coefficient has not been underpredicted by theory if one

assumes opaque struts, but has actually been overpredicted. It appears that the extinction

efficiency should be incorporated into further analysis of small celled foams because even

though the radiative flux has not been underpredicted, the extinction efficiency does begin

to differ greatly from unity.

wavenumber real part of imaginary part of

(cm 1l) complex index of complex index of
refraction refraction

300.99 2.56476 0

304.85 2.52626 0

308.71 2.50291 0

312.56 2.51554 0

316.42 2.55003 0

320.28 2.63095 0

324.14 2.71406 0

328 2.65727 0

331.86 2.48505 0

335.72 2.46284 0

339.58 2.45515 0

343.43 2.39397 0

347.29 2.34759 0

351.15 2.33385 0

355.01 2.4419 0

358.87 2.40286 0

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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wavenumber real part of imaginary part of

(cm 1l) complex index of complex index of
refraction refraction

362.73 2.28268 0

366.59 2.32862 0

370.45 2.38385 0

374.31 2.40024 0

378.16 2.37843 0

382.02 2.35252 0

385.53 2.3681 0

389.74 2.35151 0

393.6 2.31832 0

397.46 2.269 0

401.32 2.27825 0

409.03 2.28888 0

416.75 2.25558 0

420.81 2.21759 0

424.47 2.22563 0

428.33 2.34426 0

432.19 2.34858 0

436.05 2.22585 0

439.91 2.22266 0

443.76 2.16439 0

447.52 2.08796 0

451.48 2.09436 0

455.34 2.11698 0

459.2 2.11821 0

463.06 2.11664 0

466.92 2.06055 0

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm 1) complex index of complex index of
refraction refraction

470.78 2.04092 0

474.63 2.09754 0

478.49 2.09768 0

482.35 2.11005 0

486.21 2.14564 0

490.07 2.15247 0

493.93 2.11225 0

497.79 2.10353 0

501.65 2.11444 0

505.51 2.13099 0

509.36 2.10735 0

513.22 2.08724 0

524.8 1.98982 0

528.66 2.01213 0

532.52 1.98475 0

536.38 1.99505 0

540.23 2.03055 0

544.09 1.99374 0

547.05 1.96325 0

551.81 1.95239 0

555.67 1.97181 0

559.53 2.00632 0

563.39 1.98574 0

567.25 1.95142 0

571.11 1.92327 0

574.96 1.90924 0

Table H.3: Complex Index of Refraction Used with Mie Scattering Code



real part of imaginary part of
wavenumber

(cm) complex index of complex index of
refraction refraction

578.82 1.93641 0

582.68 1.91078 0

586.54 1.90439 0

590.4 1.93802 0

594.26 1.94902 0

598.12 1.95947 0

601.98 1.95329 0

605.33 1.94902 0

609.69 1.93139 0

617.41 1.91844 0

621.27 1.90588 0

625.13 1.89164 0

628.99 1.90716 0

632.85 1.90051 0

636.7 1.86816 0

640.56 1.88265 0

648.28 1.86097 0

656 1.87569 0

659.86 1.88252 0

663.72 1.86402 0

667.58 1.81643 0

671.43 1.80985 0

675.29 1.81807 0

679.15 1.78334 0

683.01 1.79948 0

686.87 1.82466 0

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm-1) complex index of complex index of
refraction refraction

694.59 1.78425 0

698.45 1.7701 0

702.3 1.77624 0

706.16 1.7851 0

710.02 1.77507 0

713.88 1.73992 0.00805

725.46 1.72575 0.01185

729.32 1.72019 0.01361

733.18 1.73522 0.00771

737.03 1.72595 0.01118

744.75 1.74039 0.01192

748.61 1.73359 0.01784

756.33 1.71434 0.02965

760.19 1.72497 0.03054

764.05 1.74844 0.03004

767.9 1.72472 0.04089

771.76 1.69445 0.0464

775.62 1.70046 0.03659

779.48 1.72154 0.02348

783.34 1.71427 0.02053

787.2 1.70599 0.02007

791.06 1.6935 0.02298

794.92 1.6808 0.0268

818.07 1.69996 0.02786

821.93 1.69157 0.02486

825.79 1.67829 0.02127

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm) complex index of complex index of
refraction refraction

829.65 1.64975 0.02267

833.5 1.63983 0.02158

837.36 1.60686 0.02785

841.22 1.50093 0.05231

845.08 1.42405 0.05895

848.94 1.51136 0.04717

852.8 1.56034 0.03514

856.66 1.5443 0.03956

864.38 1.58182 0.03207

868.23 1.59613 0.02888

872.09 1.58514 0.03072

875.95 1.59775 0.02666

883.67 1.63264 0.01492

891.391 1.58037 0.02052

895.25, 1.59269 0.01478

902.86, 1.60151 0.00956

906.82 1.62661 0.00505

910.68 1.61561 0.00867

914.54 1.60473 0.013

918.4 1.62521 0.01217

922.26 1.65087 0.01047

926.12 1.62703 0.01551

929.98 1.59765 0.02366

945.41 1.62627 0.01934

953.13 1.61423 0.02125

960.85 1.60457 0.02241

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm-1) complex index of complex index of
refraction refraction

964.7 1.59726 0.02304

968.56 1.63151 0.01785

972.42 1.64889 0.01614

976.28 1.63011 0.01958

980.14 1.66067 0.01749

984 1.65047 0.02175

987.86 1.63351 0.02874

991.72 1.66128 0.03372

995.67 1.65232 0.04571

999.43 1.65743 0.05509

1011.01 1.67839 0.05076

1014.87 1.69155 0.05144

1018.73 1.70226 0.05409

1022.69 1.69329 0.05662

1030.3 1.7137 0.06362

1034.16 1.70265 0.07872

1038.02 1.69462 0.08559

1041.88 1.69341 0.09661

1045.74 1.68143 0.10785

1049.6 1.66515 0.11815

1053.46 1.65817 0.12794

1057.32 1.67585 0.13754

1061.17 1.6813 0.14856

1065.03 1.63125 0.16264

1068.89 1.6237 0.17391

1072.75 1.59901 0.18476

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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wavenumber real part of imaginary part of

(cm-1) complex index of complex index of
refraction refraction

1076.61 1.52877 0.19757

1080.47 1.50433 0.20539

1084.33 1.51088 0.20789

1088.19 1.5257 0.20744

1092.05 1.51264 0.20858

1095.9 1.49723 0.20957

1099.76 1.51362 0.20615

1119.06 1.45564 0.18509

1122.92 1.43918 0.17864

1126.77 1.43047 0.16874

1130.63 1.43367 0.13529

1134.49 1.48599 0.13961

1138.35 1.52051 0.12407

1142.21 1.5172 0.11288

1146.07 1.50649 0.10458

1149.93 1.52816 0.09852

1153.79 1.57988 0.09358

1157.65 1.5886 0.09147

1161.5 1.5587 0.09015

1169.22 1.54416 0.08192

1173.08 1.51635 0.08048

1176.94 1.56441 0.08053

1180.8 1.57377 0.08849

1184.66 1.51666 0.10341

1188.52 1.52149 0.11419

1192.37 1.53373 0.1183

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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wavenumber real part of imaginary part of

(cm-1) complex index of complex index of
refraction refraction

1196.23 1.51809 0.12324

1200.09 1.56961 0.1347

1203.85 1.62348 0.14282

1207.81 1.66827 0.15669

1211.67 1.6406 0.17789

1215.53 1.66095 0.20745

1219.89 2.07625 0.22251

1223.25 1.33615 0.26736

1227.1 1.43521 0.31277

1230.86 1.35229 0.32176

1234.82 1.30894 0.31168

1238.68 1.35172 0.23442

1238.68 1.35172 0.23442

1242.64 1.34796 0.2588

1246.4 1.38333 0.21378

1250.26 1.41109 0.1874

1254.12 1.42089 0.16358

1257.97 1.41026 0.14825

1261.83 1.41939 0.1375

1265.69 1.42777 0.12956

1269.55 1.41468 0.12481

1273.41 1.4258 0.12056

1281.13 1.43122 0.11565

1284.99 1.46248 0.1098

1288.85 1.47566 0.1049

1292.7 1.49512 0.10085

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cml1) complex index of complex index of
refraction refraction

1296.56 1.51975 0.09768

1304.28 1.51044 0.09255

1306.14 1.49196 0.09215

1312 1.48427 0.09171

1319.72 1.46429 0.09128

1323.57 1.43816 0.08985

1331.29 1.4534 0.07721

1335.15 1.46315 0.06936

1339.01 1.47059 0.06314

1342.87 1.48874 0.05926

1362.16 1.50911 0.06211

1366.02 1.51809 0.0656

1369.98 1.52693 0.07183

1373.74 1.51352 0.08096

1377.6 1.4996 0.08766

1381.46 1.50911 0.08698

1385.82 1.5208 0.08219

1389.17 1.53701 0.07712

1393.03 1.55187 0.07471

1416.19 1.54133 0.10472

1420.04 1.53877 0.09708

1423.9 1.51731 0.08951

1427.76 1.51096 0.0855

1431.62 1.53715 0.08843

1435.48 1.55095 0.08664

1439.34 1.54331 0.09481

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm-1) complex index of complex index of
refraction refraction

1443.2 1.54353 0.10521

1447.06 1.53963 0.11721

1450.92 1.5324 0.12375

1454.77 1.52735 0.12394

1458.63 1.53802 0.11622

1462.49 1.53291 0.10986

1466.35 1.54637 0.10471

1470.21 1.55265 0.10493

1477.93 1.56765 0.10838

1485.54 1.59486 0.10341

1489.3 1.62221 0.10536

1493.36 1.60512 0.11141

1497.22 1.60329 0.11954

1501.08 1.6205 0.1324

1504.94 1.6387 0.14195

1508.3 1.53854 0.15078

1512.56 1.63165 0.17624

1516.52 1.6099 0.1881

1520.37 1.51459 0.19798

1524.23 1.55295 0.21212

1528.09 1.49581 0.23015

1531.95 1.44303 0.24489

1535.81 1.41922 0.25181

1539.67 1.41508 0.24645

1543.53 1.40943 0.23358

1547.39 1.39777 0.21233

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cm-1 complex index of complex index of
refraction refraction

1551.24 1.40521 0.18799

1555.1 1.42095 0.15213

1558.96 1.44062 0.13314

1562.82 1.45342 0.10359

1566.68 1.45255 0.09953

1570.54 1.67633 0.07569

1574.4 1.48237 0.06929

1578.26 1.49353 0.05872

1582.12 1.51778 0.07294

1585.97 1.51499 0.08373

1589.83 1.49692 0.09883

1593.69 1.46335 0.11442

1597.55 1.46993 0.12341

1601.41 1.47582 0.13434

1605.27 1.4586 0.13533

1609.13 1.47442 0.1297

1612.99 1.49797 0.11226

1616.84 1.49795 0.10801

1620.7 1.48437 0.09681

1624.56 1.49213 0.08359

1628.42 1.50512 0.07953

1632.28 1.52182 0.0636

1651.57 1.53215 0.06715

1655.43 1.55645 0.06915

1663.15 1.54921 0.07696

1667.01 1.56784 0.07927

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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real part of imaginary part of
wavenumber

(cn1) complex index of complex index of
refraction refraction

1670.87 1.57414 0.08473

1697.86 1.55191 0.14737

1701.74 1.55602 0.15973

1705.6 1.54482 0.16937

1709.46 1.53514 0.17397

1713.32 1.5291 0.17402

1717.17 1.53994 0.16981

1728.75 1.50813 0.15564

1732.61 1.50667 0.18962

1736.47 1.48254 0.11362

1740.33 1.46357 0.08951

1744.19 1.49472 0.05699

1748.94 1.50166 0.04797

1751.9 1.51497 0.08451

1755.76 1.52897 0.02671

1763.48 1.52603 0.02094

1767.84 1.5334 0.01893

1821.36 1.52702 0.01592

1832.94 1.5239 0.01622

1844.61 1.51594 0.01562

1867.61 1.51974 0.01672

1886.96 1.54934 0.01384

1902.4 1.55158 0.01829

1925.55 1.54945 0.01349

1960.28 1.53151 0.01599

1979.57 1.55243 0.01125

Table H.3: Complex Index of Refraction Used with Mie Scattering Code



real part of imaginary part of
wavenumber

(cmr1) complex index of complex index of
refraction refraction

1998.87 1.52162 0.0156

2014.3 1.54424 0.01225

2056.75 1.57077 0.00678

2072.19 1.54727 0.00994

2095.34 1.49604 0.0157

2130.07 1.55793 0.00586

2160.94 1.52215 0.00903

2180.23 1.55558 0.00306

2199.53 1.54794 0.00293

2207.24 1.51818 0.00695

2222.68 1.565 0

2272.84 1.53587 0.00109

2280.56 1.55692 0

2303.71 1.51194 0.00229

2323.01 1.56093 0

2353.88 1.53527 0

2404.04 1.51852 0

2423.34 1.4871 0

2431.06 1.53181 0

2454.21 1.56532 0

2477.36 1.55485 0

2496.66 1.54899 0

25311.38 1.57655 0

2546.82 1.55772 0

2569.97 1.57044 0

2608.56 1.56373 0

Table H.3: Complex Index of Refraction Used with Mie Scattering Code

312



wavenumber real part of imaginary part of

(cm-1) complex index of complex index of
refraction refraction

2647.15 1.53144 0

2701.17 1.54451 0

2712.75 1.55069 0

2743.:52 1.52494 0

2770.53 1.55853 0

2793.78 1.52915 0

2835.23 1.54583 0.00585

2847.81 1.50881 0.01452

2867.1 1.52666 0.02938

2882.64 1.49304 0.02867

2913.41 1.47461 0.02769

2932.7 1.47905 0.03144

2955.85 1.48335 0.02557

2990.58 1.52419 0.02391

Table H.3: Complex Index of Refraction Used with Mie Scattering Code
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