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ABSTRACT

In practice, the submarine's major internal equipment is mounted to welded plating
foundations, but submarine designers have been looking at the recent French innovation
whereby the major internal equipment is mounted to a large truss/cradle structure through
point supports. The focus of this research investigates the effects of radial point supports
on the stability behavior of cylindrical shells under hydrostatic loading conditions . To
investigate the stability phenomena of a point supported circular shells, the critical loads
of point supported circular rings and cylinders were estimated numerically using an
eigenvalue extraction routine. Next, shape imperfections were introduced to the
geometry of the point supported cylinder, and this modified structure's buckling behavior
was also estimated by eigenvalue extraction. To test the validity of using a linear
numerical scheme, a nonlinear numerical scheme (RIKS Method) was used to predict the
critical loads of the radially stiffened cylindrical shells, and the results were compared to
the eigenvalue solutions. Furthermore, other important design parameters such as
stresses, shell thickness, and shell weight were parameterized in evaluating the
effectiveness of the point supports. Finally, an internal truss was attached to the
submarine hull, and the effects of a this geometry on the buckling load were evaluated.
The key findings of this research are the following: increasing the number of radial
stiffeners dramatically improves the critical load of circular rings and cylinders,
eigenvalue extraction was sufficient for predicting the buckling load in cylindrical shells,
radial stiffener effectiveness drops as shell thickness increases for a constant radial
stiffness value, and truss stiffness only plays a role in the stability behavior for low
stiffness values of the radial supports.
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Chapter 1: Introduction

CHAPTER ONE

Introduction

1.0 Summary

This thesis investigates the effects of point radial supports on the buckling

performance of externally pressurized cylindrical shells. Such a problem is shown to be

an issue of growing importance in the design of submarine pressure hulls. Here an

attempt is made to provide some useful insight into the problem. To accomplish the

particular task, the research performed involves:

- Combined analytical/numerical analysis

- Phased Approach

* Unstiffened Ring (Analytical)

* Radially Supported Ring (Finite Element)

* Ring on an Elastic Foundation (Analytical)

* Unstiffened Cylinders (Analytical)

* Point Supported Cylinders (Finite Element)

* Truss Supports and Point Stress Analysis (Finite Element)

- Comparison of Methods

* Eigenvalue Analysis

* Linear Load Step Analysis

* Nonlinear Load-Deflection Analysis

- Key Results

* Eigenvalue Analysis (cheap) gives good results

* Can get significant improvement in buckling for small weight increase
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1.1 Background

Since World War II, the world's navies have demonstrated incredible advances in the

design and the operational capability of submarines. The primary technology

responsible for these advances was the development of nuclear power. Nuclear power

allowed the vessel to be a true submarine, remaining totally submerged while traveling at

high speeds for long periods of time. This development allowed the navies to break away

from the combustion process that required oxygen from the atmosphere. It should be

remembered that the submarines of the two World Wars were really surface ships with

the ability to submerge for short periods. The nuclear submarine, except while

approaching docks, is always submerged, which provided tactical and strategic

advantages. Concurrent with the development of nuclear power, new low-drag

hydrodynamic forms were developed allowing very high underwater speeds.

Furthermore, extremely sensitive sonar systems were developed to allow reliable

detection of submarines at large distances and effective weapon launching. These

improvements required that further developments in materials and fabrication methods

associated with building submarines be implemented. Since submarines needed to go

deeper, faster, and be quieter, the performance parameters of the submarine hull design

had to be optimized. Table 1.1.1 illustrates the typical performance gains for submarines

between WW II and the present (References 1&2).
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Table 1.1.1: Submarine Performance Comparison
* Note: Swedish diesel-electric comparable to many current non-nuclear submarines

1.2 Motivation

Recent focus of U.S. submarine designers has been on a French innovation whereby

the major internal equipment is mounted to a large truss cradle structure. This cradle is in

turn installed within the hull envelope, and attached to the envelope via several point

attachments. As compared to the conventional approach of mounting machinery to

welded plating foundations, the truss/cradle concept offers improvements in acoustic

performance, fabrication, and opportunities for parameter optimization (Reference 3).

Figure 1.2.1 illustrates the differences between the traditional welded plating foundation

and the French truss/cradle concept. Current U.S. practice (Top) is to stiffen the hull

plating with ring frames of tee-section and to support machinery on rafts isolated from

welded plating foundations. The proposed adaptation of the French cradle concept

(Bottom) incorporates the truss framework and point isolator attachments.

Type Top Speed Submerged Maximum
Submerged Endurance Depth

(kts) (hrs) (m)

WWII

U.S. Fleet Boat 10 5 -100

German Type VIIC 7 1 150

German Type XXI 16 72 200

Current

U.S. SSN688 >30 3 months -300

Soviet Alfa SSN 45 1 month -1000

Kockums Gotland* 20 >150 -150
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Figure 1.2.1: Welded Foundations (Top) Compared to Isolator Attachments (Bottom)

Since this design methodology provides enhanced opportunities for parametric

optimization, an efficient way to evaluate the effects of particular performance

parameters on other design variables is needed. To solve this problem, integrated design

tools can be developed to evaluate these effects. The research described in this thesis will

contribute to the structural integrity modules of such integrated hull design tools.

1.2.1 Integrated Submarine Design Tools

Submarine hull design has been at the forefront of naval research because of its

complex relationships among many performance parameters. These parameters include

structural acoustics, shock & vibration, hydrodynamic shape, flow noise, controllability,

equipment packaging, and static structural integrity. Historical design procedures tend to

evaluate each parameter separately to meet individual performance requirements, which
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in the U.S. has led to incremental development of a single basic type. An integrated

multi-discipline design tool evaluating these parameters simultaneously would make the

design process more effective. Since the former USSR and France have broken new

grounds on submarine hull design, an improved design process will help the U.S. to

remain competitive. Draper Laboratory and others within the Naval Sea Systems

Command (NAVSEA) and ARPA/ ONR arenas are currently developing integrated hull

design tools which address the multi-disciplinary nature of a complex system(hull)

design.

A pressure hull design tool will be comprised of several distinct elements, including:

1. Weight & Balance (Ensure Buoyancy and Stability)

2. Static Structural Integrity (Hydrostatic Loads)

3. Structural Dynamics (Sound / Vibration Transmission in Hull)

4. Structural Acoustics (Radiation of noise to water)

Weight, Balance, & Configuration - During this portion of the design process we must

keep track of pressure hull weight and center of gravity for comparison to displacement

and center of buoyancy. The weight to displacement ratio is used as a measure of the

efficiency of the hull structure. It is useful to keep in mind that the sum of submarine

component weights must equal the hull's displacement, so that the vessel may float.

Weights added to one subsystem must therefore be subtracted from others for a given hull

size. This is best described by the expression

nW
w ~= 1 (1.1)

i= D

where

W i- individual weight components
D- total displacement
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Table 1.2.1 illustrates the typical weight breakdown for a U.S manned submarine. Note

that 1/2 of the total displacement is occupied by the structure, which implies that

significant benefits are possible with an integrated and optimized design. Finally, the

other important parameters are the static moment from the center of gravity (C.G.) and

the center of buoyancy (C.B). The center of gravity is the point on the vessel where the

resultant of all the weights acts downward, and the buoyant forces acting on the vessel in

still water acts on the vessel at the center of buoyancy. Thus, to maintain ship balance the

moments due to these forces must be balanced (see fig. 1.2.2).

Component

Hull

Propulsion

Electrical

Communications

Auxiliary Systems

Outfit

Armament

Displacement

50%

26%

1.50%

3%

11.50%

4%

4%

TOTAL 100%

Table 1.2.1: Displacement Distribution Breakdown
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IWeight & Balance I

Buoyancv @ C.B.
1

f J1111~~
(I

Running Moment
(and Vertical Shear)

Weight @ C.G.

Figure 1.2.2: Moment Balance Diagram

Static Structural Integrity - The design tool will be used to help ensure that the pressure

hull design concept at hand can provide adequate structural integrity for a sustained

hydrostatic pressure load at the design depth. A typical U.S. ring-stiffened hull concept is

shown in Figure 1.2.3. To decrease the probability of failure, a safety factor is applied to

the design depth for each of several failure modes. These failure modes include plate

yielding, local instability (between stiffeners), general instability, and frame crippling.

To design against these failure modes, numerous variables (plate material and thickness,

frame spacing, bulkhead spacing, frame type (rectangular, tee, hat) and material, frame

cross sectional area and moment of inertia, and frame proportions) must be specified in a

coordinated fashion. These variables will be modified to optimize the hull design, and

the tradeoffs of these modifications must be evaluated.

b
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I Static Structural Integrity

Hydrostatic Pressur

Compartment

Length

Plating Thickness

Ring Frames

Stiffener
Spacing

King Frames

Figure 1.2.3: Ring Stiffened Hull Schematic

Structural Dynamics - The design tool must also help calculate and minimize the

vibrations associated with the internal machinery and its foundations. The vibrating

machinery in the hull transmits energy to the water through several paths between the

machine and the hull. The variables affecting the behavior of this coupled system include

foundation geometry and member properties, and isolation characteristics of attachment

points, the bending stiffness of the hull envelope, and the characteristics of the machinery

excitation.

SStructural Dynamics I

F(t) = f sin 9t

Truss Cradle
Foundation

f(i, t) = f(i) sin o(t + At)

Truss Stiffness/Damping
Includes Isolators

f(3) f(2)

Figure 1.2.4: Truss-Hull Interaction Dynamics

F__
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Structural Acoustics - Quiet operation is an important requirement in submarine design.

A submarine that can suppress noise better than its adversary maintains tactical and

strategic advantages. The main objective here is to detect other enemy vehicles before

they can detect you. Design measures must be introduced to reduce the radiated noise

from the machinery and the submarine's functional systems. When these machines and

systems are in operation, the hull vibrates and transmits radiated noise. The random (or

harmonic) vibration of these mechanisms that is not absorbed by the special mountings

on the hull is transmitted to the water and detectable at large distances as noise. The

action of propeller motion and water flowing over the hull both have noise associated

with these actions. The structural acoustics tool deals with calculating and minimizing

the sound pressure level at some radius remote from the hull. This is affected by the

point attachments between the truss and the hull, the hull stiffness characteristics, and any

surface treatments that may be applied. The important design variables are the following:

excitation frequency, hull areal density, hull envelope meridonal and circumferential

bending stiffness, the number of excitation points, and attachment (isolator) properties.

Therefore, an optimized design should manipulate a number of interlocked parameters to

suppress the noise created by these mechanisms.

I Structural Acoustics

), Sum with Proper Phase

tadius

) Sound
-MMI/ Pressure

I veal

Figure 1.2.5: Point Excitation Driven Hull Acoustics

--"%tfM
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Finally, a significant global tradeoff afforded by the cradle approach is that between

the acoustic performance of the system ( relatively low radial stiffness at attachments)

and the potential benefit of the internal structure stiffness to the hull buckling integrity.

Therefore, the relative buckling performance of rings and shells having concentrated

radial supports is of major interest. Parametric evaluation of this buckling performance

as a function of the number, placement, and stiffness of the radial supports will provide

the data necessary to evaluate this global design tradeoff.

1.3 Approach

The objective of this thesis is to provide a preliminary parametric evaluation of the

effectiveness of the truss/cradle in augmenting hull buckling integrity. The approach

taken in this research combines analytical studies of ring and cylinder buckling behavior

with finite element calculations for a variety of radially supported ring and cylinder

configurations. This incremental approach provides confidence at each step through

comparison with the prior steps. The specific path taken in this effort can be separated

into four parts. First, the analytical studies to provide a foundation includes the

investigation of the instability of a circular ring under hydrostatic loading and the effect

of radial supports on its instability pressure. The stiffness of the supports, the bending

stiffness (EI) of the ring, and the number of radial supports will be parameterized. Next,

the general instability problem of a circular cylindrical shell with point supports under

hydrostatic loading will be solved numerically using the ABAQUS finite element code.

The buckling of a cylindrical shell with an internal truss attached to the hull with radial

supports will be examined. Finally,the effects of these point supports on state of stress in

the hull in the vicinity of the support-hull contact point will be determined.
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1.4 Chapter Topics

Brief summary of the content in the subsequent chapters

Chapter 2: Submarine Design

Discussion the basic concepts behind submarine design such as

hull shape, hull configuration, material effects, submarine

structure. Explanation of the failure mechanisms along with other

design considerations .

Chapter 3: Stability Theory

Derivation of the stability equations for a circular ring and a

circular cylindrical shell using the methods stated in Brush &

Almroth (Ref. 7), and the methods stated in Timoshenko (Ref. 8).

Chapter 4: Analysis and Results

Overview of the creation of finite element models and the results

obtained from these analyses (eigenvalue buckling extraction,

nonlinear analysis, stress analysis). Model verification is

explained along with some design parameter comparative studies.

Chapter 5: Conclusion

Summary of the work done to date, and the related work that can

be performed in the future to increase the structural performance of

submarine hulls.
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CHAPTER TWO

Submarine Design

2.1 Introduction

Throughout the years of science, there has always been a fascination with the

unknown. To satisfy this curiosity, men have dared to go where no one has gone before,

and one of their many successful journeys was to the depths of the ocean. To make a

successful trip, a structure needed to be designed to hold a crew and their equipment;

however, it should also be able to protect them from the high pressure environment with a

means of life support. In response to this problem, researchers began looking into the

behavior of structures under external hydrostatic pressure. The hydrostatic pressure on a

submarine structure is given by the simple relation:

P=pgH (2.1.1)

where

P=Pressure

p= density

g= acceleration of gravity

H =depth of submergence

For P in psi and depth in feet, the result is P=0.445 psi per foot of submergence

2.2 Hull Shape

Through countless experiments, it can be shown that thin walled shells are effective

structures that can withstand external hydrostatic pressure, but the shape of the shell

affects its performance. Since a shell structure can withstand pressure loading in a

membrane manner more efficiently than through bending, a structural shape must be

chosen to exploit this behavior. Using linear membrane shell theory, shape efficiency
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factors can be determined for various geometries. Shape efficiency factors are a measure

of particular shape's efficiency in resisting applied internal and/or external pressure loads,

and the shape efficiency factors for some geometries are shown in figure 2.2.1.

3.5

3.0

0

i 2.5

1.0

Figure 2.2.1: Shape Efficiency Factor Comparison

It should be noted that the lowest achievable value of C represents the most efficient

structural shape. With that knowledge, the figure illustrates that the most efficient shape

is the sphere, but there are other shapes that have decent efficiencies. Although spheres

are the most efficient structure from the structural stand point, closed thin-walled

structures such as prolate axisymmetric forms are good candidates for submarine hulls.

We can see why spheres are the most efficient shapes in the discussion of the weight-to-

displacement ratio (W/D).

Also, the shape efficiency factor (C) plays a large role in determining the structural

efficiency of membrane shells. Researchers Gerard, Bert, and Hoffman have shown that

from linear theory that the structural efficiency of membrane shells can be measured by

its weight-to-displacement ratio. This ratio can be expressed as
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- = C. a .12H (2.2.1)

where

C is the membrane shape efficiency factor

p is the shell weight density (lb/in 3)

aa is the shell material uniaxial strength (lb/in2 )

H is the pressure hull design depth (ft)

The W/D ratio is the significant figure of merit used in the design of submersible

structures. Ideally, we would like submersible structures to be light weight with a large

volume (water displacement). In considering the structural and shape efficiency of the

hull, designers have migrated toward particular hull configurations. In general,

nonaxisymmetric shells have a lesser efficiency than that of shells with an axisymmetric

cross-section. Several German designs as well as a small U.S. submersible have used

non-axisymmetric (figure eight or elliptical ) sections to solve some peculiar packaging

problems.

2.3 Hull Configuration

Designers have many different hull configurations available to them, but only a small

fraction satisfy the need for shape and structural efficiency. Furthermore, these hull

configurations must pass other criteria for selection, and the hull configuration selection

depends on the following criteria:

1. Structural efficiency

2. Internal and external arrangements

3. Hydrodynamic form

4. Complexity and cost of fabrication

5. Ease and reliability of structural analysis
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Satisfying these selection criteria, designers have settled on three commonly used hull

configurations, and they are the following: single sphere, the connected spheres, and the

ring stiffened cylinder with hemispherical or ellipsoidal end closures.

From figure 2.2.1, we can see that the sphere exhibits the lowest shape efficiency

factor; thus, it is the most efficient shape. Since the structural efficiency is dependent

upon the shape efficiency, the sphere is also the most structurally efficient. Also, it has

been known that the W/D ratio for spheres can be 70% of the W/D for a ring stiffened

cylinder, but it depends on depth, material, and other factors. Since thin walled spheres

are efficient structures for withstanding external pressure loading, they are used for small

manned submersibles. To improve the structural integrity of shell structures, a stiffening

scheme is often utilized. Due to the fact that stiffened spheres are hard to fabricate, they

are not often used for submersibles.

Figure 2.3.1: Sphere

On the other hand, unstiffened spheres are frequently used due to their symmetry and

good strength -weight ratios. Furthermore, they can be fabricated without inducing

stress-concentrations that can lead to failure, but spheres are very sensitive to initial

manufacturing imperfections and residual stresses. These sensitivity problems decrease

the strength of the spherical hull. Although the sphere is the most efficient structure, we

can see that it has some disadvantages, such as :

1. Spheres have poor hydrodynamic form and maneuverability

2. Spheres are hard to manufacture

3. Spheres inefficiently house their personnel

4. Spheres would be hard to dock
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To help these disadvantaged areas, another shape must be utilized, and the

connected- sphere hull configuration provides needed improvement. Connected spheres

utilize the sphere's attractive features, and they improve upon the less attractive features.

Figure 2.3.2: Connected Spheres

To achieve a lower W/D ratio, the fewest possible number of spheres should be used.

Although connected-spheres are an improvement, other improvements can still be made,

and the cylinder is an effective shape to provide the needed balance between packaging

efficiency and structural performance.

Figure 2.3.3: Ring-Stiffened Cylinder with End-Closures

While membrane spheres are more efficient than membrane cylinders, stiffening

mechanisms necessary to combat buckling failure are much easier to implement in

cylinders than in spheres. Also, it is much easier to fabricate cylinders to a high standard

of geometric precision. Ring-Stiffened cyliners have found extensive use in shallow

diving submersibles, taking advantage of these several benefits (as compared to spheres)

can yield

1. Superior internal arrangement possibilities

2. Superior hydrodynamic form

3. Lower fabrication cost



Chapter 2: Submarine Design

2.4 Shell Material Effects

Once a hull configuration has been decided upon, the designer must select a material.

Because material selection plays a large role in determining the efficiency and safety of

the structure, the choice of material is a very important part of the design process. To

compare materials we must examine their properties.

Criteria for hull material selection

1. Optimize strength-weight ratio and toughness

2. Resistance to stress-corrosion cracking and low cycle fatigue

3. Reduce residual stresses in the fabrication of the hull

4. High Young's Modulus, especially weight-specific modulus

5. Fabricability of material into desired shape

6. Producibility of the material to established specifications in requested shape and size

7. Cost of structure fabrication and in-service maintenance

8. Material flaws and defects in the fabricated structure

For preliminary design purposes, the key parameters are weight-specific strength and

stiffness, as will be outlined later. Some reasonable level of toughness is also essential,

especially for manned submersibles. In fact, the extraordinary level of toughness found

in the HY-80 series steels is the primary reason for their 30 year usage in the U.S. SSN's

and SSBN's. Toughness is a measure of the ability of a material to absorb energy up to

the point of fracture and depends to some degree on the manner in which the load is

applied. With a high toughness materials, the structure can undergo large plastic

deformation in the region of stress concentrations (cracks and discontinuities). Thus, in

order to obtain good resistance to rapid crack growth and low cycle fatigue, we need to

utilize tough and corrosion resistant materials into our design. Also, improving the

strength-to-weight ratio allows a lighter and stronger submersible to be built, and this

allows more equipment and personnel to be stored on the vessel. Although high

strength-to-weight characteristics would improve structural performance, the increase in

strength-to-weight ratios usually implies decreased toughness. To choose a material
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effectively, the designer must have a good working knowledge of the mechanical

behavior of materials and the state of stress due to the applied load, and the designer must

use this knowledge to find a material that balances performance, fabrication attributes,

and cost.

Although metallic materials gives us a good strength-to-weight ratio, some

nonmetallic materials provide substantial improvements. Simple unstiffened shell stress

and buckling formulas can be used to illustrate the performance benefits of different hull

materials. The weight-to-displacement ratios for yield and buckling failure modes are

shown below for both cylinders and spheres. The weight-to-displacement ratio is the key

pressure hull paramter and compares structural weight to the weight of water displaced by

the hull envelope.

Cylindrical Shells

-I
- = 24xS.F.x (,a xH(ft) (2.4.1)

)H-1 2 -1/3
W 7.043xS. F. x H x PH (2..4.2)
DBuckle ( Psw

Spherical Shells

-1
DYield = 18xS.F.x a x xH(ft) (2.4.3)

D = 3. 856 xS.F. x 6 x H(ft)x - x( PH (2.4.4)
SBuckle PH Psw

where

p= density H=depth(ft)
E=elastic modulus S.F.= safety factor
a=Strength subscripts H=hull material
subscripts sw=seawater
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Since the W/D ratio due to buckling is directly proportional to a fractional power of hull

material specific gravity, a material with a lower density will be lighter than one with a

higher density even though they have identical specific strength and stiffnesses. For

design purposes we compare the required W/D ratios for yield and buckling, and choose

the larger as the controlling factor. Table 2.4.1 shows the properties of several

interesting pressure hull materials. Figures 2.4.1 and 2.4.2 illustrate plots of W/D versus

depth for several important materials. Note that for spherical shells, there is a depth at

which the critical failure made switches from buckling(shallow) to yielding (deep).

Unstiffened cylinders are buckling dominated at any practical depth.

ALLOWABLE ELASTIC C
MATERIAL DENSITY STRENGTH ( KS MODULUS ( MS(I -0iL) -PE 0 in)

HY-80 STEEL 0.284 s0 30 282 106

4340 STEEL 0.283 275 30 972 106

H-11 STEEL 0.281 300 30 1067 107

7075 AL (T73) 0.101 55 10.4 545 103

7075 AL (T6) 0.101 75 10.4 743 103

6AL-4V TITANIUM 0.160 150 16.5 938 103

INCONEL 700 SERIES 0.296 150 30 507 101

KEVLAR 149/EPOXY 1. 0.050 203 15.4 4060 308

KEVLAR 49/EPOXY 1. 0.050 167 10.5 3340 210

E GLASS/EPOXY 2. 0.071 154 5.6 2169 78

S GLASS/EPOXY 2. 0.069 200 6.6 2900 96

GRAPHITE, T300/EP. 3 0.056 218 20 3890 357

GRAPHITE, T40/EP. 3. 0.056 335 25.2 5980 450

GRAPHITE, P100/EP. 3. 0.065 144 66 2215 1015

1. UNIDIRECTIONAL COMPOSITE, 58% FIBER VOLUME
2. UNIDIRECTIONAL COMPOSITE, 5316 FIBER VOLUME
3. UNIDIRECTIONAL COMPOSITE, 609% FIBER VOLUME

Table 2.4.1: Pressure Vessel Material Comparison
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Figure 2.4.1: Unstiffened Cylinder W/D Trades
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Figure 2.4.2: Unstiffened Sphere W/D Trades
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2.5 Submarine Structure

Submarines are vessels that can travel beneath the surface of the ocean for long

periods of time with (perhaps) a sizable crew. Since these vessels are used mostly for

military purposes, the vessels' maneuverability, stealthiness, speed, and structural

integrity are major concerns. From the shape and structural efficiencies described earlier,

hull structure choices normally tend towards stiffened circular cylindrical shells with

hemi-spherical end-closures. The major structural components that determine the

necessary structural integrity are

1: Shell Plating

2. Shell stiffeners

3. Bulkheads

2.5.1 Shell Plating

The shell plating makes up the outer epidermis of the pressure hull, and its major

purpose is to resist external hydrostatic loads. Since these loads depends on the desired

design depths, the shell thickness becomes a key design factor. The shell thickness is

related to other design parameters through the simple relationship

PR
t=KP- (2.5.1)

Ga

where

P- design pressure R- hull radius

Ga- allowable stress K- parameter related to degree of stiffning (5 1)

Some major influences over the shell thickness are the following:

1. Hull diameter 3. Operating pressure

2. Frame spacing 4. Strength of the material
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2.5.2 Stiffeners

Stiffeners are circular rings (and sometimes longitudinal stringers) welded to the

skin(plating) to provide increased bending rigidity to suppress buckling. Since cylinder

buckling is dominated by the bending of shells, stiffeners provide a needed advantage

over unstiffened cylindrical shells in the design against failure, and these appendages can

be internal or external. There are several types of internal stiffeners used to stiffen the

shell plating, and they are listed as

1. Transverse ring frame 3. Internal bulkhead

2. Wing bulkhead 4. Deep Frame

Circular rings are frequently used hull frames for cylindrical shells. Since stiffness is

a function of EI, the area moment of inertia determines the effectiveness of the stiffener,

and this moment of inertia (I) is determined from the shape. The effective shapes

commonly used are circular rings having a T or H cross-section. As mentioned before,

these frame stiffeners can be placed internally or externally, but it is used internally for

single hull designs. Double Hull configurations are extensively used by Russian

submarine designers, with the plating split into two skins with circumferential ring

framing sandwiched in between them.

Internal bulkheads are partitions that divide the pressure hull into separate

compartments. These internal bulk heads can be separated into three groups, and these

groups are subdivision bulkheads, holding bulkheads, and pressure bulkheads. First, the

subdivision bulkheads help make each compartment within the submarine water tight, but

cannot sustain full depth pressure. Holding bulkheads, as the name implies, are designed

to hold against full depth pressure and provide survival/ rescue options for certain types

of casualties. U.S. submarines typically have one or two holding bulkheads. Soviet

submarines typically have more, while some European diesel-electric submarines have
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none. Finally, pressure bulkheads provide boundaries between high pressure (i.e. ballast

tanks) and low pressure areas. They must be able to resist the submergence pressure.

These 3 different types of bulkheads provide significant radial support to the skin, and

the axial distance between the boundaries of dramatically affects the critical buckling

load of the hull.

Due to weight and packaging considerations within machinery compartments, deep

frames are typically used in this situation. To be effective, deep frames are internal ring

frames that must be larger and typically an order of magnitude stiffer than a normal ring

frames.

Figure 2.5.1 illustrates the pressure hull structure of a U.S. Navy Sturgeon-Class

(SSN637), indicating the various components.

I PRESSURE HULL PLATING I FRAMING 8 WING BULKHEAD
2 CLOSURE BULKHEAD 9 INTERNAL VARIABLE BALLAST TANK (HARD)
3 CONE CYLINDER INTERSECTION 10 HIGH PRESSURE EXTERNAL TANK (HARD)
4 DEEP FRAME II MAiN BALLAST TANK (SOFT)
5 PRESSURE BULKHEAD 2I OUTER HULL PLATING
b HOLDING BULKHEAD 13 HATCH
7 SUBDIVISION BULKHEAD 14 TANK SIDE

Figure 2.5.1: SSN637 Submarine Schematic

The final pieces that are needed for the pressure envelope are the end-closure

bulkheads. The end-closure bulkheads used can take on two forms. These two forms are

flat-plate bulkheads, and dished bulkheads. Dished bulkheads can take the form of an

ellipsoid or hemisphere. Furthermore, they both have their own advantages, for different

situations. For instance, flat-plate bulkheads are a good choice for shallow diving depths

""'^" '
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where overall length may be limited, while dished bulkheads are much more efficient,

albeit more difficult to fabricate.

2.6 Failure

Although a design may satisfy many of the specifications that were set, the design

could have an unforeseen flaw, and that flaw could lead to failure of the structure.

Designer must provide robustness against potentially fatal defects along with other design

criteria to increase the life of the structure. In the design of submarines, the failure of

stiffened cylindrical shells is the major point of concern. There are three primary failure

modes of stiffened cylindrical shells under applied hydrostatic loads, and they are noted

as

1. Yielding of the shell at or between ring stiffeners

2. Buckling of the shell between ring stiffeners

3. General Instability or overall collapse

A good starting point for designs is to first size the shell plating to avoid yielding at

the operational pressure (depth). Shell yielding occurs between the ring stiffeners, and in

this region, the shell plastically deforms. As a result of this deformation, a

circumferential pleat is formed (see figure 2.6.2). This step should at least crudely

account the effects of ring frames in reducing the shell membrane stresses (if only by the

area ratios). Next, the stiffener spacing can be chosen to preclude interstiffener buckling

using the previously calculated plating thickness (see equation 2.7). In the event of

failure, the structure will undergo localized buckling in this region, and this localized

buckling of the shell between the ring stiffener is characterized by dimples forming

around the perimeter of the shell between the stiffeners (see figure 2.6.1). Finally the

stiffener cross-sections are chosen to provide sufficient bending rigidity (EI per unit

length along generator) to prevent failure due to general instability. In general instability
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failure, the cylindrical shell and stiffeners deflects as a unit, and this deflection results in

lobe formation (see figure 2.6.3).

Figure 2.6. 1: Cylinder Interstiffener Buckling (Ref. 6)

Since most cylindrical hulls will be stiffened in some fashion, we can see that the

mixture of the yielding and buckling failure modes become very important. General

instability is sensitive to both stiffener and compartment spacing, and these stiffeners

include ring bulkheads, wing bulk heads, internal bulkheads, and deep frames. If this

axial spacing is too long between their boundaries, general instability may occur. The

designer must make the ring frames rigid enough for the desired compartment length to

prevent general instability failure of the shell. Also, the structure will fail due to general

instability if the ring stiffeners aren't strong enough to resist moments which may be due

to noncircularities. In actual structures, the structure may have slight eccentricities, and

these eccentricities may lead to progressive frame yielding and then general instability.
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Figure 2.6.2: Cylindrical Shell Yielding Between Stiffeners (Ref.6)

Since real manufactured pressure hulls have some small geometric imperfections,
the critical buckling load is often lower than estimated. With this information in mind,
the structure should be designed robust to inhibit buckling. With the buckling failure
mode deleted, the structure would fail due to yielding. An optimum design would have
minimal weight, and the shell would fail due to yielding rather than buckling. Also, the
theory for yielding provides better predictions for this design situation. Finally, this yield
failure mode is commonly found in heavy cylindrical shells with closely spaced
stiffeners/frames.
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Figure 2.6.3: General Instability of Cylindrical Shell (Ref. 6)

2.7 Other Design Considerations

Although the major design parameter described previously are very important , their

are other parameters to consider. These parameters include cost, time, reserve or excess

buoyancy, noise, and safety.

In designing the total system, there is always need to improve performance through

advanced technology, but the system must be developed at a reasonable cost and time.

Also, cost and time can be reduced by keeping the design simple, and a simplified design

has the advantage of minimizing the problems of load and stress analysis, fabrication, and

inspection.
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2.7.1 Buoyancy

A vehicle that is built to operate both at the surface and submerged can be defined as a

submersible. To operate alternately in both these modes usually requires that a

submersible have a ballasting system for adjusting the volume of displacement. To

submerge, the displacement volume must be reduced to realize equilibrium between the

vehicle weight and the buoyancy, which is the upward force exerted on an immersed

volume. Displacement volume alone determines buoyancy, and the upward force exerted

on an immersed body can exceed, be equal to, or be less than the weight of the body. If it

exceeds the weight, the body will float; if it is equal, the body will submerse and remain

in equilibrium; if it is less, the body will sink.

Furthermore, the placement of these ballast tanks influence the design of the pressure

hull. There are three main hull designs used to accommodate these ballast tanks and they

are the following: Single hull, Double hull, and Saddle hull.

Figure 2.7.1: Singe Hull

The main ballast in a single hull submarine are located at the ends of the pressure hull,or

sometimes in the middle as in the SSN 637 (figure 2.5.1)



Chapter 2: Submarine Design

Figure 2.7.2: Double Hull

Double hull submarines have an outer hull encompassing the pressure hull. The space

between the two hulls is used for the main ballast tanks and other equipment with a fixed

ballast keel located within the bottom.

Figure 2.7.3: Saddle Hull

Finally, the saddle tank submarines locate their main ballast tanks along the sides of the

pressure hull as streamlined appendages. Therefore, we can see that there are various

important aspects of submarine design that influence the design of the hull of the

submarine.

U.S. and British submarines tend to be single-hulled as this configuration maximizes

payload for a given displacement (by minimizing structure weight). One the other hand,
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Russian submarines tend to be double-hulled, since they value the improved survivability

and robustness more than extreme efficiency.

2.7.2 Noise

Silence is an important requirement in submarine design. A submarine that can

suppress noise can provide tactical and strategic advantages. The main objective of this

feature is to detect other surface or submarine vehicles before they can detect you.

Design measures must be taken to reduce the radiated noise from the machinery and the

submarine's functional systems. When these machines and systems are in operation, the

hull vibrates and transmits radiated noise. The random or harmonic vibration of these

mechanisms that are not absorbed by the special mountings on the hull is transmitted to

the water and is detectable at large distances as noise. Propeller motion and water

flowing over the hull also have noise associated with both sinusoidal and random

excitation.

2.7.3 Safety

Designers use safety factors to guard against failure at operational depths, and they are

used to account for limitations of material and structural analysis. Since buckling is the

dominant failure mode for most manned submersibles, engineers primarily use safety

factors for the prevention of buckling failure, but they should also consider others such as

cracks. Since there is always some element of the unknown, safety factors are used to

take care of this unknown element.

Although all the analysis may have seemed to go well, there is still a possibility of

failure. To reduce the probability of failure, proof tests are performed. Proof tests are

47
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used to make sure that the pressure vessel can withstand the load at the nominal or

slightly greater value of the design depth. While the concept of proof testing is effective,

in specific situations there may be significant drawbacks such as

1. the test itself may induce a flaw

2. difficult to simulate the dynamic loads seen in service

3. difficult to simulate cyclic fatigue

4. expensive at full scale

Scaled model tests are often used to overcome these difficulties, but raise their own issues

of fidelity. Finally, the penalty for over-conservatism in a design will be loss of payload

and/or mission effectiveness. We must always remember that submarine design is a

zero-sum game, the weight is fixed by size (displacements).
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CHAPTER THREE

Stability Theory

3.1 Introduction

In the design of submersibles, the most critical aspect is designing against failure.

We have seen in chapter two that there are different modes of failure which must be

considered in realistic designs. In most areas of design, the key is to design against

yielding. Although it is an important aspect to look into, submersibles tend to be

stability dominated under the applied hydrostatic pressure load, and this load is normally

much lower than the load required to yield the structure (at least down to moderate

depths, a few thousand feet).

Instability may occur in many different structures, but it depends on the state of the

system and often results due to a transition from predominately membrane (direct

compression) behavior to bending. M. Farshad describes the state of a system as

The state of a system is a collection of values of the system

parameters at any instant of time The state of the system

depends on system parameters and environmental conditions.16

In structural problems, the system parameters are the geometry of the structure and the

material from which it was made. The environmental conditions are the applied loads and

other factors such as temperature, which modify the situation. With this understanding of

the system state, stability and instability can be defined as

1. Stability -The state of a system is called stable if a small perturbation in a system

parameter and/or an environmental condition would have negligible changes in the

present state of the system.

2. Instability- The state of a system is called unstable if a small perturbation in a system

parameter and/or an environmental condition would have drastic changes in the present

state of the system.
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The state of equilibrium in a system can be either stable, unstable, or neutral.

Neutral Stable Unstable

Figure 3.1.1: Equilibrium States

Since we know that submersibles may become unstable due to hydrostatic loading, we

will concentrate on this aspect. A special case of instability is buckling, and this occurs

in structures subjected to compressive loads. In many structural problems, as a load is

applied to a structure in equilibrium, the structure could approach another equilibrium

state with small variation of the initial equilibrium state. It is the goal of this chapter to

explain the theory behind the instability of circular rings and circular cylinders.

3.2 Ring Deformation Theory

The circular ring is an ideal structure that undergoes uniform radial displacement

under an external hydrostatic pressure load, but when the critical pressure is reached, the

ring becomes unstable and collapses. In design, it is very important to predict the point

of failure (collapse) so that the designed structure will not fail under normal operating

conditions. The model used in the prediction of the critical buckling load can be

developed in at least two ways. One such way is the rigorous approach by Don Brush

and Bo Almroth (Reference 7). Brush and Almroth used detailed displacement relations of

a infinitesimal slice of the ring to formulate to an equation that relates the stiffness of the

ring and its radius to the critical buckling load of the structure. On the other hand,

Timosheko (Reference 8) provided a more intuitive approach to the problem which
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examined the bending of a curved bar to derive the prediction equation. First, we will

examine the Brush and Almroth approach.

For the Brush & Almroth derivation we will assume that the ring is thin, isotropic,

linear elastic, and symmetric about its normal axis. Furthermore, to simplify the

equations, only bending in the plane of the ring will be allowed.

T

*
T

h

Figure 3.2.1: Ring Under Hydrostatic Pressure

In figure 3.2.1, a represents the radius of the ring in the undeformed configuration, h

is the thickness of the ring, and b is the width of the ring. Since p represents a uniform

pressure load in the form of load per unit area, the uniform load per unit circumferential

length is represented by the variable q, which is obtained from the relation q=pb Also,

one other assumption taken into account is the fact that h<<a.

esess

h
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Figure 3.2.2: Ring Coordinate System

For convenience, the cylindrical polar coordinate system is adopted. In the new

coordinate system (see figure 3.2.2), the variables r and 0 describe the positions on the

ring. The additional variable z is defined as z=r-a, and it is measured in the positive

outward normal direction of the mid-surface of the ring.

In the derivation of the relationship between the undeformed ring and the deformed

ring , only a small slice (arc) will be considered. The variables V and W represent the

components of displacement in the 0 and z directions respectively. From the kinematic

relations for a thin ring, an expression for the extensional strain (E) of the arc at the mid-

surface of the ring can be derived, as described in the following paragraphs.
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Figure 3.2.3: Arc Segment Deformation

The approximations made in figure 3.2.3 are that the normal to the centroidal surface

of the undeformed and deformed arc segments of the ring remain normal during

deformation. Also, during the deformation process the length of the normal, measured by

the variable z, remains unchanged. The components of displacement( V , W ) can be

related to the displacement components of points on the centroidal surface(v,w) through

the relations
V = v + zp (3.2.1)
W= W (3.2.2)

where P represents the rotation angle of the normal to the centroidal surface during

deformation, and this angle is represented as
V -W'

3= -(3.2.3)
a

In this expression, the "'" prime denotes differentiation with respect to "0".

Equations 3.2.1-3 are used along with some detailed displacement relationships in

reference 7 to obtain an expression for the extensional strain in the circumferential
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direction of the arc segment. The resulting extensional strain in terms of the displacement

variables gives
-v' + 1 2 '

_= ++-P z- (3.2.4)
a 2 a

Finally, the change in curvature K' of the arc segment is equal to the rate of change of the

angle 0, and the extensional strain (E) of a point on the (non- centroidal) circumferential

line can be determine at the position z=0. Thus, the new expression for extensional strain

of the line element dS can be represented as the following:

E= E + zK (3.2.5)
where

v'+w 1 2
= --- + (3.2.6)a2

and

K - (3.2.7)a

3.2.1 Linear Stability

The circular ring is said to be in a state of equilibrium until it is perturbed from this

position. Thus, the stability of a structural system can be determined from the minimum

potential energy criterion. This criterion states

A structure is in a configuration of stable equilibrium if and

only if the change in total potential energy corresponding

to any sufficiently small, kinematically admissible ( satisfies

particular boundary conditons and continuity equations)

displacement is positive. 17

The total potential energy is the sum of the bending (Ub) and membrane (Urn) strain

energy of the ring and the potential energy of the applied pressure load (Q). The total

potential energy relation is represented in the following expression

V=Um + Ub + 2 (3.2.8)
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In looking at the strain energy components of the total potential energy, the total strain

energy can be expressed as
U = Ea

U=2 I(E+zK) dAd)
where E and K are both unique functions of 0.

Thus, an integration with respect to 0 gives a new expression for the strain energy

separated into its membrane and bending components.

U EAa= de + E K dO (3.2.9)2 2
where

the cross-sectional moment of inertia I = z2 dA
A= the cross-sectional area

After substituting the full expressions for E and Ic into the previous equation results in

EAa 2a v'+ w 1 _ v - w'
Um = -f: + - - dO (3.2.10)

2 a 29 a

b E J 2 dO (3.2.11)
2 ' a J

For this system, the potential energy of the applied pressure load is equal to the

negative of the work during the deformation process. Assuming a hydrostatic pressure

loading, the load stays normal to the surface of the ring during deformation, and the ring

thickness changes very slightly during this process. Therefore, the change in area

enclosed by the centroidal surface and that of the outer surface is approximately the same.

With this information, the potential energy of the applied pressure load can be expressed

as

Q=-q(iEa 2-A*) (3.2.12)

where A* is the enclosed area after deformation

To see how the potential energy changes during deformation, equation 3.2.12 can be

shown as a function of the displacement terms (v &w) such that it takes the form of the

following:

R=qa w + (v2 -vw+v w+w2)] dO (3.2.13)
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To observe the potential energy for a deformed state, a displacement function is

introduced to minimum potential energy criterion.

V -- v 0 +V 1  (3.2.14)

w -- wO +w 1

where vo and wo corresponds to the circular equilibrium configuration, and v1 and wl

are small variations.

For the circular equilibrium configuration, v0 , w 0 and their derivatives are equal to zero.

Since this circular configurations equilibrium is independent of q, the first variation of the

minimum potential energy criterion (8V) is equal to zero. Therefore, the second variation

of the criterion needs to be computed, and a collection of all the squared terms of vl and

wl results in

82V = 82Um + 62Ub + 52 (3.2.15)

where the components give

2Um EA 2x v  ) ]

S2U a o [(1 +W )2+ W (v w )2 dO (3.2.16)

EI 2
82Ub = V  1 W")2] dO (3.2.17)

82 =qJ 2 (V12 - VJW + + W1
2 ) dO (3.2.18)

For axisymmetric deformation

wo_ aq

a EA

and the new expression for the second variation of potential energy yields

82V= 2 2[EAa2 (v w, W) )2 EI( -w )2 qa( +vw 1V +w 12 )] dO
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To get the equations that describe the loss of stability, the Euler equations must be

implemented into the problem, and these equations are

aF d DF
=0

av1  d av0 '

aF d aF d2  RF
---- + =0
w, dO aw' d02 awl

where F is

F= [EAa2 (v; +w,) +EI(v' - w) 2 + qa (vlw +v;l + 1
2 _w,2)] (3.2.19)

When these operations are carried out with the function F, the result yields the

stability equations, and they are the following:

EAa 2 (vI + w1 ) + EI(v1 - w')" = 0 (3.2.20)

EAa2 (v + w1 ) - EI(v1 - w')"'+ qa3 (w'+w) = 0 (3.2.21)

3.3 Calculating the Critical Load

To solve for the critical buckliing load of the ring, the stability equations must be

solved for specified boundary conditions. Since the stability equations are homogeneous

differential equations, the general solution can easily be found. For the problem at hand,

the boundary condition require that v1, w 1 and their derivatives are periodic in 0. Thus,

v1= B, sin(nO) n=1,2,3,4.........

w 1= Cn cos(nO) (3.3.1)
n

where Bn & Cn are constants, and the variable n is a positve integer value. Next, these

qualified functions can be substituted into the the stability equations, giving
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[n(nB+C)+n2 I (B+nC)]sin (nO)= (3.3.2)

[(nB+ C)+n3 A (B + C COs (nO)= (3.3.3)

The above equations are valid for all values of 0, and the trigonometric terms (cosine and

sine) are generally nonzero. The stability criterion is therefore that the determinant of the

coefficients must be zero. The resulting expression takes the following form

q (n2 - 1)EI n=2,3,4, .......
1+ a3

Aa2

In the present case, I/Aa2 is small compared to unity because of the thin ring assumption

stated earlier, and the expression simplifies to:

q = a n=2,3,4,.... (3.3.4)

Since n=1 produces rigid body movement, the first mode of interest is n=2. Thus, when

n is equal to 2, the critical buckling load is achieved

EI
qcr = 3 3 (3.3.5)

This result is considered to be the load at which the ring collapses.

3.4 Timoshenko's Bending Theory of Curved Bars

In contrast to Brush and Almroth, Timoshenko's approach to getting the kinematic

relations needed for stability analysis involved the bending theory of curved bars. To

illustrate this theory further, consider a thin bar (AB) that has an initial curvature with

radius r0o When this bar is bent in the same plane of its initial curvature, the resulting

radius of curvature of the center line of the bar is represented as r, and any point on the

center line of the deformed bar can be found in terms of the polar coordinates r and 0.

These relationships can represented pictorially in figure 3.4.1
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p

n

D

A

Figure 3.4.1: Deformed Curved Bar

To relate the change in curvature of the thin bar to the load which produced this

deformation, we must derive the necessary kinematic relation. From basic kinematics,

the relationship between the curvature and the applied moment is known as
M
EI

And the new relationship for a change in curvature can be represented as

E- 1 1 = -M (3.4.1)

(r ro

where (EI) is the bending stiffness of the bar.

This bending stiffness can be found from the slope of linear portion of the moment-

curvature curve for this configuration. Also, the minus sign on the moment term is due to

the fact that the moment that produces an increase in curvature is defined as a negative

moment.

Now, the change in curvature will be taken down to an incremental level so that a

relationship between radial deflection (w) and curvature (rK) can be derived. First, take a

small element (mn) of the initially curved bar ( represented as dashed lines) and define its

length as
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ds = ro0 d (3.4.2)

de 1
so that = I

ds ro

In considering only small deformations, the radial displacement (w) from a point m

or n is considered positive in the direction toward the center point (0). This radial

displacement is just one component of the total displacement vector, and the other

component is a tangential displacement. Although there exists a tangential component, it

will be neglected, and we will assume that the curvature of the segment mn will be the

same as the deformed segment m1ni.

- -ds
ds + 2

Figure 3.4.2: Angle Relationship of Segment mln1

To get an expression for the deformed curvature as a function of the radial displacement

values (v,w), the deformed curvature of the bar is taken as the initial curvature plus a

small incremental curvature, and figure 3.4.2 illustrates this fundamental idea. The

resulting expression for the deformed curvature is stated as

d., A12,
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d2w
1 dO + ds

-- = . (3.4.3)
r ds 1(-W

Neglecting higher order terms and substituting equations 3.4.1-2, a differential equation

for the curvature can be represented as
d2w Mr'

d2 +W EI (3.4.4)
dO2  El

Therefore, the radial displacement can be found at any position 0 given the initial radius,

the applied moment, the material, and the shape, but the results are dependent upon the

applied boundary conditions.

3.5 Timoshenko's Buckling Theory of Circular Rings

A perfectly circular ring will remain in equilibrium under uniform lateral pressure,

but the magnitude of the load must be lower than that of a critical load at which

instability (collapse) occurs. Therefore, a ring with a slight deflection from the circular

configuration under uniform lateral pressure can remain in equilibrium, if a small change

in the applied load doesn't cause a major change in its existing state. Once the pressure

reach a point where small changes in the applied load produces large changes in the

existing state, the critical state of the system has been reached. The load required to keep

the ring in this deformed shape is the critical load of the structure.
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S S
Figure 3.5.1 : Ring Free Body Diagram

Since a ring has many planes of symmetry, we will make use of that geometric

information, and only use half of the ring in the analysis of this problem. With half the

ring being used in the analysis, the reaction forces of the other half must be represented,

and they are present in the form of moments (Mo) and normal loads (S). This can be

shown best in Figure 3.5.1. In this figure, the small deformation is represented

(exaggerated) by the solid line with the uniform lateral load , and the dotted lined is the

original circular shape with radius ro. The radial displacements at points A and B are

represented as w0, and the normal compressive load (S) at these points is shown to be

S=q( ro - wo ) (3.5.1)

where q is the load per unit circumferential length.

The total moment at any point on the deformed ring is given as

M = Mo - qro (w o - w) (3.5.2)

where

w = ro- OC
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After substituting this equation into the differential equation 3.4.4, we obtain

d2w

d02
EI 0EI)

-M r 2E + qr3Wo
EI

(3.5.3)

Solving the differential equation 3.5.4 yields the general solution and particular solution

for the radial displacement (w), and it is given as

w=A sin(kO) + B
-Moro 2 + qr3w 0cos(kO) + -Mr + qr w

EI + qrO
where

3
k- r

El

(3.5.4)

(3.5.5)

Next, to solve for the constants A and B, the boundary conditions (B.C.'s) of symmetry

are applied in the form of

Sdw)dO 0=0 =0 -0
and -do D=

2

As a result of applying the first B.C., the constant A=0. Also,it can be shown that either

B=0 or sin

than zero is

kir
- =0 to satisfy the second B.C., but we notice that the smallest root other
2
ki = i with k=2.
2

Therefore, the critical pressure can be solved for by

substituting this k value into equation (3.5.5) to yield

3EI
r (3.5.6)

This is the same result as found by Brush and Almroth. It should be noted that the same

solution can be achieved by using rigorous energy methods and by using intuitive

deformation of curved bars.
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3.6 Stability of a Ring on an Elastic Foundation

A limiting case of a point-supported ring would be a ring on an elastic foundation, and

the foundation consist of an infinite set of elastic radial springs. The configuration of this

setup is shown in figure 3.6.1. In the previous cases for a uniform ring, we have seen

how a uniform ring buckles due to a radially applied external pressure load. In this case,

the elastic foundation acts as stiffening agent and effectively increases the critical

buckling load of the ring. The pressure load q, for this elastic foundation problem is

given as

qf = -kfw (3.6.1)
where

qf - is in pounds per inch between the ring and foundation

kf- is a constant foundation modulus(lbs / in2)

w- is the radial deflection
q

Ring with
Stiffness
El

Figure 3.6.1: Ring On An Elastic Foundation

In solving this new problem, we will begin with the strain energy of the foundation

which can be represented as

U = ,Jqfw dO

We can substitute equation (3.6.1) into the expression above to yield

_akf 2:
U, = ' w 2 dO (3.6.2)2 0
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With this expression for strain energy, the modified form of the stability equations

can be obtain by taking the second variation of this expression and adding it to eq.3.2.15,

and the second variation of Uf is shown as

82U = ak, 2• 2 dO

After this term is incorporated into the integrand F (see section 3.2), the Euler equations

are solved, and the stability equations results in

EAa 2 (v' + w)' + EI(vi - w')" = 0 (3.6.3)
EAa 2 (vl +w 1)- EI(vj - w')" + qa'(w"+wl)- kfa4 wl = 0 (3.6.4)

Finally, equations 3.3.1 are introduced to the stability equations above. This action leads

to a pair of homogeneous equations. As we all know, these equations can be solved for a

nontrivial solution by taking the determinant of the coefficients and setting the expression

equal to zero. These coefficients in determinant form gives

n2(1+ In(l+n2I1I I

2 4 I k0a2  =0 (3.6.4)

n1 I kaI -1n + (n24
Aa2  Aa2  EA EA

Neglecting small terms, the solution can be shown as

El 1
q = (n2 - 1) ka n=2,3,4.... (3.6.5)

a + n2 - 1

The critical load of the system can be determined by varying n to find the lowest

eigenvalue; thus, this eigenvalue is the critical load. We see that this buckling pressure of

a ring on an elastic foundation is equal to that of a thin ring plus a term related to

foundation stiffness. Interestingly, this additonal term is inversely proportional to (n2-1);

however, the unstiffened ring result is directly proportional. This means that the critical

mode will not necessarily be n=2, but will depend upon the relative stiffness of the ring

and foundation.
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3.7 L.H. Donnell's Cylindrical Shell Instability Theory

Cylinders are simple geometric shapes that have a variety of structural applications

such as bridges, building supports, tanks, pipelines, submarine pressure hulls, and many

more. Because of the large usage of cylinders, researchers have been investigating the

structural behavior of these configurations. More specifically, stability problems have

been researched for many years, and there are some common solutions for specific

cylindrical shell stability problems. L.H. Donnell solved the stability problem in the

1930's using his simplified equations. Due to the model's ease of use, they were used

widely in the scientific community before computer methods came along. To understand

the basis for what the computers solve, we look at Donnell's solution for cylindrical shell

buckling.

3.7.1 Cylindrical Shell Kinematic Equations

Figure 3.7.1: Cylinder Parameters
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Assume the cylinder in figure 3.7.1 is a thin-walled cylindrical shell with a length of

L. Also, we will denote the shell thickness as h, and the radius of the undeformed

centroidal surface as a. To satisfy this thin-walled assumption, we will enforce h to be

much less than the radius a. Furthermore, we need a useful and easy coordinate system

to measure the magnitude of these variable, and the obvious choice is to use a cylindrical

coordinate system (x,0,z). From the figure, we can see that x is axial, 0 is

circumferential, and z is measured radially outward from the centroidal surface.

Figure 3.7.2: Cylinder Coordinate System

Now, let's consider a cylinder loaded with an external lateral load and an edge load.

This loading will induce internal stresses within the shell structure, and we can use this

information to find the magnitude of the forces and moments at any section of the shell.

For example, take a small piece of the loaded shell with area dx(a dO), and create a free-

body diagrams shown as
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Figure 3.7.3: Cylindrical Shell Element

The magnitude of these elemental forces is related to the internal shell stress by the

following expressions

In-plane normal and shearing forces(lb/in)Jh/2
N -= f x 1+ Zdzf-h/2 a)

h/2

No = -h/2 Od z

Bending moments(lb-in/in)
h/2

Me = ah/2 z dz

Twisting moments(lb-in/in)
h/2 Z

Mx0 =ah/2 TZ 1+ z dzS= J-h/2a)

Transverse shearing forces(Ib/in)
Q h/2

f-h/2 a

h/2 Z
J-h/2 ýX0 1+ dz
rh/2

MNx =a h/2 dz

J-h/2 a

Jh/2
Mex = a h/2 x  +z dz

h/2
Qe = h/2dz

-h/2

where ox "., etc , represents the components of stress through the shell thickness.

For equilibrium of the small patch, the summation of the moments must be equal to

zero, and the summation of the forces must be equal to zero. Although this patch should

be in equilibrium undeformed, it should also be in equilibrium slightly deformed before

(3.7.1)
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the shell structure buckles. Thus, we will determine the nonlinear equilibrium equations

for this condition.

First, let's look at the small slice in the deformed configuration with its acting forces.

This deformed structure shown in figure 3.7.4 rotates slightly during deformation through

angles P, and .,' but we assume that this rotation is small. As we know for small angles

sin =
cos 1.

Also, the interactions of the transverse shear forces with the rotations are assumed

small; thus, they will be neglected.

Figure 3.7.4: Deformed Shell Element

The equilibrium equations are derived by summing the forces in the coordinate system

directions in figure 3.7.4 and by summing the moments in figure 3.7.5. The resulting

equations of equilibrium are shown as

aN,, + NOx, = 0

aNXO, , + No,e = 0 (3.7.2)

a 2M x, + aMO,xo + aMO, + aMO,00 - aN 2 - a 2N x,X
- a2Nx•,x - aNxP,, - aNPo, = -pa 2

where a subscripted comma refers to differentiation with respect to the variable following

the comma. For example, N, = DN
ax
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Figure 3.7.5: Deformed Shell Element

Finally, Donnell based his equations on the the following kinematic relations:

middle -surface kinematics relations (Eq. 3.7.3)

1. Strains

~, = , x2

E v +w 1 2
+ pe 2

a 2
2. Curvature

Kx = Px,x

+X V1 I) + IPxIP

Y 1e = PxI + V, x

20 a ,

K = ..ee
a

3. Rotations

Px = W,x 0-" W'O
a

constitutive equations (Eq. 3.7.4)

N, = C(Ex + v 0 )

No = C(e 0 
+ VE )

l-v
Nxe = C- Yxe

where
Eh

1- v2

Mx = D(Kcx + VIo )

Me = D(K, + VKx )

Mx6 = D(1- v)cxo
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Eh3
D=

12(1- v2 )

3.7.2 Equilibrium Equations

In determining the equilibrium equations, we will substitute the constitutive and

kinematic relations into the equilibrium equations (3.7.2). Neglecting higher order terms

in u,v,w, the resulting action yields the linear equilibrium equations

aN,,x + NX0,e = 0

aNxe,x + No,e = 0 (3.7.5)

1
DV 4w +- N = p

a

3.7.3 Stability Equations

In determining the stability equations, we will use the theory of minimum potential

energy. This is the same method used to determine the circular ring's stability equations.

To get an expression for the total potential energy of the circular cylindrical shell

structure in a slightly perturbed state, displacement relations are introduced to the total

potential enegy equation (equation 3.2.8).

The displacement relations are

S- u + U 1

V - V + V 1

W -- w0 +W 1,
where

uo v wo O - prebuckling deformation
u, V1, w - buckled deformation.

Through the use of variational calculus on the resulting expression , the second

variation (82) of the total potential energy (V) is taken. Due to the linearity of the

potential energy of the applied lateral pressure load, we find that 82 = 0. Thus, the

resulting equation only has strain energy variations involved. After algerbraic

manipulation, this equation is expressed as
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12V = a Ex12 + E012 + 2vExl + 1v x2 dxd0 (3.7.6)
2 2 2

2

+ a f Nxolx2 +N 2W1 + 2 N w 1l,e dxd
a a

2 ,x a2 2 a)
D 2 1 w 1.w 1,xo

+aD Wxx2 ++ + 2vw1,xx + 2 (1- v) 2 dxd0
a a a

where

N1 0 = C(Exo +Ve0 o) xo = U0,x 1 x2
1 2

Vo,0 + w o  1 Wo,9Noo = C(Eo00 +VEx 0) oo = +a 2 a2

N1-v uoe woxwo,
N-9o = C 1- YXOo = (Vo,x + u°) + WxW'

2 a a

V1,0 + W1  W0,0W1,0
x = U 1,x + W0,xW1, 01 + 2a a

Y1X=01 V1'x + U1 + W0'xW0  WO0' 1,'
a a a

Nx1 = C(Ex1 + VE01 )

N91 = C(e 01 + VEx)
1-v

NZol = C Yx01
2

wo,, and wo,o are prebuckling rotation terms that are negligibly small in most cases.

Therefore, the contribution of these rotations will be deleted. Finally, the integrand (F) of

the form shown in equation (3.2.19) can be substituted into the Euler equations.

Euler Equations
aF - RF a aF

=0
au ax u, •o u3e
aF a RF a aF -0
av ax •v •, ae av,

aF aF H a F 2 HF 2 RF a 2  aF+---+ -- + = 0
0Vw 0 x w, DOaw,0  x 2  , axae a , 0  02 aw,00

Solving these Euler equations and substituting the kinematic and constitutive equations,

we obtain the uncoupled the stability equations as
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Uncoupled
v 1

V4 U1 = - 1,xxx + 1w

V4 2+v 1
V4V1 - 2 l, xx 4 1 ,988

a a

DVw 1+ 1 2 CW, V4 eoWl,a2 ,0 1,xx 1x 00 1,0

(3.7.7)

3.7.4 Cylinder Buckling Under Uniform Lateral Pressure

Consider a circular cylindrical shell and subject it to a uniform lateral pressure P,

(Figure 3.7.6). Then constrain the ends of the cylinder to be simply supported. Under

these conditions, the prebuckling deformation will be axisymmetric, and when this

axisymmetric deformed structure loses stability, the critical pressure (P,r) has been

reached.

Figure 3.7.6 : Cylinder Held Circular at the Ends

i /-

]r
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Under uniform loading the cylinder will want to extend length wise, and if this

motion is not constrained, Nxo =0. Since, there is no torsional loading, we neglect the

effects of that term, Nxe0 = 0; thus, one of the stability equations can be simplified as

1- v2  1
DV8w+ a2 CwN a (3.7.8)

Since prebuckling deformation involves some bending of the shell, the bending

equations(Eq 3.7.5) can be specialized for axial symmetry, and this specialization yields

N'x = 0 (3.7.9)
1

DwV +1 No = -Pe (3.7.10)
a

where
EhC=
1-v2

N o = Eh
a

With the boundary conditions given, there tends to be localized bending near the ends

of the cylinder. To simplify the equations, this effect will be neglected, and the cylinder

is assumed to be circular down its length. Since bending effects are neglected, the

equations are membrane dominated. Membrane equations are equilibrium equations that

govern deformation, and they can be derived from the linear equilibrium equation by

setting the bending stiffness variable D=0. The resulting equations are

aN,, 1 + N, e =0

aN 1 N,x + N = 0 (3.7.11)

N o = pa

For our proposed problem here, the last equation will be modified to reflect the new load

orientation (p is negative inward). Therefore,the membrane equation gives us

Neo = -Pea (3.7.12)
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Now, substitute this into the specialized stability equation (Eq 3.7.8.), and the new

expression is

DV 8w + 2 Cw,X, + - PeV4e = 0 (3.7.13)
a a

To solve this differential equation, we need to enforce boundary conditions, and as

stated previously, the ends are simply supported. "Simply supported" means that the end

will not be allowed to moved radially, but rotations are free.

Particular solutions to the differential equation have the form
w=C 1 sinmx sin nO (3.7.14)

where
C1- constant
- mnta

m-=
L

n &m= 1,2,3,4,.............
Substituting this solution into eq 3.7.13. yields

(i 2 + n2 ) D m4

pea = n2 --2 • + 2 (1-v2)C (3.7.15)
n2 a n2 H2 + n 2)2

where
Eh
1- v2

Eh3
D=

12(1-v 2)

Finally, this equation can be use to solve for the critical buckling load Pcr by setting m= 1.

For all values of m and n, the lowest eigenvalue is achieved when m= 1. Implementing

this result into equation 3.7.15 yields the final equation

pea [(xa /L)2 +n 2 (h/a)2  (Ora/ L) 4
=  12(1_V2) + 2 (3.7.16)

Eh n 12(1- v 2 (na / LL)2 +n] 2

For a given circular cylindrical shell, equation 3.7.16 can be used to solve for the critcal

load (pe) of the structure.
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3.7.5 Timoshenko Cylinder Buckling Theory

Timoshenko's derivation of the stability equations includes the nonlinear rotation-

shear force interaction that were neglected by Brush and Almroth. Furthermore,

Timoshenko assumes that No is large compared to the other resultant forces; thus, the

product of these resultant forces with displacement derivatives are neglected. Now, the

equilibrium equations can produced by summing the forces in the directions of the

coordinate system variables using the sum of moment equations is given as

aN, x, + N•, - Nev,e - New, = 0 (3.7.17a)

M0 ,
N00, + aNe,= + ' + M.e, = 0 (3.7.17b)

M v w
MexX + aMx,== + .... + M, - N e - N o 

v 'e + N,0 w 'ee + pa = 0 (3.7.17c)a a a

Recalling the Brush -Almroth force summation equations (3.7.2), you will see that

equations (3.7.17a -3.7.17c) show a slight variation. Brush and Almroth neglect the

moment contributions in equation 3.7.17b due to the shallow cylinder assumption. Also,

Timoshenko doesn't neglect the quadratic nonlinear interaction terms between transverse

shear forces as do Brush and Almroth. Finally, Brush &Almroth assume that rotations

are negligibly small. One thing to note is that for buckling analysis the applied load is

taken to be compressive, and this accounts for the sign change on (pa).

Assuming that the cylinder remains circular and undergoes uniform circumferential

compression under the externally applied pressure load, a particular solution can be

obtained such that

v=0 N, = 0 N o = pa
a2

Mx = Me = MXW = w =
Eh
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In this this buckling derivation, only small deflections from the equilibrium position

are considered. Taking this into consideration, we will set

No = pa + No (3.7.18)

where N' represents a small variation in the resultant force pa. Next, substitute

Ne (1+ E ) for N o and p(1+ E1)(1+ 2 ) for p in the equilibrium equation. This action

will take stretching of the midddle surface into account.

Finally, the resulting equilibrium equations can be solved by using the constitutive

and kinematic relations given in section 3.7.1 to get these equilibrium equations in terms

of the displacement variables (u,v,w), but the boundary conditons must be satisfied. The

boundary conditions for this problem requires that the ends be simply supported such that

w and w, are zero at the ends. With this modified form of the equations, the buckling

displacements given as

u= A sin nO sin -
L

v= B cos nO cos -x
L
.rxw= C sin nO cos
L

can be substituted into the equilibrium equations and solved by setting the determinant of

the coefficients of (A,B,C) equal to zero. It must be noted that these equations are given

with the assumption that x is measured from the middle cross-section of the cylinder.

This methodology is very similar to the action perforrmed to find the critical load of the

ring. After all the algebra has been done, with small terms neglected, the equation used

to determine the critical load results in

(1- v 2 )Pcra 1- v 2

Eh (n2 - 1) 1+ n 2
72 2

2n 2 -l-v
-1+ 2 (3.7.19)n2L2

1+ 2 2

with n= 2,3,4......
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Therefore, equation (3.7.19) can be used to calculate the critical load (Pcr) of a circular

cylindrical shell. For more detailed information on this solution process can be found in

reference 8 .
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CHAPTER FOUR
Numerical Analysis and Results

4.1 Introduction

Since submarines are vessels that operate under hydrostatic loading conditions, these

vessels can fail due to compressive yielding or shell instability. Submersibles that are

used for shallow diving have hulls that are thin and strong. Consequently, they have a

probability of buckling under hydrostatic loading. On the other hand, deep diving

submersibles have thick shells, and the bending rigidity goes up as the cube of the shell

thickness. Increasing the thickness tends to push the failure mode from shell instability to

compressive yielding the structure. In the truss/cradle design concept, the truss is

connected to the hull through point attachments. In this research investigation, the effects

of these point attachments on cylindrical shell stability are studied. The research

progressed from analysis of unreinforced to point-supported rings under external radial

pressure, and then from unstiffened to point-stiffened cylinders.

With today's technology, high speed computers can be used to help improve the design

of pressure hulls. Computer usage allows the designer more time for creative thinking by

eliminating repetitive work. For structural problems, the finite element method provides

an effective way to evaluate the structure's response to a change in its environment. The

finite element method analyzes the structure as an assemblage of small elements.

Furthermore, the ABAQUS finite element package provided the necessary routines to

carry out the analysis of stability problem, and the eigenvalue buckling extraction routine

was the primary program segment used in this research.

4.2 Buckling Load Determination-Eigenvalue Extraction

While studying eigenvalue problems, one should realize that there are no unique

solutions to the problem. These problems involve solving for a series of solutions for
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equations of the form.

Av= Bv (4.2.1)

where
A &B are symmetric matrices
X is the eigenvalue (frequency or critical load)
v is the eigenvector (mode shape)

Eigenvalue problems can be solved by taking the determinant of (LB-A) and setting it

equal to zero, and this can be represented as

det (AB-A)=O (4.2.2)

The solution of the above equation yields a series of eigenvalues (?L) that satisfy the

equation, and each eigenvalue has a corresponding eigenvector associated with it.

In structural stability problems, the eigenvalue problem finds the point at which the

system collapses when the structure is slightly perturbed from it equilibrium position.

This point is known as the critical buckling load of the structure. From this, we can see

the sensitivity of the solution to the geometry and loading conditions. In reference to

equation 4.2.1, the eigenvalue (X) represents the critical buckling load, and v represents

the mode shape associated with that load.

This type of analysis is termed linearized buckling analysis, and the finite element

code solves the following equation

det(K+?,KG)=O (4.2.3)

where
K - linear strain stiffness matrix
KG - nonlinear strain stiffness matrix

The critical load is then determined by multiplying the eigenvalue by the applied load.

Pbuckle=OPapplied (4.2.4)

This linearized buckling analysis employs two key assumptions
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1. The linear strain stiffness matrix does not change appreciably prior to buckling

2. The nonlinear strain stiffness matrix is simply a multiple of its initial value.

Therefore, the method assumes that prebuckling deformation effects have negligible

effects on the stiffenesses. This basic analysis scheme was used to evaluate the structural

advantages or disadvantages of point attachments in a Uniform Ring, a Resiliently

Supported Ring, a Uniform Cylinder, and a Resiliently Supported Cylinder.

4.3 Circular Ring Stability

Many researchers investigated the stability of circular rings for many years in the

early 20th Century, and their results provide good insight into the problem. Some of their

results are given in Chapter 3. Two different approaches to solving the ring stability

problem were illustrated. With this background, a finite element model was created to

compare with the results from theory.

In the model creation, there are many parameters that must be selected, and they are

the following:

1. Geometry 5. Boundary Conditions

2. Element Type 6. Type of Analysis

3. Material 7. Output Desired

4. Loading Conditions

The geometry necessary for this problem is a circular ring, and it is shown below.
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Figure 4.3.1: Ring Under Uniform External Load

Using quadrilateral shell elements(S8R), a titanium ring was made with a unit width and

ratios
-= 22
b
h = 6.5568E - 2.
a

S8R elements are 8 node elements that are primarily used for thick shell applications, and

the ratios supports this choice of elements. Although 4 node elements would save

computer time, it can't capture the higher order displacements resulting from buckling

effectively. To capture a good convergent solution, a sufficient number of elements must

be used around the perimeter of the ring. Through trial and error, the resulting number of

elements around the perimeter was set equal to 144, with 2 elements along the width b.

Next, the ring has to be sufficiently constrained so that there are no rigid body

motions. Rigid body motions results in zero pivots in the finite element stiffness matrix.

These zero pivots are numerical errors that do not allow a convergent solution to be

achieved. Since the ring was created in the x-y plane, the ring was constrained against

movement in the z direction, and free to move radially. Finally, a uniform compressive

radial load was applied to the ring, and an eigenvalue buckling extraction was performed.

To see if the results were viable, they were compared to theory using the equation of the

form

I
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(n2 - 1)EI
crit R3L

n= circumferential mode number
I= cross sectional moment of inertia
E= Young's Modulus

R= radius (a)
L= width (b)

The comparative study involved comparing the critical buckling load of the two

methods for a particular mode shape. Recall that the eigenvalue has a mode shape

associated with it, and both methods should arrive at the same values for the same

conditions. The result of this study is shown in figure (4.3.2).
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Figure 4.3.2: Theory vs. ABAQUS for Unstiffened Circular Rings

n ABAQUS - Pecr Theory - Pcr
2 1156.2 psi 1162 psi
3 3067.1 psi 3099 psi
4 5706.7 psi 5811 psi
5 9042 psi 9298 psi
6 13032 psi 13559 psi

Table 4.3.1: Table of Graph Data

With this favorable comparison, it has been shown that the model mesh was

sufficiently fine to capture the necessary behavior. With this confidence, radial point

where

(4.3.1)
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supports can be introduced to the model. These stiffeners were held fixed at the free end,

and the end attached to the ring had zero moments (pinned). The stiffeners were in the

form of spring elements (SPRINGA), and the number of stiffeners were varied along with

their circumferential position. Although the length of these stiffeners could be another

variable, it was decide that the length will be kept constant for these tests. In each case,

the stiffeners were made with the ratio

Lk -. 25 (4.3.2)
R

where
Lk - Length of the stiffener
R - Radius of the ring

This stiffener length is an analytical artifact and does not bear directly on the physical

implementation . Obviously, the important parameter is radial support stiffness, which

can be achieved in any number of configurations and geometric envelopes. This modified

geometry is represented in figure 4.3.3
P

Figure 4.3.3: Ring with Radial Stiffeners of Stiffeness (k) Under External Load (P)

A large number of cases were run using ABAQUS, varying the number and spacing of

radial supports as well as their relative stiffness. The stiffener comparison involved

comparing the ratio of the computed critical load divided by the critical load for
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unstiffened rings with the stiffness parameter KR 2/D. Where K is the stiffness of the

springs, R is the radius and D is the bending stiffness variable .

Eh3
D = (4.3.3)

12(1- v2 )

This comparison is shown in graphical form in figure 4.3.5, and the value of the

bending stiffness variable (D) remains a constant 2951.15 lbs-in throughout the

comparative study. In this graph we can see that as the number of stiffeners increases,

the critical buckling load increases. That is something that should be expected seeing that

structure becomes stiffer. Furthermore, we see that 4 stiffeners gives us no improvement.

That is due to that fact 4 stiffeners still allow the lowest energy mode (mode 2) to take

precedence ( See Figure 4.3.4).

Figure 4.3.4: Circular Ring with 4 Radial Supports in a Mode 4 Configuration with the Supports
Becoming the Nodes of Deformation

The point support locations simply become the nodes of the deformation mode. Also, we

can see that in comparing even versus uneven spacing of stiffeners around the perimeter,

the uneven spacing only gives us a small advantage for high stiffness values. Thus, it

provides advantageous results if you are constrained to use a particular number of

stiffeners with specific stiffnesses, but it must be remembered that for a particular
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stiffness it could yield a lower result as evenly spaced stiffeners. (see Appendix for exact

results)

------- 12 equally spaced stiffeners

........ ........ 8 unevenly spaced stiffeners

----0---- 4 equally spaced stiffeners

----A---- 5 equally spaced stiffeners

- - -EB- -- 7 equally spaced stiffeners

-.-. - -.. 7 unevenly spaced stiffeners

---0--- 5 unevenly spaced stiffeners

I I I I I
.001 .01 .10 1.0 10

KR 2/D

Figure 4.3.5: Comparison of the Stiffness Parameter (KR2/D) to Critical Pressure Ratio (Pcr/PO) for
Variuous Number of Stiffeners.

4.3.1 Circular Ring Buckling Mode Shapes

When the ring buckles, it goes into the shape that represents its minimum energy state.

As mentioned before, each eigenvalue has an eigenvector (mode shape) associated with

it. In general, uniform rings subjected to external radial loads tend to go into symmetric

modes, and these modes are generally characterized by the number of lobes the ring has

after deformation. For example , mode two has a shape that resembles an oval looking at

the ring down its axis, and mode three appears to have 3 finger-like projections from this

perspective. To get a better idea of this concept , the following figures are provided.
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Figure 4.3.6: Schematic of Symmetric Ring Deformation Modes

Looking at the results from the stiffener comparison, the first mode in each case for

any number of stiffeners and a stiffness range (10-1000 lbs/in) is characterized by mode

2. This implies that below a threshold K value, point supports have no effect. For the

ring with 12 stiffeners at K= 10,000 lbs/in, the first mode is mode 3, and this trend

suggests a shift in dominance from ring properties to support stiffnesses. Furthermore,

with an increased stiffness value (K=100,000 lbs/in), the lowest energy mode is mode 6.

From these phenomena, it can be seen that with an increase in stiffness, the lowest energy

mode increases. For this geometry, the structure requires more energy to deform the

body into a mode 6 configuration than it does for a mode 3 or 2. Some other

configurations can be seen in figures 4.3.7 - 4.3.10

Figure 4.3.7: Ring With 8 Supports of Stiffness K=10 lbs/in Buckled into a Mode 2 Configuration at a
Critical Load Pcr=1158 psi
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Figure 4.3.7 represents a ring with 8 radial stiffeners in a buckled configuration

corresponding to the mode shape n=2. For low stiffness values this mode is the critical

buckling mode. For example, with K=10 lbs/in , the critical load associated with n=2 has

a value of 1158.8 psi. Furthermore, other modes associated with the stiffness value

K=10 lbs/in with an increasing load are shown in figures (4.3.8-4.3.9).

Figure 4.3.8: Ring With 8 Supports of Stiffness K=10 lbs/in Buckled into a Mode 5 Configuration at a
Load P=9043.1 psi

Figure 4.3.9: Ring With 8 Supports of Stiffness K=10 lbs/in Buckled into a Mode 6 Configuration at a
Load P=13031 psi
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With an increasing load, the mode shape is driven to a higher mode. We can see that if

the ring can be pushed into a higher mode than the first mode, we would obtain the

desired increase in the critical buckling load. Furthermore, with an increase in the

stiffness value the ring structure may buckle in an unsymmetric shape or in a

undeveloped critical mode shape. Figure 4.3.10 illustrates a undeveloped

(circumferential lobes not clearly pronounced) critical mode 5 with K= 100,000 lbs/in,

and we have seen a fully developed mode 5 in figure 4.3.8.

Figure 4.3.10: Ring With 8 Supports of Stiffness K=100,000 lbs/in Buckled into a undeveloped Mode 5
Configuration at a Critical Load Pcr= 8059 psi

Although this is close to an n=5 mode shape, it has a lower buckling load as a fully

developed n=5. An increase in the load is required to make the circumferential lobes

more pronounced. Since it is a critical mode for a ring with 8 supports, it is seen that it

provides an increase in the critical load over that of figure (4.3.7) at K= 10 lbs/in.

Therefore, if there is a stiffener configuration that can force the ring into a higher mode

shape, it should be able to increase the critical buckling load of the ring. For more mode

shape information corresponding to figure 4.3.5, see Appendix A.

I
r

r
r
r
1

c

~



Chapter 4: Numerical Analysis and Results

4.3.2 Ring On An Elastic Foundation

As a limiting case, a stability analysis was performed on a ring on an elastic

foundation. This configuration is represented in figure 3.6.1. In the previous analyses,

the number of stiffeners were varied, and these configurations utilized various stiffness

magnitudes. The highest number of stiffeners tested was twelve stiffeners around the

inner perimeter of the ring. The ring on an elastic foundation is essentially the case of an

infinite number of stiffeners around this perimeter.

Discrete Springs Elastic Foundation
q

k(lb/in) Kf(lb/in 2)

Figure 4.3.11: Ring With Discrete Supports and a Ring on an Elastic Foundation Under a Uniform
External Load (q)

A comparative study was performed to see if an increase in the number of radial

stiffeners would approach the elastic foundation case. To make a fair comparison, an

equivalent stiffness (Kf) for the elastic foundation configuration needed to be determined.

We can determine the equivalent stiffness(Kf) for each discrete radial stiffener case. For

example, equation 4.3.4 can be used to calculate this equivalent stiffness from the

stiffness of the discrete case and the number of stiffeners used in that case.

Kf = KNstiff (4.3.4)2 icR
where

K- stiffness of the stiffeners in the discrete spring case(K= 100,000 lb/in)

ill
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R- radius of the ring
Nstiff - number of stiffeners used in the discrete case

Using the data retrieved from the finite element analysis and equation 4.3.4, a graph

was made to compare the discrete stiffener case to the elastic foundation configuration.

1.OE+00 -

8.OE-01 -

( 6.OE-01 -

4.OE-01 -

2.OE-01 -

O.OE+00 I I I I I

O 4 stiffeners

O 5 stiffeners

O 7 stiffeners

A 8 stiffeners

ES 12 stiffeners

1 2 3 4 5 6 7

Critical Mode Number

Figure 4.3.12: Critical Pressure Achieved by Using Point-Supports Compared to the Critical Pressure
Achieved by Using an Elastic Foundation for Several Stiffeners

The ABAQUS data gives us the critical buckling load (Pstiff ) for the discrete case with a

corresponding mode shape, and equation 3.6.5 uses equation 4.3.4 to calculate the critical

load(Pef) for the elastic foundation case for a specified mode shape. As seen in figure

4.3.12, an increasing number of discrete radial stiffeners seems to approach the elastic

foundation limit line. Therefore, if additional stiffeners are attached to the ring, we

would be able to approximate the critical buckling load using the equations for an elastic

foundation seen in chapter 3.

Furthermore, to see the advantages of using an elastic foundation configuration let's

compare it to the unstiffened case. The unstiffened critical pressure can be calculated

using equation 3.5.6, and the critical pressure for the elastic foundation case is

represented as Pcr, where Pcr=Pef. This information was used along with various

Limit Line
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equivalent stiffness values (Kf) at a constant value K=100,000 lbs/in to perform an

elastic foundation comparison.

10-

14-

C 12-

10-

8-

O equivalent Kf (12 stiff)

O equivalent Kf (8 stiff)

O equivalent Kf (7 stiff)

A equivalent Kf (5 stiff)

EH equivalent Kf (4 stiff)

5 10 15 20 25

KfR3/D

Figure 4.3.13: With K=100,000 lbs/in and Equivalent Kf Values, the Effects of the Elastic Foundation
on the Critical Pressure Load of the Ring is Compared to the Unstiffened Ring.

From the graph, it can be seen that at an increasing equivalent stiffness yields incredibly

large improvements in the critical buckling load. Therefore, the designer can pick the

number of stiffeners to use and their stiffness to achieve the desired improvements. For

example, from figure 4.3.13, one obtains the buckling strength ratio (compared to

unstiffened ring) as a foundation of elastic foundation stiffness. Figure 4.3.12 shows the

efficiency of varying numbers of discrete stiffeners in achieving the elastic foundation

improvement. Combining the results of these graphs provides the designer with an

estimate of the improvements to be expected as a function of both the total support

stiffness and number of stiffeners.

These comparative studies provided some insight into the effects on radial stiffeners

on circular shells. Since submarines are primarily fabricated using cylindrical shells, this

information can used to provide some initial configurations for cylindrical shells.

I I I
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4.4 Cylindrical Shell Stability

Cylindrical shells are simple structures that are subject to instabilities in axial

compression, under uniform lateral pressure, and under combined loading. Research has

been done in these areas of stability for many years, and much of this work was utilized

in the stability analysis of submarine structures. Chapter 3 provides some of the results

used as today's standard for determining the critical buckling load. Using these past

results as the reference solution, a finite element model was created with buckling theory

conditions in mind.

As we have seen in section 4.3, there are seven parameters that must be dealt with in

the creation of a finite element model. The geometry takes the form of a circular cylinder

shown in figure 4.4.1.

I I I I I I I I I I

LbJ
I -. I

Figure 4.4.1: Cylinder Held Circular at the Ends and the Middle Held Fixed in the Axial Direction

Quadrilateral shell elements (S8R5) were used to create the required circular cylindrical

shell in the ABAQUS finite element code, and S8R5 elements are used for thin shell

applications. These element were arranged in a fashion such that the cylinder had 24

elements around the perimeter and 36 element along the length of the cylinder.

Numerical studies were done to ensure that the mesh density used provided converged

solutions. Since the theory derived in chapter 3 assumes that the shell is thin, thin shell

elements were used to achieve good correlation with theory. To be considered a thin

shell, the thickness of the shell must be small compared to the radius of curvature of the

I

I I
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cylinder. In complying with this rule, a structure was made of titanium with particular

design ratios, and these ratios can be represented as the following:
a

L

-=5.6818E-3
a

Also, shell designers use a dimensionless z-parameter that provides a scaling reference

for the structure, and this parameter is given as

z = -(1-_v 2 ) (4.4.1)
rh

The finite element model that was created for this analysis has a value of

z= 16016

From the geometry, we can see that the length of the cylinder was relatively large with

respect to the radius and thickness. Although the length was large with respect to radius,

it is not long enough to assume an infinitely long cylinder.

Also, like the ring, the cylinder must be constrained to get rid of rigid body motions.

The nodes in the middle (L/2) of the cylinder were constrained to move in the axial

direction to negate the rigid body motion effects. Keeping with the boundary conditions

given in the cylinder stability theory, the ends were held circular and they were allowed

to move in the axial direction. This is represented by rollers in figure 4.4.1. Finally, an

eigenvalue buckling extraction was performed on the cylindrical shell with an externally

applied load.
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Figure 4.4.2: Comparison of the Critical Load Solutions of an Unstiffened Circular Cylindrical Shell
as Calculated by Timoshenko and Brush & Almroth

n
3
4
5
6

Pcr (psi)
Timoshenko Brush & Almroth

3.6463 3.7750
4.4400 4.7096
6.7655 7.0417
9.7740 10.0518

Table 4.4.1: Theory Comparison Data Table

For model verification, the finite element model was compared to theory, and it was

decided to use the Timoshenko solution for cylinder buckling. We can see from figure

4.4.2, that the solutions for both methods were within less than 6% of each other using

the Timoshenko solution as the reference. Timoshenko's model includes the higher order

terms that were neglected by Brush and Almroth. We can see from the results, that the

omission of these terms in essence makes the structure appear rather stiff compared to

Timoshenko's model. Since Timoshenko's model includes these higher order terms in its

derivation, his model was used for verification of the Finite Element Model.

Timoshenko's equation of the form
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E = h -12L ++ n 2 - 1+ (4.4.2)
Eh (n 2 -1) •1+ 02 12a+2 + 2L2

( nC2a2 21 2 a2

where
n= mode number L= length
a= radius qc= critical load
h= thickness E= Young's Modulus

was used to calculate the theoretical solution.

n
3
4
5
6

Pcr (psi)
ABAQUS Theory

3.6570 3.6463
4.4668 4.4400
6.8329 6.7655
9.9541 9.7740

Table 4.4.2: ABAQUS vs Theory Data Table

For this model verification, the critical buckling load calculated by ABAQUS was

compared to the solution generated by Timoshenko's equation for given mode shapes.

This comparative study is illustrated best in graphical form, and this can be seen in figure

4.4.3. Since both methods should arrive at the same solution, the lines on the graph

should be identical. The ABAQUS solution was very close to the solution calculated by

theory, but the slight variation is due to several factors. These factors include the number

of degrees of freedom per element (8 node elements vs. 9 node elements), the coarseness

or fineness of the mesh, and the iterative approximation methods used that are inherent

to the finite element method. All these factors contribute to the error between the

analytical and finite element results. For the critical mode (mode #3) the analytical and

finite element results agreed within a .29% error.
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Figure 4.4.3: Theory vs. ABAQUS for Unstiffened Cylindrical Shells

This comparison shows that the model contained a sufficiently dense mesh to capture

the required solutions . With a good working model, stiffeners can be added to the

structure. In the truss/cradle design concept, the truss is octagonal; thus, it has 8 corners

where attachments can be made between it and the submarine hull. The truss is assumed

to be very stiff and rigid. With this in mind, the end of the stiffener that would be

attached to the truss is fixed, and the end that is attached to the hull was pinned. As

before, the stiffeners were simulated by using spring elements (SPRINGA). The ring

cases were simplified versions of the cylinder problem. Although the ring allowed a few

parameterizations, the cylinder has many more. For example, there are vast variations

that can be achieved, and some of them are the following:

1. Varying the number of stiffeners
2. Varying the circumferential spacing of the stiffeners
3. Varying the number of stiffener sets along the length of the cylinder
4. Varying the stiffness of the stiffeners
5. Varying the orientation of the stiffeners

Due to the number of parametric possibilities and resource limitations, only a few of

these cases are studied. The main cases observed involved the variations(I-4) mentioned
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previously. The length of the stiffeners is another variation, but it is kept constant for all

the cylinder stability analyses. Therefore, the stiffener ratio
Lk = .25
R

will remain the same.

First, an eigenvalue buckling extraction was performed on a cylindrical shell with 8

stiffeners placed in the middle of the cylinder (L/2) with equal spacing, and picture

showing this configuration can be see in the figure 4.4.4 below (reference

configuration).

L/2 L/2

Figure 4.4.4: Cylinder with Stiffeners at Midpoint Under Hydrostatic Load (P)

As a result of running this test, it was found that the critical buckling load increased

with an increase in stiffness up to a particular point (See figure 4.4.5). After this

stiffness level is reached, an increase in radial support stiffness provides no further

advantages. The critical stiffness at which improvement is plateaued appears to be that at

which the stiffeners created effective modes. As the stiffness values were increased, the

cylindrical shell moves from a mode 3 to a mode 4 under uniform external radial loads.

On a positive note, we can see that there is approximately a 22% increase in the critical

buckling load for this configuration. This limit point is found to begin at a value of

KR 2

= 164.
D
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Figure 4.4.5: Effects of the Radial Support Configuration on the Critical Load Ratio (Pcr/PO) with
Varying Stiffness Values

In a effort to achieve a greater increase in the critical buckling load, a second model was

created with stiffeners at the L/3 and 2L/3 (See Figure 4.4.6). This modification was

thought to provide a tougher path for the structure to travel in achieving its minimum

energy configuration. This configuration resulted in a very small increase in the critical

buckling load ( about a 5% increase) at low stiffness levels, but it leveled off and

remained constant for increasing stiffness values (See Figure 4.4.5).

L/3 L/3 L/3
Figure 4.4.6 : Cylinder with Stiffeners at 1/3 Points Under Hydrostatic Load (P)

-- -13 - 8 stiffeners at middle

........ * ........ 8 stiffeners at thirds

---- 0---- 8 stiffeners at quarters

A----.-- 8 stiffeners at thirds (variation 1)

- - -EB- -- 8 stiffeners at thirds (variation 2)
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Although the stiffeners at the thirds points achieved some increase in the critical load,

higher critical load are still desired. Another model with stiffeners at L/4, L/2, 3L/4 was

created to help bring us closer to our goal (See Figure 4.4.7). To achieves its minimum

energy configuration , the structure required a higher applied load for this stiffened case

over the unstiffened case. Again this critical load showed an improvement over the

previous 2 configuration at low stiffness levels (a 8% total increase in the critical load),

but it to remained constant for increasing stiffness level beyond this limit point (See

Figure 4.4.5).

P

SL/4 L/ 4 -" -  L/4 '- L/4
Figure 4.4.7: Cylinder with Stiffeners at 1/4 Points Under Hydrostatic Load (P)

As a result of observing these different configurations, it appears that largest increase

in the critical load that can be achieved is about 22%. Furthermore, it appears that an

increase in the number of stiffener stations along the length of the cylinder doesn't

increase the critical buckling load over 1 station at L/2. This result means that further

stations of stiffeners have little effect since they don't effect the m=1 (one longitudinal

lobe) half wave (See section 3.7.4 and Figure 4.4.11). Looking at the Brush and Almroth

solutions for an increasing m value, we can see that the critical buckling load increases

(See Table 4.4.3). Since it was shown that m=1 exhibits the critical modes for various

values of n, a higher value of m will increase the critical load. For example, let's

compare m=1 to m=2 for various values of n using equation (3.7.15).

100
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n m Pcr (psi)
3 3.7750
4 1 4.7096
5 7.0417
6 10.0518
3 21.1100
4 2 8.0535
5 8.0560
6 10.5000

Table 4.4.3: Effects of Increasing the Longitudinal Mode (m) on Critical Load

From the table above, it is clearly shown that we can achieve a sizable improvement in

the critical buckling behavior by pushing m=l to m=2 for modes 3 and 4. Therefore if

the stiffeners can be arranged in such a fashion to force m=1 behavior to m=2, then it

would advisable to do so. Furthermore, at modes 5 and 6 there isn't much improvement

gain by pushing the longitudinal half wave from m= 1 to m=2, and it would be beneficial

to just increase the number of circumferential stiffeners in this case. Note that all the

springs stiffeners have had the same stiffness value for each of the 3 analyses

configurations shown, and a change in this area could provide the desired improvements.

Taking a closer look into varying the stiffness of the stiffeners, a new configuration

was developed. In this effort, the model with the stiffeners at the third points was

modified, and two different modifications to the same model was analyzed. First, the

stations at L/3 and 2L/3 had a stiffener configuration that looked like the following:
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Variation 1
P P

@ L/3 @ 2L/3

Figure 4.4.8: Rotated Stiffener Configuration - Variation 1

In this setup, the bold spring represents the springs that were varied during the analysis,

and the remaining springs represents the springs that held a constant stiffness value

(K=10 lb/in). In this attempt to achieve a higher critical mode shape, this non-symmetric

stiffness configuration was implemented. As a result of this attempt, lower buckling

loads than the previous configurations were achieved at low stiffness values, but the same

limit point (@ KR2/D- 100) was achieved at higher stiffness values.

Also, a second attempt at using a non-symmetric stiffness configuration was made,

and this can be seen in variation 2 (Figure 4.4.9). Variation 2 had the same behavior as

variation 1 at low stiffness level, but it had a lower buckling load at the same limit value

as the other configurations. After this point was passed, it leveled off at the

Per/P0( = 1.22) value of the other configurations for increasing stiffness.

Therefore, performing this analysis for many different configurations provided useful

information for the design of submarine shell stability. For all the configurations tested,

the maximum increase in the critical buckling load is about 22%. With that information

in mind, it was concluded that 8 stiffeners in the middle was sufficient for an improved

design. When looking at cost, manufacturability, time, and weight, the small 5%
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improvement at lower stiffness levels is not enough to warrant a design change over the

configuration with 8 stiffeners in the middle.

Variation 2
P P

Station 1 Station 2
@ L/3 @ 2L/3

Figure 4.4.9: Rotated Stiffener Configuration -Variation 2

If we look at mode shapes, we see that the small improvements in performance are

due to the fact that we plateau the performance once we enforce the m= 1, n=4 mode

shape from the m= 1, n=3 mode shape. Significant improvements in performance must

change this behavior. Since it has been determined that stiffeners in the middle is

sufficient for achieving desirable improvements in its structural performance at high

stiffness levels, the number of stiffeners at this position was varied at a constant stiffness

value (K= 100,000 lbs/in) to obtain to evaluate the effectiveness of that configuration.

The result of this test gives a nice comparison chart shown in figure 4.4.10. From this

chart, we can see that increasing the number of stiffeners at the "plateau" value of K

provides great improvements in its stability behavior. For instance, using 12 stiffeners at

this position results in approximately 130% increase in the shell's critical buckling load.

On the other hand, there isn't much improvement going from 11 stiffeners to 12

stiffeners. Comparing these other configurations to the configuration with 8 stiffeners in

the middle, shows that largest jumps in improvements occurs in configurations using an

even number of stiffeners. For the truss/cradle design , it would be easier to use an even
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number of stiffeners, and that gives us only 3 choices (8,10, &12 stiffeners @ L/2). From

this test, it is clear that 12 springs at L/2 provides the best results. Some generalized m= 1

mode shapes for general instability of cylindrical shells can be seen in figure 4.4.11, and

other mode shape information corresponding to these modified structures can be seen in

the Appendix B.

0.5

0
8 9 10 11 12

Number of Cicumferential Stiffeners

Figure 4.4.10: Comparison of the Critical Load Achieved by using a Number of Circumferential
Stiffeners at L/2 to the Critical Load of the Unstiffened Cylindrical Shell.

Results Summary

* Given the above, it seems that one plane of stiffeners in the middle of the cylinder

gives the bulk of the strength improvements.

* We were not able to increase the longitudinal wave number above m=l with the

values of stiffness attempted (this could be investigated further)

* Odd numbers of stiffeners appear more effective than even.
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Mode 2 Mode 3 Mode 4

Figure 4.4.11: Key Cylinder Buckling Mode Shapes @ m=1

4.4.1 Other Possible Variations and Comparisons

Up to this point, we have looked at the phenomena of circular shell stability with

radial point supports through several examples using a common cylinder geometry. To

see the advantages of using radial stiffeners, we must look at some of the other

parameters considered in the design of submarines. Although there are many such

parameters, we will look at two of the more vital design parameters such as shell

thickness and the weight of the shell.

Shell thickness plays a large role in determining the circumferential bending stiffness

of these structures which is a key parameter in shell stability. The stiffness of the shell

structure can be estimated using the parameter D ( see equation 4.3.3). Using equation

4.3.3 it is easily seen that an increase in the thickness of the shell rapidly increases the
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stiffness of the shell. Depending upon the application, the shell may have ring stiffeners

to increase its bending stiffness, but an optimal configuration will have a particular

number of ring stiffeners for a specified thickness. Using this same concept, we will

compare the effects of 8 radial stiffeners at L/2 for various stiffness magnitudes at the

reference thickness ( t=.125 in.) to the same stiffness configured shell at various

thickness. The result of this comparative study is shown in figure 4.4.12.

I.

1.
0

1.

---- t=.125 in.

O t=.25 in.

O t=.5 in.

A t=1.44 in.

0.1 1 10 100 1000 10000 100000

KR2/D

Figure 4.4.12: Comparison of the Effects of 8 Radial Stiffeners at L/2 for Various Stiffness
Values at t=.125 in to Other Shell Thickness Values

The points at t= 0.25 in., 0.50 in., 1.44 in. represent actual data points at a constant

thickness and stiffness (K= 1000 lb/in), and the lines were drawn to show that the

behavior will look something like that of the line representing t=O. 125 in. when the

stiffness is also varied. The critical pressure Pcr represents the ABAQUS results for these

configurations, and Po represents the theoretical solution obtained from equation 4.4.2 for

the unstiffened shell with these various thicknesses. The result is a graph with lines of

constant thickness as the stiffness of the stiffeners are varied. Therefore, we can see that
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as the thickness is increased, the lower the effect the stiffeners have on the shells

instability pressure, and the sloped lines in figure 4.4.12 indicate this behavior. See

Appendix D for the exact numerical results.

I UUU

100

I0

1

X t=.125 in.

O t=.25 in.

O t=.5 in.

A t=1.44 in.

0 0.25 0.5 0.75 1

Wgain/Wtotal

Figure 4.4.13: Comparing the Effects of Increasing the Shell Thickness and Shell Weight to a Shell
Thickness and Weight associated with t=.125 in..

Next, let's look at weight considerations. From the previously shown results, we

know that an increase in shell thickness will increase the value of the critical load, and

that more radial stiffeners will yield higher buckling loads. Although these are good

attributes, we must keep in mind that hull weight is an important parameter in submarine

design.

To see the advantages of using radial stiffeners over increasing the shell thickness, we

will first compare the performance of the shell with various thicknesses to the reference

configuration (see graph 4.4.13).
Reference Configuration

1. 8 Stiffeners @L/2

2. Thickness t=.125 in.
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In this comparison, we must calculate the amount of weight increase (Wgain) with the

different shell thickness values, and calculate the critical load at these thicknesses (Pcr).

Theses values are compared against the reference critical pressure (Po ) and Weight

(Wo). Where the Wgain = Wtotal -W0, and the total weight can be calculated using the

expression

Wtota =(2 rRt)Lp (4.4.3)
where

R- shell radius L- shell length
t- shell thickness p- shell density

A result of the hull weight shows that an improved stability performance can be achieved

at the expense of sizable weight gains.

However, radial stiffeners are rather small compared to the massive hull structure, and

they weigh very little in comparison to the hull. To see this, the weight of the stiffeners

must be calculated corresponding to various stiffness values. These values can be

calculated using equation 4.4.4.
KL2

WStif = Nt8 W p (4.4.4)
E

where
Nstiff- number of stiffeners E- Young's Modulus

K- spring stiffness p- material density
L- length of the spring

This comparison uses steel stiffeners with a high spring stiffness value (K= 100,000

lbs/in), and the critical load was calculated with the FEM (Finite element method). The

reference configuration was compared to these stiffened configurations, and figure 4.4.14

shows the results of this comparative study.
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2.23
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1.75

1.50
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1.00

EB 8 stiffeners

o 9 stiffeners

o 10 stiffeners

O 11 stiffeners

A 12 stiffeners

3.5E-04 4.0E-04 4.5E-04 5.0E-04 5.5E-04 6.0E-04

Wstiff/Wtotal

Figure 4.4.14: Comparison of the Critical Load Achieved at Various Stiffener Weight Ratios to the
Critical Load of the Unstiffened Circular Cylindrical Shell.

This graph shows us that as the number of stiffeners are increased we get an improved

performance, but looking at the Wstiff/Wtotal ratio shows that this improvement comes

with minimal increases in weight. Therefore, in comparing the data in figure 4.4.13 to

the data in figure 4.4.14 , we can see that using radial stiffeners is far more efficient than

increasing the hull weight for improved performance.

4.5 Finite Element Model Reliability

The finite element method is a good method to use for obtaining structural

performance. The main routine used in stability analysis is the eigenvalue buckling

routine which is based on linear stability theories. For many problems, this linear theory

is sufficient for obtaining the desired information, but it doesn't always predict the

complete behavior of the structure. Nonlinear theories may be used to capture this

complete behavior. Furthermore, on the manufacturing aspect of things, real structures

are not perfect. When modeling structures, we tend to have models that are more precise
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than what can be actually be manufactured, and imperfections in the model must be

introduced to predict the behavior of a manufactured structure. Therefore, an analysis

was performed using nonlinear theories, and a separate test was run taking shape

imperfections in account.

4.5.1 Shape Imperfection Effects

Thin elastic shells' equilibrium can be affected by the applied loading conditions and

any deviations of the structure, geometry, or material properties from the nominal

configuration. Under these conditions, the structure can undergo 3 types of deformation

1. Prebuckling deformation

2. Buckling deformation

3. Postbuckling deformation

The response of these thin shells can be extremely sensitive to loading and geometrical

imperfections. Geometrical imperfections are characterized by any divergence in the

shape of the structure from the geometrically ideal structure. M. Farshad defines the

geometrical imperfections of shell structures as

Any deviation of middle surface geometry from a conceived ideal shape.18

Loading imperfection come in the form of deviations in the magnitude and/or direction

of the applied load from the ideal magnitude and/or direction (e.g. nonuniformities in

circumferential pressure distribution). Past research has shown that shell structures made

for laboratory experiments often have critical buckling pressures lower than the ones

predicted for ideal structures. Since manufactured shell structures are never

geometrically perfect, the critical load predicted for the ideal structure can never be
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achieved. Here we can see how prebuckling deformation plays a role in determining the

buckling load of the structure.

Figure 4.5.1: Exaggerated Out of Circularity Imperfection

The imperfection that concerns us most is geometrical imperfections. To induce an

imperfection into the model, the ABAQUS mesh configuration with 10 stiffeners in the

middle was modified by placing an out of circularity imperfection on the order of

±0.0001 in. at L/2. For example, the out of circularity induced imperfection would

resemble the configuration shown in Figure 4.5.1. A static lateral load was applied to the

structure in small increments, using linear load increments. With a step size equal to .01

of the total load applied to the structure, where the total load applied was 32 psi. The

load increased linearly until the buckling load was reached.

In the analysis, the critical buckling load was found by recording displacement vs.

time and load vs. displacement plots. To create these plots, a node in the middle of the

cylinder (L/2) was monitored, and the displacement values at each time increment were

recorded. Figure 4.5.2 illustrates the x and y displacement value for a prescribed time

history. The critical point is easily seen as the point where the lines reach a discontinuity

in the lines original path. The load vs. displacement plots (4.5.3 &4.5.4) for x and y

displacements of the monitor node shows the exact load at which the discontinuity

appears, and this load is the critical buckling load of the structure. From this we can see

that the critical buckling load for this configuration was approximately 6.3 psi. By
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comparison, the linear eigenvalue extraction predicted 6.4 psi (see figure 4.4.10 and

Appendix B). These figures helped visualize the rapid change in stability of the

cylindrical shell. This phenomenon can be explained best with bifurcation of equilibrium

theory.

During loading of structure in increments, the equilibrium state of the structure will

reach a point of bifurcation. At this point, two possible equilibrium paths exist for the

structure. After this point is passed, the structure can remain in its original equilibrium

state or it could deviate from this path and go into a new equilibrium state. The path the

structure chooses depend upon total energy state of each respective choice. Given this

choice, we know that the structure will choose the path corresponding to minimum total

energy of the system. Therefore, the bifurcation point of the system corresponds to the

critical buckling load of structure.

Imperfection Results With K=100,000 lbs/in

if.

H

4

41 (3.. 4

I.,{

4 12 16 20 24

- - y displacement
- x displacement

Figure 4.5.2: Displacement vs Time for Cylinder with 10 Stiffeners at L/2
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'4

12 10 8 6 4 2

Displacement (in.) ( 10

Figure 4.5.3: Load vs X-Displacement for Cylinder with 10 Stiffeners at L/2

-0 1 0 10

Displacement (in.) ( In-, ,

Figure 4.5.4: Load vs Y-Displacement for Cylinder with 10 Stiffeners at L/2
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4.5.2 Nonlinear Theories

Linear theories of shell buckling that are based on perfect systems predict behavior

that is not often realized. This linear stability theory has the ability to predict the

bifurcation point or critical buckling load of the structure. Shell structures with small

imperfections can go from the unbuckled equilibrium state to the buckled equilibrium

state at a lower critical load than that predicted by linear theories. From this fact, we

question whether linear theory is sufficient to determine the entire behavior of the

combined shell- stiffener structure. Therefore, we will evaluate system stability using

mathematically more complex nonlinear theories.

In the finite element analysis, the ABAQUS program uses the modified RIKS method

for these nonlinear studies. This algorithm assumes that all the load magnitudes vary

with a single parameter (proportional loading). The method attempts to find an

equilibrium path in a solution space defined by the nodal variables and the loading

parameter. With a reasonable step size, the solution traverses this equilibrium path as far

as it can go. When the structure begins to buckle, the load doesn't increase with an

increasing displacement. This behavior can be observed with a plot of Load vs.

Displacement. With this method, you can limit the amount of time history data you need

for your analysis. Furthermore, the step size is very critical in obtaining an accurate

buckling load. If the step size is to large, the algorithm can't capture the desired solution.

In essence, it would over-shoot the solution point. With a small step size, the method

can capture the solution effectively, but may absorb large run times to find it.

The model used in this analysis used 10 springs at L/2, and the RIKS method was

used to analyze the model for various stiffeners. A static lateral load was applied to the

structure, and the program uses the step size to apply the load gradually. After each step ,

the algorithm outputs a load proportionality factor (k). This proportionality factor is used

to calculate the applied load on the structure at that point. The main equation used for

this tasks is given as
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(4.5.1)Ptotal = P0 + (Pref - P0 )
where

Ptotal- current magnitude of the load
Po- load magnitude at the beginning of the step
X- load proportionality factor
Pref- load defined by engineer

Since there were no pre-loads in this analysis, Po=O. Therefore, we can obtain the current

load magnitude at the end of each increment by multiplying the proportionality factor

times Pref. Finally, the results were obtain in graphical form, and the plots giving the

most information being

1. Load vs. Displacement

2. Load vs. Time

3. Displacement vs. Time

These plots are selected at a node in the mid-length of the shell and show two

components of displacement (x and y displacements)

RIKS Results With K=100,000 lbs/in

5

*1.01-4,

Tim°

- x- displacement
- - - y- displacement Figure 4.5.5: Displacement vs Time for Cylinder with 10 Stiffeners at L/2
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Figure 4.5.6: Load vs. Time for Cylinder with 10 Stiffeners at L/2
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Figure 4.5.7: Load vs X-Displacement for Cylinder with

-2 0

10 Stiffeners at L/2
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V

Displacement (in.) I 1 o* -4)

Figure 4.5.8: Load vs Displacement for Cylinder with 10 Stiffeners at L/2

Again, we see the discontinuities in the paths of the lines. The lines seemed to follow

a particular equilibrium path in the beginning, but as time went on and loads increased, a

point (bifurcation point) was reached at which the lines found another equilibrium path.

In figures 4.5.6 - 4.5.7, we see that at this point the displacements increased a great deal

for a constant load which indicates that bifurcation buckling has occurred. For this case,

the bifurcation point occurred at a load of 6.354 psi., and eigenvalue predictions yielded a

load of 6.3559 psi. Therefore, we can see that the eigenvalue predictions were sufficient

in predicting the critical buckling load of these modified cylindrical structures, and more

RIKS results an be seen in the Appendix.

The practical result is that inexpensive eigenvalue calculations can be confidently used

for parametric evaluation of these configurations ( see Table 4.5.1).
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Analytical Method Critical Pressure (Pcr) psi
Eigenvalue Buckling Extraction 6.3559
Static Load Step 6.3000
RIKS Method 6.3540

Table 4.5.1: Analytical Method Comparison

From table 4.5.1, we can see that all three methods are relatively close in there prediction

of the critical load. The imperfection load step case has a lower predicted critical load

than the other methods, but that is expected. Also, the RIKS Method's solution

compared to the Eigenvalue solution tells us that the nonlinear effects are negligible in

the stability analyses shown. Further solutions using these methods can be found in the

Appendix C. Using the eigenvalue method as the reference, the largest percent

difference is less than 1%. With such a small percent difference, any of the three

methods are sufficient for predicting the critical load. Since the static load step and RIKS

Method cost more computer time than the eigenvalue extraction, then it is more

economical to use eigenvalue extraction methods.

4.6 Stresses at Stiffener-Hull Intersection

During the deformation process, the stiffeners are applying a load to the hull

structure as point reaction forces. Since these forces act on the structure at a finite point,

there is a stress concentration at this point. In design, one of the most important things to

consider is the yield point of the material. Yielding of the material can cause the

structure to failure, and we want to design against failure.

The material used in these stability analyses was titanium. Titanium was chosen for

its high strength to weight properties; therefore, it has low mass with a high yield stress.

This stress analysis was performed to make sure that the hull structure doesn't yield under

the applied load for various stiffness values. A finite element model was made to

represent the area in the vicinity of the point support, and this area was subjected to a load

that is significantly higher than the critical load for a thin cylindrical shell with 12
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stiffeners in the center. Since this is small piece, the dxdy slice was approximated as a

flat plate, and this plate was model using S8R5 shell elements arranged in a 6 x 6 mesh.
rC\ (ý

C

C

C

r

~J '~J

Side View Top View

Figure 4.6.1: Finite Element Model Configuration

Figure 4.6.1 shows configuration of the model. From pressure vessel theory , we

know that cylinders under uniform lateral loads have a hoop stress and an axial stress.

These stresses can be estimated from the following:
pr pr

ose = - XX = (4.6.1)
t 2t

The top view in the figure shows how the dxdy slice is constrained to induce the required

reaction forces at the edges. Next, the spring was placed in the center of the plate, and it

was model using a SPRINGA element with a length corresponding to a quarter of the

radius. Using a high stiffness value for the spring, an uniform pressure load was applied

to the plate. The applied load produces the stress distribution shown in figure 4.6.2. From

this figure , we can see that the highest stress is at the intersection of the spring and the

hull, and ,,xx and ayy have a maximum value at this point equal to 3.02 xl03psi. The

yield strength of titanium is 150 x 103 psi, which is significantly higher than the stresses

shown. Furthermore, to look at this nondimensionally, consider the ratio of

Omax-a0.
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Figure 4.6.2: Stress Contour Plot of a Cylinder Path in the Vicinity of a Radial Point Support
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amax =. 4.3
pr
t

where
p= 4 psi t=. 125 in.
r= 22 in. Omax= 3.02 x 103 psi

From this ratio, we can see that the maximum stress with radial stiffeners is 4.3 times the

maximum shell stress without stiffeners. Therefore, the critical stress is dominated by the

regions of stress near the point supports. Since most submarines are designed up to

approximately 60%-70% of the yield strength, the load at the point of hull-stiffener

attachment should be distributed over a specified area. This design change gets rid of the

point load and replaces it with a distributed load. Also, a distributed load decreases the

chances of the structure yielding at the point of attachment. Although this model is not

an accurate account of the effects a set of stiffeners will have on the stress level, it does

give some insight into how the stresses are distributed in this region, and with the

interaction of stresses with other stiffeners, this maximum value will change. These

stress interactions only become important with closely spaced stiffeners. Therefore, the

structures used in the stability analyses will not yield before it buckles because the

stiffeners are spaced far enough apart and the yield stress wasn't reached.

4.7 Stability Analysis of a Cylinder with an Internal Truss Structure

Up until this point, we have been examining the buckling characteristics of rings and

cylinders with radial stiffeners held fixed at one end. Holding the end fixed at free end of

the stiffener assumes that the truss structure is very stiff. In general, the truss structure

may not be as stiff as we assumed. To investigate this assumption, a finite element model

of a cylinder with an internal truss was created. In this particular model, the truss was

made of steel bars while the cylindrical shell was made from titanium. To illustrate the
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truss arrangement, a section view is shown in figure 4.7.1. The same shell element

configuration was used for the hull as before (reference configuration), but the 3-D truss

used 2 node truss elements(C1D2). Also, 8 stiffeners were used to attach the truss to the

hull, and they were created using spring elements (SPRINGA). To examine the buckling

phenomena of a this structure, a uniform lateral pressure load was exerted onto the

cylindrical shell structure with an internal truss.

Figure 4.7.1: Axial View of the Truss Connected to the Cylindrical Shell through Radial Point
Supports Under Hydrostatic Load (P)

Using the eigenvalue bucking extraction routine, the critical buckling load was

calculated with various stiffener stiffness values for a unit cross-sectional area of the truss

members. As a result of this test, it was found that for this particular truss member

cross-sectional area, the calculated critical loads were very close to the case with 8

stiffeners that were fixed at the free end. A comparison of the two different case is shown

in figure 4.7.2.
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Figure 4.7.2: Effects Two Different Boundary Conditions (Free End Fixed & Free End Connected to
a Truss) on the Critical Load of a Circular Cylindrical Shell with 8 Radial Supports.

From this we can conclude that for this cross-sectional area, the truss behaves as a very

stiff structure.

Since we know that the stiffness of the truss structure is related to the cross-sectional

area, the cross-sectional area can be varied to give us a better idea of the effects truss

stiffness on hull stability. First , the truss stiffness has to be determined. To ascertain

truss stiffness, a static analysis was performed on the truss. In this analysis, the truss was

pinned at all the corners at the top and bottom, but in the middle all were pinned except

one. On that one particular node, a 10,000 lb load in the radial direction was exerted onto

the truss, and the amount of displacement of this node in the radial direction was

measured. This allowed us to calculate the stiffness of the truss using the expression
F

KTrss = -. (4.7.1)

where 8 is the resulting radial deflection.

With this setup, the stiffness of the truss was evaluated using the ABAQUS finite element

model for different cross-sectional areas of the truss members. Figure 4.7.3 shows the
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results of this study, and we can see that there is a linear relationship between truss

stiffness and the cross-sectional area of its members.
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Figure 4.7.3: Effects of Varying the Truss Member Cross-Sectional Area on the Truss Radial Stiffness

With an increase in cross-sectional area or an increase in Young's Modulus of the truss

members, the stiffness of the truss increases accordingly. Keeping in mind that the total

weight of the submarine structure is important for performance attributes, we don't want

to increase the area of the truss members to much, and as expected, we can see that a

linear relationship exist between truss weight (Wtruss) in pounds and EA

(see figure 4.7.4).
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Figure 4.7.4: Effects of Varying the Parameter (EA )on the Total Weight of the Truss

Figure 4.7.4 illustrates the variation in truss weight with bar stiffness, assuming that

the material is steel and the variable is cross-sectional area. The previous two studies

showed the linear relationship between EA and truss weight and truss stiffness. To place

these effects into the overall context, the interaction of the truss stiffness and the radial

stiffener stiffnesses was studied. To accomplish this task, a total effective stiffness was

calculated using the following expression:
1 1 1

= - + (4.7.2)
Ktot KT Kstiff

where
Kstiff varied between 10 and 100,000 lbs/in

The calculated value for Ktot was used to compare the ratio of truss weight to hull weight

to the nondimensional parameter (KtotR 2/D) used in the critical load analyses of section

4.4. In the other analyses, the free ends were fixed; therefore, Ktruss was infinitely large,

and the inverse of this large value is approximately zero. The results of the comparative

study can be seen in figure 4.7.5.
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Figure 4.7.5: Effects of Varying the Truss Weight on the Stiffener Parameter (Ktot R2/D)

From this figure , we can see that increasing the truss weight doesn't really provide any

increase in the nondimensional stiffness parameter beyond a truss weight approximately

equal to the skin weight. To really understand how light we can make the truss, more

cases must be run @ Wt(truss) / Wt(hull) less than 1.0. Certainly above Wt(truss) / Wt(hull)=1

there is no further benefit to be had by increasing truss weight (stiffness). It was shown

in previous sections that an increase in this parameter results in an increase in the critical

buckling. Since the truss is very stiff (0(106)), the stiffener stiffness dominates the total

stiffness variable Ktot. The truss stiffness provided slight improvements when the

stiffener stiffness values were of order 0(105). This told us that as the stiffeners'

stiffness values were increased, we approached the stiffness of the truss structure.

Finally, the most valuable information is that the radial stiffeners have a greater effect on

the stability of the cylindrical shell than the truss. Therefore, it would be advantageous to

make the lightest truss allowable to fulfill stiffness requirements , and this would improve
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the W/D ratio of the total submarine structure. By improving the W/D ratio, we improve

the efficiency of the submarine structure, which will allow a greater payload.
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CHAPTER FIVE

Conclusions and Recommendations

5.1 Summary

Since the recent focus of U.S. submarine designers has been on the French truss/cradle

design concept, the advantages of this concept were addressed along with integrated

design tools to help improve the overall design process. In this design, the cradle is

attached to the hull envelope through several point attachments as compared to the

welded plating attachments of current machinery. The main objective of this thesis was

to evaluate the effects of these point attachments on the stability behavior (buckling) of

the hull envelope. To get a general idea of the stability behavior of circular shells with

point supports under hydrostatic loading, circular rings with various numbers of radial

stiffener supports were modeled numerically using the ABAQUS finite element code.

This finite element model without point supports was checked with Timoshenko' s

analytical model before the supported case could be evaluated effectively. The spacing

and stiffness of these supports were varied throughout the analysis. As a result of the

model, it was shown that increasing the number of radial stiffener supports around the

circumference of the shell increased the critical load of the structure. Finally, as a

limiting case, the analytical solution of a ring on an elastic foundation was compared to

the numerical solution of a resiliently supported ring with many stiffener supports.

The buckling phenomena of circular rings provided some insight into the stability

behavior of circular shells under radial loading, and this knowledge was used to

investigate the stability of point supported cylindrical shells. As in the rings, a finite

element model was created to comply with Timoshenko's model, which used the Donnell

stability relationships for cylindrical shells. Once a good working model had been

established, the number of stiffeners was varied around the circumference and along the
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length of the cylinder, and the stiffness values of these supports were varied. As a result

of the analysis, it was shown that there was a maximum level of improvement that can be

obtained for a given number of stiffeners around the circumference of the shell.

Furthermore, for the geometries evaluated, there was no improvement in the critical load

for an increasing number of stiffeners along the length. Finally, it was shown that

increasing the number of stiffeners around the circumference of the shell in the middle of

the shell length increases the critical buckling load greatly.

Next, to put the design concept to the actual test, a truss structure was modeled inside

the hull envelope to evaluate the effects of truss stiffness on the critical buckling load of

the truss-hull structure. It was found that for low stiffness values of the discrete spring

stiffeners, the stability behavior was dominated by the bending stiffness of the hull. At

higher discrete spring stiffness levels, the stiffness of the truss began to affect the critical

load of the truss-hull structure.

Although cylindrical shells tend to be dominated by general instability failure, stresses

can be just as harmful to the life of the structure. Taking this part of the analysis into

account, a stress analysis was performed on a small patch in the vicinity of the point

support. The stress levels found were much lower than the yield stress of the material.

Since the applied load was greater than the buckling load, the structure would buckle

before it locally yielded.

5.2 Discussion of Results

The radial supports provided a significant increase in the critical instability pressure

of thin rings and cylinders, but the stiffness value of these supports must be of order

O(103) lbs/in or higher to achieve these improvements. First, the ring stability analysis

provided basic insight into the effects of radial stiffeners on circular shells. In this

analysis, we found out that as the number of stiffeners used increased, the critical

pressure of the resulting structure also increased. The physical explanation seems to be
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that above a threshold stiffness, the point supports enforced circumferential nodes, and

more nodes imply a higher mode and pressure. Also, a ring on an elastic foundation was

used as limiting case for a circular ring with many radial stiffeners. The simple elastic

foundation model provided a useful guide to the level of stiffness needed to improve

cylinder buckling performance. Furthermore, the stiffener's circumferential spacing had

very little effect on the shell's instability pressure. Therefore, from the parameter

variations tested, we saw that main variables were the number of stiffeners used around

the shell circumference and the stiffness values of these stiffeners.

Although radial supports provided improvements in the stability behavior of

cylindrical shells, we discovered some limitations. For a given number of supports

around the perimeter of the cylinder, there was a limit reached at which there was no

improvement in the critical load for increasing support stiffness. As in the rings, an

increased number of supports around the perimeter increased the critical stability

pressure. Considering the thickness of the cylindrical shell, the results showed that the

radial supports' effects were reduced as shell thickness increased. Also, the radial

supports give appreciable improvement with very little effect on the total weight of the

structure. Therefore, radial supports are effective buckling inhibitors for thin shells, and

there is a large improvement in stability performance with little additional weight.

The truss structure placed in the cylindrical shell was attached through the radial

supports, and large truss stiffnesses had very little of effect on the stability of the shell. If

the truss stiffness is large, the shell support is dominated by the discrete springs. The

support stiffness values seem to have a greater effect on the critical instability pressure

for large truss stiffness values. It was shown that the lower the truss stiffness is, the

greater effect it will have on the critical buckling load. Also, an increase in

cross-sectional area (increase in weight) of the truss members provided trivial increases in

instability performance for low support stiffness values. Therefore, it would be
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advantageous to use a truss with the lowest weight allowable, and use the radial supports

to tailor the structure to the desired stability behavior.

Finally, in all designs it is important consider the stresses seen in the structure before it

yields. Taking this into consideration, it has been shown that the titanium structure

doesn't not yield before it buckles. Multiplication or safety factors were developed which

relate the peak shell stress to PR/t . For the case studied, this factor is about "4.3". This

suggest that (unless local reinforcement is used) the nominal skin stress should be held to

20% or less of the material yield strength. This will ensure that the primary failure mode

is general instability of the cylindrical shell structure.

5.2 Recommendations for Future Work

Although this work provided useful design information into the use of radial supports

for submarine design, there are other areas that can be looked into to improve the

stability performance of cylindrical shells with this cradle design concept.

* Other stiffener arrangements can be tested to see which arrangement is more effective

at inhibiting buckling of the cylindrical shell structure. These might include

asymmetric combinations of supports at different axial stations.

* A dynamic analysis can be performed to find out what is the maximum support

stiffness that can be used to meet submarine acoustic requirements. This would

include calculating transfer functions from truss to hull surface.

* A cylindrical shell could be fabricated implementing the truss/cradle design concept

to examine the behavior of an actual structure to hydrostatic pressures with various

support stiffnesses.
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A design sensitivity algorithm can be written to find the optimal design of a

submarine hull structure with an internal truss.
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Appendix A: Ring Buckling Results

During the eigenvalue extraction for a circular ring with various stiffeners and

stiffener orientations, the first 15 modes were calculated for a given spring stiffness

value and number of stiffeners, but only the first 5 modes were recorded. Although the

critical mode is the first mode encountered, it was desired to push the critical mode to a

higher mode. With the data shown in tables A-i & A-2, we can see the advantages of

pushing the critical mode higher.

K (lbs/in) n
2
3

10 4
5
6
2
3

100 4
5
6
2
3

1000 4
5
6
2
3

10000 4
5
6
2
3

100000 4
5
6

Pcr (psi)
12 Stiffeners 8 Stiffeners 4 Stiffeners

1163 1158.8 1156.6
3069.7 3068.5 3066.9
5708.5 5707.6 5707.1
9043.6 9043.1 9041.4
13034 13031 13031
1220.2 1178.1 1156.6
3091.6 3079.5 3066.9
5720.7 5711.9 5707.1
9052.1 9046.9 9041.4
13035 13033 13031
1792 1369.6 1156.6

3310.5 3188.6 3066.9
5843.1 5755 5707.1
91370 9092.3 9041.4
13055 13046 13031
7490.9 3150.9 1156.6
5502.4 4182.9 3066.9
7059.7 6176.8 5707.1
9961.2 9609.8 9041.4
13253 13168 13031

- - 1156.6

- - 3066.9
- - 5707.1
- 8059 9041.4

15105 14610 13031
Table A-1: Data Table 1 for Stiffness Comparison

From table A-1, we can see that as the stiffness values increases, the critical load

increases. Furthermore, some of the modes present at low stiffness values are not present

137



Appendix A: Ring Buckling Results

at high stiffness values for the first 15 modes calculated. This tells us that the load

required to produce those mode shapes are much higher than the loads required to

produce some of the higher mode shapes. Therefore, mode 2 doesn't always correspond

to the lowest mode. For example, the critical mode can be mode 3, and mode 2 could

require a higher load such as the case with K= 10,000 lbs/in and 12 stiffeners used.

K (lbs/in) n
2
3

10 4
5
6
2
3

100 4
5
6
2
3

1000 4
5
6
2
3

10000 4
5
6
2
3

100000 4
5
6

Pcr (psi)
7 Stiffeners 7 Stiffeners1  5 Stiffeners 5 Stiffeners1

1160.3 1158.4 1159.2 1158.5
3068.6 3068 3068.3 3067.6
5707.8 5707 5707 5707.4
9042.7 9042.8 9042.3 9042.4
13032 13031 13031 13031
1193.2 1174.4 1182.2 1175.3
3079.7 3075.3 3077.1 3070.5
5713.9 5709.9 5707.5 5711.1
9047.2 9045.3 9042.9 9046.5
13030 13032 13031.2 13030
1520.4 1332.5 1398.8 1341.2
3187.5 3146.9 3178.9 3099.4
5778.3 5736.3 5708.7 5746.8
9093.7 9076.5 9048.6 9044.3
13038 13043 13038 13039

4450.7 2736.9 2274.2 2627.4
3914.5 3745.1 5482.1 3626
6814.2 5957.4 5729.9 6066.3
9842.1 9440.3 9101.7 9056.9
13097 13125 13108 13069

- - 2545.5 3386.4
4611.2 4833.4 5804.2 4879.6
8027.5 6741.3 9364.8 9073.2
13186 13418 13451 13110

1. Unevenly Spaced Stiffeners
Table A-2: Data Table 2 for Stiffness Comparison

Table A-2 shows the effects of using an odd number of stiffeners and uneven stiffener

spacing. The general trend seems to be that the even spacing provides slightly better

results than uneven spacing, but there is some variance at high stiffener stiffness values.

Therefore, from the two figures , we can conclude that increasing the number of stiffeners
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around the perimeter of the circular ring provides the needed advantages in the stability

behavior.
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Appendix B: Cylinder Buckling Results

For the first part of the cylinder buckling analysis, a set of stiffeners were placed at

various stations along the length of the cylinder. At these various station, the stiffness

value of the stiffeners were varied. The data given in table B-1 gives the results for the

first 5 m= 1 modes with stiffeners at the mid-section, third points, and quarter points.

K(lbs/in) n

3
10 4

5
6
3

100 4
5
6
3

1000 4
5
6
3

10000 4
5
6
3

100000 4
5
6

Pcr (psi)
8 stiffeners 8 stiffeners 8 stiffeners

@L/2 @L/3 & 2L/3 @L/4, L/2 &
3L/4

3.6715 3.6780 3.6859
4.4668 4.4668 4.4668
6.8378 6.8400 6.8427
9.9575 9.9590 9.9608
3.7973 3.8601 3.9351
4.4668 4.4669 4.4669
6.8828 6.9077 6.9388
9.9857 9.9998 10.016

4.4672 4.4674 4.4676
7.4041 7.9501 7.2867
10.146 10.231 10.293

4.4687 4.4698 4.4707

10.334 10.427 10.560

4.4698 4.4716 4.4729

10.373 10.565 10.613
Table B- : Stiffener Configuration Comparison

As a result of this analysis, we can see that increasing the number of stiffeners along the

length of the cylinder doesn't give a significant improvement over the case with one

station of stiffeners at the mid-section of the cylinder. In an attempt to force the structure

into a higher mode shape, the stiffness values were varied with in each station instead of a

global stiffness variation. Table B-2 shows the results of this analysis.
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K (lbs/in) n

3
10 4

5
6
3

100 4
5
6
3

1000 4
5
6
3

10000 4
5
6
3

100000 4
5
6

Pcr (psi)
8 stiffeners @L/3 & 8 stiffeners @U3 &

2L/3 (Var. #1) 2L/3 (Var. #2)
3.6692 3.6679
4.4668 4.4668
6.8370 6.8366
9.9570 9.9567
3.7670 3.7537
4.4668 4.4668
6.8715 6.8669
9.9787 9.9761

4.4671 4.4174
7.2493 7.2090
10.101 10.097

4.4682 4.4681

10.243 10.256

4.4689 4.4687

10.273 10.286
Table B-2: Stiffness Variation Comparison

We can see that these variations provided lower critical buckling loads than the ones

provided in table B-1. Therefore, varying the stiffness values within a particular station

doesn't provided any added advantages over uniform stiffness values for the entire hull-

stiffener structure. Since increasing the stiffener along the length of the cylinder for the

cases tested doesn't provided any advantages over one set of stiffeners at the mid-section,

the number of stiffeners at L/2 were varied at a constant stiffness value ( see table B-3).

A constant stiffness value of K=100,000 was used because the maximum improvement

gained seemed to plateau between K= 1000 lbs/in and K= 100,000 lbs/in. (see figure

4.4.5).
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K (lbs/in) n3

100000 4
5
6

Pcr (psi)
8 stiffeners 9 stiffeners 10 stiffeners 11 stiffeners 12 stiffeners

- 7.5498 - - -
4.4698 5.6910 6.3559 7.7337 8.5655

- 9.4678 - 7.9235 8.3147
10.373 11.123 10.857 10.535 9.9713

Table B-3: Stiffener Comparison @ll2

From table B-3, we can see that as we increase the number of stiffeners circumferentially,

the critical load increases dramatically. The critical load almost goes up approximately 1

psi for each additional spring added. If the stiffness value of the circumferential

stiffeners at L/2 are sufficiently large, the structure will be pushed to an m=2 logitudinal

half wave (See Figure B-4). This mode has a higher critical load than the critical load

achieved in an m= 1 mode. Therefore, increasing the number of stiffeners

circumferentially and increasing their stiffness values will approach the desired

improvement in the critical load.

Figure B- : Circular Cylindrical Shell in an (n=2, m=2) Buckled Configuration
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Appendix C: RIKS Method Results

The RIKS Method is a nonlinear analysis routine that was used to predict the critical

buckling load of the cylindrical shell. By picking a step size, the ABAQUS program

calculates a proportionality factor at the end of each increment. By looking at the output,

one is able to determine the load at which the structure buckled. The following is a series

of plot of Load vs Time, Displacement vs. Time, Load vs X-Displacement, and Load vs.

Y-Displacement. Table C-1 summarizes the results gathered from the plots (Figures C-1

to C-8).

Pcr (psi)
K (lbs/in) Riks Method Eigenvalue Extraction

10 3.685 3.6860
100 3.816 3.8203

100000 6.354 6.3559
Table C-.l: Solutions from RIKS Method for a Cylinder with 10 Stiffeners @LU2

The point at which the bifurcation point is reach, the solution path reaches a point of

discontinuity (a sharp bend). This point is the spot at which the structure buckles. As a

result of these tests , one can tell that the solution from the RIKS Method was very close

to the Eigenvalue solution with a .11 % difference. To see if it was case sensitive,

another case was tried with stiffeners at the third points. Again the results are represented

in graphical form in figures C-9 to C-16. Also, a table summary of the results depicted in

these graphs are shown in table C-2

Pcr (psi)
K (lbs/in) Riks Method Eigenvalue Extraction

100 3.756 3.7537
100000 4.452 4.4687

Table C-2: Solutions from RIKS Method for a Cylinder with 8 Stiffeners @1U3 & @21U3
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Finally, the results show that the RIKS Method agreed with the eigenvalue solution

within a .37% difference. Therefore, there were no significant nonlinear effects that

would affect the solution outcome, and the eigenvalue extraction is a sufficient method

for predicting the critical load.
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8
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Time ( *10* -1)

Figure C-l: Displacement vs. Time for Cylinder with 10 Stiffeners at L/2 with K=10 lbs/in
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2 3

Time (*10**-1)

Figure C-2: Load vs. Time for Cylinder with 10 Stiffeners at L/2 with K=10 lbs/in
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Displacement (in.)

0
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Figure C-3: Load vs X-Displacement for Cylinder with 10 Stiffeners at L/2 with K=10 Ibs/in
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(*10**-4)
Displacement (in.)

Figure C-4: Load vs Y-Displacement for Cylinder with 10 Stiffeners at L/2 with K=10 lbs/in
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Figure C-5: Displacement vs. Time for Cylinder with 10 Stiffeners at IJ2 with K=100 lbs/in
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10 L5

Time

Figure C-6: Load vs. Time for Cylinder with 10 Stiffeners at L/2 with K=100 lbs/in
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2
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Displacement (in.)

4 0
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Figure C-7: Load vs X-Displacement for Cylinder with 10 Stiffeners at I12 with K=100 lbs/in
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L2 10 8 -6 4 2 0

Displacement (in.)
(*10* -6)

Figure C-8: Load vs Y-Displacement for Cylinder with 10 Stiffeners at I/2 with K=100 lbs/in
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Figure C-9: Displacement vs. Time for Cylinder with 8 Stiffeners at UL/3 and 2U13 using Alternating
Stiffness Values (Variation 2) with Every Other Stiffness K=100 lbs/in
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5 10 15

Time
20
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Figure C-10: Load vs. Time for Cylinder with 8 Stiffeners at L/3 and 2L/3 using Alternating
Stiffness Values (Variation 2) with Every Other Stiffness K=100 lbs/in
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Figure C- 11: Load vs X-Displacement for Cylinder with 8 Stiffeners at IJ3 and 21/3 using
Alternating Stiffness Values (Variation 2) with Every Other Stiffness K=100 lbs/in
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-3
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I I

Figure C-12: Load vs Y-Displacement for Cylinder with 8 Stiffeners at I3 and 2L/3 using
Alternating Stiffness Values ( Variation 2) with Every Other Stiffness K=100 lbs/in
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Figure C-13: Displacement vs. Time for Cylinder with 8 Stiffeners at L/3 and 2L/3 using Alternating
Stiffness Values (Variation 2) with Every Other Stiffness K=100,000 lbs/in
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-2
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24
(*10**-2)

4 8

Time

Figure C-14: Load vs. Time for Cylinder with 8 Stiffeners at L/3 and 21/3 using Alternating
Stiffness Values (Variation 2) with Every Other Stiffness K=100,000 lbs/in
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Figure C-15: Load vs X-Displacement for Cylinder with 8 Stiffeners at L/3 and 2L/3 using
Alternating Stiffness Values (Variation 2) with Every Other Stiffness K=100,000 lbs/in
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Figur C- 6: Lod vsY-Dislaceent fr Cyinderwith8 Stifenes at113ad21 sn

Figure C-16: Load vs Y-Displacement for Cylinder with 8 Stiffeners at L/3 and 2L/3 using
Alternating Stiffness Values (Variation 2) with Every Other Stiffness K=100,000 lbs/in
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Appendix D: The Effects of Shell Thickness on the Critical Load

The bending stiffness of the shell plays a large role in determining the buckling load

of the cylindrical shell. This bending stiffness is a function of the shell thickness. The

thicker the shell, the stiffer the structure. Previous solutions given in this thesis have

shown that increasing the number of stiffeners around the perimeter of the shell provides

stability advantages. Although these radial stiffeners increased the critical load for rather

thin cylindrical shell, the stiffener effectiveness decreased as the shell thickness

increased. For example, take a cylinder with radial stiffener of a stiffness value K= 1000

lbs/in and vary the shell thickness. The result of performing a stability analysis on these

structures, results in stiffener effectiveness dropping off as shell thickness increases ( see

table D-1).

Thickness t (in) n
2
3

.125 4
5
6
2
3

.25 4
5
6
2
3

.5 4
5
6
2
3

1.44 4
5
6

T able D-1: Shell Thickness Comparison
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Pcr (psi) @K=1000 lbs/in
8 stiffeners @L/2

4.4672
7.4041
10.146
47.319
22.303
34.234
54.565

133.35
152.13
270.53
431.25

1561.2
3465.7
6358.9
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Therefore, for the constant stiffness value of the stiffeners given , a rather thick shell's

stability behavior will be dominated by the shell stiffness. For the thicker structures, the

stiffness value of the stiffeners will have to increase dramatically to be effective for thick

cylindrical shells.
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