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Abstract
This thesis proposes a control algorithm based on Jacobian Transpose Control for

coordinated position and force control of autonomous multilimbed mobile robotic
systems performing both mobility and manipulation. The technique is called Coordinated
Jacobian Transpose Control, or CJTC. CJTC has advantages over other techniques used
to control multilimbed mobile robots, including being computationally inexpensive and
providing a simple and unified interface with higher level planners. It can also control
functions other than positions and orientations of the system. A methodology called the
Extended Mobility Analysis is presented to choose a set of control variables that does not
overconstrain the system. The effectiveness of CJTC is demonstrated in laboratory
experiments on a climbing system.
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Nomenclature:

a = number of DOF of a system under full environmental constraints
b = number of uncontrolled DOF of a system under the current constraints
F = number of DOF of a system using Gruebler's mobility analysis
F = vector of desired forces
fl = number of slider or pin joints
f2 = number of roll-slide joints
fi = number of DOF of joint i
G(q) = gravity compensation vector
j = number of joints of a system
Ji = joint i

p = proportional gain matrix
= derivative gain matrix

1 = number of links of a system
mi = number of active joints in limb i
n = number of limbs
r = number of control variables in the control vector
s = total number of active joints
t = input vector of joint efforts
u = control vector
Mcmd = commanded position of the control vector
x,y,z = Cartesian coordinates
a,4,y = Cartesian orientations



1: Introduction

1.1: Purpose and Contributions

The purpose of this thesis is to develop a control technique that can control both

mobility and manipulation of a multilimbed mobile robot while being computationally

feasible for small on-board computers. Mobility refers to the locomotion of the robot,

whether through walking, climbing, sliding, or other forms of limbed locomotion, and

manipulation refers to the interaction forces exerted on a task and the manipulation of an

object in the environment. Here, an approach called Coordinated Jacobian Transpose

Control, or CJTC, is proposed for the control of multilimbed, multi-degree of freedom

mobile robotic systems. An extension of classical Jacobian Transpose Control, CJTC

uses the simplest form of impedance control and an extended Jacobian matrix to control

the entire system's forces and motions in a consistent and coordinated manner while being

computationally feasible for small on-board computers. The effectiveness of CJTC is

demonstrated in laboratory experiments on a three-limbed climbing system called the

Limbed Intelligent Basic Robotic Ascender, or LIBRA, shown schematically in Figure 1.

This system was designed and built by Dalila Argaez, and she first proposes the concept

of CJTC 1. This thesis develops her concept into a working control scheme and

demonstrates its effectiveness. This first chapter presents the motivation for studying

multilimbed mobile robots, and the need for new control algorithms to control

simultaneously their movements and interaction forces with the environment.



Fig. 1: A Schematic of the LIBRA climbing system

1.2: Motivation

The area of multilimbed mobile robots is an expanding field, with many important

applications. It is becoming increasingly clear that multilimbed mobile robots are going

to be important for performing tasks in areas that are either inaccessible to humans or

undesirable or unsafe for humans to work. Such applications include toxic waste

handling and work at nuclear sites 2, 3, 4, 5, 6, 7. Multilimbed mobile robots are virtually

the only feasible solution for planetary exploration 8, 9, 10. These tasks take place in

partially structured environments, where the general characteristics and layout of the

terrain and tasks are known, but the specific details are not. Most of these tasks require



the robot to interact with the environment -- taking measurements and manipulating

objects. Manipulation tasks may require carefully controlled forces to be applied. Often,

the manipulation tasks will have to be performed while also moving the robot. For

instance, a mechanical monkey might scurry into a toxic waste area and carefully take

some measurements. Another part of its task might be to then shut off a valve, and then

pick up a waste drum and carry it out. An example of a multilimbed robotics system is

shown schematically in Figure 2, with limbs that are capable of both mobility and

manipulation. As discussed in the next section, no multilimbed mobile robotic system in

existence today is capable of performing tasks requiring both mobility and manipulation

simultaneously, and that new control algorithms need to be developed to perform such

tasks.

aition

Fig. 2: A multilimbed mobile robot

TT · ~~+~1~~ rr r I·~~·L·~H
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1.3: Background

1.3.1: Existing Multilimbed Mobile Robots

Multilimbed mobile robots in existence today are a wonderfully diverse set of

machines, ranging from pogo-stick like hopping machines " to mouse-like miniature

walking machines 12 to massive walking vehicles 13. The types of mobility displayed by

these robots can be classified into two separate categories: dynamically and statically

stable. Dynamic movement relies on the dynamics of the system for mobility and

stability. Raibert's hopping machines 11 and Fukuda's brachiation machine 14 are

examples of this type of movement. While effective and potentially faster over smooth or

well-known terrain, these machines are generally not suitable for the rough, partially

structured terrains that would be found in the tasks described above. Statically stable

machines are more effective for these tasks, and are the focus of this thesis.

Statically stable movement refers to the notion that if the robot were to freeze at any

point in its movement, then it would not fall over. The number of robots that use this

type of movement is quite large. Dante and Ambler are two well-known walking

machines used to study potential systems for planetary exploration 15, 16. Planetary

exploration requires legged locomotion to handle the extreme terrains that are

encountered. The Adaptive Suspension Yehicle, or ASV, built at Ohio State University

as a proof-of-concept vehicle is a massive 5.8 m long six-legged walking vehicle 13, 17. It

has demonstrated the feasibility of walking as a viable form of locomotion on a large

scale. Many smaller hexapod walking machines have been built, including the Moscow

State Hexapod 18, the OSU Hexapod 19, and the CMU Hexapod 20, as well as some very

small hexapods such as Genghis and Atilla built by Brooks 12, 21. These have mainly

been used to research the control and planning issues involved in walking. Other forms

of walking machines have also been built, such as the NCTU Quadruped22. Hirose 23



built Titan III, a quadruped that is capable of both statically stable and dynamic walking.

Multilimbed mobile robotic systems used for climbing include the Portsmouth

Polytechnic Robug II, which uses vacuum grippers to climb walls 24. Neubauer 25 built a

6 legged climbing machine that uses friction to climb between two walls. Gradetsky et.

al. 26 discuss a climbing robot using vacuum grippers for actuation. Hirose 27 has also

built a climbing machine with vacuum grippers, capable of both statically stable and

dynamic walking. While these walking and climbing machines have demonstrated

substantial capabilities, none of these systems are capable of manipulation.

While mobility is certainly the first step in field robotic systems, manipulation must

also be addressed. Even the field robots such as Dante aren't capable of manipulation,

but rather are used simply to position sensors. The ability to collect ground samples,

move obstacles, and probe the environment would all enhance the utility of Dante as a

terrestrial exploration robot. One robot that is capable of both mobility and manipulation

is the Savannah River Nuclear Mobile Robot -- a hexapod robot with a manipulator

mounted on top 28. However, during manipulation tasks the base is usually stationary and

it is not capable of controlling both mobility and manipulation simultaneously. Despite

this significant drawback, it has been found to be useful enough to warrant a second

generation of the design. There are also a number of mobile robots that use tracks or

wheels for mobility rather than limbs have been built and used that are capable of

manipulation and have proven to be quite useful. HAZBOT, for instance, is used for

hazardous materials handling 7, and the Foster Miller Ferret has proven to be very

effective in explosives handling 29.

While the current designs of multilimbed mobile robots largely ignore manipulation or

treat manipulation separately from mobility, given the usefulness of other systems

capable of both mobility and manipulation, new multilimbed mobile robots are sure to be



developed that will be capable of simultaneous mobility and manipulation. In order to

control these future systems, new control schemes will need to be developed.

1.3.2: Control algorithms

Control algorithms that would allow the control of manipulation forces and motions

while simultaneously controlling the trajectory of the rest of the system have yet to be

developed for multilimbed mobile robots. The Savanahh River Nuclear Robot, a current

experimental multilimbed mobile robotic system capable of both mobility and

manipulation, treats mobility and manipulation separately -- performing only one or the

other at a time. It also does not control the forces exerted on the environment 28. In order

to increase the utility of robots, new control approaches must be developed to control

simultaneously the motions of such articulated multilimbed mobile robotic systems and

the forces that they exert on their environment or tasks. One way to develop new

approaches is to attempt to extend the current methods used for mobility to also include

manipulation, or to attempt to extend current methods used for manipulation to also

include mobility.

A significant amount of work has been done in the area of the control of walking

machines. A common form of control currently used is simple joint space position

control. However, this form of control cannot directly control the forces being applied to

the environment, and therefore isn't applicable for the control of forces during

manipulation. Joint space position control also produces rough, jerky motion of the body

of the robot in Cartesian space, and is difficult to adapt for rough terrain and changes in

the environment 30. A form of force control is therefore required.

A common form of control used that controls the forces being applied to the

environment is called coordinated walking. Coordinated walking is an inverse plant

controller, and like other forms of inverse plant controllers, coordinated walking is



computationally expensive, requires a detailed model of the system, and is sensitive to

modeling errors 31. One form of coordinated walking treats the legs as force servos and

resolves the desired motions and a force distribution algorithm into forces to be applied

by the legs 32, 33. This type of controller has demonstrated problems associated with

practical difficulties in getting the legs to act like high-performance force servos 30. Also,

the system performance is low because the bandwidth of the overall trajectory controller

must be substantially less than the bandwidth of the legs' controllers 31. Designing this

type of coordinated walking is difficult because of the sensitivity to modeling errors.

Without incorporating the often difficult to model actuator dynamics in the controller or

analysis, the control gains must be chosen by trial and error 31. Another form of

coordinated walking includes a simple model of the actuator dynamics in its model of the

system, and directly reflects the desired trajectory and limb forces to the limb actuators

31. While this controller offers several advantages, such as the ability to decouple the

system and linearize the control, it is also very computationally expensive. The ASV,

which uses this control scheme, has 16 dedicated processors for the control alone 13

Coordinated walking does not address the issue of manipulation. Although it might be

possible to extend coordinated walking to include manipulation, the computational

burden would be large. While this is acceptable on large systems such as the ASV that

can carry powerful computers, for small self-contained systems with small capability

processors, this would not be feasible. Also, the sensitivity to modeling errors would

pose a problem when manipulating an object in a partially known field environment

where a detailed model of the object is not available. Given the limitations of that this

controller would have, another approach for controlling mobility and manipulation is

desired.

Looking for another way to develop a control algorithm to control both mobility and

manipulation, control techniques that are currently used for manipulation are examined to

see if they could be extended to also control mobility. There are two primary forms of



force control used to control fixed base serial manipulators -- hybrid control and

impedance control. Khatib shows how generalized joint torques are reflected at the end-

effector for redundant manipulators, an important understanding for either form of force

control of redundant manipulators 34. Raibert and Craig propose a hybrid control scheme

to control manipulator motions to satisfy position and force constraints simultaneously,

and have demonstrated this approach through controlling the end-effector of a two link

fixed-based manipulator 35. Hybrid control can also be extended to systems other than

simple serial manipulators. For instance, Yoshikawa and Zheng extend hybrid

position/force control to multiple robot manipulators working in well-known

environments 36. However, hybrid control techniques require detailed knowledge of the

environment for effective force control, including a good estimate of the environmental

stiffness 37. Since such an estimate probably would not be available in a partially known

environment, hybrid control is not suitable for this research.

Impedance control is the other primary form of force control. Hogan introduced

impedance control, which controls a relationship between force and displacement, as a

unified method for controlling the force and the position of a manipulator's end-effector

38, 39. Hogan also asserts that it is possible to superimpose impedances, which is

necessary if multiple degrees of freedom are to be controlled. Schneider and Cannon use

Hogan's impedance control approach to arrive at an object impedance controller for

cooperative manipulation, which gives a straightforward interface for supervisory control

by directly controlling the object being manipulated 40, 41. Impedance control has

demonstrated good stability in contact transitions -- a quality than many other force

control schemes lack 42. It also does not require precise knowledge of the environment,

in contrast to hybrid control. Some simple forms of impedance control don't even require

a dynamic model of the system. Given these characteristics, impedance control is

promising as a possible controller for both mobility and manipulation.



Current control techniques that deal with mobility and manipulation are investigated

for possible methods to extend impedance control to control simultaneous mobility and

manipulation. A number of control algorithms have been developed for motion control

of manipulators mounted on simple vehicles, such as on spacecraft and trucks 43, 44

Hootsmans and Dubowsky use an extended Jacobian matrix to compensate for base

dynamics while using Jacobian Transpose Control to control a manipulator mounted on a

mobile base 45. However, these algorithms only look at manipulation while

compensating for base movements and do not actively control the base. Seraji, on the

other hand, proposes an extended Jacobian matrix to actively control the motions of a

system composed of a manipulator mounted on a track or otherwise mobile base through

inverse Jacobian control 46, 47. His control algorithm was demonstrated experimentally

on a 7 DOF robot arm mounted on a motorized track 48. The use of an extended Jacobian

matrix might allow impedance control to control both mobility and manipulation.

While there currently is no control algorithm reported in the literature that controls

both the mobility and manipulation of a multilimbed mobile robot, several promising

avenues exist. As discussed before, coordinated walking could be extendible to control

manipulation, but would probably be too computationally expensive for this problem.

Impedance control, currently used for manipulation with serial arms, is promising for

both the ability to control the position of the end-effector while it is free and the forces it

exerts while constrained, and for stability during contact transition. The use of an

extended Jacobian matrix, similar to Seraji 46, 47 or Hootsmans 45 might enable

impedance control to control multiple points on a robot in order to control both

manipulation and mobility, and this is the approach pursued in this research.



1.4: Assumptions

The need for developing a new control algorithm that controls both mobility and

manipulation has been discussed, but the exact problem domain remains to be defined.

The range of systems and tasks that could be covered by the terms 'multilimbed mobile

robot' is too large to be covered by any single control scheme, and specific assumptions

need to be made to limit that range. Assumptions are made about the nature and

requirements of the environments and tasks, the computational capability and the

kinematics of the class of robots to be controlled.

It is assumed that the robot is operating in a partially known environment. This

implies that the general nature of the environment is known, and perhaps even the general

layout of the environment and task, but the precision to which these things are known

beforehand is not great, perhaps to within 5% or 10% of the limb span of the robot. The

order of magnitude of the environmental stiffness might be known, and an approximate

mass of an object to be manipulated, but detailed models will not be available. This

assumption is representative of robots working in field environments, and prevents the

use of control schemes that require good knowledge of the environment, such as hybrid

control. It also prevents the use of control schemes that require a detailed dynamic model

of the task and environment.

It is assumed that the task will require the forces being applied to the task to be

controlled, but not to great precision. This assumption is made to allow a control scheme

without force feedback. It is also assumed that for all tasks, all degrees of freedom of the

system under the full kinematic constraints imposed by the environment must be

controlled. This is generally required for acceptable system performance 49.

It is assumed that the computational capability will be from a single processor of

medium capability -- approximately the capability of an Intel 80386 processor or a



Motorola 68020. This represents an accessible amount of processing capability for

almost any size except for very small systems.

These assumptions are not suitable for every multilimbed mobile robotic system, and

limit the applicability of the control scheme developed in this thesis. Also, many of these

assumptions are qualitative, and are meant as guidelines. As technology changes and

additional sensors, actuators, and computational capability become readily available,

many of the assumptions made may be relaxed. For instance, if much more processing

capability is readily available, then it might be desirable to develop other control

techniques that take advantage of that fact and subsequently give better performance.

The following is a description of the kinematics of the class of robots to be treated in

this thesis. Figure 3 shows an n-limbed mobile robotic system representative of the class

of robots dealt with herein. The system contains one main body with the n limbs attached

and a base, which represents the ground. Some of the limbs position the main body with

respect to ground for mobility purposes, while the remaining limbs may perform

manipulation tasks or be free. It is assumed that the ith limb is a ji joint serial chain where

mi of the joints are active and (ji-mi) joints are passive. Among the (ji-mi) passive joints,

some are passive due to the physical contact of the limb with the ground or a manipulated

object; the others are mechanical non-actuated joints. The total number of active joints

for the system is given by:

s= 1mi. (1)

The kinematic variables qi of the s active joints form a set that is referred to as the joint

vector g. The effort variables of the system's actuators, a torque for a revolute joint or a

force for a prismatic joint, are the inputs to the system; they form the s by 1 input vector

:. It is assumed that the actuators are backdrivable.



Active Joints

Fig. 3: A representative multilimbed mobile robot
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2: Control Scheme Development

Looking at existing control techniques and given the assumptions made, a form of

impedance control is chosen to be extended to control both mobility and manipulation for

the following reasons. Given the need to actively control forces, either impedance

control or hybrid control could be used. Given the assumption of partially known

environments, hybrid control would have been difficult to implement. Impedance control

does not require exact knowledge of the environment. Given the restriction on

computational capability, the simplest form of impedance control, Jacobian Transpose

Control 37??? is used. This control does not require the use of force sensors for feedback,

which might be advantageous for some systems. Controlling forces without force

feedback is only possible with the use of backdrivable actuators, which is assumed in the

previous section.

2.1: Jacobian Transpose Control

Since Coordinated Jacobian Transpose Control is based on Jacobian Transpose

Control, this section first gives the derivation for classical Jacobian Transpose Control

(JTC). A complete analysis of Jacobian Transpose Control, including a Lyapunov

stability analysis, can be found in 37. Conceptually, Jacobian Transpose Control is

proportional-derivative control of the position of the end-effector (x) of a serial

manipulator in Cartesian space. JTC controls the dynamic relationship between force and

position, or the mechanical impedance of the end-effector. The end-effector is pulled

towards the commanded end-effector position by a set of virtual springs and dampers.

After calculating the vector of desired forces (E) from these virtual springs and dampers,

JTC directly transforms them into desired efforts at the actuators (:) through the

transpose of the Jacobian matrix J. A block diagram of the controller is shown in Figure



4. Figure 5 shows this concept applied to a simple two link serial manipulator, where the

end-effector Cartesian x and y positions are controlled.

Acmd

kmd

x

Fig. 4: Block Diagram of Jacobian Transpose Control

Uxcmd

:tor

Fig. 5: 2-link manipulator controlled through JTC

As with other impedance control approaches, when the end-effector is constrained in a

direction, a force is applied in that direction, and when the end-effector is unconstrained

in a direction, a motion results. A compliant constraint results in both a force and

displacement. Impedance control eliminates the need for switching between control

structures to control both the position when unconstrained and force when constrained.

This allows simple, intuitive control of the system. Jacobian Transpose Control is also

robust to parametric uncertainty both in the manipulator itself and in the environment,

and does not require a mass model of the manipulator. Although both position and force

q



control with Jacobian Transpose Control is not as high performance as some other control

schemes, it is quite acceptable and demonstrates good contact stability.

2.1.1: Derivation of Jacobian Transpose Control

The vector of Cartesian coordinates x of the end-effector is defined as:

x

y
z

x = 1 (2)

Y

or a subset thereof, depending on the degrees of freedom the manipulator has.

The desired force vector F is defined to be:

F = K, -[xd - x] + Kd " ['.d - ] (3)

The gain matrices Kp and Kd determine the response of the system, and are chosen to

satisfy the controller design requirements. The gain matrices are generally chosen to be

diagonal, but can be non-diagonal if coupling between end-effector Cartesian coordinates

is desired.

The Jacobian is defined as the transformation between joint space velocities and

Cartesian velocities:

ax ax
aq, a q

_07 .. aq,-

(4)

The end-effector velocities are given by:

8u = J(q) - q (5)



Applying the principle of virtual work, which relates infinitesimally small amounts of

work performed in control space to infinitesimally small amounts of work performed in

joint space, the following basic equation is derived:

t = (q). F (6)

Using the principle of control partitioning 50, a term can be added to compensate for

the gravity forces acting on the robot; G(q). The torque command then becomes:

S= JT (q) F + G(q) (7)

Combining (3) and (7), the control algorithm becomes:

= jT(q) (K, -[x - X] + Kd.[~md -k])+ G(q) (8)

2.2: Coordinated Jacobian Transpose Control

Coordinated Jacobian Transpose Control extends Jacobian Transpose Control, given in

the last section, by using an extended control vector and an extended Jacobian matrix.

Rather than just controlling the vector of end-effector positions x, CJTC controls the

positions and orientations of multiple points on the system, plus other differential

functions of the joints vector q. The possible positions and other functions to be

controlled are the control variables of the system, and the vector of the control variables

chosen to be controlled through CJTC is the control vector u. The control vector can be

given as:

[(q)

u= oX(q) (9)

where:

x(g) = position of a point on the system

Q(_) = orientations of points on the system, and

Iq() = other functions of the joint vector, such as the potential energy

The control vector is chosen based on what is desirable and possible to control, and

Section 3 describes a method for choosing an admissible control vector.



Conceptually, Coordinated Jacobian Transpose Control is proportional-derivative

control in control space. Each element of the control vector is forced to move towards its

corresponding element of a desired or commanded control vector (Icmd) by a set of

virtual springs and dampers in the classical Jacobian Transpose Control approach. Figure

6 shows a multilimbed mobile robot under CJTC with the virtual spring-dampers applied

to the control vector.

) cm

Fig. 6: Multilimbed Mobile Robotic system controlled through CJTC.

2.2.1: Derivation of Coordinated Jacobian Transpose Control

The derivation for CJTC closely follows that of Jacobian Transpose Control, and some

of the same equations will be referenced. A block diagram of the control scheme is given

in Figure 7. The additional block for sensors is required if one or more of the control

variables are functions of other variables in addition to the joint vector q. In this case,

sensors are required that can measure these other variables.



-mcmd

Aýcmd

Sensors

Fig. 7: Block Diagram of CJTC

The (rx1) desired force vector E is defined to be:

F= K, -[umd - u] + Kd -[ •md - u ] (10)

where r is the number of control variables in the control vector

Again, the gain matrices Kp and Kd are generally chosen to be diagonal, and are chosen

to satisfy the controller design requirements. Each element of the force vector (F) results

in an acceleration of the system if the corresponding element of the control vector (u) is

unconstrained or in a force applied to the environment if the corresponding element of the

control vector is constrained.

The extended Jacobian is defined as the transformation between joint space velocities

and control space velocities:

au 1  au1
aqq ....... aq,

aur aur

aqý" aq.Bu._. Bu...z
•qu 3u

ax, ax,

d-II aq.
d ....... qs

The Jacobian is r by s, where r 5 s is the number of control variables and s is the total

number of active joints. The Jacobian does not need to be square, and some redundancies

(11)
J(q) =



can be left uncontrolled if they are not important for the system performance. Combining

(7), (10) and (11), the control algorithm becomes:

T = J (q) -(K -[ucmd - u] + K, -[md - u_) + G(q) (12)

Coordinated Jacobian Transpose Control for multilimbed systems has the same

advantages that Jacobian Transpose Control offers for serial manipulators. Namely, only

the forward kinematics and their derivatives are required, implying a relatively small

number of computations. No inertial model of the robot is required. Also, the Jacobian

matrix can be rectangular, which is of great importance for redundant systems. CJTC is

also robust to parametric uncertainties in both the robot itself and in the environment.

Finally, this control scheme provides an intuitively simple interface for controlling end-

point positions and forces of a multilimbed system. By moving the commanded

endpoints through space or into an object, the limb moves or pushes accordingly. By

controlling all the control variables in this fashion, straightforward integration is achieved

with higher level planning algorithms.

However, CJTC does not compensate for the changing dynamics of the system, and as

a result the performance is configuration dependent. The extent of the configuration

dependence is a function of the mass distribution of the robot. When selecting the gain

matrices, the controller must be designed for the worst-case configuration 51. If the

dynamic response varies dramatically, then performance will be sacrificed significantly

over the majority of the workspace. If this is the case, gain scheduling or other forms of

adaptation might be required. Also, no attempt is made to decouple the system, and

significant coupling between control variables can occur. This can be compensated for

by using a non-diagonal gain matrix, but the degree of coupling is configuration

dependent and adaptive control or gains scheduling might be required. Despite these

characteristics, it will be demonstrated that the control system performance is quite

acceptable for the LIBRA climbing robot.



3: Control Vector Selection

The control algorithm derived in the previous section operates on the control vector u,.

and the method for choosing the control vector is presented in this section. The control

vector is chosen by the designer, based on the task and the environmental constraints.

CJTC allows considerable freedom in choosing the control vector, and this allows the

designer to directly control the control variables of interest. The points made in this

section are based on general control theory, but are tailored specifically for the CJTC,

with all the assumptions and restrictions given in Section 1.4.

3.1: Control Variables

Any differentiable mathematical function of g with non-zero first partial derivatives

with respect to q that describes a physical property of the system is defined to be a

control variable. For instance, the Cartesian coordinates x, y and z of a point on the

system are functions of q and are three possible control variables. The Cartesian

orientations a, 13, and y of a point on the system are also possible control variables. The

most basic control variables are the joint displacements. More abstract control variables

might include the system's potential energy or a static stability function to prevent the

robot from tipping over. For any given system, there are an infinite number of possible

control variables. Of these possible control variables, an admissible set must be chosen

to control. A methodology called the Extended Mobility Analysis for choosing an

admissible set of control variables is described below. The set of chosen control

variables is called the control vector u. The space of control vectors corresponding to all

possible configurations of the system is called the control space.



In order to reflect the control errors to the actuators through the Jacobian matrix, the

control variables must be written in terms of the joint vector _q. In order to do so, the

control variables will generally be written using the assumed environmental constraints

both implicitly and explicitly. Since the control variables are functions of the joint vector

g, joint position sensors are needed for joint vector feedback. If the control variables are

also functions of other variables, then sensors that can measure those variables are also

required. Additional sensors might be required to obtain the initial position, to check the

position during the movement and correct for errors caused by unexpected slipping, but

are not required by the control scheme.

3.2: Control Vector Selection

Choosing the control vector n is not trivial. While the joint vector g is imposed on the

system by the mechanical design, the control vector u is chosen by the designer. The

designer must choose an admissible set from the infinite number of possible control

variables, based on the tasks a specific system must perform, the environmental

constraints placed on the system, and desirable performance characteristics. Since the

range of possible control variables is so diverse, it is often possible to directly control the

points or functions of interest. For instance, if visual feedback from a camera mounted

on the robot is important, then good choices for control variables would be the positions

and orientations of the camera. If the location of the center of mass of the body is more

important, then it is possible to directly control that as well. As stated in the problem

definition, all the degrees of freedom of a system under the full kinematic constraints

imposed by the environment must be controlled. The environmental interaction forces or

other control variables do not have to be controlled, but it often is desirable to do so.



It is important to note that the control vector will change during a robot's mission,

based on the changing constraints and desired tasks that the robot will perform. For

mobility, it is necessary to lift and maneuver a foot at certain times in the gait, and use

that foot to support the body at others. So, for the different tasks and constraints,

different control vectors must be chosen. Given the constraints that the system will be

subject to, an Extended Mobility Analysis can be performed to determine admissible

control vectors.

For the s active joints of the system, s control variables are possible to control. At the

lowest level, the s individual active joint positions can be controlled. However, it is not

necessary to control all s possible control variables. Sometimes, after choosing a number

of important control variables to control, the only control variables admissible to

complete the control vector are unimportant for the system. In such cases, it might be

wise not to waste the computing resources needed to control these unimportant control

variables. When deciding whether to control these unimportant control variables, the

designer should consider just how important the control variables are to the system, and

how much computing capability is available.

3.2.1: Gruebler's Mobility Analysis

A brief summary of Gruebler's Mobility analysis is given here for review, since it is

heavily relied upon in the Extended Mobility Analysis. In this thesis, the term 'mobility

analysis' refers to Gruebler's Mobility Analysis. This review is not complete, and a more

complete description of Gruebler's Mobility Analysis is given in 52.

An unconstrained rigid body in spatial motion has six degrees of freedom, the x, y, z

translations and the a, J3 and y rotations. A mechanism constructed of I rigid links will



have 6-1 degrees of freedom before they are connected to form a system of links. The

connections constrain the system and result in losses of degrees of freedom of the system.

Different forms of connectors constrain various numbers of degrees of freedom. A pin

joint, one type of lower-pair connector, constrains the three translational degrees of

freedom and permits only rotation in one direction. For instance, a link connected to

ground through a pin joint has but one degree of freedom, and therefore lost five of the

six degrees of freedom it had when unconstrained. A slider joint, another type of lower-

pair connector, also constrains five degrees of freedom, as it only allows movement in

one translational direction. Another type of constraint is referred to as the roll-slide

contact. Two bodies are in contact, but can translate across each others' surfaces and also

rotate with respect to each other. Only one degree of freedom -- translation in the normal

direction to the surfaces -- is constrained.

Gruebler's equation is now given as:

F = 6.(1-j-1) + Jfi (13)

where:
F = the number of degrees of freedom of the system
1 = the number of links, including the ground
j = the number of joints, including ground contacts

fi = the number of degrees of freedom allowed by joint i

In planar motion, there are only three degrees of freedom -- the x and y translations and

the single rotation 0. Gruebler's equation in planar motion is given as:

F = 3.(1-1) - 2.fl - f2  (14)

where:

fl = the number of slider or pin joints

f2 = the number of roll-slide contacts



Figure 8, adapted from Sandor and Erdman 53, gives some common planar kinematic

joints and their appropriate degrees of freedom.

Diagram Characteristic Variables

Pin (revolute)

Slider (prismatic)

Rolling Contact

Roll-Slide Contact

Spring

1=2
f= 1

f2=0
fi = 1

1

2
ZZ 777117777

12

2

1

1=2
fl= 1

f2=0
fi = 1

degree of freedom

degree of freedom

1=2
fl=1

f2=0
fi = 1 degree of freedom

1=2
fl =0
f2= 1
fi = 2 degrees of freedom

1=2
fl=0
f2=0
fi = 3 degrees of freedom

Fig. 8: Common Planar Constraints

Joint

2 
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3.2.2: Extended Mobility Analysis

The Extended Mobility Analysis is based on Gruebler's mobility analysis. It addresses

which sets of control variables can be controlled for a system subject to a given set of

environmental constraints. It also insures that the control variables chosen are

independent, and that the system does not become overconstrained. The basic procedure

is to repeatedly perform Gruebler's mobility analysis, adding constraints for the control

variables chosen and relaxing environmental constraints to test if an interaction force or

moment can be controlled. A flow graph of the Extended Mobility Analysis is given in

Figures 9 and 10. The nomenclature used is:

a = number of DOF of the system under the full environmental constraints

b = number of uncontrolled DOF

r = number of control variables selected

s = number of active joints

The first stage of the Extended Mobility Analysis, shown in Figure 9, deals with

choosing control variables to control the available degrees of freedom under the full

environmental constraints. Performing a mobility analysis on a multilimbed mobile robot

under the full constraints of the environment will yield (a) degrees of freedom (b=a). It is

assumed all of these degrees of freedom must be controlled for acceptable system

performance. If there are less active joints than degrees of freedom (s<a), then the system

is under actuated and cannot be controlled using this control scheme. To test if a control

variable is admissible, a constraint must be placed on it and another mobility analysis run.

If the mobility analysis yields the loss of one degree of freedom (b=b- 1), then the control

variable does not overconstrain the system and is admissible. If the mobility analysis

does not yield the loss of one degree of freedom (b=b), then the control variable cannot

be controlled because it is already constrained by the given environmental constraints or

the constraints from the previous control variables chosen. If it is highly desirable to

control that control variable, then it is still possible to do so either by choosing it later in

31



the analysis as a controlled environmental interaction force, if an environmental

constraint is constraining it, or by eliminating one or more previously selected control

variables, if the control variable constraints are constraining it. If the control variable is

inadmissible and it is not highly desirable to control it, then the constraint is removed and

another control variable tested. After (a) admissible control variables are chosen and

constrained, then the system shouldn't have any degrees of freedom (b--O). If it does,

then the set of a control variables chosen are not independent of each other and cannot be

controlled simultaneously. If the number of active joints is greater than the number of

degrees of freedom (s>a), then it is possible to control a number (s-a) of interaction forces

with the environment, internal forces, or other control variables. The second stage of the

Extended Mobility Analysis must then be performed.



Mobility Analysis
a DOF, b=a, r--O

Yes

Acceptable control
variable : r = r+1

Interaction Force
Control Selection

Fig. 9: Stage One of the Extended Mobility Analysis



The second stage of the Extended Mobility Analysis, shown in Figure 10, deals with

controlling environmental interaction forces and internal forces. At the start of the

second stage, all degrees of freedom of the system are controlled, and b=O. To test if a

desired interaction or internal force or moment is controllable, a control variable is

chosen as the desired interaction force with the environment or internal force, and the

environmental position constraint or internal displacement constraint on that control

variable is relaxed. With all the other control variables constrained, the system should

then have one additional degree of freedom (b=b+1). If so, then that force or moment is

controllable. To mark that the force or moment is controlled, replace the corresponding

constraint with a spring. Note that a spring does not act as a link or constraint for

purposes of a mobility analysis and it is merely there to indicate visually that the

corresponding interaction force is being controlled. If the system does not have an

additional degree of freedom (b=b), then that interaction or internal force is not

controllable, perhaps due to the other control variables chosen or because the mechanism

cannot apply forces in that direction. In this case, restore the original constraint. If there

are still more actuators than control variables chosen (s>r), then additional control

variables can be controlled, if desired.



Desirable to control
additional force?

Choose interaction or
internal force to control

Force unacceptable,
restore corresponding
constraint

Interaction or internal
force controllable : r--r+1

Fig. 10: Stage two of the Extended Mobility Analysis

Replace corresponding
constraint with spring



It is possible that all controllable environmental interaction forces are controlled before

r=s, and the only additional control variables that can be controlled are the internal forces.

Such a system is shown in Figure 11. The system has zero degrees of freedom with all

environmental constraints in place. After relaxing an environmental constraint in the x

direction, the system has one degree of freedom, and therefore the environmental

interaction force can be controlled. However, r = 1, s = 2, therefore r<s, so an additional

control variable can be selected. Relaxing an internal constraint on prismatic actuator 2

yields an additional degree of freedom, and thus an internal force can be controlled as

well as the environmental interaction force, as shown in Figure 12. However, this force

might not be important and the designer might very well elect not to control it and save

on computational resources.

Prismatic Actuator 1

Fig. 11: Over actuated system

Displacement Constraint

Fig. 12: Over actuated system with environmental and internal constraints relaxed



In some instances, the environment might actually be a spring. While all environments

have some compliance, often they are rigid enough to be treated as rigid bodies. If the

deflection of the environment under expected loads is small, under 10% of the limb span

of the robot, then it can be treated as rigid. In those instances where the environment is

too compliant to be treated as rigid, the designer may treat the environment as a spring.

Remember that a spring is a joint with six degrees of freedom in a mobility analysis.

This prevents the use of CJTC for walking solely on loose springs: the mobility analysis

will always yield an under actuated system. CJTC also cannot be used to control free-

floating spacecraft, as the mobility analysis will yield an under actuated system. If a

control variable is chosen as the positions or orientations of the contact with the

compliant environment, the designer has two options: treat it as no constraint, or treat it

as a rigid constraint. If the first option is chosen, treating the spring as no constraint at

all, then disturbance forces introduced by the environment will cause position and

velocity errors in the movement of the control variables. If the environment is treated as

rigid, then the control variable will move into the environment due to its compliance,

reducing the effective force. The equilibrium position reached by the control variable is

given in 37 as:

x = (Kp + K,)C.(Kp., d + K .x,) (15)

where xe is the undeformed position of the environment.

From this equation and the force equation (3), the equilibrium force that will be reached

is given as:

F = Kp.(Kp + KC)K.(K,-(X=d - xC) (16)

However, by moving the end of the virtual spring deeper still, the desired force can still

be achieved.



The Extended Mobility Analysis is limited in use to simple control variables, such as

positions and forces of various locations on the robotic system. More abstract functions

are difficult to deal with, because it is not obvious what a constraint on the potential

energy would look like or how to perform a mobility analysis with such a constraint in

place. However, a simple test to insure that the selected set of control variables is

acceptable is that the Jacobian matrix must be of rank = r. If not, then the system is

overconstrained and the control variables cannot be simultaneously controlled using

CJTC. When dealing with abstract functions, it might be easier to apply this test after

selecting each control variable.

Obviously, the procedure does not have to be rigidly followed for simple or intuitively

obvious cases. Often, it is possible to choose simultaneously control variables for all the

degrees of freedom of the system subject to the full environmental constraints. Testing

the choice by constraining the control variables and performing another mobility analysis

is advised, however. The methodology is applied to the LIBRA climbing system in

section 4.3.

Care must be taken to test for the singularities of the control vector. In general, the

control vector will have singularities caused both by kinematic constraints and by

environmental constraints, if interaction forces are being controlled. For instance, in

specific configurations it might not be possible to control an interaction force chosen,

even though it is possible in general. A simple method for testing for singularities is to

test for configurations where the rank of the Jacobian matrix is reduced by one or more.



4: ADDlication of CJTC to a laboratory climbing robot

CJTC was applied to an experimental laboratory climbing machine, called the Limbed

Intelligent Basic Robotic Ascender, or LIBRA 1. As shown in Figure 13, it is a planar

three limbed system is designed to climb between two ladders, with the eventual goal of

climbing between two solid walls using friction to support its weight.

Joint 1\.

Joint 2

1
Limb 1

Joint 4

Joint 3

I '
Limb 2

Body

/
Joint 5

Joint 6
/

Limb 3

Fig. 13: The LIBRA climbing system

4.1: System description

A block diagram of the experimental setup is shown in Figure 14. It consists of the

mechanical LIBRA climbing machine, the power amplifiers, and the control computers.

Each part of the system is described in the following sections.



Code

LIBRA
Fig. 14: LIBRA system block diagram

4.1.1: Climbing Machine

The mechanical configuration of the LIBRA is shown in Figure 15. It consists of a

main body with three limbs (legs), each with two links and two actuated joints. The

angles 01 through 06 are the joint angles of the actuated joints. The angles 02 and 03 are

measured with respect to the line passing through joint 2 and joint 3. The angle 05 is

measured with respect to the normal of this line passing through joint five. All angles are

measured in a counterclockwise direction. The angle 0 is a reference angle between the

inertial coordinate frame and limb 1. The angle 0 is not measured directly, but is

calculated using the constraint equation for the y location of limb 2.

I

00 Hz control cycle

Positions

ncoder Signals

Joint Encoders
Inclinometer



/7
Limb 2

04

'X Body

INERTIAL
COORDINATE
FRAMIE Limb 3

06

Fig. 15: A Schematic of the LIBRA

The joint vector, consisting of the angles 0 of the actuated joints, is defined as:

q = 101,02,03=45,e,06 T

The actuated joints are driven by Escap 23DT12 -216E electric motors with a 792:1

gear ratio transmission. The large gear ratio was required to produce relatively large

torques using small motors. The large gear ratio has several drawbacks, including large

transmission friction, poor back-drivability, and significant backlash in the output shaft of

two degrees. The motor and gearhead specifications are 54:

Torque Constant = 23.3 mNm/A
Back EMF Constant = 0.0024 V/rpm
No-Load Current = 20 mA
Maximum Continuous Current = 0.9 A
Armature Resistance (Rm) = 9.7 Ui
Armature Inductance (Lm) = 0.8 mH
Maximum Dynamic Torque = 4.5 Nm @ 20 rpm
Maximum Static Torque = 20 Nm @ 0 rpm
Gearhead Efficiency (11) = 0.55
Max. input speed = 3000 rpm
Max. Backlash = 20



The ranges of the joint angles are limited by the mounting hardware off the actuators.

The joint limits are given as:
Joint 1 = ± 117"

Joint 2 = + 132", -69"

Joint 3 = + 1320, -69"

Joint 4 = ± 1170
Joint 5 = ± 110"

Joint 6 = ± 117"

The on-board sensors consist of encoders measuring the joint angles and a pendulum-

based inclinometer used to measure the angle of the center body (OB). The inclinometer

is necessary to obtain the initial orientation, and it is also used to confirm the position of

the system as it climbs. The encoders on the motor have a resolution of 2000 counts per

revolution of the motor shaft, after utilizing quadrature decoding to enhance the

resolution. The gearhead increases this to 1,584,000 counts per revolution of the output

shaft. However, the accuracy of the encoder is still limited by the backlash in the output

shaft. The inclinometer has a resolution of 0.35 degrees, but stiction limits its sensing

accuracy to ± 1 degree. A force sensor was mounted on a ladder step to measure the

horizontal force applied by foot 2, but the sensor was only used for collecting data and

did not provide feedback to the control loop.

The LIBRA has a limb span of 0.7 meters, and weighs 8 kg. Rubber model airplane

wheels 8.3 cm in diameter are used as the end-effectors. Several advantages to using the

compliant wheels are: limited impact force, good contact stability, easy seating of the

wheels in the steps, and simplicity of building. Hooks are being considered to allow

climbing on one ladder and a variety of other climbing gaits. Details of the construction

of the LIBRA can be found in 1. Modifications performed on the LIBRA not documented

in Argaez 1 are minor: some material was removed from the components to reduce

weight, and the motor shaft clamps were rebuilt using a friction clamp design, rather than

a set screw.



The ladders that are climbed by the LIBRA are constructed of angle iron, providing

adjustable step height and L shaped steps. The configuration used for the LIBRA

experiments discussed in this thesis are a ladder separation of 0.18 m, and a uniform step

height of 0.134 m.

4.1.2: Power Amplifiers

The power amplifiers are voltage to current amplifiers, acting as variable current

sources. Their schematics and other details can be found in Appendix B. The amplifier-

motor system has a time constant of 1.52 microseconds, resulting in a bandwidth of 656

Hz. Since this far exceeds the bandwidth of the controller, we can treat the amplifier-

motor systems as torque servos. However, this does not include the damping resulting

from the large friction found in the gearheads. This will result in additional damping

added to the system.

4.1.3: Control Computers

A VME bus computer system running VxWorks is used to control the LIBRA. A Sun

3/80 workstation is used to program, debug, and compile the control code, and for data

storage. The compiled control software is then downloaded to run on a 68020, 12.5 MHz

processor. The control cycle closes at a rate of 300 Hz. A multi-axis control board

mounted on the VME bus, called the Erogrammable Multi Axis Controller (PMAC) 55, is

used to decode and count the encoder signals and as D/A converters to output the control

signals. The PMAC was able to perform these tasks at a rate of 1000 Hz.

Work is currently being done to implement the control software on a custom-made

computer board designed to mount on the LIBRA itself. The board consists of 6 motor

control chips and one 8031 processor. This board is representative of the computing

capability available for many small robots.



4.2: Climbing Gait

The LIBRA is designed to climb between two ladders. Currently only one climbing

gait is used. It is a four stage gait, shown in Figure 16. Stage one starts with a pushup

maneuver to get its body level with the next set of rungs, and then places its third foot on

the right hand ladder. In stage two, the LIBRA lifts the second foot off of the rung and

lets foot 3 support the body. Foot 2 then lifts up one rung, and transfers back to the

support of the body at the start of stage three. Foot 3 then swings over to the left hand

rung. In stage four, foot 1 lifts up one rung. The cycle then repeats itself, continuing the

climb.

Stage 1 : Foot 3 swings to right step Stage 2 : Foot 2 lifts one step

Stage 3 : Foot 3 swings to left step Stage 4 : Foot 1 lifts one step

Fig. 16: Climbing Gait used by the LIBRA



4.3: Control Vector Selection

As can be seen from the above description of the climbing gait, in stages one and three

it is desirable for the task of climbing to control the x, y, and theta positions of the center

body and the x and y positions of foot 3. A detailed Extended Mobility Analysis is

performed to test if this is an acceptable set of control variables. A Gruebler's mobility

analysis performed on the LIBRA system with pin joints at two of the feet as shown in

Figure 17 reveals that the system has five DOF (F=a=b=5).

1=8
fl=8

f2=0
F=a=5
b=5

Fig. 17: LIBRA under full environmental constraints

Constraining the x position (placing a vertical slider on the center body as shown in

Figure 18) and performing another mobility analysis gives only four DOF (b=4), so the x

position of the center body is an acceptable control variable.



1=9
f, = 10

f2 = 0
F=b=4

Fig. 18: Constraining x of the Center Body

Adding a constraint on the y position of the center body also results in the loss of a

degree of freedom, as shown in Figure 19 (b=3).

1=8
fl =9
f2= 0
F=b=3

Fig. 19: Constraining x,y of the Center Body

Immobilizing the center body by adding a 0 constraint also reduces the degrees of

freedom (b=2).



1=7
fl= 8
f2=0
F=b=2

Fig. 20: Constraining x,y,0 of the Center Body

It is obvious that constraining the x and y of the free foot will completely constrain the

system, as shown in Figure 21.

1=7
fl=9
f2=0
F=b=O

Fig. 21: Constraining x,y of Foot 3



So, after constraining the x, y, and theta of the center body, and the x and y of foot 3,

the system has no degrees of freedom (b=O, r=5). This concludes stage one of the

Extended Mobility Analysis.

There are six actuators and only five control variables so far (r = 5, s = 6, so r<s). This

implies that an environmental interaction force or internal force can be controlled, and so

we go on to the second stage of the Extended Mobility Analysis. For climbing between

walls using friction to support its weight, as is the ultimate goal of the LIBRA, it is

desirable to control the horizontal force being applied at the wall by the second foot.

Relaxing the x constraint on foot 2 as shown in Figure 22, the system has one degree of

freedom, and therefore the x force of foot 2 can be controlled.

1=8
fl = 10
f2= O
F=b=l

Fig. 22: Relaxing the x environmental constraint

The system now has six actuators and six control variables. The control vector U looks

like:

ul = [xb,yb,Ob,x 2 ,X3,y 3]T

0////



The LIBRA system with virtual spring-dampers attached to control vector one is

shown in Figure 23. The virtual spring-damper attached to foot 2 is used to control the

force being applied to the ladder in the x direction.

Fig. 23: LIBRA with control vector 1

For the different stages in climbing, different control vectors need to be used. This is

because of the different tasks that the system needs to perform. Control vector one is

used during stages one and three. During stage two, foot 3 is used to support the body,

and foot 2 is lifted and controlled in free space. Control vector two is then used, as given

by:

U2 [XbYbb,x 2 ,Y 2, X3 ]T

2



The LIBRA with virtual spring-dampers attached to control vector two is shown in

Figure 24.

Xbody
N.X

INERTIAL
COORDINATE
FRAME

Foot 3

Fig. 24: LIBRA with control vector 2

Stage four requires foot 3 to support the body, and foot 1 is lifted and moved in free

space. The LIBRA then uses control vector three:

u3 = [x1,yl,xbyb,0bX2] T

The LIBRA with spring-dampers attached to control vector three is shown in Figure

25. Extended Mobility Analyses can be performed on control vectors two and three to

verify that the control vectors are valid. From symmetry, however, it is obvious that they

are.

Y

3
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Ybody

Xbody
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Fig. 25: LIBRA with control vector 3

4.4: Control equations

The control equations in this section are only derived for control vector one. Similar

analysis will lead to the control equations for the other two control vectors. The six

control variables chosen for control vector one are:

1I = [xb,Yb,0b,X2,X3,Y3]T

The Jacobian matrix, as given by equation (11), is derived in Appendix A for control

vector one. To write the Jacobian explicitly in terms of the joint vector q, the position

constraint on the y direction of foot 2 is solved algebraically and substituted into the

Jacobian.



J(q) =

ax, ax,
ae. ae6

aYb ayb
ae ae06

aeb aeb
ae, a06

ax 2  ax2

ae, a06

ax3  ax3

Say3  ay3
ael a06

(17)

Since the x2 variable is constrained by the ladder, the force of the foot in the x-

direction is controlled by implanting the commanded control variable into the ladder.

The force equation, as given by (10) is

Xb(cmd) - Xb b(cmd) - Xb

Yb (amd) - yb Yb(md) - Yb

Ob (cmd) - b  b (cmd)- ( bF = Kp +Kd
X2 (cmd) - X2  2 (cmd) - X2

X3(C•d) - X3 X3 (cmd) - i 3

Y 3
( cm d) - y3 -y3 (cmd) - y3

(18)

Kp and Kd were chosen to be diagonal, with terms of:

kp = (kpb, kpb, kptheta, kP2, kP3, kP3)

corresponding to the spring constants for each control variable and a similar form for kd.

For the purpose of deriving a gravity compensation term, the mass of the system was

assumed to be at a point at the main body. Although a more detailed gravity

compensation term certainly is possible, computational capability constraints made this

simplifying assumption attractive. This resulted in good experimental results and was



computationally inexpensive. The gravity force due to this lumped mass model is

transformed into joint torques using the transpose of the system's Jacobian matrix. The

gravity term in (12) then becomes:

G(q) = JT[0, M.g, 0,0,0,] T (19)

Combining (12), (17), (18) and (19), the input vector becomes:

T2s
T;3

"•4
= JT .

Xb (cmd) - Xb

Yb(cmd)- yb

Ob(cmd) - 0 b

X 2 (cmd) - X2

X 3 (cmd) - X 3

y3 (cmd)-- y3

+ Kd

Xb(cmd) - Xb

Yb(cmd)- yb

b(cmd) -- b +
x2 (cmd) - x2

X 3 (cmd) - X3

-4(cmd) -

0

M-g

0
0
0

Lo

(20)

4.5: Control gain selection

A combination of experimental trial and error and an analysis of a dynamic model of

the LIBRA system was used to select the control gain matrices Kp and Kd. The ranges of

the desired Kp control gains were chosen based on the desired stiffness of the different

virtual spring-damper systems attached to the control variables. The position of the body

is important to control tightly, so the stiffness of the virtual springs on the body is desired

to be high. The feet come in contact with the environment and the forces that they exert

are important to control. By having low stiffness virtual springs, small changes in the

position of the feet due to compliance or sensor error will only have a small effect on the

force being exerted. Therefore the gains on the feet are desired to be fairly low.

4.5.1: Dynamic Model

An analysis of a dynamic model of the LIBRA system assists in selecting the control

gain matrices Kp and Kd. Only the top chain of the LIBRA was modeled, as it is

assumed that the free foot can be analyzed separately. To simplify the model of the

LIBRA, point masses mi are assumed to be located at the positions shown in Figure 26.

Z

/

KP

* * - 1

I/



Ke

m10

Fig. 26: Model of the LIBRA top kinematic chain

where:
ml = mass of limb link

m2 = motor mass

m3 = mass of body

m10 = mass of limb three

Ke = environmental stiffness

The limb link masses, which are identical for all links, are assumed to be lumped

halfway along the links. The motor masses are placed at the joints. The body mass is

located at the geometric center of the body. As an approximation, the mass of limb three

is assumed to be at the first joint of the third limb. The actuators are also modeled as

frictionless torque supplies, ignoring the internal friction and actuator dynamics. While

the actuator dynamics are sufficiently fast that they shouldn't affect the dynamics of the

overall system, the friction in the actuators will add a significant amount of damping.

The dynamic equations are derived using Lagrange's equation:

d aT aT - • Sq = 0 (21)
dt a4il aq aq

where
T = the kinetic energy of the system
V = the potential energy of the system



To further simplify the equations, it is assumed that the gravity compensation term of

the controller is exact. The equations are linearized about 4 = 0. Appendix C contains

the linearized dynamic equations derived using these assumptions. In state space form,

using the control vector as the state space, these equations can be represented as:

u J(q) -H-' (q -J (q) -K, : J(q) -H-q) (q) -KP u
... ...................................... ..... .... ...... +

LI : D u[cmd
[J(q) -H-'(q) T (q) -K : J(q) H-'(q)-JT (q) KP ...]

.ucmd . (22)

[Y] = [ 0: I] ...

where H is the configuration dependent inertia matrix

Since the terms of the matrices are not constant, but are instead very configuration

dependent, the system response changes as a function of the configuration.

Equation (22) is linearized around 18 representative configurations of the system.

These points were chosen to reflect the range of motion found in the climbing maneuver.

The xbody position was chosen to be at one half the wall separation of 0.18 m. The 6body

is chosen to be zero, which is the commanded position during the entire climbing gait.

The x2 position of foot 2 is chosen to be at the wall. The only control variable in the top

kinematic chain that really varies during the climbing gait is the Ybody, which was chosen

to vary from -0.22 m through 0.05 m. This represents the fullest possible vertical

movement of the LIBRA in the current climbing setup. Classical root locus methods and

bode plots were used to study the stability of the system. The system gains were chosen

to meet the design specification of a bandwidth of 6 Hz and steady state positioning

errors of the center body of less than 2 mm under a 10 N disturbance. The gains

suggested through this analysis were:



kp =[ 1000,1000, 22, 500]

kd = [160, 160, 4, 120]

After experimental tests, the gains were tuned to:

kp = [1000, 500, 8, 100]

kd = [200, 100, 2, 20]

The dominant poles for these gains, sampled at different configurations, are given in

Figure 27. Appendix C shows the entire pole diagram for these configurations, and the

bode plots of the dominant control variable loops. While it might appear in these

diagrams that the system is under damped and the bandwidth is larger than desired, it is

important to note that the analysis did not include the damping effects of the friction in

the motor gearheads.

Tm

# 1 10A

+ 44 8-
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ybody = -0.1

Ybody = -0.2 2-
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0 Re

Fig. 27: Dominant poles of the LIBRA for Ybody from -0.20m -> 0.14 m



The last limb, limb three, was chosen separately to have gains of kp = [100,100] and kd

= [10 10]. This selection was strictly based on experimental trial and error. It was found

that the gains for the third foot have little effect the performance of the upper kinematic

chain. Also, the third foot performance is not sensitive to the gains chosen, and a wide

range of gains could be chosen based on the desired performance of the third foot. Gains

of up to kp = [1000, 1000] and kd = [150 150] were used for closer trajectory tracking.

4.6: Experimental performance

Data from two experiments are presented in the following sections. First, data are

presented for the first stage of the climbing gait including force data gathered from a

force sensor mounted on one of the rungs. Secondly, data are presented for a full

climbing cycle, but no force data was collected. These data are representative of the

performance of the LIBRA under CJTC, and demonstrate the effectiveness of CJTC.

4.6.1: Data from climbing stage one

Figure 28 shows the desired motion for the climbing robot. This is the first stage of the

four stage climbing gait. The trajectory consists mainly of the body's vertical motion

while swinging the third foot over and placing it on a step. Although Ob is not shown in

Figure 28, it is always commanded to be equal to zero. The second foot is pressing

against the step with a commanded horizontal force of 10 Newtons. This force is

specified by moving the commanded control variable x2(cmd) into the wall, at distance of

10N / 100N/m = 0.1 m. Although some compliance exists within the foot and the wall,

the commanded force remains constant by commanding a constant offset distance from

the actual position.



Body Commanded
Path

Position

Fig. 28: Desired motion for the climbing robot

Figures 29 and 30 show the trajectory of the main body xb, Yb and Ob positions. The

main body reaches its steady-state position in approximately 4.5 seconds. During the

vertical movement, the xbody (Xb) position varies by as much as 5 mm, but remains within

2 mm once the steady-state position is reached. The Ybody (Yb) control variable followed

the desired vertical motion very accurately as shown in Figure 29, and the steady state

error is almost 0.00 m. After 5 seconds, the third foot has contacted the ladder and is

seating itself, applying forces of up to ten Newtons to the ladder. The center body

location stays close to the commanded position despite this force, which demonstrates the

capability to control manipulation forces and mobility simultaneously. The Obody shows

very small errors, and remains within 3x10 -2 radians, or 1.7 degrees, at all times. The

plateaus seen in Figure 30 are caused by stiction in the inclinometer.
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Fig. 29: xb, Yb position for a pushup maneuver

-3
30x10

.0

0 10-

2.
O 0-
.0

S -10-
I.-

-20 -

....................................................... ... ................ ................. .

-· · · ·---; ·---------- ----- ·-

......... Actual theta body
I,,,,,,," Desired theta bod

0 1 2 3 4 5 6 7 8 9
Time (sec)

Fig. 30: Ob for a pushup maneuver

The horizontal foot force of foot 2, shown in Figure 31, stayed within four Newtons of

the commanded force of ten Newtons, even though there is no force feedback. The foot

force varies, as with the xbody, during the vertical motion, but steadies once the

movement is finished. Even when foot 3 is exerting a horizontal force against the ladder,

as occurs after five seconds, the horizontal force from foot 2 stays very close to the

desired force. This demonstrates the capability to control two environmental interaction

forces simultaneously. The force response exceeded the design goals.

.................Xbody position. ... C- .commanded Xbody. ......... .

................ ......... ............. ........ ----------

Commanded Ybod

Ybody positio.n..



.I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- Applied x foot forc
I........ Desired x foot forc

0 1 2 3 4 5 6 7 8 9
Time (sec)

Fig. 31: x2 Force for a pushup maneuver

The third foot contacts the ladder at nearly 4 seconds, and the growing error in x3

shown in Figure 32 is actually a force being applied against the step corresponding to

(error/kp3). The foot is commanded to apply this force on the step to insure a smooth

transition to the next phase of the climbing gait. The y3 positions, not shown here, are

well behaved.
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Fig. 32: x3 location for a pushup maneuver
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4.6.2: Data from a full climbing cycle

Figures 33 through 41 present the position data for one complete cycle of the climbing

gait. The force data for the various feet was not collected. Figure 33 shows the

commanded trajectory of all the control variables in Cartesian space, except for the

rotation of the center body. This is intended to give a qualitative understanding of the

gross movement performed, and the detailed data for the individual control variables is

given later. When the commanded control variable for foot 2 or foot 3 is imbedded in the

wall, a controlled force is being exerted on the environment.
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x Positions (meters)

Fig. 33: Desired Cartesian movements for one gait cycle

Figure 34 shows the actual trajectory of all the control variables in Cartesian space,

except for the rotation of the center body. Two important areas to note are the areas



where the joint limits were reached. Joint 1 for limb 1 and joint 4 for limb 4 hit hardware

limits during the movement, and the feet were therefore unable to follow the commanded

trajectory. However, the controller continued to function and completed the movement,

demonstrating the robustness of CJTC.
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Fig. 34: Actual Cartesian movements for one gait cycle

Figure 35 shows the desired and actual positions of the main body for the climb. The

errors are relatively small, and indicate good performance of the system. Figure 36

shows the orientation of the main body for the same climb. While the angle peaks as

high as 8 degrees, it is still acceptable. The small spikes in the commanded position are

artifacts of the planning algorithm.

V.L



0.25

0.20

0.15

- 0.10

S0.05

-. 0.00

" -0.05

-0.10

5 10 15

Time (sec)

Fig. 35: Body movements for one gait cycle
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Fig. 36: Body orientations for one gait cycle

Figures 37 and 38 show the x and y positions of all the feet during the climb. The

movements for the individual feet are given later in Figures 39 through 41. In Figure 37,

the ladder step is located at x=0.45m. Even when the foot is pressing against the ladder,

it still appears to move due to the backlash in the actuators and the compliance of the

wheels. The commanded positions above 0.45 m indicate that forces are being

commanded that are proportional to the error signal. In Figure 38, the steps are located at

-0.135m, O.Om and +0.135m. As can be clearly seen, the tracking for both the x and y of

the feet is generally very accurate.
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Fig. 37: x positions for all the feet for one gait cycle
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Fig. 38: y positions for all the feet for one gait cycle

Figure 39 shows the position data for foot 1. The majority of the time it sits on one

rung, and only moves in Stage Four. Again, note the region where joint 1 was at its limit

of - 117", and the commanded movement was unreachable. Even though it was unable to

follow the x direction trajectory, it still continued to closely track the y direction

trajectory.
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Fig. 39: Foot 1 position vs. time for one gait cycle

Figure 40 shows the position data for foot 2. In Stages 1,3 and 4, it is applying a force

in the x-direction against the rungs that is equal to 100 N/m times the error signal. The

rungs are located at x = 0.45 m, and y = 0 and y = 0.13 m. The small variations in the x

position of the foot while it is pressed against the rungs are due to backlash in the gears

and compliance in the environment. Note the region in Stage 2 where joint 4 was at its

limit of - 117%, and the commanded movement was unreachable. Like foot 1, even

though foot 2 was unable to follow the x direction trajectory, it still continued to closely

track the y direction trajectory.
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Fig. 40: Foot 2 position vs. time for one gait cycle
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Figure 41 shows the position data for foot 3. In Stage 2 it is applying a controlled

force in the x-direction against the rung that is equal to 100 N/m times the error signal.

The rung is located at x = 0.45 m and y = - 0.13 m. The small variations in the x position

of the foot while it is pressed against the rungs are due to backlash in the gears and

compliance in the environment. In Stage 4 it is resting on a rung located at x = 0.0 m and

y = - 0.13 m. At all times, foot 3 closely tracks the desired trajectory.
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Fig. 41: Foot 3 position vs. time for one gait cycle

Looking at the data for a full climb, it is clear that the controller performed well,

tracking the commanded trajectory. Even when joint limits were reached, the controller

still continued to function and track the trajectories of control variables that it was

physically capable of following. Even though force data was not collected it is assumed

that the force was also well controlled.



5: Summary and Conclusions

The Coordinated Jacobian Transpose Control proposed is a viable method for controlling

multiple control variables for both position and force of multilimbed robotic systems in a

unified and coordinated manner. One of its advantages is that it is relatively easy to

implement and can be interfaced with higher level planners and controllers in a

straightforward manner. Also, it is computationally inexpensive and can be run on low

capability processors. The control variables that can be controlled using CJTC are not

restricted to positions of the system. They may be other differentiable functions of the

joint variables, giving the system the ability to control important functions of the system

in a simple fashion. Both mobility and manipulation can be controlled in this fashion. A

methodology called the Extended Mobility Analysis provides a method for choosing an

admissible set of control variables that will not overconstrain the system. Linear analysis

and experimental studies of a three legged climbing robot show that the approach

provides a stable and effective control strategy for both mobility and manipulation for

some mobile multilimbed systems. Good performance was demonstrated experimentally

even though only kinematics and gravity forces were taken into account.
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Appendix A: LIBRA Jacobian Equations

Derivation of the Jacobian for the LIBRA

xbdy = 2L -cos(0) + 2L -cos(O + 01) + r cos(O + 01 + 92 -6)
6

Ybody = 2L. sin(l)+ 2L -sin(Q + 01)+ r sin(O + 0 1 +02 -7)
6

Obody = + 1I + 02

Xfoot = 2L[cos(p) + cos(q + 01) + cos(q + 01 + 02+) COs(O + 01os( + 2 + 3 + 4)] +
N cos(q + 01 + 02)

Xfree = Xbody + r -sin(O + 01 + 02) + 2L sin(4 + 01 + 2 + 05) + 2L -sin(Q + 01 + 02 + 05 4
Yfree = Ybody - r cos(4 + 01 + 02) - 2L cos(+ + 01 + 02 + 05)- 2L cos(O + 01 + 02 + 05

to derive phi using the y position constraint on foot 2:

y = sin(0)[2L + 2L c, + 2L c12 +2L*c123 + N. c12]+
cos(0)[2L23 + 2L s 234 + N s12 ]

let k, = 2L + 2L-c, + 2L- c23 + 2L-c1234 + Nc 2
k2 = 2L s, + 2L s3 + 2L .sl234 + N. S12

y = sin(0) ki + cos() -k2 = 2u +1- u2

1+u 2 2k2 +1+ 2

u=kl +k _y2

y+k 2

2,, + yk2



let :

X bo dy
Ybody

Obody

Xfoot

Xfree

Yfree

Jacobian = U,
60'

Terms of the Jacobian:

6 Xbody

6802

= (-2L. so - 2L -s 1

= (-2L -s - 2L -sol

= (-2L -so - 2L -So,

- r s012 -n/6)

- r -S012-n/6 )

1+ do+ 2L -s

do -rS12-n/6

6Xbody

/13 803

114 dy -2L. -s804

115 =0
116 =0

- 2L so - r S 12- /6

121 ody = 2L-c+2L.ci+r-c1
2 +6) 1+ -2L.c,121 - = 0 c 1- 2L

J22 = '5 2 Lc, + 2L cj + -c12-

6yy (2L- C, + 2L -c, + r 'c1 dIJ2 03d0

S124= dy (2L-c, + 2L-c+c,r12-.16 {(

125 = 0

126 = 0

03

O4

95

_96

-r2

T=
T4-'r

'I = 'imp

_ Xbody

501

112 =

- S12-r /6

r'p__ 1"



J31= 68body d4

601 d0e

36 body d4132 1 + d
602 d02

J33 = 68body d-

34 -= 8body - d4

80 body135 = = 0
885

60611 6 xf°°t =2 22 LN d4

J41 -2L "s - 2s - 2-s -2L- -S¢12L12342 1 + 2L- so

42 foot -2L-2s-2L -s 123 -2s123 -2L 1234 -N4S12(1+ +2L-s-

043 = = -2L -s - 2L -so - 2L. sO123 - 2L -s1234 - N S012 _ 2L -S123 -

J44 x f t = (-2L -s - 2L -s -2L - 123 -2L -S1234 - N S12 )- 2L S1234

145 = 0

146 = 0



J51 6xfee Ill +(r

J52 602  J12 +- (r

153- ee = 13 +  "r -
603

J54= 6Xfree 1 J14 +(r.
604
6xe

c0 12 + 2L -c 125 + 2L 1256)1 +

c012 + 2L -c0 125

c•12 + 2L -C 125

C01 2 + 2L. C-125

x free
J55 = 8 2L' C125 + 2L C1256

6x6X free
J56 = 06 2L c012566()6125

do

dO1)

+2L c12561

+ 2L -co1256) dd3

+ 2L . c1256 4

6- Yfree =

601

-Y 
6 free

16 3

64 - free
14 604

J21 + (r S012

122 + (r s S12

123 + (r -S12

+ 2L- s 125 + 2L .

+ 2L * s0125 + 2L -

+ 2L -S0125 + 2L -

124 + (r' 12 + 2L. S0125 + 2L

j( do
S01256( d3

dS4

6 - y free

165 = 805 = 2L s0125 + 2 L' S 125 6

J66 = = 2L s012566806

do _ 2(y+k 2 )
di (y + k2 2 + ( k1 + k, +2 + ky2

d kl ki +  k-2 iklk 2 +k k y2
k + k2 2  +k 2

dAi k2 +k- y2 (y + k 2)

81256)(1+ dop

d02

doS01256) d1)

-



Appendix B: Power Amplifiers

Voltage to current amplifiers were custom built for the LIBRA project. They are

powered by two Zytec 24 volt power supplies I hooked in parallel to provide a driving

voltage range from - 24 volts to + 24 volts, and an amperage of up to 6 amps, continuous.

The hearts of the amplifiers are LM12CLK linear power operational amplifiers,

manufactured by National Semiconductor 2. Linear amplifiers, rather than pulse width

modulated amplifiers are used for their simplicity, even though PWM amplifiers would

be much more power efficient. Trimpots are used to tune the amplifiers to a uniform

gain. The voltage offset is adjusted from the PMAC. Unfortunately, the PMAC tends to

drift in its output signal, requiring periodic testing and adjustment every month.

Voltage to current amplifiers are used to make the motors behave as torque servos.

The characteristic equation of the amplifier-motor circuit shown in Figure B 1 is:

(2-R, + R3 + R4 ).s + 1

in (R3 + R,) Lm s2 + [R, (R4 + Rm - R3) + Rm-R 3]s + R

Using the appropriate values for the various elements, the time constant of the

amplifier-motor system is 1.52 microseconds, resulting in a bandwidth of 656 Hz. Since

this is much higher than the bandwidth of the controller, for the purposes of this thesis the

amplifier-motor system can be considered to be an ideal torque servo system. It is

important to note that this does not include the damping effects of the friction in the

motor gearheads.
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The parts list for the power amplifiers is included, in case another set of power amplifiers

needs to be built or repairs effected on the current power amplifiers. The sources for the

parts are C&H 1, Gerber Electronics 3, Newark Electronics 4, Allied Electronics 5, the

MIT Office of Lab Supplies and Radio Shack.

LIBRA Electronics Parts List

Quantity

Power Supplies:

C&H - #PS8902

Servo amp components:

Gerber

Clarostat
VC-10-F 0.5 W

National Semiconductor
LM12CLK

Thermalloy
6016B

Harris A15A

6

14

Item

ZYTEC pwr sup.

.5 W Power Res

Power Op Amp

Heat Sinks

Rectifier

cirP 

Cost

51.50 103.00

2.21 17.68

25.40 177.80

1.23

0.60

7.38

8.40

Office of Lab Supplies

Precision Res, 1/4W

5.6 kW

33 KW

100W

Cap, 0.47 mF, Tant.

Radio Shack

1000mF bypass cap 1.59

Perfboard 2.99

Part No.

511116

511115

504200

0.11
0.11

0.16
0.48

1.10

1.10

1.60

4.80

272-1018

276-1396

23.85

2.99

Part N0



276-147 1 PC Board 3.79 3.79

271-343 9 10K trimmers 1.49 13.41

Connection components:

(1): 29 encoder lines from Ascender to the junction panel.

37 pin D-sub connectors, connected by a 37 line flat ribbon cable.

2 male ribbon connectors and 2 female receptacles required. A wire wrap rec.
will be used on the junction panel, but the connector for the LIBRA has yet to be
finalized.

Newark:

Stock No. 81F5186 2 req'd rec 14.45 28.90
Stock No. 81F5025 3 req'd ribbon plugs 6.73 20.19

(2): 12 motor lines from junction panel to ascender.

1 12 line cable, using reverse sex circular plastic connectors.

2 plugs are required for the cable, and 1 receptacle each for the junction panel and
the Ascender. 14 pin connectors will be used.

Allied:

Stock No. 512-1172 3 req'd plug 2.28 11.40
StockNo. 512-1173 4req'd rec 1.85 11.10
Stock No. 512-1210 1 req'd 100pins 19.00 19.57
Stock No. 512-1215 1 req'd 100 sockets 22.00 22.94

(3): 3 power lines from junction panel to servo amps.

Heavy-duty nylon interlocking connectors.

Radio Shack:
274-152 1 req'd male 1.69 1.69
274-155 1 req'd female 1.69 1.69

(4): 6 PMAC control lines from junction panel to servo amps.

1 line, 15 pin D-sub connectors.

The cable will only need 1 connector, as the end coming from the junction panel

will come directly off of the 50 pin PMAC connector. The other end of the cable will



terminate in a wire wrap 15 pin plug. A 15 pin wire wrap D-sub rec will be used on the

servo mount board. Strain relief will be provided with a hood on the plug, and another

hood on the 50 pin D-sub from the PMAC.

Newark:

Stock No. 81F5181
Stock No. 81F5184
Stock No. 46F2345
Stock No. 46F2345

2 req'd
2 req'd
1 req'd
1 req'd

15 pin plug
15 pin recep
15 pin hood
50 pin hood

(5): 12 motor lines from servo amps to junction panel.

1 12 line cable, using reverse sex circular plastic connectors.

1 plug is required for the cable, and 1 receptacle for the junction panel. The other
side will be connected through terminal blocks. 14 pin connectors will be used.

Allied:

StockNo. 512-1172 2req'd
StockNo. 512-1173 2req'd

plug
rec

2.28 4.56
1.85 3.70

(6): 3 power lines from power supplies.

2 cables - one from each power supply.

The mate for the current connector in the power supply is very difficult to
procure, and the connector will be replaced for ease of connection. Microphone
connectors will be used.

Newark:

Stock No. 46F8554
Stock No. 46F8556

5 req'd
5 req'd

Male
Female

3.45 17.25
3.64 18.20

(7): PMAC to Junction panel.

1 line using a 50 pin wire wrap D-sub will be used.

The connector and ribbon cable is in hand.

(8): Breakout Box to Motors.

6 2-pin nylon interlocking connectors will be used.

Radio Shack:

0.99 6.93

7.24
8.51
3.38
6.11

14.48
17.02
3.38
6.11

274-151 7 req'd Pair



(9): Breakout Box to Encoders.

10-pin DIP connectors will be used

Newark:

Stock No. 46F730 12 req'd

CABLING:

100 Feet of 24AWG 12 wire cable

Newark:
Stock No. 44F3506WA 100 ft 6-pair cable 62.62 62.62

100 Feet of 37 line ribbon cable

Newark:
Stock No. 36F661WA 100 ft 80.38 80.38

20 Feet of 16AWG stranded 2 wire cable

Radio Shack:
278-1105 30 ft 4.99 4.99

1 AC power plug for power supplies (1 already in hand)

Radio Shack:
278-1257 1 req'd 6 foot cable 3.99 3.99

Total Cost:
$763.51

male 2.96 35.52



Appendix C: Gain Selection

The dynamic model was derived using Lagrange's equations. The equations are

linearized about various positions, with the velocity equal to zero. This allows

simplification of the equations. The friction in the gearheads, which is difficult to

characterize, is not included in the dynamic model. This means that the analysis will

show less damping than the actual experimental system.

The LIBRA system is analyzed using the model shown in Figure 24. The figure is

repeated here for convenience:

m2 m2

Ke

ml0

Fig. Cl: Model of the LIBRA

The masses used are given as:

ml = 0.1960 kg

m2 = 0.3466 kg

m3 = 1.00 kg

ml0 = 1.09 kg

Ke = 5837 N/m

The length of each link is given as 2-L, where L is specified as:

L = 0.078 m

The distance from a motor mounted on the body to the center of body is given as:

r = 0.048 m



The distance from a motor mounted on the body to another motor mounted on the body is

given as:

N = 0.083 m

The LIBRA positions (xb, yb, Ob, x2) are given by:

xb = 2-L-(cos(o) + cos(0+01)) + r-cos(0+01+02-1c/6)

Yb = 2.L.(sin(0) + sin(0+8 1)) + r-sin(0+01+02-r1/6)

Ob= 0+01+02

x2 = 2.L-(cos(+0 1)+cos(0+ 1)+cos(0+ 1+02+0 3 )+cos(+01 +02+03+04)) +
N-cos(0+01+02)

Define the inertia matrix M as:

cO cl c2 c3 c4

dO dl d2 d3 d4

M = e0 el e2 e3 e4

fO fl f2 f3 f4

gO gl g2 g3 g4

where:

cO = 24.ml.L 2 + 26-m2-L2 + 6.(m3+ml0).L 2 + m3.i 2 + 2.(ml+m2)-N2 + ml0.N2

cO = cO + L2 .cos(2.0+01)-(10.ml+12-m2+4 -m3+4 .m10)

cO = cO + 2.m3.L-r.(cos(2.0+01 +02-7n/6)+cos(2.0+2.01+02-7r/6))

cO = cO + 2-ml -L.*N(cos(2.0+01+02-7t/3)+cos(2.0+2.01+02-1t/3))

cO = cO + 4.(m l+m2)'L*N'(cos(2"0+01+02)+cos(2"0+2-01+02))

cO = cO + (6.m 1+4m2)'L 2 .(cos(2-0+01+02+03)+cos(2.0+2-01+02+03))

cO = cO + (3-ml+2-m2)-L-N-(cos(2.0+2-01+2-02+03))

cO = cO + 2-ml-L2-(cos(2.0+01+02+03+04)+cos(2.0+2.01+02+03+04)+

cos(2.0+2.01+2.02+2.03+04))

cO = cO + ml-L.N.cos(2i+2.0+2 2.02+03+04)



cl = 15-mi-L 2 + 16-m2-L 2 + 4.(m3+ml 0)-L2 +

(5-ml+6.m2+2-m3+2.m10).L 2.cos(2-0+01)

cl = cl + m3-r2 + m3-L-r-(cos(2-+0l1+02-7t/6) + 2-cos(2-0+2-81+02-t/6))

cl = cl + m10.N 2 + ml0-L-N-(cos(2-P+01+02-7t/3) + 2-cos(2*.+2.01+02-2t/3))

cl = c + 2.(ml+m2)-N2 + 2.(ml+m2)-L.*N(cos(2i.+01+02) + 2-cos(2.4+2-01+02))
cl = c + (3-ml+2-m2).L 2-(cos(2.-+01+02+03) + 2-cos(2·.+2-01+02+03))
cl = cl + (3.ml+2-m2).L.N.cos(2.0+2.01+2-02+0 3)
c 1 = cl + m 1.L2.(cos(2.0+01 +E2+03+04)+2.cos(2.0+2.01 +02+03+e4)+

2-cos(2.0+22.01+2.2 +2+03+04))
cl = c + m-L-N-~cos(2.04+2*O+1+202+03+04)

c2 = 6-ml-L 2 + 4-m2-L2 + m3-r + ml0.N2 + 2.(ml+m2).N 2

c2 = c2 + m3-L.r.(cos(2-04+1+02-1/6)+cos(2.0+2-01+02-r/6))

c2 = c2 + ml0-L-N-(cos(2-0+0 1+02-7r/3)+cos(2.0+2-01+62-2t/3))

c2 = c2 + 2-(ml+m2).L.N-(cos(2.0+01+02)+cos(2-+2.01+02))

c2 = c2 + (3.m +2-m2).L 2 .(cos(2"0+01 +02 +03 )+cos(2-0+2.0 1 +02 +03))
c2 = c2 + (3.ml+2-m2).L*N-cos(2-0+2-01+2-02+03)

c2 = c2 + ml.L2.(cos(2.0+01+02+03+04)+cos(24.+2.01+02+03+04)+

2.cos(2.0+2-1 +2.02+2+2.3+04))

c2 = c2 + m-L-LN-cos(2-p+2*9l+2.02+03+0 4)

c3 = 4-m2-L 2 + 6-ml-L 2 + (3-ml+2-m2).L 2 .(cos(20+01+02+03)+
cos(2-0+2.01+02+03))

c3 = c3 + (1/2).(3.ml+2.m2)*L*N.cos(2.0+2-01+2.02+03)

c3 = c3 + ml L2.(cos(2-.+01 +02+03+04)+cos(2.0+2.01+02+03+04)+

2-cos(2"0+2.01+2-02+2-03+04))

c3 = c3 + (1/2).ml.L.N.cos(2.0+2-01+2-02+03+04)

c4 = ml.L 2 .(1 +cos(2-+01+02+03+04)+cos(2-0+2.01+02+03+04)+

cos(2.0+2.01+2-02+2-03+04))

c4 = c4 + (1/2).ml-L*N-cos(2.0+2*01+1+22+03+04)

dO = 15-mi-L2 + 5-ml.L 2.cos(20+01) + (8-m2+2-m3+2.m10).L 2.(2 + cos(2-+01)) +

m3.r 2

dO = dO + ml0-N2 + 2-(ml+m2).N 2 + m3L.r-(cos(2.+601+02-7r/6)+

2-cos(2-4+22-01+02-7r/6))

dO = dO + ml0o-LN-(cos(2-0+01+02-1r/3) + 2-cos(2-0+2-01+02-7r/3))



dO = dO + 2.(mi + m2)-L.N.(cos(2.0+0 1+62) + 2 -cos(24.+2 -0 1+02))
dO = dO + (3-ml + 2-m 2)-L2 .(cos(2-0+01+02+0 3) + 2-cos(2-0+ 2 .01+02+03))
dO = dO + (3-mi + 2-m 2).-L-Ncos(2-0+2-. 1+2-6 2+03)
dO = dO + mi -L2 .(cos(2.0+0 1 +02+0 3+04)+2-cos(2.0+2.01+02+03+04)+

2-cos(2-0+22-0+22 +2+-03+04))
dO = dO + mi-L*N-cos(2.0+2.0 1+2.0 2+03+04)

dl = 15-ml-L 2 + (4.m2+m3+ml0).4.L 2 + m3-r2 + ml 0.N2 + 2.(mI+m2).N 2

dl = dl + 2-m3-L-r-(cos(2-.+2-. 1+02-1t/6)) + 2-ml10 -LN-cos(2.0+2.01+0 2-rt/3)

dl = dl + 4-(ml+m2)-L*N-cos(2-0+2-01+0 2 ) + (3.ml+2.m2)-2-L 2.cos(24+2.01+0 2+03)
dl = dl + (3.ml+2.m2)-L-N-cos(2.0+2.01+2.0 2 +03) +

ml -L"N-cos(2-0+2-8 1+2-02+03+0 4)
dl = dl + 2-ml.L 2.(cos(2.0+2.0 1+02+0 3+04 ) + cos(2"0+2"01+2.02+2.03+04))

d2 = m3.r 2 + m10 .N2 + 2-(ml+m2).N 2 + 6.ml.L 2 + 4-m2-L 2

d2 = d2 + m3-L-r-cos(2-0+2-6 1+02-nt/6) + m1o-L-N-cos(2-0+2-6 1+02-Xr/3)

d2 = d2 + 2-(ml+m 2 )-L-N.cos(2.0+2-0 1+02) + (3-ml+2.m2)-L 2 .cos(2-4+2.01+0 2+03)
d2 = d2 + (3-ml+2.m2).L.N-cos(2-0+2-01+2.0 2+03) +

ml -L-N-cos(2"0+2-01+2'02+03+04)
d2 = d2 + ml.L2.(cos(2.0+2-0 1+02 +03+0 4 ) + 2-cos(2.0+2.01+2-02+2.03+04))

d3 = 6-ml-L 2 + 4.m2.L2 + (1.5-ml+m2).(2.L 2.cos(2±+2.01+02+0 3)+
L*N-cos(2.+2-0 1 +2.02+03))

d3 = d3 + milL 2-(cos(2-0+2.01+0 2+03+04 ) + 2-cos(2.0+2.0 1+2.0 2+2-03+0 4 ))
d3 = d3 + (1/2)-ml-L-N-cos(2.0+2.0+1+20 2+03+04 )

d4 = ml-L 2 + ml.L2 .(cos(2.+2.0 1+02+63+0 4) + 2-cos(2-0+2-01+22+23+04))
d4 = d4 + (1/2)-mlL*-N-cos(2-0+2.0 1+2-02+03+04)

e0 = m3-r2 + ml0-N2 + 2.(ml+m2).N 2 + 6-ml-L2 + 4-m2-L2

eO = e0 + m3-L-r-(cos(2-04+1+02-nr/6) + cos(24.+2.01+02-rt/6))
e0 = e0 + mlo-L-N-(cos(2-04+ 1+02-xt/3) + cos(2.0+2.01+02-t/3))

e0 = eO + 2-(ml+m2)-L-N-(cos(2-0+01+02) + cos(2-0+2.0 1+02))
e0 = eO + (3-m l+2m2)-(L2.cos(2"0+01 +2+0 3)+L2.cos(2"0+2"01+02+03)+

L.N-cos(2-0+2-61+2-02+03))
eO = eO + m i.L 2-(cos(2.-0+1+02+0 3+04)+cos(2.0+2-0 1 +2+03+04)+

cos(2-0+2-01+2+2-82+203+4)) + ml-L*N-cos(24.+2.0 1+2-. 2 +03 +04)



el = m3-r 2 + ml0.N 2 + 2.(ml+m2)-N2 + 6.mi.L2 + 4.m2.L 2

el = el + m3-L-r-cos(2-P+2-l+062-1n/6) + m10i-LN.cos(2-.+2-01+0 2-jc/3)

el = el + 2-(mI+m2).L.N-cos(2.4+2-81+02)

el = e 1 + (3-m 1+2.m2)-(L 2 .cos(2.4+2.01+02+03)+L.N.cos(2.-+2.01+2.0 2+03))
el = el + m .L.(L-cos(2.4+2.1 +02+03+04)+N-cos(2.0+2-.1+2-02+03+04)+

2-L-cos(2*.+2.01+2.02+2-03+04))

e2 = m3-r 2 + ml0.N2 + 2.(ml+m2)-N2 + 6-ml-L2 + 4-m2-L2

e2 = e2 + (3.ml+2-m2)-L*N-cos(2.-+2-01+2.02+0 3)
e2 = e2 + ml.(L-N-cos(2*.+2*01++2.02+3+04) + 2.L 2.cos(20+2.0 1++2.2+2.03+04))

e3 = (1/2).(3.ml+2.m2)-L-N-cos(2*.+2.01+2.02+0 3) + 6-ml-L 2 + 4-m2-L 2

e3 = e3 + (1/2).ml.(L-N-cos(2*.+2-0l+2.z2+0 3+04 ) +

4-L 2.cos(2*.+2*0+1+2-2+2.03+0 4 ))

e4 = ml-L2 + (1/2).ml.(L*N-cos(20+2.01+2.02+03+0 4) +

2.L 2.cos(2.0+2.01+2-02+2-63+04))

fO = 6-ml-L 2 + 4-m2-L2 + (1/2).(3-ml+2.m2).L-N-cos(2ý+2.01+2-. 2+0 3)

fO = fO + (3.ml+2.m2).L 2.(cos(24+01+02+03)+cos(2-.+20.1+02+03))

fO = fO + ml-L2-(cos(2-0+01+02+0 3+04 ) + cos(2.0+2.01+02+03+04) +

2-cos(240+2-61+2*62+2+2-03+04))

fO = f0 + (1/2)-ml*L-N-cos(2-4+2.01+2.02+03+04)

fl = 6-ml L2+4-m 2-L2+(1/2).(3.ml+2.m2).(2-L 2 .cos(20+2.01+02+03)+
L-N-cos(2-0+2.01+2-0 2+03))

fl = fl + ml-L2.(cos(2-.+2.01+0 2+03+04 ) + 2-cos(24.+2.01+2.02+2.03+04))
fl = fl + (1/2)-ml.L-N-cos(2-0+2.0 1+2-02+0 3+0 4)

f2 = 6-ml-L 2 + 4-m2-L2 + (1/2)-(3-m1+2-m2).L.N.cos(20+2.01+2-0 2 +0 3)
f2 = f2 + (1/2)-ml-(L-N-cos(2.0+2.01+2-02+03+04) + 4-L2 .cos(24.0+2* 1+1+2.0 2+2 3+04 ))

f3 = 6-mi-L 2 + 4-m2-L2 + 2-ml-L 2 -cos(20+2-0++2.02+2.0 3+0 4)

f4 = ml-L2 + ml.L2 .cos(2.+2.01+2.02+2-0 3 +04 )



gO = ml.L2 -(1 + cos(2.0+01+02+03+0 4) + cos(2'.+2-01+02+03+0 4) +
cos(24.+2-01+2202+2.03+04))

gO = gO + (1/2).ml-L-N-cos(2.-+2-01+2-02+03+04)

gl = ml L-(L+L.cos(2.0+2.01+02+03+0 4)+( 1/2).N.cos(2.+2.0 1+2.02+03+04)+
L-cos(2-4±2-0+21+22+2"03+0 4))

g2 = ml-L.(L + (1/2)-N-cos(2.±+2.01+2-02+03+04) + L-cos(2.0±2-0+1+20 2+2.03+0 4 ))

g3 = ml-L2 + ml-L2 -cos(24+2.01+2-*02+2-03+04)

g4 = mi-L2

The angle 0, which has been used to define the inertia matrix, needs to be eliminated

through the use of the constraint equation on the y position of foot 2:

Y2 = 2-L-sin(4) + 2.L.sin(0+01) + N-sin(+01t+02) + 2.L-sin(4+0 1+02+0 3) +
2-L-sin(0+01+02+03+04)

This is used to set up a transformation matrix T which transforms the over specified angle
set including 0 to the joint vector q. This matrix is given by:

801-

803

-- 2i o =1-

-a, -a2  -a3  -a4

b, b, b, b,
1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

where:

al = 2-L-cos(0+01) + N-cos(+061+02) + 2-L-cos(-+01+02+03) +
2-L*cos(4+01+02+03+0 4)

a2 = N-cos(0+01+02) + 2.L.cos(4+01+02+03) + 2-L-cos(0+01+02+03+04)

a3 = 2-L-cos(+601+02+03) + 2-L-cos(4+01+02+03+04)

a4 = 2.-Lcos(O+01+02+03+04)
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803
804
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804



bl = 2-L-(cos(o) + cos(0+01) + cos(4+0 1+e2+03) + cos(4+01+02+03+0 4 )) +
N-cos(0+0 1+02)

For convenience, the Jacobian matrix is redefined in terms of the over specified angle

vector. It is defined to be:

jll j12 j13 j14 j15-

j21 j22 j23 j24 j25

j31 j32 j33 j34 j35

j41 j42 j43 j44 j45

where:

jll = -2-L.sin(o) - 2-L-sin(4+01) - r-sin(0+01+02-nx/6)

j 12 = -2-L-sin(i+01) - r-sin(4+01+02-ic/6)

j 13 = -r-sin(O+01+02-n/6)

j14=0

j15 =0

j21 = 2-L*cos(o) + 2-L-cos(4+01) + r-cos(4+01+02-r/6)

j22 = 2-L-cos(0+01) + r-cos(4+01+02-7t/6)

j23 = r-cos(+01÷+02-nr/6)

j24 = 0

j25 = 0

j31 = 1

j32 = 1

j33 = 1
j34 = 0
j35 = 0

j41 = -2-L.(sin(o)+sin(4+01)+sin( +01+02+03)+sin(Q+01+02+03+04)) -
N-sin(4+81+02)

j42 = -2.L.(sin(#+01)+sin(4+01 +02+03)+sin(0+01+02+03+04)) - N.sin(+01 +02)
j43 = -2-L-(sin(0+01+02+03)+sin(4+01+02+03+04)) - N-sin(4+01+02)
j44 = -2.L.(sin(4+01+02+03)+sin(+01O+012+03+04))

j45 = -2-L-sin(4+01+02+03+04)



It is important to note that the over specified Jacobian matrix, multiplied by the

transformation matrix T, is equivalent to the Jacobian matrix given in Appendix A. That

is:

J(4x5).T = J(4x4)

The potential energy term added by the environmental contact at the end of foot 2 is

given by:

0 0 0 0

j41 j42 j43 j44 j45

Let H-1 be the inverse transformed inertia matrix:

H -' = (TT.M.T)- 1

The state space equations are:

dx = A.x + B-u

y = C.x + D-u

where:

x = [xbody Ybody Obody x21

u = [xbcmd Ybcmd Obcmd x2cmd]

A= [J T H '-TT JT Kd J .T- H-' TT .(JT .-K -8V)
I(4x4) 0(4x4)

B= J .T H "' -TT .jT Kd J-T- H-• T JT  • Kp
0(4x4) 0(4x4)

°0001000
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0 000001

00000001



S00000000
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As can plainly be seen from these equations, the response of the system will vary as a

function of the configuration dependent effective inertia matrix. The gains chosen after

experimental testing are kp = [1000, 500, 8, 100] and kd = [100, 50, 8, 10].

The analytical response of the LIBRA with these gains is shown in two domains: plots

of the roots of the characteristic equation for the various representative configurations,

and as bode plots for one configuration at Ybody = 0. The eighteen configurations chosen

for testing are:

Xbody = 9 cm, Obody = 0, x2 = 18 cm, ybody = 0.14, 0.12, 0.10, 0.08, 0.06, 0.04, 0.02,

0.00, -0.02, -0.04, -0.06, -0.08, -0.10, -0.12, -0.14, -0.18, and -0.20

The roots for these configurations are shown in Figure C2. However, as the scale is so

large it is difficult to extract meaningful information. A figure of the dominant poles is

given in Figure C3. As can be seen in Figure C3, some of the configurations appear to be

under damped. However, since the significant damping in the motor gearheads is not

included in the analysis, the actual system will respond in a more damped manner.



Poles of LIBRA for Y(body) from -0.20 -> 0.14

Fig. C2: Poles of the LIBRA for Ybody from -0.20m -> 0.14m
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Fig. C3: Dominant poles of the LIBRA for Ybody from -0.20m -> 0.14 m

The dominant Bode plots of the system for the chosen configuration of Ybody = 0 are

given in Figures C4 through C6. The design goal is for the system to have a bandwidth

of 6 Hz. For our system, it is desirable for the three free control variables (xbody, Ybody

and Obody) to have close to the same bandwidth, and for the constrained control variable

(xfoot) to have a much lower bandwidth. The only input variable to output variable loops

with magnitudes above -3dB are the loops for the xbody position variables, ybody position

variables and Obody position variables. This is expected, since the xbody, Ybody and 9 body

position variables have the highest control gains by a considerable amount. The xfoot

position loop has very low magnitudes, since it is largely constrained by the environment.

+.. -+ +'••



If excessive coupling were found between one of these input variables and a different

output variable, that control loop would also have high magnitude gains. Since no such

loops are found, the coupling is not excessive in this configuration.

As can be seen in Figure C4, the analysis of the xbody position loop yielded a

bandwidth of 5.2 Hz. This is slightly lower than desired, but still very acceptable. Both

the gain margin and phase margin are large, indicating good stability.
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Fig. C4: Bode plot for the xbody position variable
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Figure C5 shows the Ybody position control loop. The bandwidth of this loop is even

higher than that of the xbody position control loop, being close to 7 Hz. Even though this

is over the desired bandwidth of 6 Hz, it is still acceptable. The additional damping of

the actuators that is not modeled will lower the bandwidth of the actual system. Once

again, the phase margin and gain margins are large, indicating good stability.
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Fig. C5: Bode plot for the Ybody position variable

Figure C6 shows the control loop for the Obody position. Its bandwidth is near 5.6 Hz,

which is still acceptable. Like the other two loops, the control loop for Obody shows good

stability.
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Fig. C6: Bode plot for the Obody position variable

While the dynamic model yields bandwidths that are near the desired in this

configuration, the unmodeled damping in the actuators lowers the bandwidth of the actual

system. The bandwidths are all close to each other as desired, and little coupling between

control variables is seen. Thus the linear analysis of the system using gains chosen

experimentally shows that the system still meets the design goals for the gains.
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