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Abstract

In this thesis, we introduce and analyze methods of creating theater-level robust mission plans
for Effects Based Operations (EBO) of teams of Unmanned Aerial Vehicles (UAVs), and propose
methods of effectively presenting the robust plan to an end user.

Recent conflicts have demonstrated the utility of UAVs in performing Intelligence, Surveil-
lance, and Reconnaissance (ISR) and strike missions. As UAVs become more common, high-level
pre-planning and task delegation will increase in complexity, requiring computer aided planning.
Traditional planning methods, based on deterministic input data, generate plans that become infea-
sible in uncertain environments. Because military operations tend to contain substantial amounts
of uncertainty and re-planning at a theater level is costly, plans should be robust to uncertainty
yet still accomplish desired effects.

We present an effects-based planning framework in which we connect end effects to tasks,
enabling planners to value task assignments based on their ability to achieve desired effects. We
apply two robust planning techniques to this framework (Bertsimas/Sim and Chance Constrained
Programming) and analyze their performance. We demonstrate how robust planning increases the
length of time that a plan remains feasible in execution and achieves better overall value by avoiding
re-planning costs. We analyze strengths and weaknesses of each model and suggest when their use is
apptropriate. Finally, we apply Hunlan Machine Collaborative Decision Making (HMCDM) concepts
to propose methods to facilitate human interaction with a robust effects-based planner.
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Chapter 1

Introduction

Recent conflicts have demonstrated the benefits of Unmanned Aerial Vehicles (UAVs) in performing

Intelligence Surveillance and Reconnaissance (ISR) missions and strike missions. UAVs have long

loiter times and ranges, and can perform missions in high-risk areas without placing people in

harm's way. As UAV use increases, using them effectively will require more sophisticated planning

methods. Because UAVs operate in a dynamic, uncertain environment, mission plans can be

rendered infeasible or meaningless if the environment changes from expectations used when making

plans. Re-planning costs can be significant, especially in large systems involving human interaction.

In this thesis, we investigate methods of creating robust mission plans for UAVs.

Mission plans need to focus on the objectives they are designed to accomplish. Past planning

techniques have suffered from failing to connect individual tasks to the end objectives. We use

Effects-Based Operations (EBO) to develop a framework in which we connect tasks to resulting

effects. Mission planning for EBO can involve very large problems, which can become intractable.

These problems can be divided into a planning hierarchy to ensure problem tractability. In this

thesis, we focus on the theater-level planning problem. We develop a mixed-integer linear program

(MILP) formulation for creating mission plans for EBO. We also apply several robust optimization

methods to this formulation to be able to generate robust plans.

Successful mission planning also requires that a human planner remain in the planning loop.

Human interaction with computerized planners ensures trust in the computer generated solution,

allows the human to validate the plan, and can utilize human's strengths in the planning process.

In this thesis, we propose a method for human interaction with a robust, theater-level mission



planner.

1.1 Contributions

With the goal of creating robust mission plans for EBO for UAVs, we make the following contri-

butions in this thesis:

* We introduce the EBO Framework as an approach for establishing the relationships between

individual tasks, the effects that they cause, and the end objectives that a commander wants

to achieve with the plan. The EBO Framework is a convenient approach for assigning groups

of tasks that will cause effects with some probability and establishing the different options

that might be used to cause the effects.

* We apply the EBO Framework to create the Deterministic EBO Model, a MILP Formulation

for the theater-level planning problem that uses the nominal values of all uncertain data. NWe

demonstrate the performance of the Deterministic EBO Model on a realistic-sized theater-

level planning problem.

* We modify the Deterministic EBO Model using two approaches to design robust plans,

Chance-Constrained Programming and the Bertsimas/Sim Formulation. We call the resulting

models the Chance-Constrained EBO Model and the Bertsimas/Sim EBO Model. We analyze

these models using Monte Carlo simulation, comparing the plans that we generate using them

to: 1.) estimate the performance of current planning methods done by humans: 2.) compare

them against plans that we generate using the Deterministic EBO Model; and 3.) test the

performance of the robust EBO models against each other. The robust plans created using

both models outperform: 1.) the plans generated using current planning method plans and

2.) plans generated using the Deterministic EBO Model in performance metrics measuring

the expected time until the plan fails, and the expected value achieved by the plans.

* We discuss how a human planner might interact with the Robust EBO Models. We apply

principles from Human Machine Collaborative Decision Making (HMCDM) to make sugges-

tions on how to implement the Robust EBO Models in the planning process while capitalizing

on the strengths the human planners bring to the planning process and allowing the human

to gain trust in the solution.



1.2 Thesis Structure

This thesis is structured to emphasize first the justification for creating the EBO Framework and

its application to a robust planner. Second, we emphasize the performance of the robust plans

against other planning options. Third, we discuss how we might implement the robust planning

methods with the human in the loop.

In Chapter 2 we give a full description of the theater-level planning problem and justification

for using EBO and robust optimization techniques. It contains a review of current military plan-

ning processes and background information on EBO. It also contains a literature review of robust

optimization.

With the ternminology and intent of EBO established, we develop the EBO Framework in Chapter

'3. We are then able to apply it to introduce the Deterministic EBO Model. NWe demonstrate

the performance of the Deterministic EBO Model. We then develop an algorithm that estimates

current planning operations so we can compare it to the performance of the EBO Models. Finally,

we develop the Chance-Constrained and Bertsimas/Sim EBO Models, giving pertinent references

to the literature as we introduce the robust formulations.

After introducing the various models, we test them using a Monte Carlo Simulation and analyze

the results in Chapter 4. We first give a detailed description of the performance of the Robust EBO

Models; then we compare them to the estimate of current planning methods and to each other.

In Chapter 5 we review pertinent principles of human decision making and information presen-

tation. We apply these principles to make suggestions for possible implementation of the robust

models in a hunman-in-the-loop planning process.

Finally, in Chapter 6 we summarize pertinent results and contributions discussed in the thesis.

Equally important is the identification of future areas of research. This research presents methods

that have possible beneficial implications for military planning, but require more development to

be implemented effectively.
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Chapter 2

Problem Background and Literature

Review

Recent conflicts have demonstrated the utility of Unmanned Aerial Vehicles (UAVs) in Intelligence,

Surveillance, and Reconnaissance (ISR) missions and strike missions. UAVs have long loiter times

anid can accomplish high-risk missions without placing people in harm's way. As UAVs mature

and their numbers increase in proportion to overall air assets, planning for their use will become

both more complex and more important. In this chapter, we give some background of current

military operations for UAV mission planning and Effects-Based Operations (EBO), introduce the

robust theater-level UAV mission planning problem, introduce several approaches that can be used

to solve the problem, and present a literature review of these approaches.

2.1 Current Military Operations

"As of September 2004, some twenty types of coalition UAVs, large and small, have flown over

100,000 total flight hours in support of Operation ENDURING FREEDOM (OEF) and Operation

IRAQI FREEDOM (OIF)" [19]. The Army predominantly uses its UAVs for tactical support.

Many of the Army's UAVs are Micro Air Vehicles (MAVs), carried by soldiers and launched on

the battlefield when needed. The majority of the UAVs used by the Air Force has longer range

andt loiter ability and are maintained, launched, and recovered at specific airfields. This research

will focus on the planning for these larger Air Force assets such as the Predator and Global Hawk



instead of the tactical uses of MAVs.

The Air Force outlines its planning doctrine in Air Force Doctrine Documents (AFDD) 1, 2,

and 2-1.9. The Air Force's planning system supports joint operations planning as outlined in Joint

Publications (JP) 1 and 5. In most respects, the joint planning system; has the same structure as

the Air Force planning system, only it incorporates planning across all services.

The Joint Forces Commander (JFC) is responsible for the development of theater plans, with

responsibilities spanning all military operations. Component commanders of land, sea, and air

aid the JFC in the planning process. The Joint Forces Air Component Commander (JFACC)

commands all air forces in the theater and is ultimately responsible to the JFC for effectively using

air assets in support of the mission as summarized in AFDD 1[3]:

The Joint Air Operations Center (JAOC) is the primary planning house for military air oper-

ations. The JAOC is divided into four primary teams as shown in Figure 2-1: strategy, combat

plans, combat operations, and air mobility. The primary functions of the JAOC are to: [2]

Figure 2-1: JAOC Organization Structure [2]

1. develop aerospace operations strategy and planning documents that integrate air, space, and

information operations to meet JFACC objectives and guidance;

2. task and execute day-to-day aerospace operations; provide rapid reaction, positive control,

and coordinate and de-conflict weapons employment as well as integrate the total aerospace

effort;

* Stra gya I
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3. receive, assemble, analyze, filter, and disseminate all-source intelligence and weather infor-

ination to support aerospace operations planning, execution, and assessment;

4. issue airspace control procedures and coordinate airspace control activities for the Air Control

Authority (ACA) when the JFACC is designated the ACA;

5. provide overall direction of air defense, including Theater Ballistic Missile Defense (TMD),

for the Area Air Defense Commander (AADC) when the JFACC is designated the AADC:

6. plan, task, and execute the theater ISR mission;

7. conduct operational-level assessment to determine mission and overall aerospace operations

effectiveness as required by the JFC to support the theater combat assessment effort:

8. produce and disseminate an Air Tasking Order (ATO) and changes;

9. and provide for the integration and support of all air mobility missions.

This thesis primarily focuses on aiding items 2, 4, 5, 6, and 7 in the list above. Most of these tasks

fall in the Combat Plans Division of the JAOC. Combat Plans determines the optimal combination

of target, platform, weapon, and timing for missions included in the ATO; ensures aerospace tasking

supp)orts the overall Joint Task Force (JTF) campaign; produces and disseminates an operationally

and tactically sound ATO; and generates special instructions (SPINS) and the daily airspace control

order (ACO)[2].

AFDD 2 summarizes the theater air planning process done by the members of the Combat

Plans Division. This process is also depicted in Figure 2-2.

Planning is an iterative process. Tasks and targets are nominated to support the ob-

jectives and the commander's priorities. All potential tasks and targets are developed

through the planning cross-functional teams, which will identify, prioritize, and select

specific tasks while considering available resources. In accordance with the commnander's

objectives and coalition or component requirements, the operations staff will develop

the necessary plans to employ capabilities and forces. During weaponeering and force

allocation, tasking and targeting personnel quantify the expected results using modeling

and simulation methods. The final prioritized tasking and targets are then included in



Component

Figure 2-2: JAOC Planning Process[2]

a Master Air Attack Plan (MAAP) that forms the foundation of the ATO. After the

commander approves the MAAP, teams finalize the ATO, special instructions (SPINS),

and the airspace control order (ACO). The end product of the planning phase is an

ATO, an air defense plan,.and a prioritized list of tasks and targets with planned time

of execution[2].

This thesis focuses on the "iterative" process of connecting the JFACC guidance and objectives

to strategy and detailed plans, providing an effects-based model for this process, specifically in

reference to planning for UAVs.



2.2 Effects-Based Operations

In the forward of AFDD 2-5.3, Major General Bentley Rayburn, Commander of the Air Force

Doctrine Center says, "America's national security rests on a strategy of full spectrum dominance

supported by effects-based planning and operations" [5]. The Department of Defense (DOD) views

EBO as essential to the advancement of the military's strategic planning ability, and (as indicated

by the numerous revisions of its primary doctrine documents) is trying to make EBO part of

main-stream thought in the armed forces.

Military strategists have realized that a major challenge throughout the history of air planning

has been how to connect top-level objectives to individual tasks. To a large extent, the EBO

movement and the passion of its advocates stem from the wartime experiences of young U.S.

Air Force officers who were appalled by the frequently mindless and ineffective use of air power

in Vietnam[8]. AFDD 2.1 states, "Failure to properly analyze the mechanism that ties tactical

results to strategic effects has historically been the shortcoming of both airpower theorists and

strategists" [1].

EBO highligl:ts the importance of connecting effects to tasks and stresses considering the full

range of outcomes that a particular action can cause. The DOD has recently begun incorporating

EBO into all areas of its planning doctrine. JP 1 (Joint Warfare), JP 5 (Plans), JP 5-1 (Joint Task

Force Planning), AFDD 1 (Air Force Basic Doctrine), AFDD 2 (Organization and Employment of

Aerospace Power), AFDD 2-1 (Air Warfare), and AFDD 2-1.9 (Targeting) are all being revised to

incorporate EBO.

The .January 2006 draft of the revised AFDD 2[6], defines some basic EBO terminology.

EBO are operations that are planned, executed, and assessed in order to create spe-

cific effects that contribute directly to desired military and political outcomes. The

basic methodology of EBO encompasses objectives, effects, and actions... Objectives are

clearly defined, decisive, attainable, and measurable goals toward which every military

operation should be directed. Effects are the full range of outcomes, events, or conse-

quences that result from a particular action or set of actions. Actions are individual

deeds or acts of will that can be either kinetic (physical, material) or non-kinetic (logical,

behavioral).



In this thesis we use the term tasks as AFDD 2 defines actions. If tasks are accomplished; they

will cause effects, which we hope achieve objectives. For a thorough discussion of the taxonomy of

EBO terminology, see McCrabb's "Explaining Effects: A Theory for an Effects-Based Approach to

Planning, Executing, and Assessing Operations" [43].

Although the concerted push to incorporate EBO into the military planning process has hap-

pened in the past several years, the ideas of EBO are not "new." Air warfare theorists such as

Douhet, Mitchell, and Warden have differed in their preferred mechanism for forcing their will on

the enemy, but each realized that the ultimate determinant lay not in destroying targets but in

causing effects[8].

The latest drafts of Air Force Doctrine on planning (specifically AFDD 2-1.9 Targeting)[4] fully

embraces and centers itself on EBO. It states:

Planning, employment, and assessment should be inextricably linked and an effects-

based approach should attempt to meld them as seamlessly as possible.

Operations are built "from the top down," starting with the end state, through objec-

tives at the highest levels, determining subordinate objectives needed to support those,

then determining the effects needed to accomplish the objectives, and finally determin-

ing the actions necessary to create those effects.

Objectives and the end state are products of commander's guidance, strategy develop-

ment and planning, and while targeting efforts must always aim toward achieving them,

they are not determined through the targeting process itself.

EBO highlights the process by which national objectives turn into detailed plans. "Effects-

based operations provide the ideal means to execute this strategy-to-task framework because it

forces planners to consciously link efforts with objectives and lower-level objectives with higher

ones" [8]. The process by which national objectives are passed down to become air strategy can

be demonstrated by a "Z-diagram" shown in Figure 2-3. There are multiple levels connecting end

objectives and actions. Likewise, there can be multiple levels of effects. Causing one effect might

subsequently cause another. Without venturing into taxonomy, these terms serve to identify those

effects that cause others. In general, it is important to note that effects might be linked through

many levels, might cause unintended effects, and might require more than one effect on more than
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Figure 2-3: "Z-Diagram" of National Objectives to Air Strategy[8]

one level to cause a higher order effect. The relationship of how an action can cumulate into higher

effect is shown in Figure 2-4.

In his 2001 RAND Study, Paul Davis asserted "Current methods of analysis and modeling are

inadequate for representing EBO" [28]. He proposed a list of principles necessary for the incorpo-

ration of EBO into planning models. Among those principles that this research seeks to address

are:

* EBO analysis should fully confront the scope and magnitude of uncertainty and should deal

explicitly with probability and randomness;

* dealing with uncertainty will require low-resolution exploratory analysis for breadth;

* modeling should be organized around adaptive systems for command and control and other

matters;

* a key element of analytical work should be qualitative modeling, including cognitive modeling

of the decision-making and behavior of commanders.
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2.3 Problem Description and Motivation

As UAVs become more common, high-level pre-planning and task delegation will increase in

complexity requiring computer aided planning. To foster understanding and trust of computer-

generated plans, humans must remain in the planning loop. The rapid and sometimes unexpected

changes that occur in military operations can cause mission plans to become impossible to execute

or ineffective in causing desired effects; therefore, mission plans need to be robust to uncertainty.

This research primarily focuses on planning for UAVs that requires significant pre-planning.

Because the AOC currently makes plans for these UAVs as well as for all manned assets, there

is significant interplay between manned asset planning and UAV planning. We focus on planning

for UAVs and assume a future battlespace where UAVs are far more prevalent and utilize more

autonomy.

2.3.1 The UAV Planning Hierarchy

UAV mission planning is a large problem that can be decomposed into small problems to attain

tractability. UAV mission planning involves determining which individual tasks will achieve objec-

tives, assigning those tasks to vehicles, and creating the flight plan for individual vehicles. Planners

should focus on achieving end-objectives. In doing so the planners must consider the vehicle's apti-

tude or capability to perform a task, the risk involved, the proximity to the task, and the ability to

cooperate with other aircraft. Attempting to solve all of these problems using a single monolithic

formulation can create a problem so large that it is intractable. To maintain tractability, we can

decompose the planning process into a hierarchical structure in which each level encompasses de-

creasing numbers of tasks, aircraft, and responsibilities, but increasing detail. We can decompose

the planning process into a theater-level planner that assigns tasks to squadrons, a squadron-level

planner that assigns aircraft in a squadron to tasks and create routes to those tasks, and a vehicle-

level planner that plans individual vehicle trajectory and controls. This research focuses on the

theater-level planning problem.

2.3.2 The Theater-Level Planning Problem

The theater-level planning problem presents the challenge of how to maximize benefit gained by

causing effects while ensuring squadrons have a feasible task assignment. Task assignments must be



made amidst uncertainty created by a dynamic environment, an intelligent adversary, and various

performance uncertainties. Thus, a good task assignment must not only maximize benefit gained

from causing desired effects but must also be robust to uncertainty. This planning function is

currently accomplished in the JAOC. The theater-level planner developed in this research can aid

JAOC planners as they connect effect to individual tasks.

Air Force doctrine [2] specifies that JAOC planners should use modeling, simulation, and math

programming methods to help create the ATO, which is a daily updated schedule of all air operations

in the theater. Optimization techniques such as modeling, simulation, and math programming are

approaches that have the potential to help the user generate task assignments. In many planning

models, it is difficult to connect commander's intent to individual tasks, which could create doubt

about the plan's quality. Furthermore, a good planning model must present clear rationale to

decision-makers about why assignments were made in the plan.

2.4 Approaches to Solving the Theater-Level Planning Problem

We address three aspects of the theater-level planning problem:

1. We create a framework for formulating the problem and ensuring the plan accomplishes

desired effects; for this we use an Effects-based Operations (EBO) approach.

2. We look at ways to make plans that last longer and require less re-planning; for this we use

robust optimization techniques.

3. We look at ways to help a user interact with the planner; for this we use principles of Human

Machine Collaborative Decision Making (HMCDM).

2.4.1 Effects-Based Operations

A significant challenge in the Theater-Level Planning Problem is how to connect theater objectives

to individual taskings. Knowing which tasks are assigned to which squadrons in a plan does not

necessarily indicate whether the plan will be good. EBO are "operations conceived and planned in a

systems framework that considers the full range of direct, indirect, and cascading effects-effects that

may, with different degrees of probability, be achieved by the application of military diplomatic,



and economic instruments" [28]. Through EBO, planners have a tool to value tasks based on their

ability to achieve desired effects.

In the case of UAV mission planning, EBO allows a planner to organize tasks according to the

effects they cause. He can then assign tasks to UAVs in order to achieve the maximum benefit from

the resulting effects. In such cases, there is uncertainty associated with the certainty that a set of

tasks will cause an effect. This uncertainty highlights the need for an EBO model to deal explicitly

with uncertainty to achieve a robust plan.

2.4.2 Robust Optimization

Traditionally mission planning is an iterative process following four defined steps. Although the

terminology changes among organizations, the steps are generally the same. In Draper Lab's All-

Domain Execution and Planning Technology (ADEPT) Planning and Control Architecture[49], they

are called: monitoring, diagnosis, generation, execution (depicted in Figure 2-5). Military members

might be more familiar with John Boyd's OODA Loop: observe, orient, decide, and act. Air Force

Doctrine Document 2 (AFDD 2) labels the planning steps: guidance and objectives, plan, execute,

and assess[2]. Regardless of terminology used, these steps describe the general process of gaining a

broad understanding of the situation, formulating a plan, executing the plan, and adjusting based

on the effects resulting from actions executed in the plan.

Status Commands

Figure 2-5: A General Planning Cycle Structure[61]

In robust optimization we seek a plan that "backs off" from optimality so that, when executed,



the plan will be feasible more often and for a longer period of time, in light of an uncertain, dynamic

planning environment. In terms of the planning steps outlined in Figure 2-5, we intentionally create

a plan that we can "Execute", decreasing the amount of times we must "Diagnose" and "Generate"

a new plan. For UAV planning, a robust plan means that when the scenario's realization differs from

expectations we must re-plan less often. The reduction of re-planning reduces the planning costs,

which can be significant in systems involving human coordination, such as time spent generating and

approving a new plan. disseminating plans among squadrons, preparing aircraft for flight, staffing

flight operations, and backtracking from already accomplished tasks. When the need to re-plan

is reduced, this improves the planner's confidence that the execution of the plan will accomplish

desired objectives. When using EBO in UAV planning, a robust plan allows the human planner

to be more certain that the plan will cause the desired effects and the squadron taskings will be

feasible with greater probability.

Many planning methods involving uncertain data use dynamic programming, which handles

uncertainty well, but can become intractable as the problem size increases. To maintain tractability,

we look at math programming optimization methods. We avoid non-linear methods, because we

are seeking to solve very large problems using math programming, where non-linearity tends to

affect tractability negatively.

2.4.3 Human Machine Collaborative Decision Making

It is important that commanders and other decision makers understand and approve of the plan gen-

erated by computerized planners. Assigning tasks to multiple squadrons is a complicated process,

especially when trying to maximize benefit received from achieved effects while also trying to make

a robust plan. Computerized planners can handle problems of this magnitude; however, they might

return solutions that are difficult to justify to a commander. Elements of Human Machine Collab-

orative Decision Making (HMCDM) offer promising techniques to help validate and improve the

quality of the plans.

2.5 UAV Task Assignment Literature

The UAV task assignment problem can be modeled as a general knapsack problem. The objective of

the knapsack problem is to maximize the benefit received by selecting objects to go into the knapsack



without exceeding the knapsack's capacity. Likewise, the objective of the task assignment problem

is to maximize expected benefit received from assigning tasks without exceeding the workload

capacity of the UAVs. The range of the aircraft, amount of ordinance, duration of mission, and

other factors can determine workload capacity. If the problem also includes the routes taken by the

aircraft, the problem becomes a vehicle routing problem (VRP), which is known for its intractability

issues when trying to solve large problems to optimality.

In this thesis, we separate the routing problem from the tasking problem, delegating routing to

the squadron-level planner. For an in-depth analysis of robust planning at the squadron level, see

Sakaimoto[50].

When using an EBO framework, we gain value by causing effects. The effects we can cause are

limited by the squadrons' capacities. Once we determine which effects we are going to try to cause

and hence which tasks we will do, we must delegate tasks among the squadrons. Unfortunately,

without considering the individual vehicle routings, it becomes difficult to judge the relative value

of the assignment based on the location of the tasks. In our models presented in Chapter 3, we

delegate tasks based on distance to squadrons with a simple distance calculation. Ideally, when

assigning squadrons to tasks we would cluster tasks to help make better routes at the squadron

level. Several heuristic algorithms, which we present here, are available to cluster groups of tasks.
These could be incorporated as a second stage in a theater-level planning algorithm after an EBO

model has decided the effects and tasks to be put in the plan.

2.5.1 K-Means Clustering

The K-means clustering algorithm is a simple iterative algorithm that creates k groups based on

their members' distance from the group's center of mass[37]. It is a convenient tool to partition

tasks into clusters to create easily solvable routing problems, sometimes generally referred to as

"cluster-first, route second" methods. When dealing with task locations, we start by dividing all

tasks randomly into k groups of equal size. We then find the center of mass of each group. We

then alternate between the following two steps:

* for each center, we identify the subset of points that is closer to it than any other center,

* and we compute the means of each feature for the data point in each cluster, and this mean

vector becomes the new center for that cluster.



We continue iterating until there are no changes. This very general clustering algorithm does not

consider the number of tasks per group, the relative difficulty, or the value of accomplishing those

tasks. For a more sophisticated method of partitioning tasks into small routing problems, we look

at Wei Zhao's Sweep Algorithm.

2.5.2 Sweep Algorithm

Wei Zhao [61] addresses the problem of routing aircraft from one airbase to many tasks, or "goal-

points" that are assigned to the base. Realizing that routing many aircraft to many tasks would

present an intractable problem, we partition the problem into groups. This is similar to the plan-

ning hierarchy discussed in Section 2.3.1, except Zhao's work focuses on partitioning tasks in the

squadron-level and passing results to the vehicle-level; whereas this thesis focuses on planning in

the theater-level and passing results to the squadron-level. Zhao's algorithm would have to be

extended to model more than one squadron to be applied to the EBO model which we present in

Section 3.1.

Zhao presents a sweep algorithm. It groups tasks in terms of both their geometric locations and

mission values (a value assigned to the task by planners representing its importance or the benefit

received by accomplishing the task.)

The algorithm starts by generating two sorted task lists: all the tasks sorted in increasing polar

coordinate angle with respect to the base, and all the tasks sorted in decreasing mission value. It

divides the tasks into groups of approximately equal mission value for each participating vehicle. It

then sweeps in a forward direction, sorting the tasks in an increasing order of the polar coordinate

angles.

Beginning with the smallest angle, the algorithm adds the tasks to the current group according

to the polar angle list and adds the task's mission value to that group, as shown in the Figure

2-6. When the total mission value for the group reaches the total task mission value divided by K,

the algorithm completes the current group and starts a new group. This process continues until

completing all the tasks.

The algorithm then checks the vehicle travel distance constraint within each group. Using the

algorithm uses a fast routing algorithm to estimate the length of a tour, which provides an upper

bound for the tour length to check for feasibility. If the tour is infeasible, then there are two possible



Figure 2-6: Sweep Algorithm (3 Groups) [61]

outcomes and the algorithm will handle them as follows.

* The task the furthest distance from home has the smallest value. In this case, the algorithm

will remove the furthest task and continue to check the tour length constraint.

* The tour has at least one task with smaller value than the furthest one. In this case, the

algorithm labels all such tasks as a test group, removes the task with the least mission value,

and checks the tour length constraint. It continues removing tasks from the test group until it

finds a feasible solution. Any goal points left out of the solution are added back in (considered

un-routed) and considered later.

If a partitioned group contains un-routed tasks, the routed tasks do not necessarily represent the

optimal routing for the group. To improve the total mission value of each group, Zhao implements

a task swapping procedure between the un-routed tasks and the routed tasks within the same

group. An example of task swapping is shown in Figure 2-7. The algorithm checks for tour

length feasibility after the swapping. If the resulting solution is feasible, then the solution is kept.

Otherwise, it reverses the swap. The process continues until no task with smaller mission value is

available to swap.

Zhao's sweep algorithm partitions a large multi-vehicle routing problem into K smaller routing

problems, and outputs routing solutions to each of these. If extended to handle multiple squadron's



(a) Situation A: Before Swapping (b) Situation B: After Swapping

Figure 2-7: Example of Task Swapping[61]

Zhao's sweep algorithm, might be a useful method to partition tasks to squadrons after the appro-

priate tasks have been selected using an EBO model.

2.6 Robust Optimization Literature

The classic paradigm of optimization using mathematical programming assumes that all input

data is known with certainty. If the data takes on values different from the nominal case, the

solution might no longer be optimal and might not be feasible. "In real world applications of

linear programming, one cannot ignore the possibility that a small uncertainty in the data can

make the usual optimal solution completely meaningless" [12]. UAV mission planning using math

programming is no exception.

There are many proposed methods and definitions for robust optimization. Robust optimiza-

tion objectives might be similar to the following: maximizing an objective function subject to

guaranteeing feasibility with some probability, maximizing an objective function while minimizing

variance in the objective function, and maximizing the protection of the solution subject to a spec-

ified acceptable objective function level. Each considers uncertainty in the input data differently

and can model it in different parts of the problem.

In the case of mission planning for UAVs, we define robust optimization as creating a plan

that remains feasible for a longer period of time during execution than the plan obtained when only



deterministic input data is used. This can be done by using several of the objectives proposed in

the literature. We review them here.

2.6.1 Protecting Against the Worst-Case

In 1973. Soyster proposed a linear optimization model to construct a solution that is feasible for

all data belonging to a convex set[51]. As a result, Soyster's formulation gives ultra-conservative

results, and according to Ben-Tal and Nemirovski, it gives up too much from the optimal solution

to ensure feasibility[12]. Soyster starts with the general linear optimization problem given in (2.1)-

(2.3), where there exists column-wise uncertainty in A (i.e. each column of A belong to a convex

set Kh):'

maximize E cjxj (2.1)
jEJ

subject to aijxj bi Vi E I, aj E Kj, (2.2)
jEJ

xj Ž0, Vj E J (2.3)

Soyster shows that this problem is equivalent to pushing all values in A to their worst-case

values (a) and re-solving, in which case the formulation looks as follows:

maximize E cjxj (2.4)
jeJ

subject to ijxj < bi Vi E I. aj E Kj, (2.5)
jEJ

xj o, Vj E J (2.6)

The Soyster miethod can also be applied to uncertainty in the c vector. We can push the values

of the c vector in (2.1)-(2.3) to their-worst case values, to get a solution that maximizes the worst-

case situation. When applied to mission planning, this formulation produces plans that assign tasks

that guarantee a certain value or better.

'A note on notation: in this thesis we represent matrices as capitalized, bold, and italic (A); vectors as lowercase,
bold, and italic (c): random variables as capitalized and non-italic (B); individual values as lowercase and italic (x):
sets of data as capitalized and italic (J); and indices as lowercase, italic subscripts (j).



Consider the value of performing task j as having some expected benefit cj. If there is uncer-

tainty in cj, we can model that uncertainty in different ways. First we might assume that cj falls

into some window, with maximum and minimum possible values. Second we might assume that cj

is generated from some probability distribution with standard deviation a. In this case, we might

seek a maximum benefit solution with the least expected variability. Bertuccelli[17] has recently

proposed robust planning formulations for UAVs in this way. Bertuccelli's planning algorithm fo-

cuses on the squadron-level of the planning problem, but his application of robust optimization

techniques to UAV planning makes it worth summarizing here.

2.6.2 Modified Protection against the Worst-Case Approach

Bertuccelli proposes a method for robust task assignment for heterogeneous UAVs using a Modified

Soyster Method[17]. The method allows for analysis of uncertainty in the objective function where

each benefit coefficient cki has its own standard deviation aki. The robust objective function is

the benefit coefficient minus its respective standard deviations times a scalar p which represents a

modeler's risk aversion rate. The formulation takes the form:

INTI

max Jk = Z(Cki - PTki)Xki (2.7)
i=1

INTI
subject to: E Xki = INdv (2.8)

i=1

xi E 0, 1 (2.9)

INT I is the number of targets, INvl is the number of vehicles, and Xki is a binary variable representing

whether a vehicle is assigned to target i at time k.

Bertuccelli enhanced this formulation by modifying it to also account for the ability to reduce

the aki by assigning an ISR vehicle to perform reconnaissance on a target. If an ISR vehicle performs

reconnaissance on a target, it eliminates the penalty of aki. This modified vehicle formulation looks



like:

INTI

subject to: ZXki = INvs| (2.11)
i=l

INTI

,ki = INVRI (2.12)
i=1

Xki, Yki C 0, 1 (2.13)

Xki is 1 if a strike vehicle is assigned to target i in time k. Yki is 1 if a reconnaissance vehicle has

visited target i in time k and 0 otherwise. JNvs| is the number of strike vehicles, and INv IRI is the

number of reconnaissance vehicles.

This formulation does not consider cooperation between a strike and ISR vehicle. For example,

it would be beneficial for the reconnaissance vehicle to do more than just update the knowledge of

the environnment by visiting the most uncertain targets. Since the ultimate goal is to achieve the

best possible mission score, the reconnaissance mission should be modified to account for the strike

mission, and vice versa. This can be achieved by coupling the mission objectives of decreasing the

variability in the benefit received by striking a target by visiting the target with an ISR vehicle

and receiving benefit by striking targets.

If an ISR vehicle visits a target before the target is struck, the target's score will remain the

same, but its uncertainty (given by a) will decrease from Uk to ak+llk. However, x and y can be



coupled into a separate variable v to form the following linear formulation:

maxJk: = (cki /- lki)Xki + u(oki - k+llki)Vki (2.14)
x,y

i=l

INTI

subject to: xki = INvs (2.15)
i=1

INT I
y, = JNVR (2.16)

i=

*X1ki, Yki, Vki E 0, 1 (2.17)

'Uki < Xki (2.18)

1'VAi : Yki (2.19)

'•Ai > XA.i + Yki - 1 (2.20)

The formulation can further be improved by assigning any reconnaissance vehicles not used

in the coupling to other targets with the greatest standard deviations. Doing so, decreases the

uncertainty in the problem, enabling better decisions in future iterations. This can be done by

adding an extra term to the objective funmction:

INTI

max Jk = (Cki - PUki)Xki + -- (oAki --Ok+llki)Vki + Kaki(1 - Xki)Yki (2.21)
i=1

Where for a small K, the cost function makes the strike objective primary, while the small weight

in the latter part of the formulation causes the assigning of left-over reconnaissance vehicles to be

a secondary objective.

2.6.3 Chance-Constrained Programming

In 1959, Charnes and Cooper introduced a method for robust optimization called chance-constrained

programming[21]. Charnes and Cooper were among the first to address the problem of robust plan-

ning under uncertainty. Because uncertain input can lead to constraint violations once a plan is put

into operation, they decided to try to regulate the chance that any constraint is violated, hence the

name "chance-constrained programming." They define chance-constrained programming as follows:

"Select certain random variables as functions of random variables with known distributions in such



a manner as to maximize a functional of both classes of random variables subject to constraints

on these variables which must be maintained at prescribed levels of probability" [21]. We give a

detailed description of several of Charnes and Coopers chance-constrained models and apply them

to the EBO Model in Section 3.2.1.

Since Charnes and Cooper initially introduced chance-constrained programming in the early

1960s, researchers have applied it to numerous applications, such as research and development

projects [26], networks [25], and critical path analysis [23].

Unfortunately, chance-constrained programming encounters serious computational issues as we

try to add multiple uncertain coefficients per constraint. For most of their models, Charnes and

Cooper limited uncertainty to one random variable per constraint (right-hand-side value). However,

if we try to add uncertainty into the left-hand-side, we must calculate a joint probability distribution

for all uncertain coefficients in a constraint in order scale the uncertain values in the constraints to

be feasible with some probability. Miller and Wagner discuss methods of having multiple random

variables per constraint generated by a multinomial distribution [45]. However, most chance-

constrained programming has been limited to having uncertainty only in the right-hand-side, due

to the difficulties of associated with multiple random variable.

2.6.4 Bertsimas/Sim

In their 2001 paper, "The Price of Robustness", Bertsimas and Sim propose a robust optimization

formulation with the intention of avoiding the overly conservative tendencies of the Soyster formu-

lation while remaining in the linear domain[14]. Bertsimas and Sim do not assume a probability

distribution for uncertain coefficients; rather they only assign a windows in which the uncertain

coefficients can vary. The Bertsimas/Sim model is a Mixed Integer Linear Program (MILP) that

protects against parameterized number Fi of uncertain coefficients going to their worst case value.

Bertsimas and Sim show how this formulation can be applied to a portfolio optimization problem,

a knapsack problem, supply chain management [16], and network flows [13, 15]. We describe this

model in detail and apply it to the EBO Model in Section 3.2.4.

Bertsimas and Sim establish several probability bounds for how often a constraint will be vio-

lated if all coefficients ai vary according to any symmetric distribution in the range by [ai - i, i = i].

Althbough we do not use these bounds in our analysis, they are worth mentioning here to show how



uncertain data behaves in the Bertsimas/Sim model. The tightest of these bounds is given by the

following:

If nij, j E J£ are independent and symmetrically distributed random variables in [- 1, 1], then

Pr (iz nij (2.22)

where

1
B (n, Fi) = 2n

t= LvJ

1=•
t=L J+1 1 =[vJ

(L= vI+1,

Where n = IJ I v = - and p = v - [v] This bound can be difficult to calculate and can be

approximated using:

B (n, Fi) 5 (1 - p)C(n, LvJ) + i n C(i ,)
l=L[v+1

if 1 = 0 or 1 = n,
C(n, 1) = I

S exp n log.

For Fi = Evii,

limB (n, Fi) = 1 - ( (0),
nl--- x

and •(E)=) ~= exp -

(2.25)

(2.26)

(2.27)2Z) dy

The proof for the above probability bounds can be found in Bertsimas and Simr "The Price of

Robustness" [14].

(2.23)

where

(2.24)

n ) + I log( o-l )) therwise.2 (n -1) 0

ri ) B (n, ( i)



2.6.5 Ellipsoidal Model of Uncertainty

Ben-Tal, Nemirovski, and El-Ghaoui et al.[9, 32, 10, 11, 12, 33] have made significant advances in

robust optimization using an ellipsoidal model of uncertainty. There are many motivating factors

for assuming this type of uncertainty set, the principal one being that measurement errors are

typically distributed in an ellipsoid centered at the mean of the distribution. With this model of

uncertainty, linear programs have robust counter-parts that are conic quadratic problems. Conic

problems are very computationally expensive, especially when they have integer constraints. Since

realistic nmission planning problems are very large, we do not focus on robust optimization methods

which do not have linear objective functions.

2.7 Summary

The United States Military is clearly moving toward EBO as their primary planning paradigm. In

the past. connecting objectives to actual plans has been a major challenge especially in planning

models. Our goal in making robust plans is to create plans that last longer than they would

otherwise, and not to create some guarantee that we will be feasible. We are also seeking to

solve very large theater-level problems. For these reasons, we chose to apply chance-constrained

programming and the Bertsimas/Sim formulation to an effects-based operations framework to create

a theater-level UAV mission planner. In the following chapter, we present an EBO framework for

UAV mission pIlanning. We apply this framework in a math programming mission planner. We

then present two options chance-constrained programming and the Bertsimas/Sim Formulation,

for making robust plans.
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Chapter 3

EBO Model Formulations

As discussed in Chapter 2, EBO (Effects-Based Operations) are "operations conceived and planned

in a. systems framework that consider the full range of direct, indirect, and cascading effects-

effects that may. with different degrees of probability, be achieved by the application of military,

diplomatic, and economic instruments" [28]. The Department of Defense and particularly the Air

Force are currently in the process of incorporating EBO into their planning doctrine. Both recognize

EBO as an effective approach to ensure that plans focus on tasks that will cause effects that will

eventually cause end-objectives. In this chapter, we present a method of applying EBO to the

theater-level planning problem, which we call the EBO Framework. We present a Mixed-Integer

Linear Program (MILP) formulation for the EBO approach to the theater-level UAV planning

problem. For ease of terminology, we will refer to this model as the EBO Model. We present

several versions of the EBO Model. We begin with the Deterministic EBO Model and then we

present several robust optimization versions: Chance-Constrained EBO Model, Extended Chance-

Constrained Model (ECCF), the Bertsimas/Sim EBO Model, and the Delta Formulation.

3.1 EBO Model Description

Our objective for the theater-level UAV planning problem is to assign tasks to squadrons in order

to maximize the benefit received by executing the plan. An EBO approach can be used to create

a framework in which we evaluate the quality of a plan based on its ability to cause effects. In the

following sections, we describe our implementation of an EBO approach to the theater-level UAV



planning problem. This problem can be solved using many different methods. As we discussed

earlier, we avoid dynamic programming and non-linear math programming methods because they

tend to be intractable for large problems. We chose to formulate this model using a Mixed Integer

Linear Program (MILP), because it is tractably solvable to a provable bound of optimality. We

call the MILP of the EBO approach to the theater-level planning problem the EBO Model.

End objectives usually consist of non-task-specific terminology, such as destroying the will of

the enemy to continue fighting or eradicating enemy forces from a particular region. Usually, there

exist many effects that eventually cause the objectives. These effects are often more specific and

can be caused in a shorter time than of end objectives. We cause effects by performing tasks, which

are individual actions. If tasks are accomplished, they will cause effects, which we hope achieve

objectives.

Often, there are several different ways to cause each effect. For instance, if our desired effect is

denying enemy forces the ability to move into a city, we could destroy all the enemy forces, blockade

all routes into the city, directly defend the city, or do some combination of these tasks. Although

they cause the same effect, each option involves very different tasks. Usually, desired effects require

accomplishing many tasks that can be grouped into sets. Thus, we assign task-sets to squadrons

in such a way as to maximize benefit received from the resulting effects.

We propose an EBO Framework that connects effects to the different options for achieving the

effects. We call these options task-sets, which consist of one or more individual tasks. The EBO

Framework is shown in Figure 3-1.

Figure 3-1 shows only three levels: effects, task-sets, and tasks. As discussed in Section 2.2

and shown in Figure 2-4, there can be more than one level of effect and objectives. Effects that

are directly caused by tasks are usually referred to as direct effects. Effects that are caused by

direct effects are usually referred to as indirect effects. For simplicity of discussion, demonstration,

and tractability, the EBO Model presented in Formulation (3.19)-(3.21) only incorporates the three

levels shown in Figure 3-1 (direct effects, task-sets, and individual tasks). It can be extended to

model indirect effects for all levels of objectives. We can do this by adding indirect effects and

objectives and connecting them to the direct effects, similarly to how effects in Figure 3-1 are

connected to task-sets. We demonstrate this in Figure 3-2.

We consider task-sets to be "all-or-nothing" when calculating the value of assigning them in
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the plan, meaning all tasks in the task-set must be assigned or we do not achieve any value. We

do this because the value is derived from the effect caused by performing the tasks and not from

performing the tasks themselves. If we cannot perform all the tasks of a particular task-set, we

might not cause the desired effect. For instance, suppose the desired effect is to prevent enemy

forces from advancing toward a neutral village, and the task-set with which we choose to cause the

effect is to destroy a bridge that the enemy must cross. The tasks involved are performing ISR of

the bridge, striking the bridge, and then performing BDA to ensure that the bridge is destroyed.

If we fail to assign the strike task but assign the other two tasks, we will receive no value because

the bridge will not be destroyed; we cannot cause the effect. If we fail to assign the ISR task, we

might still be able to destroy the bridge but our chances of missing or encountering unexpected

risks greatly increase. Thus, in the EBO model we require that all tasks in a task-set must be

assigned to achieve value.

However, assigning all of the tasks in a task-set does not guarantee that we will cause an

effect. Even if there is enough estimated capacity to assign all the tasks in a task-set, when

the plan is executed it is possible that attempts to execute tasks will fail. Furthermore, the

relationship between tasks and effects is estimated by strategists. Determining what tasks will

actually cause subjective effects is difficult and prone to errors. Thus, each task-set also has an

estimated probability that if all of its tasks are assigned it will cause the linked effect. We then

maximize the expected value of achieving effects. Thus, assigning all tasks in a task-set achieves

the value of the probability of causing the effect times the value of the effect; whereas failure to

assign all the tasks in a task-set achieves no value. We will further elaborate on this and the case

where multiple task-sets that cause the same effect are assigned in Section 3.1.1.

3.1.1 EBO Model Inputs

The EBO Framework of Figure 3-1 and subsequently the EBO Model require inputs about effects,

detailed information about the current state of the world, and possible task requirements. The

input data can be divided into three categories: effect information, squadron capabilities, and task

information.



Effects Information

When creating a plan, the planners have end-objectives they want to achieve. There are many

lower-level effects, which cascade to the ultimate end-objective. We decided to focus on the effects

that a human planner might want to achieve in a short time-period, perhaps a day or couple of

days. These effects might cascade to higher-level effects later; however, to maintain tractability

and stay within the reasonable expectations of the effects UAVs can cause, we decided to focus on

lower-level effects.

Each effect has an expected benefit value and is linked to a group of task-sets. Each task-set

contains a list of tasks. which, if assigned and the plan is executed, will cause the linked effect with

some probability, Prj. There can be more tasks in the scenario than can be accomplished with

available resources.

We assume that a plan call include more than one task-set that can cause the same effect. If

more than one task-set linked to the same effect is assigned, we increase the probability that the

effect is caused when the plan is executed. We assume task-sets cause effects independently. For

instance. assume task-set k has probability Prk of causing effect e and task-set k + 1 has probability

Pr/,.+ of causing effect e. If we assign both task-sets we now have probability 1- (1 -Prk)(1 -Prk+l)

of causing effect e.

In most cases, the assumnption of independence is not valid. There are some situations where

performing the tasks of a particular task-set can eliminate the ability to perform another task-set.

For instance, if we want to cause the effect of preventing enemy forces from entering a neutral

village we could destroy the primary route that the enemy takes into the village, or we could patrol

that route and confront the enemy on the route. If the route is destroyed, then patrolling it is

impossible. Thus, performing the first option prevents doing the second option. However, we will

use a probability value that assumes task-set independence as an approximation despite the fact

that in practice the task-sets might not be independent.

The actual effect data that we input includes a list of all effects (e c E) and their associated

benefit values (c(,). We input a list of all task-sets including which tasks belong to each set,

which effect the task-set causes, and the probability that the task-set will cause the effect. This

information comprises the top two levels of Figure 3-1.

In the EBO Model, we group combinations of task-sets that accomplish the same effect into a



task-set group (TSG), which is an enumeration of all task-set combinations that cause an effect.

If there are two task-sets that can cause effect e, there will be three TSG variables: one for doing

task-set 1, one for doing task-set 2, and one for doing both task-set 1 and 2. We model each TSG

as a binary decision variable (xj). We have two reasons for enumerating combinations of task-sets,

even though it increases the number of decision variables by Z, 1  , where N is the number

of task-sets that cause a particular effect. First, we expect that 3 or 4 different, realistic options

for accomplishing a particular effect will suffice in most cases and thus N will usually be small.

Second, we want to preserve linearity in the objective function. If we did not group task-sets that

accomplish the same effect into TSGs, we would have an objective function that looks as follows:

max E ce(1 - J (1 - ykPrk)), (3.1)
eEE kEKIkEKK,

where ce is the benefit received by causing effect e, K is the set of all task-sets, Prk is the probability

that task-set k causes effect e, and Yk is a binary decision variable equal to 1 if we include task-set

k in the plan and 0 if we do not. K, is the set of all task-sets that cause effect e. This non-linear

objective function is significantly more difficult to solve than linear objective functions.

If we group combinations of task-sets that cause the same effect into their own decision variables

we can preserve linearity. For instance if we have task-sets 1 and 2 in a scenario with one effect,

instead of having decision variable yl and Y2, we can have binary decision variables x 1 , x 2 , and x3;

where xz and x 2 represent doing only task-set 1 or 2 respectively and x3 represents doing both task

set 1 and 2. Now the objective looks as follows:

E E c.xiPri, (3.2)
eEE jEJIjEJJ

where Ce is the benefit received by causing effect e; J is the set of all TSGs; Prj is the probability

that TSG j causes effect e; and xj is a binary decision variable, 1 if we include TSG j in the plan and

0 if we do not. Je is the set of all TSGs that cause effect e. For the linear version, the probability

of a TSG causing an effect will need to be computed in advance; however, this calculation is simple

due to the independence assumption.

Figure 3-3 shows the relationship between task-sets and TSGs. Notice that xl and x2 represent

doing just the individual task sets 1 and 2 respectively. Whereas X3 represents doing both task set



1 and 2. The probability of achieving effect 1 when we do x:3, is the combined probability of success

if both task-sets, 1 and 2. are assigned.

Squadron Capability Information

In order to determine how many effects we can achieve, we need to measure the capacity of our

squadrons to performn tasks. Because our goal is not to create the actual routes for individual

aircraft, but rather to assign tasks to a squadron as a whole, we want to base our decisions on

aggregate measures of the squadron's ability. We assume that all of our UAVs are stationed within

the theater to avoid modeling the extremely long travel times of traveling inter-theater.

We decided to model two types of UAVs. WVe have ISR UAVs (for example a Global Hawk),

which we consider to be very good at performing ISR and have long range. VWe also model strike

IJAVs (possibly a predator fitted with hell-fire missiles), which are able to carry some number of

munitions and have a limited ISR capability.

For each squadron (s E S), located at [lats, lon,] we assign a certain number of ISR UAVs (ps)

and strike UAVs (v,). We use a parameter for the capability for each type of aircraft to perform

tasks: the number of ISR tasks an ISR UAV can perform in a time-period (-), the number of ISR

tasks a strike UAV can do in a time-period (Ai"), and the number of strike tasks a strike UAV can

do in a time-period (Ast). Based on these numbers we determine the squadron's aggregate capacity

to perform tasks.

Task Information

We decompose the input task-sets to enumerate all component tasks (i e I). For task data, we

need to know what type of task is being performed (ks); the task's location [lati, longi]; how many

resources are required to complete the task (ri) (i.e. how nimany vehicles must cooperate to perform

the task); the number of time-periods the task spans (qi); the task precedence relationship (i, i'),

and the set of time-periods t in which we can assign task i, Ti.

We model tasks as being performed during a time-period. We do not care when the task is

accomplished within the time-period, because we leave the specific route planning to the squadron-

level planner. We assume an aircraft can perform multiple tasks in one time-period. We regulate

the number of tasks that can be performed in each time-period with the parameters: Ast , Ai r, and



y. Our nomenclature holds for any length of time being assigned as the time-period. For instance,

we could create a plan for the next week where each time-period represents a day, or a plan for the

next day where each time-period represents an hour. Obviously, we would have to adjust the Ast,

A"i , and - parameters appropriately given the time-period.

We divide tasks into four types: ISR, strike, loiter tasks for strike UAVs, and loiter tasks for ISR

UAVs. ISR and strike tasks can be accomplished quickly. They include ISR tasks of just a single

flyover, or strike tasks where munitions are dropped and the task is completed. Loiter tasks are

those that require extended mission time (long enough to occupy a UAV for a whole time-period),

such as scanning a large area, or patrolling a road. We consider loiter tasks as keeping a UAV busy

for an entire time-period, whereas we can accomplish multiple other tasks in a single time-period.

We can also have loiter tasks that last longer than one time-period, as indicated by qi, the number

of time-periods that the loiter task spans.

Tasks also have specified tinme-windows. A task cannot be assigned outside of this time-window.

Time-windows match up with the time-periods. For instance if there are 7 time-periods in the

scenario, we might set the time-window for a particular task to be any of the first 3 time-periods.

We indicate the time-windows by Ti, which is the set of time-periods t in which we can assign task

Many tasks require sequencing with other tasks. For instance, an ISR task may be required

before a strike, which may be followed by another ISR task to perform battle damage assessment

(BDA). We create a precedence value i' for each task i. The precedence value, i', identifies a task

that we have to assign at the same time-period or later time-period as task i. If task i has no

precedence relationship, we set i' equal to i. When creating a scenario, we must ensure that the

time-windows allow tasks to be feasibly assigned according to their precedence relationships.

Figure 3-3 shows an example of a very small scenario put into the EBO Framework with the

input data as described in this section. The scenario models two effects in a situation where red

forces are expected to advance against a neutral village and our objective is to prevent them from

doing so.
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3.1.2 EBO Model Objective and Constraints

The objective of the EBO Model is to maximize the benefit received by causing effects, subject to

constraints on the number of tasks we can perform, based on the capabilities of the squadrons, and

the demands of the tasks. We assume that in most scenarios, there are more desired effects than

we have capacity to cause. We consider TSGs to be all-or-nothing similar to how we described

task-sets in Section 3.1. Thus, the plan is constrained such that a TSG is assigned only if all of its

tasks can be accomplished. Our primary objective is to maximize the benefit of effects, but we also

want to accomplish a second objective of minimizing the distance squadrons have to travel in order

to perform the tasks that cause the effects. For Formulation (3.3)-(3.15), the objective function

value increases for effects we expect to cause and is slightly penalized for the distance the UAVs

have to travel to accomplish the required tasks. Maximizing the effects value is the primary goal

and minimizing the distance traveled is the secondary goal. As such, the value of the effects ce is

weighted more heavily than the penalty for the distance to the tasks.

We constrain task assignment in several different ways: tasks cannot be assigned beyond the

squadron's capacity to perform the specific type of task; tasks must be assigned within their time-

windows; tasks must be assigned according to their precedence order; and tasks that must be

performed in a precedence order must all be assigned to the same squadron.

We cannot assign tasks beyond a squadron's capacity for a particular time-period and type

of task. We define capacity to perform different types of tasks as the number of UAVs in the

squadron times the average number of those kind of tasks we think each UAV can accomplish in

one time-period. These constraints are task-type specific and require a different constraint for each

of the four types of tasks: ISR, strike, loiter tasks for strike UAVs, and loiter tasks for ISR UAVs.

Furthermore, if we assign loiter tasks for a particular squadron and time-period, we have to reduce

the squadron's capacity to perform other non-loiter tasks in that time-period.

As discussed, in 3.1.1 each task in the plan must be assigned in an allowed time-window. Also

discusses in 3.1.1, certain tasks must be assigned according to a precedence order. The set of tasks

that must be assigned according to a precedence order is called a string.

We enforce that the same squadron must perform all tasks that belong to a string. The theater-

level plan is designed to pass assignments to the squadron-level where UAV route planning is done.

This hierarchy divides the very large planning problem into smaller sections. The benefit of the



hierarchy is weakened if squadrons have to cooperate in the squadron-level planning process to

ensure precedence relationships are maintained. We ensure that the squadron-level planners do not

have to plan with other squadrons by restricting that strings are assigned to only one squadron.

3.1.3 EBO Model Outputs

The EBO model solution includes a value for the expected benefit received by causing effects, which

effects we intend to cause by executing the plan, and what tasks we assign that will cause these

effects. We represent which effects in the plan are assigned with the binary decision variable xj

equal to 1 if TSG j is in the plan and 0 otherwise. We model task assignments with the binary

decision variable zit, equal to 1 if task i is assigned to squadron s in time-period t and 0 otherwise.

3.1.4 Deterministic EBO Model Formulation

We present a deterministic version of the EBO Model here. We first list the input data, parameters,

and decision variables. Then we give the mathematical formulation, followed by explanations of

the individual constraints of the formulation.

Input Data

* E: Set of all effects, e E E

* J: Set of all TSGs, j E J

* J•_: Set of all TSGs j E J that are members of Effect e

* I: Set of all tasks, i C I

* Ij: Set of all tasks i E I that are members of TSG j

* T: Set of all time-periods, t E T

* Ti: Set of all time-periods t E T in which task i is allowed to be assigned

* S: Set of all squadrons, s E S

* Pry: Probability that TSG j causes effect e



* i': Task i must be assigned in a time-period before or equal to the assigned time-period of

the task represented by i'

* ki: Designates a task's type:

- ISR. (isr)

- Strike (st)

- Loiter tasks for ISR UAVs (lisr)

- Loiter tasks for strike UAVS (1st)

* lati. loni: Latitudes and longitudes of all tasks

* lat8 , lons: Latitudes and longitudes of all squadrons

* dis: The great circle distance in kilometers from task i to squadron s, calculated by the

following equation:

dis = 6378.8 arccos [sin(lati) sin(lats) + cos(lati) cos(lats) cos(lons - loni)]

Parameters

* ce: Value achieved by causing effect e

* ri: Number of UAVs required to complete task i

* qi: Number of time-periods task i spans

* vs: Number of strike UAVs in squadron s

* ps: Number of ISR UAVs in squadron s

* Aisr: Number of ISR tasks a strike UAV can do per time-period

* Ast: Number of strike tasks a strike UAV can do per time-period

* 3: Number of ISR tasks an ISR UAV can do per time-period

* 6: Number small enough to ensure the sum of all task distances from their assigned squadrons

times this value is less than the benefit received from any one effect

56



Decision Variables

* xj: equals 1 if TSG j is assigned, 0 otherwise

* zits: equals 1 if task i is assigned to squadron s in time-period t

Formulation

Mlax E E 'cePrjxj - s6 > d i r z i t s
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

* (3.3) Objective function: Maximize the benefit received from effects and minimize the distance

between tasks and their assigned squadrons.

* (3.4) Restrict that we cannot do more than one TSG j per effect e.

?,iZits :ý Aqtv,,



* (3.5) In order for TSG j to be assigned, the correct tasks in j must be assigned. (The sum of

all aircraft assigned to tasks that belong to TSG j in allowable time-periods must be greater

than or equal to the sum of the total number of tasks times the number of time-periods the

task requires in TSG j)

* (3.6) The number of aircraft assigned to task i in allowable time-periods cannot exceed the

number of aircraft required to accomplish the task. This constraint ensures the correct tasks

are assigned. It prevents us from assigning a task twice in place of another required task.

* (3.7) Tasks cannot be assigned in time-periods that are not allowed. Although this constraint

is implied by 3.5, it greatly reduces solve time by cutting the solution space.

* (3.8) The number of ISR tasks assigned to a squadron during a specific time-period cannot

exceed the squadron's capacity. (For squadron s, during time-period t, the number of aircraft,

not including those assigned to loiter tasks, assigned to ISR tasks does not exceed the product

of the number of strike UAVs times the strike UAVs' ISR-capacity plus the number of ISR

UAVs times the ISR UAVs' ISR-capacity.)

* (3.9) The number of strike tasks assigned to a squadron in a specific time-period cannot

exceed the squadron's capacity. (For squadron s during time-period t, the number of aircraft

assigned to strike tasks minus those assigned to loiter tasks does not exceed the number of

strike UAVs times the strike UAVs strike-capacity.)

* (3.10) The number of loiter tasks for strike UAVs assigned is less than the number of strike

UAVs available. (For squadron s during time-period s, the number of loiter strike tasks does

not exceed the number of strike UAVs in squadron s.)

* (3.11) The number of loiter tasks for ISR UAVs is less than the number of ISR UAVs. (For

squadron s during time-period t, the number of loiter ISR tasks does not exceed the number

of ISR UAVs in squadron s.)

* (3.12) Enforce precedence relationships. (Task i must be assigned in a time-period before or

equal to the assigned time-period of task i'.)

* (3.13) Prevent tasks that must be performed in a dependent sequence from being assigned to

multiple squadrons. (Task i' must be assigned to squadron s if task i was assigned to s.)



Figure 3-4: Small EBO Scenario Map

* (3.14) xj is binary.

* (3.15) zits is binary.

3.1.5 Deterministic EBO Model Example and Performance

We ran the Deterministic EBO Model on the example scenario from Figure 3-3. The tasks are

shown in a hypothetical country in Figure 3-4. Table 3.1 summarizes the parameter data for the

scenario not given in Figure 3-5. The remainder of the effect, task-set, task, and time data is in

Table 3.1: Input Data for Small Example Scenario
Number of Squadrons 2

Strike UAVs per Squadron (v) 2
ISR UAVs per Squadron (p) 1

Strike tasks per time-period for strike UAVs (Ast) 2
ISR tasks per time-period for strike UAVs (As"') 2

ISR tasks per time-period for ISR UAVs (y) 4

Figure 3-5.

We solved the problem using Xpress Mosel Version 1.6.0, Optimizer Version 16.01.02 on a 3.2

GHz Pentium 4 with 1 GB of RAM. The model solved to an optimality gap of less than 0.005% in

less than a second.
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The solution to the problem in Figure 3-5 is depicted by the shaded effects, task-sets, and tasks.

In this case, the plan was able to incorporate all effects but not all task-sets. The objective value

received was 109.57, which is the value of causing each effect times the probability we expect to

cause each effect, minus the small penalty for the distance each task is away from the assigned

squadron, where 6 is 0.0001.

The actual task assignment is shown in the lower portion of Figure 3-5. Tit indicates whether

task i is allowed in time-period t. A shaded zits block indicates if task i is assigned to squadron s

in time-period t.

In this scenario, the solution utilizes the strike UAVs at capacity for every time-period. If some

of the scenario data were to change (such as, decreasing the strike UAVs capacity to perform tasks

or increasing the number of UAVs required to strike some of the targets) the current solution would

not be feasible, thus requiring us to re-plan. We analyze and discuss the probability of infeasibility

and the extent to which the plan is recoverable in Chapter 4. However, this vulnerability to

infeasibilitv is our motivation for investigating methods for creating robust plans, which we discuss

in Section 3.2.

We also tested the Deterministic EBO Model on a realistic-sized theater-level planning problem.

'IThis scenario's data is summarized in Table 3.2. We solved the large scenario on the same computer

Table 3.2: Input Data for Realistic Size Scenario

Number of Effects 25
Number of Task-Sets 56

Number of Tasks 550
Number of Time-Periods 7

Number of Squadrons 8
Strike UAVs per Squadron (v) 5
ISR UAVs per Squadron (p) 1

Strike tasks per time-period for strike UAVs (Ast) 2
ISR tasks per time-period for strike UAVs (Aisr) 2

ISR tasks per time-period for ISR UAVs (y) 4

as the small scenario given above (Xpress Mosel Version 1.6.0, Optimizer Version 16.01.02 on a 3.2

GHz Pentiumn 4 with 1 GB of RAM). The solver took 134.1 seconds to solve to an optimality gap of

0.0031%. We consider the roughly 2 minutes solve time to be acceptable for theater-level planning,

especially given that the planning time-frame is for long periods of time like days or weeks.



3.1.6 Greedy Algorithm

We want to compare the performance of the EBO Model to an estimate of how a human planner

might perform when creating the plan by hand. Humans are typically poor planners when dealing

with large complex processes containing uncertainty[59]. When making decisions, humans tend to

treat all cues (pieces of information contributing to their decision) as if they are equally rated. This

is typically called the "as if" heuristic. Kahneman and Tversky demonstrated that even those well

trained in statistical theory do not give proportionally more weight to more reliable cues, when

making predictions[39]. WVe can assume that a human planner, although well trained, will probably

use a similar heuristic and not give proportional weight to task assignment. A greedy algorithm

does not take into account the overlap between effects or the value an effect achieves compared

to the amount of tasks needed to accomplish it, but simply assigns tasks that achieve the highest

expected value until all capacity is used. Thus, a greedy algorithm, in which tasks are assigned in

order of the value of their achieved effect, is a decent approximation of how a human might perform

the same assignment problem modeled by Formulation (3.3)-(3.15).

We created a greedy algorithm, that assigns tasks according to the EBO Framework we pre-

sented in Figure 3-1. We hypothesized that a human would start with the most valuable effects

and assign tasks to achieve those effects and then work down until there is no more capacity to

perform tasks. The algorithm is depicted in Figure 3-6 and runs as follows:

1. Calculate each squadron's initial capacity to perform ISR. and strike tasks in each time-period.

This capacity is the same as the right hand side values of constraints (3.8), (3.9), (3.10), and

3.11.

2. Create a list of all task-sets. Find the task-set j* that gives the best additional value by

causing an effect.

- If the list is empty, the algorithm is complete.

3. Find all tasks that have not yet been assigned and are associated with task-set j*. Call this

set of tasks I.

4. Step through all tasks in I.

5. If task i is a loiter task in I,



assignd

Figure 3-6: Greedy Algorithm Flow Diagram
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- Find all time-periods that the task spans;

- Increment through the task's required time-periods for the squadron s;

- If there is capacity remaining in all required time-periods for s, consider the task assigned

and track capacity to be decremented from s;

- Else check capacity of other squadrons to perform the task

- If there is no capacity in any of the squadrons across all time-periods, consider the task

un-assignable.

6. Else if task i is a non-loiter task,

- If the task has a precedence relationship where it must be done before another task, try

assigning the succeeding task first;

- Increment through the task's possible time-periods starting with the latest possible

time, and increment through squadrons;

- If there is enough capacity remaining in an available time-period for a single squadron,

consider the task assigned and track capacity to be decremented from the squadron if the

whole TSG gets assigned;

- Else if there is no capacity in any of the squadrons across all time-periods, consider the

task un-assignable;

- If the task was successfully assigned and was part of a precedence string, go back and

try to assign its predecessors.

7. If there is inadequate capacity to assign all tasks i in I, we do not have capacity to do task-set

j*;

- Remove task-set j* from the list of task-sets and return to second step.

8. Else if all tasks are successfully assigned, consider task-set j* accomplished, and add task-set

j*'s expected value to our objective:

- Decrement squadron capacities from all tasks assigned in j*;

- Remove task-set j* from the list of task-sets and return to second step.
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In Section 4.2, we compare the performance of the greedy algorithm to the performance of the

robust models from 3.2.2 and 3.2.5.

3.2 Robust EBO Models

The Deterministic EBO Model presented in Section 3.1.4 assumes that there is no uncertainty in

the input data. In reality, uncertainty can exist in the model in many of the data inputs. If we

ignore this uncertainty and simply use deterministic expected values in the model, we may find

that the plan is infeasible when we try to execute the plan and be forced to re-plan. The following

list contains the data inputs that can contain uncertainty:

* ce: Commander's estimate of the worth of an effect;

* ri: Number of aircraft to complete a task;

* 'v8, ps: Expected number of strike and ISR UAVs available in each squadron:

* Pry: Probability that TSG j causes an effect;

* Aisr , Ast , : Estimation of an aircraft's capacity to perform tasks in a time-period;

* lati, loni: Task locations.

In order to make the plans robust amidst uncertainty, we protect the plans using robust optimization

techniques. In the following sections, we present two methods for incorporating robustness into the

EBO Model: chance-constrained programming and a robust optimization formulation created by

Bertsimas and Sim. We use these methods to create the Chance Constrained EBO Model, Extended

Chance Constrained EBO Model, the Bertsimas/Sim EBO Model, and the Delta EBO Model.

3.2.1 Chance Constrained Programming

As discussed in Section 2.6.3, chance-constrained programming is a convenient method for pro-

tecting against constraint violations. Chance-constrained programming maximizes an objective

function subject to constraints that must be satisfied with some probability. To expand on this



idea, consider a basic linear programming problem shown below:

maximize cj xj (3.16)

subject to aijxi bi Vi E I (3.17)

.r > 0 Vj E J (3.18)

where J is the set of all variables and I is the set of all constraints. Assuming Aij and Bi are random

variables according to a known probability distribution for all constraints i, we can maximize the

objective such that each constraint i is feasible with probability ai. Each constraint can have a

unique ai. According to these assumptions, (3.16)-(3.18) can be transformed to the following::

maximize E czxj (3.19)
jEJ

subject to Pr Aijj 5 Bi ai Vi e 1 (3.20)

Xj _ 0 j E J (3.21)

Charnes and Cooper introduced three variations of possible objective functions for chance con-

strained models which can take on a deterministic form: an expected value optimization (the "E

model"), a minimum variance objective (the "V model"), and a maximum probability model (the

"P model") [22]. In each of these three models, Charnes and Cooper assumed that the values of b

and c can be uncertain. In the following paragraphs we will outline these three models from [22] to

give examples of how chance-constrained programming can be implemented in a linear equivalent

form.

The "E model" using (3.19)-(3.21) and maximizing the expected value of the objective function

E[C'x], assuming C is a vector of random variables. For this formulation, we also assume uncertainty

in the bi's, making the vector B of random variables. We assume we know the probability function

that generates the random variables for C and B. Therefore, each constraint has one uncertain

coefficient Bi. Each Bi can be governed by its own probability distribution. We add the constraints

mxj = djiBi, where dij is determined by reference to (3.20). We can select any probability ai that



constraint i will not be violated. Thus (3.19)-(3.21) become:

maximize E E[Cjxj] (3.22)

JeJ

subject to Pr aijxj • Bi) > ai Vi c I (3.23)

j = E dijBi Vj J (3.24)
iEI

To expand on the use of the dij's as decision variables, we will take the "'E model" in (3.22)-(3.24)

and transition it to a deterministic equivalent. For this model, we assume that the uncertainty in the

c vector is factored out of the problem by using its expected value. The uncertainty in the b vector

is represented by the vector B which contains normally distributed random variables with known

means and variances. In order to achieve a deterministic objective function, we do substitutions

with constraint (3.24). For convenience, we represent the formulation in matrix notation for the

rest of the example. Thus (3.24) becomes x = DB. We substitute it into the objective function to

get E[c'DB) = (E[c])'D(E[B]). We can then define the vectors p' = (E[c])' and ,'s = (E[B])'.

The formulation now becomes:

minimize - pIDIB (3.25)

subject to Pr(ADB < B) > a (3.26)

Now, uncertainty only remains in the B vector. To facilitate subsequent developments, we introduce:

B = B - PB (3.27)

a = (ai ... ,air) (3.28)

B is the deviation from the deviation from the expected value for B and af is the ith row of A. Because we assume that

the elements of the B vector are normally distributed, we know that (afDB - Bi) is also normally



distributed. Assuming that E[Bi - ai'DB]2 > 0 we can do the following:

Pr (a'DB - Bi < 0) = Pr (Bi - a'DB > 0) (3.29)

=Pr (B1 - a'DB -P + aDLB) (3.30)

( Bi - aDB p Bi, - aDIB D(3.31)

E [EB - a'DB]2  E[Bi - a'DB]2

Zi = B - aDB (3.32)
E[Bi - aDBf3]2

so that Zi has zero mean and unit variance. Then by substituting (3.32) into (3.31) we get:

Pr Zi B - aDB > ai. (3.33)
rE[>Bi - a'DB]2 )

We can refer to (3.33) as Fi, where Fi is the cumulative density function of Zi

F ( - aDB > a. (3.34)
VE[Bhi - a'DB]2 )

We can now use the symmetric properties of Zi to achieve a deterministic equivalent . We can do

so by creating K,, which is defined as:

PB - aDB Fi-(ai) = -Ka,. (3.35)
E[Bi - a DB]2

Next we introduce vi defined by:

-- plB + a'DPB < -V- • -Ka, VE[Bi - a'DB]2. (3.36)

From this we have the following equations with vi > 0.

--aBDB - Vi > -jB - K 2E [B - aiDB]2 + d > 0. (3.37)

We can now write the deterministic equivalent for (3.25)-(3.26), which is a convex programming
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problem in the variables D and v.

minimize - c,; D1B (3.38)

subject to piD - vi > 0 Vi E I (3.39)

+K a2(D)+ K,,pi (D) + v? > 0 Vi E 1 (3.40)

vi > 0 Vi E I (3.41)

where ac (D) = E [aL DB - Bi] 2  Vi E (3.42)

(D) = (PB, - a'iDB )  Vi E I (3.43)

The "V model" is set up similarly to yield a deterministic model that minimizes the variance of

the objective function. In other words, we want to minimize the measure of the deviations about

some given preferred value, annotated by zo = (co)'xo. Thus, the model looks as follows:

minimize E [c'x - z0] 2  (3.44)

subject to Pr {Ax < B} > a (3.45)

x = DB (3.46)

As with the "E model," we can substitute in D and change the model to:

minimize V(D) (3.47)

subject to Pr {ADB < B} > a (3.48)

where V(D) = E(c'DB - z0 ) 2  (3.49)

The "P model" has a somewhat unorthodox objective function when compared to those of the

previous two models. Charnes and Cooper call its results "satisficing" as opposed to optimizing.

In this approach, zo is specified relative to some set of values which a human determines to be

satisfactory. Of course, when there is uncertainty in the problem, a human cannot be sure that he

will achieve these satisfactory levels among what lie believes are the available alternatives. Thus,

we now add a probability statement to the objective function and make our goal to maximize

the probability that we achieve a certain satisfactory objective while also ensuring constraints are



satisfied with probabilities a. The formulation looks as follows:

minimize Pr { c'x > zo } (3.50)

subject to Pr {Ax < B} > a (3.51)

x = DB. (3.52)

The above formulation can be made deterministic following similar transformations used to get

(3.38)-(3.43). Charnes further details the structure and use of the "P model" in [24].

One of the major disadvantages of CCP is that in order to create these deterministic equivalent

models presented by Charnes and Cooper, we have to determine how to restrict the uncertain

coefficients so that the constraints are feasible with probability a. For the three models presented

by Charnes and Cooper, uncertainty was assumed to be only in the objective function and in the

right-hand side values. They handled the objective function uncertainty by using the expected

value or minimizing the variance. They restricted the values in the b-vector using the D matrix

so that each constraint i would be feasible with probability ~i. Adding uncertainty into the left-

hand side of the constraints will make much more difficult the determination of how to restrict the

coefficients so that the constraints are feasible with some probability.

3.2.2 Chance-Constrained EBO Model

We applied the model given in (3.19-3.21) to the EBO Model in (3.3)-(3.15). Because we are

maximizing the expectation of the objective function in (3.3)-(3.15), this is similar to the "E

model." However, because we have already incorporated the expected value of causing effects into

the Deterministic EBO Model, we can implement a simpler version of the "E model" than the D

transformations that Charnes and Cooper presented. A basic chance-constrained model can be

represented as follows:

minimize E cjXj (3.53)
jEJ

subject to Eaijxj • F' (1 - ai) Vi E I (3.54)
jEJ

xj>0 VjGJ (3.55)



where F'1 (1 - ai) is the value of Bi which is exceeded ai percent of the time, which we can

determine from the distribution of Bi. Before we can solve this model, we must know at least an

approximate distribution for Bi. Then we can solve for F-1 (1 - ai) accordingly. We can apply this

model to the EBO Model of (3.3)-(3.15) to account for much, but not all of the uncertainty.

The uncertain values discussed in Section 3.2 for the EBO Model, are in the objective function

coefficients, and the constraint matrix coefficients and the right-hand side values of (3.8), (3.9),

(3.10), and (3.11). We deal with uncertainty in the objective function by maximizing the expecta-

tion of the value attributed to causing each effect, E[ce] which becomes EeEE EjE.Iý PTr j Ce. We

ignore the possible uncertainty in [lati, loni] because we treat the minimization of distance we have

to travel to perform tasks as a secondary objective and the uncertainty in task location is not likely

to change which squadron is closest to the task. All other uncertainty resides in constraints (3.8),

(3.9), (3.10), and (3.11). Coefficients in both the left and right-hand sides of these constraints can

contain uncertainty. As stated before, using chance constraints to model uncertainty in both the

left and right-hand sides of constraints is extremely difficult; therefore, we decided to model the

uncertainty only in the right-hand-side of these constraints. They become as shown below:

Pr ri its E A izits •y 7 riits iv + ps ar V t C T, S E S
i|K =isr iKi =lst i K =1isr

(3.56)

Pr rizits t rizits , s-ES (3.57)s
ilKi =st i|Ki=lst

Pr rzit s s t Vt E T .sES (3.58)

Pr ( zitqs • >ap, ýar VtET.sES (3.59)

Where ah is the probability bound that constraint type b for time-period t and squadron s is

feasible.

These four constraints contain all the uncertain coefficients discussed in Section 3.2 except

those in the objective function. v., Ps are only in the right-hand-side. ri is only in the left-land-

side. isr, A•t, and - are in both the right and left-hand sides. As discussed earlier, it becomes



extremely difficult to model uncertainty in more than one coefficient per constraint. This is because

the Aisr, Ast, and y coefficients in the left-hand-side only affect the constraint when certain tasks

are in the plan. Thus, in order to model uncertainty in the left-hand-side we would need a joint

probability distribution for all uncertain coefficients in a constraint that has conditional cases for

each plan containing the different combinations of tasks that are in that constraint. This becomes

an intractable problem.

As a result, we only model uncertainty in the right-hand-side. In the case of constraints 3.56

and 3.57, this causes us to be more conservative than we need to be. For instance, in constraint

3.56, if we want to be increase the probability that we will not violate the constraint, we restrict

the right-hand-side. Since A"sr is part of this restriction, we would also reduce it on the left-hand-

side. Since we cannot do that, we end up planning too conservatively. This limitation of where

uncertainty can be located in the model is a major limitation of CCP. To model uncertainty in

the right-hand-side, we assign a random variable for each uncertain value. This random variable

can be unique to each constraint, but makes more sense to be the same across constraints for each

squadron. We determine the right-hand-side value Aisrvs + -stps, which represents the estimated

aggregate number of ISR tasks squadron s can do per period t. We assume a probability distribution

for each value Aisr" v, st, p, and then determine a joint probability distribution function (PDF)

for the value Aisrv s + AStps . As in (3.53)-(3.55) we then convert the constraints in (3.56)-(3.59) to

the following:

riizits- + AS rizits + -y rizits < FSB, (1 - at,)quadV t E T, s E S (3.60)

ilKi=isr i lKi=lst i|Ki=lisr

rizits + Ast r izits _ F (1 - ats) V t c T, s E S (3.61)
ilKi=st ilKi=ist

rizits _ FB ,(1 - ats) V t E T,s S (3.62)
ilKi=lst

zits FB ,(1 - ats) V t E T, sS (3.63)
ilKi=lisr

When the EBO Model is set up according to these constraints, we call it the Chance-Constrained

EBO Model.

Once we've determined a PDF for the right-hand-side values, we can set them so that the



constraint will be feasible with at least probability at by determining the value of F -1 (1 - at,).

For instance, if we assume AiSrvs + Astps is a discrete uniform random variable from 10 to 20 and we

want to be at least 90% sure that this particular constraint is not broken, then we'd set FB. (1 -ats)

to 11. We can perform similar calculations for all uncertain constraints.

Although different probability bounds can be used for each constraint, we find it convenient to

set all aoB to the same probability. We could then set the whole model to a particular "protection-

level," meaning that each constraint is feasible with at least the probability of the protection-level.

We examine the performance of the Chance-Constrained EBO Model in 4.1.

3.2.3 Extended Chance-Constrained Model

The protection-level method of determining the robustness level is somewhat arbitrary. Because we

are not guaranteed that all constraints are feasible with the probability of the confidence level, but

only that each constraint is feasible with at least that probability, we have little useful information

to signify exactly how robust the solution will be.

For this reason, Barnhart and Marla derived the Extended Chance-Constrained Formulation

(ECCF)[7]. In this formulation, we parameterize a specified budget that we are willing to "give up

from the optimal deterministic solution, and then find the maximum probability of being feasible

(ai) for each constraint according to the budget. When applied to a basic MILP, the ECCF looks

as follows:

maximize 7 (3.64)

subject to c'x < c'x* + 6 (3.65)

Pr(Ax < B) > a (3.66)

7 _ ai Vi EI (3.67)

Where ,7 is the protection-level (maxinmum probability each constraint is feasible that we can achieve

for the budget), x* is the optimal solution to the deterministic problem, and 6 is the budget

parameter. In this formulation we maximize -7, which we constrain as having to be less than or

equal to every ati. Thus we push ai as high as possible for all constraints i or maximize the

minimum protection-level of all constraints. The solution given has each constraint feasible with



at least probability y.

We can extend this model beyond maximizing the minimum protection-level to maximizing the

weighted ai values based on their individual importance, or weights wi. Now, we maximize yji times

the weight assigned to each ai.

maximize E yTii (3.68)
iEI

subject to c Xj czjX + 6 (3.69)

jeJ

p(i < ai Vi E 1 (3.71)

As with the other chance-constrained models, we must find a deterministic equivalent. If we

assume, as before, that all of the uncertainty resides in the vector B, and it is distributed according

to a known distribution, (3.68)-(3.71) has the following deterministic equivalent.

Data Sets

* aij: constraint matrix coefficients specific to problem

* bi: constraint coefficient specific to problem

* wi: weight assigned to protection-level for constraint i

* I: set of all constraints, i E I

* J: set of all variables, j E J

* D: set of deterministic constraints, i E D

* U: set of uncertain constraints, i E U

* K: set of discretized protection-levels, k E K

Decision Variables

* xj: decision variable specific to problem



* y0': 1 if constraint i can achieve protection-level k, 0 otherwise

* 7i: protection-level achieved for constraint i

Formulation

maximize w iTi'

iEJ

I aijxj _ bi

jEJ k=

yI < y

j+6

Vi E D

Vi E Ubb(yi - y 1
1 ..... I

S= 1

y +1 = 0Yi

i_ < >3 k(y" -yk+])
keK

xj > 0

yU E 0, 1

i > 0

Vi E U, k = 1, .... K-1

Vi EU

Vi E U

Vi E U

Vj G J

Vi E I, k = 1,..., K

Vi E I

* (3.72) Maximize the discretized probability that each uncertain constraint i E

according to the weight wi for constraint i.

U is feasible

* (3.73) Maximize the function Ej.J cjxj as long as it is less than the optimal deterministic

objective function cEjJ cjx~ minus some budget 6 we are willing to give up in order to be

robust.

* (3.74) Constrain all constraints that do not contain uncertainty i E D as in the deterministic

formulation.

* (3.75) Constrain all constraints that contain an uncertain Bi value i E U, forcing the left-hand-

side to be less than the value of bý which is feasible with the selected maximum probability

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)



k, as indicated by the yik binary variables. (If we can achieve probability k, then yi is one.

For the largest probability we can achieve k*, the next largest k* + 1 will have yk*+1 equal

to zero. Thus for all k's where we can achieve both k and k + 1, both yk and yk+l will be

one and they will cancel out to zero, but for k*, y' - yk*+1 equals one. In this way, we only

activate the highest probability bi" we can achieve.)

* (3.76) If we can achieve probability k + 1, then we can also achieve k.

* (3.77) We know that because we achieved a feasible solution in getting the deterministic

optimal solution in which we used the expected value of each uncertain value, we should be

able to achieve a feasible solution at the lowest k, which will usually be 0.5 to match the same

probability as using the expected values.

* (3.79) We set K + 1 to zero so if we achieve the highest probability K, constraint (3.75) still

has a right-hand-side value yK - yK+1 that equals one so we can activate bK .

* (3.80) Set yi equal to the highest probability k achieved for constraint i using the same

(yk - yk+1) rule as in constraint (3.75).

* (3.80) All xj's are non-negative.

* (3.81) All yN's are binary.

* (3.82) All yi's are non-negative.

We can apply the ECCF to our Deterministic EBO Model, to obtain a more convenient method

of determining a protection-level for the plan. Because it is difficult to see how a particular

protection-level affects the solution or how protected we really want to be, it might be easier

for a human planner to set how much objective he is willing to give up and protect the plan as

much as possible at that objective. If we want to have equal protection for all constraints, we

can use (3.72)-(3.82), but not subscript yý" by i and only use yk and change the objective to just

maximize -.

Unlike the Chance-Constrained EBO Model, if we apply ECCF to the Deterministic EBO

Model, we do not just solve for the value of the right-hand-side for a particular probability, but

solve the right-hand-side at multiple discretized levels k E K. Depending on how many levels we



want this can greatly increase the problem size. In most cases, we want to start the smallest k at

0.5 since this is equivalent to using the expected values of the uncertain data.

Chance-constrained programming gives us a convenient method of representing the uncertainty

in the model and measures of how protected the solution will be by applying a probability that

each constraint must be feasible. However, chance-constrained programming requires that we

can approximate the distribution of the uncertain data, and it also has difficultly incorporating

uncertainty in more places than the right-hand-side values of the formulation. We now turn to the

Bertsiinas/Sim model, which addresses these issues, but has some shortcomings of its own.

3.2.4 Bertsimas/Sim Model

The Bertsiinas/Sim formulation introduced in Section 2.6.4 is the second robust optimization tech-

nique we apply to the EBO planner. The Bertsimas/Sim formulation [14] provides more flexibility

for modeling uncertain data in different parts of the problem formulation. To develop the Bertsi-

mas/Sim fornmulation, we start with the basic linear programming problem:

maximize c'x (3.83)

subject to Ax < b (3.84)

1 < X < u. (3.85)

In the Bertsimas/Sim formulation, all uncertainty is located in the coefficients of the A matrix. By

a simple transformation, changing the objective function to maximize z and adding the constraint

z - c'x < 0, we can roll the objective function into the A matrix, thus enabling us to consider

uncertainty in the objective function. Similarly, if we have uncertainty in the b-vector, we can

subtract the b-vector values into the left-hand-side and replace the right-hand-side with a zero.

The Bertsimas/Sim formulation assumes no probability distribution for the uncertain coefficient,

but only sets a symmetric range around the deterministic value. Consider a particular row i of

matrix A and let; Ji be the set of uncertain coefficients in row i. Each value aij, where j E Ji, is a

symmetric, bounded random variable that takes on a value in [aij - aij, aij + aij]. For every row i

there is a parameter Fi which takes a value in [0, IJil], but is not necessarily an integer.

The Bertsimas/Sim formulation models the uncertain data by assuming that the majority of



deviation in the constraint can be accounted for by allowing a select number of uncertain coefficients

to go to their worst-case values. The goal is to be protected in all cases where up to LFiJ coefficients

in constraint i go to their worst-case values and one coefficient changes by (Fi - [FiJ )ij. In

other words, we restrict the uncertainty in the constraint to only allow a subset of the uncertain

coefficients to go to their worst-case values. The Bertsimas/Sim formulation guarantees feasibility

if the uncertainty in the coefficients behaves in this manner. Furthermore, Bertsimas and Sim prove

that if more than [FiJ coefficients change, the solution will be feasible with high probability[14].

In order to create this formulation, Bertsimas and Sim start with the following non-linear

formulation:

maximize E czxj (3.86)
jeJ

subject to E aijxj + max I ijyj Z (Fi - [FiJ) itiYt} b Vi EI
J SfU{ti }S•ICJi si= [•riJ,ti EJ/S S

- yj < xjy yj Vi E 1 (3.87)

lj , xj < uj Vj E J (3.88)

yj > 0 Vj E J. (3.89)

For each constraint i, the maxsu{t}ls,c•,, s, =[lij,tirJi/si JY + (Fi -i[Fi ) aitmYt} term

finds the set of Fi pairs of aijxj that increase the left-hand-side of the constraint the most. Thus

the constraint is protected against the worst-case Fi coefficient changes. Note that when Fi = 0

the constraint is equal to the deterministic problem. If Fi = |Ji| then all uncertain coefficients go

to their worst-case and the constraint is equivalent to the Soyster formulation which we discussed

in Section 2.6.1.

Bertsimas and Sim derived the following method to change (3.86)-(3.89) into a linear program.

Given a vector x*, the protection function of constraint i is:

Bi (x*, i) = max x + (F - [F) (3.90)
SjUltiISigCJi,1Si1= LrijtiEJi/, SiE 3 F- Lr)h



Bi (x*) is equal to the objective function of the following linear optimization problem:

Bi (x*, Fi) =maximize E wij ij

subject to E wij <• Fi
jeJi

Vi C I

(3.91)

(3.92)

(3.93)0 < vij • 1 Vj e Ji.

The optimal solution of the above problem consists of Fi variables at 1 and one variable at

(Fi - [Fri). This is equivalent to the subset Si U {ti} ISi C Ji, Sil = LrFi , ti E Ji/Si with the same

cost function {Z & dijx + (Fi - [FiJ) itJ; as given

can be reformulated in the following way:

maximize c xj
jeJ

subject to E aijxj + wiFi +

before. With this in mind (3.86)-(3.89)

(3.94)

Vi e IE Pij bi
eJ J

Vi E I, jE Jiwi + Pij Ž >dijYj

- yj < X- • yj Vj E J

Vj E J

Vi E I,j E JiPij > 0

yj > 0

Zvi > ()

Vj E J

Vi E I.

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

In order to understand this reformulation, we must consider the dual of (3.86)-(3.89) which is:

minimize E Pij + FiWi
cjJi

subject to wi + Pij > etij Ix I Vi E I,j E Ji

Vj E JiPij > 0

wZi > 0

(3.102)

(3.103)

(3.104)

(3.105)

1.j _ Xj < "-j



By strong duality, because (3.91)-(3.93) is feasible and bounded for all Fi E [0, IJi|], then the dual

problem is also feasible and bounded and its objective function value coincides with that of the

primal. Because Bi(x*, Fi) is the protection limit of constraint i, it is also the objective function

value of the dual problem. When we substitute this to (3.86)-(3.89), we get (3.94)-(3.101).

If k = E• IJil, then (3.94)-(3.101) increases the problem size of the (3.86)-(3.89) from i + 2k

variables and j + 2k constraints to i i+ k + 1 variables and j + k + i constraints. However, it maintains

the scarcity of the A matrix, which is advantageous for the performance of many algorithms.

3.2.5 Bertsimas/Sim EBO Model

We can add robustness to the Deterministic EBO Model by converting it to the Bertsimas/Sim

formulation. To each constraint containing uncertainty, we add the Fi parameter, dual variables

Puts, and new decision variable zu; and we constrain them as shown in (3.94)-(3.101), where u E U

denotes the uncertain coefficients in each constraint. Representing the Bertsimas/Sim formulation

applied to the EBO Model for all constraints requires indices indicating from which constraint each

Fi, dual variables puts and Zu, and the right-hand-side values come. Notation in this representation

becomes very confusing, so we just present the Bertsinmas/Sim formulation applied to one constraint,

(3.9):

r it + st A• rizips + wlU rF + E puts - stvb 0 V t E , E S (3.106)
ilKi=st ilK.=lst uEU

Wts + Puts 2 uy Vt E T,s E S, u E U (3.107)

b=l 1 (3.108)

Puts > Vt E T, s E S, u EU (3.109)

Yu O 0 Vu EU (3.110)

Wts >0 Vt E T, s S (3.111)

au is the range value of each uncertainty coefficients it. In practice we do not formulate the

Bertsimas/Sim formulation in this way, but instead we find the complete A-matrix, b-vector, and

c-vector for the problem, and then formulate it according to (3.94)-(3.101). We create an A matrix

which contains the information about the uncertain coefficients and has a zero for all deterministic



values and a Fi vector which has zeros for all constraints not containing uncertainty.

Unlike chance-constrained programming, Bertsimas/Sim allows us to model uncertainty in any

part of the problem formulation. Each uncertain constraint has its own unique Fi parameter.

Bertsimnas/Sim (does not require that we know the distribution of the uncertain data, but that we

just assume it comes from a bounded symmetric distribution. Beyond the complicated probability

bounds given in Section 2.6.4, Bertsimas/Sim does not have intuitive probability statements like

chance-constrained programming. Interpreting the amount of robustness a particular Fi achieves

in the solution is difficult.

Like chance-constrained programming we also find it convenient to determine some overall

protection-level for the Bertsimas/Sim formulation. We define the Bertsimas/Siim formulation

protection-level as the percent of uncertain coefficients in each constraint that go to their worst-

case values. For instance if there are 4 uncertain variables in a coefficient, the maximum Fi we can

have for that constraint is 4, and its minimum is 0. If we were to set the protection-level for that

constraint to 0.5, then we would set Fi to 2. If we set Ti similarly for all constraints, we would say

that the protection-level for the entire formulation is 0.5.

3.2.6 Extended Bertsimas/Sim (Delta) Formulation

Like the ECCF, Barnhart and Marla also extended the Bertsimas/Sim formulation to maximize the

protection of the solution, subject to maintaining some objective function value[7]. The Extended

Bertsimas/Sim or Delta Formulation, works much like the ECCF and can also be applied to the

EBO Model. As with the ECCF, the Delta Formulation was designed because it is difficult for a

user to define the level of protection for every constraint. Furthermore, a human planner is generally

more concerned with the benefit achieved by executing the plan than the amount of protection;

thus, it is easier for a human to specify a benefit value to give up than a protection-level to attain.

In the Delta Formulation, the objective is to maximize the minimum protection-level of all

uncertain constraints, which we call v. To do this, we no longer use the parameter Fi but define

a new variable Ai, which is the number of uncertain coefficients in constraint i that we plan on

not deviating from their expected values. Ai now represents the opposite of Fi (that is, number of

coefficients not changing versus the number of coefficients that go to their worst-case value.)

The Delta formulation requires that we first order all of the decision variables xj in increasing



order of their respective aiij values. The order of the jth column in the i th row is annotated by 1.

For example in constraint i, if variable j is has the smallest aij value its 1' value is 1. If, however it

has the highest &ij value, its 1. value is equal to the number of uncertain coefficients in constraint

Decision Variables

* xj: binary decision variable specific to problem

* sij: decision variable, equal to 1 if coefficient aij can not go to its worst-case value or if the,

O otherwise

* zij: binary decision variable, equal to 1 for row i and all j = lP indicating the set of variables,

if in the solution, whose coefficients can take on their boundary values in the ith constraint.

As such, the zils follow the function show in Figure 3-7

zil

column

Figure 3-7: Function of zil variables

* Ai: integer decision variable, the number of coefficients in constraint i that do not take on

their worst-case value

Data

* aij: constraint coefficients specific to problem

"I



* &ij: range aij can vary up or down

* bi: constraint coefficient specific to problem

* I: set of all constraints

* J: set of all variables

* N: number of variables

* Pi: order index of variable j in constraint i

* x: solution to deterministic problem

* 6: budget specified by user that he is willing to give up from the deterministic solution value

in order to have a robust plan



Formulation

minimize

subject to:

v

cjx, j CjZ x -J
jeJ jEJ

v>A

E(aij + hU)xj
jiEJ

N

A > Z [1(zil
1=0

N

A> E sit
/=0

sij • Xj

sij < z± ~

8ij Xj -+ Zili

Zi =- 1

Zi(N+1) = 0

zil+1 zxil

xj E {0, 1}

zij E {0, 11

sij E [0, 1]

* 3.112: Minimize the maximum

out of all constraints.

- E iij < b-
jcJ

Vi E I

Vi e I

Vi E I-Zi(I+1)) - +

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

Vi E I

Vi E I, jE J

Vi E I, j E J

Vi E I, j J

Vi E I

Vi E I

Vi EI, lE J

Vi e I

Vi E I,j C J

Vi E I, j E J

number of coefficients that cannot go to their worst-case value

* 3.113: The objective function value must be at least as good as the deterministic objective

function value minus a user specified budget, 6.

* 3.114: Set (v) as greater that or equal to the maximum number of coefficients that cannot go

to their worst-case value out of all constraints.

* 3.115: For constraint i, for all coefficients j that cannot go to their worst-case value set sij



equal to 1.

* 3.116: Set Ai as greater than or equal to the number of coefficients in constraint i that cannot

go to their worst-case value. All coefficients that cannot go to their worst-case value have zil

and sipt set to 1. Thus, the function [l(zi - zi(+,) - (silj + zinl)] will only return a non-zero

value in the two cases listed below and it counts the number of coefficients associated with

the variables in the solution that cannot go to their worst-case value. For I where zil is 1 and

z 1i+ is zero (all other coefficients with order greater than 1 can go to there worst-case values)

the function [l(zi - zi(l+L)) - (sit + zil) will return the value I less the number of variables

ranked ahead of the 1th variable in the ordered list for constraint i.

* 3.117: Ensures that the number of variables that cannot go to their worst-case values is at

least equal to the number of variables with s value of 1 (s = 1 if x = 1 and the feasibility

constraints are not satisfied unless coefficients remain at their nominal values).

* 3.118: Set sij to zero if xj is zero in the solution.

* 3.119: Ensure z il is equal to to 1 if sij is equal to 1, otherwise the model could pick the

variable with the largest coefficient &. and only one variable could not go to its worst-case

value. This ensures that we estimate the worst-case number of variables that cannot go to

their worst-case value.

* 3.120: This ensures that if x and z are both 1, then s must be 1.

* 3.123: Ensure that the zils are monotonic.

* 3.121: Ensure that the zero ranked zil value is 1.

* 3.122: Ensure the highest ranked zil value is 0.

* 3.124: The rj, are binary.

* 3.125: The zijs are binary.

* 3.126: The sijs are in [0, 1].

Unfortunately, the Delta Formulation is not amenable to column generation, which greatly re-

duces its tractability for large-scale problems. Because the theater-level problem can be a very



large-scale problem, it might be intractable for realistic sizes when attempted with the Delta For-

mulation.

3.3 Summary

In this chapter, we presented the EBO Framework and applied it to the Deterministic EBO Model.

We ran the Deterministic EBO Model on a small example and explained the solution. We pre-

sented our greedy algorithm to which we will compare the performance of the Deterministic EBO

Formulation. We applied the Deterministic EBO Formulation to chance-constrained programming

and Bertsimas/Sim, giving two options for finding robust plans. We also presented the ECCF and

Delta Formulation, which allow us to maximize the protection of a solution subject to an objective

function level.

We now move to testing how well the models perform. We will compare the Deterministic EBO

Formulation against the greedy algorithm. We will look at how often the deterministic formulation

produces infeasible results under uncertainty. We will compare the performance of the robust

models against that of the deterministic formulation and those of each other. We will also look for

ways to recover a plan once it is determined to be infeasible without having to do an entire re-plan.



Chapter 4

Model Testing and Analysis

The primary goal of robust planning is to create plans that last longer and require fewer re-planning

iterations than deterministic plans. In large planning problems, such as theater planning of air

assets, re-planning costs can be significant. By avoiding re-planning costs, robust plans achieve more

value than deterministic plans. We want to determine if robust planning formulations presented in

Chapter 3 produce plans that will last longer and require fewer re-plans than deterministic plans.

We also want to compare the performance of the EBO Model to the performance of current planning

techniques. In this chapter, we analyze the ability of the Chance-Constrained EBO Model from

Sections 3.2.2 and the Bertsimas/Sim EBO Model from Section 3.2.5 to make plans last longer

and require fewer re-planning iterations; we compare the performance of these models with the

performance of the greedy algorithm from Section 3.1.6; and we compare, in various scenarios and

under different kinds of uncertainty, the performance of the Chance-Constrained EBO Model to

the perfornmance of the Bertsimas/Sim EBO Model.

4.1 Robust Model Testing

We want to determine how the robust EBO models perform. We step through several small sce-

narios to highlight specific performance attributes of the models. We hypothesize that robust

plans created by both the Chance-Constrained and Bertsimas/Sim EBO Models encounter fewer

constraint violations, encounter violations in later time-periods, and require less re-planning than

plans generated by the Deterministic EBO Model. We also hypothesize that the achieved value of



a robust plan, created by either the Chance-Constrained or Bertsimas/Sim EBO Model, will be

greater than the achieved value of a plan generated by the Deterministic EBO Model; because the

robust plans encounter fewer constraint violations in execution, allowing more of the plan's value

to be achieved without re-planning.

4.1.1 Simulation Approaches

We can analyze a plan's performance using several methods. One method is to generate a plan;

simulate running the plan in a dynamic, uncertain environment; and re-plan when the deviations

in the environment are such that the plan is no longer feasible. In doing so, we can measure how

many times we have to re-plan, how long our plan lasts before requiring a re-plan, estimate the

costs of re-planning, and compare the value we gain by performing the robust plan as opposed to

the deterministic plan. For the theater-level planning problem, this method requires a closed loop

simulation with lower-level planners that create individual aircraft routings. This kind of simulation

is very difficult to create and tends to be computationally expensive.

A simpler method for analyzing a plan's performance is to first generate a plan, then generate

realizations of the uncertain data that exists in the plan. We can test the plan against the real-

izations to determine the number of constraints that are violated, the frequency that we violate

constraints, and the time-period in which the plan first encounters a violation. This kind of sim-

ulation is often called Monte Carlo Simulation. Monte Carlo Simulation is our primary tool for

analyzing the performance of the models presented in Chapter 3.

4.1.2 Test Scenario Structure

To test the performance of the EBO Models we created the scenario shown in Figure 4-1. We use

this scenario to demonstrate the performance of the Chance-Constrained and Bertsimas/Sim EBO

Models based on several different metrics. This scenario demonstrates how different protection-

levels affect the plan and demonstrates several non-intuitive aspects of the performance of the plans.

We use this scenario because it contains task-sets that share tasks, task-sets that are completely

contained within other task-sets, solves quickly even when doing many test runs, is small enough

to display the plan visually to gain insight into what is included in the plan, and is small enough to



Figure 4-1: Test Scenario

stay within memory constraints of the computer when manipulating results and generating many

realizations. This scenario contains 4 effects, 8 task-sets (which combine to form 14 TSGs), 36

tasks, and 6 time-periods. There are 3 squadrons each with 4 strike UAVs and 1 ISR UAV. We set

the expected value of Ast (the number of strike tasks a strike UAV can perform per time-period)

as 2, A"'s (the number of ISR tasks a strike UAV can perform per time-period) as 2, and n- (the

iumber of ISR tasks an ISR UAV can perform per time-period) as 4.

Uncertain Coefficients

We considered uncertainty in the same coefficients when running both the Chance-Constrained

and Bertsimnas/Sim EBO Models on this scenario. Because the Chance-Constrained EBO Model

allows uncertainty only in the right-hand-side of the constraints, we were limited to uncertainty

in this area. The uncertain coefficients that we modeled were the number of each type of UAV

available per squadron (p, and vu) and the aggregate number of tasks a squadron can perform in a

time-period (A•ir , At, ). We set the maximum variation from the expected value of each uncertain

coefficient to be one-half of the expected value. For instance, if the expected value of A"sr is 4,

we allowed it to vary between 2 and 6. We modeled the uncertain coefficients as uniform random

variables within these windows. Modeling the uncertain data in this way might assume uncertain

values that vary more than they would in reality; however, the large variations serve to highlight

the performance of the models at different protection-levels.



Protection-Levels

We solve the Chance-Constrained and Bertsimas/Sim EBO Models at increasing protection-levels

across the range of protection possible in both models. Because the Chance-Constrained and

Bertsimas/Sim EBO Models protect the solution differently, the definition of a protection-level for

each model is different.

For the Chance-Constrained EBO Model, we define a protection-level as setting the right-

hand-side so that each constraint will be feasible with probability equal to the protection-level. For

instance, setting a protection-level of 75% means that we solve the model where the right-hand-side

is such that each uncertain constraint will be feasible with probability 0.75. A 50% protection-level

is the same as using the expected value of every uncertain coefficient in the model which is also

the same as the deterministic case, assuming that the uncertain coefficients vary according to a

symmetric distribution. Thus, it makes little sense to plan at a protection-level less that 50% using

chance-constrained programming, because we would be planning for the data to take on values

higher than their expected value creating a less robust plan than the deterministic plan. A 100%

protection-level means that we set the data such that we guarantee none of the constraints will

encounter any violations in the realization of the uncertain data.

For the Bertsimas/Sim EBO Model, we define a protection-level as the percent of uncertain

coefficients in each constraint containing uncertainty that take on their worst-case values. For

instance, if we set the Bertsimas/Sim model to a 50% protection-level 50% of the uncertain coeffi-

cients in each constraint take on their worst case value. Recall that the Bertsimas/Sim EBO Model

finds the Fi coefficients in each constraint i that are the most detrimental to the solution if they

go to their worst-case value. For Bertsimas/Sim, a protection-level of 0% is the same as the deter-

ministic plan, as opposed to 50% for chance-constrained programming. It then solves the problem

with those coefficients at their worst-case values. Thus, if we have a constraint with 4 uncertain

coefficients, setting a protection-level of 75%, would mean that Fi would be 3 for this constraint,

and the solution would reflect planning for the case where the 3 most detrimental coefficients are

at their worst-case values. Like, the Chance-Constrained EBO Model, 100% protection-level for

Bertsimas/Sim means that each constraint is guaranteed to be feasible in the realization of the

uncertain data.



4.1.3 Simulation Function

To solve all of the models at each protection-level we used Xpress Mosel Version 1.6.0, Optimizer

Version 16.01.02 on a 3.2 GHz Pentium 4 with I GB of RAM. We generated realizations of the

uncertain data for each plan generated to test the models. We generated all realizations inde-

pendently (i.e. a realization that affects the performance of a squadron in timne-period 1 has no

effect on other realizations in subsequent time-periods or for other squadrons.) For each constraint

and realization, we then multiplied the solution variables with the left-hand-side coefficients and

conlpared this to their respective right-hand-side realized value. This process required the use of

several different programs to handle processing between data files, data. parsing, formulating the

models, solving the models, and generating results. We outline the simulation process in Figure

4-2.

There was little run-time difference between the Deterministic EBO Model, Chance-Constrained

EBO Model, and Bertsimas/Sim EBO Model when solving the scenario shown in Figure 4-1. Each

protection-level iteration for both the Chance-Constrained EBO Model and Bertsimas/Sini EBO

Model solved to within an optimality gap of 0.001% in less than 10 seconds. However, generating

3000 realization for each protection-level and testing them against constraints took significantly

longer than finding the solutions to the models; this process took roughly 45 min for this scenario.

For the simulations in this section, we chose to use 3000 iterations: because we found no signifi-

cant change in the resulting statistics when using more than 1000 realizations, and the realizations

were the primary factor affecting simulation run time. At 3000 iterations, we were able to run each

simulation within a few hours and ensure that we did enough iterations to avoid anomalous behav-

ior due to outlying realizations. We used the same realizations on both the Chance-Constrained

EBO Model and Bertsimas/Sim EBO Model for similar protection-levels. For instance, the same

3000 realizations were used for 50% protection-level for the Chance-Constrained EBO Model and

0% protection-level for the Bertsimas/Sim EBO Model.

4.1.4 Robust Model Results

The results of running the Chance-Constrained and Bertsimas/Sim EBO Models on the scenario

from Figure 4-1 are shown in Tables 4.1 and 4.2. For each protection-level we generate 3000

realizations of the uncertain data and compare the performance of the plan at each protection-level
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to the realizations to determine the mean frequency of constraint violation (percent of realizations

that cause a constraint to be violated, averaged over all constraints); the mean percent of constraints

violated (percent of uncertain constraints that are violated in one realization, averaged over all

realizations): and the mean time-periods until the plan fails (minimum time-period of a constraint

that is violated per realization, averaged over all realizations).

Table 4.1: Chance-Constrained EBO Model Results
Protection- Obj. Funct. Mean freq. Mean Time-Period

Level Value of Cstr Viol. Until Plan Fails
50 346.3 0.1721 2.167
55 343.76 0.0476 3.576
60 343.76 0.0479 3.536
65 343.76 0.0489 3.520
70 343.76 0.0480 3.531
75 343.76 0.0481 3.479
80 300.16 0 7
85 300.16 0 7
90 300.16 0 7
95 300.16 0 7
100 300.16 0 7

3000 realizations, uniformly distributed uncertain coefficients,
50%1 variation from expected value

Table 4.2: Bertsimas/Sim EBO Model Results

Protection- Obj. Funct. Mean freq. Mean Time-Period
Level Value of Cstr Viol. Until Plan Fails

0 346.27 0.1107 1.6607
10 343.75 0.0160 4.5540
20 343.75 0.0243 4.1243
30 343.75 0.0435 3.7647
40 343.75 0.0429 3.5947
50 343.75 0.0272 3.7580
60 300.17 0.0063 6.1750
70 300.17 0 7
80 300.17 0 7
90 300.17 0 7
100 300.17 0 7

3000 realizations, uniformly distributed uncertain coefficients,
50% variation from expected value



4.1.5 Objective Function Behavior

We notice that for both models the objective functions move down in steps as the protection-level

increases. The Chance-Constrained and Bertsimas/Sim EBO Models generate the same objective

function steps for similar protection-levels. Protection-levels 50 and 0 for the Chance-Constrained

and Bertsimas/Sim EBO Models respectively, represent no protection of the problem and are

the same as the deterministic problem. The first step down includes protection-levels 55-75 and

10-50 for the Chance-Constrained and Bertsimas/Sim EBO Models respectively, and the second

step includes protection-levels 80-100 anid 60-100 respectively. The slight difference between the

objective function values of the Chance-Constrained and Bertsimas/Sim EBO Models in these steps

is due to the different assignments between squadrons which occur because we only solve within a

bound of optimality instead of all the way to optimality; but the same tasks, task-sets, and effects

are assigned in both plans. Figure 4-3 shows which tasks, task-sets, and effects are being assigned

in the plans used that generated the data in Tables 4.1 and 4.2.

In most cases, there are nmultiple solutions that achieve the same value (have the same tasks,

task-sets, and effects assigned to the same squadrons) that differ in the time-periods that tasks are

assigned to squadrons. This difference in time-periods does not affect the objective function value,

but does affect the tightness of constraints and hence the frequency and number of constraints

violated when the uncertain data is realized. We will discuss this phenomenon further in Section

4.1.6.

The stepwise movement of the objective function shows the all-or-nothing nature of EBO. In

order to cause an effect, the plan must assign all tasks in a task-set. If we lose the capacity to

perform just one task in a task-set, we lose the value of the effect it causes. As we incrementally

increase the protection-level, we plan to have less capacity to do tasks with each squadron. As

such, we cannot do as many tasks and task-sets. The steps in the objective function value can be

clearly seen in Figure 4-4. The solid line at the top of the graphs is the objective function value.

Notice that it steps down as we increase the protection-level and the steps are almost identical for

both the Chance-Constrained and Bertsimas/Sim EBO Models.



(a) Protection-Level 0 for Bertsimas/Sim and 50 for Chance-Constrained

(b) Protection-Levels 10-50 for Bertsimas/Sim and 55-75 for Chance-Constrained

Figure 4-3: Plans Generated for Medium Scenario

(c) Protection-Levels 80-100 for Bertsimas/Sim and 60-100 for Chance-Constrained

Shading of tasks, task-sets, and effects means they are assigned in the plan.
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4.1.6 Frequency of Constraint Violation and Percent of Constraints Violated

Figure 4-4 also shows the mean frequency of constraint violation for constraints containing uncer-

tainty for the plans generated by the Chance-Constrained and Bertsimas/Sim EBO Models. This

data is also in Tables 4.1 and 4.2. Notice that the mean frequency of constraint violation tends

to step down with the objective function; however, as shown in Figure 4-4 (a), the decrease is not

always monotonic like the objective function's decrease.

The mean frequency of constraint violation can be a confusing and somewhat misleading statis-

tic. The mean frequency of constraint violation is the percent of realizations that cause a constraint

to be violated, averaged over all constraints containing uncertainty. This is a different statistic than

the mean percent of uncertain constraints violated in each realization. The mean frequency of con-

straint violation equals the mean percent of constraints violated, but the variance of each statistic

is different. This is because both statistics are double means of the same data (the means are

calculated in reverse order.) The mean frequency of constraint violation is the mean number of

realizations causing a violation averaged over all constraints. The mean percent of constraints vio-

lated is the percent of uncertain constraints violated per realization averaged over all realizations.

Although these statistics are related, they give different information about the performance of a

plan.

We demonstrate the difference between the frequency of constraint violation and percent of

constraints violated in Figure 4-5. Each data point in the box plots in (a) and (b) represent

the frequency of constraint violation for each uncertain constraint; each box plot in (a) and (b)

contains one data points for each uncertain constraint in the formulation. Each box plot in (c) and

(d) contains 3000 data points, one for each realization.

In grap)hs (a) and (b) of Figure 4-5, the median frequency of violation across all protection-levels

is zero. In each plan, there tends to be a relatively small percentage of the uncertain constraints

that are tight enough to be violated. These constraints tend to have high frequencies of violation,

whereas the rest, of the constraints are never violated. Many of the non-violated constraints are

not in the plan, meaning they have a left-hand-side value of zero. We can get a better picture of

the distribution of the frequency of violation by looking only at those constraints which are in the

plan. which we call "active" constraints. An example of an active constraint, might be (3.9) from

Section 3.1.4 where we introduce the Deterministic EBO Model. (3.9) enforces that we cannot
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assign squadron s to do more strike tasks in time-period t than the squadron's capacity. If our

plan dictates that squadron s does at least one strike tasks in time-period t then the constraint

is active. If, however, the plan has no strike tasks assigned for squadron s in time-period t, then

the constraint can never be violated and we call it non-active. Figure 4-6 plots the frequency of

violation and number of constraints violated for only active constraints.

50 5M 60 65 70 75 n 0 85 90 95 100
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(a) Chance-Constrained Frequency of Active Con-
straint Violation

Protection-Level (% of Worst Case)
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Figure 4-6: Frequency and Percent Active-Uncertain Constraint Violation Box Plots

In graph (d) of Figure 4-6 we notice that the median percent of constraints violated is non-

monotonic across the protection-levels. Graph (c) does not demonstrate this behavior. Upon close

inspection, we find that this is not a function of the way the Bertsimas/Sim EBO Model solves the

problem, but more a function of which of the multiple optimal solutions the solver settles upon.
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Recall from Figure 4-3 (b) that the same tasks and task-sets are assigned in plans across a broad

range of protection-levels. Although these plans contain the same effects, task-sets, and tasks for

each protection-level, the time that tasks are assigned to squadrons changes. These changes do not

result in a change in the objective function, but might results in significant changes in how many

constraint violations occur when we generate realizations.

In general, we might assume that increased protection causes fewer constraint violations. This

is not always the case, as we see in Figure 4-7 where the curve for mean percent of constraints

violated is non-monotonic. This non-monotonic behavior is because the time-period in which a task

is assigned does not affect the objective function. Thus, there can be multiple optimal solutions

at each protection-level. Each optimal solution assigns the same tasks to the same squadrons, but

might assign those tasks in different time-periods, which sometimes creates tighter constraints and

more constraint violations. We can see this by looking at the plans from the protection-levels that

demonstrate the non-monotonic behavior.

12

10

11S lbi 2b 3b 4b 5b 6b6 I
Protection-Level (% of worst case)

a(

94 a"
o

92 "

90

88

me_

0-

Figure 4-7: Bertsimas/Sim Objective Value and Percent of Uncertain Constraints Violated

To highlight this, we focus only on those constraints that regulate strike tasks. There is one

100

% Change in objective
m- - Mean % of uncertain const. vio. (3000 iterations)

------- Standard dev of % of uncertain const. vio.
A Max % of uncert. const. vio.
V Min % of uncert. const. vio.

A

~· \~ ---- AA---
A-Z ~

I. '. . I -I

vn 51P P I

)-

1-

-- -- -· -· ~ P



Table 4.3: Bertsimas/Sim Strike Constraint Left-Hand-Side Values

Protection-Level 10 20 30 40 50
Constraint (time,squad) LHS Value LHS Value LHS Value LHS Value LHS Value

(1,1) 6 6 0 6 6
(1,2) 4 4 4 4 4
(1,3) 4 4 4 4 4
(2,1) 0 0 6 0 0
(2,2) 4 4 4 4 4
(2,3) 6 6 6 6 6
(3.1) 2 2 0 0 0
(3,2) 4 0 6 2 6
(3.3) 4 4 4 4 4
(4.1) 2 0 2 0 2
(4,2) 0 4 0 4 0
(4.3) 4 6 4 6 4
(5,1) 2 2 0 0 0
(5,2) 0 0 0 0 2
(5,3) 0 0 2 6 0
(6,1) 2 2 0 0 2
(6,2) 4 4 6 2 4
(6,3) 4 4 4 4 4

Num. Possibly Violated 2 3 4 4 3
Total Assigned 52 52 52 52 52

Obj. Funct Value 343.76 343.76 343.76 343.76 343.76

strike task constraint for each squadron s in each time-period t, 18 total for this scenario. Each

squadron has 4 strike UAVs with a capacity to perform 2 strike tasks per time-period. Therefore,

the expected value of strike tasks each squadron can perform per time-period is 8, which is the

right-hand-side value of the strike task constraints. We consider this value uncertain, and as we

said before we modeled it as a uniform random variable that can vary up or down 50%. of the

expected value, in this case between 4 and 12.

Table 4.3 shows the left-hand-side value of the strike constraints at protection-levels 10 through

50, in which the planned achieved objective value is the same but the percent of constraints violated

varies considerably. These values show that different time assignments cause changes in the number

of constraints that can be violated.

In Table 4.3, any value that is larger than the minimum possible value of the right-land-side

(which is 4) indicates a constraint that can be violated. The number possibly violated increases

from 2 to 3 to 4 and then decreases back to 3 across the protection-levels, which matches the
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behavior shown in Figure 4-7. Notice that for all protection-levels the same number of strikes are

assigned (52); these strikes are simply distributed differently among the time-periods.

The difference in which time-periods tasks are assigned is not a function of the formulation,

but a function of which optimal solution the solver finds first. Thus, this behavior also sonmetimes

occurs in the Chance-Constrained EBO Model results, though it did not do so in this scenario.

To avoid this behavior, we need to force the model to distribute tasks equally among time-periods

without loosing value in the objective function after finding the optimal objective function value.

Further complicating the results, some scenarios display non-monotonic frequency of violation

and percent constraints violated behavior for a different reason. If there is a very demanding task

(such as a strike mission that requires many UAVs to attack at once) that is connected to a very

valuable effect, we may plan to do this task at the expense of performing many other less demanding

tasks that achieve less value. If we increase the protection-level, we may plan to have too little

capacity to do the one demanding task and choose to do the many less-demanding tasks. Because

the one demanding task only activates one constraint., the plan using the other tasks may actually

generate a mean frequency of constraint violation and a mean percent of constraints violated greater

than those of the first plan even though we have increased the protection-level.

We demonstrate this phenomenon in the scenario shown in Figure 4-8. For the plan in (a), we

plan to cause the third effect because it has a value higher than the combined value of effects 1 and

2. Effect 3 however, causes us to use all of our strike capacity for time-period 1. This prevents us

from causing effects 1 or 2. As we increase the protection-level to 10 for Bertsimas/Sim, we limit

the capacity that we plan to do for each squadron and time-period. This prevents us from doing

the demanding strike tasks of effect 3 that require 4 UAVs each. However, we can assign the tasks

of effects 1 and 2, which never require more than 3 UAVs per time-period per squadron. In doing

effects 1 and 2 instead of effect 3, we now have more protected constraints and we have a greater

number of active constraints. None of the constraints in plan (b) is violated as often as those in

plan (a), but since there are a greater number of them that can be violated the mean frequency of

constraint violation and the mean percent of constraints violated are higher.

This is a case where we also need to look at the statistics for only active constraints. In Figure

4-9 we compare the performance for all uncertain constraints versus active uncertain constraints

when solved with the Bertsimas/Sim EBO Model. In (a) and (b), we see an increase in both
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the mean frequency of violation and mean percent uncertain constraints violated as we raise the

protection-level from 0 to the 10-30 range. In (c) and (d) we see that if we only consider the active

constraints, the increased protection decreases the mean frequency of violation and mean percent

of constraints violated.

This behavior causes us to conclude that the mean frequency of violation and the percent con-

straints violated can be inconsistent measures of robustness and the quality of a plan cannot be

determined with these two metrics alone. Although (c) shows that the few active constraints in the

plan at protection-level 0 are violated often, it does not necessarily mean that it is a worse plan

than those for protection-levels 10 and 20. To actually determine which plans will last longer and

in the end give us more value we will need to look at other metrics, particularly the expected time
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until the plan fails.

4.1.7 Time until Plan Fails

A more accurate measure of the performance of a plan is the minimum time-period in which a

violation occurs. This first constraint violation gives us the time until the plan fails. We hypothesize

that as we increase the protection-level for a plan, the mean time until failure will also increase.

We expect this because there should be fewer violations for more protected plans; and with fewer

violations, the average time-period until we come across the first violation with be later.

Using the same results from the simulation runs given in Section 4.1.4, we can generate the

graphs in Figure 4-10. Again, we see non-muonotonic behavior in Bertsimas/Sim as we saw with

frequency of constraint violation and percent constraints violated. The reasons discussed in Section

4.1.6 (differing time assignment, while assigning the same tasks and task-sets) play a role in creating

the non-mnonotonic behavior in time until failure. However, time until failure is also affected by the

time-windows in which we can assign tasks. If we have a scenario with many tasks required in early

tinme-periods and few in later time-periods, we will likely have a low mean time-period until the

plan fails. However, in scenarios with relatively evenly spread task time-windows we get a general

upward trend in mean time-periods until the plan fails.

ITo determine which factors are causing the non-monotonic behavior, we look closer at when

the first constraint violations occur, using the hazard rate plots in Figure 4-11. In these plots,

the shading represents the percent of realizations that cause the plan's first constraint violation at

each time-period. Darker shaded squares means a greater percent of realizations caused violations,

whereas lighter means a smaller percent of violations. The numbers in each square show the number

of realizations that cause the plan to encounter its first violation in that time-period. The numbers

at the top of the graph represent the total number of realizations that do not encounter a violation

for the whole length of the plan.

The shading is based on the percent of all realizations that cause the plan to encounter its

first violation out of all that have not yet encountered a violation. For instance, in plot (a) for

protection-level 55 in time-period 1, there were 733 realizations that caused a constraint violation

out of 3000 realizations. This is 24% of the realizations, so the square is shaded accordingly as

per the color scale on the right-hand-side of the graph. In time-period 2, 588 realizations caused
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a violation out of the remaining 2267 realizations that have not yet failed. This is 25.9% of the

remaining 2267 realization and the cell is shaded accordingly.

The hazard rate plots help to illuminate when and how often violations occur and which

protection-level actually gives the best plan. All plans after protection-level 75 for the Chance-

Constrained EBO Model and 60 for the Bertsimas/Sim encounter no violations. For no protection

in both plots, we see that only a handful of realizations do not encounter any violations.

For protection-levels 10-50 for the Bertsimas/Sim EBO Model and 55-75 for the Chance-

Constrained EBO Model, we can now clearly see the differences in the plans that results in the

different constraint violation rates. The Bertsiimas/Sim EBO Model plans change significantly over

this range. Each protection-level reveals that the tight constraints that are causing the violations

have been moved to different time-periods. Protection-level 10 is clearly the best plan in this range,

having 1679 realizations that never encounter a violation.

The Chance-Constrained EBO Model's plans are all the same across protection-levels 55-75.

The Chance-Constrained models actually perform worse than the Bertsimas/Sim Model for in

all similar protection-levels. This does not indicate that the Chance-Constrained model typically

performs worse than Bertsimas/Sim, but for this scenario, it happens to solve to solutions, which

cause more violations.

The primary reason for the difference in performance between the Chance-Constrained EBO

Model and Bertsimas/Sim EBO Model is the different time-period assignments that occur across

plans that include the same tasks, task-sets, and effects. These different time-period assignments

are a function of which of the multiple optimal solutions the solver first settles upon and not a

function of the model itself.

The hazard rate plots show that as we protect the plans, we tend to decrease the number of

violations and thus increase the chances that the plan will last longer. There can be variation in the

performance of plans within the protection-levels that achieve the same objective function value.

This scenario shows that we do not have to use a protection-level of 100 to achieve no violation,

even though this is the only protection-level where encountering no violations is guaranteed. The

plans never encounter a violation after protection-level 75 for the Chance-Constrained EBO Model

60 for the Bertsimas/Sim EBO Model. This is due to two reasons: the models use integer constraints

and many of the tasks require nmultiple vehicles.
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An example of how the integer constraints affect the plan is that we may constrain that a

squadron's ability to perform strike tasks varies uniformly between 4 and 12. To be 90% certain

that we will not violate this constraint, we cannot assign more than 4.8 tasks to that squadron.

Obviously, we cannot assign fractions of a task, so we must round down. As a result., we end up

protecting more than the protection-level indicates.

This behavior is compounded by many tasks that require more than one aircraft to be assigned

to them. In this scenario, we have several tasks that require 4 strikes and the expected capacity of

squadrons to be able to do strike tasks in one time-period is 8 strikes. For a higher protection-level

we might be constraining that we can only do 7 strikes in a time-period, but since the tasks cost

4 strikes, we'll only be able to assign one of these tasks to a. squadron per time-period. The only

case in which we can assign two of these strike tasks to one squadron in the same time-period is

the deterministic case.

For the scenario introduced in Figure 4-8, if we look at the time until failure and the hazard

rate plot we are able to make a better judgment of the quality of the plan than just looking at the

constraint violation rates. In Figure 4-12 (a), we see a slight decrease in the expected time until

failure from protection-level 0 to 10, but in Figure 4-12 (b) we also see that more than twice as

many plans do not encounter violations in protection-level 0 as in 10. Although a large proportion

of realizations encounter violations in time-period 1 of protection-level 0, the fact that no other

time-periods have violations allows more plans to run their full duration than the plans generated

for protection-levels 10-30.

For protection-level 0, the plan in Figure 4-12 has the highest planned objective function value,

a longer expected time until failure, and more plans that encounter no violations than the plans

for protection-levels 10-30: we do not yet know which plan will actually achieve the most value.

The plan at protection-level 0 includes just one effect, which encounters a significant number of

violations in the first time-period. It might be that these are very costly violations that prohibit

the plan from achieving any value from the planned effect. Or it might be that the value of the

effect is worth the risk of violation when compared to the risk associated with the other plans. In

order to determine which plans are actually the best and whether incorporating robustness actually

gives better plans, we developed several methods of estimating the achieved objective value.
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4.1.8 Estimated Value Achieved

One of the primary weaknesses of using Monte Carlo Simulation to test the robust planning algo-

rithms is that it is difficult to estimate what actual value executing the plan achieves. Obviously,

we can count constraint violations, and determine in which time-period the first violation occurs;

however, we do not have a good way to determine re-planning costs, how well our re-plan can

perforIlm, if we can make minor ad~justments and continue the original plan, or if we can drop some

tasks from the plan and move ahead with a decreased expectation of achieving the desired effects.

Because the EBO Model is intended to be used at a theater-level, which has large planning

problems involving multiple organizations and human operators; we assume that the costs of plan-

ningL are very high and that frequent re-plans are not an option. We also realize that we are

planning for squadrons and they have flexibility to make minor changes to regain feasibility of a

plan. They might drop certain tasks from the plan and keep those that give the most value. Instead

of creating a closed-loop simulation and estimating re-planning costs; we created an algorithm to

estimate value we will achieve with our original plan, based on which constraints are violated by

the realizations in the Monte Carol Simulation. We can then compare this value to what we might

expect to receive from other protection-levels to help us determine how much protection generates

the best plan.

There are two simple methods of estimating a plan's achieved value. We have named them the

Set Method and the Percent Method.

For the Set Method, we assume that in order to cause an effect all of the tasks in a task-set

must be accomplished. If we cannot do a task of a task-set, we cannot cause the effect. When the

plan encounters a constraint violation, we assume we are not able to accomplish whatever tasks

are represented by the violated constraint. Subsequently, we lose any value we planned to achieve

by task-sets that contain these tasks. This method represents the worst-case scenario.

We demonstrate this method in the plan from Figure 4-3 (a). If we assume a realization where

we can no longer perform tasks 7, 9, 10 and 24, we lose their connected task-sets' value as shown

in Figure 4-13. Notice, the set method causes the complete loss of value from effect 3.

The Percent Method makes a more liberal estimate of achieved value. We assume that for most

task-sets if we fail. to do a. task in the task-set, there is still some probability that the remaining tasks

will cause the desired effect. This is dependant on the scenario. If we fail to strike a communications
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Achieved value: 45 96 0 88

Planned value: 45 96 112.5 107.6

Figure 4-13: Set Method Performance

center and our desired effect was to disable the enemy's communications, it does not matter if we

do the other tasks in the set (such as ISR or BDA); we will achieve no value. However, if in the

same case we failed to be able to do the BDA task, we likely caused the effect, but we do not have

updated information from the BDA.

Determining the ability to cause an effect if we do not do all of the tasks in a task-set is

based on subjective judgment of a planner and the particularities of the scenario. We simplify the

determination by assuming all tasks are equally weighted. This is a generous assumption, because

some tasks must be done or we achieve zero value; however, we want to avoid making a planner

review each task-set in order to determine new probabilities. We demonstrate the Percent Method

in Figure 4-14 and we compare its values to the set method in Table 4.4.

Table 4.4: Estimate Achieved Value Calculations
Effect Value Planned Value Set Method Value Percent Method Value

Effect 1 50 45 45 45
Effect 2 100 96 96 96
Effect 3 125 112.5 0 75
Effect 4 110 107.6 88 102.9

Total Value 385 361.1 229 318.9

In most cases, if we trade a few tasks among the squadrons we can make an infeasible plan

feasible again. This trading however would involve a re-plan, which we wish to avoid. It is feasible
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Figure 4-14: Percent Method Performance

though that at a lower level, the squadron planner may find an easy change that makes the plan

feasible without causing a theater re-plan. Thus, the Percent Method seems to represent reality

better than the Set Method.

We used the Percent and Set Methods on the results from the simulation data given in Tables

4.1 and 4.2. The mean estimated achieved values from both methods are presented in Figure 4-15.

The set method is obviously more susceptible to constraint violations, as shown in (b) with

the sharp decrease in the mean expected achieved value at protection-levels 20, 30 and 40. This is

because one constraint violation nullifies the value of an entire task-set. If constraint violations are

in multiple task-sets, the plan can lose nearly all of its value. This particular scenario highlights

how different time assignments affect a plan's value.

For protection-levels 55-75 for the Chance-Constrained EBO Model and 10-50 for the Bertsi-

mias/Sim EBO Model, the percent method value increases from the deterministic case and then

decreases for higher protection-levels. This indicates that the violations we avoid by protecting

the plan at these protection-levels allows us to gain mnore value that if the plan was not protected.

However, if we protect the plan too much, we decrease the expected achieved value, indicating we

have planned too conservatively.

The expected achieved value of the scenario from Figure 4-8 is in Figure 4-16. In Figure 4-16

we see that the plan generated at protection-level 0 has a lower mean expected achieved value than
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those at 10, 20. and 30. Recall that the plan at protection-level 0 has only a few very demanding

tasks that cause violations often and the plan for 10, 20, and 30 has more tasks, which are connected

to less valuable effects. These are not as demanding so they are violated less often. Because there

are only a few tasks and one effect in the plan for protection-level 0, if we have a violation in this

plan, we lose most of the value using the Percent Method, and all of the value using the Set Method.

Because there are two effects being cause in the plans for protection-levels 10, 20, and 30, and many

tasks involved: if we lose a task we lose a smaller portion of the effects value and we still get the

value from the second effect. In Figure 4-12 (b), we see that the plan at protection-level 0 had

more realizations that did not fail than for 10, 20, and 30. However, a failure in protection-level 0

is far more costly than in protection-levels 10, 20, and 30. Thus, the plans in protection-levels 10.

20. and 30 on average achieve more value than the plan at protection-level 0.

100 - Planned objective value
-------- Estimated achieved objective value (percent method)

90 - - Estimated achieved objective value (set method)
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Figure 4-16: High-Demand Task Scenario Estimated Achieved Objective Value
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4.1.9 Conclusions on Robust EBO Model Performance

In Section 4.1 we stepped through several small scenarios to explain the performance of the Robust

EBO Models. We wanted to determine if the robust plans actually last longer and require fewer

re-planning iterations than deterministic plans, hence achieving better overall value. We hypothe-

sized that robust plans created by both the Chance-Constrained and Bertsimas/Sim EBO Models

encounter fewer constraint violations, encounter violations in later time-periods, and require less

re-planning than deterministic plans. We also hypothesized that the achieved value of a robust

plan created by either the Chance-Constrained or Bertsimas/Sim EBO Model will be greater than

the achieved value of a deterministic plan.

Deterministic plans (protection-level 50 for the Chance-Constrained EBO Model and protection-

level 0 for the Bertsimas/Sim EBO Model) fail frequently. For all the scenarios tested in this

section, all of the deterministic plans had mean time-periods until first constraint violation in the

first or second time-periods. They also never had more than 1% of realizations that encountered

no violations. This frequent failure rate resulted in significantly lower estimates of achieved value

as shown in Figures 4-15 and 4-16. The frequent failures of the deterministic plans demonstrate the

need for robust planning.

The Monte Carlo simulations from this section highlight many trends in the performance of

the Robust EBO Models. For both models, we found that as we increased the protection-level,

the planned objective function value moves down in a stepwise manner. This is due to the all-or-

nothing nature of planning based on accomplishing effects. Also for both models, we see a general

decrease in constraint violations as we increase the protection-level; however, the frequency of

constraint violation and the percent of constraints violated is not guaranteed to decrease monoton-

ically. The non-monotonic nature of the constraint violation statistics is due to two reasons. First,

there are usually multiple optimal solutions for each plan, which simply involve assigning tasks

to the same squadrons, but at different time-periods. Some time assignments can cause tighter

constraints, which cause more frequent violations. Second, some scenarios can have higher-value,

more-demanding task-sets, which activate few constraints. An increase in the protection-level can

cause the plan to drop task-sets but add more less-demanding tasks than the previous plan, re-

sulting in more active constraints and more violations. In general, the frequency of constraint

violation and the percent of constraints violated are not consistent measures of robustness; they do
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not necessarily indicate how long a plan will last or how much value a plan will achieve.

Because of the inconsistencies of constraint violation in indicating how a plan will perform,

we looked at the time until failure. We found that this is best shown in the hazard rate plots,

which give indications of what percentage of the time a plan will fail in each time-period and what

percentage of the time the plans will not fail. We also developed two methods of estimating the

value a plan will achieve based on its simulated performance, the set-method (worst-case estimate)

and the percent-method (generous estimate). Using the hazard rate plots and the estimated value

achieved plots can give a good indication of the performance of the plans across the range of

p)rotection-levels.

We found that the differences in task-time assignments can have significant impacts of the time

until failure and estimated value achieved for plans that have the same planned objective value.

This indicates the need for post-processing of the plans to ensure time-assignments are made in

such as way as to spread capacity among constraints as much as possible, once the best objective

value has been obtained.

In general we found that the robust plans generated by both. the Chance-Constrained EBO Model

and the Bertsimas/Sim EBO Model perform far better than the deterministic plans. The robust

plans have longer mean time-periods until failure and higher estimated achieved objective function

values. As we inocrease the protection, we see a general increase in performance to a point where

iwe begiln to plan too conservatively and the estimated achieved value starts to decrease because we

are: planning to do less. This point is difficult to determine due to the changes in plan performance

caused by the differing task-time assignments, and because the best point must be subjectively de-

termined balancing the risk involved with possible plan failure versus the possible value achieved by

the plan.

In the following sections, we want to compare the performance of the robust EBO models against

an estimate of current planning techniques. We also want to see if our performance conclusions

hold true in planning scenarios of different sizes and structures. Finally, we want to determine if

either the Chance-Constrained EBO Model or the Bertsimas/Sim EBO Model performs better as

the method to create robust plans.
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4.2 Greedy Algorithm versus EBO Models

We want to determine how the EBO models perform relative to a human planner. In Section 3.1.6,

we introduced a simple greedy algorithm that assigns tasks according to the EBO Framework. We

use it as an approximation for the performance of a human planner making a plan using the EBO

Framework. We hypothesize that the greedy algorithm will not achieve objective function values

as high as the Deterministic EBO Model's values because it does not solve to optimality. We also

hypothesize that the greedy algorithm will have a shorter time until failure and more frequent

constraint violations than the Deterministic EBO Model because it greedily assigns tasks starting

with the latest possible time-periods. Finally, we hypothesize that the greedy algorithm will have a

higher planned objective function value than that of some robust plans but will have a significantly

lower time until failure and estimated realized objective function value because it is not robust.

The greedy algorithm does not necessarily solve to optimality, but can sometimes find a solution

that has a planned objective function value equal to the optimal solution found by the Deterministic

EBO Model. Because the greedy algorithm assigns tasks, starting with the latest available time-

period, it is unlikely that the greedy algorithnm finds the exact same plan as the Deterministic EBO

Model. It might, however, find a plan that uses the same task-sets and tasks as the Deterministic

EBO model, but with different time assignments. It cannot find a plan with a planned objective

function value higher than the Deterministic EBO Model.

The greedy algorithm does not consider robustness in finding a solution, but simply assigns

the task-sets in order of marginal benefit. Because it greedily assigns tasks to squadrons until a

squadron is at capacity, then moves to another squadron, its plans can be fragile. Because it does

not find the optimal solution, it can produce plans that involve fewer tasks than the plans produced

by the Deterministic EBO Model. Therefore, it can demonstrate more robust behavior than plans

generated by the Deterministic EBO Model.

4.2.1 Test Scenarios and Simulation

To test the performance of the greedy algorithm against that of the robust EBO models, we want to

compare the planned objective function values, constraint violations, the mean times until failure,

and the estimated achieved objective function values from these models. We introduce three new

scenarios to test the models. In conjunction with those presented previously, they span a range of
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Table 4.5: Test Scenarios
Time Strike ISR

Scenario Tasks Effects TSGs Periods Squadrons UAVs/Squad UAVs/Squad
1 36 4 14 6 3 4 1
2 103 6 24 7 3 4 1
3 80 2 46 7 3 4 1
4 78 9 13 7 3 4 1

probleml sizes and scenario types. We summarize them in Table 4.5. Scenario 1 is the same scenario

we introduced in Figure 4-1. We include it for comparison against the plans generated by the EBO

models discussed in Section 4.1. Scenario 2 has a similar effect to TSG ratio as Scenario 1 but has

about three times more tasks. Scenario 3 has few effects, but many options to accomplish each

effect (i.e. many TSGs per effect). Scenario 4 is the opposite, having many effects and few options

to accomplish each effect.

We create plans for each of these scenarios using the robust EBO models and the greedy

algorithm. We test the plans using the Monte Carlo Simulation described in Section 4.1.1. For

each scenario, we model uncertainty the same as we did in Section 4.1: all uncertainty is limited

to the right-hand-side values, each random variable is modeled as a uniform random variable that

varied from one half of the expected value up to one and a half times the expected value. As in

Section 4.1. we set the expected value of AS (the number of strike tasks a strike UAV can perform

per tine-period) as 2, Aisr (the number of ISR tasks a strike UAV can perform per time-period) as

2, and -' (the number of ISR tasks an ISR UAV can perform per time-period) as 4.

Scenarios 2, 3, and 4 have nearly three times as many tasks as Scenario 1. They also have

seven time-periods instead of six. This greatly increases the problem size. When running the

Monte Carlo Simulation described in Section 4.1.1, the EBO models and the greedy algorithm

solved within a few seconds for each scenario. However, the increase in problem size increases the

number of random variables that must be generated, which is the slowest part of the Monte Carlo

Simulation. Thus, for Scenario 2, 3, and 4 we limited the number of iterations to 1000 instead of

3000 as previously done with Scenario 1. We ran the siniulations on the same computer, and each

run took approximately one and a half hours to run, which includes running the greedy algorithm,

solving both robust EBO Models, and simulating realizations at each protection-level.
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4.2.2 Greedy Algorithm versus Deterministic EBO Model Performance

The results of the simulations for the greedy algorithm and the deterministic case protection-levels

of both robust models are given in Table 4.6. Because the Chance-Constrained EBO Model and the

Bertsimas/Sirn EBO Model solve to within .001% of optimality they can arrive at slightly different

squadron to task assignment solutions. Thus, we present the deterministic case for both (protection-

level 50 for the Chance-Constrained EBO Model and protection-level 0 for the Bertsimas/Sim EBO

Model).

Table 4.6: Deterministic EBO Model vs. Greedy Algorithm Results

Planned Obj. Percent Set Method Mean Freq. Mean Time-Period
Plan Funct. Value Method Obj. Obj. of Cstr. Viol. Until Plan Fails

Scenario 1
Greedy 332.0 323.1 200.3 .0269 2.652

Chance Det. 346.3 312.8 137.9 0.1730 2.180
Bert/Sim Det. 346.3 323.5 169.7 0.1115 1.649

Scenario 2
Greedy 203.3 172.9 110.7 0.0551 3.035

Chance Det. 208.9 185.0 126.5 0.1846 1.932
Bert/Sim Det. 209.1 175.7 121.1 0.1777 1.871

Scenario 3
Greedy 388.2 374.2 325.6 0.0808 2.174

Chance Det. 388.9 380.0 331.4 0.170 2.251
Bert/Sim Det. 389.1 377.5 296.4 0.201 2.233

Scenario 4
Greedy 649.1617 496.4970 225.7790 0.1479 2.5560

Chance Det. 655.3 481.7 170.6 0.2197 1.6690
Bert/Sim Det. 655.3 485.3 149.0 0.1833 1.8260

3000 realizations for Scenario 1 and 1000 realization for all others,
uniformly distributed uncertain coefficients, 50% variation from expected value

Because the greedy algorithm does not solve to optimality, the greedy algorithm creates a plan

with a planned objective function value less than that of the deterministic EBO Model, for all of the

scenarios. The greedy algorithm generates planned objective function values that are very close to

those of the deterministic EBO models (average 2% difference). For Scenario 3, the greedy algorithm

finds a plan that uses the same tasks and task-sets as the plan generated by the Deterministic EBO

Model. For Scenarios 1, 2, and 4, the greedy algorithm finds plans that use different task-sets

than those generated by the Deterministic EBO Model. The greedy algorithm does not create
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squadron to task assignments that are as good as the Deterministic EBO Model. In each case, the

distance between the tasks and their assigned squadrons is greater for the plans generated by the

greedy algorithm than those from the Deterministic EBO Model. If the greedy algorithm is a good

approximation for a human planner, this indicates that the Deterministic EBO Model will usually

create plans that have a higher planned objective value than the greedy algorithm: and the greedy

algorithm's plan, at its best case, can only match the deterministic plan.

Although the plans generated by the Deterministic EBO Model have higher planned objective

value functions, this does not nmean that they are better plans. Actually, because the deterministic

phli1S include more tasks than the greedy plans; they usually have tighter constraints, encounter

more violations, and have lower mean times until failure. For some of the scenarios, this results

ill plans generated by the Deterministic EBO Model that have percent method and set method

values less than those of the plans from the greedy algorithm. Because the greedy algorithm does

not solve to optimality, it leaves more slack in the plans than the Deterministic EBO Model plans,

resulting in less fragile plans that can achieve more value under the realized data. This indicates

that it is possible to replace a human planner with a computerized planner that solves for "optimal"

plans that have higher planned value than those of the human planner; but because the computerized

planner creates plans with less slack, the plans end up achieving less value when executed due to

frequent failures. This highlights the need for robust planning.

4.2.3 Robustness versus Greedy

If the incidental slack from the greedy algorithm, due to not finding an optinmal solution, causes

better estimated achieved value; intelligently adding slack with the Robust EBO Models should

provide even better plans. If the robust EBO models create plans at certain protection-levels

that do not perfornm better than those generated by the greedy algorithm, then they are not an

improvement on human planning methods. To investigate this, we look at the hazard rate plots,

times until failure, and estimated achieved objective function value of plans generated by the robust

EBO models across the range of protection-levels compared to the performance of plans generated

by the greedy algorithim.

Figure 4-17 shows the comparison of the plans for Scenario 1. Notice in the hazard rate plots

((a). (b), and (c) of Figure 4-17) that for the deterministic case (i.e. protection-level 50 for chance-
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constrained and 0 for Bertsimas/Sim) the greedy algorithm has 252 realizations that encounter

no constraint violations, but the EBO models only have 8 and 3 respectively. Subfigures (d),

(e), (f), and (g) in Figure 4-17) show that the greedy algorithm has a higher mean time until

the first violation, percent method estimate, and set method estimate. At protection-level 55

for the Chance-Constrained EBO Model and 10 for the Bertsimas/Sim EBO Model, the robust

EBO models outperform the greedy algorithm in all categories. In fact, at protection-level 10

for Bertsimas/Sim, the set method estimate (worst-case estimate) actually surpasses the percent

method estimate (optimistic estimate) of the greedy algorithm. The robust EBO models perform

better because they protect each constraint as we increase the protection-level; whereas, the greedy

algorithm incidentally protects certain constraints because it greedily pushes others to capacity.

For protection-level 80 for the Chance-Constrained EBO Model and 60 for the Bertsimas/Sim

EBO Model and all higher protection-levels, the plans are more conservative than the one generated

by the greedy algorithm. In these cases, the planned objective function value of the robust models

is lower than that of the greedy algorithm; however, these plans experience no failures. Depending

on the acceptability of risk, in some situations, this lower planned level with no risk might be

preferable.

The other scenarios performed similarly to Scenario 1. In general, the robust models create plans

at the deterministic protection-level that plan to achieve more value than the greedy algorithm, but

encountered more violations, resulting in lower estimated achieved values. When the protection-

level is increased slightly, the robust models outperform the greedy algorithm in all categories

except the planned objective function value. Figures 4-18 show the results for Scenario 2. Notice

in Figure 4-18 (f) and (g) that with the higher protection-levels we can achieve nearly the same

planned objective function value as the greedy algorithm with no constraint violations.

Figure 4-19 shows the results for Scenario 3. Scenario 3 only has two effects, but has 31 TSGs

for effect 1 and 15 TSGs for effect 2. Therefore, most plans of Scenario 3 involve many task-sets

that accomplish the same effect. The marginal benefit of a task-set decreases as we plan to do

more. Thus, for plans that have several task-sets that accomplish the same effect, if constraint

violations occur that cause us to lose ability to accomplish a task-set, the loss is not as great as in

other scenarios because the remaining task-sets will still give a relatively high expected value for

the effect. We see in Figures 4-19 that constraint violations are not as costly as in other models;
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the set method value for the deterministic case is about three quarters of the planned objective,

whereas it is less than half of the planned value for all other scenarios. Furthermore, this is the

only scenario where the percent method value decreases as we increase the protection-level from

the deternministic case to the next higher protection-level.

Because of the protection given by many task-sets that are causing the same effect, the greedy

algorithm has a percent method estimate that is higher than that of the robust model's up until

the last few protection-levels, where the robust models encounter no violations. Even though the

percent method estimate for the greedy algorithm is higher than that for the robust algorithms, if

we look at the hazard rate plots in Figure 4-19, for the middle protection-levels, we see that the

robust algorithmls have far more realizations that do not encounter violations. Also, Figure 4-19

(d) and (e) show that the robust models have longer times until the first violations.

Scenario 4 is the opposite of Scenario 3 in structure. Scenario 4 has many effects and few

options to cause each effect, making the loss of a task-set due to constraint violations very costly to

the plan. We can see this in Figure 4-20. The plans generated by the robust EBO models at their

deterministic equivalent protection-levels and the plan generated by the greedy algorithm all have

set method estimates of more than two-thirds less than their planned objective function values.

This is in stark contrast to the slight losses seen in Scenario 3. In Scenario 4 the plans at higher

protection-levels encounter no violations with only a small amount of loss from the deterministic

planned objective value.

As with the other scenarios. the plan generated by the greedy algorithm for Scenario 4 obtains a

planned objective function value near that of the plan generated by the deterministic EBO models

with fewer constraint violations. As the protection-level increases, the plans created by robust

EBO models encounter fewer violations and achieve a guaranteed value higher than the estimated

achieved value of the greedy algorithm plan.

4.2.4 Conclusions on Greedy Algorithm Performance

By comparing the greedy algorithm to the EBO models, we can make several conclusions. First,

even incidental slack added to the system because the algorithm does not solve to optimality will cause

the performance of the plan to be more robust. This is demonstrated by the fact that the greedy

algorithm plans have longer mean times until failure and higher estimated achieved objective values
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than the deterministic EBO model plans. Assuming the greedy algorithm is a good estimate of the

performance of a human planner, this shows that solving to optimality using a deterministic model

often performs worse than the human generated plan when executed. This is a strong indication

for the need for robust planning. The robust planning models all had certain protection-levels that

outperform the greedy algorithm in all performance metrics (set method value, percent method

value, and time until failure). This shows that intelligently adding slack by using one of the robust

EBO models is better than the incidental slack caused by a human planner who does not arrive at

the solution with the highest planned objective function value. If the robust EBO models are used,

a human planner will still have to decide how much protection is appropriate for the plan. We will

discuss how a human planner does this in Chapter 5.

4.3 Robust EBO Model Comparison

We not only want to determine if the plans generated by the robust EBO models perform better

than those from the Deterministic EBO Model and the greedy algorithm, but we also want to

determine which of the robust formulations creates the best plans. As discussed in Section 4.1.9,

as the protection-levels increase, the amount of constraint violations tend to decrease, which, on

average, causes the plans to last longer and have a higher estimated achieved objective function

value. There are several exceptions to these general trends: plans can achieve the same planned

objective function value but the tasks involved in the plan can be assigned in different time-periods

resulting in different constraint violation rates and a plan created at a particular protection-level

might use heavily weighted tasks that activate few constraints; whereas, plans created using higher

protection-level, might have more active constraints resulting in more frequent constraint violations.

With the exception of performing differently due to finding different task-time assignments, the

Chance-Constrained EBO Model and Bertsimas/Sim EBO Model create plans that perform simi-

larly on the scenarios presented in Section 4.1. We want to determine if when tested under different

scenarios and different models of uncertainty, if either the Chance-Constrained EBO Model or the

Bertsimas/Sim EBO Model stand out as the better method for creating robust plans. We hy-

pothesize that, with the exception of differing performance based on which of the multiple-optimal

solutions the solver finds, plans generated with both models will perform similarly regardless of

scenario structure when realizations are generated using uniform random variables and all uncer-
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tainty is located in the right-hand side. We also hypothesize that when the uncertain variables are

modeled with a truncated normal distribution, the Bertsimas/Sim EBO Model will create more

protected plans at lower protection-levels than the Chance-Constrained EBO Model because it will

be less likely for coefficients to approach their worst-case value.

4.3.1 Performance under Different Scenario Structures

We tested the plans generated by the Chance-Constrained EBO Model and the Bertsimas/Sim EBO

Model for the Scenarios 2, 3, and 4 described in Section 3.1.6. These scenarios have significantly

different scenario structures. Scenario 2 has two or three task-sets that can accomplish each effect,

translating to seven or fewer TSGs for each effect. It is similar in structure to the Scenario 1,

presented in Figure 4-1 but has about three times more tasks. Scenario 3 only has two effects,

abut has four and five task-sets for each effect. This translates to up to 31 TSGs for one effect.

Scenario 4 has nine effects, more effects than the other scenarios, but uses only one or two task-sets

for each effect. These differences in structure affect the amount of value lost as we increase the

protection-level of a plan, but they affect the plans generated by the Chance-Constrained EBO

NM'odel and the Bertsimas/Sim EBO model similarly.

For the scenarios shown in Figures 4-17 through 4-20 the Chance-Constrained EBO Model

and Bertsimas/Sim EBO Model create plans that perform similarly. Differences in performance

can only be attributed to different task-time assignments as discussed in Section 4.1.6 and a few

different squadron-task assignments due to the fact that the models only solve to a bound of

optimality (0.001%). The reason that the Chance-Constrained EBO Model and the Bertsimas/Sim

EBO Model create plans that perform similarly when the uncertainty is all in the right-hand-side

and modeled using a uniform distribution, is that the models plan at exactly the same amount of

protection if we match each protection-level interval of 5 for the Chance-Constrained EBO Model

to each protection-level interval of 10 of the Bertsimas/Sim EBO Model (i.e., 50 is the same as

0., 75 is the same as 50, and 100 is the same as 100 for Chance-Constrained and Bertsimas/Simn

respectively.)

To demonstrate this, recall that when we model uncertainty only in the right-hand-side, the
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Chance-Constrained EBO Model protects constraints using the following:

Saijxj K Fý (1 - ai) Vie I, (4.1)
jEJ

where F-' (1 - ai) is the.density function of Bi and ai is the protection-level or percent of the

time that constraint i will be feasible when we generate realizations for the random variables. For

example, assume B is a uniform random variable with mean 8, and it varies between 4 and 12. If

ai is 0.50, then we set the right hand side of the constraint to 8. If ai is 0.75, then we set the

right-hand-side of the constraint to 6.

When the random variables are uniform and uncertainty only exists in the right-hand-side, the

Bertsimas/Sim EBO Model works exactly the same way, though for a different reason. Recall that

Bertsimas/Sim protects constraints with the following:

Eaijzx + ±max E ijj + (Fi - Li') &itit 5 bi. (4.2)

The Fi parameter finds the Fi coefficients that are most detrimental to the objective fmnction if

they go to their worst-case value (aij ± iij), and solves for the case for which the solution is feasible

if these coefficients behave as such. In the case where all of the uncertainty is in the right-hand-side

coefficient, there is only one coefficient per constraint that can vary. Thus, Fi can range from 0 to

1 for each constraint i. When Fi is non-integer, the decimal values indicate that one constraint is

moving Fi - L[Fi] percent of the way to its worst case value. Thus, for the example given for the

Chance-Constrained constraint with right-hand-side value with expected value of 8 and a range

up or down of 4, Fi set to 0 (corresponding to a protection-level of 0) leaves the coefficient at its

expected value, Fi set to 0.50 (corresponding to a protection-level of 50) moves the coefficient 50%

of the way to its worst case, and Fi set to 1 (corresponding to a protection-level of 100) moves the

coefficient all the way.

This shows that the Bertsimas/Sim EBO Model performs exactly like the Chance-Constrained

EBO Model when uncertainty is uniformly distributed and only located in the right-hand-side.

Thus, the difference in performance of the plans from the robust models tested against the plans

from the greedy algorithm in Section 4.2.3 in Figures 4-17 through 4-20 can only be attributed to
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differing multiple optimal solutions or solving only to within a bound of optiInality.

4.3.2 Performance under Different Kinds of Uncertainty

Although the Chance-Constrained EBO Model and the Bertsimas/Sim EBO Model perform the

same when the uncertainty is all in the right-hand-side and the random variables are uniform, if

we change the distribution, they will no longer perform the same. To determine the differences

that non-uniform random variables might have on the models, we tested the four scenarios with

t runcated- normlal random variables.

Truncated Normal Random Variables

We have to use a truncated-normal distribution to generate the random variables, because a regular

niorinal distribution has no maximum or minimum values. Maximum and minimum values are

necessary for the Bertsimas/Sim EBO Model, and right-hand-side values cannot be negative without

creating an infeasible problem. Thus, we had to truncate the normal random variables.

To use a normal random variable for the Chance-Constrained EBO Model, we made the function

FI' (1 --i) a normal cumulative distribution function (CDF). For any at value that causes F-I (1 -

a() to be less than the minimum right-hand-side value, we simply held the right-hand-side at the

minimumn value for the plan. The Bertsimas/Sim EBO Model does not rely on distributions of

the uncertain coefficients, and needs only the uncertain data's maximum and ninimumn values.

If the maximum and minimumln values of the uncertain data are the same as in the tests of the

Bertsimas/Sim EBO Model with a uniform distribution, then the model will solve exactly the

same, but will encounter different violation rates because the realization will now be generated

with a truncat ed-normal distribution.

To generate the truncated-normal random variables for the testing, we simply generated a

normal random variable with a known mean and variance. We make the variance a parameter as

a function of the percent of the distance from the mean value of the coefficient to the worst-case

value. For instance, if we have a coefficient that has a mean of 4 and a minimum value of 2 and

we want the variance of the normal distribution to be 1, we give an input value of .5 (i.e. half the

distance from 4 to 2 is 1, the desired variance). If the random number generator using a normal

distribution with defined mean and variance generates a value outside the allowable data range, we
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simply re-generate that value until it is in the data range. This changes the CDF of the normal

distribution as shown in Figure 4-21.

TruncatedNormal Normal

Minimum Value of Expected Value Maximum Value of
Truncated Normal Truncated Normal

Figure 4-21: Normal vs. Truncated Normal Distribution

We ran the same Monte Carlo Simulation as before, but with the new distribution, to test the

performance of the plans generated by the robust EBO models in the same scenarios but now using

normal random variables. As stated in Section 4.2.1, the random number generator is the portion

of the simulation that takes the longest. Generating the truncated-normal random variables takes

up to three times longer than generating the uniform random variables from previous sections.

Thus, for all runs with normal random variables, we only simulated 1000 iterations. We ran the

simulations on the same computer, and all runs took between one and a half to three hours. The

EBO models still solved within a few seconds. We set the variance of the normal data to be 25%

of the distance from the expected value to the minimum value of each uncertain coefficient.

Figures 4-22 and 4-24 show the performance of Scenario 1 for Chance-Constrained EBO Model

and the Bertsimas/Sim EBO Model. The figures on the right-hand-side show the models for the

runs using normal random variables and the figures left show the performance of the runs previously

done with uniform random variables.

For the plans generated by the Chance-Constrained EBO Model, there is little change in per-

formance. In general, we see a decrease in the frequency of constraint violation for the middle

protection-levels of the model with normal data. We also see that the plans generated under nor-

mal uncertainty maintain the first objective function step for one more protection-level. Otherwise,

the plans across all protection-levels look very similar.

The reason for the decrease in the frequency of constraint violation, is that the normal coeffi-

132



(a) Uniform Obj. Function and Freq. Viol

50 55 80 E5 70 75 50 05 90 5 100
Protection-Level

(c) Uniform Hazard Rate Plot

(b) Normal Obj. Function and Freq. Viol

(d) Normal Hazard Rate Plot

4[0 , I 4UU

350 30 -

/ /

1 / Planned objective value 150 Planned objective value
- - - - Estimated achieved objective value (percent method) - - - Estimated achieved objective value (percent method)
- - Estimated achieved objective value (set method) - - Eetimated achieved objective value (all-or-nothing method)

A AS 80 B's 9 9'5 100 566- 70 75 80 86 90 95 10011X55 O 570 7 7513 85 90590 911t
Protection-level Protection-Level

(e) Uniform Estimated Achieved Obj. Func. (f) Normal Estimated Achieved Obj. Func.
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cients are slightly less variable than the uniform coefficients; meaning the normal coefficients are

less likely to be at their extremes than the normal coefficients. Therefore, the uniform data is less

likely to cause constraint violations. Figure 4-23 shows an example of why this happens. In this

example, we assume the right-hand-side value have an expected value of 4 and can range from 2

to 6. The right-hand-side value protected for the normal case will always be larger than when

protected for the uniform case when comparing equal protection-levels. Because the constraints

have integer requirements, the right-hand-side will be treated as though it were rounded to the next

lowest integer value. In most cases, the normal and uniform protected right-hand-sides will round

to the same value, as shown for protection-level 60. In a few cases, they will round to different

values, as shown for protection-level 80. This shows that the protection-levels for the normal case

are less restrictive at higher protection-levels than for the uniform case. Thus, we see in Figure

4-22 (b) that the normal case maintains the first step down in the objective function value for one

more protection-level than for the uniform case in (a).

Figure 4-23 also shows that the normal CDF has more mass around the expected value than the

uniform CDF. Thus, it is less likely when we generate normal coefficients that they will be realized

with values at the lower extreme than for uniform coefficients. Because the right-hand-sides are

treated as the same number, due to the integer rounding, the less-variable normal coefficients cause

fewer violations. We see this in 4-22 (a) and (b). The fewer violations allow the plan to encounter

no violations for more realizations as shown in the hazard rate plots ((c) and (d)). The fewer

violations also push the estimated achieved values higher, as shown in (e) and (f).

Figure 4-24 shows the performance of the Bertsimas/Sim EBO Model with normal and uniform

uncertain coefficients. As we stated before, when uncertainty exists only in the right-hand-side, the

Bertsimas/Sim formulation protects by decreasing the right-hand-side by of each constraint i by Fi

times the range that the coefficient can vary, protecting like the Chance-Constrained EBO Model

with uniform uncertainty. Since the Bertsimas/Sim EBO Model does not use the distribution of

the data to determine how it will protect, it finds the exact same plans with normal uncertain data

as it does with uniform uncertain data.

When tested against realized data the plans have fewer constraint violations. This is because the

normal data varies less than the uniform data. The plots in Figure 4-24 show the fewer violations

and resulting performance.
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On average in the simulated environment, the normal case cannot perform worse than the

uniform case because the truncated normal distribution can never have more variability than the

unifor',n distribution. Thus, there will always be fewer violations for the normal case.

4.3.3 Conclusions on the Performance of the Chance-Constrained EBO Model

versus the Bertsimas/Sim EBO Model

In this Section 4.3, we compared the performance of plans generated by the Chance-Constrained

EBO Model to those generated by the Bertsimas/Sim EBO Model. We tested plans from both

models on a range of scenarios and used different kinds of uncertainty. We hypothesized that plans

from both models perform similarly under all scenario structures when uniform uncertainty exists

in the right-hand-side only, and that the Bertsimias/Sim EBO Model creates plans that are more

protected than those from the Chance-Constrained EBO Model when normal uncertainty exists.

We found little significant difference in the performance of plans from the Chance-Constrained

EBO Model and plans from the Bertsimas/Sim EBO Model when only right-hand-side uncertainty

exists. We showed that when the right-hand-side uncertainty is uniformly distributed, the models

use the same values in the right-hand-side for corresponding protection-levels. All differences in

model performance with right-hand-side uniform uncertainty can be attributed to the different task-

time assignments in the solutions that are one of the multiple optimal solutions.

When we use normally distributed right-hand-side uncertainty, the Bertsimas/Sim Model uses

the same protection-level values as with uniform, uncertainty and generates the exact same plans.

Because the normal uncertainty varies less, the plans are more protected in the normal case than

in the uniform case. The Chance-Constrained EBO Model adjusts for the normal uncertainty, but

due to the effects of the integer constraints the right-hand-side values are treated as though they

are rounded down to the next integer. The rounding causes the model with normal uncertainty to

protect similarly to the uniform case for many of the protection-levels, as shown in Figure 4-23.

Thus, the Chance-Constrained EBO Models generates plans that encounter slightly fewer violations

in the normal case than in the uniform case because the normal data varies less while the model

protects almost the same.

In general. we cannot say that either model generates plans that perform better when right-

hand-side uncertainty exists. We did not test for uncertainty in both the right-hand and left-
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hand sides of the formulation. We hypothesize that the Bertsimas/Sim EBO Model will gener-

ate plans that perform better than those from the Chance-Constrained EBO Model because the

Bertsimas/Sim EBO Model can consider uncertainty in the constraint matrix, while the Chance-

Constrained EBO Model cannot. This should be tested in future research. Choosing which model

is preferable might be primarily determined by the user's preference of how to consider protecting

the plan. We discuss user interaction with the models in Chapter 5.

4.4 Summary

In this chapter, we tested the performance of plans generated by the robust EBO Models. We

analyzed their specific performance, then tested them against plans generated by the greedy algo-

rithm and tested them against each other. In general, we found that both the Chance-Constrained

EBO Model and the Bertsimas/Sim EBO Model can be used to find plans with fewer constraint

violations, longer mean times until failure, and better estimated achieved values than plans from

the Deterministic EBO Model and greedy algorithm. Neither robust model stood out as the better

method to create robust plans. Plans from both models perform the same under uniform right-

hand-side uncertainty, and very similarly under normal right-hand-side uncertainty. Future tests

should be done for left-hand-side uncertainty. In most cases as we increased the protection of the

plans we can find a point where we achieve the most estimated value, though in some cases we

can protect too much and achieve less value not because of constraint violations, but because we

planned to do too little. Finding this best protection-level is a subjective process involving balanc-

ing the risk of encountering a failure with the benefits of achieving more value. We discuss this

process in Chapter 5.
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Chapter 5

Human Interaction with Robust EBO

Models

In order to implement the robust EBO models presented in Chapter 3 and analyzed in Chapter 4,

a, human planner must interact with the computer-based models. As we demonstrated in Chap-

ter 4 it is often difficult to determine the proper amount of protection needed to make the best

plan, estimate how well a plan will perform, and understand how the plan's structure can cause

performance that is not obvious to a human operator. Furthermore, the robust EBO models rely

on input data generated by a human planner. If this data is poorly determined, the model output

will also be poor. To facilitate human interaction with the robust EBO models, we. look at princi-

ples of human information perception, decision-making, and cognition. The cooperation of humans

anid computer-based models to make complex decisions is sometimes called Human Ma:achine Col-

laborative Decision Making (HMCDM). In this chapter, we review principles from the literature

of HMCDM. We apply these principles to possible ways to facilitate human interaction with the

robust EBO models.

5.1 HMCDM Overview and Motivation

It is important that commanders and other decision makers understand and approve of the plan

generated by comlputerized planners and that the computerized planner makes a plan based on an

accurate model of reality. Unfortunately, human knowledge and preferences cannot be fully designed
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into the computers. As a result computerized planners can generate plans outside the context of the

situation, and commanders might have little trust in or acceptance of the solution. HMCDM seeks

ways to allow a human operator to augment the plan generated by the computer. This allows the

human to guide the machine towards context-appropriate solutions and have visibility into the plan

generation process, thereby reaching a trusted solution[41]. One goal of HMCDM is to capitalize

on the strengths of both humans and computers to mitigate some of the respective weaknesses and

make better decisions possible.

Researchers, primarily from psychology and human factors engineering fields, have studied how

humans process information and make decisions. In the following sections, we look at pertinent

findings in the literature about human performance that is applicable to human interaction with

the robust EBO models. We review principles of how humans interact with information displays

and principles of human decision-making (both what heuristics people use and what biases people

have in making decisions).

5.2 Information Presentation Principles

For a planner to use the EBO models presented in Chapter 3, he must be able to understand

the input data, model outputs, and structure of the problem. A theater-level plan can include

thousands of tasks, hundreds of effects, and dozens of squadrons. Tasks can belong to multiple

task-sets, which can cause multiple effects. The output of the model is the assignment of tasks to

squadrons for specified time-periods; but this data is meaningless to a planner unless it is related

to the effects that the tasks will cause and the probability of causing the effects.

User interaction with the EBO models will require that the user understand large amounts of

information to get a clear picture of what the plan is going to accomplish and why. User interaction

will require information displays that aid in inputting data, setting up effect to task relationships,

determining how protected to make the solution, and understanding the solution generated by the

model.

Some of the most established research into human interaction with information displays comes

from human factors research of aviation displays. Pilots must quickly process massive amounts of

information while performing complex motor tasks under high stress. As such, researchers have

worked to find information displays that best communicate the information pilots need to aviate,
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navigate, and communicate safely. We review some of the applicable findings from this research

here.

5.2.1 Display Principles

Much research has been done into humans' ability to perform search and monitoring tasks, such as

a pilot identifying another aircraft to avoid collision or a nuclear power plant operator monitoring

the status of a reactor. Tsang and Vidulich present seven principles of display design. Although

they do so in an aviation context, these principles are applicable to any human interaction with

complex information displays[53].

* Information Needed: Due to the complexity of the EBO planning problem and large size,

users can experience information overload. Information displayed should be limited to only

information needed for the planner to make planning decisions. If certain kinds of information

are more frequently needed, they should be displayed in locations that are more accessible.

* Leqibility: It is self-evident that displays need to be legible in order to be useful. Displays

need to be of adequate size, contrast, and brightness.

* Discririnability: Displayed elements that represent different kinds of information should not

look similar to another element that could occur in the same display context. Humans take in

visual information in two phases: the preattentive phase, which is carried out automatically

and organizes the visual world into objects and groups of objects; and the selective phase,

which is used to attend to certain objects of the preattentive array for further elaboration[59].

Information should not be grouped so that the information a user perceives from the preat-

tentive phase contradicts the information from the selective phase. This can lead to misin-

terpretation of the information. For instance, Figure 5-1 shows an experiment performed by

Navon[46], in which subjects were asked to state the name of the large letter. The large letter

is p)erceived by the preattentive phase and the small letters that make up the large one are

perceived by the selective phase. When subjects were asked to say the large letter in (a),

there is a conflict because both phases lead to a different response. In (b) there is no conflict.
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Figure 5-1: Preattentive and Selective Perception

* Compatibility: Scanning separate sources of information demands mental effort to direct the

visual scan to the appropriate location at the right time. The amount of effort increases when

destinations are farther apart and when pairs of destinations contain information that must

be related, compared, or integrated in performing the task. Thus, it is important to keep

frequently used information in a prominent location, so that minimal long-distance scanning

is required to access it repeatedly. It is also important that when information sources need

to be integrated or compared they should be positioned close together on the display. There

should be "compatibility" or agreement between closeness or relatedness in the mind and

closeness on the display.

Grouping displays to allow a human to better perceive information is called the Gestalt

principle[59]. There must be proper compatibility among displays. For instance, if the op-

erator often compares the upper-left gauges with the bottom row gauges, he might have

trouble because of their different layout and distance apart. In this case if compatibility is

not achieved, and he might perform worse than when the gauges are scattered as in (a).

* Pictorial Realism: A display should be a pictorial representation of the information it repre-

sents. For instance, the attitude indicator of an aircraft shows the aircraft in relation to the

horizon, a similar picture as the pilot sees as he looks forward out of the cockpit.
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Figure 5-2: Gestalt Principles of Display Organization

* The Moving Part: Moving elements on a display should correspond with elements that moves

in the viewer's mental model and should move in the same direction.

* Predictive Aiding: Active prediction of the future behavior of dynamic systems is often a

cognitively demanding task and becomes more demanding the farther into the future that

such prediction is needed. Users usually benefit from any source of predictive information as

long as that prediction is reasonably accurate and understood.

5.2.2 Color-Coding

There are many benefits to color-coding; however, they can be offset by some of its limitations. We

list some of the benefits and limitations here [59].

Benefits

* Color stands out from a monochromatic background, as such color-coding is very effecting

in aiding a person to find objects, such as highlighting an important item on a menu[35].

Researchers have found that search time for a uniquely color-coded object in a cluttered

search field is independent of the size of the field[27].

* Certain colors have pre-determined cultural significance which can be useful in making signif-

icance of displays intuitive. For instance, in America red typically means danger, emergency,

or the conmmand to stop. Green typically means it is safe to proceed.
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* Color-coding can associate specially separated display elements, which is most effective when

colored items also need to be integrated as part of a task (i.e. color-coding of similar temper-

ature ranges on a weather map[58]).

* Color-coding enhances the value of information when coded redundantly with shape, size, or

location. For instance, traffic lights use the redundant coding of location and color (the top

light means stop, the red light means stop, together top and red makes the signal stronger).

Limitations

* Color-coding is subject to the capacity of human's to take in and process information. To

avoid color-to-meaning misidentification, no more than five or six colors should be used in a

display[20].

* Color does not naturally define an ordered continuum. If people are asked to rank order a

set of colors from least to most, no predominant order will emerge. Quantitative variables

should be denoted by saturation or brightness, rather than color changes (i.e., in an ocean

map darker blue means deeper and lighter blue means shallower[54]).

* Color stereotypes can cause confusion when the cultural significance of a color is different

from the intended meaning in the display. For instance green can be associated with both

cool temperature and safe operating range. In a system where low temperature is bad, using

green to denote the low temperature can be confused as the safe operating range.

* Irrelevant color-coding can be confusing. It is important that colors be connected to distinc-

tions in the display that are meant to be interpreted by the viewer.

* Roughly 3% of humans have some form of color blindness. The most common is red-green

color blindness. Displays need to be made such that a user can discriminate between infor-

mation sources without relying on color alone[59].

5.3 Human Decision-Making

In Section 5.2 we discussed general principles that help humans better find, perceive, and interpret

information. We are not only interested in displaying information, but also interested in helping a
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human make decisions. While Section 5.2 is about how to display information, this section is about

'what information we should display so that a human can make the best decision possible.

Decision making is conventionally characterized as the act of choosing between alternatives

under conditions of uncertainty[47]. The simplest decisions are go-no-go, while more difficult deci-

sions involve multiple options and ordering. Apart from the complexity of the decision, there are

three other major factors that affect the decision's difficulty: uncertainty, familiarity and expertise,

and time[59]. Decisions become increasingly difficult with increased uncertainty and risk. Under

uncertainty, the decision nmaker not only has to sort through all the options for the decision, but

also predict how each will perform under uncertainty. Familiarity and expertise with the decision,

generally tends to make the decision easier and allows it to be made more quickly. Familiarity and

expertise; however, do not always guarantee better accuracy. Time affects not only time-pressure

to make a decision, but also whether or not the decision is an evolving decision or a one-time deci-

sion. With an evolving decision, a decision maker can observe the effects of a decision and change

decisions as he sees results. This is not the case with one-time decisions.

Decision making is generally studied and evaluated through three different frameworks: rational

or normative, cognitive or information processing, and naturalistic[59]. In the rational or normative

framework, it is assumed that people make decisions based on a gold standard: maximizing expected

profit or minimize the expected loss. Most efforts of research in this framework focus on departures

from these optimal prescriptions. The cognitive or information processing framework focuses on the

biases and processes used in decision making that can be related to limitations in human attention,

working memory. or strategy choice as well as familiar decision routines called heuristics. The

naturalistic framework places the emphasis on how people make decisions in real environments (i.e.

not in the laboratory) with expertise and where decisions are very complex.

Our goal is to take elements from each of the frameworks that describe how humans make

decisions, how we can avoid typical mistakes humans make in their decision processes, and what

information humans need to make good decisions. We then apply them, along with the display

principles fromi Section 5.2, to facilitate user interaction with the robust EBO models presented in

Chapter 3.
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5.3.1 Information Processing

Humans have a finite capacity to filter and comprehend cues. A cue is a signal to provide information

to the decision maker about the decision to be made. Although cues provide information, more

cues do not necessarily facilitate better decisions by the decision maker. In practice when the

number of cues from different sources grows to more than two, the decision maker typically does

not perform better as the number of cues increases[48]. Under time stress, a decision maker's

performance tends to decrease as more cues are introduced[60]. When too many cues are present,

the decision maker filters the cues. More cues lead to more effort required for filtering and less

effort deciding. Although there are decreasing marginal returns on the amount of information used

to make a decision, people have a tendency to seek far more information than they can handle.

Humans tend to be poor decision makers when cues are missing. Good decisions can be made by

knowing what is missing and seeking the missing information. For instance, many troubleshooting

problems in computer programs or fixing mechanisms can be identified by realizing what is not

happening. This failure to capitalize on information given by the lack of cues can be attributed to

the fact that humans tend to pay attention to the most salient cues.

Humans tend to struggle when there are outlying cues, such as information that is very unusual,

or data that are above the 9 5th or below the 5th percentile. Humans estimate the mean value of

many observations well if the data has few outliers. When there is data in the extremes (above the

95th or below the 5th percentiles), humans tend to weight these values too heavily or overestimate

the frequency of these extreme cases occurring[57].

Humans have difficulty estimating variability. In general, humans will estimate less variability

as the mean of the data increases. For instance, in Figure 5-3 most people will estimate greater

variability in (a) than (b) even though the variability is the same[42]. Variance also tends to be

disproportionately influenced by the extreme values in a distribution, causing higher estimates of

variance. Humans are also poor estimators of correlation. They tend to underestimate high correla-

tions and over-estimate low correlations[44]. They are also more likely to make linear extrapolations

than higher order extrapolations.
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Figure 5-3: Estimation of Variance

5.3.2 Heuristics

Given the limitations humans have in processing information, humans tend to rely on heuristics to

help simplify the decision process. We present here a list of common heuristics used in decision-

making.

"As if " Heuristic: Humans tend to treat all cues as if they were of equal value[38]. The "as if"

heuristic works adequately most of the time, but if a salient, low-value cue is present, it can

lead to incorrect diagnosis of the situation. For instance, evaluators of job applications tend to

give more weight to the tone or enthusiasm of a letter of recommendation than the credibility

or reliability of the evidence[36]. Unfortunately, even those who are well-trained in statistical

theory do not give proportionally more weight to more reliable cues[39]. This inability to

properly weight cues, has shown in many studies that computers are better at predicting

outcomes or diagnosing situations when the prediction or diagnosis involves nmultiple cues of

different information value[59]. Some have recommended that the role of humans in prediction

should be limited to identifying relevant predictor variables, determining how they should be

measured and coded, and identifying the direction of the relationship to the criterion[29].

* Representativeness: A decision maker diagnoses the situation by evaluating the extent to
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which a set of cues, symptoms, or perceptual evidence corresponds with the set that is rep-

resentative of the hypothesis created based on experience[56]. Representativeness tends to

work well, unless there is an ambiguous or uncommon cue, in which case the decision maker

often relates it to a case he has encountered without considering the likelihood of that being

the case.

* Anchoring Heuristic: The initially chosen hypothesis gets more weight (mental anchor at-

tached) than any other hypothesis or options[56]. Recency tends to trump primacy in complex

problems.

* Elimination by aspect: When trying to choose among several options, the decision maker

inspects the most important aspect of each option first. Any option that does not score well

in this aspect is eliminated. Then the decision maker reviews the second most important

aspect and so on until one option is left[55]. This heuristic can eliminate good options that

may have very strong second and third-ranked aspects that would outrank others, but since

it is eliminated at the beginning, these options are not considered.

5.3.3 Biases

Human decision making also suffers from bad assumptions, or biases, often made by decision makers.

We discuss some of these biases here.

* Salience Bias: the salience of a cue, its attention-attracting properties or ease of processing,

affect the weight that humans assign to the information it provides when making decisions.

"Loud sounds, bright lights, underlined or highlighted information, abrupt onsets of intensity

or motion, and spatial positions in front or top of a visual display are all examples of salient

stimulus[59]". Top locations are more salient to users, who assume they are more important

and thus process top information first.

Salience does not predict the quality of information. For instance, a loud alarm is very salient

and good for telling you something is wrong, but the alarm does not necessarily tell you what

is wrong and what you should do. Information that can be very useful is often ignored or

underrated if it is difficult to interpret. For instance, one study found that decision maker
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paid more attention to pictorial representations of risk (easy to understand) than quantitative

data of the risk (more difficult to interpret)[52].

* Overconfidence Bias: Decision makers are not likely to seek more information as necessary

because they hold too much confidence in their state of knowledge of the situation[18]. One

study shows that when subjects are asked to predict the outcome of a fulture event (such as a

sporting event or election) and also give their confidence as to how likely they will be correct,

the confidence exceeds accuracy by up to 30 percentage points[34].

* Confirmation Bias: The decision maker's tendency is to seek information that confirms his

initial hypothesis rather than disproves it[31]. This bias tends to produce cognitive tunnel

vision, in which decision makers fail to pay attention to cues that contradict their initial

hypothesis.

* Utility Theory (Distortion of Gains and Losses): People tend to hold a non-linear valuation of

gains and losses. In general, researchers have found that people value gaining something (such

as money or points) as having decreasing marginal benefit. They also value losing something

as having decreasing marginal loss. This phenomenon can be explained if we view people as

trying to maximize their utility instead of the actual thing being gained or lost[30]. Utility

is the subjective value of "goodness" or "badness" people associate with a gain or loss. As

the amount of utility gained or lost increases, the marginal utility gained or lost decreases.

People tend to weight gains less than losses. Utility as a function of actual value gained or

lost is as shown in Figure 5-4.

* Perception of Probability: Not only do humans not perceive value linearly, they also do

not perceive probability linearly. Humans tend to overestimate low probabilities and under

estimate high probabilities[40]. The subjective estimates of probability as compared to the

actual probability are shown in Figure 5-5, where the dark curved line represents a human's

subjective valuation of probability and the dashed line represents the actual probability.

* Framing Effect: Because humans tend to weight losses more heavily than gains, it is possible

to "frame" an event so that humans value the same event differently, based on whether they

consider it a gain or a reduction in loss. For instance a tax cut may be perceived a reduction

in loss if the neutral point is "paying no taxes," or a positive gain if the neutral point is the
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amount paid on last year's taxes. As shown in Figure 5-4, the same change in value in the

gain portion of the vertical axis is given less utility than on the loss portion.

5.4 Examples of Possible User Applications with Robust EBO

Models

Hrunaln Machine Collaborative Decision Making (HMCDM) looks at methods to maximize the

synergies created when humans interact with computers. The goal of HMCDM applied to mission

planning is to identify what humans do well and computers do well and to create a methodology

for dividing the planning process between the human operator and the coinputer so that better

decisions can be made.

In general, humans are good at identifying patterns and dealing with the subjective aspects

of a plan, but they also demonstrate the biases discussed in section 5.3.3. Computers are good

at integrating large amounts of information from multiple sources, doing marginal analysis, and

performing calculations very quickly. Computers tend to be poor at subjective analysis. Computers

also have to use whatever input information is given to them, which can be incorrect or biased by

humans.

To capitalize on the strengths of humans and computers, in making mission plans, we outline

a collaboration framework shown in Figure 5-6. This framework maximizes the human operator's

ability to determine objectives and make subjective valuations. The computer does the detailed

calc:ulations and returns plans to the human. The computer can also perform simulations based

on user-defined uncertainty to test the robustness of plans. The user can review plans and their

simulated performance and guide the machine towards a plan that makes sense to him. The

comnputer then creates a final plan, which the human can modify as necessary.

5.4.1 Stage 1: Problem Definition Input

One of the most important aspects of planning is to ensure that the information used to form the

plan is accurate. It is very difficult to program computers to observe reality and generate planning

objectives and options. Humans are better suited to determine objectives and possible options.

Furthermore, objectives can be dynamic, changing over time. Humans can understand the reasons
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Figure 5-6: Human-Machine Collaboration Framework

for changing objectives. The computer simply determines the best option for accomplishing the

objectives. If a computer is given poor information, the plan it makes with the information will

also be poor.

We consider the input data required for the EBO model originally presented in Section 3.1.1.

We classify the input data into three categories: effects data, squadron capabilities, and task

information. Some of this data can be generated automatically by the computer from stored

historic information. This data might include the squadron capabilities (such as how many UAVs

the squadron has or the average number of tasks each type of UAV can do per time-period) and

much of the task information (such as location or number of UAVs required to do a task). The

subjective information requires the planner to input his knowledge and valuations (such as how

much value an effect achieves, what tasks he thinks will cause effects, and how much uncertainty

he thinks there might be in the data.) Stage 1 should focus on aiding the human to input the most

accurate data possible for this information.

As discussed in Section 5.3.3, humans do not make valuations based on true value, but based

on perceived utility. Losses are weighted more heavily than gains, and decreasing marginal returns
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come into play. If a human is asked to assign a value subjectively to a group of effects, he will

likely assign too much value to effects that avoid losses (such as defensive military actions, security

actions. or eliminating enemy threats) and assign too little value to effects that will achieve value

but not cause much loss if they are not accomplished. He will also value very important tasks too

little because of the perceived decreasing marginal returns. The effects of salience bias and the "as

if" heuristic may also come into play. If a planner is forced to value effects based on their relation

to other tasks, he may avoid some of these biases.

We propose to frame the effects-valuing process as a percentage of the total value that the human

planner wants to achieve over the course of the plan. We assume the planner has a predetermined

set of all effects that the human wants to cause by executing the plan (i.e., there can be more effects

than capacity to perform). If executing a plan causes all of these effects, the plan achieves 100%

of the human planner's objectives. The human planner must weight each effect according to what

percent of the total value the effect can cause. This can be done graphically, such as the pictorial

representation of effect value in Figure 5-7. In this way, the planner has to compare effects against

one another and against how much of the total value the effect achieves. The visual representation

of the value of an effect compared to other effects and the plan's possible total value will hopefully

mitigate the effects of human bias in making valuations by representing the causal relationship

between weights.

The human not only has to estimate the value for the effects, but also estimate what tasks can

be performed to cause those effects, group the tasks into task-sets, and estimate the probability

that a particular task-set will achieve its linked effect. We can apply the display principles discussed

in Section 5.2.1 to help human planners set up the relationships between the effects, task-sets, and

tasks. A graphical user interface for this process should incorporate pictorial realism representing

the EBO framework, so that a user can see the relationships between effects and tasks at a glance.

As problem size grows, legibility, discriminability, and compatibility will suffer. To maintain these,

color-coding and grouping must be used effectively. A "zoomed in" view that can isolate only those

tasks connected to a particular effect as well as a "zoomed out" view to put these tasks in context

would be helpful. An example of this is shown in Figure 5-8.

Unfortunately, humans struggle at estimating variability. If the uncertainty parameters are

not estimated well, the performance of robust plans will perform differently than estimated by
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Figure 5-7: Valuation of Effects

the computer. Preferably, the computer would estimate the ranges and distributions of uncertain

coefficients based on historical data, perhaps using previous plan's performance deviations from

expected values. However, if we cannot use the computer to estimate the uncertainty, the user

should estimated the real distance from the expected value rather than a percentage as we did in

chapter 4. This will curtail some of the bias humans usually demonstrate when they assume higher

variance for data with a lower mean as shown in Figure 5-3.

5.4.2 Stage 2: Intermediate Output and Operator Guidance

In Stage 2, the user is presented with intermediate output from the computer and returns guidance

to the computer for the final plan. In Stage 2 the user will decide the amount of protection used

in the final plan and possibly adjust input data based on the intermediate plan's performance.

To help the user find the best amount of protection for the plan, we need to help the user avoid

the biases discussed in Section 5.3.3. Particularly, we want the user to avoid using representativeness

and the anchoring heuristic. Past performance of particular protection-levels does not predict future

performance; and what seems like an obvious first choice, might not be the best option. Users should

also avoid using the "elimination by aspects" heuristic. We are looking for the best overall plan.
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Plans that exhibit a favorable trait, such as a high objective function value usually have poor

performance in other areas, such as high failure rates.

Avoiding these biases requires a thorough examination of the expected performance of plans at

each protection-level; however, we do not want to display all of the data to the user. Humans tend

to seek more information than they can mentally process, and sometimes seek more information

instead of better information. Therefore, to facilitate human interaction with the robust EBO

planner effectively, we want to display the best information required for diagnostics.

The most useful information will explain the probable performance of the plan, both its expected

value and information about when and why it might fail. The hazard rate plots and estimation of

value achieved plots introduced in Chapter 4 give the best summaries of these performance metrics.

When used together, they match the planned value to conservative and liberal estimates of what

value will be achieved when the plan is executed, and give information about the failure rate of the

plan.

The hazard rate plots also give the information pictorially, enabling the user to estimate the

performance of the plan across all protection-levels at a glance. The hazard rate plots can also be

enhanced using color, maximizing of cultural assumption of color meanings (green for fewer failures

and red for many failures.) The hazard rate plots show how many plans fail, what time-period the

failures occur, and how many plans are successfully completed. The hazard rate plots integrate

different kinds of information into one chart, a task that humans find difficult.

This integrated information is more useful to a user than looking at plots of the time of failure

and violation rates separately. For instance in Figure 5-9, if we look at (a) and (b) compared to (c)

and (d), we get a sense of when failures occur, how often, and what value we might achieve amidst

the failures. To get this same information from the raw data presented in (c) and (d) requires

significant calculations that are difficult for humans.

Using information such as that in Figure 5-9, the user can select the most preferable protection-

level. Choosing the best protection-level requires deciding how much risk the planner wants to

accept in order to achieve an objective value. In this case, protection-level 10 has the highest

estimate of achieved objective value; however, nearly half of its simulated realizations encounter a

violation over the course of the plan. Thus, a user would have to weigh the benefits of the higher

objective function value of protection-level 10 against a lower objective function value with no risk
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such as protection-levels 70-100.

The user can use the planned objective function value from the selected plan and input it as the

satisfactory objective function value for one of the extended robust models introduced in Sections

3.2.3 and 3.2.6. Recall from Chapter 4 that the objective function value across the protection-levels

decreases in a stepwise manner as the protection-level increases. Because the performance of a plan

can vary even though the planned objective value is the same (in the same step), it is easier for the

user to select a step and allow the computer to find the most robust solution at that step, than to

have the user try to find the best performing protection-level for a satisfactory objective function

value. Thus, in Stage 2, the computer can output information about the performance of plans at

different protection-levels; the human then uses the information to determine the best range of

protection-levels and inputs the planned objective function value at this level. The computer then

finds the most protected plan possible while still achieving this value and returns this plan in Stage

3.

5.4.3 Stage 3: Final Plan Output and Manual Modifications to Final Plan

In Stage 3, the computer returns a final plan and simulation results for the final plan using one

of the extended robust models from Sections 3.2.3 and 3.2.6 and the Monte Carlo Simulation.

As we showed in Table 4.3, plans that achieve the same objective function value can have very

different performance, not based on their protection-level, but based on which of the multiple

optimal solutions the solver settles upon. Using the extended models eliminates some of the post

processing required to ensure the best solution, as discussed in 3.2.3. Any remaining post-processing

will involve detailed analysis of constraints and the trade-offs related in which time-periods tasks

are assigned. Preferably, we would create a computer algorithm that does the constraint specific

post-processing.

The better role of a human in Stage 3 is validation of the plan. Using pictorial representations

of the plan similar to those used in Stage 1, the user should view the plan, ensure the tasks assigned

are those that can cause the desired effects, and validate that the projected performance of the

final plan is better than other options from Stage 2. The user should be able to compare the same

statistics from the final plan against options in Stage 2. The final plan output should be presented

next to the Stage 2 output in the same graphs for easy comparison, as shown in Figure 5-10
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5.5 Conclusions

The framework for the implementation of Stages 1, 2, and 3 is depicted in Figure 5-11. Through

this framework, we hope to facilitate human interaction with the robust EBO models to create

the best plans possible. Stage 1 uses displays to aid the human to input accurate valuations of

effects and relationships between effects and tasks. Stage 2 presents the user with the necessary

information to determine the best protection-levels so the user can input the desired objective level

for Stage 3. In addition, in Stage 3, the user validates the solution. Through this process, we

capitalize on the synergies that exist between the human and computer planners, ensuring that the

computer is given accurate input data, and the protection-levels are based on user preference. This

process will increase the likelihood that there will be buy-in of the computer-generated plan by the

user, because the user will have a better understanding of the computer process and the computer

will be working with data that the user has validated.
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Figure 5-11: Framework for Human Interaction with Robust Models
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Chapter 6

Conclusions and Future Work

Robust planning for EBO presents promising results in creating plans that achieve end-objectives

and are robust to uncertainty. We have demonstrated that the robust techniques of chance-

constrained programming and the Bertsimas/Sim Formulation help create plans that are expected

to last longer and have higher estimated achieve values (i.e. set method and percent method values).

This research made contributions in three major areas: developing an EBO Framework that can

be applied to math programming planning techniques; applying robust optimization techniques to

the math programs based on the EBO Framework and testing the performance of plans generated

by the robust EBO Models: and suggesting possible implementation of the robust EBO models in

a human-in-the-loop planning environlent, using principles of HMCDM.

6.1 Summary of Results and Contributions

We sunmmarize the major results and contributions from this thesis in the following:

* We introduced the EBO Framework as an approach for establishing the relationships between

individual tasks, the effects that they cause, and the end-objectives that a commander wants

to achieve with the plan. The EBO Framework is a convenient approach for assigning groups

of tasks that will cause effects with some probability and establishing the different options

that might be used to cause the effects.

* We applied the EBO Framework to create the Deterministic EBO Model. a mixed integer lin-

ear prograin (MILP) formulation for the theater-level planning problem that uses the nominal
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values of all uncertain data. We demonstrated the performance of the Deterministic EBO

Model on realistic-sized theater-level planning problems. We demonstrated that we can solve

realistic-sized problems (8 squadrons, 550 tasks, and 25 effects) to an optimality gap of 0.001%

within two minutes using the Deterministic EBO Model.

* We applied two approaches, Chance-Constrained Programming and the Bertsimas/Sim Ro-

bust Optimization Formulation, to the Deterministic EBO Model to design robust plans. We

call the resulting models the Chance-Constrained EBO Model and the Bertsimas/Sim EBO

Model. We found that the frequency of constraint violation is an inconsistent measure of

robustness and that mean time until failure and estimated value achieved give better infor-

mation about the plan's possible performance. The Chance-Constrained EBO Model and

the Bertsimas/Sim EBO Model perform similarly for uniformly distributed uncertain data,

but have slight differences in performance for other types of uncertainty. Unfortunately, the

models can generate dissimilar plans due to multiple solutions that achieve the same planned

objective function value, but have different time assignments that result in different failure

rates. The robust plans created using both models outperform the plans generated by the greedy

algorithm, which that approximates plans generated by humans and the plans generated by the

Deterministic EBO Model. The robust plans had longer expected time until the plan fails,

and higher expected achieved value than the plans generated by other methods.

* We discussed how a human planner would interact with the Robust EBO Models. We applied

principles from Human Machine Collaborative Decision Making to make suggestions on how to

implement the robust EBO models in the planning process while capitalizing on the strengths

the humans planners bring to the planning process and allowing the human to gain trust in

the solution generated by the computer-based planner. We presented a framework for human

interaction with the robust EBO models, allowing the human to specify the problem data,

review initial planning options, and select a final desired objective level.

6.2 Future Work

The contributions in this thesis only take a small step in successfully creating robust plans for EBO.

Much research can still be done, both in solving the theater-level planning problem for UAVs and
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in robust planning approaches and applications of EBO in general. We summarize some specific

recomnlmendations for future work here:

* Incorporate clustering tasks into the objective function. We presented several approaches in

Section 2.5 for creating task assignments that are more sophisticated than just minimizing the

total distance between the tasks and their assigned squadrons. These clustering approaches or

other approaches like them should be incorporated into the EBO planning process to ensure

that the best squadron-task assignments are made.

* Test the performance of the Extended Robust Models. We would like to determine how well the

extended miodels (i.e. the Extended Chance-Constrained Model and the Delta Formulation)

perform in creating robust plans. We also would like to assess a human's ability to identify the

best performing protection-level/objective function levels using the extended models versus

the Chance-Constrained EBO Model and the Bertsimas/Sim EBO Model.

* Create a post-processor. Because both robust models were susceptible to drastic variations

in performance based on which of the multiple solutions that achieve the same objective

function value that the solver settles upon, it would be beneficial to develop a post-processor

that can take a solution from the robust models and equally distribute the tightness among

available constraints by changing task-time assignments. It would be interesting to attempt

to incorporate the post-processor into the objective function of the robust models or possibly

the extent(ded robust models.

* Test left-hand-side uncertainty. In our testing, we only considered uncertainty in the right-

hand-side of the models. We (lid this so we could compare the performance of the Chance-

Constrained EBO Model against the Bertsimas/Sim EBO Model, because chance-constrained

programming is limited to right-hand-side uncertainty. It would be beneficial to examine how

both models perform under uncertainty in other areas, possibly making Bertstimas/Sim the

better choice of the robust models because it is designed to handle uncertainty in both the

right and left-hand-sides.

* Test real planning scenario data with the robust models. All scenarios used in this research

were made using contrived values. It would be interesting to determine how the plans gener-

ated by the robust EBO models perform on real mission scenarios. The models should also be
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reviewed by military planning experts who can verify that the EBO Framework and resulting

formulations accurately represent the theater-level planning problem.

* Test a model of the complete planning hierarchy, including squadron and vehicle-level plan-

ners. In this research, we focused only on the theater-level planning problem. Solving this

problem, in reality, is an iterative process that also involves solving the lower levels. Future

research should model the interactions among all the levels of the planning hierarchy. Furture

work should tie this thesis to the work done by Sakamoto[50].

* Make a functional interface to test human interaction with the models. The robust EBO

models show potential for the human-in-the-loop planning process. In order to test human

interaction with the models, we need to develop a working interface for the human planners.

If the interface incorporates the simulations as suggested in Chapter 5, we need to make the

simulations solver faster for practical implementation.

* Further research into robust planning techniques and applications to EBO. We have presented

several approaches to applying robust planning to EBO. By no means are these the only or

best approaches. The robust optimization techniques presented in this thesis have limitations

and we made certain simplifying assumptions to develop a usable EBO Framework. Robust

planning for EBO shows promise for making better plans. Research should continue to

investigate other approaches and methods for robust planning and applications to EBO.
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Normal Uncertainty Plans
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