
Using the Cell Broadband Engine to Compute an Electrochemical Battery Model

James Geraci1 Sudarshan Raghunathan1 John Chu1

1 Massachusetts Institute of Technology

Abstract

This paper discusses the usage of a two-dimensional
electrochemical battery model of a lead acid battery cell as
a state-of-health indicator in an embedded application. The
model equations are a set of coupled highly non-linear par-
tial differential equations that evolve with time. At each time
step, these equations are solved using Newton’s Method,
and a direct skyline LU solver without partial pivoting is
used to solve for the battery cell’s state at each Newton step.

The entire model was implemented on a Sony Playsta-
tion 3 and the direct solver at each Newton iteration step
exploits the parallelism in the Cell Broadband Engine to
improve performance. The parallelized direct solver out-
performs state-of-the-art dense and sparse solvers running
on an AMD Opteron 246-based workstation.

1 Introduction

With the increased interest in hybrid and electric cars,
there is also an increased interest in answering not only
the question of what is the state-of-charge of a battery but
also, what is the state-of-health of the battery? While there
are numerous empirical models that allow estimates of the
state-of-charge of a battery [1, 2, 3, 4, 5, 6], it is much more
difficult to determine the state-of-health of a battery[7].

The state-of-health of a battery gives some idea of the
how different the battery at the present time is from the bat-
tery when it was new. This difference between the battery at
a timet = T andt = 0 depends greatly on how the battery
is used. For example, a typical flooded lead acid battery
has about 1500 uses when used to a depth of discharge of
70% while a typical VRLA (Valve-Regulated Lead Acid)
battery only has about 400 to 500 cycles at the same depth
of discharge[8]. However, to about 2200 uses and 1000 uses
respectively if they are only discharged to 40% depth of dis-
charge [8]. The number of uses (cycles) that a battery can
go through is called the cycle life of the battery.

Not only is cycle life a strong function of how the bat-
tery is used, but also “cycle life is dependent on a number of

construction factors”[9] These construction factors include,
but are not limited to: the thickness of the plates, the active
mass density of the active material, the concentration of the
acid, and the geometry of the electrodes[9, 10]. Therefore,
it would be helpful to have a model that can take these pa-
rameters into account. In the case of the lead acid battery, a
two-dimensional electrochemical model such as that found
in [11], and modified in [12] to include a state-of-health
metric, would take all of these parameters into account.

We are not aware of any previous implementations of
a two-dimensional electrochemical battery model that have
been used in an embedded application to help provide in-
formation about the state-of-health of a battery. This is in
part due to the notion that these models require too much
computational effort to be cost effective in an embedded
environment. However, with the new multicore processors
that the computer industry is racing to introduce, the cost
and power consumption required to achieve multi-gigaflop
performance is rapidly decreasing. For example, the new
Intel Polaris processor is a 275 square mm collection of
80 extremely simple cores that are collectively capable of
1 teraflop while consuming only 62W of power. As a ref-
erence, the first teraflop computer ASCI Red came into ser-
vice in 1997 at Sandia National Laboratories “It was 104
cabinets housing 10,000 Pentium Pros and spread out over
2500 square feet. It consumed a mere 500kW”[13].

The Cell Broadband Engine used in the Playstation 3
represents the first truly multicore processor based on the
simple core approach available to the public. This processor
is capable of about 200 Gflops single precision and around
20 Gflops double precision performance.

1.1 Outline

This article first takes a look at the electrochemical
model used and the types of output one can get from the
model. Then it looks at the depth of discharge based state-
of-health indicator. Next, the numerical algorithm used for
simulating the model is described along with a description
of the implementation on the Cell Broadband Engine. The
performance and scaling results are then reported and com-



pared with existing dense and sparse solvers on a contem-
porary desktop workstation. Finally, conclusions are pre-
sented along with venues for further investigation.

2 Two-Dimensional Battery Model

The electrochemical battery model used in this study is
based on the model given in [11] and derived from first prin-
ciples in [12].

A typical lead acid battery, consisting of a lead dioxide
electrode, a lead electrode, and a liquid sulfuric acid elec-
trolyte is illustrated in Figure 1. The model tries to simu-
late the primary electrochemical reactions that occur during
charge and discharge in the area of an electrochemical cell
between the lead and lead dioxide plates (indicated by the
dotted region in Figure 1).

Sulfuric Acid
Electrolyte

Lead Dioxide
Electrode

Lead Electrode

{Region Considered by Model

Figure 1. A complete lead acid battery cell.

The model has four state variables that evolve with time:
the porosity of a regionε, the concentration of the elec-
trolyte c, the liquid phase electrical potentialφl, and the
solid phase electrical potentialφs.

The spatial region of interest is discretized into two dif-
ferent staggered two-dimensional grids of volumes as seen
in Figure 2. This technique is known as astaggered grid.
Three of the state variablesc, φl, andφs were centered on
one grid (called the PV grid for potential values), whileε
was centered on the other grid (called the FV grid for flux

values). In contrast to the model described in [11], the
staggered grid approach for the potential and flux values
avoids having to enforce continuity conditions at the elec-
trode/electrolyte boundaries.

= Point where e is defined
l s

{
= Point where f, f, and c are defined

{ {Lead
Dioxide

Electrode Electrolyte
Lead

Electrode

Figure 2. A battery cell with both the PV grid
and FV grids shown. Diamonds show the
center of the PV grid while circles show the
center of the FV grid.

The variables on the PV grid are solved for at each time
step as a coupled set of non-linear equations using New-
ton’s method. However, the porosityε is not included in the
Jacobian for each Newton step as it is on the FV grid.

Finally, for each PV volume, there is a depth-of-
discharge (DOD) variable that counts the number of times
the concentration in that volume has dropped below a pre-
determined level.

2.1 Output

The state variable values at each time step are saved for
post-processing. Figure 3 shows how the concentration of
electrolyte,c, might look throughout the cell after 800 sec-
onds of discharge at a rate of1−3Amps. Figure 4 shows the
same cell as if it had been discharged at a rate of 1Amp for
800 seconds. Here it can been seen that some of the vol-
umes of the upper portion of the lead electrode have started
to fail.

The failed volumes in Figure 4 are actually volumes that
have had their solid-liquid interface area set to zero by the
state-of-health (SOH) indicator. For demonstration pur-
poses, the DOD counter has been set to count the amount
of time spent under a certain DOD threshold instead of the
number of times that particular DOD threshold has been
crossed. When a particular volume has spent more than
a predetermined amount of time under a certain depth of
discharge, the SOH indicator sets the solid-liquid interface
area for that volume to zero. This stops the kinetics in that
particular volume but allows electronic and ionic current to
continue to pass through the volume.



0
10

20
30

40

0

10

20

30

40

4.8996

4.8997

4.8998

4.8999

4.9

x 10
−3

Vertical distance from upper left
of battery cell (Volumes)

Horizontal distance from 
upper left

 of battery cell
 (Volumes)

C
on

ce
nt

ra
tio

n 
m

ol
es

/c
m

3

Figure 3. Concentration of electrolyte c within
each PV of the battery cell after the battery
cell has been discharged at a rate of 1−3

Amps for 800 seconds. The point located
at coordinates (0, 0) corresponds to the up-
per left corner of the region described by the
model as seen in Figure 1

An SOH metric for the entire battery cell can be imple-
mented based on all the SOH status of the individual vol-
umes. For example, when 20% of the cells have an SOH
status of off, the battery might be said to have failed.

3 Algorithm and Implementation

Implicit time stepping was used for the variables on the
PV grid, and the values of the state of the variables on the
PV grid were solved for at each time step using Newton
iteration. Each Newton iteration requires the solution of a
system of the formJx = r, whereJ is the Jacobian matrix
produced by the system, see Figure 5, andr is the residual
vector.

The Jacobian for this system has a condition number of
approximately108. This is in part due to the weak cou-
pling between the volumes in the y-direction due to the large
height of the battery cell (10.0 cm) when compared to the
small width of the battery cell (0.09 cm). Due to the large
spacing in the y direction, the reference potential, chosen
to beφl in the lower right corner of the lead electrode, has
only a weak influence on the values at other points in the
system in the y-direction.

Since the Jacobian has a condition number of approxi-
mately108, there are effectively only 8 digits of useful pre-

0
10

20
30

40

0

10

20

30

40
4.4

4.5

4.6

4.7

4.8

4.9

x 10
−3

Vertical distance from upper
left of battery cell (Volumes)

Horizontal distance from
 upper left 

of battery cell
 (Volumes)

C
on

ce
nt

ra
tio

n 
m

ol
es

/c
m

3

Figure 4. Concentration of electrolyte c within
each PV of the battery cell after the battery
cell has been discharged at a rate of 1 Amp
for 800 seconds. It can be observed that
some of the finite volumes have started to
fail.

cision in any answer, consequently, the model is said to con-
verge when the largestr value is less than10−8. Further-
more, such a poor condition number does not often work
well with an iterative solver, so a direct solver is used to
computex at each Newton iteration.

The direct solver has two major computational phases:
forward elimination followed by back substitution. The for-
ward elimination part is more computationally intensive,
O(b2N) (whereN is the size of the Jacobian andb is the
half-bandwidth) and is therefore performed in parallel on
the Synergistic Processing Units (SPUs) of the cell proces-
sor with the Power Processing Unit (PPU) being used for
synchronization. The back substitution phase is computa-
tionally less expensive (O(bN)) and is therefore done com-
pletely on the PPU.

Pseudocode for the forward elimination step running on
the SPUs is given in Algorithm 1. For conciseness, Algo-
rithm 1 only shows the operations on the Jacobian; a similar
set of operations is used to update the corresponding com-
ponent of the residual.

In the actual implementation, the Jacobian is assembled
in the main memory of the PS3 as a dense matrix with ele-
ments stored in row-major order. This scheme ensures unit
stride access to the non-zero elements in each row by the
SPUs during elimination. The actual code that runs on the
SPUs is double buffered and employs SIMD instructions to
maximize computation efficiency.



Input: The Jacobian matrix,J at a Newton iteration
with half-bandwidthb and the residual vector,r

Result: Forward elimination is performed on the
Jacobian and the residual vector

for i←− 1 to N − 1 do
// Fetch base row i from main

memory
Jlocal,i = post recv(J[P[i], i : i + b])
// Fetch first elimination row

for this SPU, i + spuid from
main memory

if i + spuid ≤ N then
Jlocal,i+spuid =
post recv(J[P[i + spuid], i + spuid :
i + spuid+ b])

end
// Wait for base row and first

elimination row to arrive
wait for completion(Jlocal,i,
Jlocal,i+spuid)
for j ←− i + spuid to i + b do

// Pre-fetch next elimination
row for this SPU, j + spuid
from main memory

if j + spuid ≤ N then
Jlocal,j+spuid = post recv(J[P[j +
spuid], j + spuid : j + spuid+ b])

end
// Perform elimination on row j
Jlocal,j [i]←− Jlocal,j [i]/Jlocal,i[i]
for k ←− i + 1 to i + b do

Jlocal,j [k]←− Jlocal,j [j]× Jlocal,i[k]
end
// Post the updated row back to

main memory
post send(Jlocal,j)
// Wait for all pending posts
wait for completion(Jlocal,j)
// Wait for next elimination

row to arrive
if j + spuid ≤ N then

wait for completion(Jlocal,j+spuid)
end

end
// Wait before starting next base

row
wait for notification

end

Algorithm 1: Algorithm for parallel forward elmina-
tion step of the banded direct solver.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 460

Figure 5. Location of the non-zero entries in
the Jacobian. In this case, the Jacobian is a
60 × 60 with matrix with 460 non-zero entries.
The skyline form of the matrix can be clearly
seen.

4 Performance results

Figure 6 illustrates the performance of the direct banded
solver for Jacobians of different sizes with increasing num-
ber of SPUs. It is observed that while the algorithm does
scale with increasing number of SPUs, the speedup is sub-
linear beyond two SPUs. This can be attributed to the in-
crease in time it takes the PPU to synchronize the increasing
numbers of SPUs as seen in Figure 7.

Figure 8 shows the performance of the parallel direct
solver relative to existing sparse and dense solvers in UMF-
PACK [14] and LAPACK [15] respectively for a Jacobian
matrix of size3264× 3264.

Even though the technique used in each of the solvers
is different, for consistency the performance in GFlops is
measured using the operation count for solving a dense lin-
ear linear system of orderN :

Gflops=
2

3
N3 − 1

2
N2

∆t× 10243
(1)

where∆t is the total amount of time to perform forward
elimination and back substitution.

The results for UMFPACK and the PS3 based solver can
be interpreted as being the performance of a dense solver
that would be needed in order to achieve the∆t achieved
by UMFPACK or the PS3 based solver.

Figure 8 shows that the PS3 based solver is 1.56x faster
than UMFPACK when 2 SPUs are used. However, due



1 2 3 4 5 6
10

1

10
2

10
3

Number of SPUs

G
F

lo
ps

 

 

1224x1224
2142x2142
3264x3264
4284x4284

Figure 6. Performance in Gflops achieved by
the CBE based LU algorithm. To maintain
consistency between this figure and Figure
8 Gflops has been computed using (1), the
equation for a dense solver even though the
PS3 solver is a banded solver.

to the extra synchronization overhead incurred when using
more SPUs, there is no performance to be gained when us-
ing more than 2 SPUs.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Number of SPUs

P
er

ce
nt

ag
e 

of
 s

ol
ut

io
n 

tim
e 

in
 e

ac
h 

ph
as

e

Where time is spent during LU solve

 

 

SPU/PPU time (Synchronization)
SPU time (Forward Elimination)
PPU time (Back Solve)

Figure 7. Three major time consuming steps
for the sparse LU solver on the PS3. These
are forward elimination, back solve and SPU
synchronization. As the number SPUs is in-
creased, the percent of time spent synchro-
nizing the SPUs increases dramatically.

1224 2242 3264 4284
10

0

10
1

10
2

Size of the Jacobian Matrix

G
F

lo
ps

 

 

Sparse/UMFPACK
Dense/LAPACK
CBE/6 SPU
CBE/5 SPU
CBE/4 SPU
CBE/3 SPU
CBE/2 SPU
CBE/1 SPU

Figure 8. A comparison of the performance
of LAPACK, UMFPACK, and the PS3 based
solver. All performance numbers were com-
puted using (1).



5 Conclusions and further work

In this article, an numerical algorithm for the simulation
of a two-dimensional electrochemical model of a lead acid
battery derived in [12] was presented. The most computa-
tionally expensive component of this model is the solution
of a banded linear system of equations during each Newton
iteration step. Therefore, an algorithm for solving this sys-
tem in parallel on a Cell Broadband Engine was presented.
The proposed approach achieved performance competitive
to existing sparse solvers running on modern desktop work-
stations. This suggests that the Cell Broadband Engine can
be effectively used in low-power embedded applications re-
quiring significant computational resources.

To further improve the proposed algorithm and to reach
the true performance of the cell processor, it is critical
that the synchronization mechanism between the Synergis-
tic Processing Units be improved. Finally, it is hypothesized
that fetching rows into the SPUs using triple instead of dou-
ble buffering will lead to further performance increases.

References

[1] S. Piller, M. Perrin, and A. Jossen. Methods for state-
of-charge determination and their applications.Jour-
nal of Power Sources, 96:113–120, 2001.

[2] B. Le Pioufle, J.F. Fauvarque, and P. Delalande. A per-
forming lead acid cell state of charge indicator based
on data fusion.Electrochemical Society Proceeding,
16, 1996.

[3] V.H. Johnson. Battery preformance models in advisor.
Journal of Power Sources, 4806:1–9, 2002.

[4] Wootaik Lee, Daeho Choi, and Myoungho Sunwoo.
Modelling and simulation of wehicle electric power
system.Journal of Power Sources, 109:58–66, 2002.

[5] A.H. Anbuky and P.E. Pascoe. VRLA battery state-
of-charge estimation in telecommunication power sys-
tems. IEEE Transactions on Industrial Electronics,
47(3):565–573, 2000.

[6] S. Rodrigues, N. Munichandraiah, and A.K. Shukla.
A review of state-of-charge indication of batteries by
means of a.c. impedance measurements.Journal of
Power Sources, 87:12–20, 2000.

[7] A. Delaille, M. Perrin, F. Huet, and L. Hernout. Study
of the ”coup de fouct” of lead-acid cells as a function
of their state-of-charge and state-of-health.Journal of
Power Sources, 2006.

[8] K. Peters. Review of factors that affect the deep cy-
cling performance of valve-regulated lead/acid batter-
ies. Journal of Power Sources, (59):9–13, 1996.

[9] P.Ruetschi. Aging mechanisms and service life
of lead-acid batteries. Journal of Power Sources,
(127):33–44, 2004.

[10] D. Berndt. Valve-regulated lead-acid batteries.Jour-
nal of Power Sources, (100):29–46, 2001.

[11] D. M. Bernardi and H. Gu. Two-dimensional mathe-
matical model of a lead-acid cell.Journal of Electro-
chemical Society, 140(8):2250–2258, 1993.

[12] J. Geraci.Electrochemical Battery Models. PhD the-
sis, Massachusetts Institute of Technology, 2007.

[13] C.Demerjian. Intel 80 core chip revealed in full detail.
http://www.theinquirer.net/default.aspx?article=37572,
February 11 2007.

[14] T.A. Davis. Algorithm 832: UMFPACK v4.3—
an unsymmetric-pattern multifrontal method.ACM
Transactions on Mathematical Software, 30(2):196–
199, 2004.

[15] LAPACK UserśGuide. SIAM, 1999.


