
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-029 February 1, 2007

Local Geometry of Multiattribute Tradeoff Preferences
Michael McGeachie

The Local Geometry of Multiattribute Tradeoff

Preferences

by

Michael McGeachie

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 2nd, 2007

Certified by. .
Jon Doyle

SAS Institute Distinguished Professor of Computer Science,
North Carolina State University

Thesis Supervisor

Certified by. .
Peter Szolovits

Professor of Computer Science and Engineering,
Massachusetts Institute of Technology

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

The Local Geometry of Multiattribute Tradeoff Preferences
by

Michael McGeachie

Submitted to the Department of Electrical Engineering and Computer Science
on February 2nd, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Existing preference reasoning systems have been successful in simple domains. Broader
success requires more natural and more expressive preference representations. This
thesis develops a representation of logical preferences that combines numerical tradeoff
ratios between partial outcome descriptions with qualitative preference information.
We argue our system is unique among preference reasoning systems; previous work
has focused on qualitative or quantitative preferences, tradeoffs, exceptions and gen-
eralizations, or utility independence, but none have combined all of these expressions
under a unified methodology.

We present new techniques for representing and giving meaning to quantitative
tradeoff statements between different outcomes. The tradeoffs we consider can be
multi-attribute tradeoffs relating more than one attribute at a time, they can refer
to discrete or continuous domains, be conditional or unconditional, and quantified or
qualitative. We present related methods of representing judgments of attribute im-
portance. We then build upon a methodology for representing arbitrary qualitative
ceteris paribus preference, or preferences “other things being equal,” as presented in
[MD04]. Tradeoff preferences in our representation are interpreted as constraints on
the partial derivatives of the utility function. For example, a decision maker could
state that “Color is five times as important as price, availability, and time,” a senti-
ment one might express in the context of repainting a home, and this is interpreted as
indicating that utility increases in the positive color direction five times faster than
utility increases in the positive price direction. We show that these representations
generalize both the economic notion of marginal rates of substitution and previous
representations of preferences in AI.

Thesis Supervisor: Jon Doyle
Title: SAS Institute Distinguished Professor of Computer Science,
North Carolina State University

Thesis Supervisor: Peter Szolovits
Title: Professor of Computer Science and Engineering,
Massachusetts Institute of Technology

2

Acknowledgments

It is my continuing privilege to work under the supervision of Professor Jon Doyle. His
knowledge, scholarship, and willingness to continue working with me from separate
universities has been my greatest professional asset in this work.

To my thesis committee members, Peter Szolovits and Patrick Winston, I owe
thanks and appreciation. They have provided contrasting opinions and entertained
my own professional idiosyncrasies. I am, to this day, amazed and grateful that
Professor Szolovits, as the head of the Clinical Decision Making Group, has been so
supportive of my work for so long.

Like any work this storied, this thesis has gone through many incarnations and
phases, and in those past it benefitted greatly from the anonymous reviewers at
various conferences for their extremely helpful comments and criticisms. Nameless
ones, your help is noted, and duly received.

My family’s confidence is both an irreplaceable and intrinsic part of anything I
do. For everything, I thank my parents Robert and Catherine, and my brothers
Patrick and Daniel. They have enabled this work to continue where it would not
have otherwise.

I would be grateful for any small presence of Vanessa Lord’s singular spirit in my
life. That she has donated so much of it to me has been my greatest joy.

MIT has been a strange place to live and work during the years of this thesis.
Some of the best memories of it are due to Michael Oltmans and the AI Lab’s GSB
club, and the cultural cohesion they both provide. It has been unforgettable.

And finally, without the support of the I2B2 program at NIH (grant # U54LM008748-
01), a training grant from the National Library of Medicine (# LM 07-092), the
NMESH grant from the NLM (# N01-LM-3-3515), and the Pfizer Corporation’s in-
terest in AI and statistical approaches to medical diagnosis (contract # 003441-001),
none of this work would have been possible.

3

4

Contents

1 Building Utility Functions from Diverse Tradeoffs and Ceteris Paribus
Preferences 9
1.1 Form of the Solution . 11
1.2 Organization . 12

2 Background 15
2.1 Preference Orders and Utility Functions 15
2.2 Partial Outcomes . 16
2.3 Utility Independence . 17

3 Preference Representation and Representational Criteria 19
3.1 Varieties of Preference Representation 21
3.2 Multi-Attribute Utility Theory . 22
3.3 Logics of Preference . 23

3.3.1 Preferences Keeping Other Things Equal 23
3.3.2 Utility Independence Diagrams 24
3.3.3 Tradeoffs with CP-nets . 25
3.3.4 Further CP-net Extensions . 27

3.4 Deontic Logics and Preference Logics 28
3.5 Logical Formulae with Qualitative Priority 29

3.5.1 Weighted Logical Statements 30
3.6 Preferences in Support Vector Machines 31
3.7 Summary . 32
3.8 A New Representation . 32

4 Attribute Weighting in Additive Utility Functions 35
4.1 Linear Utility Functions . 36
4.2 Basic Elicitation Methods . 37

4.2.1 Pairwise . 37
4.2.2 SMART . 38
4.2.3 Range Sensitivity . 38
4.2.4 Swing Weighting . 39
4.2.5 A Return to SMART: SMARTS and SMARTER 39
4.2.6 Analytic Hierarchy Process (AHP) 39
4.2.7 General Remarks . 41

5

4.3 Interval Utility Methods . 41
4.4 Fuzzy Methods . 42
4.5 Decision Analysis Tools . 42
4.6 Relation to our work . 44

5 Preferences Among Conditions 47
5.1 Ceteris Paribus Preference Statements 48
5.2 Meanings . 49
5.3 From Qualitative to Quantitative . 50

6 Tradeoffs Between Attributes 53
6.1 Expressing Tradeoff Statements . 55

6.1.1 A Utility-Based Tradeoff Semantics? 56
6.2 Marginal Propositional Preferences 57

6.2.1 Discrete Attributes . 60
6.2.2 Single Attribute Tradeoffs . 62

7 Importance of Attributes 65
7.1 Expressing Importance . 66
7.2 Marginal Attribute Importance . 67

7.2.1 Importance of Discrete Attributes 70
7.2.2 Ceteris ParibusPreferences over Binary Attributes 72

7.3 No Attribute Interactions . 74

8 Accommodating Exceptions 75
8.1 Generalization and Refinement . 75
8.2 Interpretations of Overlapping Statements 76
8.3 Comments about Exceptions . 77

9 Utility Function Construction 81
9.1 Approach . 81
9.2 Generalized Additive Independence 82

9.2.1 Qualitative Ceteris Paribus Preferences and Utility Independence 82
9.2.2 Tradeoff Preferences and Utility Independence 83

9.3 Utility Construction . 85
9.3.1 Subutility Functions . 86
9.3.2 Conflicting Preferences . 87
9.3.3 Consistency Condition . 89
9.3.4 Choosing Scaling Parameters 90
9.3.5 No Conflicting Preferences . 91
9.3.6 Scaling Parameter Assignment by Constraint Satisfaction . . . 92
9.3.7 Adding Tradeoffs to Qualitative Ceteris Paribus Preferences . 94
9.3.8 Linear Inequalities . 95
9.3.9 Piecewise Linear Utility Functions 99
9.3.10 A Detailed Example . 100

6

9.3.11 Complexity . 103
9.3.12 Summary . 104

9.4 A Complete Method . 105

10 Quantitative Tradeoffs and CP-nets 109
10.1 Adding Quantitative Tradeoffs to CP-nets 110
10.2 A CP-net Example . 110

11 Conclusions 115
11.1 Directions for Future Work . 116

A Proofs 119
A.1 Proofs of Theorems . 119

7

8

Chapter 1

Building Utility Functions from
Diverse Tradeoffs and Ceteris
Paribus Preferences

Knowledge of a user’s preferences can be used to make decisions on behalf of the
user. Direct and complete elicitation of preferences in the form of utility functions
has enabled decision analysts to solve decision problems for users since von Neumann
and Morgenstern [vNM44]. However, any preference information is valuable, even if
it is somewhat vague or covers the domain only loosely.

This thesis presents methods to represent many different types of preferences and
methods to compile utility functions from these preferences that can then be used to
evaluate outcomes in accordance with the preferences. We present new techniques for
representing and giving meaning to quantitative tradeoff statements between different
outcomes; these are statements that compare two partial descriptions of outcomes,
and are interpreted as stating that outcomes matching the first description are some-
how “better” than the outcomes matching the second description. The tradeoffs we
consider can be multi-attribute tradeoffs relating more than one attribute at a time,
they can refer to discrete or continuous domains, be conditional or unconditional, and
quantified or qualitative. We present related methods of representing judgements of
attribute importance, a type of preference that figures prominently in applied de-
cision analysis, and indicates that the weight given to some attribute or attributes
in a decision should be greater than that given to other attributes. We then build
upon a methodology for representing arbitrary qualitative ceteris paribus preference,
preferences other things being equal, proposed in [MD04].

Next we consider how to create a utility function that represents a collection of
tradeoff, importance, and ceteris paribus preferences. A utility function evaluates
outcomes, giving higher values to outcomes that are more preferred. We say the
utility function represents a set of preferences if the utility function gives an outcome
a greater value than a second outcome whenever the first is preferred to the second
by sound inference procedures on the preferences. We perform this task making
a minimum of assumptions and restrictions on the form or character of the input
preferences.

9

Our approach is in contrast to those of traditional decision analysis. Prior to for-
malization, traditional decision analysts identify the dimensions of a decision, assess
variable independence, and elicit utility functions for each independent set of dimen-
sions, frequently by posing variations on standard gambles to the user. We extend
traditional decision analytic techniques to permit tentative formalizations to begin
much earlier, and to work with much less information. These extensions are useful
when the decision maker engages in protracted incremental deliberation, is unaware
of the basic framing of a problem, or for one reason or another does not require the full
machinery of traditional decision analysis. Specifically, we present representations for
a variety of tradeoff preferences between concrete alternatives, importance statements
relating the relative value of attributes, and qualitative ceteris paribus preferences.

Suppose Mike is using his personal online shopping agent to watch for deals on
computer hardware he may find attractive. Mike will buy a new laptop if there is
a good deal on one he likes. The agent retrieves a list of laptops for sale at various
vendors’ websites. Seeing the list, Mike decides that, with respect to price and speed,
a $1500, 3 Ghz machine is preferable to a $2000, 3.4 Ghz machine, other things being
equal. The agent then filters out some of the results that are too expensive. Thinking
about it a little more, Mike decides that the first machine is much better than the other
one, and decides that it is five times better. Mike isn’t thinking too carefully about
the relative weights that might be assigned to different dimensions in a hypothetical
utility function, he just knows that one product is much more attractive than the
other. Looking at some of the expensive options with many attractive features, Mike
then realizes that adding features and adding ounces of weight at the same time is not
what he wants. Mike tells the agent that Weight is more important than Price. The
agent readjusts its evaluation of options, and shows more laptops ordered by weight,
with several attractive light-weight options at the top of the list. Mike sees that there
are some good machines available that are light, moderately powerful, and within his
price range, but realizes that he must decide how big a screen and what resolution
he needs to do his work on the road, since this adversely impacts the price and the
weight. Mike decides a 12” screen on a 4.5 pound machine for $1700 is better than
a 14” screen on a 6 pound machine for $1800. This suffices to order the remaining
options in a way that suits Mike’s intuitions, and ends up earmarking a machine for
later consideration and probable purchase.

In traditional decision theory literature, starting with [vNM44] and continuing
through [Sav54], [Fis64], and [KR76], there is a methodological assumption that the
decision analyst will first interview the decision maker about what dimensions or
attributes of the decision are of consequence. Then the decision analyst assesses
utility functions on each of these dimensions by means of standard gambles. This
requires the decision maker to think carefully about the upper and lower bounds
of each dimension, consider his or her attitude toward risky hypothetical choices,
and determine which attributes are utility independent of other attributes. Next the
relative importance of each dimension must be assessed. These steps can be lengthy
and time-consuming, and not necessary in every application.

Mike’s interaction with his shopping agent typifies the applications we address.
We imagine the decision maker might interact with a simple program that allows

10

him or her to specify preferences in a variety of forms. Or perhaps a learning agent
watches the user make other choices and decisions and slowly builds up a repertoire
of past preferences. The user, the learning agent, or some intermediary process can
then record qualitative ceteris paribus preferences involving multiple variables, for as
many or as few variables and statements as is appropriate. Other preferences can be
represented as bounds on quantitative tradeoffs between groups of variables or be-
tween “market baskets” of particular values of groups of variables. Our methodology
does not require any statements of explicit utility independence, as this can frequently
be inferred from the other preference statements. In general this preference collection
phase is free of assumptions about the structure of the user’s utility function.

We present tradeoff preferences that can be either quantitative or qualitative. I
may feel that a reduction in one hour of travel time or layover time is worth an increase
of $50 in plane ticket prices. Or I might state that travel time is more important than
price, without mentioning specific values. Preferences can then be multivariable or
single-variable. When I give a preference stating that the ticket price, the service
class, and the in-flight amenities are more important than the flight time and the
distance to the airport, I’m comparing three attributes to two. Finally, preferences can
be over discrete or continuous attributes. Perhaps departing from one of a small set
of airports is worth an increase of $50 in ticket prices. We will provide unified systems
for representing and reasoning with each of these types of preference statements in
this work.

It is beyond the scope of the current work to consider preference elicitation, which
is the term given to the problem of coaxing users to reveal their preferences through
introspection, interview, or observation. Preference elicitation is a hard and important
problem. Although we do not treat this problem directly, it is because we are mindful
of it that we approach our task with flexibility. By making no constraints on the
amount or quality of preferences required to find a utility function, we give preference
elicitors the maximum amount of leeway possible to approach their task.

1.1 Form of the Solution

Tradeoff preferences in our representation are interpreted as constraints on the partial
derivatives of the utility function. For example, a decision maker could state that
“Color is five times as important as price,” a sentiment which one might express in
the context of repainting one’s home, and this is interpreted as indicating that utility
increases in the positive color direction five times faster than utility increases in the
positive price direction.

We show that using constraints on partial derivatives is a flexible and robust
representation of tradeoff preferences. In particular, we show how to interpret each
of the following:

1. Tradeoffs between concrete alternatives described partially, over many or few
attributes,

2. Relative importance judgements of attributes, over many or few attributes,

11

3. Generalizations and exceptions to tradeoff preferences,

4. Qualitative ceteris paribus preferences between binary attributes,

5. Tradeoffs over continuous and discrete attributes,

6. Degenerate tradeoffs of a single attribute.

Further, we show how combine these statements to make a utility function that
represents the given preferences, and can be used to quickly evaluate outcomes by
attributes. For this utility function, we require however many or few preferences of
whatever forms the decision maker can provide.

These tasks are the goal of this thesis.

1.2 Organization

In the following chapter, we first discuss some background and definitions that will
be useful throughout. We define preference orders, utility functions, and give a more
rigorous statement of what it means for a utility function to represent preferences.
We also discuss market baskets and with operations upon them, their similarity to
vectors. Chapter 2 ends with a presentation of our type of utility independence,
generalized additive independence.

Chapters 3 and 4 are overviews of the related work; chapter 3 in the field of
artificial intelligence and chapter 4 in decision analysis. Chapter 3 lays out our six
criteria for a representation of preferences, and considers to what extent these criteria
are fulfilled by existing preference reasoning and representation systems. We deter-
mine that there are large gaps in what existing systems can represent. Chapter 4
reviews techniques for attribute weight elicitation, the practice of assigning different
numerical weights to each utility independent subset of the attributes.

Chapters 5, 6, and 7 introduce our language of preferences. Chapter 5 is devoted
to the language of qualitative ceteris paribus preferences. Chapter 6 covers trade-
offs between partial descriptions of outcomes. Chapter 7 extends the treatments of
tradeoffs between outcomes to tradeoffs between attributes. It is in these chapters
that we present many of our results concerning the formal properties of our chosen
representations.

Chapter 8 includes some techniques for determining exceptions and generalizations
of preferences. We do not go into great detail on this subject in this thesis, rather
we present one simple system and then outline how other theories of nonmonotonic
reasoning might be applied to our preferences.

We present one method for constructing utility functions from the preferences
presented earlier in chapter 9. This updates methods from earlier work in [MD04] to
both support the enhanced representation of qualitative preferences in chapter 5 and
reflect the addition of tradeoff preferences.

Chapter 10 shows how our tradeoff preferences of chapters 6 and 7 can be combined
with a different type of qualitative ceteris paribus preference representation, the CP-
net. The CP-net is one of the most popular choices for representing qualitative

12

preferences. We show that straightforward techniques suffice to enhance a CP-net
with quantitative tradeoffs.

Chapter 11 concludes with a review of our contributions and a discussion of
promising avenues for future work.

13

14

Chapter 2

Background

In this chapter we present the basic concepts and notation that we use throughout.
We will first define a space of outcomes over which there exists a preference or-

dering. We then define a convenient shorthand for talking about partial descriptions
of outcomes, the market basket. Then we can state the requirements of a preference
order and of a utility function respecting that order. For describing statements about
the preferences over market baskets, we then define a language of preference.

2.1 Preference Orders and Utility Functions

Let A = {Ai|1 ≤ i ≤ n} be a finite, enumerated set of attributes, and each attribute’s
domain be denoted Di. Attribute domains can be infinite, discrete, or continuous. A
set of outcomes is described by ~A = D1× . . .×Dn, a cartesian attribute space. When
attributes have non-numeric domains, we assume that there is a function ρ : ~A → <n,
an isomorphism giving a numeric representation of the entire attribute space. Just to
simplify the presentation and discussion in the remainder, we will assume throughout
that the domain of each attribute is numeric. Although we make this simplification
to the domains, whether the domains of each attribute are continuously differentiable
or not will become of central importance.

A user or decision maker is assumed to have a preference ordering over the out-
comes described by ~A. The preference ordering is a reflexive and transitive relation
% on ~A where ~a % ~a′ indicates that ~a is at least as preferable as ~a′. Strict preference
Â consists of the irreflexive part of %, that is ~a Â ~a′ just in case ~a % ~a′ but ~a′ 6% ~a′.
When ~a % ~a′ and ~a′ % ~a we say ~a is indifferent to ~a′ and write ~a ∼ ~a′. This is not
assumed to be a total order. If two outcomes are incomparable we write ~a ./ ~a′.

A utility function, u : ~A → <, allows the use of ≥ as the standard order (and

therefore preorder) over the reals, and thus over the image of ~A under u. We write

≥u for the preorder induced by u under ≥ over the set u(~A). Complete preorders %
over countable ~A can be expressed exactly by utility functions, so that u(~a) ≥ u(~a′) if
and only if ~a % ~a′. We say a utility function u represents a complete preference order
% when u(~a) ≥ u(~a′) if and only if ~a % ~a′. An incomplete preorder % is necessarily a
subset of some preorder ≥u. When % is a subset of the preorder ≥u, we say that u is

15

consistent with %. We denote by U(~A) the set of possible utility functions u : ~A → <.
In the following chapters we will develop a language of preference statements called

L(A), and extent it to languages L(A)1 and L(A)2. Each statement of preference in
these languages will be interpreted as implying constraints on the utility function
or on the possible preference orders consistent with the preference. Thus, for any
statement S ∈ L(A), in L(A)1 or in L(A)2, and any utility function u in U(~A), we
can say that u |= S if the constraints implied by S hold on u. In such cases we say
that u is consistent with S. A utility proposition expressed by a sentence S is the set
of utility functions consistent with S, written [S] = {u ∈ U(~A)|u |= S}. If M is a set
of statements S, we write [M] for ∩S∈M [S]. A utility function u is consistent with M
iff u ∈ [M].

We can state the definition of other common concepts relating languages and
utility functions.

Definition 2.1 (Satisfiability) A set of preference statements M is satisfiable iff
[M] is non-empty.

Definition 2.2 (Conflicting Preference Sets) Given two sets of tradeoff state-
ments S and R, R conflicts with S and S conflicts with R if S is satisfiable and
S ∪R is unsatisfiable.

Finding a utility function u consistent with a preorder % involves demonstrating
two things. First, we must show what the function u computes: how it takes a model
and produces a number. Second, we show and how to compute u given the preorder.
We will use preferences, in various forms, as constraints on possible preorders.

2.2 Partial Outcomes

We will use market baskets as partial descriptions of outcomes. A market basket
(or sometimes just “basket” for brevity) is a partial function from ~A to

∐
i Di, the

disjoint union of domains of each attribute. For a market basket b, b(i) is the value
assigned by b to attribute i. b(i) is either undefined, in this case we write b(i) = ⊥,
or b(i) is a value w in Di. If a basket defines one value for every attribute Ai ∈ A
then we say it is complete. We can also write a basket as a list of the pairs it defines:
b = {(i = wi), (j = wj), . . .} where i indicates attribute Ai and wi ∈ Di. When
a market basket b assigns values to every attribute in a set G ⊆ A and for i 6∈ G,
b(i) = ⊥, we say that G is the support of b.

We define operations on market baskets by defining component-wise operations
using standard algebra, but with additional support for ⊥. When performing oper-
ations on ⊥, we have, for any real r, ⊥ + r = ⊥ and ⊥ ∗ r = ⊥. Otherwise, basket
addition is much like vector addition, as is multiplication of a scalar and a basket.
Multiplication of two baskets is component-wise: for baskets b, b′, we have b ∗ b′ = b′′

where b′′(i) = b(i) ∗ b′(i). Replacement of a basket by values from another is writ-
ten b[b′] = b′′ and defined as follows: b′′(i) = b′(i) unless b′(i) = ⊥, in which case

16

b′′(i) = b(i). We also write b[(i = w)] for the replacement of b with an implicit market
basket b′ = {(i = w)}.

Market baskets and vectors are similar. For each market basket, we can define a
corresponding vector, which we call the value vector for the basket. If b is a basket
we write v(b) for the value vector of b, where v(b) ∈ <n. We use vi(b) for the ith

component of v(b). Now, v(b) is the value vector for b iff vi(b) = b(i) whenever
b(i) 6= ⊥ and vi(b) = 0 otherwise. This correspondence allows us to use operations
on vectors in place of operations on market baskets. For example, we will use the
dot product of value vectors to compute the dot product of baskets: v(b) · v(b′).
On the other hand, we will also define the modification of a value vector to be the
modification of the basket.

In the following we will also use componentwise vector comparisons, as follows. If
there is a set of attributes G ⊆ A with m = |G|, if ~g,~g′ ∈ ~G, then ~g ≥ ~g′ if and only
if gi ≥ g′i for all 1 ≤ i ≤ m. Similarly, ~g > ~g′ if and only if ~g ≥ ~g′ and there is some

i, 1 ≤ i ≤ m, where gi > g′i. Lastly, we will call a vector ~x ∈ ~A the characteristic
vector for G if ~x is such that xi = 1 iff Ai ∈ G and xi = 0 otherwise.

2.3 Utility Independence

Utility independence (UI) is a property that obtains when the contribution to utility
of some attributes can be determined without knowledge of the values assigned to
other attributes. More precisely, if a set of features G is utility independent of a
disjoint set of features G′, then the utility given to G does not depend on the values
assumed by the features of G′. We give some general background regarding utility
independence presently.

We will need to talk about projections from the whole set of attributes to smaller
sets, given a set of attributes G ⊂ A. The cartesian product of the domains of
attributes in G is ~G. We denote the projection by πG : ~A → ~G.

We will write vectors next to each other when we refer to their combination; if X

and Y are disjoint sets of attributes, with ~x ∈ ~X and ~y ∈ ~Y , then ~x~y ∈ −−−−→X ∪ Y .

Definition 2.3 (Utility Independence) A set of features X is utility independent

of a disjoint set of features Y with A = X ∪ Y , if and only if, for all ~x, ~x′ ∈ ~X, and
~y, ~y′ ∈ ~Y ,

~x′~y Â ~x~y =⇒ ~x′~y′ Â ~x~y′. (2.1)

We call this utility independence; Keeney and Raiffa [KR76] call it preferential inde-
pendence, and use a different notation.

Note that utility dependence is not symmetric. It is possible for a set of features
X to be utility dependent upon a disjoint set of features Y , while Y is independent
of X.

Since utility independence generally simplifies the structure of the corresponding
utility functions, in later chapters we assume that attributes are utility independent
whenever there is no evidence to the contrary.

17

Let C = {C1, . . . , Ck} be a cover of the attributes A, that is, each Ci ⊆ A and
∪iCi = A, and two attribute subsets Ci need not be disjoint. Given a cover C, and
some element of that cover Ci, we denote by ~Ci the cartesian product of the features
in Ci.

We will call functions ûG : ~G → < partial utility functions; these take a partial
description of an outcome and return a number. We define subutility functions to be
functions uG(~a) = ûG(πG(~a)), which ignores all but some set of features, G.

Given some cover C of A, a generalized additive utility function for C is a utility
function u : ~A → < that is a weighted sum of k subutility functions ui : ~A → <
[BG95]. That is,

u(~a) =
k∑

i=1

tiui(~a) (2.2)

is a generalized additive utility function for cover C = {C1, . . . , Ck}.
The generalized additive independent utility function plays a central role in this

thesis. In the following we will try to find a generalized additive utility function
for any input set of preferences; and we will do so for several different types of
preference statements. These types of preferences will be explained and considered
in the following chapters. Following those, we will discuss how to arrive at the utility
function from the given preferences. But first, we will consider much of the other
work related to our own, and try to demonstrate how our work extends that body.

18

Chapter 3

Preference Representation and
Representational Criteria

Making decisions on behalf of human users or assisting humans with difficult decision-
making tasks is a useful function computers might perform. Most existing approaches
create preference reasoning formalisms the human must then use to express his or her
preferences. Our objective is to lessen the burden on the human user by defining
a variety of preference expressions that a user can use. Other proposed reasoning
systems allow users to state preferences as utility functions, as ceteris paribus com-
parisons, and as weights on logical formulae. Our work will extend this by building on
a base of more expressive ceteris paribus statements [WD91], and augmenting with
techniques to reason with partial or incomplete information of both quantitative and
qualitative preference information, including tradeoffs and preferences restricted to
a given context. Our work also supersedes previous work on joint representations
by providing a principled semantics for the various preference expressions in terms of
utility functions. Importantly, this gives us a way to judge if our methods are correct,
reasoning sound, and conclusions justified.

When we consider existing preference reasoning formalisms, we should consider
the following issues. Existing systems are usually built to handle only one or two of
the following.

1. Basic Qualitative Comparisons. A decision maker may wish to state simple
comparisons. I may wish to make no explicit quantification of preference or
utility, leaving the preference purely qualitative. I may wish to say, that other
things being equal,

• pet(cat) Â pet(dog)

which is to say, I prefer to have a cat than to have a dog as a pet. Such
statements should be treated like constraints on admissible utility functions,
requiring a utility function representing the decision maker’s attitudes to value
pet(cat) higher than pet(dog). Other details of the interpretation are potentially
variable from one system to another.

19

2. Complex Preferences. When stating preferences ceteris paribus, users may wish
to make comparisons among more than one or two variables. For example, I
may desire chocolate with butterscotch over strawberry. Further, quantitative
variables complicate this scenario drastically: a user may have preferences be-
tween formulae, I may desire p+ 1

2
q over 3r. Thus, preference reasoning systems

should not needlessly restrict the syntax of a user’s preference expressions to
containing relations upon only one variable. Users must be able to express their
preferences in as complex a manner as may be required.

3. Utility Independence. When a decision maker can identify that his or her pref-
erences for values of attribute X do not depend on the values assumed by
attribute Y , then preferences for X and Y can be assessed independently. This
is known as the Utility Independence of X and Y . For example, the price of a
car may be independent of the color : if we are choosing between two blue cars,
we choose the cheaper. On the other hand, a canonical example of dependence
(explored in [Bou94a]), is that the utility of carrying an umbrella depends on
the current weather.

Decision makers can have preferences that may or may not exhibit utility in-
dependence. Existing preference reasoning systems force a decision maker to
declare which features are utility independent before stating any of their pref-
erences. Under many situations, users may wish to make preference statements
without such restrictions. I may wish to state that I prefer strawberry to choco-
late, without any other stipulations, including whether or not this preference
depends on my choice of icecream toppings. Therefore, any preference reasoning
system containing syntax for expressing the utility independence or dependence
of features on each other should perform equally well when such information is
not provided.

4. Tradeoffs. Users may express quantitative tradeoffs between variables. I may
prefer strawberry to chocolate by a factor of five. Or I may value finishing my
thesis this year twice as much as finishing next year. Such a preference can
be given a ceteris paribus interpretation, where holding other things equal the
preference for thesis finishing dates holds. Thus a tradeoff statement should
be able to express a desire indicating that an increase of some fixed amount of
one feature (finishing date) offsets an increase of some fixed amount of another
feature (thesis quality) by a factor of X. Someone might reasonably write that
“Finishing Date > 5 times Thesis Quality.”

5. Context. There are two potentially separate but related types of context-
dependent preferences. First, preferences may be conditional, that they do
not hold in general but only if some condition is true. If I say that my pref-
erence for fuel-efficiency over crash-test safety of vehicles holds only when the
vehicle is not an SUV, I am conditioning my fuel-efficiency vs. safety tradeoff
preference on the value of the SUV attribute. Second, preferences that hold in
general my be overridden by preferences that apply in exceptional or emergency
situations. I might make a general statement like

20

• invest(stocks) Â invest(bonds)

indicating a preference for investing in stocks over investing in bonds. And then
I might wish to state a special-case preference:

• invest(bonds) ∧ recession(true) Â invest(stocks) ∧ recession(true)

indicating that if it is true that the economy is in recession, then I prefer in-
vesting in bonds rather than stocks.

6. Incomplete Preferences. Preferences over possible outcomes can be considered
a pre-order, a transitive and reflexive relation, over the space of outcomes. But
reasoning systems must be prepared to reason with only a partial specification
of this pre-order. Users may be unable or unwilling to order every possible
outcome. In general, the time required to do so is prohibitive. Thus preference
reasoning systems must be able to make recommendations and decisions with
as little or as much information as the user is able or finds it convenient to
provide.

This list of preference criteria is not intended to be exhaustive. There may well be
other authors who would choose somewhat different criteria. For example, other au-
thors have considered the uncertainty of actions in their preference reasoning; indeed,
this is a major dimension of utility theory and analysis in economics and operations
research. However, in the context of preference reasoning and representation, there is
much to be done before attempting to model the uncertainty associated with proba-
bilistic actions, as evidenced by the criteria we present here. Thus while we consider
the application of preferences to uncertain choices to be an important avenue of fu-
ture research, we feel the field is better served by first solidifying the foundations of
preference representation and reasoning in the case of certain actions. We maintain
that all of those mentioned here are important capabilities for a preference system,
and designing a system that fulfills them is a major step forward.

In the following we consider existing work on preference representations, and relate
them to the preceding considerations.

3.1 Varieties of Preference Representation

Successful preference representations have been based on modeling utility functions
and computing maximum expected utility, following economic theory of humans as ra-
tional decision makers. This approach is effective, but can be labor- and information-
intensive. A decision maker and decision analyst would have to take time to assess
utilities by means of standard gambles [vNM44] in a manner described by [KR76],
and the necessary probabilities must be estimated. The effectiveness of this approach
is intimately tied to the accuracy of the utility and probability estimates.

Systems have also been built using logical formalisms, where a user might specify
logical formulas over variables describing outcomes and then indicate preferences by
assigning weights, priorities, or orderings among such formulae [LvdTW02]. While

21

such systems can be versatile, they can also present considerable cognitive overhead,
making it difficult to tune the formulas precisely enough to provide the desired be-
havior.

Other systems use assumptions about the structure of a user’s preferences to
achieve computational efficiency gains. By forcing a user’s preferences to obey addi-
tive utility independence, the resulting utility function can be efficiently computed.
Some researchers assume additive independence (for example, [BG95]), some multi-
plicative independence [LS99]. Others assume that a user’s preferences each concern
exactly one feature of the domain [BBHP99]. Assumptions of such structure are not
always well-founded, and although they can assure efficient computation with the
preferences, they can prevent a user’s true preferences from being properly expressed.

While many existing preference reasoning systems are adequate to the tasks they
were designed for, they lack a significant focus on letting the user express preferences
in a way that is most natural to the user. Psychological research shows that rewording
the same underlying question can cause people to give opposite answers [TK86].
Thus, as designers of decision-support systems, we can expect that our expectations
about the form or structure of a user’s preferences can alter these preferences. In
some cases, it may be desirable to coerce the user into expressing preferences in
a way that makes them computationally efficient to reason about. But in many
cases, this results in the user being unable to express their preferences as they might
occur under undisturbed introspection. Further, users have many different kinds of
preferences, and each system separately assumes that users preferences are of only
one type (although [BD02] is a system assuming two types.)

Our work seeks to extend the capabilities of current decision systems by building
a preference representation that is expressive and powerful enough to perform in
complicated domains. Our work seeks to fit the representation to the user, not the
other way around. In the following we explore representations of common preferences
and their accompanying reasoning methods, and the computational properties of such
methods.

3.2 Multi-Attribute Utility Theory

Economists, beginning with [vNM44], have studied decision making using utility func-
tions. As we have mentioned, such representation are powerful but require much in-
formation or data to be effective. For example, [KR76] describes methods by which a
decision specialist can phrase and pose hypothetical preference questions to a decision
maker. This is known as preference elicitation.

To avoid time consuming preference elicitation procedures, [CKO01] exploits ex-
isting databases of utility functions (created over the history of decision analysis for
certain medical domains) to gain prior distributions over a new user’s utility function.
With a few questions Chajewska, Koller, and Ormoneit can quite quickly determine
which of a few common utility functions a user’s preferences most closely mimic.

In many ways traditional numeric utility functions as developed in decades of
research in economics are the gold standard of expressiveness for preference reasoning

22

systems in AI. In fact, traditional economic utility functions succeed in many of the
criteria we have presented for preference reasoning systems. Our reasoning system
will try to come as close to the expressiveness of a utility function as possible while
remaining simple to elicit from users and efficient to compute.

Utility models can allow us to make statements of the form cat Â dog but only
by associating different numerical weights to different kinds of pets, such that the
utility, u, of pets obeys u(cat) > u(dog). Traditional economic utility functions do
not allow qualitative preferences. Thus utility functions partially satisfy criterion 1,
Qualitative Comparisons. Utility functions can be constructed that obey arbitrary
preferences over complex alternatives or arbitrary dependencies or independencies.
However, the effort required to do so can be prohibitive. Thus traditional utility
functions pass criteria 2 and 3, Complex Preferences and Utility Dependence. The
quantitative tradeoffs of criterion 4, Tradeoffs, can also easily be worked into utility
functions

However, a utility function cannot allow more specific preferences (in the stocks
and bonds example of criterion 5, Context) to override more general preferences. To
model such a scenario, investing must be made utility dependent on the growth of the
economy and one utility function must be constructed for the cartesian product (in-
vesting, economy growth). Utility functions are also notoriously poor with incomplete
information, and have no real semantics for ceteris paribus preferences.

3.3 Logics of Preference

Logical statements of the form p Â q, meaning formula p is preferred to formula q,
can be given varying interpretations. Many such interpretations are qualitative. This
allows decision makers more flexibility in expressing incomplete or fewer preferences or
leaving strengths of preferences unspecified. This flexibility streamlines the preference
elicitation process, allowing more natural and perhaps simpler preference statements
to be made and made sense of.

3.3.1 Preferences Keeping Other Things Equal

One class of preference representations, termed ceteris paribus, allows preferences that
apply “keeping other things equal.” Such a preference might be “Other things being
equal, I prefer chocolate to strawberry ice cream.” These preferences capture the intu-
itive idea that other unmentioned qualities might affect the decision making process.
If, for example, chocolate turns out to be much more expensive than strawberry, and
hence all else is not equal, then this preference no longer applies.

Doyle, Shoham, and Wellman [DSW91] propose reasoning systems based on the
ceteris paribus preference semantics. Their system states preferences as: pet(cat) Â
pet(dog), meaning other things being equal, I prefer to have a cat than a dog. This
explicitly compares the case of having a pet that is a cat (and not having a dog) to
the case of having a pet that is a dog (and not having a cat), following [Han89]. Note
that this says nothing about the preferability or desirability of cases where one has

23

two pets, a dog and a cat, and states where one has no pets at all. These are left out
of the preference semantics.

This system has several benefits. It firstly does not require or exclude the possibil-
ity of utility independence between attributes. Syntax for expressing utility indepen-
dence can be added if needed; for example Bacchus and Grove [BG96] make explicit
statements of utility independence. They use a notation listing all the features that
are independent of a particular preference: a Âc,d,e b indicates that the preference
for a over b is independent of the values that variables c, d, and e assume, holding
them equal (in the ceteris paribus sense), yet possibly dependent on values of other
variables f, g, h, etc., in the domain. Secondly, in a preference p Â q both p and q can
be formulae, possibly referring to many actual attributes, or even including numeri-
cal functions or combinations of attributes. Thirdly, such a representation makes no
explicit assumptions about what is required for reasoning to take place, so as many
or as few preferences can be stated as are available. So a simple ceteris paribus repre-
sentation satisfies criteria for Qualitative Comparisons (1), Complex Preferences (2),
Utility Independence (3), and Incomplete Preferences (6).

However, the chief drawback of the ceteris paribus assumption is that ceteris
paribus preference semantics cannot represent specificity of preferences. We cannot
have more specific preferences override less specific ones, as in the stocks and bonds
example of preference Context (criterion 5). Although it seems natural to assert both
of these preferences, first that stocks are better than bonds as a general strategy,
and the second that recessions reverse this ranking as an important special case,
they cannot both be expressed simultaneously and consistently. The “other things
equal” clause of the first preference subsumes the condition on recession of the second
preference.

As a solution, some researches have proposed combining logical representations of
ceteris paribus preference with explicit quantification of the “strength” of the pref-
erence. [TP94] consider each preference to be quantified, p Â q by ε, such that
the utility of p exceeds that of q by at least ε. This combines the issues of explicit
quantification explored below (Section 3.5.1) with those of ceteris paribus preferences.

Finishing the list of preference-representation criteria is the ability to present
tradeoffs. Strict logical ceteris paribus representations are deficient in this area.

3.3.2 Utility Independence Diagrams

Boutilier, Brafman, Geib, and Poole introduce CP-nets, or Conditional Preference
nets (named for the structural similarity to Bayesian Networks) in [BBGP97]. This
is a representation where ceteris paribus preferences are expressed over features using
a graph. Nodes in the graph correspond to single features and the directed edges
in the graph represent utility dependence between features. Using this system, one
can determine the preference for a particular feature given the values of the feature’s
parents in the graph. Such a system allows one to represent preferences such as:

• If I have steak, I prefer red wine over white wine,

• If I have fish, I prefer white wine over red wine.

24

In the above, the food feature is considered a parent of the wine feature, since the pref-
erence over wine depends on the value of food. Such a representation allows explicit
preferences to be represented along with explicit utility independence and depen-
dence, and thus fulfills preference criterion 1 for expressing Qualitative Comparisons.
This representation also fulfills the conditional clause of our preference Context crite-
rion by making all preference statements conditional. However, the main weakness of
this representation is its inability to represent the complex preferences described in
criterion 2. Since each preference is restricted to referring to one node in the graph,
and each node represents one feature, preferences cannot refer to more than one fea-
ture at a time. This prevents statements such as p Â q, e.g., “I prefer having a cat
to having a dog,” if having a cat is logically independent of having a dog. We could
represent this preference if cat and dog are two values for the pet variable, but this
includes the assumption that we may only have one pet, and having a dog and cat
are mutually exclusive.

A CP-net cannot remain ambiguous about utility independence. Features either
are or are not independent and this determines the structure of the graph in the
CP-net. Thus this does not satisfy preference criterion 3, Utility Independence. No
provisions are made for tradeoffs or partial information, failing criteria 4 (Tradeoffs)
and 6 (Incomplete Preferences). The CP-net makes up for its lack of expressiveness
with considerable gains in reasoning efficiency.

3.3.3 Tradeoffs with CP-nets

In [BD02] Brafman and Domshlak introduce CP-nets with tradeoffs, or TCP-nets.
A TCP-net is an extension of CP-nets that allows trade-off ratios between features
to be represented. This means that the relative utilities of, to continue the previous
example, having a cat and having a dog can be expressed in the network. This
alleviates some of the single-feature preference problem, because trade-off ratios are
a type of preference between two different features. Thus, one can say

• I prefer having a cat to not having a cat,

• I prefer having a dog to not having a dog,

• It is more important to me to satisfy the cat preference than to satisfy the dog
preference.

Brafman and Domshlak’s definition of more important, written X B Y , means
that it is more important to satisfy the preference regarding variable X than to
satisfy the preference regarding variable Y . This allows a TCP-net to represent
preferences between outcomes that vary on (exactly) two variables. Thus, if X B Y ,
then an outcome x1y2z is preferred to an outcome x2y1z, where x1 Â x2, and y1 Â y2,
and z is an assignment to all remaining variables outside of {X,Y }. This means
that a preference where more than two variables change cannot be stated (such as
x1y2w1 Â x2y1w2), due to the binary nature of the more important than relation.
Thus the TCP-net goes one step farther than a plain CP-net in representing complex

25

preferences of the kind described in criterion 2, Complex Preferences, but does not
approach full generality.

Further, X B Y only expresses lexicographic importance (any small improvement
in X outweighs any large improvement in Y .) They say their results generalize to
non-lexicographic. However, the only other option they mention is annotating the
“B” arrow with a large table listing the complete preference ordering of all mem-
bers of the joint domain XY . This is unsatisfying, firstly because there should be
something possible to say between these two extremes, and secondly because this is
computationally equivalent to joining the features X and Y into one joint feature
XY , which is ostensibly the problem TCP-nets were introduced to avoid.

Consider an example. Suppose we wish to represent a lexicographic order on
three binary variables, A,B,C, (this is the same order we would use treating the
assignments to ABC as binary representation of numbers: 111 Â 110 Â 101 Â ... Â
000). We first create a CP-net with three nodes, A,B,C, and no links between them.
For each node we add a conditional preference table (CPT) for that feature, where
the CPT for A is 1 Â 0, for B we say 1 Â 0 and for C we also stipulate 1 Â 0. Then
we add two importance links, A B B, and B B C. The ceteris paribus clause of our
preference on A gives us the following four preferences over outcomes:

• 111 Â 011

• 110 Â 010

• 101 Â 001

• 100 Â 000

The ceteris paribus clause of the preferences over B gives:

• 111 Â 101

• 110 Â 100

• 011 Â 001

• 010 Â 000

And finally, the ceteris paribus clause of preference over C gives:

• 111 Â 110

• 101 Â 100

• 011 Â 010

• 001 Â 000

The importance link, A B B, gives the following two preferences:

• 101 Â 011

26

• 100 Â 010

The other importance link, B B C, gives the following two preferences:

• 110 Â 101

• 010 Â 001

All of the above preferences are a subset of the transitive closure of a lexicographic
ordering of the three variables, however, this leaves unordered two outcomes that
should be ordered: 100 and 011. In a normal lexicographic order, 100 Â 011. However,
this cannot be stated in a TCP-net, because the two outcomes differ in more than
two variables. Note that in general it is possible to insert another outomce between
these, and thus have a transitive order among such outcomes (i.e., 100 Â 010 Â 011),
but in a lexicographic order, no other outcome can be inserted between these two
outcomes without violating other constraints of the lexicographic order.

TCP-nets also allow conditional relative importance. This is the idea that the
relative importance of X and Y changes with the value of some other variable Z.
They call the possibly many features Z the selector set of X,Y. This is an extremely
general concept, and as such has some adverse ramifications for the the efficiency
results the authors make. For example, they show an acyclic TCP-net is always
satisfiable, but checking consistency is exponential in the size of the selector sets, or
linear in the description of the TCP-net.

It should be evident that the TCP-net does not fulfill the entire representation
criterion for tradeoffs, sice it does not treat numeric tradeoffs. However, this is per-
haps a result of the qualitative focus of the original CP-net presentation. Even if we
grant that the results in [BD02] do cover tradeoffs in sufficient generality, the TCP-
net still leaves several criteria unsatisfied; preference criteria for Utility Independence,
Context, and Incomplete Preferences.

3.3.4 Further CP-net Extensions

In [BBB01], a quantitative extension to CP-nets is discussed, called a UCP-net. A
UCP-net allows a combination of utility independence information with ceteris paribus
semantics and explicit utility values assigned to each preference. Such an approach
may be warranted (as [BBB01] observes) in cases where uncertainty is an issue, prob-
abilities are known, and reasoning in terms of expected utility is required. However,
once one adds numbers to a CP-net, one has to make sure none of the numbers are too
big or too small, otherwise it will violate the ceteris paribus stipulation of the CP-net
semantics. Thus, many UCP-nets that could potentially be specified by users of a
decision system do not actually qualify as UCP-nets because the parameters involved
have to be carefully balanced. [BBB01] provides methods for determining if a speci-
fied UCP-net actually is a UCP-net, involving calculations using the “minspan” and
“maxspan” of a feature, which is defined as the greatest difference in utility observed
between two different outcomes given some assignment to a variable of interest and
varying assignments to the parent features. These tools in hand, they check if the

27

minspan of X is greater than the sum of the maxspans of the children of X. If so,
the network is a UCP-net. But it is not obvious what is or isn’t a UCP-net without
performing such calculations.

The UCP-net’s extensions to a CP-net actually make it fulfill fewer of our pref-
erence criteria. The changes are intended to allow reasoning about expected utility
with the efficiency of a CP-net, and such probabilistic reasoning is an important and
difficult task, but one we consider outside the scope of this thesis’s work. Therefore,
the UCP-net actually satisfies none of our preference criteria.

Wilson [Wil04] uses a circumscription like semantics for augmenting conditional
ceteris paribus preference statements in CP-nets. u : x Â x′[W] means that given
value u for variable U , we prefer value x to x′ for variable X, as long as things outside
of W are held equal, but W we really don’t care about. Thus the values of W are
allowed to be arbitrarily different. This new language is more expressive than the
normal CP-nets. A CP-net cannot represent a preference like x Â x′[Y, Z], because
the CP-net is restricted to representing preferences between outcomes that differ only
on one variable, rather than both Y and Z. The circumscribed preferences are not
quite general, since they still allow preferences only between one variable at a time.
Suppose a user wanted to express the preference a1b2 Â a2b1 using an augmented
CP-net. The user could specify that a1 Â a2[B], i.e., a1 is preferred to a2 no matter
what values B assumes, but then the user is committed to also specifying a1b1 Â a2b1,
a1b2 Â a2b2, and a1b1 Â a2b2, which may or may not be desirable.

Although this extension allows specifying preferences between outcomes that differ
on more than one (for augmented CP-nets) or two (for augmented TCP-nets) vari-
ables, it does not allow preferences that differ in principled ways, such as preferences
that are not preferentially independent or obey independence assumptions other than
additive independence, and preferences with tradeoffs involving more than two vari-
ables. Thus this augmentation handles the Qualitative Comparison criterion, but not
Complex Preferences, nor general Utility Independence. The purpose of this represen-
tation is surely to address approximate reasoning, stating preferences where all else is
held almost equal, by allowing the specification of some irrelevancies, and does so to
a significant extent, but remains firmly in the realm of propositional logic statements.
If augmented TCP-nets are considered, these solve our criterion on Tradeoffs as well
as normal TCP-nets. Like the other CP-net formalisms, this augmentation requires
all preferences in a domain to be completely specified before reasoning proceeds.

3.4 Deontic Logics and Preference Logics

Researchers in philosophical logic have also investigated logics of preference. In
[Han89] Hansson defines a preference p Â q as applying in the worlds most similar
to the current world. This idea gets around the problem of saying a ceteris paribus
preference applies in all possible worlds, as long as they differ only on p and q. This
idea is later refined in [Han96] where Hansson considers a ceteris paribus preference
to hold only in the current context, where the worlds under consideration are simi-
lar enough to be subsumed under the “other things equal” clause of the preference.

28

This addresses our Context preference criterion by attempting to restrict the context
of preference statements, but does so by offloading this problem to the problem of
defining the relevant worlds under consideration. In a similar manoeuver, Hansson
considers circumstances where one might wish ceteris paribus to hold other things
almost equal, and determines that different worlds under consideration are those
where the differences are large enough to matter. Such solutions are philosophically
meaningful, but from the perspective of an applied computer system, the problem of
filtering outcomes, choices, or decisions to be either restricted to the right context or
different enough to be significant needs to be solved.

Researchers in artificial intelligence have also considered pure logics of preference.
Boutilier [Bou94b] considers ceteris paribus preferences that hold only in the most
normal worlds, relative to a given normalcy ordering over states of the world.

Clearly, these approaches allow direct comparisons to be stated, and so satisfy our
preference criteria for Qualitative Comparison and Complex Preferences. The later
formulations ([Bou94b] and [Han96]) also allow more specific preferences to override
more general ones, provided that the specific or exceptional circumstance is “different
enough” from the current context. Computation is not an explicit concern in philo-
sophical logic, which may explain why the idea of utility independence has not been
explored. Tradeoffs between attributes are also unexplored. By not considering rea-
soning methods or algorithms, these systems sidestep the preference incompleteness
criterion, but it is nevertheless evident that reasoning of some sort could proceed with
as few or as many preferences as a user wished to state.

3.5 Logical Formulae with Qualitative Priority

Dubois, Le Berre, Prade, and Sabbadin [DLBPS98] suggest a representation of quali-
tative preference concurrent with a representation of qualitative uncertainty. A prefer-
ence in their system is any formula in propositional logic, with an attached “priority”
weight. This priority is one element of a finite set of priority ranks. The set of ranks
is a totally ordered set. For example, a preference might be

• Pet(dog), priority β.

In this example, we desire to have a pet dog, with priority β. The strength of the
preference depends on the ordering of β within the set of priority ranks, and on the
priority assigned to the other preferences we might have. Suppose we also have a
preference for

• Pet(cat), priority δ.

Then to determine which of these is preferred, we can simply see if β > δ or if δ > β.
Because this system (and the systems discussed below) use first order logic as

their main representation, this allows almost anything to be stated, if sometimes only
convolutedly. However, reasoning in unabridged logic can be intractable, so although
everything can be said, it is not necessarily natural or efficient. For example, no
direct preferences are expressible. These logical representations contain only implicit

29

preferences. The preference for p over q must be inferred from the utilities or priorities
assigned to p and q: which is more preferred is a consequence of which formula is
given a higher rating. Thus such systems fail our criteria for Qualitative Comparison
and Complex Preferences. Numerical tradeoffs, utility independence, and context
dependence cannot be stated at all.

3.5.1 Weighted Logical Statements

Similar to the work by [DFP97], work by van der Torre and Weydert [vdTW98]
uses propositional logic to represent preferences, and these preferences are assigned
“utility” parameters. However, van der Torre and Weydert use numbers for the
utility parameter. This parameter can be positive or negative, allowing either positive
benefits for achieving a goal or negative penalties for failing to achieve the goal. These
goals are also required to be conditionals (although the condition can be empty), thus
a goal is a conditional statement something like “if φ obtains, try to do ψ with utility
x” and “if φ′ obtains, and we cannot do ψ′, subtract utility y.”

When a situation in the world obtains, the positive and negative rewards of each
satisfied goal are summed together. This allows situations where multiple goals are
satisfied to be compared. Adding weights together creates preferences over outcomes
or choices of actions. For example, suppose we have the following preferences:

• I desire to have a dog, with Utility = 4.

• I desire to not have a fence, with Utility = 2.

• If I have a dog, I desire to have a fence, with Utility = 3.

Thus the most preferred scenario is to have a dog with a fence, where the utility
is 4 + 3 = 7, whereas having a dog without a fence earns utility of 4 + 2 = 6.
Clearly the implications of weighted preference statements are dependent upon the
weights provided. In the example above, if the weights are adjusted slightly, different
conclusions are obtained [LvdTW02]. Thus this system suffers from some of the
problems of traditional numerical utility function representations: that it is difficult to
precisely specify all of the utilities involved so the desired conclusions result. Further,
if the desired conclusions are already known, what benefit is the reasoning system? If
the desired conclusions are not known to the decision maker, and therefore one cannot
be sure of the utility values provided, is it fair to say that the decision formulation
represents the preferences of the decision-maker?

To extend this reasoning system to make decisions concerning entire outcomes,
rather than just preferences over formulae, the “lifting problem” must be solved. This
is a way of providing semantics for desires over worlds. If, for example, if I prefer p to
q, then are all worlds satisfying p preferred to all worlds satisfying q ? Or does it mean
that there exists some p world better than all q worlds? Or are all p worlds better
than some q worlds? Choosing which of these quantifiers are used in the semantics
is what is called the “lifting” problem. In [vdTW01], they explore several different
possibilities for lifting parameters. This lifting parameter is constrained to be one of

30

max and min for both the more preferred and less preferred alternatives. Thus one
might require that the maximal p-worlds are preferred to the minimal q-worlds. Note
that other preference reasoning systems circumvent this problem. Expected utility
is a lifting parameter for decisions made under uncertainty where exact probabilities
and utilities are known. And the ceteris paribus assumption is one way of solving
the lifting problem. Under a ceteris paribus assumption, a p-world is preferred to a
q-world only when the two worlds are exactly the same, outside of p and q.

A representation based on numerical parameters on logical formula cannot easily
express tradeoffs between attributes. The logical formula can refer to several at-
tributes at once, but to express a function of them would require individually stating
each value for the function. Direct comparisons are inexpressible. Special cases can
override general preferences because a decision maker can assign one utility value to p
and different, not necessarily subsuming, values to p∧ q, p∧ r, p∨ r, etc. [LvdTW02].
This also removes the ability to state any utility independence between attributes.
Thus this is one of a very few reasoning systems that satisfies preference criterion
5, representing overriding and context-dependent preferences to a significant extent.
However, as mentioned above, this fails at criteria 1, 2, 3 and 4.

3.6 Preferences in Support Vector Machines

In an effort to avoid many of the preference representation problems discussed so
far, and in fact, to avoid representation as much as possible, Domshlak and Joachims
[DJ05] present a method of learning a user’s utility function from a few statements us-
ing a Support Vector Machine (SVM). In machine learning, SVMs are quite common,
and quite successful. The main idea in SVM learning is that data is not easily sepa-
rable, but if the data can be projected into a very high dimensional space, it can be
separated with a straight line. Through a clever mathematical coincidence, it is pos-
sible to choose the high-dimensional space and the transform from the input space
with great craft, such that the simple operations required in the high-dimensional
space (just a dot-product) can be computed by carefully-chosen operations (called
“kernels” in the SVM literature) in the input space. This allows complex data to be
classified with a linear separator in a high-dimensional space, without ever having to
represent anything in that space.

So [DJ05] proposes to translate preferences of the form x Â y, where x, y are
formula over a space of n binary dimensions, into a space of size 4n, where there is
one attribute for each variable and each interaction between variables in the input
space. One major benefit of this translation is that it trivializes utility independence
concerns. Every utility function has a linear function in this larger space. Another
major benefit is a tolerance to some slight errors or inconsistencies in the input
preferences. If there are a few preferences or data points out of line, these can be
dealt with using the standard “soft margin” techniques of SVM algorithms. It is
clear that this method easily fulfills our criteria for Qualitative Preferences, Utility
Independence, and Incomplete Preferences.

While there are many benefits, there are also some shortcomings. This represen-

31

Criteria 1 2 3 4 5 6
System
utility functions 1

2
y y y n n

cp-[DSW91] y y y n n y
CP-nets y n 1

2
n 1

2
n

TCP-nets y n 1
2

1
2

1
2

n
UCP-nets n n 1

2
n n n

Aug-CP-nets [Wil04] y n 1
2

1
2

1
2

n
Philosophy [Han96] y y n n y y
Qual. Priority [DLBPS98] n n n n n y
Quant. Priority [LvdTW02] n n n n y y
SVM [DJ05] y 1

2
y n n y

Tradeoffs + cp (this thesis) y y y y y y

Table 3.1: The various preference-reasoning systems reviewed herein, and the prefer-
ence criteria they fulfill. The “1

2
” symbol indicates partial fulfillment of the criterion.

Criterion 1 is Qualitative Comparison, 2 is Complex Preference, 3 is Utility Indepen-
dence, 4 is Tradeoffs, 5 Context, and 6 Incomplete Preference.

tation does not fulfill preference criteria for Tradeoffs or Context. They do mention
that there are modifications, presumably forthcoming, that allow tradeoff preferences
to be given as input to the SVM. Further, the main dimensional translation relies
on enumerating the state space of each variable, and as such is unable to handle
continuous variables or discrete variables of large (or infinite) cardinality. Thus this
partially satisfies and fails our criterion for Complex Preferences.

3.7 Summary

The existing preference reasoning systems fulfill some of our criteria, but none fulfill
all. For criteria 1 through 6, we summarize which of the representations satisfy
them in Table 3.1. We also include the system proposed herein, in the final row, a
system based on a novel representation for tradeoffs combined with a representation
of qualitative ceteris paribus preferences. We outline our new system below.

3.8 A New Representation

As we have shown, there are statements of preference that cannot be formally stated
in existing preference reasoning systems. Preferences regarding numerical tradeoffs
cannot be combined with qualitative statements of direct preference, ceteris paribus
preference, or context-dependent preference. It is our belief that such a representation
would constitute a useful extension to the field. The remainder of this work is the
exposition of such a representation.

32

We present in later chapters a representation of preference tradeoffs based on
partial derivatives of the utility function. We argue that this has clear semantics and
intuitive appeal. Roughly, we consider tradeoff statements to be conditions on the
partial derivatives of the utility function. When someone says “I prefer having a cat
to having a dog,” we interpret that as meaning that the utility is increasing in the
cat-direction faster than it is in the dog-direction. This, in turn, has a mathematical
interpretation in terms of the partial derivatives of the utility function; we present
the full details in chapter 6.

Further, our system of tradeoffs builds on the foundation of qualitative preference
statements of [DSW91]. This combination allows users to specify numerical tradeoffs
alongside ceteris paribus preferences. This augments the capabilities of the Doyle,
Shoham, and Wellman system to fulfill our preference criterion 4 for Tradeoffs, by
handling qualitative and quantitative tradeoffs. The proposal we present also fulfills
the Context criterion by allowing both conditional statements, and discussing ways
of reasoning about exceptions and generalizations. Our additions also allow very
complex tradeoffs to be stated, as far as we know, this is the most general form
of tradeoff reasoning proposed. In addition to performing in the absence of utility
independence information, we present a number of theoretical results that address
the relationship between stated tradeoff preferences and utility dependence. Lastly,
our proposal makes use of only as much information as the user is willing or able to
provide, fulfilling criterion 6.

33

34

Chapter 4

Attribute Weighting in Additive
Utility Functions

By far the most common representation of preference used in practice is the utility
function. The most common type of utility function is an additive one: a utility
function that is a weighted sum of subutility functions. In some cases this is just the
weighted sum of the attributes describing outcomes. We believe functions of this form
to be both the simplest and most important representation of preference. Because
of this priority, we consider throughout this work how all of our representations of
preference can be translated into additive utility functions and how all of our methods
behave when applied to the same.

In the following we consider the history and impact of various techniques for con-
structing and eliciting additive utility functions used in decision analysis, economics,
psychology, and operations research. This illustrates what types of preference con-
siderations are easy or hard for people to think about or suggest, what techniques
are used to construct additive utility functions, and what sorts of situations and
constraints occur in practical decision analysis.

When using additive utility functions, of the form

u(x) =
n∑
i

tiui(x), (4.1)

there is a need for specifying the tradeoff weights, ti in equation 4.1, between subutility
functions. When the subutility functions, ui in equation 4.1, are simple or obvious
attributes this can be called attribute weighting. The attribute weight for a single
attribute is frequently termed the marginal utility for this attribute in economics.
A related economic term is the marginal rate of substitution of X for Y, for two
attributes X, Y , and is the ratio of the marginal utility of X over the marginal utility
of Y . Just as this problem is known by many names, there are many techniques for
addressing this problem. We outline these techniques, from different fields, in the
present chapter.

35

4.1 Linear Utility Functions

Before we talk about different ways of determining appropriate tradeoff weights in
linear utility functions, we can make some remarks on the general idea of using a
linear utility function.

Simple additive utility functions have had great success in practical decision the-
ory and operations research. Although many authors have presented this opinion,
Edwards [Edw77] presents this argument in great strength. “Theory, simulation com-
putations, and experience all suggest that weighted linear averages yield extremely
close approximations to very much more complicated nonlinear and interactive ‘true’
utility functions, while remaining far easier to elicit and understand,” [Edw77]. Fur-
ther, Edwards and Barron [EB94] claim that all dimensions they’ve ever encountered
applying decision analysis either slope monotonically up or down, have an internal
midpoint (very rarely), or have no underlying physical dimension and are purely
judgmental (such as how much you like the look of a car). In such cases linear or
piecewise-linear subutility functions are perfectly warranted. Edwards and Barron
[EB94] sum up their strategy of using a linear approximation everywhere by naming
it, perhaps ironically, “heroic approximation.”

Edwards and Barron [EB94] argue that sensitivity analysis can be used to de-
termine when the linear approximation is a bad idea. The adequacy of the linear
approximation can be tested by asking questions about a very small improvement,
and whether that improvement is more valuable at the low end of the scale or the
high end. In this way, a decision analyst can estimate the partial derivatives of this
dimension, and in a non-uniform way, by estimating at more than one point in the
space. The ratio of greatest improvement (of some small, fixed amount) to least
improvement can be used to estimate the curvature of the function. Nonetheless, Ed-
wards further claims that when the value of a dimension is monotonically increasing
or decreasing, the correlation between total value computed using a linear approxima-
tion and a true nonlinear model is upwards of 0.99, although this may be due to the
aggregation of other dimensions in the utility function downplaying any particular
dimension’s importance.

When one dimension has increasing utility up to a point and then decreasing util-
ity, a simple linear model is no longer appropriate for that dimension. Edwards and
Barron [EB94] term this preference reversal a violation of conditional monotonicity,
and claim that these reversals are easy to detect. This agrees with Keeney [Kee92]
(p. 167) who suggests that a preference reversal probably means the decision has its
dimensions of analysis poorly defined, and that some aggregate dimension is actually
more appropriate. This aggregation strategy is an approach taken in recent prefer-
ence reasoning systems in artificial intelligence, such as [BBHP99], and automated in
[MD04].

An obvious counterexample to the linear attribute function is the economic prin-
ciple of diminishing returns. Edwards [Edw77] argues that the economic law of di-
minishing returns is only important when outcomes are separable along dimensions
(as in a commodity bundle, or market basket, commonly used in economics). This
is presumably less frequently the case in the applied decision analysis of Edwards’

36

experience, where users make real choices rather than simulated decisions based on
economic formulae.

4.2 Basic Elicitation Methods

There are several main methods of tradeoff weight elicitation. These are: the Analytic
Hierarchy Process (AHP) [Saa80]; Swing Weighting [vWE86]; Pairwise Weighting
[KR76]; and SMART [Edw77] and advancements SMARTS and SMARTER [EB94].
In the following we provide a description of the basic tradeoff-weight elicitation meth-
ods.

There is of course a trivial, naive method of tradeoff weight assignment. In this
naive method the decision maker assigns numbers to each attribute. These are the
tradeoff weights for the corresponding attributes. This approach suffers from what
I call the “magic number” problem: that it is difficult for users to assign numbers
to attributes and be simultaneously aware of all the consequences of them. Did the
user realize by making one assignment that the combination of attributes X, Y, and
Z outweigh W and V ? Was this a conscious decision? The myriad consequences of
any weighting given in this manner make it unlikely to produce the intended results.

4.2.1 Pairwise

A successful traditional method of selecting parameter weights is to assess them by
standard gambles [KR76]. Once the subutility functions are assessed, or at least
normalized, and the best and worst values are known, a decision analyst can present
gambles to a decision maker. These gambles present a tradeoff as the following
problem: For what value of p would you be indifferent between:

1. An outcome with the best value for attribute a1 and worst value for attribute
a2

2. A lottery that gives a p chance at obtaining the best possible outcome over
〈a1, a2〉, and a 1−p chance at obtaining the worst possible outcome over 〈a1, a2〉

The decision maker then states the probability for winning the lottery for which he
or she is indifferent between the first proposal and the lottery. For this probability,
p, the expected utility of both options are the same. Thus, the weight assigned to
attribute a1 is p.

Much of the development of this technique in [KR76] is devoted to choosing the
right questions to ask. For a utility function with n scaling parameters, the best ques-
tions are a series that result in n equations for the n unknown parameters. This allows
a minimum number of gambles to be posed to the decision maker while still provid-
ing enough information to uniquely determine all the scaling parameters. Sometimes
n− 1 equations are used with the extra equation being the normalization condition:∑n

i ti = 1.

37

4.2.2 SMART

SMART, standing for the Simple MultiAttribute Rating Technique, is a formal 10-
step process, as follows [Edw77]. 1) Identify whose utility is to be maximized. 2)
Identify the decision or issues. 3) Identify the possible outcomes or entities. 4)
Identify dimensions of value evaluation for entities. 5) Rank the dimensions in order
of importance. 6) Rate dimensions numerically, preserving rank order. Start with
10 on least important, and proceed upward (emphasis added). Allow participants to
reorder and remove inconsistencies. 7) Normalize importance weights. 8) Measure
each entity on each dimension. 9) Calculate utilities for each entity. 10) Decide which
entity is best. Step 6) is the defining characteristic of the SMART method.

While simple, SMART makes up the core of many more sophisticated elicitation
techniques. And further, in many practical decision analysis applications simplicity
is considered a strength, and for this reason applied techniques will bear considerable
similarity to SMART [MHS05].

4.2.3 Range Sensitivity

There is a behavioral weight elicitation bias that has to do with the range of values
particular attributes can assume, known as the range sensitivity bias or range sensi-
tivity principle [KR76]. When one attribute has a very small range of values, it can be
over-weighted if the elicitation procedure suggests a weight independent of the range.
For example, if a decision maker is asked to consider hypothetical new jobs, varying
on the two dimensions of Salary and Time Off, it is difficult to assign a weight to
either dimension without knowing the variation present in the available options. If
Salary ranges from $44000 to $45000 while Time Off ranges from 10 days to 25 days,
Salary might receive less weight than Time Off. Were the range of Salary $35000
to $55000 this attribute would be much more important. Weighting methods that
normalize each attribute’s range to be the interval [0,1] and then attempt to value
the attribute in general terms are particularly vulnerable to this bias.

The range sensitivity bias has been the subject of a variety of behavioral exper-
iments. Fischer [Fis95] conducts experiments investigating whether or not decision-
makers will (correctly) display range sensitivity in their assignment of attribute trade-
off weights. He found that the more salient the task makes the cross-attribute con-
siderations, the more subjects will exhibit range sensitivity in weight determination.
Earlier investigation focused on whether or not the range of an attribute helped to de-
fine the goodness or badness of a particular value on that attribute. Beattie and Baron
[BB91] found that only in these cases were the attribute weights range-dependent.
The result of [BB91] could also be construed as demonstrating heightened range sen-
sitivity when the attributes are made more “salient” to the decision maker by the
context of the decision. However, the type of “salience” explored in [Fis95] is a much
more concrete focus on the tradeoff between two attributes, forcing a decision maker
to explicitly choose between a good value for one attribute and bad value for another,
and a very bad value for the first attribute and good value for the second.

38

4.2.4 Swing Weighting

The Swing weighting method attempts to value attributes by raising them from their
lowest possible state to their highest possible state, and placing a value on this change
[vWE86]. The change this creates in the overall utility function is then the weight
assigned to this variable. This method attempts to correct for the range sensitivity
bias (particularly as it is exhibited in the SMART method) by making the differ-
ences between the attribute’s lowest value and highest value more salient during the
weighting procedure.

In the canonical Swing method, the decision maker starts by considering a hypo-
thetical alternative that has the worst value on every attribute. Then this alternative
has its best attribute raised to its best level and this change is given a score of 100.
The decision maker is asked to consider which attribute he or she would most prefer
to increase to its best value next, and what value to place on this improvement. This
proceeds iteratively until all attributes are assigned some weight.

Since the most important attribute is given weight 100, other attributes are then
given lower weights. This tends to result in users selecting numbers like 80, 70, and
50. Although the attribute weights are then normalized to sum to one, this is a
potential source of bias.

This procedure is otherwise similar to the SMART method, which shares authors
with the Swing method.

4.2.5 A Return to SMART: SMARTS and SMARTER

Edwards and Barron [EB94] present two updates of the SMART method for linear
additive utility elicitation. The main problem with previous version is the attribute
scale dependence: the weight applied to an attribute depends on the range of possible
values, even when those values are normalized. Thus SMARTS is introduced (SMART
+ Swing), using the swing weighting elicitation method instead of just the SMART
method.

SMARTER uses the centroid of the space of possible weight assignments to obtain
quantitative weights from a qualitative ordering on weights [EB94]. This eases elicita-
tion by not requiring decision makers to actually weight attributes at all, but merely
to rank-order them in importance. Specifically, if weights are ranked 1 through kth

most important, then the ith weight gets weight: (1/k)
∑k

j=i(1/j), so the first is 1 +
1/2 + 1/3, the second is 1/2 + 1/3, the third just 1/3. After these assignments are
made, all the weights can be normalized.

4.2.6 Analytic Hierarchy Process (AHP)

Introduced by Saaty in 1980 [Saa80], the Analytic Hierarchy Process has two main
components: one, using a matrix of pair-wise importance ratios, and two, structuring
the decision space hierarchically. The result is an additive utility function over the
decision space, and the main goal of the process is to elicit the attribute weights in
this utility function.

39

First, the method takes a matrix of pairwise ratio judgements of relative impor-
tance of the attributes. Element aij of the matrix represents the factor (call it k) by
which attribute i is more important than attribute j, and thus aij = ti/tj. These
factors are graded on a 9-point linguistic scale, where 1 = i and j are equally im-
portant, 3 = i weakly more important than j, 5 = strongly, 7 = demonstrably or
very strongly, and 9 = absolutely. The analyst first asks the decision maker to make
such judgements for each pair of attributes in the upper triangle of the matrix, and
then the method fills in the bottom half of the matrix with the reciprocals of the
upper triangle. One may object that a user asked to make these types of interrelated
judgements cannot be expected to be perfectly consistent, and this is true, but the
AHP has a mechanism to correct this, shown below.

A derivation follows. Let A be an n by n matrix, and ti be the weight assigned
to attribute i in the additive utility function.

aij = (ti/tj),
aij(tj/ti) = 1,∑n

j aij(tj/ti) = n,∑n
j aijtj = nti,∑n
i

∑n
j aijtj = n

∑n
i ti

and that, in matrix notation, is A · ~t = n~t, which is the formula for an eigenvector ~t
and eigenvalue n of A. This equation has a subtle property. This equation holds only
when the decision maker’s inputs are all perfectly consistent; when it does not hold,
we have

A · ~t = e~t,

where e is the eigenvalue for ~t. Thus, the farther e is from n the greater the in-
consistency in the user’s inputs. This is a useful property for an interactive weight
elicitation procedure, since this may prompt the decision maker to adjust his or her
weighting to be more consistent.

There have been many further advancements on the original method. In fact,
there is an entire conference devoted to the Analytic Hierarchy Process.

For example, [PH01] find that AHP’s canonical method, using verbal descriptions
to assess weights (such as “is significantly more important than”) and then mapping
these to a 1-9 scale, leads to greater inconsistency than a method that uses a more
behavioral-based mapping from verbal description to numbers. The statements, after
all, are highly subjective, and a subjective assessment of their numerical value seems
warranted. Another interesting incidental result in [P9̈9] is that the labelled, or odd
numbered, members of the scale are up to twice as likely to be chosen as the even,
unlabelled scalars. Presumably respondents are somehow influenced by the suggestion
that the labelled ratios are more usual or appropriate than the “intermediate” ratios.

40

4.2.7 General Remarks

An empirical study of these weighting methods1 found that Swing, Direct, and Pair-
wise weighting methods elicited mostly the same weights, while AHP and SMART
methods were slightly different from the rest [PH01]. The same study found that 30%
of people actually change which attribute is judged most important when using dif-
ferent elicitation techniques. It is not clear if one method results in “better” attribute
weights than another method.

An interesting finding of behavioral researchers showed that anyone performing
a complete pairwise attribute weighting, making n(n − 1)/2 judgements, of a series
of between two and five attributes in a perfectly self-consistent manner gave all the
attributes equal weights [PH01]. This finding leaves little hope of humans describing
their desires with very much mathematical coherence. It is the growing realization
that this task is generally difficult for human beings that led researchers away from
methods that directly require the decision maker to assign numerical weights to at-
tributes. We have already mentioned one modern method, SMARTER, which takes as
input only the ordinal ranking of attributes (a task much more likely to be done con-
sistently by human respondents) and then uses some mathematical assumptions about
the structure of the desired utility function to arrive at numerical attribute weights.
In the rest of this chapter we consider more tradeoff-weight elicitation methods that
allow decision makers more flexibility in the input they provide to the method.

4.3 Interval Utility Methods

Salo and Hamalainen [SH92] present a method allowing tradeoff constraints to be
bounded by linear inequalities, then solving for possible tradeoffs using linear pro-
gramming. This method, called PAIRS, allows decision makers to specify tradeoffs
less precisely, and therefore allow for greater chances of consistency. When first de-
veloped, this method was applied directly to attribute hierarchies or attribute trees,
where there are categories of attributes arranged in a hierarchy, and the importances of
the higher attributes are functions of their member attributes. Recently this method
has also been applied to SMARTS weighting [MHS05]. The PAIRS method is straight-
forward in procedure. First the decision maker provides intervals for each attribute
weight, i.e., each weight ti is constrained to be in [ai, bi] with 0 ≤ ai ≤ bi ≤ 1. The
aggregation of these constraints are a system of linear inequalities that can then be
solved directly using linear programming.

Sugihara, Ishii, and Tanaka [SIT04] allow interval value judgements to be given
in Analytic Hierarchy Process (AHP) elicitation. This is as follows. First they obtain
pairwise importance judgements in intervals. This defines a matrix of weight-intervals.
They then obtain constraints by requiring that weights must sum to 1, be non-zero,
and some must be larger than others through extrinsic ordering constraints. This
defines a system of linear inequalities which can be solved. They prove a result that

1but using SMART [Edw77] rather than SMARTER [EB94], presumably because SMARTS and
SMARTER use swing weighting and are therefore redundant with swing weighting in this experiment.

41

if the intervals admit a crisp (“crisp” in contrast to “fuzzy” or “interval-valued”)
solution they can find one with linear programming. While this solution is an ap-
proximation to the real solution, it is easy to obtain through computation of a least
upper bound and a greatest lower bound on each of the attribute weights.

4.4 Fuzzy Methods

There are also a host of fuzzy methods for multicriteria decision making. For a review
of the categories of these methods, see Ribeiro [Rib96].

One example is the proposal of Angilella, Greco, Lamantia, and Matarazzo [AGLM04],
which uses approximate nonlinear programming to find fuzzy-logic weighting func-
tions of tradeoffs, using discrete Choquet fuzzy-set integrals. The inputs required are
a total order over the outcome space, a partial order on the importance of attributes,
and a total list of the pairs of attributes having positive or negative interactions. Due
to the stringent input requirements, this sort of algorithm is probably of more interest
to fuzzy-set theorists than decision analysts. For an introduction to fuzzy integral
theory in decision analysis, see Grabisch [Gra96].

4.5 Decision Analysis Tools

There are innumerable decision support programs described in the operations research
literature, each attempting to compute utility functions from some kind of user input
and judgements on the relative weights of attributes. We present a chronological
outline of this development below.

Jacquet-Lagreze and Siskos [JLS82] present the UTA method, a method which
uses linear programming to estimate the parameters of the utility function. Here UTA
stands for the French “UTilité Additive.” There are two main steps: 1) assessment of
an optimal utility function, and 2) sensitivity analysis using a special linear program.

In UTA, each attribute is partitioned into r equal parts. Outcomes falling into the
same partition element are equally good, and indistinguishable by preference on this
attribute. Marginal utility for an outcome can be computed by linear interpolation
from the endpoints of its containing partition element. Constraints are arranged so
that the lower bound of a partition element must be less than the upper bound of the
same partition element. From these, together with some constraints from orderings
over outcomes, a utility function is definable using linear programming.

Sage and White [SW84] describe the ARIADNE system, a decision making sys-
tem of thoroughly behavioral motivation. Their system is designed with behavioral
principles and biases in mind, and allows debiasing where possible. An important
consequence of this is that the system is iterative; ARIADNE makes suggestions and
then the user refines his or her preferences.

The system itself is a linear-programming system of intervals on the tradeoff
weights. The decision maker is allowed to give intervals where he or she thinks the
tradeoffs weights are (and ARIADNE is the first system to handle interval weights),

42

then the LP gives solutions respecting those and the criteria that they must sum to
one. Importantly, attributes are allowed to be arranged hierarchically. The arrange-
ment is given by the decision maker. The probabilities can also be given in intervals,
but not if the tradeoff weights are also given in intervals; both together result in a
non-linear (quadratic) programming problem.

The inputs from the decision maker are fourfold: 1) scores on lowest-level at-
tributes (attributes are allowed to be hierarchically arranged), 2) tradeoff weights, 3)
probabilities, and 4) relative risk-aversion coefficients.

Weber [Web85] describes a method called HOPIE that proposes to fuse informa-
tion of two types: one, holistic orderings amongst outcomes; and two, attribute or
criteria tradeoffs. HOPIE takes incomplete information and determines a set of utility
functions consistent with it. Since the result of this analysis is many possible utility
functions, dominance and general decision optimality is defined by having all these
functions agree on one outcome.

Like UTA [JLS82] before it, the HOPIE algorithm partitions each criterion into
subranges, and the decision maker gives preferences to hypothetical alternatives in
the cartesian product of these partitions. This preference is either a number in [0,1] or
it can be an interval in the same range. Further, the decision maker must make some
pairwise judgements between hypothetical canonical alternatives. These rankings
and intervals then define a system of linear inequalities, which is solved with linear
programming.

Moskowitz, Preckel, and Yang [MPY92] provide a system called Multiple-Criteria
Robust Interactive Decision analysis (MCRID). Their goal is to move beyond a full
precise specification of attribute weights, weights on consequences, value functions,
and utility functions. The general insight is to collect vague information that the
decision maker is sure of rather than precise information that might be wrong or
labile. They also have no problem with basing the decision on subjective probabilities,
a philosophical stance Raiffa [Rai68] terms “the Bayesian approach,” and tacitly
underlies many other systems.

Based on the RID approach, MCRID is an extension to deal with multiple crite-
ria. RID proceeds in three general steps. One, ranges of probabilities for events or
orderings amongst their probabilities are elicited or obtained; but not all, just those
the decision-maker feels confident about. Second, RID assess certainty equivalents for
various payoff distributions required by the algorithm. Third, RID elicits preferences
between pairs of complete alternatives. This suffices to define a linear program that
determines the decision-maker’s remaining subjective probabilities. However, this re-
quires the utility functions to be known (they assume either linear or exponential:
U(x) = ax + b or U(x) = −e−cx), and the conditional payoffs of actions to be known.
The system is interactive because it only asks as many questions as are required to
find a solution.

MCRID is similar. The main idea is to elicit direct attribute weights, orderings,
partial orderings, and interval values, combined with certain preferences over out-
comes. Criteria are arranged into a value tree so that weights are combined at each
level of the tree. MCRID then uses first- and second-order stochastic dominance
to rule out some alternatives, which is justified when the attribute weights obey a

43

normal distribution.
MCRID contrasts itself with ARIADNE [SW84] favorably by noting that ARI-

ADNE is not interactive and does not filter out dominated alternatives as a perfor-
mance heuristic.

An IBM research project, ABSolute [BLKL01], is designed for evaluating source
offers for business applications. WORA is the weight-elicitation procedure part of it.
WORA lets users order certain subsets of the outcomes. These are called “loops”.
For each loop, a linear program can be defined that constrains the weights based
on the ordering of outcomes. For example, when u(s1) > u(s2) > u(s3) we get two
constraints in the Linear Program, u(s1) > u(s2) and u(s2) > u(s3).

[BLKL01] shows some results about how this converges reasonably quickly (15
iterations for 10 variables) in simulations. These simulations suggest that the number
of distinct binary rankings required is the same as the number of dimensions. The
authors claim that the WORA technique is best used when there are large numbers
of attributes.

Modern systems in decision analysis sometimes borrow work from machine learn-
ing techniques. These try to learn the parameters of the utility function from a few
examples, rather than have the user input them. In one such approach, Bohanec and
Zupan [BZ04] present a system based on using their function decomposition algorithm
HINT [ZBDB99] for decision-support. In this case, the Slovenian Housing Authority
is making loans to people for houses. The problem is to classify housing loan appli-
cations into three tiers of worthiness. The goal of HINT is to reverse-engineer the
concept hierarchy actually used to make these decisions. They use human experts to
pick each intermediate concept from a set of several that HINT identifies as being
good, in fact, the exact human experts that generated the test cases, a practice they
term “supervised function decomposition.” In this way, the expert, or decision maker,
helps the algorithm arrive at what he or she believes to be the correct utility function.

4.6 Relation to our work

The preceding sections have mentioned many problems and approaches to dealing
with human decision makers and their preferences. We keep these in mind as we
develop our own preference reasoning methods.

The justification of using linear functions applies to some extent; linear function
can be great approximations to more complicated functions. The shortcomings we
see with the arguments for linear approximations, that diminishing returns occurs
with separable attributes and that the impact of one variable is outweighed by the
others, are domain dependent. In our work we generally assume linearity whenever
we can, more specifically, whenever that assumption is not known to be inaccurate.
But at the same time, we are readily able to deal with small or moderate amounts of
nonlinearity in user’s stated preferences and revealed utility function.

There are many examples here of the difficulties encountered in tradeoff weight
elicitation. It seems clear that the problems encountered tradeoff elicitation are fre-
quently those of forcing all of the user’s inputs to be linear and consistent. When users

44

are prompted to list tradeoff parameters for every feature, or every pair of features,
these complete judgements are not likely to fit the structural constraints desired by
decision analysts: that the weights all sum to one, or that the relative importance of
two attributes be calibrated to the relative importance of the other attributes. Thus
the user’s inputs together with these assumptions are inconsistent. While there are
techniques that allow a decision analyst to discover, assess, and diagnose inconsis-
tencies in many tradeoff judgements, simpler applications will not have the resources
or ability to make such adjustments. By removing these assumptions and allowing
users to state as few or many tradeoffs as they might feel confident doing we can have
greater confidence in the information provided. This is the approach we take in our
work.

The work considered in this chapter has shown that human preference elicita-
tion is a difficult task. Humans might have malleable and uncertain preferences, and
getting a decision maker to express these in a usable and consistent form can be
problematic. Our work in this thesis does not directly concern or address preference
elicitation. But because we are mindful of the difficultly of this problem, we design
our preference representation with whatever flexibility and generality we can. Our
preference statements will allow qualitative or quantitative preferences and compar-
isons, complicated comparisons between multiple attributes, conditional statements,
and we have no requirements for utility independence and completeness of the elicited
preferences. The generality of our statements and methods allow more flexibility in
preference elicitation. We leave preference elicitation up to the particular preference
applications.

45

46

Chapter 5

Preferences Among Conditions

In many domains, qualitative rankings of desirability provide a more natural and
appropriate starting point than quantitative rankings [WD91]. As with qualitative
representations of probabilistic information [Wel90], the primary qualitative relation-
ships often times immediately suggest themselves. Primary qualitative relationships
also remain unchanged despite fluctuating details of how one condition trades off
against others, and can determine some decisions without detailed knowledge of such
tradeoffs. For example, in the domain of configuration problems one seeks to assem-
ble a complicated system according to constraints described in terms of qualitative
attributes, such as the type of a computer motherboard determining the kind of pro-
cessors possible. Some user of a configuration system might prefer fast processors
over slow without any special concern for the exact speeds.

We will consider a language L(A), defined relative to some set of attributes A, used
to express preferences over propositional combinations of constraints on attributes of
A. We present part of this language here. We limit ourselves in this chapter to the
qualitative, ceteris paribus preferences between basic propositions over attributes. In
the following two chapters we augment this language with quantitative tradeoffs and
importance judgements.

Wellman and Doyle [WD91] have observed that human preferences for many
types of goals can be interpreted as qualitative representations of preferences. Doyle,
Shoham, and Wellman [DSW91] present a theoretical formulation of human prefer-
ences of generalization in terms of ceteris paribuspreferences, i.e., all-else-equal pref-
erences. Ceteris paribus relations express a preference over sets of possible worlds.
We consider all possible worlds (or outcomes) to be describable by some (large) set A
of finite, discrete features. Then each ceteris paribus preference statement specifies a
preference over some features of outcomes while ignoring the remaining features. The
specified features are instantiated to some value in their domains, while the ignored
features are “fixed,” or held constant. A ceteris paribus preference might be “we
prefer programming tutors receiving an A in Software Engineering to tutors not re-
ceiving an A, other things being equal.” In this example, we can imagine a universe of
computer science tutors, each describable by some set of binary features A. Perhaps
A = {Graduated, SoftwareEngineering A, ComputerSystems A, Cambridge resident,
Willing to work on Tuesdays, . . .}. The preferences expressed above state that, for

47

Tutor Alice Bob Carol
Feature
Graduated false false true
A in Software Engineering true false false
A in Computer Systems true true false
Cambridge resident true true true
Will work Tuesdays false false true

...
...

...
...

Table 5.1: Properties of possible computer science tutors

a particular computer science tutor, they are more desirable if they received an A
in the Software Engineering course, all other features being equal. Specifically, this
makes the statement that a tutor Alice, of the form shown in Table 5.1, is preferred
to another tutor Bob, also in Table 5.1, assuming the elided features are identical,
since they differ only on the feature we have expresses a preference over (grade in
Software Engineering). The ceteris paribus preference makes no statement about the
relationship between tutor Alice and tutor Carol because they differ with regard to
other features.

With this sort of model in mind, we consider how to formalize these statements.

5.1 Ceteris Paribus Preference Statements

When talking about qualitative ceteris paribus preferences, we assume these are pref-
erences over discrete attributes. For the present chapter we will assume that each
attribute in A is of finite discrete domain. In following chapters we explore the dif-
ferences discrete and continuous attributes present.

We first define atomic value propositions in L(A). These are propositions on one
attribute α and one value of that attribute, w, with w ∈ Dα. The following are the
possible atomic value propositions.

• Atomic Value Proposition (AVP) : α = w | α 6= w | α > w | α < w | α ≥ w |
α ≤ w

These atomic propositions are useful for defining values for attributes, or talking
about subsets of the domain of a particular attribute. It is, however, sometimes
difficult to mathematically represent the constraint α 6= v for continuous domains.
In the current case, with all of A discrete variables of finite domain, we can use the
equivalence (α 6= vi) ⇐⇒ (α = v1) ∨ ... ∨ (α = vi−1) ∨ (α = vi+1) ∨ ... ∨ (α = vk),
although this is sometimes unwieldy.

Compound value propositions are boolean combinations of atomic value proposi-
tions.

• Compound Value Proposition (CVP) : AVP | ¬ CVP | (CVP ∧ CVP) | (CVP
∨ CVP) | (CVP =⇒ CVP)

48

Note that with this formulation a market basket is shorthand for a conjunction of
atomic value clauses, those corresponding to the values of attributes stipulated by
the basket.

Next we define qualitative ceteris paribus preference clauses over compound value
clauses. Ceteris paribus preference clauses are composed of a preference relation
symbol, ÂCP or %CP , and two compound value clauses.

• Qualitative Ceteris Paribus Preference Clause (Q) : CVP ÂCP CVP | CVP %CP

CVP

For example we could write (α2 = 3) ÂCP ((α1 = 1) ∧ (α3 = 0)). When people
make preference expressions of this sort, using the connectives “and” and “or,” there
is frequently some ambiguity. If I say, “I prefer apples to bananas and pears,” is
that equivalent to two separate statements: “I prefer apples to bananas” and “I
prefer apples to pears,” or is it equivalent to the statement “I prefer apples to the
combination of bananas and pears”? (And in this case, due to the domain, there is
even more chance for ambiguity: does this last statement refer to a combination and
admixture of the two fruits, bananas and pears?) Further, statements of preference
involving negation of values can seem artificial: “I prefer red cars to not-blue cars,”
is perhaps unambiguous but somewhat unnatural.

Finally we define a conditional qualitative preference. Conditional qualitative pref-
erences are just the combination of a value clause with a preference clause.

• Conditional Qualitative Preference (CQ) : CVP =⇒ Q

For example, we can make statements ((α1 > 3) ∧ (α1 < 5)) =⇒ ((α2 = 3) %CP

(α2 = 1) ∧ (α1 = 0)). The intended interpretation is just that the preference clause
Q holds in the parts of the space satisfying constraint CVP.

Conditional statements do not hold uniformly over all of ~A, but only over a sub-
space of ~A. Specifically, a conditional statement S holds where its compound value
clause is satisfied. We discuss the satisfaction of clauses in the following section.

5.2 Meanings

In the above, we have given grammars for various preference statements. It remains
to give these statements meanings here.

Atomic value propositions (AVP) are satisfied by different assignments to the
attribute in question. A value x for attribute α satisfies an atomic value proposition
(α = w) iff x = w. Thus we have x |= (α = w) iff x ∈ Dα, x = w. Similarly, the other
atomic clauses are satisfied in the usual algebraic ways. We define x |= (α 6= w) iff
x ∈ Dα, x 6= w. If “>” is defined for Dα, define x |= (α > w) iff x ∈ Dα, x > w.
If > is not defined on Dα then no value x ∈ Dα satisfies a clause (α > w). Similar
constraints apply to the clauses concerning <,≤,≥. When p is an atomic attribute
proposition over attribute α, a basket b |= p iff vα(b) |= p. Note that ⊥ 6|= p for all
propositions p.

49

Compound value propositions (CVP) are satisfied by the usual rules of boolean
logic. If the indicated logical relation on atomic propositions is satisfied by basket
b, then the compound value proposition is satisfied. For example, let p, q be AVPs.
Then basket b |= (p ∧ q) iff (b |= p) ∧ (b |= q). As usual, we have b |= (p ∨ q) iff
(b |= p) ∨ (b |= q). b |= ¬p iff (b 6|= p). Finally b |= (p =⇒ q) iff (b 6|= p) ∨ (b |= q).

When H is a compound value proposition [H] = {~x ∈ ~A|~x |= H}.
The support of a compound value proposition, p, is the minimal set of attributes

determining the truth of p, denoted s(p). Two baskets b and b′ are equivalent modulo
p if they are the same outside the support of p. Formally, b ≡ b′ mod p iff s(a) = s(p)
and b[a] = b′[a].

To interpret qualitative ceteris paribus preference clauses, we must consider the
satisfying assignments of the component compound value clauses and consider the
implications each satisfying assignment has for the preorder over outcomes. First let
us consider a qualitative ceteris paribus preference clause Q = p ÂCP q, and two
baskets b, b′ over A, such that b |= p and b′ |= q. Q is interpreted as meaning that
b Â b′ iff b[a] = b′[a] where a = s(p) ∪ s(q), for every such pair b, b′. Similarly, a
qualitative preference clause Q = p %CP q implies that b % b′ iff b[a] = b′[a], for every
such pair b, b′. In these cases we write (b, b′) |= Q.

Put another way, consider the satisfying assignments of a each compound value
clause in a given qualitative ceteris paribus preference clauses. For a compound value
proposition p, let [p] be the set of baskets b over s(p) such that b |= p. Note that
the set [p] is finite since any compound value clause has a finite number of satisfying
assignments over finite domains. Given a qualitative preference clause Q = p ÂCP q,
we interpret this as meaning that all [p] are preferred, ceteris paribus, to all [q]. Thus
if b ∈ [p] and b′ ∈ [q], a qualitative ceteris paribus preference clause p ÂCP q is
equivalent to the set of clauses stipulating b Â b′ for all pairs b, b′.

Conditional qualitative preferences are just like qualitative preference clauses, ex-
cept that they only hold over particular regions of the space. For a conditional
qualitative preference, Q = c =⇒ p ÂCP q, when b |= p and b′ |= q, we have b Â b′

iff b |= c, b′ |= c, and b[a] = b′[a] where a = s(p) ∪ s(q).

5.3 From Qualitative to Quantitative

In the preceding text, we have given the definitions and tools we need to make state-
ments of qualitative desires, and understand their meaning relative to a utility func-
tion or a preference order. However, purely qualitative comparisons do not suffice in
all cases, especially when the primary attributes of interest are quantitative measures,
or when outcomes differ in respect to some easily measurable quantity. For example,
in standard economic models the utility of money is proportional to the logarithm of
the amount of money. Quantitative comparisons also are needed when the decision
requires assessing probabilistic expectations, as in maximizing expected utility. Such
expectations require cardinal as opposed to ordinal measures of desirability. In other
cases, computational costs drive the demand for quantitative comparisons. For ex-
ample, systems manipulating lists of alternatives sorted by desirability might be best

50

organized by computing degrees of desirability at the start and then working with
these easily sorted “keys” throughout the rest of the process, rather than repeatedly
re-determining pairwise comparisons.

In the following chapters we consider statements of quantitative tradeoffs and
what possible meanings those may have, and how they can be integrated with the
qualitative statements described above.

51

52

Chapter 6

Tradeoffs Between Attributes

In qualitative preference representations the kind of statements that are allowed are
typically P Â Q and P % Q, where P,Q, are either formulae over attributes [DSW91]
or values of finite attributes [BBHP99]. Using this form, if Mike is considering buying
a new computer, he can state a preference between chip manufacturers: Intel Â
AMD, other things being equal. We discuss below how to represent this and further
expressions with partial derivatives of the utility function.

Using derivatives to represent tradeoffs between different options has its root in
economics. In economics, tradeoffs between two commodities have been studied in
terms of the marginal impact of each commodity on utility. In such formulations, the
partial derivative of the utility function, u, with respect to an attribute f, is known as
the marginal utility of f . The marginal utility of f1 divided by the marginal utility
of f2 is invariant under linear transforms of u, and is variously called the rate of
commodity substitution of f2 for f1 and the marginal rate of substitution of f2 for f1

[HQ80].
Thus, if we wanted to stipulate, for a particular utility function u, that the

marginal rate of substitution of f2 for f1 was everywhere at least r, we could write
that for all ~a ∈ ~A

∂u

∂f1

(~a)
/ ∂u

∂f2

(~a) ≥ r. (6.1)

This handles the usual case of tradeoffs between two variables. But perhaps a more
accurate preference is more complicated. Mike might state a preference between
conjunctions saying that AMD and Overclocked Â Intel and Overclocked, again, other
things being equal.

Quantifying these tradeoffs is a natural extension. If someone tells you that he or
she prefers P to Q the next question you might ask is “By how much?” A reasonable
and flexible expression of this is to quantify a tradeoff statement by some factor r ≥ 1,
and write statements P Â rQ. Mike might say that AMD % 2 Intel if he thinks
an AMD chip is twice as desirable as an Intel chip. This statement of preference
can be viewed as a constraint on the possible utility functions consistent with the
preference. This constraint can, in turn, be represented as an inequality among
directional derivatives of a continuous utility function over continuous attributes (and
we can generalize to discrete attributes later). A directional derivative of a function

53

u : <n → < evaluated at a point ~a ∈ <n is the derivative along a vector with base
a and direction ~x. Furthermore, the directional derivative of a function u in the
direction of vector ~x is equal in value to the inner product of the gradient of the
function with ~x. This quantity measures the increase of u in the direction of ~x.
Thus if we want to talk about constraints on the directional derivatives of the utility
function, or rates of increase in the directions of ~x and ~y, we can state constraints of
the form

∇u(~a) · ~x > r∇u(~a) · ~y, (6.2)

for r > 0. All that remains to relate this to a preference expression like P Â rQ is to
choose ~x to somehow represent P , and ~y to somehow represent Q. We explain how
this is done in the following section.

Suppose we are modeling the following situation. Let there be two attributes,
f1, f2, such that the preferences over f2 depend on the values of f1. In this scenario
f1 represents having fish or meat for dinner, and f2 represents having red or white
wine with the meal. A common stipulation is that if one is having fish, then one
prefers white wine, but if one eats red meat, then one prefers a red wine accompani-
ment. Let u1 be a subutility function representing the utility derived from the meal,
including both f1, f2. Then suppose that f3 represents the time it takes to arrive at
the restaurant. Generally one prefers a shorter transit time, and there may well be
tradeoffs people are willing to make between the quality of the restaurant and the
time required to get there.

This situation sets up a tradeoff between one attribute and a group of attributes.
Tradeoffs between two single attributes are straightforward: one compares a specified
or normalized amount of one attribute to the other, which is exactly how the marginal
rate of substitution is used. When considering tradeoffs between attribute sets, we
consider these to be between the subspaces defined by the attribute sets: one compares
a fixed or specific measure of increase in {f1, f2}-space to a corresponding measure in
{f3}-space, in this example. This will again be accomplished using inequality (6.2),
and we will explain the necessary mathematical underpinning in the following.

Using conditions based on the differentiability of the utility function requires we
consider what happens when the functions is not differentiable, and what happens
when the domain of the function is discrete. We will show it is straightforward to
use a discrete difference analog of the directional derivatives in the formulation of
inequality (6.2).

Lastly, we consider a degenerate for of the tradeoff expression between attributes:
the tradeoff between two different values of a single attribute.

In the following we will develop the ideas introduced here, using directional deriva-
tives to express a variety of different preferences. We go on to present representations
for a variety of tradeoff preferences between concrete alternatives, importance state-
ments relating the relative value of attributes, and ceteris paribus (other things being
equal) preferences. We show that these representations generalize both the economic
notion of marginal rates of substitution and previous representations of preferences
in AI.

54

6.1 Expressing Tradeoff Statements

We define a new language L(A)1 of tradeoffs over the attributes A. We present
statements of tradeoff preferences between market baskets. We will use some of the
same constructions from L(A), and repeat these two here:

• Atomic Value Proposition (AVP) : α = w | α 6= w | α > w | α < w | α ≥ w |
α ≤ w

• Compound Value Proposition (CVP) : AVP | ¬ CVP | (CVP ∧ CVP) | (CVP
∨ CVP) | (CVP =⇒ CVP)

Although the above leads to a very general logical language of preference tradeoffs
over values of attributes, we will generally concentrate in this thesis on restricted cases
of the language. These will be special cases of the more general language definitions
we present. The first such restriction we will consider is the market basket:

• Positive Value Proposition (PVP) : (α = w)

• PVP List (PVPL) : PVPL , PVP | PVP

• Market Basket (B) : { PVPL }

While our analysis is restricted to market baskets, we present the more general
statements for language completeness.

Next we define preference clauses over compound value clauses. These preference
clauses are potentially quantitative, in contrast to the qualitative preference clauses
we defined in chapter 5. Preference clauses are composed of a preference relation
symbol, Â or %, and two compound value clauses. In the following, r is a scalar, a
number r ∈ <, r ≥ 1.

• Preference Clause (C) : CVP Â CVP | CVP % CVP | CVP % r CVP | CVP Â
r CVP

For example we could write (α2 = 3) Â ((α1 = 1) ∧ (α3 = 0)), much as we did with
qualitative clauses.

The main case we consider in the following is the tradeoff between sets of baskets,
for r ≥ 1.

• Disjunctive Normal Form (DNF) : B | DNF ∨ DNF

• Basket Tradeoff (BT) : DNF Â r DNF | DNF % r DNF

Finally we define a conditional tradeoff statement. Conditional tradeoff statements
are just the combination of a value clause with a preference clause.

• Conditional Tradeoff Statement (TS) : CVP =⇒ C

55

For example, we can make statements (α1 > 3) ∧ (α1 < 5) → (α2 = 3) % 3(α2 =
1) ∧ (α1 = 0). The intended interpretation is just that the preference clause C holds
in the parts of the space satisfying constraint C. A conditional basket tradeoff is then

• Conditional Basket Tradeoff (CBT) : CVP =⇒ BT

One special case we will consider is the degenerate tradeoff: not between different
values of different attributes, but between values of the same attribute.

• Single Attribute Tradeoff (SAT) : CVP =⇒ PVP Â1 r PVP | CVP =⇒ PVP
%1 r PVP

We give meaning to basket tradeoffs in the following. We postulate that not all
expressible statements in L(A)1 are inherently valuable as preference statements, but
this is a task we leave for future work.

For a basket tradeoff statement BT = d % rd′, d and d′ are in disjunctive normal
form. Each conjunctive clause is a market basket. Let X be the set of conjunctive
clauses in d and let Y be the set of conjunctive clauses in d′; X and Y are then sets
of baskets. Then d % rd′ is meant to be interpreted as the conjunction of statements
for each possible pair of value vectors v(x), v(y), where x ∈ X and y ∈ Y , “utility
increases in the v(x)-direction at least r times faster than in the v(y)-direction.” Thus
basket tradeoff statements are interpreted as |X| ∗ |Y | separate statements about
relative increases in different direction of u.

As before, conditional statements do not hold uniformly over all of ~A, but only
over a subspace of ~A. Specifically, a conditional statement H =⇒ BT , for H a
compound value proposition and BT a basket tradeoff, holds at [H].

Statements S in L(A)1 make constraints on the shape of utility functions. A
basket tradeoff statement V % rV ′ with ~x and ~y satisfying assignments for V, V ′,
respectively, makes the constraint that utility increases in the ~x-direction at least
r-times faster than in the ~y-direction. The formal mathematical definitions come in
the following sections.

6.1.1 A Utility-Based Tradeoff Semantics?

Before we present our semantics of preference tradeoff statements, we should consider
the most simple and obvious choice of tradeoff semantics. Why not proceed as we
did in the previous chapter, and define a tradeoff preference by the stipulation that
utilities of one class of outcomes should be greater than the utilities of another class
of outcomes? We show here that this idea has some serious drawbacks.

Let us consider two candidate meanings for statements of tradeoffs involving
groups of attributes. Given a basket tradeoff x Â ry, for baskets x and y, consider
these two intuitive meanings.

1. Utility increases in the v(x)-direction r times faster than in the v(y)-direction,

2. v(x) is preferred to v(y) by a factor of r.

56

This thesis takes option 1 as its main principle. In this option we make explicit
reference to the shape of the utility function, but not particular values of the utility
function. The second choice fits semantics based on utility comparisons of various
outcomes.

However option 2 is not suitable, and it is in fact unworkable. In the second
option we talk about the difference in preference; this must mean a difference in
utility. Option 2 means that the utility of v(x) is r times more than the utility of
v(y). Thus the most literal mathematical interpretation for 2 is this:

u(v(x)) > ru(v(y)). (6.3)

But this is bad. The first issue is that it should allow basic utility independence
between related attributes and the remaining attributes. Let x and y be partial
descriptions of the outcome space (that is, market baskets specifying values for some
attributes, and leaving other attributes’ values unspecified). If basket x is over s(x)
and basket y over s(y), let G = s(x)∪ s(y) be the set of attributes mentioned by x or
y. If G is utility independent of its complement, then let uG(v(x)) be the subutility
function for attributes in G. Then inequality (6.3) must hold when k is a constant
representing the utility contributed by the attributes outside of G:

uG(v(x)) + k > r(uG(v(y)) + k). (6.4)

However, there is no way for inequality (6.4) to hold independent of k, since it sim-
plifies to:

uxy(v(x)) > ruxy(v(y)) + (r − 1)k.

This inequality can only hold independent of k when r = 1. This means that inequal-
ity (6.3) is incompatible with the utility independence assumptions we made above.
Thus, we have started from inequality 6.3, assumed some utility independence, and
found that inequality 6.3 is unusable. If we want to speak about quantified tradeoffs
with r 6= 1, and have our tradeoffs obey simple decision theoretic principles, we must
consider the other possible semantics for tradeoffs. In the following we present se-
mantics of tradeoffs based on the a multiattribute interpretation of partial derivatives
of the utility function.

6.2 Marginal Propositional Preferences

The most straightforward type of tradeoff preference users are likely to state is a
tradeoff between two particular values of two separate attributes. This is something
of the form “I prefer to have a laptop with 2GB of RAM than to have one with a
3.6Mhz processor,” when 2GB is a value of the RAM attribute and 3.6Mhz is a value
of the processor attribute. For generality, we allow the strength of the preference to
be quantified by some factor r ≥ 1, where someone might say “It is r times better to
have a laptop with 2GB of RAM than to have one with a 3.6Ghz processor.” Such
statements can easily be given an interpretation in terms of the directional derivatives.

57

The above statement is, of course, a special case of the kinds of statements allowed
in our language of tradeoff preferences, L(A)1. In general, users may wish to state
tradeoffs involving more than two attributes at a time. Suppose we wish to state that
a 3.6Ghz processor with a 1-MB L2-cache and a 800Mhz front side bus is twice as
good as 4GB of ram with a 266Mhz front side bus. In this case, we are talking about
values for four different variables, processor, cache, bus, and RAM. This also fits into
our language simply; we can define market baskets x, y such that x = {(processor
= 3.6Ghz), (cache = 1MB), (bus = 800Mhz)} and y = {(RAM = 4GB), (bus =
266Mhz)}. Then to express this preference we can just say that x Â 2y.

When we come to the interpretation of this statement as constraints on the utility
function, we must be slightly more careful. We will try to state that “Utility increases
in the v(x)-direction r times faster than it does in the v(y)-direction.” However, we
do not want the result to depend on which vector in the v(x)-direction we choose,
therefore we need to take unit vectors in the v(x)-direction.

The following general definition captures this intuition for tradeoff statements.

Definition 6.1 (Conditional Basket Tradeoff) Let S be a conditional basket trade-
off H =⇒ d % rd′ in L(A)1, where d, d′ are in disjunctive normal form. The meaning
of S is the following constraints on the utility function. Let X and Y be the set of
conjunctive clauses in d and d′ respectively, and then let x ∈ X and y ∈ Y be market
baskets, then u ∈ [S] iff for all pairs x, y,

(
∇u(~a) · v(x)

|v(x)|
) /(

∇u(~a) · v(y)

|v(y)|
)
≥ r. (6.5)

holds on all ~a ∈ [H].

Basket tradeoff statements make conditions on the partial derivatives of the utility
function. In particular, another way of writing the condition in inequality (6.5) is as
follows. For all points ~a ∈ [H], if u ∈ [x % ry] then

∑

x(i)6=⊥

∂u

∂fi

(~a)
vi(x)

|v(x)| ≥ r
∑

y(j) 6=⊥

∂u

∂fj

(~a)
vj(y)

|v(y)| . (6.6)

We continue the example from the beginning of this section, regarding preferences
over computers. First let us assume that the processor dimension is measured in
gigahertz, the cache and RAM dimensions measured in megabytes, and the bus mea-
sured in megahertz. Then inequality (6.5) makes the following constraint on the
utility function

∂u
∂processor

(~a) 3.6√
640013.96

+ ∂u
∂cache

(~a) 1√
640013.96

+ 800 ∂u
∂bus

(~a) 800√
640013.96

≥
2
(

∂u
∂RAM

(~a) 4√
70772

+ ∂u
∂bus

(~a) 266√
70772

)
.

Some remark is warranted about the large denominators in the formula above. Each
variable has different ranges of values, and if values of different variables are compared,
then the ranges play a role. The above inequality is a constraint on the partial

58

derivatives of the utility function. This constrains attributes with smaller values to
have more weight, which compensates for attributes with larger values. We know
from chapter 4 that normalizing attribute ranges is not always an appropriate action,
since this leads to bias and misunderstanding. Thus leaving the constraints to balance
the attributes is preferable to normalizing the attributes beforehand.

Conditional basket tradeoffs are also transitive, in the expected way. We state
this in the following theorem.

Theorem 6.1 (Transitivity) Two conditional basket tradeoffs

S1 = H1 =⇒ ~x Â r1~y,
S2 = H2 =⇒ ~y Â r2~z

together imply a third tradeoff statement

H1 ∧H2 =⇒ ~x Â r1r2~z. (6.7)

Proof. Given two statements S1, S2 as above, these are interpreted as the following
constraints

S1 : ∇u(~a) · (~x/|~x|) > r1∇u(~a) · (~y/|~y|),
S2 : ∇u(~a) · (~y/|~y|) > r2∇u(~a) · (~z/|~z|)

If we multiply S2 by r1 we can then substitute back into S1, this gives the statement in
equation (6.7). We arrive at the condition H1∧H2 by observing that the conjunction
of statements S1, S2, holds only in the intersection of their conditions. This proves
the theorem. ¤

We should note that the definition of quantitative tradeoffs between groups of
features is a generalization of the standard economic notion of the marginal rate of
substitution between two attributes. More precisely, the marginal rate of substitution
is usually defined as the negative of the slope of the indifference curve of the utility
function for two commodities [HQ80]. Specifically, in the case of unit-vector tradeoffs
between two-attributes, our directional derivative representation for tradeoffs between
sets of variables reduces to a condition on the the marginal rate of substitution. We
show this by simplifying the condition in definition 6.1.

Theorem 6.2 (Reduction to Marginal Rate of Substitution) When baskets x, y
are x = {(i, 1)} and y = {(j, 1)}, if u is consistent H =⇒ x Â ry then ∂u

∂i
/∂u

∂j
≥ r.

Proof. The definition 6.1 implies ∇u(~a) · v(x)
|v(x)|/∇u(~a) · v(y)

|v(y)| ≥ r. Expanding the
dot product gives:

∂u

∂i

/∂u

∂j
≥ r.

And this is the constraint on the marginal rate of commodity substitution, as required.
¤

The description of tradeoff preferences we have given so far is very general. In re-
search on preference elicitation, linear functions or simple piece-wise linear functions
are considered exceedingly common [Kee92, EB94]. In these cases the partial deriva-
tives of those utility functions have simple forms. We consider this in the following
theorem.

59

Theorem 6.3 Given a cover C = {C1, C2, ..., CQ} of A, a generalized additive utility

function u(~a) =
∑Q

i tiui(~a) for that cover, if u is linear in each f ∈ A then for baskets
x, y

u |= (H =⇒ x % ry) ⇔
n∑

j=1

Q∑

i|j∈Ci

ti
vj(x)

|v(x)| ≥ r

n∑
j=1

Q∑

i|j∈Ci

ti
vj(y)

|v(y)| . (6.8)

Proof. By definition 6.1, a statement H =⇒ x % ry, with baskets x, y, is
equivalent to

∇u(~a) · v(x)

|v(x)| ≥ r∇u(~a) · v(y)

|v(y)| .

If we expand the dot-product in the above expressions, we have

n∑
j=1

∂u

∂fj

(~a)
vj(x)

|v(x)| ≥ r

n∑
j=1

∂u

∂fj

(~a)
vj(y)

|v(y)| .

When u(~a) =
∑Q

i tiui(~a), the above is

n∑
j=1

Q∑

i|j∈Ci

ti
vj(x)

|v(x)| ≥ r

n∑
j=1

Q∑

i|j∈Ci

ti
vj(y)

|v(y)| .

This establishes the equivalence. ¤
The summations in expression (6.8) simply count the number of times an attribute

mentioned in baskets x, y occurs in one of the sets of attributes Ci ∈ C. Each time this
occurs, there is an interaction between a value of interest and the subutility function
for set Ci, so the tradeoff parameter ti for that function must be included. This
theorem will be of more importance later when we construct linear utility function
from preference statements in L(A)1.

Note that theorem 6.3 means that a basket tradeoff statement applied to a linear
utility function results in linear constraints on the parameters of that utility function.
While it may seem odd to state constraints in this way, it is common for the form
of the utility function to be known (and known or assumed to be linear) while the
parameters of that function are yet to be determined. This determination proceeds
according to the tradeoff preferences given by the decision maker.

6.2.1 Discrete Attributes

There is a natural extension of our directional derivatives formulation of tradeoffs to
discontinuous utility functions over discrete attributes. When we have two market
baskets of values x, y, and want to say that utility is increasing in the v(x)-direction
r times faster than in the v(y)-direction, and the variables are discrete, we can still
give meaning to this type of preference by using discrete difference analogues of the
partial derivatives.

60

For market baskets x, y we define a discrete difference vector by

〈(u(v(x))− u(v(x[(1 = v1(y))])))/(v1(x)− v1(y)), . . . ,
∆u(x, y) ≡ (u(v(x))− u(v(x[(i = vi(y))])))/(vi(x)− vi(y)), . . . ,

(u(v(x))− u(v(x[(n = vn(y))])))/(vn(x)− vn(y))〉 .
(6.9)

Using discrete difference vectors, we can present a definition of discrete tradeoffs.

Definition 6.2 (Discrete Basket Tradeoffs) Suppose S is a basket tradeoff H =⇒
d % rd′, with d, d′ in conjunctive normal form. Then let X, Y be the sets of conjunc-
tive clauses in d and d′ respectively. A utility function u is in [S] if and only if for
all pairs x, y, with x ∈ X, y ∈ Y , we have for all complete market baskets a, a′, with
v(a), v(a′) ∈ [H],

∆u(a, a′) · v(x)

|v(x)| ≥ r∆u(a, a′) · v(y)

|v(y)| . (6.10)

The definition we have given for discrete tradeoffs is in an important sense equiv-
alent to the definition we have given for continuous tradeoffs in the preceding section.
We show that when u is a continuous linear function over continuous attributes, con-
dition (6.10) implies consistency with the obvious basket tradeoff statement, x % ry.

Theorem 6.4 (Linear Tradeoffs) Suppose S is a conditional basket tradeoff state-
ment H =⇒ d % rd′, with d, d′ in conjunctive normal form. Then let X,Y be the
sets of conjunctive clauses in d and d′ respectively. When u is a continuous linear
function over continuous attributes, if u satisfies inequality (6.10) for all pairs x, y,
with x ∈ X, y ∈ Y and all complete baskets a, a′, with v(a), v(a′) ∈ [H], then u ∈ [S].

Proof. By assumption we have

∆u(a, a′) · v(x)

|v(x)| ≥ r∆u(a, a′) · v(y)

|v(y)| (6.11)

for all pairs x, y in X, Y respectively and for all complete baskets a, a′ in [H]. For
linear u, the terms in the expansion of the discrete difference are merely the slopes
in each direction of the utility function. Thus we have

u(v(x))− u(v(x[(i = vi(y))]))/(vi(x)− vi(y)) = ti

for some value ti representing the slope of the utility function in the i-direction. We
can then write inequality (6.11) as

n∑
i

ti
vi(x)

|v(x)| ≥ r

n∑
j

tj
vj(y)

|v(y)| .

Then using linearity of u again, we can also substitute the partial derivatives of u
(evaluated at any ~a ∈ [H]) for slope parameters ti and get

n∑
i

∂u

∂i
(~a)

vi(x)

|v(x)| ≥ r

n∑
j

∂u

∂j
(~a)

vj(y)

|v(y)| .

And this is the definition of u ∈ [S ′]. ¤

61

6.2.2 Single Attribute Tradeoffs

The langauge L(A)1 can be used to express tradeoffs within one attribute. Although
not really a tradeoff between different variables, this can be thought of as a tradeoff
between different values of the same variable, a degenerate case of the other tradeoffs
mentioned so far.

Consider a single attribute tradeoff statement H =⇒ x %1 ry, where x, y are
positive value propositions, or equivalently, baskets of a single attribute. Let this
single attribute be Z. Then we define a single attribute tradeoff as follows.

Definition 6.3 (Single Attribute Tradeoff) Given a single attribute tradeoff state-
ment S = H =⇒ x %1 ry, where x, y are positive value propositions over attribute
Z, a utility function u ∈ [S] iff

∇u(~a) · v(x) ≥ r∇u(~a) · v(y), (6.12)

for all ~a ∈ [H].

We have stated the condition of this definition in terms closest to definition 6.1 to
highlight the main difference; in this case we deal with unnormalized vectors, while
in definition 6.1 we normalize vectors. In the case of single attribute tradeoffs, both
related vectors point in the same direction, so normalization would result in a relation
between two identical vectors. In the general tradeoff case, the direction of the vectors
is important.

Let us look in more detail at condition (6.12). Assume that baskets x, y are
x = {(Z = z1)} and y = {(Z = z2)}. Then inequality (6.12) becomes

∂u

∂Z
(~a)z1 ≥ r

∂u

∂Z
(~a)z2

which implies that either z1/z2 ≥ r or ∂u
∂Z

= 0. The second option means that utility
does not depend on attribute Z, which would be unlikely given preferences concerning
attribute Z. We are left, then, with the first option, a constraint on the values within
the Z-attribute. While this is not a tradeoff between attributes, and is therefor of
tangential interest in this thesis, we do give one illustration of how to deal with this
type of constraints on the subutility function. Suppose that there are many such
statements, and that they give us constraints like

z1/z2 ≥ r1,
z2/z3 ≥ r2,
z3/z4 ≥ r3.

(6.13)

Suppose now, without loss of generality, that z4 = 1, z3 = 2, z2 = 3, and z1 = 4. We
can accommodate these constraints by using an exponential subutility function for
attribute Z. Let R = max{r1, r2, r3}. Then let uZ(z) = Rz/R4. We will show that
this subutility function satisfies the required conditions.

First let us call two single attribute tradeoff preferences S1 = {(Z = z1)} Â1

r1{Z = z2} and S2 = {(Z = z2)} Â1 r1{Z = z3}, linked basket tradeoffs when they

62

share a basket on opposite sides of a preference operator (Â1 or %1). There can be
arbitrarily many linked basket tradeoffs; we call it a chain of linked basket tradeoffs
when successive pairs of tradeoff statements are linked: if S1, S2 are linked, and S2

and S3 are linked, we call these S1, S2, S3 a chain. We say it is an increasing chain
when statements S1, S2, S3, etc, are such that z1 < z2 < z3 <

Theorem 6.5 Suppose we have a length-k increasing chain M of linked single at-
tribute tradeoffs of the form Si = (Z = zi+1) %1 ri(Z = zi) for i ranging from 1, ..., k.
Let R = maxi ri. If subutility function uZ(z) is of the form uZ(z) = Rz/Rk then
u ∈ [M].

Proof. First consider the constraint on u implied by tradeoff statement Si:

∇u(~a) · v({Z = zi+1}) ≥ r∇u(~a) · v({Z = zi}).
This in turn is

zi+1
∂uZ

∂Z
(zi+1) ≥ rzi

∂uZ

∂Z
(zi)

and when we take the partial derivatives of uZ we get

zi+1 ln(R)Rzi+1 ≥ rzi ln(R)Rzi .

Simplifying gives
zi+1R

zi+1−zi ≥ rzi,

next, let us assume, without loss of generality, that zi+1 − zi ≥ 1. We have R ≥ r by
definition, so the above is then equivalent to

zi+1R ≥ rzi,

which is true since zi+1/zi > 1 and R ≥ r. ¤
It is straightforward to convert the above theorem and construction for a subutility

function into a construction for a wrapper for an existing subutility function. We do
not dwell on this further. It is also simple to extend this theorem for dealing with
chains of linked basket tradeoff preferences to other types of degenerate preferences;
other types of preferences can be considered degenerate chains or sets of smaller
chains. The theorem we present here covers the main case.

We make one more remark on the topic of degenerate tradeoffs. This remark is
about what is not a degenerate tradeoff. When we have statements concerning multi-
ple attributes, even though those attributes are the same, we have no real difficulties,
this is just the same as any basket tradeoff already discussed. Consider a preference

S = H =⇒ x % ry

where baskets x, y are over the same attributes. Assuming u is linear in s(x) and in
s(y), then we have this condition:

txx1 + tyy1 ≥ r(txx2 + tyy2)

If we assume that x1 ≥ x2 and y2 ≥ y1 then we have

tx(x1 − rx2) ≥ ty(ry2 − y1)

which is just a linear inequality in two unknowns, tx, ty, just as any other tradeoff
preference we have dealt with before.

63

64

Chapter 7

Importance of Attributes

We have so far considered tradeoffs between particular instances of variables: an
assignment to some variables X is preferred to an assignment to some variables Y .
In this chapter we define tradeoffs between groups of attributes, which can also be
considered a statement about the importance of the groups of attributes.

When we talk about the importance of the variables involved, we are talking about
the relative influence in our utility function. This importance is a quantity that does
not depend on the direction involved, it does not depend on it being a positive or
negative contribution to utility. Nor does the idea of importance we use depend on
the particular values of attributes; it is purely a measure of the weight assigned to an
attribute itself. This is, perhaps, primarily a difference related to the elicitation of
preferences; sometimes users will want to talk about the relative value of attributes
and sets of attributes.

The “importance” of attributes is a quantity that is frequently used in traditional
decision analysis, in fact all of Chapter 4 is a review of various techniques for obtain-
ing, assuming, or computing the relative importance of attributes in a utility function.
Our presentation here extends the usual decision analysis methodology in three ways.
The first is that the user is not required to make any importance statements at all.
We merely take as many importance statements as occur and consider them alongside
the other preference information we have. The second is that we do not expect users
to talk about importance in just one attribute. The importance statements we de-
scribe herein are between sets of attributes. A user may decide that the combination
of attributes meal-quality, drink-quality, and atmosphere-quality are at least twice as
important as time-to-arrive and time-spent-waiting at a restaurant. And the third
difference is that we consider importance statements between groups of attributes to
be based on a comparison between the best outcomes in those attributes. We oper-
ationalize this by considering the relative importance between sets G and G′ to be
between the norms of the gradients of G and of G′.

65

7.1 Expressing Importance

To discuss our relative importance methodology in detail we augment the language
of preference to handle statements of importance.

We now present a language L(A)2 for making tradeoffs between attributes them-
selves. In these cases we do not refer to specific values of attributes, just to the names
of attributes. Thus, let us say that the descriptors α1, α2, ..., αn, represent the names
of the attributes A. We then define an atomic attribute term as follows

• Atomic Attribute Term (AAT) : α1 | α2 | ... | αn

Further, we use ⊥ for the empty set of attributes and > for the set of all attributes.
An attribute set is defined as follows:

• Attribute List (AL) : ATT | ATT, AL

• Attribute Set (AS) : { AL } | > | ⊥
Attribute clauses are then combinations of the usual set operations:

• Attribute Clause (AC) : AS | (AC ∪ AC) | (AC ∩ AC) | AC

An attribute tradeoff statement is the combination of two attribute clauses and a
tradeoff parameter r ≥ 1 as follows:

• Attribute Tradeoff Statement (ATS) : AC B AC | AC D AC | AC B r AC | AC
D r AC

Finally, a conditional attribute tradeoff statement is the combination of a compound
value proposition with an attribute tradeoff statement using the implication operator
=⇒ as follows,

• Conditional Attribute Tradeoff Statement (CAT) : CVP =⇒ ATS

Our main object of concentration in this chapter is conditional attribute trade-
off statements (CAT). The attribute clauses in attribute tradeoff statements have
meaning by simplification. An attribute clause is just set operators applied to sets of
attributes, and by the usual set operation definitions, each attribute clause is equiv-
alent to some set G. When an attribute statement C B rC ′ is given, and attribute
clause C is equivalent to set G, and similarly C ′ is equivalent to G′, then the meaning
of the statement is that “attributes G are more important than attributes G′ by a
factor of r.”

We consider two special cases in this chapter. First we consider tradeoffs with
discrete quantification. In the following α, β ∈ <.

• Discrete Attribute Tradeoff (DAT) : AC Bα
β AC | AC Dα

β AC | AC Bα
β r AC |

AC Dα
β r AC

• Conditional Discrete Attribute Tradeoff (CDAT) : CVP =⇒ DAT

66

Discrete attribute tradeoffs are designed to capture the following linguistic assertion:
an increase of at least α in the utility of attributes G is r times as important as an
increase of at most β in the utility of attributes G′.

Second we consider tradeoffs of binary attribute comparisons, where we have

• Binary Attribute Comparison (BAC) : ATT B r ATT | ATT D r ATT

which is just a relation between two attributes.

7.2 Marginal Attribute Importance

Tradeoffs between the attributes themselves can be represented in a manner quite
similar to tradeoffs between values of attributes. The following definitions parallel
our development in the previous chapter of marginal propositional preferences.

In the following definition we use the absolute value of the gradient, that is, the
absolute value of each element in a vector, and we denote this by the function symbol
abs(), where abs(~x) = 〈|x1|, |x2|, ..., |xn|〉. We use this notation to distinguish the
absolute value from the length of the a vector, |~x|. For the following statement, recall

that a vector ~x ∈ ~A is the characteristic vector for G if ~x is such that xi = 1 iff Ai ∈ G
and xi = 0 otherwise.

Definition 7.1 (Generalized Importance Statement) Given a conditional at-
tribute tradeoff statement S = H =⇒ C D rC ′, with sets of attributes G,G′ ⊆ A
equivalent to clauses C,C ′, respectively, let ~x and ~y be characteristic vectors for G,G′,
then a utility function u ∈ [S] iff

(abs(∇u(~a)) · v(x))/(abs(∇u(~a)) · v(y)) ≥ r (7.1)

holds on all points ~a ∈ [H].

Another way of writing the condition in inequality (7.1) is as follows. If u ∈ [S]
then for all points ~a ∈ [H]

∑

f∈G

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ . (7.2)

This form will be of more use when we construct utility functions later.

Corollary 7.2.1 Let S be a conditional attribute tradeoff statement H =⇒ C D
rC ′. Let sets of attributes G,G′ ⊆ A be equivalent to clauses C, C ′, respectively. S is
satisfiable if G\G′ 6= ∅.

Proof. We exhibit a linear utility function consistent with S. in the present case we
have ∑

f∈G

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ .

67

When u(x) =
∑

i=1 tiui(x) the above is equivalent to

∑

fi∈G

|ti| ≥ r
∑

fj∈G′
|tj|.

We can exhibit a utility function u ∈ [S] by choosing u as follows. Let f be an
attribute in G\G′. Then let t be the weight associated with attribute f . Then if we
choose u such that t > r

∑
fj∈G′ |tj|, u ∈ [S].

Corollary 7.2.2 Let S be a conditional attribute tradeoff statement H =⇒ C D rC.
Let set of attributes G ⊆ A be equivalent to clause C. S is satisfiable only if r ≤ 1.

Proof. We have H =⇒ G D rG′ which is

(abs(∇u(~a)) · ~x)/(abs(∇u(~a)) · ~x) ≥ r,

and this simplifies to 1 ≥ r. ¤
There is another geometric interpretation for attribute statements H =⇒ G D

rG′. The following is perhaps more intuitive and, we will show, equivalent to the
definition already given. We prefer definition 7.1 for its similarity to definition 6.1,
and present the following to motivate definition 7.1.

Given an arbitrary subset G ⊂ A and a function over that ~G, uG, the gradient of
uG, ∇uG(~x), at some point ~x ∈ ~G is a vector based at x pointing in the direction of

maximum increase of uG in ~G. The length |∇uG(~x)| of that vector is the magnitude
of that increase. Thus if we interpret a tradeoff between a set of attributes G and
another set of attributes G′ as a comparison between the maximum possible rates of
increase in the two vector spaces defined by G and G′, we could write that in terms
of the magnitudes of gradients in those spaces. Specifically,

|∇uG(~a)|/|∇uG′(~a))| ≥ r (7.3)

compares the increase in the G-space to the increase in the G′-space. Further, if we
choose the L1 norm to measure the length of the above vectors, inequality (7.3) is
equivalent to ∑

f∈G

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ .

Let ~x and ~y be the characteristic vectors for G and G′, respectively, then the above
is equivalent to

|A|∑
i

∣∣∣∣
∂u

∂fi

(~a)xi

∣∣∣∣ ≥ r

|A|∑
i

∣∣∣∣
∂u

∂fi

(~a)yi

∣∣∣∣ ,

and this in turn is equivalent to inequality (7.2). This derivation shows that the above
measure of importance between attribute sets reduces to the directional-derivative
representation of importance comparisons. This correspondence allows us to use the
intuitive characterization of importance tradeoffs as comparisons of the maximum

68

increase in two different spaces while extending the framework of partial derivatives
presented in chapter 6 for the formal semantics.

Our definition of an attribute tradeoff ratio leaves open the possibility that the
two sets of features involved are not disjoint.

Theorem 7.1 For G,G′ sets of features, J = G∩G′, then H =⇒ G D rG′ implies

∑

f∈(G\J)

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈(G′\J)

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ + (r − 1)
∑

f∈J

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣

for all ~a ∈ [H].

We omit the proof, but it follows directly from definition 7.1. An important corollary
of theorem 7.1 is the case of J = G′.

Corollary 7.2.3 For G,G′ sets of features, if G′ ⊂ G and r ≥ 2, then

H =⇒ G D rG′ ⇔ H =⇒ G\G′ D (r − 1)G′.

Proof. The proof is straightforward. By definition G D rG′ is

∑

f∈G

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ .

Since G′ ⊂ G, we can split the first summation, giving

∑

f∈(G\G′)

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ +
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ r
∑

f∈G′

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ .

From this it is obvious that we have

∑

f∈(G\G′)

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ≥ (r − 1)
∑

f∈Y

∣∣∣∣
∂u

∂f
(~a)

∣∣∣∣ ,

which establishes our equivalence. ¤
Just as with basket tradeoffs, attribute tradeoff statements reduce to linear condi-

tions on the parameters of linear utility functions. We state here a similar theorem to
theorem 6.3, but for attribute tradeoffs. Recall that for a basket b, s(b) is the support
of b, or the set of attributes assigned values, other than ⊥, in b.

Theorem 7.2 Given a cover C = {C1, C2, ..., CQ} of A, a generalized additive utility

function u(~a) =
∑Q

i=1 tiui(~a) for that cover, and arbitrary baskets x, y, if u is linear
in each f ∈ A then

s(x) D rs(y) ⇔
∑

i

∑

f∈s(x)∩Ci

ti ≥ r
∑

j

∑

f∈s(y)∩Cj

tj. (7.4)

69

The proof of this theorem is omitted; it follows the proof of theorem 6.3. Again,
the idea of this theorem is to count the number of times an attribute mentioned in
attribute sets s(x), s(y) occurs in one of the sets of attributes Ci ∈ C.

Just as tradeoff statements are transitive, so are statements of conditional impor-
tance.

Theorem 7.3 (Attribute Transitivity) Two conditional attribute tradeoff state-
ments

H1 =⇒ G B r1G
′,

H2 =⇒ G′ B r2G
′′

together entail the tradeoff statement

H1 ∧H2 =⇒ G Â r1r2G
′′.

Proof. Omitted, but parallels theorem 6.1 exactly.

7.2.1 Importance of Discrete Attributes

We can again extend preferences concerning attribute importance over continuous
utility functions to preferences over discontinuous utility functions, as we have done
with preferences concerning particular value tradeoffs. In this case, we give semantics
to the discrete attribute tradeoff statements, which are intended to model this intu-
ition: an increase of at least α in the utility of attributes G is r times as important
as an increase of at most β in the utility of attributes G′. We show that when this
concept is applied to continuous attributes and continuous linear utility functions,
this coincides with the earlier definition of attribute tradeoffs in definition 7.1.

We formalize importance of discrete attributes in the following definition, captur-
ing the intuitive meaning just mentioned.

Definition 7.2 (Discrete Importance Statements) For any G,G′ ⊆ A, and any
α > 0, β > 0, a utility function u is consistent with a discrete importance tradeoff
statement H =⇒ G Dα

β rG′ iff all of the following conditions hold. G is mutually

utility independent of G, G′ is mutually utility independent of G′, and for any two
baskets x and x′ over G with v(x′)− v(x) ≥ α, and for any two baskets y and y′ over
G′ with v(y′)− v(y) ≤ β, and for all complete baskets a with v(a) ∈ [H] we have

uG(v(a[x′]))− uG(v(a[x])) ≥ r(uG′(v(a[y′]))− uG′(v(a[y]))). (7.5)

We observe that these tradeoff ratios can be normalized by requiring that both α
and β are 1. The necessary variability can be expressed in r, e.g., by choosing a new
constant r′ and setting r′ = rβ

α
.

This normalization results in a new tradeoff statement H =⇒ G Dα
β rG′ which

is true iff H =⇒ G D1
1

rβ
α

G′ is true. Thus we sometimes write normalized discrete
tradeoff statements without reference to α and β, and instead subscript with D for
“discrete” like so: H =⇒ G DD rG′, in such cases α = β = 1.

This definition allows a correspondence between the discrete case and the contin-
uous case.

70

Theorem 7.4 (Continuous Differences) Suppose u is a continuous utility func-
tion over continuous attributes A, linear in each attribute. If u ∈ [H =⇒ G Dα

β rG′]
then u ∈ [H =⇒ G D rG′] in L(A).

Proof. We have baskets x, x′ over G such that v(x′)− v(x) ≥ 1, and baskets y, y′

over G′ such that v(y′)− v(y) ≤ 1. Under these conditions equation (7.5) holds. By
linearity and continuity of u, u has constant partial derivatives, and so

uG(v(a[x′]))− uG(v(a[x])) =
∑
i∈G

(x′(i)− x(i))

∣∣∣∣
∂u

∂i
(v(a[x]))

∣∣∣∣ . (7.6)

Combining equation 7.6 and inequality 7.5 gives

abs(∇u(v(a))) · (v(x′)− v(x)) ≥ rabs(∇u(v(a))) · (v(y′)− v(y)).

Then note that the above holds when x′(i) − x(i) = 1 and y′(i) − y(i) = 1. We
let ~p and ~q be characteristic vectors for G,G′, respectively. We make use of these
substitutions in the above inequality and obtain

abs(∇u(v(x))) · ~p ≥ rabs(∇u(v(y))) · ~q.
the definition of u ∈ [H =⇒ G D rG′]. ¤

Note that in the above the requirement that u is linear is necessary. For example,
if the partial derivatives of u with respect to G are nonconstant, equation 7.6 does
not hold.

When utility functions are linear, there is a correspondence between this definition
of discrete importance and the definition of discrete preference given earlier.

Theorem 7.5 Suppose we have two tradeoff statements, S = H =⇒ G DD rG′, and
S ′ = H =⇒ d % rd′. Then let ~p, ~q be characteristic vectors for G, G′ respectively,
and let d be a basket with v(d) = ~p, and d′ be a basket with v(d′) = ~q. The for a utility
function u linear in the attributes A, if u ∈ [S] then u ∈ [S ′].

Proof. If u is consistent with S then at all points ~a ∈ [H] we have

u(v(a[x′]))− u(v(a[x])) ≥ r(u(v(a[y′]))− u(v(a[y′]))) (7.7)

when x, x′ are baskets over G such that v(x′)−v(x) ≥ 1 and similarly y, y′ are baskets
over G′ with v(y′)−v(y) ≤ 1. Since u is linear, it follows that G is utility independent
of G, and similarly G′ is utility independent of G′. This implies that u is of the form
u = uG(v(a)) + uG′(v(a)) + uG∪G′(v(a)), and inequality (7.7) is equivalent to:

uG(v(a[x′]))− uG(v(a[x])) ≥ r(uG′(v(a[y′]))− uG′(v(a[y]))). (7.8)

Again, since u is linear, the partial derivatives are merely the slopes of the function.
Thus, using two arbitrary complete market baskets b, b′, we have

uG(v(a[x′]))− uG(v(a[x])) =
∑
i∈G

u(v(b[(i = b′(i))]))− u(v(b))

b′(i)− b(i)
(x′i − xi). (7.9)

71

Note that the above holds when x′i − xi ≥ 1 and y′i − yi ≤ 1. If we substitute 1 for
each of these differences, we can write inequality (7.8) using substitution (7.9) and
characteristic vectors ~p, ~q for G,G′. Thus we obtain

∆u(b, b′) · ~p ≥ r∆u(b, b′) · ~q.

This is the condition required for u ∈ [S ′]. ¤

7.2.2 Ceteris ParibusPreferences over Binary Attributes

An important special case of the language for preferences over discrete attributes is
the case of preferences between two binary variables. This is the most basic tradeoff
preference that can be stated with the formalism given in this chapter.

Let us assume that P,Q are binary variables and someone wishes to state that
P % rQ, other things being equal, or ceteris paribus , as described in chapter 5. This
can be loosely interpreted as meaning that the utility increases in the P -direction r
times faster than it increases in the Q-direction, just as in the usual case of discrete
tradeoff preferences. In the binary case, however, it is more explicit to say that the
preference for P over Q is expressing a belief that the utility increases in the positive-
P direction r times faster than in the positive-Q direction. Thus the important parts
of the following definition are the choices of market baskets x and y.

Definition 7.3 Given binary attributes P,Q, and scalar r ≥ 1, let x, y be market
baskets with x = {(P = ρ(p)), (Q = ρ(¬q)))}, and y = {(P = ρ(¬p)), (Q = ρ(q))},
then u is consistent with a binary ceteris paribus comparison H =⇒ P DCP rQ in
L(A), if and only if

∆u(v(z[x]), v(z[y])) · v(x) ≥ r∆u(v(z[y]), v(z[x])) · v(y)

at all complete market baskets z such that v(z) ∈ [H].

We can show that the definition given for binary ceteris paribus comparisons
respects the usual ceteris paribus condition on the utility function. Note that when
P and Q are binary attributes, u is by definition linear in P and in Q.

Theorem 7.6 If P, Q are binary attributes, x, y are market baskets with x = {(P =
ρ(p)), (Q = ρ(¬q)))}, and y = {(P = ρ(¬p)), (Q = ρ(q))}, then a binary ceteris
paribus comparison H =⇒ P DCP rQ implies

u(v(z[x])) ≥ u(v(z[y])), (7.10)

at all complete market baskets z such that v(z) ∈ [H].

72

Proof. The definition of binary tradeoffs expands to

(u(v(z[{(P = ρ(p)), (Q = ρ(¬q))}]))− u(v(z[{(P = ρ(¬p)), (Q = ρ(¬q))}])))/
(ρ(p)− ρ(¬p))ρ(p)+

(u(v(z[{(P = ρ(p)), (Q = ρ(¬q))}]))− u(v(z[{(P = ρ(p)), (Q = ρ(q))}])))/
(ρ(¬q)− ρ(q))ρ(¬q)

≥
r((u(v(z[{(P = ρ(¬p)), (Q = ρ(¬q))}]))− u(v(z[{(P = ρ(p)), (Q = ρ(¬q))}])))/

(ρ(¬p)− ρ(p))ρ(¬p)+
(u(v(z[{(P = ρ(p)), (Q = ρ(q))}]))− u(v(z[{(P = ρ(p)), (Q = ρ(¬q))}])))/

(ρ(q)− ρ(¬q))ρ(q)).

This simplifies to

(u(v(z[{(P = ρ(p))}]))− u(v(z[{(P = ρ(¬p))}]))) ∗ (ρ(p)− rρ(¬p))/(ρ(p)− ρ(¬p)) ≥
(u(v(z[{(Q = ρ(q))}]))− u(v(z[{(Q = ρ(¬q))}]))) ∗ (rρ(q)− ρ(¬q))/(ρ(q)− ρ(¬q)).

The fractional terms in the above inequality are simply the slope of the utility function
in a particular dimension. When u is linear, this slope is constant, and without loss
of generality let tp be the slope in the P -dimension, and tq be the slope in the Q-
dimension. Then the above is simply

tp(ρ(p)− rρ(¬p)) ≥ tq(rρ(q)− ρ(¬q)).

We can rearrange and add a constant to get:

k + tpρ(p) + tqρ(¬q) ≥ k + r(tpρ(¬p) + tqρ(q)),

where we let k represent the contribution to utility by the attributes other than P, Q.
By the ceteris paribus clause of the statement, this contribution remains constant.
Thus, we have

u(v(z[x])) ≥ u(v(z[y])) + (r − 1)(tpρ(¬p) + tqρ(q)).

We can assume that ρ(¬p) and ρ(q) are positive, without loss of generality, since ρ is
an arbitrary isomorphism. For r ≥ 1, we have

u(v(z[x])) ≥ u(v(z[y])),

as required. ¤
This theorem shows that the partial derivative semantics given here are sufficient,

in some cases, to recover the semantics of ceteris paribus preferences given earlier in
the thesis. That is, a binary tradeoff statement P DCP Q implies a statement of
preference (P = p) %CP (Q = q). Recall that, in language L(A), (P = p) %CP (Q =
q) if and only if for all pairs of baskets b, b′ with b[{P} ∪ {Q}] = b′[{P} ∪ {Q}], we
have b % b′. And of course, when a utility function is involved, this is equivalent to
u(b) ≥ u(b′).

Theorem 7.7 For binary attributes P, Q, a ceteris paribus binary tradeoff statement
P DCP Q is equivalent to a qualitative ceteris paribus preference statement (P =
p) %CP (Q = q).

This follows directly from theorem 7.6.

73

7.3 No Attribute Interactions

There are some kinds of statements a user might wish to make that our formalism
cannot cleanly handle. Suppose a user is buying a computer. The decision maker
might wish to state that “Price and warranty together are r-times more important
than the price or warranty individually.” It captures the desire of the user to balance,
somehow, the price of the computer with the type of warranty provided. These two
together are more important than either individually.

Let us suppose that the decision maker encodes this sentiment as two importance
statements: firstly, {price, warranty} B r {price}, and secondly, {price, warranty}
B r {warranty}. Let us assume for simplicity that in this case A = {price, warranty}.
Thus we have

abs(∇u(~a)) · 〈1, 1〉 > r(abs(∇u(~a)) · 〈1, 0〉)
and

abs(∇u(~a)) · 〈1, 1〉 > r(abs(∇u(~a)) · 〈0, 1〉).
By definition 7.1 we have:

∂u

∂p
(~a) +

∂u

∂w
(~a) > r

∂u

∂p
(~a),

and this when taken together with

∂u

∂p
(~a) +

∂u

∂w
(~a) > r

∂u

∂w
(~a),

implies that
∂u
∂w

(~a) > (r − 1)∂u
∂p

(~a), ∂u
∂p

(~a) > (r − 1) ∂u
∂w

(~a),

which are both true only for r < 2; and these are satisfied regardless of any values
of the partials of price and warranty. For values of r ≥ 2, these two statements
cannot be simultaneously true. Thus we have a pair of statements, {price, warranty}
B r {price}, and {price, warranty} B r {warranty}, that are either tautological or
contradictory; we must conclude that these types of statements, if presented, are of
little value in specifying preferences.

74

Chapter 8

Accommodating Exceptions

Our aim in this chapter is to capture a natural intuitive assumption about the nature
of generalizations and special cases. In everyday reasoning and communication, it is
normal to make equivocal generalizations that cover broad categories or situations,
and then to make refinements by overriding the generalizations with more specific
statements, holding in more specific categories and situations. Suppose I state that
for automobiles, the fuel efficiency is more important to me than the safety record
of the car. However, in the special case of SUVs, this case is reversed and the safety
is more important to me than the milage. These two statements, taken together,
constitute a generalization and an exception to the generalization, because SUVs
are a subset of automobiles. This chapter is devoted to systematizing the reasoning
behind this example.

We allow conditional tradeoff statements to be made that conflict with other
statements. In cases where one statement is a refinement or specification of another,
the more specific statement will take priority. This allows a decision maker to provide
generalizations and exceptions for special cases of their preferences.

By way of an important aside, we remark that we do not generally expect decision
makers to exhibit perfect consistency with their preferences, either in their expression
or in their underlying structure. Our interpretation of generalizations and exceptions
solves certain types of “conflicts” between preferences, that may arise in elicitation,
but other types of conflicts between preference statements cannot be given such a
clean interpretation. We merely try to allow or accommodate whatever modest type
of inconsistency that we can.

8.1 Generalization and Refinement

We assume that we are given conditional tradeoff statements in L(A)1 or L(A)2

that are either conditional attribute tradeoff statements or conditional basket trade-
off statements. For simplicity of exposition, we will assume we are dealing with
conditional basket tradeoff statements, although what we discuss applies equally to
conditional attribute tradeoff statements. Recall that a conditional basket tradeoff is
of the form S = H =⇒ T , where [H] ⊆ ~A is a subspace where the basket tradeoff

75

T holds, which we will refer to as the extent of the preference. Given two tradeoff
statements S1 = H =⇒ T1 and S2 = H ′ =⇒ T2, with [H ′] ⊆ [H], we expect that T1

holds in [H]\[H ′] and T2 holds in [H ′]. Since the extent of S2 is smaller and a subset
of the extent of S1, S2 is considered to be more specific. In this case, S1 is treated as
a general statement and S2 is its refinement or exception. We use refinement when
S1 and S2 are not mutually exclusive and exception when S1 and S2 cannot both
hold simultaneously. To make this explicit we provide definitions of exception and
refinement.

Definition 8.1 (Generalization and Exception) Given two conditional basket state-
ments S1 = H =⇒ T1, S2 = H ′ =⇒ T2, if [H ′] ⊂ [H] and {S1} ∪ {S2} is
unsatisfiable, then S2 is said to be an exception to S1.

Definition 8.2 (Generalization and Refinement) Given two conditional basket
statements S1 = H =⇒ T1, S2 = H ′ =⇒ T2, if [H ′] ⊂ [H] and {S1} ∪ {S2} is
satisfiable, then S2 is said to be a refinement of S1.

The above will cover simple kinds of generalizations. Clearly there are more
complicated scenarios. Continuing the exposition, when S2 is an exception to S1, S2

can itself have exceptions. [H] and [H ′] might intersect without one being a subset of
the other. There could, in general, be many nested and intersecting preferences and
exceptions.

The problem becomes: given some set of statements M , which of these statements
hold at which points or regions in the space ~A? We will call any particular set of
consistent statements that hold at a point or region an interpretation for that point
or region.

8.2 Interpretations of Overlapping Statements

Given some set of preference statements M in L(A)1 or L(A)2, which of these pref-

erences hold at which points or regions in the space ~A?
First consider any point ~x in ~A. There is a region or neighborhood around that

point such that all points in this region fall into the extent of the same set of prefer-
ences. For a set of preference statements M , we define an equivalence relation on ~A,
and equivalence class [~x]M such that ~y ∈ [~x]M iff for each preference S = H =⇒ T ,
S ∈ M , if ~x ∈ [H], we have ~y ∈ [H]. We denote the characteristic set of preferences
for [~x]M by M(~x).

Next, given statements M and an equivalence class [~x]M , we wish to find a consis-
tent interpretation for [~x]M . While any consistent interpretation is a possible solution,
we want interpretations that respect the exceptions and refinements to wider prefer-
ences, as we have described them above. Loosely speaking then, the preferences that
hold on [~x]M are those that include [~x]M in their extent, do not have exceptions, and
that do not conflict with other such preferences.

Given a set of preference statements M , R ⊆ M is a maximal consistent subset
of M when for any S ∈ M\R, R ∪ {S} is inconsistent. A maximal consistent set

76

is then a set of conditional tradeoff preference that cannot have another preference
added to it without becoming inconsistent. This also means exceptions to existing
preference statements cannot be added to R, since a statement and an exception to it
are inconsistent. However a maximal consistent interpretation may end up including
a preference that has an exception; this is not the intention behind the exception and
generalization heuristic, so we must modify this definition.

Borrowing terminology from the non-monotonic reasoning literature, a credulous
interpretation for [~x]M is a maximal consistent subset R of M such that no S ∈ R
has an exception S ′ ∈ M . A credulous interpretation does not include a statement
that has been overridden by an exception; it will only include the exception. Note
that there are many possible credulous interpretations for [~x]M . The intersection of
all the credulous interpretations is itself an interpretation, and we call it the skeptical
interpretation.

Note that in both skeptical and credulous interpretations no preference and its
exception hold simultaneously. This means both types of interpretation agree with
our intuition about generalization and exception. The difference here is how skeptical
and credulous interpretations behave when there are conflicting preferences without
clear heuristics to determine which of those to believe. The skeptical interpretation
will believe none of the conflicting preferences, while the credulous interpretations
will believe some consistent subset of the conflicting preferences.

We describe an algorithm, Skep-Interp in figure 8.2, that computes the skeptical
interpretation of [~x]M given ~x. This algorithm proceeds as follows. First it checks
all pairs of preferences in M(~x). This algorithm keeps two lists, one of acceptable
preferences R and one of unacceptable preferences U . Then Skep-Interp checks each
pair of preferences for consistency. The only case when conflicting preferences are
allowed is when one is the exception to the other, and in such cases, only the exception
is allowed.

Theorem 8.1 (Skeptical Interpretation) Algorithm Skep-Interp produces the skep-
tical interpretation for [~x]M .

This theorem holds since all preference pairs are considered, and only preferences
that are consistent are included in the interpretation. This is all that is required
for the definition of a skeptical interpretation. The interpretation is maximal since
every pair of preferences is considered. Any preference not included in R necessarily
conflicts with some other preference.

An algorithm for a credulous interpretation can be obtained from Skep-Interp by
changing step 2.b.iii) to choose one of S1, S2 arbitrarily and then add the chosen one
to R, provided it is not already in U .

8.3 Comments about Exceptions

The interpretations in this section are meant to be more of an illustration of possible
solutions to the problem of exceptions and generalizations. There may well be other
types of nonmonotonic reasoning techniques that can be included here. And those

77

Skep-Interp
Input: Set of tradeoff preferences M in L(A)1 or L(A)2, a point ~x ∈ ~A or equivalence
class [~x]M
Output: Set of tradeoffs preferences R that hold at [~x]M .

1. R ← ∅, U ← ∅.
2. For each pair {S1, S2} ∈ M(~x) do

(a) If {S1, S2} is satisfiable then

i. if S1 6∈ U then let R ← R ∪ {S1},
ii. if S2 6∈ U then let R ← R ∪ {S2}.

(b) If {S1, S2} is unsatisfiable then

i. if S1 is an exception to S2 and S1 6∈ U then let R ← R ∪ {S1} and let
U ← U ∪ {S2},

ii. if S2 is an exception to S1 and S2 6∈ U then let R ← R ∪ {S2} and let
U ← U ∪ {S1}.

iii. if neither S1 or S2 is an exception to the other, then let U ← U ∪
{S1, S2} and let R ← R\{S1, S2}.

3. Output R.

Figure 8-1: Pseudo-code listing for algorithm Skep-Interp.

78

might well address intuitions other than the exception/generalization system here,
based upon the extent of preferences. We do not go into more detail here, as this is
more properly a topic for the nonmonotonic reasoning literature.

79

80

Chapter 9

Utility Function Construction

We have given many representations of different types of preferences. It remains now
to join them together by providing utility functions that compute partial orderings
over the attribute space consistent with a given set of preferences.

In this chapter, we are concerned to find a utility function that represents whatever
preferences a user specifies. We describe utility functions that represent any given
satisfiable set of statements of the main types described in in L(A),L(A)1,L(A)2:
conditional qualitative ceteris paribus preference (see section 5.1); conditional basket
tradeoffs (see section 6.1); conditional attribute tradeoff statements (see section 7.1).

Thus, we address these questions at present: Given however many or few pref-
erences a user wishes to state, can we find a utility function consistent with them?
Under what circumstances can we find one efficiently? Does this provide a unified
and flexible framework for the expression of various types of preferences?

Much of this chapter is an augmentation of techniques presented in [MD04] for
constructing an ordinal utility function for ceteris paribus preferences over binary
attributes. The presentation given here is updated to accommodate all of the types
of preferences discussed so far. There are still some sections and results that require
little modification from the original, and as such are skipped here. For the modified
theorems we present here as analogues to the theorems of [MD04], we relegate their
proofs to an appendix when there are no substantive changes to these proofs.

9.1 Approach

In broad terms, we generate an ordinal utility function from sets M of qualitative
ceteris paribus preferences, M ′ of conditional basket tradeoffs, and M ′′ of conditional
attribute tradeoffs, over attributes A in the following steps.

First we examine the qualitative ceteris paribus preferences stated in M and deter-
mine which attributes might be assumed utility independent of which other attributes.
Utility independence provides computational benefits, since utility independent sets
of attributes can be considered without regard to the other attributes. Next, again us-
ing the qualitative ceteris paribus preferences in M , we can define subutility functions
for each utility independent set of attributes. Such methods are based on representing

81

the preorders consistent with the preferences M by building a graph over assignments
to the attributes. These methods are unchanged from the presentation in [MD04],
and are not repeated herein. Finally, to assign relative weights of satisfaction of dif-
ferent attributes, we consider the tradeoff and attribute preferences in M ′ and M ′′,
and construct and solve a linear programming problem. In the end, we have built a
utility function u that represents M ∪M ′ ∪M ′′ and can be used to quickly evaluate
the utility of different assignments to values of A.

9.2 Generalized Additive Independence

In previous work [MD04], we presented an algorithm for computing a generalized
additive independent partition of the attributes by looking at characteristics of the
input preferences, when those preferences are ceteris paribus statements over binary
attributes. Although our preferences development here was over discrete attributes
with finite domains, the methodology presented in that source can be used largely
unchanged.

9.2.1 Qualitative Ceteris Paribus Preferences and Utility
Independence

The condition for generalized utility independence in implication (2.1) is stronger
than we require. Instead of satisfying implication (2.1), we would rather assume that
all attributes are utility independent of all other attributes and then look for cases
where this assumption is explicitly controverted by the user’s preferences. With this
approach in mind, we present methods to determine when attributes must be utility
dependent.

We first look at each pairs of qualitative ceteris paribus preference statements and
check if the preference expressed over one attribute changes with the value of another
attribute. This can sometimes be read from the preferences themselves. Consider an
example. If we have two preferences

S1 = H =⇒ (α1 = w1) ∧ (α2 = w3) ÂCP (α1 = w2) ∧ (α2 = w3),
S2 = H =⇒ (α1 = w2) ∧ (α2 = w4) ÂCP (α1 = w1) ∧ (α2 = w4),

then it is evident that the preference for attribute α1 cannot be utility independent
from α2, since both of the stances that (α1 = w1) ÂCP (α1 = w2) and (α1 = w2) ÂCP

(α1 = w1) cannot hold simultaneously. The remaining conclusion is that α1 is utility
dependent on α2, and that when α2 = w3 we have

(α1 = w1) ÂCP (α1 = w2),

and when α2 = w4 we have

(α1 = w2) ÂCP (α1 = w1).

Following this intuition, a simple algorithm can check each pair of preferences to
see if they display this sort of obvious utility dependence. In [MD04], we present

82

an algorithm that does so called UIDecomposition. This algorithm requires no other
input besides the preference statements themselves, and is sound but not complete.
There may yet be utility dependence latent in the preferences that it does not discover.
In [MD04], we argue that any complete algorithm for finding utility dependence must
be of worst-case exponential complexity in the number of attributes. Thus, while a
complete version of the UIDecomposition function is possible in principle, it is not
practical.

UIDecomposition outputs two sets of sets of attributes. It computes a partition
C of A into utility-independent attribute sets and an associated set of attribute sets
D such that each attribute set Ci ∈ C is utility dependent upon a (possibly empty)
attribute set Di ∈ D.

We present an updated version of the theorem in [MD04] that describes conditions
when UIDecomposition is guaranteed to find all utility dependence extant in a set of
preferences T .

Theorem 9.1 (Independence Construction) If the input preferences T are such
that each S ∈ T is a conditional qualitative ceteris paribus preference S = H =⇒
b ÂCP b′ where b, b′ are baskets over A, and if for two baskets x, y over A we have
u(x) > u(y) for all u ∈ [T], then there exists S ′ ∈ T such that S ′ = H =⇒ x ÂCP y,
then the UIDecomposition function computes a partition C of the attributes A such
that each set Ci ∈ C is utility independent of the attributes in A\{Ci ∪ Di}, and
further, for each Ci, no set D′

i ⊂ Di exists such that Ci is utility independent of
A\D′

i.

When this condition does not hold, utility dependence undetected by function
UIDecomposition can cause an error in a later step of the algorithm, but we describe
heuristics that correct the problem in many cases (see Section 9.3.6).

This section has covered the cases of conditional qualitative ceteris paribus pref-
erences, but it remains to consider what tradeoff preferences can tell us about utility
dependence in the domain.

9.2.2 Tradeoff Preferences and Utility Independence

We have just reviewed a technique where the structure of qualitative ceteris paribus
preference statements is used to determine which variables are known to be utility
dependent. This allows us to make intelligent assumptions about the structure of the
utility functions that are consistent with the input preferences. Unfortunately, we
show here that no such methods are possible for tradeoff preferences. The good news
is that no such methods are necessary.

We examine two concerns in this section. Firstly, does a tradeoff statement be-
tween attributes X and attributes Y imply that X and Y are utility independent?
The answer is no. Secondly, is it possible that X and Y are utility independent? The
answer is yes whenever the tradeoffs made between X and Y are satisfiable.

It is not true that every tradeoff statement means there must be utility inde-
pendence between the related attributes. We present this result by demonstrating a
counterexample.

83

Theorem 9.2 (Utility Dependence) There exists some basket tradeoff statement
S over some domain A such that there exists u ∈ [S] with the attributes related in S
utility dependent.

Proof. Consider the following example. Let A = {X,Y }. Let S = b Â rb′ for
baskets b = (X = 1), b′ = (Y = 1), be a basket tradeoff statement. Then consider a
utility function: u(x, y) = (rx + y − 1)2 that exhibits both utility dependence of X
on Y and obeys the tradeoff statement S.

The statement b Â rb′ implies this constraint on utility functions:

∂u

∂X
(x, y) ≥ r

∂u

∂Y
(x, y)

for all possible x, y. We now show that u(x, y) = (rx+y−1)2 satisfies this constraint.
By simple algebra,

u(x, y) = r2x2 + 2rxy − 2rx + y2 − 2y + 1.

Then we have the partial derivatives, as follows

∂u
∂X

(x, y) = 2r2x + 2ry − 2r
∂u
∂Y

(x, y) = 2y + 2rx− 2

Using the above we can now verify that the main condition holds.

2r2x + 2ry − 2r ≥ r(2y + 2rx− 2)

simplifies to
2r2x + 2ry − 2r ≥ 2ry + 2r2x− 2r

and this holds for all pairs x, y.
It remains to show that u exhibits utility dependence of X on Y . We do this

by observing that u(0, 0) > u(1, 0) but that u(1, 1) > u(0, 1). This shows that the
preference for X = 0 over X = 1 holds when Y = 0 but reverses when Y = 1. This
is the definition of utility dependence. ¤

The opposite concern is also interesting. Is it always possible to create a linear
additive utility function (and therefore one that exhibits utility independence) given
any set of tradeoff preferences? We will show that it is possible to construct a piecewise
linear utility function for any set of satisfiable preferences.

Theorem 9.3 (Utility Independence) For any set of unconditional basket trade-
off statements T , if T is satisfiable, then there exists u ∈ [T] such that u is linear in
each attribute in A.

Proof. We are given some set of unconditional basket tradeoff preferences T over
some set of attributes A, these are of the form b Â rb′. These tradeoff statements, in
turn, require some conditions C of the partial derivatives of the utility function, of
the form

∇u(~a) · v(b) ≥ r∇u(~a) · v(b′)

84

for all ~a,~a′ ∈ ~A and for some particular b, b′. These constraints C hold at all points
~a in the preference space. A solution to C is a value for ∇u(~a). Since constraints
C hold at all ~a, then there is no need to worry about different solutions at different
points; any solution to C satisfies C at all points ~a. The solution to constraints C is
a vector of numbers, let it be ~w, and this vector is the vector of partial derivatives
∇u(~a). Therefore, there exists u with ∇u(~a) = ~w for all ~a ∈ ~A. This function u
satisfies the condition, and proves the theorem. ¤

We can extend this result to conditional tradeoff statements, by considering piece-
wise linear utility functions; essentially a different linear utility function is required
for each separate region indicated by the conditions of the tradeoff preferences. We
defer this discussion for the time being.

9.3 Utility Construction

We now describe how to compute one utility function consistent with the sets of in-
put preferences, M,M ′,M ′′. We take the partition of A : C ′ = {C ′

1, C ′
2, . . ., C ′

Q}
discussed in the previous section, and the corresponding set of sets of attributes
D′ = {D′

1, D
′
2, . . . , D

′
Q}, where each set of attributes C ′

i is utility dependent on
the attributes D′

i and utility independent of A\D′
i. We define a set of sets C =

{C1, C2, ..., CQ} such that Ci = (C ′
i ∪D′

i). We will look for an additive utility func-
tion that is a linear combination of subutility functions ui, each subutility a separate
function of a particular Ci. We associate a scaling parameter ti with each ui such
that the utility of a model is

u(m) =

Q∑
i=1

tiui(m). (9.1)

We refer to this as a generalized additive utility function. We will argue that this is
consistent with sets of preferences M, M ′,M ′′ where M is a set of qualitative ceteris
paribus preferences statements in L(A), M ′ a set of conditional basket tradeoff state-
ments in L(A)1, and M ′′ a set of conditional attribute tradeoffs in L(A)2. We have
two tasks: to craft the subutility functions ui, and to choose the scaling constants ti.
We will accomplish these two tasks in roughly the following way. We will show how
a preference can be restricted to a set Ci. This is essentially a shortening of a pref-
erence to a particular set of attributes. By restricting preferences to the sets Ci, we
can use these shortened forms of the preferences to make graphical utility functions
for the partial utility functions ui. Preferences that are consistent in general can be
locally inconsistent when restricted to different attribute sets. These inconsistencies
can be phrased as constraints and resolved using a boolean constraint satisfaction
solver (SAT). To assign values to scaling parameters ti, we will define a set of linear
inequalities which constrain the variables ti. The linear inequalities can then be solved
using standard methods for solving linear programming problems. The solutions to
the inequalities are the values for the scaling parameters ti. Along the way we will
show some helpful heuristics.

85

We first describe the subutility functions, and then their linear combination into
a full utility function.

9.3.1 Subutility Functions

Our task is to define subutility functions uCi
(~a) that take as input the values for the

attributes A, and return an integer. We define such a function relative to some set
if preference S ∈ M . We say that a subutility function uCi

is ε-consistent with M
if either uCi

(~a) ≥ ε + uCi
(~a′) whenever (a, a′) |= S, ∀S ∈ M , or uCi

(~a) + ε ≤ uCi
(~a′)

whenever (a, a′) |= S, ∀S ∈ M , where ε > 0. In the following, we generally let ε = 1
and prove results for 1-consistency. In general, it is not necessary to use ε = 1, but
using 1 will make some calculations simpler.

We define the restriction of a basket b to a set of attributes C, written b » C.
The restriction of a basket b to C is another basket b′, but over fewer attributes. We
replace all assignments in b to attributes outside of C by assignments to ⊥. This, in
effect, deletes the elements of the basket outside of C. Similarly, we can define the
restriction of a qualitative ceteris paribus preference statement S to C by

S » C = (p » C) ÂCP (q » C).

We can now show that 1-consistency implies the consistency of u with S.

Theorem 9.4 (Subutilities) Given qualitative ceteris paribus preferences M and
a mutually utility-independent partition C of A, if each ui is 1-consistent with M ,
then

u(~a) =

Q∑
i=1

tiui(~a)

with ti(ui(b)− ui(b
′)) > 0 when b ÂCP b′, is consistent with S ∈ M .

Proof. Given in the appendix.
In this theorem we assume that ti(ui(b) − ui(b

′)) > 0 when b ÂCP b′, which
amounts to an assumption about the way the domains of attributes are constructed.
We assume, here and in the following, that if attributes are increasing in utility when
they increase in quantity, that is, when ui(b) − ui(b

′) > 0 when b Â b′, then ti > 0,
which means an increase in the amount of a good thing increases total utility. In
these cases we say that ui is positively ordered. Conversely, we assume that if an
attribute is decreasing in utility as it increases (such as cost or the length of a delay),
and therefore ui(b) − ui(b

′) < 0 when b Â b′, then we have ti < 0; we say that ui is
negatively ordered. These are not very restrictive assumptions, and are more general
than merely assuming ti > 0 in all cases. Nevertheless, we can frequently assume
without loss of generality that all subutility functions are in fact positively ordered.

We show how to generate a 1-consistent subutility function by constructing a
restricted model graph, Gi(R) for a set of preferences R in L(A). Gi(R) is a multi-
graph with directed edges, where each basket b over R is a node in the graph. Let
b1, b2 be baskets over Ci with b1 6= b2. There exists one directed edge in the restricted

86

model graph Gi(R) from node b1 to node b2 for each distinct preference S ∈ R such
that (b1, b2) |= S, where b1 6= b2. For example, if (b1, b2) |= S1 and (b1, b2) |= S2,
there exists two edges from node b1 to b2. We label the edges with the preference
S that causes the edge. The interpretation of an edge e(b1, b2) in Gi(Ci) is of a
strict preference for b1 over b2. The construction of this graph Gi(R) parallels the
construction of the general model graph G, as described in [MD04].

With a restricted model graph Gi(R) defined, there is still the matter of defining
a utility function on this graph. It appears we could choose any of the Ordinal Utility
Functions described in [MD04] to be the utility function for ui, and preserve further
results in this section. For example, we could use the Minimizing Graphical Utility
Function for ui. Recall that in this ordering, each node has utility equal to the length
of the longest path originating at the node. If we use the Minimizing Graphical Utility
Function, then we want ui(b) to return the length of the longest path starting at node
b in graph Gi(R).

Lemma 9.3.1 (Cycle-Free Subutility) Given a set of preferences R ⊆ M and a
set of attributes Ci ⊆ A such that the restricted model graph Gi(R) is cycle-free, and
ui(~a) is the minimizing graphical utility function over Gi(R), then subutility function
ui(~a) for Ci is 1-consistent with R.

Proof. Given in the appendix.
For further discussions of these subutility functions, the interested reader is re-

ferred to [MD04].

9.3.2 Conflicting Preferences

Although we assume that the input preferences M are all strict preferences, and
have no conflicting preferences, it is possible that a restricted model graph Gi(R)
for Ci ⊂ A has strict-edge cycles in it even though a model graph G(A) for A does
not. Since we are creating subutility functions for use in a generalized additive utility
function, we cannot use cycles. Using cycles would break many of the heuristics we
will define.

Consider a set of preferences R ⊆ M , and set C of attribute sets Ci ⊆ A. The
preferences R conflict if there exists some attribute set Ci ∈ C such that no subutility
function ui for Ci can be 1-consistent with all S ∈ R. When such a attribute set Ci

exists, we say that R conflict on Ci or that R conflict on ui.

Lemma 9.3.2 (Conflict Cycles) Given a set of strict preferences R ⊆ M and a
set C of attribute sets of A, the preferences R conflict if and only if the preferences R
imply a cycle in any restricted model graph Gi(R) of some set of attributes Ci ∈ C.

Proof. Given in the appendix.
Note that if the preferences R imply a cycle in the (unrestricted) model graph G(R)

over all attributes, A, then the preferences R represent contradictory preferences.
We call a set of qualitative ceteris paribus preferences Ri the relevant preference

set for Ci if Ri is the set of preferences r ∈ M such that (b1, b2) |= r =⇒ (b1 » Ci) 6=

87

(b2 » Ci). The preferences Ri may or may not conflict on Ci. If the preferences Ri do
not conflict on Ci, we say that Ri is conflict-free. If some subset of the preferences
Ri do conflict on Ci, we resolve conflicts by choosing a subset of preferences Ri ⊆ Ri

that is conflict-free. Operationally, we will choose some of the conflicting preferences
of Ri and exclude them from the set Ri. How to choose which preferences to exclude
from Ri is a central point of discussion in the rest of the section. For now, just note
that our choice of preferences to remove influences our choice of scaling parameters
ti.

We define two properties of conflicting preference sets on Ri. Suppose there are
several sets of conflicting preferences Y1, Y2,, YK , where each is composed of state-
ments r ∈ Ri, for an attribute set Ci. A set of conflicting statements Yk is minimal
if for any r ∈ Yk, Yk\r implies a subset of the cycles implied by Yk on Ci. The set
of conflicting preference sets Y = {Y1, Y2, ..., YK} is minimal and complete if each
conflicting subset R′

i of Ri is represented by some Yk ∈ Y such that for any r ∈ Yk,
Yk\r implies a subset of the cycles implied by R′

i.

Theorem 9.5 (Conflict-free Statement Set) Given a relevant preference set Ri

for Ci, and a minimal, complete set of conflicting preference sets Y for Ri, and

Ri = Ri\{r1, r2, ..., rK} (9.2)

where rj are any preferences such that r1 ∈ Y1, r2 ∈ Y2, ..., rK ∈ YK, then Ri is
conflict-free.

Proof. We will assume the opposite, and arrive at a contradiction. Suppose that
Ri is not conflict-free, then by Lemma 9.3.2 Ri implies a cycle in Gi(Ri) of Ci. Since
Ri ⊂ Ri, the same cycle is implied by Ri. By minimality and completeness of Y ,
there is some set of preferences Yj ∈ Y such that Yj implies the cycles implied by
Ri. By minimality of Yj, if Ri implies the same cycle as Yj, then Ri must contain
the statements Yj. But, the preferences Yj cannot be in Ri, because rj ∈ Yj and we
have defined rj 6∈ Ri in equation 9.2. Thus, we have arrived at a contradiction, and
therefore shown that Ri is conflict-free. ¤

Lemma 9.3.2 states that conflict sets in R are equivalent to cycles in the restricted
model graph Gi(R). Thus, we can find minimal sets of conflicting statements in R
by using a cycle detection algorithm on the graph Gi(R). We can annotate the edges
in Gi(R) with the preference r ∈ R that implies the edge. This way, it is simple to
translate a cycle to a set of statements. Note that if we find all cycles of Gi(R), we
have found a minimal and complete set of conflicting statements in R. Since one set of
preferences R may cause more than one cycle in a given Gi(R), there may be multiple
identical conflicting sets of preferences. Thus, when translating a set of cycles to a
set of sets of conflicting statements, it may be more efficient to prune away duplicate
cycles, but this isn’t strictly necessary.

We can construct Ri satisfying equation 9.2 given minimal conflict sets Yk and
relevant preference sets Ri. Note that there are several possible values for Ri sat-
isfying this equation, since we can choose any r1, r2, ..., rK such that r1 ∈ Y1, r2 ∈
Y2, ..., rK ∈ YK . Since rk can be a member of more than one preference conflict set

88

Yk, it is possible that the cardinality of Ri varies with different choices of rk. For
purposes of computational efficiency, it is generally advantageous to have Ri of as
high a cardinality as possible, but not necessary.

Given conflict-free Ri, we can construct the restricted model graph Gi(Ri). This is
a model graph Gi(Ri) that is cycle-free. With no cycles, we can construct a subutility
function for Si using any of the graphical utility function given in [MD04] over the
restricted model graph Gi(Ri).

Theorem 9.6 (Subutility 1-Consistency) Given a set of attributes Ci ⊆ A and
corresponding conflict-free relevant statement set Ri, the subutility function ui using
a graphical utility function from [MD04] based on the restricted model graph Gi(Ri)
is 1-consistent with all qualitative ceteris paribus preference statements r ∈ Ri.

Proof. Since Ri is conflict-free, by Lemma 9.3.2, Gi(Ri) is cycle-free. Then by
Lemma 9.3.1, ui is 1-consistent with Ri. ¤

We call a subutility function satisfying Theorem 9.6 a graphical subutility function
for Ci. Note that ui may or may not be 1-consistent with r ∈ (Ri\Ri), and in general
we assume that these functions are not 1-consistent with such r. For notational
convenience, we say that a subutility function ui as described in Theorem 9.6 agrees
with preferences r ∈ Ri, and that ui disagrees with preferences r ∈ (Ri\Ri). 1-
Consistency is implied by agreement, but not the converse, because agreement is a
relation between a specific type of subutility function and a preference.

9.3.3 Consistency Condition

Recall that we have defined what it means for a utility function u to be consistent
with a set of strict qualitative ceteris paribus preferences M as u ∈ [M]. This is
equivalent to having u(b1) > u(b2) whenever b1 ÂCP b2. This translates into the
following condition on the subutility functions ui. For each statement S ∈ M and
each pair of baskets (b1, b2) |= S, we have the following:

Q∑
i=1

tiui(b1) >

Q∑
i=1

tiui(b2) (9.3)

that is, if we have a preference S implying that b1 ÂCP b2, then the utility given by
u to b1 must be greater than that given to b2. For it to be otherwise would mean our
utility function u was not faithfully representing the set of preferences M . Let Ri be
the relevant statement set for Ci. Examine one subutility function, ui, and pick some
r 6∈ Ri. If (b1, b2) |= r, both b1, b2 assign the same values to the attributes in Ci. That
is, (b1 » Ci) = (b2 » Ci). This implies ui(b1) = ui(b2). So we can split the summations
of equation (9.3), giving:

∑
i:r∈Ri

tiui(b1) +
∑

i:r 6∈Ri

tiui(b1) >
∑

i:r∈Ri

tiui(b2) +
∑

i:r 6∈Ri

tiui(b2) (9.4)

89

then simplify: ∑
i:r∈Ri

tiui(b1) >
∑

i:r∈Ri

tiui(b2). (9.5)

Given a set C = {C1, ..., CQ} of subsets of A, corresponding relevant statement
sets Ri for each Ci ∈ C, conflict-free preference sets Ri for each Ri, and subutility
functions ui 1-consistent with Ri, define Ca(r) and Cd(r) as follows. For a preference
r, Ca(r) is the set of indices i such that r ∈ Ri, and Cd(r) is the set of indices i such
that r ∈ (Ri\Ri).

Theorem 9.7 (Preference Consistency) Given a set C = {C1, ..., CQ} of subsets
of A, corresponding relevant statement sets Ri for each Ci ∈ C, conflict-free preference
sets Ri for each Ri, and subutility functions ui 1-consistent with Ri, a generalized
additive utility function u is consistent with a preference r if for all (b1, b2) |= r, we
have ∑

i∈Ca(r)

ti(ui(b1)− ui(b2)) >
∑

j∈Cd(r)

tj(uj(b2)− uj(b1)). (9.6)

Proof. Given in the appendix.
There are two important consequences of this theorem.

Corollary 9.3.1 (Total Agreement) A subutility utility function ui for the at-
tributes Ci must be 1-consistent with S ∈ Ri on Ci if S = p ÂCP q and s(p) ∪ s(q) ⊆
Ci.

In this case we have exactly one index i such that S ∈ Ri. Thus, either the subutility
function is 1-consistent with S and we have |Ca(r)| = 1 and |Cd(r)| = 0, or the
opposite, the subutility function is not 1-consistent with S and we have |Ca(r)| = 0
and |Cd(r)| = 1. It is easy to see in the second case that inequality 9.6 cannot be
satisfied, since ti(ui(b2)− ui(b1)) is a positive quantity for i ∈ Cd(r), and this cannot
be less than zero. Thus, if a preference’s support attributes overlap with only one
subutility, then that subutility must be consistent with the preference.

Corollary 9.3.2 (Minimal Agreement) In an additive decomposition utility func-
tion u consistent with M , each statement S ∈ M must be 1-consistent with some
subutility function ui.

By assumption, u satisfies Theorem 9.7, so u must satisfy inequality 9.6. If some
statement S is not 1-consistent with any subutility function ui, then we have |Ca(r)| =
0 and |Cd(r)| ≥ 1, and inequality (9.6) will not be satisfied.

Using the above theorem and corollaries, a number of algorithms are possible to
produce a consistent utility function. We discuss these in the following subsection.

9.3.4 Choosing Scaling Parameters

Once we have a collection of generalized additively independent sets C, we create
subutility functions as described in [MD04]. We can then choose scaling parameters
ti based on which statements disagree with each partial utility function ui. There are
several possible strategies for choosing these parameters. We will first give the most
simple scenario, and follow that with the general method.

90

9.3.5 No Conflicting Preferences

Given a set of qualitative ceteris paribus preferences M , a set C of subsets of A, and
corresponding relevant statement sets Ri, the sets Ri may or may not have conflicting
preferences. The simplest possible scenario is when there are no conflicting preferences
on any sets Ci ∈ C, and each ui is 1-consistent with each preference Ri. If this is the
case, consistency of u becomes easy to achieve. Consider that inequality 9.6 becomes:

∑

i∈Ca(r)

ti(ui(b1)− ui(b2)) > 0

since the set of inconsistent subutility indices, Cd(S), is empty. By the definition of
consistency with S, for i ∈ Ca(S), ti(ui(b1) − ui(b2)) is always a positive quantity.
Thus, we are free to choose any positive values we wish for ti when ui is positively
ordered, and negative values when ui is negatively ordered. For simplicity, choose
ti = 1 for positively ordered subutility functions and ti = −1 for negatively ordered
subutility functions.

This brief inquiry lets us state the following theorem.

Theorem 9.8 (Simple Scaling Parameters) Given a set of attribute sets C =
{C1, C2, ..., CQ} and a set of qualitative ceteris paribus preferences M in L(A), with
Ri the set of relevant statements for Ci, and each ui is 1-consistent with Ri, then

u(~a) =

Q∑
i=1

ui(~a) (9.7)

is an ordinal utility function consistent with M .

Proof. Given in the appendix.
As a corollary, under the same conditions, each of the graphical utility functions

can be made consistent with M .

Corollary 9.3.3 (No Conflicting Preferences) Given a set of attribute sets C =
{C1, C2, ..., CQ} and a set of qualitative ceteris paribus preferences M in L(A), with
Ri the set of relevant statements for Ci and Ri conflict-free for all i, then

u(~a) =

Q∑
i=1

ui(~a) (9.8)

where each ui is one of the graphical utility functions given in [MD04] over the re-
stricted model graph Gi(Ri), is an ordinal utility function consistent with M .

Proof. By assumption, Ri is conflict-free, so the restricted model graph Gi(Ri) is
cycle-free. By Theorem 9.6 each ui is 1-consistent with each r ∈ Ri. By Theorem
9.8, u is consistent with M . ¤

91

9.3.6 Scaling Parameter Assignment by Constraint Satisfac-
tion

When we have a set of attribute sets C over attributes A without a conflict-free
ordering, we can construct a constraint satisfaction problem from the set of conflicts
and use a general boolean SAT-solver to find a solution. The satisfiability problem will
be constructed so that it represents the statement conflicts on the utility independent
attribute sets, and a solution to the constraint problem will determine which subutility
functions agree and disagree with each statement.

Given qualitative ceteris paribus preferences M and a set of attribute sets C of
A with corresponding relevant statement sets Ri, we define a boolean satisfiability
problem P (M, C) in conjunctive normal form (CNF), a conjunction of disjunctions.
Let Yik be a minimal set of conflicting statements on Ri, and let Yi = {Yi1, Yi2, ..., YiK}
be a minimal and complete set of conflicts for Ci. Let Y be the set of all such Yik.
And let

Rc =
⋃
i

⋃

k

Yik

the set of all statements involved in any conflict. The boolean variable zij in P (M,C)
represents a pair (i, Sj), where Sj ∈ M and i is an index of Ci ∈ C. The truth
value of zij is interpreted as stating whether or not subutility function ui agrees with
statement Sj ∈ Rc. Let Xj = {l | (b1, b2) |= Sj =⇒ (b1 » Cl) 6= (b2 » Cl)} denote the
set of indices of utility independent sets that overlap with Sj.

Conjuncts in P (M,C) are of one of two forms: those representing the subutil-
ity functions in a set Xj; and those representing conflicts between statements of a
particular cycle Yik.

Definition 9.1 (Statement-Set Clauses) Given statements M , a set of attribute
sets C of A with corresponding relevant statement sets Ri, Rc of all statements in-
volved in any conflict and Xj the set of indices of utility independent sets overlapping
with Sj ∈ Rc, then all clauses of the form

∨
i∈Xj

zij (9.9)

are the Statement-Set Clauses of P (M, C).

The statement-set clauses of P (M,C) represent the possible subutility functions
a statement might agree with. Corollary 9.3.2 states each statement S ∈ M must be
1-consistent with some subutility function ui, accordingly in a solution to P (M,C),
one of these variables must be true.

Definition 9.2 (Conflict Clauses) Given preferences M , a set of attribute sets C
of A with corresponding relevant statement sets Ri, Yi = {Yi1, Yi2, ..., YiK} be a mini-
mal and complete set of conflicts for Ci, Rc of all statements involved in any conflict

92

and Xj the set of indices of utility independent sets overlapping with Sj ∈ Rc, then
all clauses of the form ∨

j:Sj∈Yik

¬zij (9.10)

are the Conflict Clauses of P (M,C).

The conflict clauses of P (M,C) represent a particular conflicts set of statements
on a particular utility independent set Ci. At least one of the statements in Yik must
disagree with Ci.

Combining statement-set clauses and conflict clauses, P (M,C) is the conjunction
of all such clauses. Thus

P (M,C) =

Q∧
j=1

 ∨

i∈Xj

zij

 ∧

 ∧

Yik∈Y

 ∨

j:Sj∈Yik

¬zij

Once we have computed P (M, C), we can use a solver to arrive at a solution Θ.
This solution Θ is an assignment of true or false to each variable zij in P (M,C).
Note that nothing guarantees that there will be a solution Θ.

Given a solution Θ to P (M, C), we need to translate that back into a construction
for the subutility functions over C. Using the definition of the propositional variables
zij, we look at the truth values assigned to zij in Θ. This shows which subutility
functions disagree with which preferences. Let Θf be the set of all zij assigned value
false in Θ. We define statement sets Ri ⊆ Ri for each relevant statement set Ri, as
follows. For all Ci ∈ C,

Ri = Ri\{Sj | zij ∈ Θf} (9.11)

Simply, we construct conflict-free relevant statement sets Ri ⊆ Ri, from the solution
to P (M, C), then we can construct ui 1-consistent with Ri.

We show that Ri constructed according to Θ are conflict-free.

Lemma 9.3.3 (Conflict Clause Solution) Given a solution Θ to P (M,C), and
relevant statement sets Ri for each Ci ∈ C, statement sets Ri ⊆ Ri,

Ri = Ri\{Sj | zij ∈ Θf}
are conflict-free.

Proof. We proceed with a proof by contradiction. Choose some Ci. Assume Ri

has a conflict, YR ⊆ Ri. Since Y is a complete set of conflicts, YRi
∈ Y . Thus, there

exists a conflict clause ∨j:Sj∈YRi
¬zij in P (M,C), so one of these variables zij ∈ Θf .

Call this variable zix. By definition of Ri, when zix ∈ Θf , statement Sx 6∈ Ri. This
contradicts Sx ∈ Ri, so we have arrived at a contradiction and must conclude that
Ri is conflict-free. ¤

Theorem 9.9 (Correctness of SAT-Formulation) Given a set of attribute sets
C of A, if P (M,C) has no solution then the preferences M are not consistent with a
utility function u of the form u(~a) =

∑
i tiui(~a).

93

Proof. Given in the appendix.
Suppose there is no solution Θ. One method of proceeding is to merge two at-

tribute sets Ci, Cj. We can define C ′ = C, except that C ′ contains the set Ck, where
Ck = Ci ∪ Cj, and C ′ does not contain either of Ci and Cj. Using C ′, we can obtain
another satisfiability problem, P (M, C ′). This new problem may have a solution or
it may not. In the case that it doesn’t, we may iteratively try merging attribute sets
and solving the resulting satisfiability problems. Merging attribute sets is an opera-
tion that does not create conflicts where there were none, as we demonstrate in the
following theorem.

Theorem 9.10 (Set Merging) If M is an inconsistent preference set over attributes
Ck, then there does not exist any Ci, Cj with Ci ∪ Cj = Ck such that M restricted to
Ci is consistent and M restricted to Cj is consistent.

Proof. Given in the appendix.
By the contrapositive, Theorem 9.10 implies that joining two sets Ci, Cj together

to form Ck will not result in a set with conflicts if Ci, Cj are conflict-free. Thus,
this theorem implies that iteratively merging attribute sets is guaranteed to result
in a solvable satisfiability problem when M is consistent. If the preferences M are
consistent, by definition the set A is conflict free, then iterative set-merging must end
when all attributes have been merged into one set identical with A. How best to
choose which attribute sets to merge is a topic we leave for future research.

By merging utility independent sets, the computation of u(~a) becomes less effi-
cient, and we spend computational effort to evaluate several different satisfiability
problems. In general, merging attribute sets allows us to represent more complicated
preferences, such as utility dependence (including dependencies missed by function
UIDecomposition). Merging attribute sets is a technique that applies to different
representations of ceteris paribus preferences. For example, Boutilier, Bacchus, and
Brafman [BBB01], mention that merging attribute sets allows their representation to
express ceteris paribus preferences which would be inexpressible in their representa-
tion without merging.

Even in the case that a solution to P (M, C) exists, we are not guaranteed that it
leads to a consistent utility function. There is still the matter of setting the scaling
parameters ti. In doing so, we must be careful to satisfy inequality (9.6). Therefore,
for each statement S ∈ Ri\Ri, we keep a list of linear inequalities, I, that must be
satisfied by choosing the appropriate scaling parameters ti. We discuss this in the
following subsection.

9.3.7 Adding Tradeoffs to Qualitative Ceteris Paribus Pref-
erences

We are going to construct three lists of linear inequalities, I, I ′, I ′′, that must be
satisfied by choosing appropriate subutility function parameters ti. These constraints
come from our list of qualitative ceteris paribus preference statements M , the list
of conditional basket tradeoffs M ′, and the list of conditional attribute tradeoffs,

94

M ′′, respectively. Together these three lists form a system of linear inequalities that
represent the preferences in M,M ′, and M ′′. It is a simple matter to obtain linear
inequalities from M ′ and M ′′ if the tradeoff statements result in linear constraints.
This, in turn, is the case when the subutility functions are linear, or, by Theorem 7.4,
when subutility functions are over discrete attributes and have constant slope.

Let M ′ and M ′′ be sets of tradeoff and importance statements, respectively: both
conditional basket tradeoffs (CBT) and conditional attribute tradeoff statements
(CAT). For each CBT statement S ∈ M ′, where S = d Â rd′ (and recall that d
and d′ are in disjunctive normal form), let X be the set of conjunctive clauses of d,
and Y the set of conjunctive clauses of d′. Then for each basket x ∈ X and each
basket y ∈ Y , we have one basket tradeoff x Â ry, or by Theorem 6.3, we have a
constraint:

Q∑
i=1

∑

fj∈s(x)∩Ci

tixj > r

Q∑

k=1

∑

fl∈s(y)∩Ck

tkyl. (9.12)

Let the set of these constraints for all S ∈ M ′ be the set of linear inequalities I ′.
Then if we consider all the attribute statements S ′ ∈ M ′′, we will obtain additional

linear inequalities bounding the tradeoff parameters ti of the utility function. For each
attribute tradeoff statement S ′ ∈ M ′′ with S = D B rD′, where D, D′ are attribute
clauses, let X be a set of attributes equivalent to D, and Y be a set of attributes
equivalent to D′. Then S ′ implies the constraint:

Q∑
i=1

|X ∩ Ci|ti > r

Q∑
j=1

|Y ∩ Cj|tj. (9.13)

And we shall let the set of these constraints for all S ′ ∈ M ′′ be the set of linear
inequalities I ′′.

We will discuss conditional statements for conditions other than ~A =⇒ S in a
following section.

9.3.8 Linear Inequalities

We will construct a set of linear inequalities relating the scaling parameters ti in u
from three sources. The first set of linear inequalities is I, which comes from the
qualitative ceteris paribus preferences statements M . The second set is I ′, described
in the preceding section, and comes from a set of basket tradeoff statements M ′. The
third set of inequalities is I ′′, and comes from a set of attribute tradeoff statements
M ′′.

The solution to a satisfiability problem P (M, C) determines how to construct
conflict-free preference sets Ri ⊆ Ri for each attribute set Ci ∈ C. However, we
must then set the scaling parameters, ti, so that inequality 9.6 is satisfied. We can
do so by building a list of constraints on the values that the scaling parameters may
assume while still making inequality 9.6 true. These constraints are linear inequalities
relating the relative importance of the parameters ti.

95

Our list I of inequalities should assure that each pair (b1, b2) that satisfies S, for
some S ∈ M, is consistent with the total utility function. By inequality 9.6, given
statements M , a set of attribute sets C of A with corresponding relevant statement
sets Ri, and conflict-free Ri ⊆ Ri, let Ca(S) be the set of indices for which S ∈ Ri,
and let Cd(S) be the set of indices for which S ∈ (Ri\Ri). Then for each (b1, b2) |= S

∑

i∈Ca(S)

tiui(b1) +
∑

i∈Cd(S)

tiui(b1) >
∑

i∈Ca(S)

tiui(b2) +
∑

i∈Cd(S)

tiui(b2). (9.14)

That is, the utility function u must assign higher utility to b1 than to b2. We can
simplify these inequalities as follows:

∑

i∈{Ca(S)∪Cd(S)}
ti(ui(b1)− ui(b2)) > 0 (9.15)

Note that the inequality need not contain terms for i 6∈ {Cd(S) ∪ Ca(S)}, since,
by definition of (b1, b2) |= S, we have (b1 » Ci) = (b2 » Ci) and ui(b1) − ui(b2) = 0.
Furthermore, note that many of the linear inequalities are redundant. A simple intu-
ition tells us the important inequalities are the boundary conditions: the constraints
that induce maximum or minimum values for the parameters ti. Consider the set of
basket pairs (b1, b2) such that (b1, b2) |= S. Some pairs provide the minimum and
maximum values for ui(b1)−ui(b2) for some i ∈ {Ca(S)∪Cd(S)}. Call minmax(S, i)
the set of maximum and minimum values of ui(b1)−ui(b2) for basket pairs satisfying
S. This set has at most two elements and at least one. Let B(S) be the set of basket
pairs as follows:

B(S) :
(b1, b2) |= S,
ui(b1)− ui(b2) ∈ minmax(S, i)∀i ∈ {Ca(S) ∪ Cd(S)}.

Each basket pair in the set B(S) causes ui(b1)−ui(b2) to achieve either its minimum or
its maximum value on every subutility function either agreeing or disagreeing with S.
For concreteness, stipulate that each (b1, b2) ∈ B(S) has vj(b1) = 0 and vj(b2) = 0 for
j 6∈ {Ca(S)∪Cd(S)}. We can now define the irredundant system of linear inequalities
as an inequality of the form given in equation 9.15 for each statement S and each
basket pair (b1, b2) ∈ B(S).

Definition 9.3 (Inequalities) Given conditional ceteris paribus preference state-
ments M , a set of attribute sets C of A with corresponding relevant statement sets
Ri, conflict-free Ri ⊆ Ri, Ri ∈ R, where Ca(S) is the set of indices for which S ∈ Ri,
Cd(S) is the set of indices for which S ∈ (Ri\Ri), and each subutility function ui is
1-consistent with all S ∈ Ri, then I(M,C, R) is the set of linear inequalities

∑

i∈{Ca(S)∪Cd(S)}
ti(ui(b1)− ui(b2)) > 0

for all S in some (Ri\Ri) and for all basket pairs in B(S).

96

A solution to I(M, C, R) is an assignment of values to each ti. We show that this
assignment leads to a utility function that satisfies M .

Lemma 9.3.4 (Sufficiency of I(M, C, R)) Given I(M,C, R) and a solution to it
providing an assignment of values to t1, ..., tQ, for all S in some (Ri\Ri) and for all
basket pairs (b1, b2) |= S,

∑

i∈{Ca(S)∪Cd(S)}
ti(ui(b1)− ui(b2)) > 0.

Proof. Given in the appendix.

Theorem 9.11 (Qualitative Preference Inequalities) If the system of linear in-
equalities, I(M, C, R), has a solution, this solution corresponds to a utility function
u consistent with M .

Proof. Given in the appendix.
Similarly, the systems of inequalities I ′, I ′′, also provide consistency of the utility

function with the tradeoff and attribute preferences they represent. This, of course,
is by definition of those preferences. Thus, the interesting theorem follows from
Theorem 9.11.

Theorem 9.12 (General Inequalities) If the system of linear inequalities, I(M, C, R)∪
I ′∪I ′′, has a solution, this solution corresponds to a utility function u consistent with
M ∪M ′ ∪M ′′.

Proof. This follows directly from Theorem 9.11, since adding more constraints
cannot invalidate the previous constraints. The solution to this problem is still con-
sistent with M because the solution to I(M,C, R) is consistent with M . ¤

We can solve the system of linear inequalities I(M,C, R)∪ I ′∪ I ′′ using any linear
inequality solver. We note that it is possible to phrase this as a linear programming
problem, and use any of a number of popular linear programming techniques to find
scaling parameters ti. We can rewrite the inequalities in I(M, C, R) in the form

Q∑
i=1

ti(ui(b1)− ui(b2)) ≥ ε (9.16)

where ε is small and positive. Then we can rewrite the inequalities I ′ in this form,

Q∑
i=1

∑

j:fj∈(s(x)∪s(y))∩Ci

ti(xj − ryj) > ε,

where, again, the notation is that of inequality 9.12. And lastly, we can rewrite the
inequalities of I ′′ as show in inequality 9.13 as

Q∑
i=1

|(X ∪ Y) ∩ Ci|ti − rti > ε.

97

Using these altered forms, we can then solve this system of inequalities by opti-
mizing the following linear program. The task of the linear program is to minimize a
new variable, t0, subject to the following constraints:

t0 +

Q∑
i=1

ti(ui(b1)− ui(b2)) ≥ ε

for each (b1, b2) as described above,

t0 +

Q∑
i=1

∑

j:fj∈(s(x)∪s(y))∩Ci

ti(xj − ryj) > ε

for each inequality in I ′,

t0 +

Q∑
i=1

∑

j:fj∈(X∪Y)∩Ci

ti − rti > ε

for each inequality in I ′′, and the final additional constraint that t0 ≥ 0 [Chv83]. We
must be careful that ε is sufficiently smaller than 1, or we may not find solutions
that we could otherwise discover. Given ε small enough, this linear program has
the property that it always has a solution, by making t0 very large. However, only
when the optimal value of t0 is 0, is there a solution to the original system of linear
inequalities.

We can bound the total number of linear inequalities in I(M, C, R) as follows.
Given that S ∈ (Ri\Ri) for some i, it contributes at most

2|Ca(S)∪Cd(S)| (9.17)

inequalities to the set of inequalities. This is a simple combinatoric argument. S
contributes exactly one inequality for each combination of minimum and maximum
value on each set Ci. For each set a statement can have both a minimum and a
maximum (they may not be distinct). This suffices to give us the bound stated in
condition 9.17.

The number of inequalities in I ′ is determined by the sizes of the clauses in the
tradeoff preferences. First consider a basket tradeoff preference S = ~A =⇒ d ÂCP

rd′. The clauses d, d′ are given in disjunctive normal form. For each x ∈ d and
y ∈ d′, we treat x ÂCP ry as a separate, simplified, preference. Thus the number of
inequalities contributed per tradeoff preference S is |d| ∗ |d′|.

Attribute tradeoff statements are simpler and contribute one inequality per pref-
erence to I ′′.

We have mentioned that I(M, C, R) ∪ I ′ ∪ I ′′ might have no solution. We discuss
this situation in the following subsection.

98

9.3.9 Piecewise Linear Utility Functions

When preferences are conditional, and hold at different regions in the outcome space
~A, these different preferences imply different constraints on the utility function in
these different regions. In general these constraints are not simultaneously satisfiable,
and this necessitates different utility functions for different regions of the space. In
this way, the utility function for one region can satisfy the constraints required of the
utility function in that region, and a utility function for another region can satisfy
the constraints for that region. The utility function for the whole attribute space ~A
is then a collection of different utility functions for different subsets of the attribute
space. Since each of these utility functions are linear, the whole becomes a piecewise
linear utility function.

Definition 9.4 (Piecewise Utility Function) U is a piecewise utility function if

U is a set of pairs (V, uV) where V is a compound value proposition and uV : ~A → <
is a utility function.

Given a set of pairs (V, uV), U assigns the value uV (~x) to ~x when ~x ∈ [V]. We
write U(~x) for the value U assigns to ~x. In this way, a piecewise utility function is
like a switch or case statement in a programming language; it selects which of several
utility functions to use based on the input. With this definition in hand, we proceed
with the discussion.

When the utility functions are linear in each of the attributes, different constraints
on the utility function are the result of conditional preferences. This is straightfor-
ward; different preferences can be conditioned on different regions of the space, using
the conditional preferences provided in the language L(A)1 and L(A)2. In this way,
different preferences lead to different constraints on the utility function.

The conditional tradeoffs expressed in L(A)1 and L(A)2 are binary conditions. In
some region of the attribute space, the preference holds, and in the remainder of the
attribute space, the preference does not apply. Thus, for each conditional preference,
we can divide the attribute space into these two pieces. Given k conditional state-
ments, each with independent conditions, we are left with as many as 2k separate
divisions of the attribute space with different preferences holding in each division.

Given k conditional tradeoffs, we can define the 2k subsets of the attribute space
as follows. For a set {M ′∪M ′′} of k conditional preference statements, each region of
the attribute space is defined by the intersection of a unique subset of the k conditions.
Let W be the set of condition clauses corresponding to M ′, then each w ∈ W is a
separate compound value clause. Any subset V ⊆ W holds on a region of the attribute
space defined by

∧
w∈V . For example, if there are k conditional preference statements

S1, S2, ..., Sk, each with corresponding condition clause W1,W2, ..., Wk, then there is
a subset of the attribute space defined by W1∧W4∧W5 where statements S1, S4, and
S5 hold, and so on for each subset of conditions.

For each subset V of W , the set of tradeoff preferences that hold over the corre-
sponding space is just those that correspond to the conditions. We state this in the
following theorem.

99

Theorem 9.13 (Space Conditions) Given a set of conditional preferences {M ′ ∪
M ′′}, with corresponding conditions W , each subset V ⊆ W defines a region of the
attribute space

∧
w∈V w where preferences corresponding to V in M ′ hold.

Proof. This theorem follows directly from the definition of conditional preference.
¤

Note that if condition
∧

w∈V w is unsatisfiable, then V describes an empty section
of the attribute space, and this section does not require further consideration.

This theorem defines the regions of the space where different constraints hold.
However, just because these regions have different constraints, it does not mean that
the constraints are mutually exclusive or unsatisfiable. Given a set of conditions W
and two subsets, V ⊂ W,V ′ ⊂ W , if the utility function constraints holding over
V ∪ V ′ are satisfiable by some utility function u′, then this utility function can be
used for V ∪ V ′.

In the presence of conditional tradeoff preferences, we proceed as follows. For a
set of conditional and unconditional tradeoff and attribute preferences {M ′ ∪M ′′},
consider the set W of conditions on those preferences. For each subset V of W , let
J be the set of preferences from {M ′ ∪M ′′} conditioned by V . Then for preferences
J∪M , we can construct sets of linear inequalities as discussed in the preceding section;
the solution to this set of linear inequalities gives us a utility function. This utility
function, in turn, is the utility function for the subset of the attribute space indicated
by

∧
w∈V w. In this way, we construct separate utility functions for different sections

of the attribute space.
The methods of dealing with different conditions on tradeoffs here can be computa-

tionally difficult. Is is possible that borrowing techniques from constraint satisfaction
literature would be efficacious here, but we leave such speculation to future work.

9.3.10 A Detailed Example

Let us consider an example and how it can fit into the frameworks mentioned above.
Suppose we are going out to eat in Boston, and need to pick a restaurant. We consider
the food, the wine, the atmosphere, the time to get there, and the time spent waiting
once at the restaurant. Usually, in Boston, restaurants are crowded, and since we do
not have reservations expedience can be a serious concern. Let ~A = 〈m, w, a, tt, wt〉
for meal, wine, atmosphere, travel time, and wait time. Then let meal have two values:
b1 =meat, b2 =fish; wine have two values: w1 =red, w2 =white; and atmosphere have
three values: a1 =bland, a2 =gaudy, a3 =quiet. Travel time and wait time will be
measured in minutes. We now state some simple ceteris paribus preferences:

var Preferences

p1 m fish Â meat
p2 w fish ∧ white Â fish ∧ red
p3 w meat ∧ red Â meat ∧ white
p4 a quiet Â gaudy
p5 a gaudy Â bland

100

These preferences mean that we prefer fish to meat. Preferences p2 and p3 mean
that our preference for wine depends on the main course. The remaining two prefer-
ences establish an order over the possible restaurant atmospheres.

Travel time and wait time are numeric variables where less is better. We state
tradeoffs about these variables: wt B 1.5tt, which indicates that is roughly 50% more
annoying to wait at the restaurant than to travel to it. These preferences have laid
the groundwork for a tradeoff between groups of variables: {m,w, a} B 10{tt, wt}.
This implies the following condition on the partial derivatives of the utility function:

∂u

∂m
(~x) +

∂u

∂w
(~x) +

∂u

∂a
(~x) ≥ 10

(
∂u

∂tt
(~x) +

∂u

∂wt
(~x)

)
. (9.18)

We can now construct subutility functions for each of the attributes, or, in this
case, for each utility independent set of attributes. Here attribute w is utility de-
pendent on attribute m, so following the system of section 9.2.1, we generate one
subutility function for {m,w}, one subutility function for a, one for tt, and one for
wt. For the qualitative attributes, we can specify their subutility functions simply
by assigning numbers to each of the qualitative alternatives of each attribute, and
using these assignments as the output of the subutility function for these attributes,
respectively. To continue this example, let us assign subutility functions as follows.

Subutility Value Subutility Value

u{m,w}(fish, white) 3 ua(quiet) 3
u{m,w}(fish, red) 2 ua(gaudy) 2
u{m,w}(meat, red) 2 ua(bland) 1
u{m,w}(meat, white) 1

For numeric attributes wt and tt, we can choose a simple linear subutility function.
We take uwt = −wt and utt = −tt.

The subutility functions are now known, and the form of the utility function
(additive) is known, that is, the utility function is of the form: u(~a) =

∑
i tiui(~a).

But before we can use the inequalities involving the partial derivatives of the utility
function, we must assign value functions that take the discrete domains to numbers.
We proceed in the most straightforward way, and assign values as follows:

Value Function Value Value Function Value

ρm(fish) 2 ρa(quiet) 3
ρm(meat) 1 ρa(gaudy) 2
ρw(white) 2 ρa(bland) 1
ρw(red) 1

Theorem 7.4 lets us use the slope of a linear subutility function as the partial
derivative of that subutility function with respect to the value of our ordinal vari-
ables, and therefore we can compute the partial derivatives of the utility function and
simplify inequality 9.18. We must consider that we have different partial derivatives
at different vectors in ~A. In particular, when we evaluate the partials of u with re-
spect to m and to w, we let x be in the domain of m, and y be in the domain of w.
In these cases we have

101

∂u
∂w

(x, y) = t{m,w}(u{m,w}(x,white)− u{m,w}(x, red))/(ρ(white)− ρ(red)))
∂u
∂m

(x, y) = t{m,w}(u{m,w}(fish, y)− u{m,w}(meat, y))/(ρ(fish)− ρ(meat)))

Note that the other partial derivatives are straightforward. Thus, using the above,
when we fix m =fish when computing ∂u

∂w
(w) and w = white when computing ∂u

∂m
(m)

we have

|2t{m,w}|+ |t{m,w}|+ |ta| ≥ 10(| − ttt|+ | − twt|).
Similarly if we fix m =meat and w =white then

|2t{m,w}|+ | − t{m,w}|+ |ta| ≥ 10(| − ttt|+ | − twt|),

and m =fish with w =red gives

0 + |t{m,w}|+ |ta| ≥ 10(| − ttt|+ | − twt|).

Finally fixing m =meat and w =red gives this constraint

0 + | − t{m,w}|+ |ta| ≥ 10(| − ttt|+ | − twt|).

Some of these constraints are identical because of the absolute value functions1, so
we can collect cases into two, and have

3t{m,w} + ta ≥ 10(ttt + twt) w = white
t{m,w} + ta ≥ 10(ttt + twt) w = red.

These constraints can then be collected with all other constraints on the parame-
ters of the utility function. Considering the tradeoff preferences above, we now have
the following constraints on the parameters of the utility function:

Constraint

c1 3t{m,w} + ta ≥ 10(ttt + twt) w = white
c2 t{m,w} + ta ≥ 10(ttt + twt) w = red
c3 twt ≥ 1.5ttt

These systems of linear inequalities can be solved for the different cases, in principle
resulting in piece-wise linear utility functions. In this case, since constraint c1 follows
from constraint c2, there is no need to have different functional forms of the utility
function based on different values of the w variable. Therefore, a solution for this
construction is tm,w = 15, ta = 10, twt = 1.5, and ttt = 1.

Thus a utility function for this example is

u(~x) = 15um,w(~x) + 10ua(~x) + 1.5uwt(~x) + utt(~x).

1When preferences for X exactly reverse given different values of Y , this is termed generalized
preference independence of X of Y by Keeney and Raifa [KR76].

102

9.3.11 Complexity

The running time of the SAT algorithm and the Linear Inequality solver steps can
be prohibitive. We consider here the time taken for both steps, for some different
preference structures. We will discuss the following cases: when each attribute ai ∈ A
is utility independent of every other attribute, when none are utility independent of
any other attribute, when each utility independent attribute set is of size equal to the
log of the number of attributes in A. There are two different complexity questions to
ask. One is the time and space required to construct u. The other is the time and
space required to evaluate u(b) on a particular basket b.

In the following, we assume that |A| = N and that the number of utility-independent
sets in the partition C is k. We assume there are |I| inequalities from tradeoff pref-
erence statements T .

The time required for the SAT solver depends on both the number of clauses
and the number of boolean variables appearing in the SAT problem. The number of
boolean variables is bounded by |M | ∗ k, and the number of clauses depends on the
number of conflicts among statements, upon which we do not have a good bound.
The SAT clauses are of two forms. The first type ensures that every statement agrees
with some utility independent set. Thus, these clauses have one variable per utility
independent set Ci such that (b1, b2) |= S ⇒ (b1 » Ci) 6= (b2 » Ci). We upper-bound
this quantity by k. The second type ensures at least one preference statement of a
conflict is ignored. These clauses have a number of boolean variables equal to the
number of statements involved in the conflict. The number of statements in each
conflict is bounded by |M | and by m

|Ci|
i , where mi = maxf∈Ci

|Df |, since there can

only be at most m
|Ci|
i different qualitative ceteris paribus preference statements per

utility-independent set. In pathological cases, the number of conflicts could be as high
as |M |!, if every statement conflicts with every other set of statements. However, it
is difficult to imagine such scenarios. Particularly, we assume the preferences M are
consistent, and will therefore have a low number of conflicts. Clearly, we have no good
bound on the number of conflicts. However, since there is no known polynomial-
time algorithm for the satisfiability of our CNF formula, the SAT portion of the
algorithm will have worst-case exponential time cost unless we can bound the number
of conflicts and statements by O(log(|A|)). Simple counterexamples exist that have
O(|A|) conflicts. Thus, the efficiency of our algorithm depends on heuristic methods
to both 1) reduce the number of conflicts and 2) quickly solve SAT problems. In
the first case, we speculate that careful translation of the domain into attributes can
reduce the number of conflicts. In the second case, our implementation suggests that
fast randomized SAT-solvers (e.g., WalkSAT [SLM92]) quickly solve our constraint
problems.

We have already shown that the number of linear inequalities contributed by a
qualitative ceteris paribus preference statement is less than 2|Ca(S)∪Cd(S)|. More pre-
cisely, for each statement, there is one inequality for each combination of the maximum
and minimum of ui(b1)−ui(b2) for each subutility function. For the special case where
i is such that |Ci\(s(p) ∪ s(q))| = 0, for S = p ÂCP q, then i contributes exactly one
term, since the minimum and maximum are the same. Thus each qualitative ceteris

103

paribus preference statement contributes

∏

i∈Ca(S)∪Cd(S)

{
2 if |Ci\(s(p) ∪ s(q))| ≥ 1
1 if |Ci\(s(p) ∪ s(q))| = 0

}

linear inequalities.
First we consider two extreme cases. Suppose that every attribute is found to

be utility dependent upon every other attribute, so that the partition C is C1 =
{a1, a2, ..., aN}, and k = 1. Then there can be no conflicts, since every qualitative
preference statement must agree with u1. Thus, there are no SAT clauses and no
linear inequalities needed. However, the evaluation time of u(~a) is the time taken
to traverse a model graph of all N attributes. We argued in [MD04] that this is
worst-case exponential in N .

On the other hand, suppose that every attribute is found to be utility independent
of every other attribute, and we have k = N . The number of inequalities per qualita-
tive ceteris paribus preference statement is exactly one, we have the total number of
inequalities equal to |M |. The evaluation time of u(~a) is order N , since we evaluate
N graphs of size Di.

Now suppose we have a more balanced utility decomposition. Suppose each utility-
independent set is of size log N . Then k = N/(log N). The number of inequalities
per qualitative preference statement S is less than 2|Ca(S)∪Cd(S)|, and since |Ca(S) ∪
Cd(S)| ≤ N/ log N , this is less than 2N/ log N . Thus the total number of inequalities is
less than |M | ∗ 2N/ log N . The evaluation of u(~a) requires traversing k graphs, of size
exponential in their domains, or each of size less than |mi|log N , where mi is as before,
the max domain size of an attribute in attribute set Ci. Thus evaluating u(~a) is order
|mi|N2/(log N).

If the size of the utility-independent sets gets larger than log N , then we will not
have polynomial time evaluation of u(~a). In addition, the number of possible linear
inequalities goes up exponentially with the number of utility-independent sets each
preference overlaps with.

In conclusion, given a favorable decomposition of the attribute space into util-
ity independent sets, and few conflicts, we can create a utility function in time
O(|I| + maxS(2|Ca(S)∪Cd(S)|) + |M |2 + maxi 2

|Ci|). The first term is for the number
of inequalities, the second term is for the utility independence computation, and
the third term is for actually constructing the subutility functions ui. We can then
evaluate u(~a) in time O(maxi 2

|Ci|).

9.3.12 Summary

In this chapter we have presented a number of methods of assigning scaling parameters
to the utility function u(m) =

∑
i tiui(m) and choosing which subutility functions

should be 1-consistent with which statements. Some methods are faster than others.
However, the methods presented here are not complete - they may fail to produce
a utility function from ceteris paribus preferences M . When the methods fail, it is
always possible to join partition elements Si, Sj ∈ S together to perform constraint
satisfaction and linear programming on a smaller problem.

104

9.4 A Complete Method

In the preceding, we have described several parts of an algorithm for computing with
qualitative ceteris paribus preference statements, conditional tradeoff preferences, and
conditional attribute tradeoffs. This has given us enough tools to accomplish our goal:
generating a utility function consistent with various types of input preferences. The
algorithm we present takes sets of ceteris paribus, tradeoff, and attribute importance
preferences M,M ′,M ′′, and computes a piecewise utility function U with U ∈ [M]
and for a skeptical interpretation J ′ of conditional tradeoffs M ′∪M ′′, U ∈ [J ′]. In the
following, we reiterate how these techniques can be woven together into a complete
algorithm.

The algorithm takes as input a set M of qualitative ceteris paribus preference
statements in the language L(A), a set of tradeoff statements M ′ in L(A)1, a set of
attribute statements M ′′ in L(A)2, and a type of graphical utility function g (from
[MD04]). The algorithm outputs a piecewise linear utility function U , a set of pairs
(V, uV) such that each utility functions uV is consistent with the input preferences at

a different region V of the attribute space ~A.
The steps of the algorithm are as follows:

1. Initialize U to the empty set.

2. Compute the set of relevant attributes A, which is the support of M ∪M ′∪M ′′.

3. Compute a partition C ′ = {C ′
1, C

′
2, ..., C

′
Q} of A into utility-independent at-

tribute sets, and compute D = {D1, D2,, DQ} such that C ′
i is utility depen-

dent on Di and utility independent of A\Di, using function IUDecomposition, as
discussed in section 9.2.1. Let C = {C1, C2, ..., CQ} be such that Ci = (C ′

i∪Di).

4. Construct relevant statement sets Ri for each Ci. Ri is defined to be the set of
statements S ∈ M such that (b1, b2) |= r ⇒ (b1 » Ci) 6= (b2 » Ci).

5. Construct the restricted model graph Gi(Ri) for each set of statements Ri.

6. Compute a minimal and complete set Yi of cycles Yik for each graph Gi(Ri)
such that each cycle Yik is a set of statements from Ri.

7. Construct the satisfiability problem P (M,C) from all cycles Yik.

8. Find a solution Θ to P (M, C).

9. Choose conflict-free preference sets Ri ⊆ Ri sets using solution Θ of P (M,C),
as given in equation 9.2.

10. Construct cycle-free restricted model graphs G′
i(Ri)

11. Define each subutility function ui to be the graphical subutility function of type
g based on G′

i(Ri).

105

12. Use definition 9.3 to construct I(M, C, R), a system of linear inequalities relating
the parameters ti.

13. Consider each conditional preference in M ′ and in M ′′, and let W be the set of
conditions upon these preferences. For each set V ⊆ W , with non-empty [V],
let J be the set of preferences conditioned by V .

(a) Let J ′ = Skep-Iterp(J, ~x), for ~x ∈ [V], to obtain a skeptical set of prefer-
ences J ′ for J .

(b) Convert tradeoff statements in J ′ to a set of linear inequalities I ′ by using
the definition of tradeoff statements and inequality (9.12).

(c) Convert attribute importance statements in J ′ to a set of linear inequalities
I ′′ by using the definition of attribute tradeoff statements and inequality
(9.13).

(d) Solve I(M, C, R) ∪ I ′ ∪ I ′′ for each ti using linear programming.

i. If I(M, C, R) ∪ I ′ ∪ I ′′ has a solution, pick a solution, and use the
solution’s values for ui and ti to construct a utility function uV (~a) =∑

i tiui(~a), and updating U ← U ∪ {V, uV }
ii. If I(M,C, R) ∪ I ′ ∪ I ′′ has no solution, and I ′ ∪ I ′′ has no solution,

then the input tradeoffs are inconsistent; output the empty set.

iii. If I(M, C, R)∪ I ′ ∪ I ′′ has no solution, and I ′ ∪ I ′′ has a solution, then
output the empty set.

14. Output U .

Some remarks must be said about the failure conditions of this algorithm. First
of all, the algorithm may fail because the steps concerning merely the qualitative
ceteris paribus preferences can fail; these are heuristic methods. As we discuss in
[MD04], consistent ceteris paribus preferences can always be represented by a trivial
utility function; one that orders each outcome according to the preorder implied
by the preferences, but this gains none of the advantages of a generalized additive
decomposition utility function.

Secondly, a set of tradeoff preferences cannot be considered consistent without
knowledge of the partial derivatives of the utility function. The partial derivatives
of the utility function, in this case, are determined by the generalized additive de-
composition of the attribute space. Thus we cannot know with certainty before the
algorithm determines the additive decomposition of the attribute space if the tradeoff
preferences are consistent or not.

With these shortcomings in mind, we must consider this algorithm heuristic.
There is always the possibility of conflicting preferences leading to no solution. How-
ever, when this algorithm finds a solution, it is guaranteed to represent the input
preferences faithfully. This algorithm, therefore, fulfills its main purpose: it illus-
trates that tradeoff preferences can in principle be combined with qualitative ceteris
paribus preferences of the type presented in chapter 5. Indeed, we show in the next

106

chapter that tradeoff preferences can be combined with another representation of
qualitative ceteris paribus preferences.

The soundness of this algorithm can be proven by reference to the preceding
theorems of this thesis. We present this here.

Theorem 9.14 (Soundness) Given a set of ceteris paribus preferences M , a set
of tradeoff preferences M ′, and a set of attribute tradeoffs M ′′, if the above algorithm
produces a piecewise linear utility function U , then U ∈ [M ∪M ′ ∪M ′′].

Proof. By Theorem 9.1, the partition C is a partition of A. Lemma 9.3.2 implies
that a minimal and complete set of conflicts Yi for preference set Ri can be computed
by performing cycle-detection on the restricted model graph Gi(Ri). By definitions
9.1 and 9.2, C, R, Y , are enough to construct a satisfiability problem P (M, C). By
Lemma 9.3.3, the solution Θ to P (M, C) allows choosing of Ri conflict-free. By
Lemma 9.3.2, each restricted model graph Gi(Ri) is cycle-free. By theorem 8.1, Skep-
Interp produces a skeptical interpretation of V . It is then possible to build and
solve a set of linear inequalities I(M,C, R) ∪ I ′ ∪ I ′′, as given in definition 9.3. If
I(M, C, R) ∪ I ′ ∪ I ′′ has a solution, then this solution provides values for each ti.
By Theorem 9.12 uV (m) =

∑
i tiui(m) is a utility function consistent with M ∪ V .

By definition of piecewise linear utility functions, U is such a function, and U ∈
[M ∪M ′ ∪M ′′]. ¤

107

108

Chapter 10

Quantitative Tradeoffs and
CP-nets

In general, the tradeoffs and importance preference statements described in this the-
sis generate linear constraints on the parameters of additive utility functions. These
constraints can be easily integrated with any preference or utility estimation system
that uses linear inequalities to constrain the parameters of possible utility functions.
And since linear models of utilities are so common in practice, the system we have
proposed should be widely applicable. In the previous chapter we showed how to
combine tradeoff preferences with the method of [MD04]. In the present chapter we
show how to combine the linear inequalities generated from our preference trade-
off statements with the CP-nets system. We stress that integration with these two
systems are merely representative of other possible integrations.

Methods proposed by Brafman, Domshlak, and Kogan [BDK04] take CP-nets
[BBHP99] and TCP-nets [BD02] and generate a utility function consistent with the
order implied by the CP-net or TCP-net. These methods use qualitative ceteris
paribus preference as their input, and output a generalized additive-independent or-
dinal utility function. When we consider the system we have presented in preceding
chapters alongside the systems based on CP-nets, we find there are differences of ex-
pressiveness. CP-nets place restrictions on the form of the preference statements, and
make independence relationships explicit; the methodology we have presented allows
arbitrary qualitative ceteris paribus preferences and infers independence from the
statements. The restrictions on CP-nets allow strong tractability results, in [BDK04]
acyclic TCP-nets always allow efficient utility function construction. Such differences
mean that each qualitative preference methodology may be appropriate in different
situations.

We now demonstrate that the various quantitative tradeoffs we have developed in
the preceding chapters fit easily together with CP-nets.

109

10.1 Adding Quantitative Tradeoffs to CP-nets

To add quantitative tradeoffs to CP-nets 1 we require two things of the utility function;
one, that it should be a generalized additive utility function and two, that it should
have linear subutility functions.

If we compile a CP-net into a utility function, basing the methods on [BDK04],
then we are committing to using a generalized additive utility function. We can force
the subutility functions (termed “factors” in that source) of this utility function to
be linear in their input by adding additional inequalities to the system of linear equa-
tions that generates the utility function. These conditions assure that our tradeoff
statements in L(A)1 or in L(A)2 can be easily added to the CP-net.

The system of linear inequalities constructed by Brafman et al. has one variable
per input per subutility function, so we can add additional inequalities asserting, for
a variable X, that kx1 ≤ 2kx2 ≤ 3kx3, ..., together with kx1 ≥ 2kx2 ≥ 3kx3, ..., and
k > 0, assuring that the output of the subutility function for X is linear in X. The
proper ordering among values of X can be found by considering the CP-Family of
X ([BDK04], section 3), and computing a different linear program for each possible
ordering consistent with the CP-Family. This is a locally-exponential addition to the
complexity of utility function construction, so the problem remains in P when the
exponents are bounded by a constant.

After assuring the subutility functions are linear in their input, it is simple to solve
an additional system of linear inequalities which constrain the tradeoff ratios between
subutility functions. This new problem has one variable for each subutility function,
representing the weight given to it in the generalized additive utility function, and
one or more inequalities for each tradeoff statement S ∈ L(A)1 or in L(A)2. Each
tradeoff statement results in linear constraints on the tradeoff parameters of the utility
function, but may result in different constraints over different areas of the domain of
the utility function. This is the case when the preferences over one variable, and thus
partial derivatives with respect to that variable, switch with the values assumed by
a different variable. Such is the normal case of utility dependence between variables.
In these cases, the utility function will be a piecewise linear one, having different
functional forms for different parts of its domain.

We demonstrate these techniques in a detailed example in the next section.

10.2 A CP-net Example

In the previous chapter we considered an example involving choosing a restaurant
in Boston. We will work through the same example here, again, but this time in
a CP-net framework. This illustrates the differences between the CP-net formalism
and the methods presented earlier in this thesis.

1TCP-nets is a expansion to CP-net semantics that adds qualitative tradeoffs [BD02]. We do
not add quantitative tradeoffs to TCP-nets because the semantics of the two tradeoff systems are
incompatible.

110

Figure 10-1: CP-net for preferences p1-p5

We again choose ~A = 〈m,w, a, tt, wt〉 for meal, wine, atmosphere, travel time, and
wait time, just as in the previous example.

The simple ceteris paribus preferences we used before,

var Preferences

p1 m fish Â meat
p2 w fish ∧ white Â fish ∧ red
p3 w meat ∧ red Â meat ∧ white
p4 a quiet Â gaudy
p5 a gaudy Â bland

can be used to construct a CP-net.

In a CP-net for these preferences, we have to consider which variables are utility
independent. In this case only w depends on m so we draw the CP-net as shown in
figure 1.

Recall that travel time and wait time are numeric variables, and that we state
these two attribute tradeoff preferences over A:

wt B 1.5tt
{m,w, a} B 10{tt, wt}

And we have again these conditions on the partial derivatives of the utility function
(from inequality (9.18)).

∂u

∂m
(~x) +

∂u

∂w
(~x) +

∂u

∂a
(~x) ≥ 10

(
∂u

∂tt
(~x) +

∂u

∂wt
(~x)

)
.

These constraints are an addendum to the CP-net framework: we will keep them
aside for now.

To compute a utility function for the CP-net we must solve a system of linear
inequalities, of the form of inequality 1 in [BDK04]. In this case, it results in the
following linear inequalities:

111

Preferences

e1 ua(quiet) > ua(gaudy)
e2 ua(gaudy) > ua(bland)
e3 uw(fish,white) > uw(fish,red)
e4 uw(meat,red) > uw(meat,white)
e5 um(fish) + uw(fish,white) >

um(meat) + uw(meat,white)
e6 um(fish) + uw(fish,red) >

um(meat) + uw(meat,red)

We can then add linearizing inequalities to the system, forcing 3kaua(quiet) ≥ 2kaua(gaudy) ≥
kaua(bland) and 3kaua(quiet) ≤ 2kaua(gaudy) ≤ kaua(bland), using a new variable
ka. We make similar inequalities for uw and um. We require these additional inequal-
ities to force the subutility functions for each attribute in the CP-net to be linear;
this simplifies our methodology. A solution is as follows:

Subutility Value Subutility Value

um(fish) 2 uw(fish, white) 4
um(meat) 1 uw(fish, red) 3
ua(quiet) 3 uw(meat, red) 2
ua(gaudy) 2 uw(meat, white) 1
ua(bland) 1 ka 1
km 1 kw 1

For attributes wt and tt, we use these linear subutility functions : uwt = −wt and
utt = −tt.

Recall that we assign value functions that take the discrete domains to numbers,
as follows:

Value Function Value Value Function Value

ρm(fish) 2 ρa(quiet) 3
ρm(meat) 1 ρa(gaudy) 2
ρw(white) 2 ρa(bland) 1
ρw(red) 1

Theorem 7.4 lets us use the slope of a linear subutility function as the partial
derivative of that subutility function with respect to the value of our ordinal vari-
ables, and therefore we can compute the partial derivatives of the utility function and
simplify inequality 9.18. We have different partial derivatives at different vectors in
~A. For example, when we compute the partial derivatives of u with respect to each
variable, we must pay special attention to the formulae for the partials of m and of
w. For x ∈ {fish, meat} and y ∈ {white, red}, we have

∂u
∂w

(x, y) = tw(uw(x,white)− uw(x, red))/(ρ(white)− ρ(red)))
∂u
∂m

(x, y) = tw(uw(fish, y)− uw(meat, y))/(ρ(fish)− ρ(meat)))+
tm(um(fish)− um(meat))/(ρ(fish)− ρ(meat))

112

Thus, when we fix m =fish when computing ∂u
∂w

(w) and w =white when computing
∂u
∂m

(m) we have

|tw|+ |3tw|+ |tm|+ |ta| ≥ 10(| − ttt|+ | − twt|).

Similarly if we fix m =meat and w =white then

| − tw|+ |3tw|+ |tm|+ |ta| ≥ 10(| − ttt|+ | − twt|),

and m =fish with w =red gives

|tw|+ | − tw|+ |tm|+ |ta| ≥ 10(| − ttt|+ | − twt|).

Finally fixing m =meat and w =red gives this constraint

| − tw|+ | − 3tw|+ |tm|+ |ta| ≥ 10(| − ttt|+ | − twt|).

As we did with the constraints in the last example, we can again collect cases into
two, and have

4tw + tm + ta ≥ 10(ttt + twt) w = white
2tw + tm + ta ≥ 10(ttt + twt) w = red.

These constraints can then be collected with all other constraints on the parame-
ters of the utility function. We then have the following constraints on the parameters
of the utility function:

Constraint

c1 4tw + tm + ta ≥ 10(ttt + twt) w = white
c2 2tw + tm + ta ≥ 10(ttt + twt) w = red
c3 twt ≥ 1.5ttt

The only remaining step is to solve this system of linear inequalities for the tradeoff
parameters t. As in the previous example, constraint c1 follows from constraint c2,
so there is no need to have different functional forms of the utility function based on
different values of the w variable. A solution to the CP-net system of inequalities is
tm = tw = ta = 5, twt = 1.5, and ttt = 1.

Thus a utility function for the CP-net is

u(~a) = 5um(~a) + 5ua(~a) + 5uw(~a) + 1.5uwt(~a) + utt(~a).

113

114

Chapter 11

Conclusions

We have presented novel methods for enriching systems of qualitative ceteris paribus
preferences with quantitative tradeoffs of various types over groups of features. These
preference systems can then be compiled into quantitative utility functions using mod-
ifications of existing techniques. Our work here has provided an important extension
to both the systems of [MD02] and [BBHP99].

The main contribution of this thesis has been the representation of tradeoffs, of
various types, as constraints on the partial derivatives of the utility function. We
have demonstrated that this general approach to tradeoff semantics is broad enough
to cover all of the following:

1. Tradeoffs between particular values of attributes.

2. Importance constraints between sets of attributes.

3. Multiattribute tradeoffs of each preference type considered.

4. Tradeoffs over discrete and continuous attributes.

5. Importance judgements between binary attributes.

6. Degenerate tradeoffs between different values of the same attribute.

To formally underpin the connection between these types of preference tradeoffs, we
have provided the following equivalences.

1. Basket tradeoffs reduce to constraints on the economic notion of marginal rates
of substitution when the relation is between single attributes.

2. Discrete basket tradeoffs reduce to continuous basket tradeoffs in the case of
linear utility functions.

3. Discrete attribute tradeoffs reduce to continuous attribute tradeoffs in the case
of linear utility functions.

4. Discrete basket tradeoffs reduce to discrete attribute tradeoffs when the baskets
involved are equivalent to the characteristic vectors of the sets of attributes
related in the attribute tradeoff.

115

5. Binary ceteris paribusattribute tradeoffs reduce to qualitative ceteris paribustradeoffs.

We then have shown that we can combine all of these tradeoff preferences into a
single methodology, together with qualitative ceteris paribuspreferences, for comput-
ing a utility function representing preference statements of all forms. Furthermore,
these combination methods can function with however many or few preferences hap-
pen to be available, these preferences can be over any attributes, and there need be
no explicit utility independence given with the preferences. These are all significant
departures from the assumptions underlying traditional decision analysis.

11.1 Directions for Future Work

There are many interesting avenues of research left to pursue concerning the interac-
tion of tradeoff constraints and ceteris paribuspreference statements.

Our representation of tradeoff statements as constraints on the partial derivatives
of the utility function is novel, and as such it raises many new questions.

The basis of our interpretation of attribute importance tradeoffs is the ratio of
gradients of the utility function. Even so, our use of the magnitude of the gradient
of the utility function to calibrate the relative utilities of two subspaces is a heuristic
choice. There could be other measures defined for this purpose, such as some kind
of average-case improvement measure, for example, that tries to capture the average
case outcome. We leave this issue to future research.

Then, there is the interaction of our constraints on the derivatives over nonlinear
subutility functions. Sometimes a tradeoff is over utility dependent attributes, which
can lead to a preference reversals or other various discrepancies over different parts
of the space, depending on the values of the attribute on which the attribute in
question depends. This leads to different types of issues when constructing piecewise
linear utility functions. When do preference reversals result in mutually incompatible
constraints? Do preference reversals require negative values of the subutility function
scaling parameters, ti? It may be possible to characterize the types of subutility
functions that either require piecewise linear solutions, or those that do not.

We can investigate the integration of our partial-derivative based tradeoff prefer-
ences with other preference reasoning systems. For example, there might yet be a
way to combine our tradeoff statements with TCP-nets. A combination with work
on answer-set solvers for preference representation is also a possibility [Bre04]. A
combination with a machine-learning system based on an SVM architecture [DJ05]
may be straightforward, but the combination of techniques in this case may be coun-
terproductive.

We have given very general definitions of the language of preference; ones with
the full expected logical generality. However, for purposes of this thesis, only some of
these were given meaning. We argued in passing that some of these statements are
unlikely, or awkward, and probably have no simple or agreed-upon meaning. However
there is still room to explore in more detail which of the remaining statements can
be given useful or pleasing semantics. Further, there are more ambitious levels of
statements to include. Some philosophers have recommended that statements ceteris

116

paribusshould be replaced by statements that are true only in the worlds most similar
to the existing situation [Han89, Han96]. Could we define useful preferences based
on this model? Another larger category of preferences to include is metapreferences.
There is always the possibility of stating preferences about when to believe other
preferences. A useful starting point for this might be to use a temporal ordering.
And a last semantic upgrade would be to consider preferences not “everything else
equal” but “everything else almost equal.”

117

118

Appendix A

Proofs

A.1 Proofs of Theorems

Theorem 9.4 (Subutilities) Given statements M and a mutually utility-independent
partition C of A, if each ui is 1-consistent with S, then

u(~a) =

Q∑
i=1

tiui(~a)

where ti(ui(b)− ui(b
′)) > 0 when b ÂCP b′, is consistent with S ∈ M .

Proof. By definition of 1-consistency of ui with M , |uCi
(b1) − uCi

(b2)| ≥ 1 when
(b1, b2) |= S and (b1 » Ci) 6= (b2 » Ci). Since ti(ui(b1)− ui(b2)) > 0, we have

Q∑

i:(b1»Ci)6=(b2»Ci)

ti(ui(b1)− ui(b2)) > 0. (A.1)

By definition of a subutility function ui, if (b1 » Ci) = (b2 » Ci) then ui(b1 » Ci) =
ui(b2 » Ci), so we have

Q∑

i:(b1»Ci)=(b2»Ci)

ti(ui(b1)− ui(b2)) = 0. (A.2)

Combining equation A.2 and inequality A.1, we have

Q∑

i:(b1»Ci)=(b2»Ci)

ti(ui(b1)− ui(b2)) +

Q∑

i:(b1»Ci)6=(b2»Ci)

ti(ui(b1)− ui(b2)) > 0.

The above is equivalent to

Q∑
i=1

ti(ui(b1)− ui(b2)) > 0.

119

So we have
Q∑

i=1

tiui(b1) >

Q∑
i=1

tiui(b2)

and
u(b1) > u(b2)

whenever (b1, b2) |= S. This is the definition of consistency of u with S. Thus, this
completes the proof. ¤

Lemma 9.3.1 (Cycle-Free Subutility) Given a set of statements R ⊆ M and
a set of features Ci ⊆ A such that the restricted model graph Gi(R) is cycle-free, and
ui(~a) is the minimizing graphical utility function over Gi(R), the subutility function
ui(~a) for Ci is 1-consistent with R.

Proof. We show that ui(b1) ≥ 1 + ui(b2) whenever (b1, b2) |= S and b1 » Ci 6= b2 »
Ci. First let ui be the minimizing graphical utility function (from [MD04]) defined over
Gi(R). Then pick some r ∈ R and some pair (b1, b2) |= r where (b1 » Ci) 6= (b2 » Ci).
By definition of Gi(R), there exists an edge e(b1 » Ci, b2 » Ci) thus, ui(b1) ≥ 1+ui(b2)
because the there exists a path from (b1 » Ci) that contains (b2 » Ci), and therefore
contains the longest path from (b2 » Ci), plus at least one node, namely the node
(b1 » Ci). So we have ui(b1) ≥ 1 + ui(b2). Since this holds for all (b1, b2) |= r and for
all r ∈ R, this proves the lemma. ¤

Lemma 9.3.2 (Conflict Cycles) Given a set of strict qualitative ceteris
paribuspreference statements R ⊆ M and a set C of feature sets of A, the state-
ments R conflict if and only if the statements R imply a cycle in any restricted model
graph Gi(R) of some set of features Ci ∈ C.

Proof. If the statements R imply a cycle in Gi(R), then there exists some cycle of
nodes bj in Gi(R). Call this cycle Y = (b1, b2, ..., bk, b1). By the definition of a model
graph, an edge e(bj, bj+1) exists if and only if bj ÂCP bj+1 according to R. Thus, for
a subutility function ui to be consistent with R, the following would have to hold:

ui(b1) > ui(b2) > ... > ui(bk) > ui(b1)

Which is not possible, because ui(b1) > ui(b1) is impossible. Thus, if R implies a
cycle in some Gi(R), then there is no subutility function ui consistent with R.

In the other direction, we show that if the statements R conflict on Ci, then they
imply a cycle in Gi(R). We assume the opposite and work toward a contradiction.
Suppose R conflict on Ci but they do not imply a cycle in Gi(R). By the definition of
a restricted model graph, Gi(R) is cycle-free. Then we define the subutility function
ui to be the minimizing graphical utility function based on the graph Gi(R). By
Lemma 9.3.1, ui is 1-consistent with R. This is a contradiction, so we have shown
that when R conflict on Ci they imply a cycle in Gi(R). This proves the lemma. ¤

Theorem 9.7 (Preference Consistency) Given a set C = {C1, ..., CQ} of
subsets of A, corresponding relevant statement sets Ri for each Ci ∈ C, conflict-
free statement sets Ri for each Ri, and subutility functions ui 1-consistent with Ri,

120

a generalized additive utility function u is consistent with a statement r if for all
(b1, b2) |= r, we have

∑

i∈Ca(r)

ti(ui(b1)− ui(b2)) >
∑

j∈Cd(r)

tj(uj(b2)− uj(b1)). (A.3)

Proof. If u is consistent with r then u(b1) > u(b2) whenever b1 ÂCP b2 according
to r. Inequality A.3 is equivalent to:

∑

i∈Ca(r)∪Cd(r)

ti(ui(b1)− ui(b2)) > 0.

Note that the set of indices Ca(r) ∪ Cd(r) is the set of all indices i for which r ∈ Ri.
Thus, the above is equivalent to

∑
i:r∈Ri

ti(ui(b1)− ui(b2)) > 0

and we can split the summation so we have
∑

i:r∈Ri

tiui(b1) >
∑

i:r∈Ri

tiui(b2).

The above is the same as inequality 9.5, which is equivalent to inequality 9.4, which
in turn is equivalent to inequality 9.3, and since we define an generalized additive
utility function u as:

u(~a) =

Q∑
i

tiui(~a)

we can substitute this definition of u(~a) for the summations in inequality 9.3 to obtain:

u(b1) > u(b2)

whenever (b1, b2) |= r, which is the definition of consistency of u with r. ¤

Theorem 9.8 (Simple Scaling Parameters) Given a set of feature sets C =
{C1, C2, ..., CQ} and a set of feature vector statements M in L(A), with Ri the set
of relevant statements for Ci, and each ui is 1-consistent with each r ∈ Ri, then

u(~a) =

Q∑
i=1

ui(~a) (A.4)

is an ordinal utility function consistent with M .
Proof. Fix a statement r ∈ M . Without loss of generality, assume all subutility

functions are positively ordered. If each ui is 1-consistent with Ri, then if r ∈ Ri, for
all (b1, b2) |= r we have ui(b1)− ui(b2) > 0. So we have

∑
i:r∈Ri

(ui(b1)− ui(b2)) > 0

121

and since for r 6∈ Ri ui(b1) = ui(b2) for all (b1, b2) |= r, we have:

Q∑
i=1

(ui(b1)− ui(b2)) > 0

or
Q∑

i=1

ui(b1)−
Q∑

i=1

ui(b2) > 0

Substituting u(~a) for the definition in equation A.4 we have

u(b1)− u(b2) > 0.

Since we chose r arbitrarily, this holds for any r ∈ M . Thus, u as defined in equation
A.4 is a utility function consistent with M . ¤

Theorem 9.9 (Correctness of SAT-Formulation) Given a set of attribute
sets C of A, if P (M,C) has no solution then the preferences M are not consistent
with a utility function u of the form u(~a) =

∑
i tiui(~a).

Proof. If there is no solution to P (M, C), it means that in all possible assign-
ments of truth values to variables, some clause is not satisfied. By definition of
the propositional variables in P (M, C), the truth assignments correspond directly
to statement-subutility function 1-consistency. The clauses in P (M, C) are of two
forms: statement-set clauses (definition 9.1), and conflict clauses (definition 9.2). By
assumption, there is no solution to P (M,C). Thus, in each possible assignment of
truth values to the variables in P (M,C), either there exists some statement-set clause
that is not satisfied, or there exists some conflict clause that is not satisfied. In terms
of the interpretation given to variables zij, if a statement-set clause is not satisfied
then there is some statement rj that is not 1-consistent with any subutility function
ui for each Ci. In the other case, if a conflict clause is not satisfied, then there exists
some cycle Yik where each rj ∈ Yik is included in the set Ri (by definition of Ri,
equation 9.11); and thus Ri is not conflict-free.

Thus we must treat two cases. Suppose the first case holds: in any assignment
of truth values to variables zij in P (M,C), there is some statement rj that is not 1-
consistent with any subutility function ui. Thus, by Corollary 9.3.2, a utility function
u(~a) =

∑
i tiui(~a) is not consistent with rj. By definition of consistency, u is not

consistent with M . This holds for any generalized additive utility function u based
on the utility-dependence partition C.

The second case is that in any assignment of truth values to the variables zij,
there is some conflict clause CRi

= ∨j:rj∈Yik
¬zij where all zij are true. We show that

this case is equivalent to the first case. By definition of P (M, C), for all rj ∈ CRi
,

there is a statement-set clause Cj = ∨i∈Xj
zij. If there were some zxj ∈ Cj for x 6= i,

where zxj = true, we could construct a solution to P (M,C) by making zij false and
leaving zxj true. But by assumption, there is no solution to P (M,C), so we must
conclude that for all zxj ∈ Cj with x 6= i, zxj = false. Therefore, we make zij false,

122

and then for all zxj ∈ Cj, zxj = false, so we now have an assignment of truth values
of the first case.

This shows that if there is no solution to the SAT problem, P (M, C), then there
is no generalized additive utility function, consistent with the stated preferences M
and the set of feature sets C. ¤

Theorem 9.10 (Set Merging) If M is an inconsistent preference set over
features Ck, then there does not exist any Ci, Cj with Ci ∪ Cj = Ck such that M
restricted to Ci is consistent and M restricted to Cj is consistent.

Proof. A set of preference M over Ck is inconsistent exactly when the model
graph, G(Ck) has one or more cycles. Let Y = {r1, r2, ..., rk} be such a cycle. Since
Y is a cycle, there exists models b1, b2, ..., bk such that

(b1, b2) |= r1

(b2, b3) |= r2
...
(bk−1, bk) |= rk−1

(bk, b1) |= rk.

Let C ⊆ Ck be any set of features. Let C ′ be C if some r ∈ Y has non-empty (r » C),
otherwise let C ′ = Ck\C. In either case, some r ∈ Y has non-empty (r » C ′). By
definition of model restriction and statement restriction, we have:

((b1 » C ′), (b2 » C ′)) |= (r1 » C ′)
((b2 » C ′), (b3 » C ′)) |= (r2 » C ′)
...
((bk−1 » C ′), (mk » C ′)) |= (rk−1 » C ′)
((bk » C ′), (b1 » C ′)) |= (rk » C ′).

Thus we have exhibited a cycle on C ′ caused by the preferences M . Let Ci = C ′,
Cj = Ck\C ′. Then we have shown, for any Ci, Cj such that Ci ∪ Cj = Ck, that there
is a conflict in Ci. ¤

Lemma 9.3.4 (Sufficiency of I(M, C, R)) Given I(M,C, R) and a solution to
it providing an assignment of values to t1, ..., tQ, for all r in some (Ri\Ri) and for all
basket pairs (b1, b2) |= r,

∑

i∈{Ca(r)∪Cd(r)}
ti(ui(b1)− ui(b2)) > 0.

Proof. Let xi be the maximum value of ui(b1) − ui(b2) and yi be the minimum
value of ui(b1)− ui(b2), then the following inequalities are members of I(M,C, R):

xiti +
∑Q

j=1,j 6=i tjxj > 0

xiti +
∑Q

j=1,j 6=i tjyj > 0

yiti +
∑Q

j=1,j 6=i tjxj > 0

yiti +
∑Q

j=1,j 6=i tjyj > 0.

123

Since we have a solution to I(M, C, R), we have an assignment of values to t1, ..., tQ
such that the above hold. Clearly the following hold for any (ui(b1) − ui(b2)) with
xi ≥ (ui(b1)− ui(b2)) ≥ yi:

(ui(b1)− ui(b2))ti +
∑Q

j=1,j 6=i tjxj > 0

(ui(b1)− ui(b2))ti +
∑Q

j=1,j 6=i tjyj > 0.

Since this holds for any choice of i : 1 ≥ i ≥ Q, this proves the lemma. ¤

Theorem 9.11 (Qualitative Preference Inequalities) If the system of linear
inequalities, I(M, C, R), has a solution, this solution corresponds to a utility function
u consistent with M .

Proof. Each subutility function, ui, 1 ≤ i ≤ Q, is fixed. By Lemma 9.3.4,
for a given statement r in some (Ri\Ri), we are assured that if (b1, b2) |= r then∑

i tiui(b1) >
∑

i tiui(b2), for all i ∈ {Ca(r) ∪ Cd(r)}. Since Ca(r) and Cd(r) are
disjoint, we can rearrange the summations and obtain:

∑

i∈Ca(r)

ti(ui(b1)− ui(b2)) >
∑

j∈Cd(r)

tj(uj(b2)− uj(b1)).

Then by Theorem 9.7, u is consistent with r.
If r is not in any (Ri\Ri), then for all i such that r ∈ Ri, ui is 1-consistent with

r. For j such that r 6∈ Rj, (b1, b2) |= r implies that (b1 » Sj) = (b2 » Sj), so all uj are
1-consistent with r. Since all subutility functions are 1-consistent with r, we have:

Q∑
i

ti(ui(b1)− ui(b2)) > 0

and u is consistent with r. Thus, u is consistent with all r in some (Ri\Ri), and all
r not in some (Ri\Ri), so u is consistent with all r ∈ M . This proves the lemma. ¤

124

Bibliography

[AGLM04] Silvia Angilella, Salvatore Greco, Fabio Lamantia, and Benedetto
Matarazzo. Assessing non-additive utility for multicriteria decision aid.
European Journal of Operational Research, 158:734–744, 2004.

[BB91] Jane Beattie and Jonathan Baron. Investigating the effect of stimulus
range on attribute weight. Journal of Experimental Psychology: Human
Perception and Performance, 17(2):571–585, 1991.

[BBB01] Craig Boutilier, Fahiem Bacchus, and Ronen L. Brafman. Ucp-networks:
A directed graphical representation of conditional utilities. In Proceed-
ings of Seventeenth Conference on Uncertainty in Artificial Intelligence,
Seattle, 2001. To Appear.

[BBGP97] Craig Boutilier, Ronen Brafman, Christopher Geib, and David Poole.
A constraint-based approach to preference elicitation and decision mak-
ing. In Jon Doyle and Richmond H. Thomason, editors, Working Papers
of the AAAI Spring Symposium on Qualitative Preferences in Delibera-
tion and Practical Reasoning, pages 19–28, Menlo Park, California, 1997.
AAAI.

[BBHP99] Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole.
Reasoning with conditional ceteris paribus preference statements. In
Proceedings of Uncertainty in Artificial Intelligence 1999 (UAI-99), 1999.

[BD02] Ronen I. Brafman and Carmel Domshlak. Introducing variable impor-
tance tradeoffs into cp-nets. In Proceedings of the Eighteenth Conference
on Uncertainty in Artificial Intelligence (UAI-02). Morgan Kaufmann,
August 2002.

[BDK04] Ronen I. Brafman, Carmel Domshlak, and Tanya Kogan. Compact value-
function representations for qualitative preferences. In Proceedings of
Uncertainty in Artifical Intelligence (UAI’04), pages 51–59, Arlington,
Virginia, 2004. AUAI Press.

[BG95] Fahiem Bacchus and Adam Grove. Graphical models for preference and
utility. In Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 3–19. Morgan Kaufmann, 1995.

125

[BG96] Fahiem Bacchus and Adam Grove. Utility independence in a qualitative
decision theory. In Proceedings of the Fifth International Conference
on Knowledge Representation and Reasoning, pages 542–552. Morgan
Kaufmann, 1996.

[BLKL01] M. Bichler, J. Lee, C. H. Kim, and H. S. Lee. Design and implemen-
tation of an intelligent decision analysis system for e-sourcing. In Pro-
ceedings of the 2001 International Conference on Artificial Intelligence
(IC-AI’2001), Las Vegas, Nevada, pages 84–89, 2001.

[Bou94a] Craig Boutilier. Toward a logic for qualitative decision theory. In Jon
Doyle, Erik Sandewall, and Piero Torasso, editors, KR94, San Francisco,
may 1994. Morgan Kaufmann.

[Bou94b] Craig Boutilier. Toward a logic for qualitative decision theory. In Proceed-
ings of the Fourth International Conference on Principles of Knowledge
Representation and Reasoning (KR-94), pages 76–86, Bonn, 1994.

[Bre04] Gerhard Brewka. Answer sets and qualitative decision making. Synthese,
special issue on Non-Monotonic and Uncertain Reasoning in the Focus
of Paradigms of Cognition, 2004. in press.

[BZ04] Marko Bohanec and Blaž Zupan. A function-decomposition method for
development of hierarchical multi-attribute decision models. Decision
Support Systems, 36:215–233, 2004.

[Chv83] Vašek Chvátal. Linear Programming. W.H. Freeman and Company, New
York, 1983.

[CKO01] U. Chajewska, D. Koller, and D. Ormoneit. Learning an agent’s utility
function by observing behavior. In 18th International Conference on
Machine Learning (ICML ’01), pages 35–42, 2001.

[DFP97] Didier Dubois, Helene Fargier, and Henri Prade. Decision-making under
ordinal preferences and comparative uncertainty. In Proc. 13th Confer-
ence on Uncertainty in Artificial Intelligence (UAI-97), pages 157–164,
1997.

[DJ05] C. Domshlak and T. Joachims. Unstructuring user preferences: Efficient
non-parametric utility revelation. In Proceedings of the Twenty-first An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-05), page
169. AUAI press, 2005.

[DLBPS98] D. Dubois, D. Le Berre, H. Prade, and R. Sabbadin. Logical represen-
tation and computation of optimal decisions in a qualitative setting. In
Proceedings of AAAI-98, pages 588–593, Menlo Park, California, 1998.
AAAI Press.

126

[DSW91] Jon Doyle, Yoav Shoham, and Michael P. Wellman. A logic of relative
desire (preliminary report). In Zbigniew Ras, editor, Proceedings of the
Sixth International Symposium on Methodologies for Intelligent Systems,
Lecture Notes in Computer Science, Berlin, 1991. Springer-Verlag.

[DT99] Jon Doyle and Richmond H. Thomason. Background to qualitative de-
cision theory. AI Magazine, 20(2):55–68, Summer 1999.

[EB94] W. Edwards and F. Hutton Barron. Smarts and smarter: Improved
simple methods for multiattribute utility measurement. Organizational
Behavior and Human Decision Making, 60:306–325, 1994.

[Edw77] W. Edwards. How to use multiattribute utility analysis for social decision
making. IEEE Transactions on Systems, Man, and Cybernetics, 7:326–
340, 1977.

[Fis64] Peter C. Fishburn. Decision and Value Theory. John Wiley & Sons, New
York, 1964.

[Fis95] Gregory W. Fischer. Range sensitivity of attribute weights in multi-
attribute value models. Organizational Behavior and Human Decision
Processes, 62(3):252–266, June 1995.

[Gra96] Michel Grabisch. The application of fuzzy integrals in multicriteria de-
cision making. European Journal of Operational Research, 89:445–456,
1996.

[Han89] Sven Ove Hansson. A new semantical approach to the logic of preference.
Erkenntnis, 31:1–42, 1989.

[Han96] Sven Ove Hansson. What is ceteris paribus preference? Journal of
Philosophical Logic, 25:307–332, 1996.

[HQ80] James M. Henderson and Richard E. Quandt. Microeconomic Theory:
A Mathematical Approach. McGraw-Hill, New York, third edition, 1980.

[JLS82] E. Jacquet-Lagreze and J. Siskos. Assessing a set of additive utility
functions for multicriteria decision-making, the uta method. European
Journal of Operational Research, 10:151–164, 1982.

[Kee92] Ralph L. Keeney. Value-focused thinking: a path to creative decision
making. Harvard University Press, Cambridge, Massachusetts, 1992.

[KR76] R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences
and Value Tradeoffs. Wiley and Sons, New York, 1976.

[LS99] Piero La Mura and Yoav Shoham. Expected utility networks. In Proc. of
15th conference on Uncertainty in Artificial Intelligence, pages 366–373,
1999.

127

[LvdTW02] J. Lang, L. van der Torre, and E. Weydert. Utilitarian desires. Au-
tonomous Agents and Multi-Agent Systems, 5:329–363, 2002.

[MD02] Michael McGeachie and Jon Doyle. Efficient utility functions for ce-
teris paribus preferences. In AAAI Eighteenth National Conference on
Artificial Intelligence, Edmonton, Alberta, August 2002.

[MD04] Michael McGeachie and Jon Doyle. Utility functions for ceteris paribus
preferences. Computational Intelligence: Special Issue on Preferences,
2004. Submitted 2003.

[MHS05] J. Mustajoki, R. P. Hämäläinen, and A. Salo. Decision support by in-
terval smart/swing-incorporating imprescision in the smart and swing
methods. Decision Sciences, 36(2):317–339, 2005.

[MPY92] Herbert Moskowitz, Paul V. Preckel, and Aynang Yang. Multiple-criteria
robust interactive decision analysis (mcrid) for optimizing public policies.
European Journal of Operational Research, 56:219–236, 1992.

[P9̈9] Mari Pöyhönen. On attribute weighting in value trees. PhD thesis,
Helsinki University of Technology, April 1999.

[PH01] M. Poyhonen and R.P. Hamalainen. On the convergence of multiat-
tribute weighting methods. European Journal of Operational Research,
129(3):569–585, March 2001.

[Rai68] Howard Raiffa. Decision Analysis: Introductory lectures on choices under
uncertainty. Addison-Wesley, Reading, Massachusetts, 1968.

[Rib96] Rita A. Ribeiro. Fuzzy multiple attribute decision making: A review and
new preference elicitation techniques. Fuzzy Sets and Systems, 78:155–
181, 1996.

[Saa80] Thomas L. Saaty. The analytic hierarchy process. McGraw Hill, New
York, 1980.

[Sav54] Leonard J. Savage. The Foundations of Statistics. John Wiley & Sons,
New York, 1954.

[SH92] Ahti A. Salo and Raimo P. Hamalainen. Preference assessment by im-
precise ratio statements. Operations Research, 40(6):1053–1061, 1992.

[SIT04] Kazutomi Sugihara, Hiroaki Ishii, and Hideo Tanaka. Interval priorities
in ahp by interval regression analysis. European Journal of Operational
Research, 158:745–754, 2004.

[SLM92] Bart Selman, Hector J. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In Paul Rosenbloom and Peter

128

Szolovits, editors, Proceedings of the Tenth National Conference on Ar-
tificial Intelligence, pages 440–446, Menlo Park, California, 1992. AAAI
Press.

[SW84] Andrew P. Sage and Chelsea C. White. Ariadne: A knowledge-based
interactive system for planning and decision support. IEEE Transactions
on Systems, Man, and Cybernetics, 14(1):35–47, 1984.

[Tha99] Richard H. Thaler. Mental accounting matters. Journal of Behavioral
Decision Making, 12:183–206, 1999.

[TK86] Amos Tversky and Daniel Kahneman. Rational choice and the framing
of decisions. Journal of Business, 59:251–278, 1986.

[TP94] Sek-Wah Tan and Judea Pearl. Qualitative decision theory. In AAAI94,
Menlo Park, CA, July 1994. AAAI Press.

[vdTW98] L. van der Torre and E. Weydert. Goals, desires, utilities and prefer-
ences. In Proceedings of the ECAI’98 Workshop on Decision Theory
meets Artificial Intelligence, 1998.

[vdTW01] L. van der Torre and E. Weydert. Parameters for utilitarian desires in a
qualitative decision theory. Apllied Intelligence, 14:285–301, 2001.

[vNM44] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, 1944.

[vWE86] Detlof von Winterfeldt and Ward Edwards. Decision Analysis and Be-
havioral Research. Cambridge University Press, Cambridge, England,
1986.

[WD91] Michael Wellman and Jon Doyle. Preferential semantics for goals. In
Thomas Dean and Kathleen McKeown, editors, Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 698–703, Menlo
Park, California, 1991. AAAI Press.

[Web85] M. Weber. A method of multiattribute decision making with incomplete
information. Management Science, 31(11):1365–1371, 1985.

[Wel90] Michael P. Wellman. Fundamental concepts of qualitative probabilistic
networks. Artificial Intelligence, 44:257–303, 1990.

[Wil04] Nic Wilson. Extending cp-nets with stronger conditional preference
statements. In Proceedings of Nineteenth National Conference on AI
(AAAI’04), pages 735–741, 2004.

[ZBDB99] Blaž Zupan, Marko Bohanec, Janez Demšar, and Ivan Bratko. Learning
by discovering concept hierarchies. Artificial Intelligence, 109:211–242,
1999.

129

