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Abstract

This thesis presents a new approach to root cause localization and fault diagnosis in the In-
ternet based on a Common Architecture for Probabilistic Reasoning in the Internet (CAPRI)
in which distributed, heterogeneousdiagnostic agentsefficiently conduct diagnostic tests
and communicate observations, beliefs, and knowledge to probabilistically infer the cause
of network failures. Unlike previous systems that can only diagnose a limited set of net-
work component failures using a limited set of diagnostic tests, CAPRI provides a common,
extensible architecture for distributed diagnosis that allows experts to improve the system
by adding new diagnostic tests and new dependency knowledge.

To support distributed diagnosis using new tests and knowledge, CAPRI must overcome
several challenges including the extensible representation and communication of diagnos-
tic information, the description of diagnostic agent capabilities, and efficient distributed
inference. Furthermore, the architecture must scale to support diagnosis of a large number
of failures using many diagnostic agents. To address these challenges, this thesis presents a
probabilistic approach to diagnosis based on an extensible, distributedcomponent ontol-
ogy to support the definition of new classes of components and diagnostic tests; aservice
description languagefor describing new diagnostic capabilities in terms of their inputs
and outputs; and amessage processing procedurefor dynamically incorporating new in-
formation from other agents, selecting diagnostic actions, and inferring a diagnosis using
Bayesian inference and belief propagation.

To demonstrate the ability of CAPRI to support distributed diagnosis of real-world
failures, I implemented and deployed a prototype network ofagents on Planetlab for di-
agnosing HTTP connection failures. Approximately 10,000 user agents and 40 distributed
regional and specialist agents on Planetlab collect information from over 10,000 users and
diagnose over 140,000 failures using a wide range of active and passive tests, including
DNS lookup tests, connectivity probes, Rockettrace measurements, and user connection
histories. I show how to improve accuracy and cost by learning new dependency knowl-
edge and introducing new diagnostic agents. I also show thatagents can manage the cost of
diagnosing many similar failures by aggregating related requests and caching observations
and beliefs.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist, Computer Science and Artificial Intelligence Laboratory
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Chapter 1

Introduction

Often when network failures occur in the Internet, users andnetwork administrators have
difficulty determining the precise location and cause of failure. For example, a failure to
connect to a web server may result from faults in any one of a number of locations; per-
haps the local network is misconfigured, a failure may have occurred along the route to the
server, or perhaps the server’s network card has failed. To alarge extent the difficulty of di-
agnosis results not from a lack of tools or techniques for diagnosis, but from the challenge
of efficiently coordinating the exchange of diagnostic observations, beliefs, and knowledge
across multiple administrative domains in an unreliable and dynamic network. Accurate
diagnosis involves accurately determining the status of many interdependent networkcom-
ponents, including processes such as DNS lookups and devices such asEthernet switches.
Proper diagnosis of failures in such components may requireperforming multiple imprecise
diagnostic tests and intelligently inferring the cause of failure from their results.

Unfortunately, gathering accurate information for diagnosis in the Internet is not easy.
Network topologies and the status of links may change rapidly and render previously col-
lected information useless. New classes of applications and devices may become available
that require new techniques to diagnose. Researchers may develop new diagnostic tests and
methods for inference. Network failures may prevent the collection of certain observations
and diagnostic information. Excessive diagnostic probingand communication may intro-
duce distortions or cause additional failures. Adding to the challenge, often collecting the
data necessary to diagnose a failure requires coordinationamong administrators in multiple
autonomous systems (ASes) that may have different capabilities and conflicting interests.
Due to such challenges, today the diagnosis of network failures requires slow and tedious
manual data collection, inference, and communication among human network administra-
tors. As the size, complexity, and diversity of the Internetincreases, so will the difficulty
of performing such manual diagnosis.

To address the challenges of distributed diagnosis, this thesis presents a new approach to
fault diagnosis based on a Common Architecture for Probabilistic Reasoning in the Internet
(CAPRI) in which distributed, heterogeneousdiagnostic agentswith different capabilities
and goals efficiently conduct diagnostic tests and communicate observations, beliefs, and
knowledge to probabilistically infer the cause of failuresin the Internet. This thesis takes a
completely different approach to the problem of fault diagnosis compared to previous work.
Rather than developing a distributed system specifically designed for diagnosing particular
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types of failures as previous researchers have done, the primary objective of this thesis is to
develop a general, extensible framework for fault diagnosis not specific to the diagnosis of
any particular type of failure and not restricted to any particular set of diagnostic tests. In-
stead, CAPRI provides a common architecture for cooperation among multiple distributed
specialists, allowing experts to improve the system by adding new diagnostic tests and new
dependency knowledge in the future. The generality of the CAPRI architecture allows the
sharing of diagnostic information among agents that use a wide range of both new and
existing methods for fault diagnosis, including both well-known active measurements such
as DNS lookups and traceroutes as well as passive inference of web server status from
historical connectivity observations. Like the Internet Protocol (IP) that glues together
heterogeneous link layer technologies to provide a common interface for higher-level com-
munication protocols and applications, CAPRI enables the communication of diagnostic
information from various sources to provide a common platform for distributed diagnosis.
Chapter 2 describes the similarities and differences between CAPRI and previous research
in related areas.

A common and extensible architecture for fault diagnosis inthe Internet has the poten-
tial to catalyze innovation, encouraging the development of new diagnostic tools and tech-
nologies. As agents join the system and the number and variety of CAPRI agents increases,
new diagnostic capabilities and applications will emerge and the power and accuracy of the
system will improve. To facilitate such innovation, CAPRI provides modular interfaces
for communicating diagnostic information, encouraging specialization, reuse, information
hiding, and composition of information. Researchers may develop new agents with spe-
cial knowledge, technology, or resources for diagnosing a particular set of components.
CAPRI enables such specialist agents to join the system and share their diagnostic capabil-
ities with other agents. If the information that a specialist provides is useful, other agents
may reuse the same information to diagnose many types of failures. Agents may also hide
specialized information from others to help manage complexity and improve scalability,
reducing the amount of information that other agents need toperform diagnosis. For ex-
ample, an agent may advertise the capability to diagnose alltypes of DNS lookup failures
without revealing information about all the other agents itneeds to contact to perform that
diagnosis. CAPRI also enables the composition of information from multiple agents to
produce new information. For example, an agent for diagnosing HTTP connection failures
might have no special capabilities of its own and simply combine observations, beliefs, and
dependency knowledge from other agents to produce its diagnosis. Like the online ency-
clopedia Wikipedia1 which brings together distributed specialists to share information and
build upon each other’s knowledge to produce a shared repository of valuable information,
CAPRI provides a framework for specialist agents to contribute their diagnostic capabili-
ties and build upon the capabilities of other agents. Chapter 3 precisely defines the problem
of fault diagnosis and describes the elements of the CAPRI architecture.

The strength of the CAPRI architecture comes from its generality and extensibility to
support diagnosis using a wide range of diagnostic tests, knowledge, and communication
patterns, but achieving such generality requires overcoming several challenges including
representation of diagnostic information, description ofdiagnostic capabilities, commu-

1http://www.wikipedia.org/
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nication of diagnostic information, and the selection of diagnostic actions. This thesis
describes how CAPRI addresses each of these challenges while providing the generality,
extensibility, and scalability to support the introduction of a large number of new diagnostic
agents and capabilities.

Firstly, since diagnosis requires the communication of diagnostic information among
multiple diagnostic agents, CAPRI must provide agents witha common language for the
extensible representation and communication of network component and diagnostic test
class definitions. This language must support a wide range ofdiagnostic information and al-
low researchers to define new types of information to supportnew types of diagnostic tests.
CAPRI addresses this challenge by representing component and diagnostic test classes and
properties using an extensible, distributedcomponent ontology, enabling agents to de-
fine new component classes and properties to support new components and new diagnostic
tests. Chapter 4 describes the representation of diagnostic information in more detail.

Secondly, because each agent may have the capability to perform a different set of di-
agnostic tests and may not know about the existence of all other agents in the network,
CAPRI must provide agents with a common language for describing and looking up diag-
nostic capabilities. This language must allow new agents tojoin the system and advertise
their capabilities so that existing agents can take advantage of the new capabilities offered.
For scalability, this language must also control the complexity of routing diagnostic infor-
mation among a large number of diagnostic agents. CAPRI addresses this challenge by
providing a commonservice description languagethat enables agents to describe diag-
nostic capabilities in terms of their inputs and outputs. This language allows other agents
to dynamically compute the value of services offered by other agents and select actions
in a general way without domain-specific knowledge. This service description language
also promotes scalability by allowing agents to aggregate multiple specialized services to
reduce the number of services each agent needs to know about.Chapter 5 describes service
advertisement and lookup in more detail.

Thirdly, distributed diagnosis requires a common protocolfor exchanging diagnostic
observations, beliefs, and knowledge. In order to support diagnosis using new informa-
tion produced by new agents, this protocol must allow an agent to combine information
collected from multiple sources to build a dependency modelwithout domain-specific
knowledge. CAPRI addresses this challenge by providing agents with a commonmes-
sage exchange protocolthat enables agents to express diagnostic information in terms of
observations, probabilisticbeliefsandlikelihoods, and probabilisticdependency knowledge
in a general way. This protocol allows agents to construct component graphs to represent
information they have about the network and probabilistic failure dependency graphs for
inferring the cause of failure in a general way. Chapter 6 describes the protocol that agents
use for exchanging diagnostic information.

Fourthly, for extensibility to support new diagnostic capabilities offered by new agents,
agents need a general procedure for computing the value of new services and deciding
what actions to take. In addition, this procedure must scaleto support the diagnosis of
a large number of failures using many agents. To address thischallenge, CAPRI provides
agents with a generalmessage processing procedurefor dynamically computing the value
of available actions based on available diagnostic information, service descriptions, and
probabilistic dependency knowledge. This procedure enables agents to dynamically con-
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struct failure dependency graphs from a component graph anda dependency knowledge
base for performing probabilistic inference with incomplete information. In addition, for
scalability to support the diagnosis of a large number of failures this procedure manages
the long-term average probing and communication costs of diagnosis by aggregating data
and requests and propagating diagnostic information according to an aggregation-friendly
overlay topology. Chapter 7 describes this procedure in more detail.

This thesis primarily considers the diagnosis of reachability failures, in which a user
cannot access a particular resource or service in the Internet. This thesis focuses on reacha-
bility failures because such failures occur relatively frequently and are difficult to diagnose
using information collected from any single point in the network, but can often be ac-
curately diagnosed by combining data collected from multiple points in the network and
performing inference. One can extend this architecture to deal with other types of failures
such as performance failures, but such failures are outsidethe scope of this thesis. This
thesis addresses only the problem of automated fault diagnosis and does not address other
parts of the management process such as automated configuration and repair. Other chal-
lenges of distributed fault diagnosis include privacy and security, agent discovery, trust, and
incentives, but addressing such challenges is not the focusof this thesis.

This thesis evaluates CAPRI according to three criteria: the ability to support dis-
tributed diagnosis among heterogeneous agents, extensibility to support new diagnostic
tests and knowledge, and scalability to control the cost of diagnosing large numbers of
failures using many agents. Note that the purpose of my evaluation is not to show that
diagnostic agents can diagnose any particular types of failures using any particular set of
diagnostic tests; rather, the purpose of my evaluation is togain insight into the benefits and
tradeoffs of diagnosis using CAPRI.

To evaluate the capabilities of the CAPRI architecture, I developed a prototype network
of agents on Planetlab for diagnosing real-world HTTP connection failures for end users.
Chapter 8 describes the design and implementation of this prototype network. In my exper-
iments, agents collect information from over 10,000 users and diagnose over 140,000 fail-
ures over two months. These experiments demonstrate distributed diagnosis among eight
different types of diagnostic agents, including approximately 10,000 user agents and 40
regional and specialist agents on Planetlab. I show how the extensibility of the CAPRI on-
tology and communication protocol enables agents to improve accuracy and cost by taking
into account new diagnostic knowledge. I show how agents canuse the message process-
ing procedure provided by CAPRI to dynamically compute the value of new services and
select diagnostic actions. I show how agents in this networkcan improve the scalability
of diagnosing large numbers of failures and reduce the probing and communication costs
of diagnosis by aggregating related requests and caching observations and beliefs. This
experiment also demonstrates the benefits of probabilisticinference, including the ability
to indicate the confidence of a diagnosis, compute the value of new actions, and learn new
dependency knowledge. Chapter 9 presents the detailed results of the experimental evalu-
ation.

The creation of a common architecture for fault diagnosis inthe Internet opens up many
new avenues of future research. Chapter 10 concludes with a discussion of the contributions
of this thesis research and areas of future work.
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Chapter 2

Related Work

This thesis presents a new approach to fault diagnosis in theInternet based on a common
architecture for communicating diagnostic information that allows the introduction of new
diagnostic agents and new diagnostic capabilities. This thesis draws upon many areas of
related work, including tools for Internet fault diagnosis, architectures for agent coordi-
nation, the representation of diagnostic information and services, root cause localization,
dependency analysis, reasoning and logic with incomplete information, and probabilistic
reasoning.

Unlike previous research in network management, probabilistic inference, machine
learning, and distributed systems, however, this thesis takes a broader, long-term, wide-
area networking approach to distributed fault diagnosis inwhich extensibility, robustness
to failure, communication costs, scalability, heterogeneity, incomplete information, and
conflicting interests all matter. In the Internet we cannot assume, for example, that all diag-
nostic agents know about all components in the network. The Internet comprises thousands
of separate administrative domains, and no single entity can possibly know the entire struc-
ture of the Internet at any given moment in time. Communicating diagnostic information
to all users affected by a failure may involve communicationamong possibly thousands or
millions of hosts; we must consider the cost of such communication. Each diagnostic agent
may have different capabilities, and the set of available agents may change as new agents
join or network failures occur. In addition, the dynamic andunpredictable nature of the
Internet means that diagnostic tests may produce unreliable, incomplete, or out-of-date in-
formation. Furthermore, any lasting architectural solution to this problem must be flexible
and extensible to accommodate the introduction of new classes of components and diagnos-
tic technologies. This chapter divides related work into four broad categories: distributed
systems, diagnostic tools, representation, and fault diagnosis.

2.1 Distributed systems

CAPRI agents perform diagnosis in a distributed manner. Thechallenges of distributed
diagnosis include coordination among distributed diagnostic agents and controlling the cost
of communication.
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2.1.1 Architectures for agent coordination

CAPRI is an architecture for coordinating diagnosis between multiple agents, each with dif-
ferent resources, capabilities, and administrators. Thisarchitecture differs from most other
architectures for agent coordination in that agents exchange diagnostic information accord-
ing to an extensible ontology that enables them to reason about new classes of compo-
nents and new properties, as well as dynamically request additional information from other
agents when necessary. Agents exchange high-level problem-solving knowledge such as
component status and conditional probability tables, and not just low-level domain factual
knowledge about network observations such as link bandwidth or round-trip packet delay.
This approach is based on the idea of the Knowledge Plane, a common infrastructure for
communicating data about the network that enables reasoning about high-level concepts
such as policies, configuration, and behavioral models [12].

One obstacle to the adoption of a common architecture for sharing network data is that
network administrators see little incentive to make such data available to others. Today,
network administrators do not share much management information with administrators
in other domains for security and policy reasons. Calvert and Groffioen argue, however,
that network administrators might benefit from sharing of policy and configuration data,
possibly in aggregated and anonymized form, because it can simplify tasks such as fault
diagnosis [5].

Networking researchers have developed various architectures for exchanging network
observations among agents for distributed diagnosis. Wawrzoniak, et al. developed a dis-
tributed knowledge base called Sophia that allows agents tomake queries about the state
of a distributed network using a declarative logic language[93]. The iPlane is another
distributed system for collecting and providing network observations [63]. Both Sophia
and the iPlane are designed for the exchange of low-level domain factual knowledge of
network observations such as link bandwidth and loss rates,whereas agents in CAPRI ex-
change more high-level problem-solving information such as dependency knowledge and
beliefs.

Performing diagnosis using such higher-level knowledge and beliefs improves the mod-
ularity and extensibility of diagnosis. A researcher may introduce a new diagnostic agent
that can produce the same diagnostic information as anotheragent using a new technique.
Other agents may then take advantage of the information provided by the new agent without
knowing the low-level details about the new technique. In addition, communicating depen-
dency knowledge enables agents to take advantage of new types of diagnostic tests about
new classes of network components when such information becomes available. Chapter 4
discusses the advantages of communicating knowledge and beliefs in more detail.

Thaler and Ravishankar describe an architecture for distributed fault diagnosis using a
network of experts [89]. Each component in the system has a corresponding expert that
can determine whether that component has failed and what other components may be af-
fected by a failure in that component. Their architecture and CAPRI share several common
goals: scalability in the global Internet, the ability of diagnostic providers to control the
amount of information they divulge, and reliability in the face of failure. Like the failure
dependency graphs agents use in CAPRI to model the effect of component failures on other
components, “cause-effect graphs” in their architecture model how failures in one part of
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the network propagate to other parts in the network. The maindifferences between CAPRI
and their architecture are that CAPRI takes a more general probabilistic approach to mod-
eling dependencies, CAPRI provides agents with an extensible ontology that enables the
diagnosis of new types of network components using new dependency knowledge, and that
CAPRI does not assume that there is only one way to diagnose a failure. This is a more re-
alistic assumption because diagnostic agents in the Internet may have different information
and different methods for diagnosing failures.

Bouloutas, et al. propose a distributed system for diagnosis in which different manage-
ment centers are responsible for different components [2].The authors consider only a two
phase diagnosis: first generate hypotheses and then performtests. In CAPRI, agents may
repeatedly perform tests and make inferences. Also, agentsin CAPRI use a more general
probabilistic Bayesian model of failures and can representmultiple levels of dependencies.

Others have developed architectures for coordinating distributed data collection and in-
ference for certain classes of network failures. Zhang, et al. developed PlanetSeer for using
both passive and active monitoring of network behavior to detect network failures [98].
A set of monitoring daemons running on hosts located throughout the Internet observe
incoming and outgoing TCP packets to identify possible anomalies. When a monitoring
daemon detects a suspected anomaly, it activates a probe daemon to collect data about the
suspected anomaly with active probes. The results of the probe are then analyzed to verify
the anomaly. PlanetSeer coordinates data collection and analysis among multiple daemons
distributed throughout the network, but does not provide the facilities for describing com-
ponents and dependencies as CAPRI does. Also, all the daemons in PlanetSeer follow the
same diagnostic methodology and cooperate with one another, but in CAPRI I assume that
each agent may employ different diagnostic methods and belong to different administrative
domains.

2.1.2 Aggregation and scalable data distribution

In CAPRI, agents reduce the number of messages they must generate to diagnose multiple
similar failures by reusing cached information from previous diagnoses and by selecting
diagnostic actions based on their expected value and cost. Previous research in web proxy
caching and multicast trees describe methods for widely distributing data to many users
in a resource efficient manner [6, 7, 94]. Web proxy caches only need to match data on
the basis of URLs, while agents in CAPRI must match diagnostic requests to previous
diagnostic responses based on the properties of the request. There is also a great deal of
research in sensor networks in efficient dissemination of information [52, 42]. The primary
difference in CAPRI is that agents must perform more sophisticated reasoning to determine
how to aggregate information and to whom to send diagnostic requests and responses.

2.2 Tools for diagnosis

To perform diagnosis in CAPRI, a diagnostic agent may perform diagnostic tests to deter-
mine the status of various components in the network, ranging from processes such as DNS
lookup and devices such as Ethernet switches. Many researchers have developed effective
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tools for diagnosing failures in various types of network components, such as Internet Pro-
tocol (IP) link failure [44], Border Gateway Protocol (BGP)misconfiguration [29], DNS
configuration errors [68], network intrusion [70], performance failures [92], and so on.
Each tool differs in the different types of failures it addresses, the assumptions it makes
about the network, the resources it requires for diagnosis,and the speed, accuracy and
cost tradeoffs that it offers. CAPRI enables the construction of agents that act as wrappers
around such existing tools.

To diagnose network failures, diagnostic agents may also collect observations about the
network and use this data to infer the status of network components. Recent research in
network tomography demonstrate that end hosts in the Internet can collect fairly detailed
information such as link-level loss rates and delay, using both passive and active mea-
surements [90, 4]. Mahajan, et al. developed a tool called tulip that uses active probing
from a single host to collect data about each link along an IP path, including round-trip
loss rate, packet reordering, and queuing delay [64]. Wang and Schwartz describe a sys-
tem for identifying likely network failures based on which nodes are accessible from a
network management node [91]. Roscoe, et al. use a logic language called InfoSpect to
detect configuration inconsistencies in a distributed system [77]. Madhyastha, et al. devel-
oped iPlane, a system for collecting and distributing measurements about various network
properties such as loss rates and bandwidth [63].

Another way to diagnose failures is to determine the status of components from network
measurements using statistical inference. Steinder and Sethi provide an overview of such
techniques for fault diagnosis [87] and describe methods for for diagnosing network failures
using Bayesian inference [86]. Ward, et al. infer the presence of performance failures
based on the rate of requests processed at an HTTP proxy server and TCP connection state
[92]. NetProfiler uses a peer-to-peer network to combine TCPstatistics from multiple end
hosts to infer reachability [67]. Shrink infers the root cause of a failure using Bayesian
inference [44].

The contribution of the CAPRI architecture is to provide a common framework for
communicating the wide range of diagnostic information that agents might produce us-
ing existing diagnostic tests. Such a framework enables agents of all types to share their
diagnostic information and combine it to improve the accuracy, cost, and robustness of
diagnosis.

2.3 Representation

An architecture for distributed fault diagnosis must provide diagnostic agents with a lan-
guage for representing diagnostic information and a service description language for com-
municating their diagnostic capabilities.

2.3.1 Representation of diagnostic information

Diagnostic agents need a common representation for communicating diagnostic informa-
tion in a way that facilitates reasoning and inference. Agents in CAPRI define compo-
nent classes and properties according to a component ontology and communicate diagnos-
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tic information in terms of observations, beliefs and likelihoods, and dependency knowl-
edge. Chandrasekaran and Josephson provide a good overviewon sharing problem-solving
knowledge using ontologies [8]. Unlike most previous research in ontologies which focus
on “domain factual knowledge” describing objective reality, the authors focus on the chal-
lenge of modeling “problem-solving knowledge”, which theydefine as “knowledge about
how to achieve various goals”. According to this definition,CAPRI enables agents to rep-
resent problem-solving knowledge for fault diagnosis in the Internet. Chandrasekaran and
Josephson identify the five elements of a problem-solving ontology as a problem solving
goal, domain data describing the problem-instance, problem-solving state, problem-solving
knowledge, and domain factual knowledge. In CAPRI, the problem solving goal is iden-
tification of the mostly likely cause of failure from a list ofcandidate explanations. The
domain data describing the problem-instance is the set of observations, beliefs, and like-
lihoods that an agent has about components related to the failure. In CAPRI, the current
problem-solving state can be represented in terms of the agent’s component graphdescrib-
ing the properties and relationships of components in the network and afailure dependency
graph specifying the probabilistic dependencies among component properties. Problem-
solving knowledge consists of entries in an agent’sdependency knowledge basethat indi-
cate the probabilistic dependencies among component classes. Domain factual knowledge
is the knowledge to describe network components, includingthe core concepts ofcompo-
nents, properties, diagnostic information, and the component class and property definitions
in the component ontology. Chapter 4 describes component graphs, failure dependency
graphs, and dependency knowledge in more detail.

A number of domain factual ontologies for communication networks exist. Quirolgico,
et al. have proposed detailed ontologies for modeling networks based on the Common
Information Model (CIM) [73]. This is a domain factual ontology; its purpose is to describe
the components that exist in networks and their properties,not to capture the knowledge
necessary for diagnosing components.

The knowledge representation approach I take in CAPRI can bethought of as a “com-
piled knowledge” approach as opposed to a “deep knowledge” approach [9] in that the
CAPRI ontology permits agents to express diagnostic knowledge in just enough detail for
diagnostic inference and does not try to capture all possible information about a failure.
Rather than passing around detailed low-level “deep knowledge” about the behavior and
characteristics of each component in the network, agents inCAPRI reduce this data to
the essential component dependency relationships. Piecesof dependency knowledge are a
form of compiled knowledge in that they reduce the full amount of detail about a compo-
nent type into the minimum amount of information necessary to reason about the status of a
component from the properties of other components. Chandrasekaran and Mittal argue that
in general such a compiled knowledge approach can retain most of the accuracy of having
deep knowledge while simplifying automated reasoning [9].

Crawford et al. describe a model for representing relationships among devices [15]. The
authors argue that by modeling just a few types of device relationships such asdepends-on,
part-of, and a device’s functional status, one can provide a generalrepresentation suitable
for modeling a wide range of devices while capturing most of the essential properties nec-
essary for diagnostic reasoning. CAPRI takes a similar approach, attempting to model
component relationships generally enough to enable the description of a wide range of
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network components while providing enough information foragents to reason about the
causes and consequences of failures.

Other researchers have investigated the use of ontologies for reasoning about network
phenomena. Pinkston et al. describe how to perform distributed diagnosis of network at-
tacks using ontological inference [72]. The authors describe an ontology that defines dif-
ferent types of network attacks in terms of their characteristics, and use this information
to identify various attacks based on data collected from multiple observers. The approach
described by Pinkston et al. performs inference using only an OWL reasoner, but in CAPRI
agents may generate new beliefs and other diagnostic information using other techniques
such as probabilistic inference and data collection.

2.3.2 Representation of diagnostic services

CAPRI provides a service description language for agents todescribe their diagnostic ca-
pabilities so that an agent can automatically discover and make use of the diagnostic in-
formation other agents provide. Many languages for describing network services exist
today for enabling such interoperation and composition of services. OWL-S allows service
providers to describe services using the OWL ontology language.1 The Web Service Def-
inition Language (WSDL) allows web service providers to describe SOAP web services.2

WSDL allows a service provider to describe the allowable inputs and outputs of a service
and the message exchange patterns it supports. The diagnostic service description language
agents use in CAPRI provides similar functionality, enabling the description of the inputs
and outputs of diagnostic services. CAPRI agents do not require the full expressiveness of
OWL-S or WSDL, however, and they do not need to interoperate with other web services.
In addition, CAPRI requests and responses do not require agents to maintain state across
requests, which simplifies the description of the services they can provide. Therefore for
conciseness and ease of implementation I choose to define a custom service description
language for CAPRI.

Others have developed systems for describing, advertising, and looking up services in a
network. The Service Location Protocol (SLP) allows computers and devices to advertise
services within a local network [39]. Sun developed the Jiniinfrastructure for commu-
nicating, describing, and using distributed services in a network.3 Unlike these generic
service discovery protocols, however, the service description language in CAPRI enables
the selection of actions for distributed diagnostic reasoning. The CAPRI service description
language enables diagnostic agents to dynamically determine the diagnostic capabilities of
other agents in terms of observations, beliefs, and dependency knowledge about network
components and diagnostic tests according to a distributedcomponent ontology.

1http://www.daml.org/services/owl-s/
2http://www.w3.org/TR/wsdl20/
3http://www.jini.org/
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2.4 Fault diagnosis

Many approaches to fault diagnosis and related problems exist today, including root cause
localization, dependency analysis, probabilistic reasoning, model-based diagnosis, case-
based reasoning, fault detection, and event correlation. This section discusses related re-
search in these areas.

2.4.1 Root cause localization

Diagnosis in CAPRI is based on the concept of root cause localization, also known as root
cause analysis or fault localization. Root cause localization is the process of identifying
a set of root causes that can explain a failure, and then pinpointing the precise location of
the failed components. In CAPRI, a diagnostic response identifies the most likely cause
of failure from a set of possible candidate explanations. Inorder to apply root cause lo-
calization to fault diagnosis, one must have a causal failure model. In CAPRI, this causal
failure model is based on the probabilistic dependencies among properties of components
and diagnostic tests. The failure of a component with dependencies may be caused by a
failure in one of the components it depends upon.

Kiciman and Subramanian describe a model for root cause localization based on com-
ponents and “quarks”, where quarks are are the smallest observable unit of failure or suc-
cess [47]. A failed quark indicates that one of the components that influence the quark has
failed. For example, a quark might represent the success or failure of an AS path, while
the components that influence the status of the quark are the IP hops along that path. An
end user may have the ability to observe the status of the quark, but cannot directly observe
the status of the IP hops. This thesis takes a similar approach and assumes that a failure
observed in one component may be caused by a failure in one of its dependent compo-
nents, but agents in CAPRI do not have a universal notion of quarks because each agent
may be able to diagnose a different set of components. What one one agent considers to be
a quark (that is, a component whose dependent components cannot be observed) may not
be a quark to another agent thatcanobserve its dependencies.

Steinder and Sethi describe a fault localization method in which multiple managers
each perform diagnosis and then share their results [84]. The authors also describe how
to model network faults using a bipartite causality graph inwhich the failure of individual
links cause the failure of end-to-end connectivity, and then perform fault localization using
a belief network [82]. Unlike the model described by Steinder and Sethi, however, agents
in CAPRI can have more complex dependency models, in which end-to-end connectivity
may also depend on software applications, DNS, network configuration, and so on. Like
Steinder and Sethi, I model failures probabilistically because the effect of a component
failure on the status of other components may be nondeterministic. Steinder and Sethi
also propose incremental hypothesis updating, in which a diagnosis provider supplies a
continually updated list of possible root cause faults [85].

Kompella et al. developed SCORE, a system for modeling dependencies among compo-
nents in an optical IP network and performing fault localization using a minimum set cover
algorithm to infer the root cause Shared Resource Link Groups (SRLG) of failures in IP
paths [50]. These SRLGs correspond to the components of CAPRI. SCORE performs di-
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agnosis in a centralized way, with all diagnostic reasoningoccurring at the SCORE server,
while CAPRI enables distributed diagnostic reasoning.

2.4.2 Dependency analysis

Root cause localization in CAPRI is based on dependency analysis. The properties of a
component may depend on the properties of other components;by analyzing these depen-
dencies, agents can determine the root cause of a failure.

Keller, et al. provide a good overview of the types of dependencies in networks and how
dependency analysis can be used for root-cause localization [46]. The authors describe how
dependencies may be organized along multiple dimensions according to the type of com-
ponents involved, the importance of the dependency (e.g. mandatory or optional), where
the components are located, and so on. In CAPRI, agents modeldependencies in a more
general way using probabilistic graphical models. Using such models, agents can represent
many different types of dependencies, including AND dependencies where a component
functions if and only if all its dependencies are functioning, OR dependencies that provide
multiple alternative ways to satisfy a dependency, and probabilistic dependencies in which
the status of a component can depend probabilistically on other components. Keller, et al.
also describe how dependencies among software applications may be determined dynami-
cally at runtime from software package configuration.

Grushke describes how to perform root cause analysis by searching through a depen-
dency graph [36]. Gopal represents network dependencies according to network protocol
layers [34]. Both Grushke and Gopal model dependencies among applications, network de-
vices, and services using a directed dependency graph. LikeGrushke, in CAPRI I choose
to model component status using binary states (OK andFAIL). In CAPRI, however, agents
use probabilistic inference to determine the status of components. In addition, agents in
CAPRI can infer the status of a component from many other variables, not just the status of
other components. Unlike Grushke’s system and most other previous work in dependency
analysis, CAPRI agents can communicate probabilistic evidence to perform inference in a
distributed manner.

Sometimes an agent may not know the dependencies for a particular component indi-
vidual. Fonseca et al. describe how to discover runtime dependencies for a variety of net-
work applications by tagging messages with metadata using the X-Trace framework [32].
Bahl et al. describe a system for constructing probabilistic dependency graphs based on
packet traces [1]. Gupta et al. show how to learn an accurate model of dependencies from
observations of system behavior [38].

2.4.3 Probabilistic reasoning

Diagnosis requires distributed probabilistic reasoning.Reasoning must be probabilistic
because many diagnostic tests only indicate a probability of failure. SCORE infers the
cause of network failures using a Bayesian network in a centralized fashion [50]. Deng, et
al. use Bayesian networks to infer the cause of failures in linear lightwave networks [24].
Such centralized systems are inadequate because diagnostic knowledge and data may be
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distributed across multiple administrative domains. For example, a network administrator
may not have the data or knowledge necessary to diagnose failures in their upstream ISP.

Crick and Pfeffer use loopy belief propagation as a way to make inferences based on
sensor readings in a distributed fashion [17]. Their results suggest that communicating
beliefs rather than raw sensor readings can reduce communication costs and deal with noisy
sensor readings. In CAPRI, agents use a similar strategy to perform distributed diagnosis,
summarizing the results of diagnostic inference using probabilistic beliefs rather than only
exchanging low-level network observations.

Many researchers have studied probabilistic models for fault diagnosis [59, 17, 76].
Shrink [44] and SCORE [50] use bipartite Bayesian networks to diagnose Internet link
failures. Katzela and Schwartz model dependencies among components using a probabilis-
tic dependency graph and show how to infer the most likely cause of failure under certain
assumptions [45]. Steinder and Sethi also use belief propagation to diagnose path fail-
ures [83, 88]. No common architecture for sharing diagnostic knowledge for distributed
probabilistic reasoning exists, however.

Agents in CAPRI perform probabilistic inference using knowledge about dependency
among classes of components. This approach is similar to previous research in methods for
combining probabilistic inference with first-order logic [33, 74, 78].

Researchers in belief propagation for distributed probabilistic inference consider the
cost of communicating information, but typically they onlyconsider the cost of inference
for diagnosing a single failure [71, 17, 27]. In Internet fault diagnosis, frequently multiple
failures that occur over a period of time share the same root cause; in such cases CAPRI
agents reduce the average cost of diagnosing each failure bycaching the data obtained in
previous diagnoses.

The protocol for distributed inference described in this thesis assumes discrete vari-
ables. Minka describes how to generalize belief propagation to handle inference over Gaus-
sian beliefs [65].

Agents in CAPRI model dependencies among network components using Bayesian net-
works. Lerner et al. show how a dynamic Bayesian network (DBN) can describe the behav-
ior of a dynamic system and enable the diagnosis of faults using Bayesian inference [59].
Lauber et al. use DBNs for real-time diagnosis of a mechanical device [55]. CAPRI allows
agents to describe such temporal dependencies.

One challenge of fault diagnosis is choosing which test to perform next to minimize the
overall cost of diagnosis. Probabilistic reasoning provides agents with a framework for se-
lecting among multiple actions. Jensen and Liang describe several approaches to this prob-
lem, including myopic test selection, selecting tests while taking into account the impact
of the information they provide on future tests, and selecting tests to balance the value and
cost of tests [43]. Dittmer and Jensen present efficient algorithms for myopically computing
the value of information from an influence diagram describing probabilistic dependencies
among variables, the cost of performing tests, and the utility of various decisions [25]. Lee
et al. describe an algorithm for selecting a minimum expected cost ordering in which to
perform diagnostic tests given a component failure probabilities and dependencies [58].
Krause and Guestrin describe a procedure for choosing the optimal next diagnostic test to
perform based on the cost and expected information gain of a test given a Bayesian model
of components and diagnostic tests [51]. RAIL diagnoses faults in real-time by choosing
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components to probe based on a global dependency model [76].Brodie et al. consider how
to minimize the cost of probing for diagnosis using a Bayesian network approach [3]. Li
and Baras describe how to choose which probes to perform for fault diagnosis using be-
lief networks [61]. Littman et al. present an approach for learning the least cost plan for
testing and repairing network failures [62]. The procedurefor diagnosis in CAPRI allows
agents to use such cost minimization techniques to select the optimal diagnostic actions to
perform.

A related problem is forming an accurate model of the probabilistic dependencies
among various network components. Especially in a dynamic network in which condi-
tions may change rapidly, an agent’s model of the dependencies among components may
become out-of-date and inaccurate. Kim and Valtorta describe an algorithm for detecting
when a Bayesian network for diagnosis may be inaccurate and automatically constructing
a more accurate model [48]. In CAPRI, a knowledge agent may use such techniques to
continually provide updated dependency knowledge to otheragents.

2.4.4 Reasoning and logic with incomplete information

Another approach for fault diagnosis is to make inferences from possibly incomplete infor-
mation using logic and reasoning systems. Crawford and Kuipers developed Algernon, a
system for knowledge representation using an access limited logic [16]. This type of logic
is useful if one has a large knowledge base of facts and rules and wants to answer arbi-
trary queries. Since CAPRI uses a compiled knowledge approach that organizes diagnostic
information and knowledge into component graphs and dependency knowledge bases, the
logical inference that agents perform is relatively straightforward and does not require a
system such as Algernon.

CAPRI assumes that an agent can determine the possible rangeof values for a com-
ponent property at the time of diagnosis (e.g. a component’sstatus is eitherOK or FAIL).
Smyth considers how to reason about systems with unknown states [80]. Cohen, et al.
describe a system for identifying the states of a system based on historical data collected
about the system [14]. Dawes, et al. describe an approach fordiagnosing network failures
when the status of certain components may be unknown [66]. Agents in CAPRI take a more
general probabilistic approach using Bayesian networks tomodel incomplete information.

2.4.5 Model-based diagnosis

The high-level approach that agents in CAPRI follow for diagnosing failures has some
similarities to traditional model-based diagnosis. CAPRIenables agents to infer the status
of components based on a model of component structure, behavior, and observed status.

Davis and Shrobe define model-based diagnosis in terms of a structural model describ-
ing the relationship between the components in a system and abehavioral model that spec-
ifies how each component behaves [19]. In CAPRI, failure dependency graphs correspond
to structural models and pieces of dependency knowledge correspond to behavioral models.

De Kleer and Williams developed the GDE and Sherlock algorithms for online model-
based fault diagnosis [21, 22]. De Kleer and Raiman describea modification of the Sher-
lock diagnosis algorithm to take into account the computational costs of diagnosis [20].
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GDE-based algorithms for fault diagnosis model dependencies among components deter-
ministically, however, whereas the Bayesian approach usedin CAPRI can also model prob-
abilistic dependencies.

Diagnosis in the Internet differs from typical model-baseddiagnosis in several key re-
spects. Typically in model-based diagnosis, the input required for diagnosis is a structural
model describing the components in the system and a behavioral model describing com-
ponent behavior, component status, and observations, and the output is a hypothesis about
component status that explains the failure [30]. Most diagnostic systems assume no design
error, assuming that the structural model accurately describes all the conditions required
for correct operation. In Internet-scale diagnosis, however, an agent cannot assume that its
model is complete or correct since each agent only has a limited view of the entire network.
A CAPRI agent may repeatedly update its failure dependency graph based on dependency
knowledge and observations it receives from other agents.

Darwiche describes a method for model-based diagnosis to efficiently compute a di-
agnosis based on a system structure that describes the relationships between components
in terms of an acyclic AND/OR graph [18]. Darwiche assumes that the agent performing
the diagnosis knows the full and correct system structure, which is not the case in Internet
fault diagnosis. Katker describes a framework for modelingdeterministic dependencies in
a distributed system, taking into account “virtual dependencies” [54].

Other researchers have proposed methods for distributed fault diagnosis based on model-
based diagnosis. Kurien et al. describe how distributed diagnosis can be viewed as a dis-
tributed constraint satisfaction problem in which diagnosers represent observations and
component models using logic [53]. Debouk et al. present a method for distributed fault
diagnosis in which a single coordinator combines diagnostic information from multiple
diagnosers [75]. One key difference between CAPRI and theseprevious approaches is
that agents in CAPRI can share probabilistic dependency knowledge and construct failure
dependency graphs dynamically from such knowledge.

2.4.6 Case-based reasoning

Another approach to fault diagnosis is case-based reasoning (CBR), in which a case-based
reasoner compares a diagnostic request to previous diagnostic requests stored in a case
base and produces a diagnostic response based on similar cases. In contrast to rule-based
systems that infer a diagnosis based on a set of rules, a CBR system can learn from ex-
perience, diagnose novel problems, and deal with changing conditions. Some drawbacks
of CBR systems are that they require a method for retrieving similar cases and need ex-
ternal feedback to learn whether or not a diagnostic response satisfied the request. Lewis
describes a system for diagnosing network faults based on trouble tickets using case-based
reasoning [60].

Feret and Glasgow propose Experience Aided Diagnosis (EAD), which combines model-
based diagnosis with case-based reasoning to help humans diagnose faults when the struc-
tural model is incomplete or inaccurate [31]. The structural model is decomposed and then
model-based diagnosis is applied to each piece. Then a case-based reasoner suggests al-
ternative diagnoses to the operator. The goal is to use the case-based reasoner to provide
a human diagnoser with alternative diagnoses when an ordinary model-based approach is
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inadequate. CAPRI supports similar hybrid reasoning; the diagnosis of portions of the full
structural model can be done independently in a distributedfashion, and then an agent can
combine this data or select a diagnosis according to a different method, such as case-based
reasoning. Also, the ability of agents in CAPRI to answer diagnostic requests based on pre-
vious diagnostic information received from other agents has some similarities to case-based
reasoning. Unlike Feret and Glasgow’s system which is designed to assist human diagno-
sis, however, CAPRI is meant to be automated from the moment arequest is generated
until a response is returned.

2.4.7 Fault detection

This thesis focuses primarily on the problem of fault diagnosis, or determining the cause
of failure once a failure has occurred. A related area of research is fault detection, or
predicting when a failure will occur. Hood and Ji show how onecan use a Bayesian network
to model the behavior of network components to infer the presence of abnormal behavior
that may lead to a failure [41]. Pinpoint detects and diagnoses failures in web services
by monitoring and logging the progress of each web request [11]. Like CAPRI, Pinpoint
can learn a probabilistic failure dependency model. Cohen et al. use probabilistic models
to predict whether a network failure will occur based on historical metrics such as CPU
usage and disk and network activity [13]. These systems onlyconsider the detection and
diagnosis of failures within a single domain, however, and do not consider the problem of
distributed diagnosis of Internet failures.

2.4.8 Event correlation

Event correlation refers to the challenge of determining whether multiple alarm events are
related to the same root cause. This is closely related to a problem in fault diagnosis in
which a diagnostic agent wishes to determine whether a single root cause is responsible
for multiple failures so it can respond to multiple diagnostic requests with the same diag-
nosis. Yemini et al. propose a language for specifying deterministic dependencies among
components and alarms and propose a method for identifying failures based on the alarms
generated [97]. Wu et al. propose a system for specifying rules for correlating alarms [95].
Liu et al. examine sequences of events to infer the possibility of a failure [37]. Klinger et al.
show how to represent the effects of a failure as a code, and then matching the symptoms
of a failure to a code [49]. Hasan and Sugla model causal and temporal correlations among
alarms using a deterministic dependency model [40]. Chao, et al. describe a system for
learning probabilistic correlations among alarms in a testbed network and use this informa-
tion to diagnose failures [10], but consider only a bipartite model of network components.
Unlike previous research in event correlation, agents in CAPRI describe component de-
pendencies in a more general way using probabilistic modelsand perform diagnosis using
probabilistic inference.
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Chapter 3

Overview of Fault Diagnosis in CAPRI

The purpose of the CAPRI architecture is to enable distributed diagnosis among hetero-
geneous diagnostic agents in a general and extensible way while dealing with incomplete
information and managing cost. This chapter more preciselydefines fault diagnosis, di-
agnostic agents, probabilistic diagnosis, the elements ofthe CAPRI architecture, and the
scalability challenges it addresses.

3.1 Network failures

People use the term “network failure” to refer to a wide rangeof phenomena, including bugs
in network applications, server misconfigurations, severed links, and network congestion.
Since CAPRI is a general architecture for fault diagnosis that must handle a wide range of
failures, this thesis broadly defines a network failure as a perceived component malfunction.
This thesis uses the term “component” not as it is commonly used in network systems to
refer to physical devices, but rather in the abstract sense used in model-based diagnosis
and dependency modeling. I define a component as any process or device that provides a
resource or function and whose behavior can be observed and modeled. For example, a
network switch is a component that provides network connectivity between the hosts that
plug into it. Thus if a network administrator discovers thata switch has failed, then that is
considered a network failure. Components also include processes such as TCP connections,
which may fail due to the failure of other components such as network switches.

Note that I define a network failure as aperceivedcomponent failure. The purpose
of CAPRI is not to discover and diagnose all possible networkfailures, but rather to only
diagnose failures that users or administrators notice. Forexample, if a user disconnects
their computer from the network, it prevents them from connecting to millions of other
hosts on the Internet. Rather than attempting to detect and diagnose all of these possible
failures, agents in CAPRI only attempt to diagnose failuresthat users actually perceive,
such as a user’s inability to retrieve email from a POP server. This greatly reduces the
number of possible failures that agents must diagnose whileensuring that the network
failures agents diagnose correspond to actual user perceived problems.

A perceived component failure is not always due to an actual component failure, how-
ever. A perceived component failure means that the user or network administrator perceiv-
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ing the failure believes that the component is not behaving in the way that they expect.
There are two possible reasons for this: either the component has actually malfunctioned,
or the component is functioning correctly but the observer incorrectly perceived it to have
failed. A diagnostic agent can model this situation by representing the true status of the
component as a hidden variable while treating a failure report as a piece of evidence that
can provide information about the true status of the component.

The line between functioning and malfunctioning is not always clear, however. Clearly
a TCP connection with a 100% loss rate is malfunctioning, butis a 5% loss rate functional?
We may choose to model the degree of failure using some scalaror vector metric, but the
most appropriate metric to use to measure component performance may depend on the
type of component. Furthermore, reasoning about the effects of different degrees of per-
formance failure on other components is difficult, so this thesis only distinguishes between
two possible component states,OK andFAIL. Though the distinction between functioning
and malfunctioning is not always clear, the point at which agents make this distinction is not
essential to this thesis. All agents must agree on the meaning of OK andFAIL, but CAPRI
does not require all diagnostic agents to agree on the statusof any individual component. If
desired, one may construct an agent that can distinguish among more status values between
OK andFAIL, but in this thesis I only consider the two state case.

This thesis focuses on fault diagnosis and not fault detection. The purpose of CAPRI
is to diagnose a failure once a user has noticed it, and not to identify and report failures
when they occur. There are two reasons for choosing this approach. Firstly, in a fault
detection system there is no easy way for agents to determinewhich faults are important
enough to report and which do not affect a user, so a fault detection approach may result
in unnecessary processing and generate unnecessary notifications. Diagnosis only in re-
sponse to user requests ensures that agents only diagnose faults that end users notice and
deem severe enough to request a diagnosis. Secondly, failure detection requires an agent
to constantly monitor a network component while diagnosis only needs to determine the
status of a component in response to a request for diagnosis.Performing diagnosis only on
request reduces the communication and processing cost of diagnosis.

CAPRI can support the diagnosis of failures in a wide range ofnetwork components,
but as a starting point in my thesis I will focus primarily on the diagnosis of reachability
failures for end users. This thesis focuses on “hard” network reachability failures in which
a user wants to access a particular network resource such as aURI or a hostname and
port number (e.g. a mail server or a web page), but is unable todo so, either because a
component has failed or due to a misconfiguration. Some examples of failures include, but
are not limited to:

1. Local misconfiguration. The user’s network configurationis incorrect. For instance,
they are using the wrong DNS servers or have their gateway incorrectly defined.

2. Link failure. The user cannot reach their ISP.

3. Routing failure. Their ISP or some other region in the Internet cannot route the user’s
packets to the next hop towards their destination.

4. DNS server unreachable.
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5. DNS information incorrect. The DNS entry may be out of date.

6. Destination host unreachable. The destination host is down.

7. Destination port unreachable. The destination host is reachable, but the desired port
is closed.

8. Destination application unavailable. The destination host and port are reachable, but
the desired service is not available. For example, the HTTP server on the destination
server is not responding to HTTP requests.

All of these failures can be represented as the failure of a network component and possibly
some of its dependent components.

3.2 Fault diagnosis

This section defines distributedfault diagnosisin the CAPRI architecture. Abstractly, fault
diagnosis is a process that takes as input a description of a failure from a diagnosis requester
and produces as output a description of the most likely causeof failure. Unlike domain-
specific diagnosis systems that assume a fixed set of possiblecauses of failure, however,
in CAPRI the set of possible causes of failure may vary for each diagnosis and must be
determined dynamically to support new diagnostic knowledge and agents with different
capabilities. Keep in mind that the purpose of requesting diagnosis in the first place is to
help the requester decide on a repair action. Therefore the output of diagnosis should be in
terms of the possible repair actions that the requester can take. As different requesters may
have different repair capabilities (e.g. a network administrator may more available repair
actions than an end user), different requesters may wish to request diagnosis in terms of
different sets of candidate explanations. For example, a typical user may wish to request
diagnosis of web connectivity failures in terms of user network connectivity, ISP status,
and destination server status; and not in terms of router configuration files and web server
processes. On the other hand, network administrators or other experts should be able to
request and access more detailed information. In addition,each diagnostic agent may have
the ability to distinguish among a different set of possiblecauses. New, more sophisticated
diagnostic agents may have the ability to distinguish amongmore possible causes of failure
than previous agents. For example, one diagnostic agent might only have the ability to de-
termine whether or not a failure was caused by a local networkmisconfiguration. Another
agent might provide a response indicating precisely which ISP is responsible for a failure.

Therefore for extensibility to support new diagnostic agents with new diagnostic capa-
bilities and to accommodate requesters with different requirements for diagnosis, in CAPRI
the set of possible explanations for a failure is determineddynamically and may vary for
each request. In CAPRI, each diagnosis provider specifies the set of explanations that it
can distinguish among in its service description (see Chapter 5), and a diagnosis requester
specifies which of the candidate explanations it wishes to distinguish among.

More precisely, in CAPRI a diagnosis requires as input a component perceived to have
failed (e.g. an HTTP connection) and a set of candidate explanations for its failure (e.g. the
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web server is down, the user’s network connection has failed, the DNS lookup failed, or a
failure occurred in some other part of the network). The output of diagnosis specifies the
likelihood of each of the candidate explanations and identifies the most likely explanation.
In addition, in order to help the requester better understand how much evidence went into
the diagnosis, an agent may optionally provide additional observations and beliefs that
describe the evidence used to produce the diagnosis.

Diagnosis may involve communication among multiple diagnostic agents, each of which
may contribute some information useful for diagnosis. The process of diagnosis begins
with an initial diagnostic request generated by a user diagnostic agent on behalf of a user.
The initial diagnostic request identifies the component that was observed to have failed,
supplies a set of candidate explanations for the failure, and contains a component graph
describing a set of observations the user agent has about thefailure. When a user diagnos-
tic agent first begins the process of diagnosis, it may have very little information about the
failure and can only provide a low accuracy diagnosis. In theprocess of diagnosis, agents
in CAPRI gradually improve the accuracy of their diagnosis by performing local diagnostic
tests and recursively requesting diagnostic information from other diagnostic agents until
either its confidence in its diagnosis exceeds a certain threshold, the cost of diagnosis ex-
ceeds the allowed budget, or the time of diagnosis exceeds anexpiration time. Each time an
agent requests information from another agent, both the requesting and responding agents
exchange diagnostic information. As diagnostic agents accumulate diagnostic information,
the accuracy of their diagnosis improves.

Note that since each agent may have different methods for diagnosing failures, CAPRI
supports many different patterns of diagnosis. For example, a series of agents might simply
hand off a diagnostic request to the next diagnostic agent until one of them has the ability
to diagnose it. Alternatively, a series of agents may each add their own observations to a
failure story and pass it on to yet another agent to diagnose.Or an agent might receive a
diagnostic request and then choose one of several agents to whom to pass it on to depending
on the type of request. Another possibility is for an agent tofirst request additional data
from another agent, and then forward the request on to another agent based on the data
it receives. There are an endless number of possibilities, but the general pattern remains
the same: when an agent receives a diagnostic request, it canrepeatedly perform perform
local tests or diagnosis and recursively request data and diagnosis from other agents before
producing a response. Chapter 7 describes this procedure inmore detail.

3.3 Diagnostic agents

Fault diagnosis in CAPRI is performed by distributed diagnostic agents. Diagnostic agents
perform diagnostic tests and communicate with other agentson behalf of a user or network
administrator to collect diagnostic information and perform diagnostic reasoning. The pur-
pose of CAPRI is to support the communication of diagnostic information among hetero-
geneous diagnostic agents. Unlike previous systems for distributed fault diagnosis such as
Planetseer [98] that assume all diagnostic agents are operated by the same administrator
and know of the existence of all other agents, CAPRI agents may differ in terms of their
operators, diagnosis and data collection capabilities, location in the network, technologies
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they use, information and knowledge they possess, and in theway they are implemented.
Diagnostic agents may be operated by ISPs, network administrators, organizations, users,
or any other entity that wishes to request or provide diagnostic information. For resilience
to network failures, a diagnostic agent might reside in a different part of the network than
the components that it can diagnose. Such decoupling of datacollection from diagnostic
inference resembles the layered design of the 4D architecture for network management
and control [35]. For resilience to DNS failures, diagnostic agents are identified by an IP
address and port number.

Diagnostic agents may have a range of diagnostic capabilities. Agents may generate
diagnostic requests on behalf of a user, produce observations of diagnostic tests, provide
probabilistic information about the status and propertiesof various components, supply de-
pendency knowledge to diagnose certain classes of components, or aggregate observations
to produce new information. Each agent may have a different set of capabilities due to
resources it possesses, its location in the network, or special technology. For example, only
diagnostic agents residing within a particular AS can perform traceroutes that originate in
that AS. For policy reasons, each agent may also have a different set of neighboring agents
with which it may communicate. For example, an ISP might provide a diagnostic agent
that only answers requests from customers of that ISP.

The heterogeneity of diagnostic agents has several implications for a protocol for diag-
nostic agent communication:

1. All agents must agree on a commonservice description languagefor describing di-
agnostic capabilities, including the inputs an agent requires and the outputs an agent
produces so that other agents can make use of the diagnostic information it produces.

2. Multiple agents may have the capability to diagnose the same component in differ-
ent ways and return different results. Therefore agents must identify the source of
information in their messages to enable the resolution of conflicting messages and to
identify duplicate data.

3. Agents must be able to perform recursive diagnosis. When an agent does not have the
knowledge or capability to diagnose a failure, recursive diagnosis enables an agent to
dispatch requests to other agents or to compose diagnostic information from multiple
other agents.

4. For extensibility to support new classes of information,agents must be able to accept
and communicate information about component classes and properties for which they
do not have any dependency knowledge. Even if an agent does not understand a piece
of data, it can pass on that data to another agent that does understand how to use it.

5. Agents should have control over how much information theyreveal to other agents
and are not required to reveal all information that they have. Agents may choose to
reveal certain information only to authorized requesters.

Though CAPRI does not restrict the set of capabilities each agent has, it is convenient
to classify diagnostic agents into five types based on their roles:
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1. User agentsthat interface with users so that users can make diagnostic requests
and receive diagnostic responses. User agents request additional information from
regional agents to perform distributed diagnosis.

2. Local agentsthat perform diagnostic tests and make observations about aparticular
device or host. Frequently certain observations and tests can only be performed by a
local agent residing in a particular location. A local agentmay have access to infor-
mation not available elsewhere, such as server logs or application error messages.

3. Regional agentsthat aggregate requests from multiple other user agents or regional
agents. A single regional agent is responsible for handlingdiagnostic requests from a
set of local agents or other regional agents. For example, anISP might deploy a set of
regional agents to diagnose failures for its customers. Regional agents have little or
no specialized information on their own. Instead, they request additional information
from specialist agents when necessary. As new specialist agents become available,
regional agents automatically discover and take advantageof their capabilities using
the procedure for diagnosis described in Chapter 7. Regional agents also act as dis-
patchers, deciding which agent to contact next to answer a request and where to send
notifications of diagnostic information. Regional agents greatly reduce the probing
and communication costs of diagnosis by aggregating multiple similar requests using
the procedure described in Chapter 7.

4. Specialist agentsthat have specialized information or techniques for diagnosis. For
example, a server history specialist agent might collect connection history data from
users who attempt to connect to a particular server and use this information to infer
the status of the server. A DNS specialist agent might be ableto verify whether a
particular DNS server is functioning properly or not. Specialist agents might collect
data from local agents or other agents.

5. Knowledge agentsthat provide probabilistic dependency knowledge. Certaintypes
of dependency knowledge may be well known and unchanging, such as the deter-
ministic dependence of HTTP connection status on the statusof its associated local
network, DNS lookup, destination web server, and IP routing. Other types of knowl-
edge may change more frequently and can be learned from past observations. For
example, a learning knowledge agent might periodically collect information about
past diagnoses from many regional and specialist agents andlearn the probabilistic
dependencies among properties of various classes of components. Knowledge agents
provide dependency knowledge to other agents.

These divisions are not always clear-cut; each of these types of agents may have multiple
diagnostic capabilities. For example, a regional agent mayalso be able to perform certain
specialized tests. A specialist agent may act as a regional agent for a set of more specialized
agents. A user agent may also act as a local agent for the user’s computer.
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3.4 Architectural overview

A common architecture for fault diagnosis must specify a setof representations, protocols,
and procedures so that heterogeneous diagnostic agents cancooperate to diagnose failures.
An architecture for distributed fault diagnosis must include the following four elements: a
common, extensible representation for diagnostic information; a protocol for advertising
and retrieving information about the diagnostic capabilities agents can provide; a protocol
for communicating observations, beliefs, and knowledge between agents; and a procedure
for agents to perform diagnostic actions for diagnosing failures in a probabilistic manner.
This section provides a high-level overview of the parts of the CAPRI architecture. The
next several chapters examine each of these parts in more detail.

Figure 3-1 illustrates how diagnostic agents process information. An agent obtains
component class and property definitions from a distributedcomponent ontology. Though
CAPRI provides a framework for defining and communicating definitions of component
classes and their properties, defining all known network component classes and properties
is out of the scope of this thesis. An agent obtains service descriptions of the capabilities of
other agents from a service directory. This thesis assumes acentralized directory server. For
additional robustness and scalability, one may consider implementing a more distributed
directory service, but the design and implementation of thedirectory service is not the main
focus of this thesis. An agent then combines diagnostic information from other agents and
local diagnostic tests into a component graph and then performs various actions to produce
new diagnostic information. An agent may send this new diagnostic information to other
agents or store it for future use.

Diagnostic Agent

Component
Class & Property

Definitions

CAPRI
Service

Descriptions

Component
Graph

Failure
Dependency

Graph

Component
Information Base

Diag InfoDiag Info

Diag Info

Diag Info

Diag Info

Diag Info

Figure 3-1: A diagnostic agent combines diagnostic information from multiple sources
to produce new information using component and property class definitions and CAPRI
service advertisements.

CAPRI provides diagnostic agents with a common set of representations, protocols, and
procedures for fault diagnosis. These include a representation for diagnostic information,
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a service description language, a protocol for communicating diagnostic information, and
a dynamic procedure for processing diagnostic information.

The first element of an architecture for distributed fault diagnosis is a common, exten-
sible representation for diagnostic information. Even though many systems for performing
diagnostic tests and collecting diagnostic information exist today, no common language
exists for communication of such information. A common representation for diagnostic
information gives agents in different parts of the network with different capabilities and
knowledge of different network components the ability to share diagnostic observations,
beliefs and knowledge. Let us consider what types of diagnostic information agents might
wish to communicate with other agents. Firstly, they need tobe able to expressobserva-
tionsandprobabilistic beliefsabout component properties, such as the results of diagnostic
tests or average loss rate of a link over the past hour. They also need the ability to express
relationshipsamong components, such as the fact that a TCP connection traverses a par-
ticular IP link, or that an HTTP connection relied on a particular DNS lookup result. In
addition, agents must agree oncomponent class and property definitionsin order to com-
municate information about component individuals and their properties. If an agent has
knowledge about a new class of component or a new property of acomponent useful for
diagnosis, it needs a way to describe that new component or property to other agents so
that they can use that information for diagnosis. Also, agents may learnprobabilistic de-
pendency knowledgeabout components; they must be able to express such dependencies if
they change or if new component classes and diagnostic testsbecome available. For exam-
ple, the average probability of TCP connection failure between hosts in two different ASes
in the Internet might change significantly from hour to hour as network conditions change.
In addition, to help an agent decide whether to keep or discard information it receives, each
piece of diagnostic information must carrymetadatato indicate who collected the data,
when it was collected, and the evidence from which the information was derived. To ad-
dress all of these challenges, CAPRI defines a common language for describing network
components, diagnostic tests, and diagnostic informationin an extensible manner. Chapter
4 describes this language in more detail.

The second element is a language for agents to describe theirdiagnostic capabilities in
terms ofdiagnostic servicesthey offer. Since each agent may have different capabilities
and new agents may join the system, agents need a way to describe their capabilities and
understand the diagnostic capabilities of other agents. Also, each agent may require a
different set of inputs in order to produce information. Forexample, one agent may be able
to provide a belief about the probability of a web server failure given only its hostname,
while another requires the web server’s IP address. Therefore agents need a way to specify
both the inputs and outputs of their diagnostic services so that other agents can determine
which services they can use. Chapter 5 describes this service description language.

The third element of an architecture for fault diagnosis is aprotocol for communicating
diagnostic information while managing cost. Such a communication protocol must enable
agents to request diagnostic information and respond to requests. Because every failure
may involve a different set of network components, agents need a way to dynamically
construct acomponent graphfrom information about components collected from multiple
sources, and then to construct afailure dependency graphfrom this component graph to
make inferences and decide what actions to perform. In orderto manage both the prob-
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ing and communication costs of diagnosis, a protocol for fault diagnosis must also enable
agents to make tradeoffs in both the accuracy and cost of diagnosis. Chapter 6 examines
these issues in more detail.

The fourth element of an architecture for fault diagnosis isa procedure for agents to
select and perform actions for probabilistic diagnosis. Because an agent may receive pos-
sibly conflicting diagnostic information from multiple sources, agents in CAPRI need a
procedure for managing the information they receive and using this information for diag-
nosis. To address this challenge, CAPRI provides agents with a procedure for constructing
a component graphanddependency knowledge baseto manage observations, beliefs, and
knowledge received from other agents. An agent uses its dependency knowledge base to
manage conditional probability tables and dependency models for classes of components
that it knows and that it receives from other agents. An agentuses its component graph
to keep track of observations, beliefs, and likelihoods it creates and receives from other
agents, and caches information from its component graph in acomponent information base
for future use to manage cost. Chapter 7 describes how agentsbuild these data structures
from the diagnostic information they exchange and then use these structures to perform dis-
tributed probabilistic inference. The procedure for diagnosis in CAPRI is general enough
to support many different communication patterns and inference methods, including both
centralized techniques as well as more distributed patterns such as belief propagation. In
addition, I show how this procedure allows agents to manage costs using caching, evidence
propagation, aggregation of requests, and confidence thresholds.

3.5 Scalability

A major strength of the CAPRI architecture is that it supports the addition of new agents,
new services and new dependency knowledge. In order for agents to effectively take advan-
tage of new services and knowledge, however, the architecture must scale as the number
of agents and knowledge in the system increases. The CAPRI architecture addresses three
types of scalability challenges: scalability to support many diagnostic requests, scalability
to support a large number of available diagnostic services,and scalability to support a large
amount of dependency knowledge.

The first type of scalability is the ability to support a largenumber of diagnostic re-
quests. CAPRI addresses this challenge in several ways. First, CAPRI allows agents to
cache information to reduce the cost of diagnosing many similar failures. Secondly, agents
can use input restrictions to limit the requests they receive and distribute requests across
multiple agents. Another technique that can reduce the costof diagnosing multiple similar
failures is evidence propagation. An agent that has evidence useful for diagnosing a failure
may propagate that evidence to other agents that it believesmay benefit from that evidence.
Chapter 7 describes these procedures in more detail.

Second is scalability in terms of available services. As thenumber of services that
agents can choose from increases, it becomes more costly to compute the value of all ser-
vices and choose among them. Agents in CAPRI address this issue by aggregating multiple
specialist services together into a more general service. CAPRI service descriptions enable
agents to achieve such aggregation of services using both input restrictions and requester
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restrictions. Aggregation of services reduces the number of other agents and services that
each agent needs to know for diagnosis. Such aggregation resembles the way Border Gate-
way Protocol (BGP) routers hide the complexity of multiple routes by aggregating smaller
prefixes into larger prefixes. See Chapter 5 for more details about service descriptions.

A third issue is scalability in terms of dependency knowledge and failure dependency
graphs. Additional dependency knowledge and more complex failure dependency graphs
can improve diagnostic accuracy, but at the cost of additional computation to perform in-
ference. Agents in CAPRI manage such costs by decomposing dependencies into condi-
tionally independent parts and exchanging information using belief propagation so that no
single agent needs to know all dependencies. For example, anagent responsible for the
diagnosis of network failures within ISPA does not need to know the dependencies among
components within ISPB. Similarly, an agent that diagnoses web server status does not
need dependency knowledge for diagnosing DNS servers. The hierarchical organization
of the Internet simplifies the decomposition of component properties into conditionally in-
dependent parts. See Section 4.2.4 for a discussion of how agents can scalably represent
dependency knowledge.

3.6 Probabilistic inference

In order to manage costs and deal with incomplete information and noisy measurements,
agents in CAPRI diagnose failures using a probabilistic approach. Agents can exchange
probabilistic beliefs and likelihoods about components and perform inference according
to probabilistic dependency knowledge. Agents construct probabilistic failure dependency
graphs and can perform distributed diagnosis according to probabilistic belief propagation.

Probabilistic inference using Bayesian networks has several advantages over determin-
istic dependency analysis approaches. The conditional independence assumptions of a
Bayesian network facilitate distributed reasoning. For example, an agent can infer that
an IP path has failed if that agent has evidence that a link along that path has failed without
knowing the cause of the link failure. This structure minimizes the number of other agents
with which an agent needs to communicate to infer a diagnosis. Thus each agent can main-
tain only a local dependency model and request additional data from a small set of other
agents when required.

Probabilistic inference can greatly reduce the number of diagnostic tests required to
infer the root cause of a failure compared to deterministic probing methods such as Plan-
etseer [98]. When high-impact failures occur and an agent receives many failure requests
with the same root cause, Bayesian inference enables an agent to infer the root cause with
high probability without additional tests [57]. When an agent does not have enough in-
formation for diagnosis, an agent can determine which testswill provide the maximum
amount of diagnostic information and perform only those tests [76].

Probabilistic inference also enables agents to provide diagnosis even when they cannot
obtain accurate data due to failures or lack of information.For example, if the agent re-
sponsible for diagnosing IP connectivity failures in an Internet autonomous system (AS)X
is unreachable, another agent can still infer the most probable explanation for a failure in
AS X based on historical IP link failure probabilities.
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Another important advantage of probabilistic inference isextensibility to take into ac-
count new dependency knowledge and evidence from new diagnostic tests. If a researcher
develops a new diagnostic test that can provide evidence about a failure and provides de-
pendency knowledge for the new test, other agents can incorporate this new knowledge and
evidence to more accurately diagnose failures.
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Chapter 4

Representation of Diagnostic
Information

The first challenge of distributed Internet fault diagnosisI address in this thesis is the ex-
tensible representation of diagnostic information about network components and diagnos-
tic tests. CAPRI differs from other architectures for faultdiagnosis in that it provides
extensibility to support new diagnostic tests and new typesof information. Most previ-
ous architectures for distributed fault diagnosis only support a limited range of diagnostic
tests. For example, Planetseer only supports diagnosis using traceroute results [98]. Even
in more general architectures such as those proposed by Thaler and Ravishankar [89] and
Bouloutas, et al. [2], agents cannot share new diagnostic knowledge about components and
dependencies. The ability to share such knowledge in an extensible manner is essential due
to the continually changing nature of fault diagnosis in theInternet. In the Internet, new
devices and applications may appear and researchers may develop new diagnostic tests and
methods for diagnostic inference. Agents must be able to communicate information about
novel components or new methods for fault diagnosis that other agents do not yet under-
stand. The challenge is to develop an extensible architecture that allows agents to take into
account these changes and new information.

The choice of representation for diagnostic information inCAPRI is driven by several
requirements. Firstly, it must be extensible to support thedescription of diagnostic infor-
mation derived from new diagnostic tests about new network components. To address the
challenge of extensible representation of diagnostic information, CAPRI provides agents
with a component ontology language for defining new classes of components and tests and
their properties to create an extensible, distributedcomponent ontology. This ontology en-
ables agents to retrieve new class definitions for classes ofcomponents and tests that they
do not yet know about.

Secondly, it must support distributed diagnosis using probabilistic inference. Proba-
bilistic inference requires the ability for agents to express both probabilistic dependencies
among variables and evidence about such variables. To address this challenge, CAPRI pro-
vides agents with common representations for diagnostic information about components
and tests defined in the component ontology. CAPRI agents express evidence about com-
ponents and properties in terms ofobservationsof descriptive properties. Agents express
dependencies among components and properties using observations ofrelationship proper-
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tiescombined withprobabilistic dependency knowledge. CAPRI separates the observation
of relationship properties from probabilistic dependencyknowledge to decouple the tasks
of making observations and learning dependency knowledge.

Thirdly, CAPRI must support efficient diagnosis when observations of evidence and
dependency knowledge are distributed among multiple agents. To address this challenge,
agents can communicate probabilisticbeliefsand likelihoodswithout revealing the evi-
dence and dependency knowledge used to produce those beliefs and likelihoods in order to
perform belief propagation for distributed inference.

Though previous researchers have developed languages and systems for describing var-
ious observations about network components [73, 93], such systems are not designed for
diagnostic inference. Other researchers have developed distributed reasoning systems for
making inferences using data collected from different sources [17], but do not consider
how to define new classes of diagnostic information. The representation described in this
chapter differs from these previous systems in that it both enables the definition of new
component classes and properties as well as providing a means for agents to incorporate
new information about components and diagnostic tests to diagnose failures.

4.1 Representing components and diagnostic tests

CAPRI must provide agents with the ability to represent and communicate information
about network components while providing extensibility todescribe new classes of network
components. Network components include both physical devices such as Ethernet switches
as well as abstract processes such as HTTP connections. These components may have
various properties, ranging from identifying properties such as hardware MAC addresses
and URIs, to component relationship properties such as the web server corresponding to
a particular HTTP connection. An effective representationof network components must
enable agents to express all of these types of properties so that they can form an accurate
model of network components for fault diagnosis. To providea common language for
agents to describe network components, CAPRI initially provides agents with a set of a
common component class and property definitions while enabling agents to define new
classes of components in the future.

A component can be abstractly described in terms of theclass it belongs to and its
properties. A component classrefers to an abstract category of components (e.g. web
browsers), while acomponent individualrefers to a particular concrete instance of a class
(e.g. the Firefox web browser running on your computer). Similarly, a diagnostic test class
is a type of diagnostic procedure that produces an observation. Examples of diagnostic
test classes includePing Test, DNS Lookup Test, and IP Routing Test. CAPRI treats di-
agnostic test classes similarly to component classes. Eachcomponent and diagnostic test
individual can havepropertiesassociated with it. Properties of a component may include
details such as the version number of a web browser; statistics such as the number of failed
HTTP connections in the past hour; and relationships the component may have with other
components, such as the host machine on which the browser is operating.

CAPRI provides diagnostic agents with an ontology languagefor defining component
and diagnostic test classes and properties. Though existing ontology languages such as the
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Web Ontology Language (OWL) [23] provide many useful features for defining objects and
properties, agents in CAPRI only need a subset of these features to perform fault diagnosis.
Some of the capabilities that OWL provides include the ability to define properties that
can have more than one value and the ability to define transitive properties to allow the
computation of transitive closure. Such capabilities, while conceivably useful under certain
situations, are unnecessary in most cases and would greatlyincrease the complexity of the
representation of diagnostic information and diagnostic reasoning. Therefore as a starting
point, in this thesis I choose a simpler custom representation for diagnostic information. If
the additional features of an ontology language such as OWL are found to be useful, they
may be added in future work.

An agent in CAPRI describes diagnostic information about components using acom-
ponent graph. Figure 4-1 illustrates a component graph describing a component individual
of the HTTP Connectioncomponent class. Boxes indicate component individuals. Ital-
icized text indicate component class names. Underlined text indicate identifying proper-
ties. For instance, anHTTP Componentis identified by its destination host and connection
time. AnHTTP Componentalso has a number of descriptive properties depicted insidethe
box, includingsrcIP, status, andelapsedTime. Each of these properties may have a
deterministic or probabilistic value associated with it. In addition, anHTTP Component
has a number of relationship properties indicated as dottedlines that refer to other com-
ponent individuals. ThisHTTP Connection’s relationship properties includelocalNet,
httpServer, dnsLookup, andipRouting. Note that a component relationship property
can refer both to components whose identity is known, such astheLocal Networkcompo-
nent in the figure, as well as components with unknown identity, such as theHTTP Server
component. Chapter 7 describes in more detail how agents deal with information about
components whose identity is unknown. I describe the concepts of component classes and
properties in more detail later in this chapter.

HTTP Connection Local Network
localNet

HTTP Server
httpServer

DNS Lookup
dnsLookup

IP Routing
ipRouting

destHost: www.example.com
connTime: 1172181867190
srcIP: 18.26.0.100
status: {OK: 92%, FAIL: 8%}
elapsedTime: 438

ipAddr: 18.26.0.100

hostname: www.example.com

Figure 4-1: AnHTTP Connectioncomponent identified by destination host and connection
time has both descriptive properties such assrcIP as well as relationship properties such
asdnsLookup.

Unlike domain-specific diagnosis systems that have built-in understanding of the mean-
ing of various types of components and tests, for extensibility to support new diagnostic
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tests CAPRI requires the explicit definition of every component class and property that
agents communicate. In CAPRI, each component class, property, and diagnostic test class
has a corresponding definition. To allow other agents to discover new definitions, the full
name of each class and property is a URI specifying the location of its definition. For
example, the full name of theHTTP Connectioncomponent is

http://capri.csail.mit.edu/2006/capri/common#HTTPConnection

One may define a new component class or property simply by placing the definition in
the appropriate location. The complete class and componentdefinition language can be
found in Appendix A.1. In this thesis I may omit the full name of component classes and
properties for brevity, but agents always refer to component classes and properties using
the full name.

The set of all component class and property definitions comprises acomponent ontol-
ogy. The component ontology provides a common language for agents to describe com-
ponents and their properties to other agents, as well as define new classes of components.
The component ontology can be distributed because agents indifferent parts of the net-
work may contribute new component class and property definitions. In CAPRI, agents
automatically retrieve class and property definitions fromtheir associated URIs when they
encounter unknown component classes and properties. This approach is based on the idea
of the Semantic Web [79] in which information can be distributed across multiple locations
and automatically retrieved and combined to produce new information. CAPRI provides
an initial core component ontologyat http://capri.csail.mit.edu/2006/capri/core, which de-
fines concepts essential to fault diagnosis, such as the definition of component status. In
addition, CAPRI initially provides all agents with thecommon component ontologyat
http://capri.csail.mit.edu/2006/capri/common, which defines a common set of well-known
component classes and diagnostic tests.

The component ontology is designed to support the description of network components
and diagnostic tests for the purpose of probabilistic inference. It enables agents to perform
automated reasoning to combine information from multiple other agents in a distributed
way. Using this ontology, agents can determine whether two components are the same or
not, whether two components share a superclass, and can infer symmetric relationships.

To manage such a distributed ontology, agents need a way to keep track of the classes
and properties they understand and a way to obtain definitions of new classes and prop-
erties. Each agent maintains a local table of component class and property definitions it
knows about. Whenever an agent encounters a component classor property not in its class
and property tables, it looks up the component or property definition using the URI corre-
sponding to the name of the component or test class. To avoid conflicts and to distinguish
between different versions of component class and propertydefinitions, each version of a
class or property definition must have a different URI. This is the same assumption made
in the Semantic Web.

4.1.1 Component classes

Component and diagnostic test classes are named using URIs to provide a mechanism for
agents to retrieve information about new component classes. The URI associated with a
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component class or diagnostic test may or may not be hosted bya diagnostic agent. I
assume that URIs used to define component and test classes do not change and are globally
unique. This section describes the information provided ina component class or diagnostic
test definition. In this section the term component class refers to both component and
diagnostic test classes.

One challenge of communicating diagnostic information is determining whether two
observations actually refer to the same component. To help address this issue, a compo-
nent class definition specifies a set ofidentifying properties. Two components with the
same class and the same values for each of their identifying properties are considered to
be the same component. For example, suppose an agent receives observations from two
different agents regardingEthernet Cardcomponents. TheEthernet Cardcomponent class
definition specifies thatMAC Address is its identifying property. If both observations refer
to Ethernet Cardcomponents with the same values for theirMAC Address properties, the
agent can infer that the two observations actually refer to the sameEthernet Cardindivid-
ual. Note that some classes of components may have multiple identifying properties. For
example,IP Routingmay require both a source and destination IP address for identifica-
tion. If a component class does not define any identifying properties, then an agent might
not be able to determine whether two components of that classare the same.

For extensibility to support new classes, CAPRI allows subclassing where each sub-
class may have a different set of properties and diagnostic knowledge. A component class
definition for a component classC may specify a list of component classesB for which
C is a subclass ofB. For example, aWireless IP Linkclass may be defined as a subclass
of an IP Link class with additional properties such as signal strength and radio frequency.
A component class inherits property definitions from all itssuperclasses. For example, an
individual of classWireless IP Linkhas all the properties of anIP Link. All component
classes are subclasses of the baseComponentclass. A component may be a subclass of
multiple other classes. Subclass relationships are transitive. If classC is a subclass of class
B, and classB is a subclass of classA, thenC is also a subclass of classA. An agent can
infer such relationships based on the component class definitions in the component ontol-
ogy. Subclassing provides a mechanism for introducing new classes of components and
tests while retaining compatibility with existing diagnostic agents.

Subclassing introduces additional challenges for agents to determine whether two ob-
servations refer to the same component. In addition to checking whether two components
have the same class and the same values of each identifying property, an agent also needs to
check for each combination of superclasses of each component whether they have identical
values for each identifying property.

4.1.2 Component properties

Agents make use of component properties in several ways. Firstly, an agent can use de-
pendency knowledge about one or more properties of one or more components to infer the
value of one or more other properties of other components. For example, an agent might
be able to infer the status of a DNS lookup if it knows the valueof the IP address returned
by the DNS lookup. Secondly, properties can describe relationships between components,
such as the HTTP client and server of an HTTP request. Such relationship properties enable
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agents to combine information about related components from multiple sources. Thirdly, an
agent may use component properties for identification purposes. Like component classes,
properties are identified by a URI to allow for extensibilityand to retrieve new property
definitions.

A property may be either a descriptive property or a relationship property. A descriptive
property describes a characteristic of the component. The range of a descriptive property is
a text string to simplify parsing. For example, a web server may have a descriptive property
ipAddr that specifies its IP address. A relationship property is like a component pointer.
The value of a relationship property is a component individual. For example, anHTTP
Connectioncomponent may have a component relationship propertyhttpServer whose
value is the destination web server component associated with the HTTP connection. This
distinction between descriptive and relationship properties in CAPRI is similar to the way
in which RDF Schema1 distinguishes between datatype properties and object properties,
or how object-oriented programming languages distinguishbetween variables with built-in
types such as integers and variables that point or refer to other objects.

An agent requires certain information about a property in order to properly make use
of diagnostic information associated with that property. Firstly, an agent must be able to
determine whether a property is a descriptive property or a relationship property. Addition-
ally, for relationship properties, an agent must be able to determine the class of component
to which it refers. For descriptive properties for which dependency knowledge is defined,
an agent also needs to know the range of values it may take on inorder to properly per-
form probabilistic inference. Therefore in addition to thename of the property, a property
definition specifies whether it is a descriptive or relationship property, and the range of the
property (a class name if it is a relationship property, or a list of values if it is a descriptive
property). In addition, for defining property paths it is useful to know of any symmetric
properties that may exist. For example, if componentB is theasPathTest of anAS Path
A, thenA is theasPath thatB is testing. Thus a property definition may also define such
symmetric properties when they exist.

Many types of descriptive properties exist, including aggregate properties, identifying
properties, and metadata properties. A property may be one or more of these types of prop-
erties. An aggregate property is a descriptive property calculated from other data and its
value may constantly change. Aggregate properties includestatistics about a component
such as the number of bytes a web server has sent in the past hour and the average latency of
an IP link. Identifying properties enable agents to determine whether two components are
the same. An agent can assume that the value of an identifyingproperty for a component
never changes. A metadata property provides information about a component not inherent
to the component itself. For example, one type of metadata property isadministrator,
indicating the contact information of the network administrator responsible for proper op-
eration of that component. For the purposes of fault diagnosis, all components have a
descriptive propertystatus, whose value may be eitherOK or FAIL.

The semantics of both descriptive and relationship properties are exogenous to the sys-
tem. Diagnostic agents in CAPRI do not need any domain-specific knowledge of the mean-
ing of component classes and properties beyond probabilistic dependency knowledge, as

1http://www.w3.org/TR/rdf-schema/
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described in Section 4.2.4. CAPRI assumes that all agents that create observations, be-
liefs, and knowledge about a property agree on the meaning ofeach class and property,
though other agents that receive such observations and beliefs can perform diagnosis with-
out understanding the meaning of all classes and properties. For example, consider a web
server history agent that can observe theconsecFailuresToServer property of anHTTP
Servercomponent, and a knowledge agent that learns dependency knowledge relating the
consecFailuresToServer property of anHTTP Servercomponent to itsstatus prop-
erty. Both the web server history agent and the knowledge agent must agree on the meaning
of theconsecFailuresToServer property for the observations and the knowledge to be
consistent with one another. A regional agent that receivesa consecFailuresToServer
observation from the web server history agent and the corresponding dependency knowl-
edge from the knowledge agent can then infer the status of theHTTP Servercomponent
without any knowledge of the meaning of theconsecFailuresToServer property or the
HTTP Serverclass, however.

Similarly, agents do not need to understand the meaning of relationship properties to
perform diagnosis as long as all agents that create observations, beliefs, and knowledge that
refer to the same relationship property agree on its meaning. CAPRI does not constrain
the semantics of a relationship property. A relationship property simply points to another
component, and may or may not indicate a dependency. For example, possible relationships
include:

1. verifyDNSLookupTest: A DNS Lookupcomponent may have averifyDNSLookup-
Test relationship property whose value is aVerify DNS Lookup Testcomponent test-
ing theDNS Lookupcomponent.

2. httpConnection: A Firefox Error Testcomponent may have anhttpConnection
relationship property whose value is theHTTP Connectioncomponent to which the
test applies.

3. dnsLookup: A HTTP Connectioncomponent may have adnsLookup relationship
property whose value is theDNS Lookupcomponent describing the DNS lookup
used to determine the IP address of the destination for the HTTP connection.

Agents in CAPRI may set the value of relationship propertiesusing local information, the
results of diagnostic tests, and domain-specific knowledge. For example, an agent might
determine the value of relationship properties using a toolsuch as X-Trace [32] or the
method described by Bahl et al. [1].

Note that component class and property definitions do not express the dependencies
among components; they only specify possible properties and component relationships.
The dependencies themselves are specified as dependency knowledge in the form of con-
ditional probability tables (see Section 4.2.4). CAPRI decouples the dependency structure
itself from the definition of component classes to allow the distribution of observations,
beliefs, and dependency knowledge across multiple agents.For example, one agent may
have observations and beliefs about a component but not havedependency knowledge for
it, while another agent has dependency knowledge about thatcomponent class but not ob-
servations and beliefs. These two agents can then perform distributed fault diagnosis by
communicating their diagnostic information.
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Another advantage of separating relationships from dependencies is that it allows an
agent to choose among multiple pieces of dependency knowledge for diagnosis. For ex-
ample, an agent may diagnose TCP failures based on dependency knowledge about their
source and destination IP addresses, or it may attempt to diagnose TCP failures based on
dependency knowledge about the status of the underlying IP links. The approach that
CAPRI agents use to represent classes, descriptive properties, relationship properties, and
dependency knowledge resembles probabilistic relationalmodels (PRMs) [33], which also
decouple relationships and dependencies.

For extensibility to support new properties of existing classes, component class defini-
tions do not specify the set of possible properties a component of that class may have, nor
do component properties restrict the components that may possess them. Therefore to add
a new property to an existing class, one only needs to define the new property and does not
need to modify the class definition. For example, suppose Bobdiscovers that the number
of other web pages that link to pages on a particular web server is highly correlated with
the probability the web server fails. Bob might then define a new property of web servers
called http://bob.example.com/capri#numLinkingWebPages and host the property defini-
tion on his own web page. He might then create a new diagnosticagent that computes
this property given a web server’s IP address and provides the probabilistic dependency
knowledge specifying how to infer the probability of web server failure given evidence
aboutnumLinkingWebPages. This new specialist agent can then advertise its capabilities
to other agents using a service description and provide valuable new diagnostic information
for the diagnosis of web servers and other network components related to web servers. See
Section 4.2.4 for more details about how an agent describes dependency knowledge and
Chapter 5 for more details about how an agent can advertise new diagnostic capabilities to
other agents.

4.2 Diagnostic information

CAPRI agents perform fault diagnosis using probabilistic inference. Abstractly, probabilis-
tic inference requires both a causal model of dependencies among variables and evidence
about variables from which to make inferences. In CAPRI, thecausal dependency model
comes from acomponent graphdescribing the properties and relationships among various
components combined with probabilisticdependency knowledgedescribing the conditional
probabilities of observing certain property values given the value of other properties. The
evidence that agents use for inference consists ofobservationsof the properties of network
components and diagnostic test results, probabilisticbeliefsof component property values
given evidence, and probabilisticlikelihoodsof observing evidence given the value of cer-
tain component properties. Agents produce and communicatethese four types of diagnostic
information: observations, beliefs, likelihoods, and dependency knowledge.

I choose to decompose diagnostic information into these four types to distribute the pro-
cesses of observing evidence about component properties, observing relationships among
components, learning dependency knowledge, and inferringbeliefs and likelihoods. This
decomposition enables distributed agents in different parts of the network to perform each
of the tasks of diagnosis with limited information and then combine the information to pro-
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duce a diagnosis. Some agents can perform diagnostic tests to obtain observations. Others
can make inferences from observations using diagnostic knowledge to form beliefs and
likelihoods. Another agent can learn dependency knowledgefrom observations. Together,
these four types of information allow an agent to infer the status of various components
in the network to diagnose a failure. This section describeshow agents represent each of
these types of diagnostic information. Appendix A.2 provides a more detailed specification
of the language agents use to express and communicate observations.

4.2.1 Metadata

To help agents decide which pieces of data to keep and which todiscard, each piece of
information that an agent exchanges also has some associated metadata that allows agents
to determine where the data came from, when it was created, and how it was created. For
example, a simple heuristic for resolving conflicting information is to prefer more recent
data to older data.

Each piece of diagnostic information provides the following metadata:

1. Anoriginator attribute containing the URI of the agent generating the information.
This allows agents to identify the source of observations, beliefs, and knowledge in
order to take into account issues such as trust and identify malicious or inaccurate
agents.

2. A time attribute indicating the time at which the information was created represented
as the number of milliseconds since Jan 1, 1970 UTC. This allows agents to deter-
mine which of two pieces of information is more up-to-date and to decide whether old
data is still relevant. Note that this assumes all agents have accurate, synchronized
clocks. Even if two agents have unsynchronized clocks, however, the timestamps
included in the header of diagnostic messages allow an agentto compensate for large
differences (see Chapter 6).

3. A Booleancached attribute indicating whether the information was cached ornot. If
an agent receives uncached information, it can assume that the information it received
is the most current information that the originator can provide. If an agent receives
cached information, then it may be possible to get more up-to-date information.

4. An expires attribute specifying when this piece of information expires. Other
agents may use this attribute to decide how long to keep cached information. Note
that each piece of information may have a different lifetime.

4.2.2 Observations

Observations provide information about the properties of component individuals that agents
can use for diagnosis, including the results of diagnostic tests as well as network configura-
tion information collected by an agent. For example, an agent might make the observation
thatroundTripTime = 293 ms for an individual of classPing Testwith propertiessrcIP =
18.26.0.100,destIP = 18.26.0.1, andpingTime = 10:23 am. Other possible observations
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include the status of a TCP connection, the hostname of its destination, or the number of
times a web server has failed in the past hour. Figure 4-2 gives an example of an observation
represented using XML. Appendix A.2 contains the full specification for the representation
of observations and other diagnostic information.

<observation id="obs-1"
time="1160577157224"
originator="http://18.26.0.100/userAgent"
cached="false">

<component id="com-1">
<class> HTTP_Connection </class>

<destHost> www.example.com </destHost>
<connTime> 11605771538408 </connTime>
<status> FAIL </status>
<elapsedTime> 32 </elapsedTime>
<srcIP> 18.26.0.100 </srcIP>

<ffoxErrorTest> <componentRef ref="com-3" /> </ffoxErrorTest>
</component>

</observation>

Figure 4-2: An observation of anHTTP Connectionfailure includes metadata about the
observation, a component ID, the class of component observed, descriptive properties, and
relationship properties.

In addition to the metadata attributes common to all pieces of information, each obser-
vation contains a body consisting of either atest or acomponent description containing
a set of attribute/value pairs describing an individual test or component. In this section I
use the term component to refer to both network components and diagnostic tests. Each
component description in an observation contains the following:

1. An id string so that agents can describe the relationships among different tests and
components without having to know the values of their identifying properties. It is
useful to be able to identify components using a component IDas well as by the
identifying properties of a component because frequently an observation may refer
to a component whose identifying properties are unknown. For example, an agent
may know that the status of anHTTP Connectiondepends upon the status of its
associatedHTTP Servercomponent without knowing the identity of the web server.
The component ID is unique across all components in a given component graph or
message. Chapter 7 describes how agents generate componentIDs and use them for
identifying components received in messages from other agents.

2. Theclass of test or component represented as a URI. The class name mustbe a
valid URI that refers to the class definition. An agent parsing this observation can
use this class name to determine whether it knows about the given component or
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diagnostic test class or whether it needs to retrieve this information from the ontology.
Representing observation classes as URIs enables agents toextend the component
and observation class ontologies with new components and observation classes.

3. A set of property names and values describing the component. These specify the
actual information observed, such as the round-trip time ofa ping or the destination
IP address of a TCP connection. These may also specify the identifying properties
of the component if available. Observed properties may include both descriptive and
relationship properties.

4.2.3 Beliefs and likelihoods

CAPRI allows agents to express probabilistic evidence in terms ofbeliefsandlikelihoods.
A belief or likelihood expresses the conditional probability of an event given some evi-
dence. Abelief expresses the conditional probability that a property has acertain value
given some evidence, and alikelihood expresses the conditional probability of observing
certain evidence given certain property values [71]. More formally, a belief aboutx repre-
sentsP(x|e), the probability of observing each value ofx given some evidencee; likelihood
representsP(e|x), the probability of observing the available evidence giveneach value of
x. That is, a belief is a prediction about a variable given someevidence, whereas a likeli-
hood expresses how the value of a variable affects the probability of the outcome observed.
For example, consider an agent diagnosing an HTTP connection failure. The agent may
compute a belief that the status of a web server isOK with 90% probability andFAIL with
10% probability given evidence of its historical connection status. After taking into ac-
count evidence from additional observations, however, it may determine that the likelihood
of observing all the available evidence about a failure is 23% if the web server has failed
and 10% if it has not failed. Therefore it produces a diagnosis stating that more likely than
not, the web server has failed. Both beliefs and likelihoodsare necessary to express the
messages required for belief propagation. This thesis adopts the sameπ andλ notation for
beliefs and likelihoods as Pearl [71]. Agents may infer probabilistic beliefs and likelihoods
based on observations and dependency knowledge.

A belief also indicates the evidence on which it is based so that other agents can de-
cide which beliefs to use and to avoid double-counting evidence. For example, suppose
a regional agent infers the probability that an HTTP connection has failed using evidence
about the number of failures to the destination web server for the HTTP connection. If
the regional agent then receives a belief from a specialist agent about the status of the web
server, the regional agent should only consider that new information if the new belief is
based on evidence other than the number of failures to the destination web server.

There are several special cases of beliefs that are useful for distributed inference. If a
belief does not take into account any evidence, then it is a prior probability distribution. If
a likelihood does not consider any evidence, then the probability is 1. If a belief takes into
account all evidence except the evidence downstream of a particular child i (diagnostic
evidence), then it isπX,i(X). If a likelihood takes into account all evidence except the
evidence upstream of a parenti (causal evidence), then it isλX,i(X). Agents can perform
belief propagation by exchangingπ andλ beliefs and likelihoods.
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Figure 4-3 gives an example of a belief about aDNS Lookupcomponent. The belief
identifies the component and property to which it applies, provides a probability distribu-
tion for the property, and lists the evidence used to derive the belief.

<belief id="bel-1"
originator="http://18.26.0.100/dnsAgent"
time="1160577157224"
cached="true">

<subject>
<component>

<class> DNS_Lookup </class>

<hostname> www.example.com </hostname>
<ipAddrs> 192.168.11.12,192.168.11.13 </ipAddrs>

</component>
</subject>

<property> status </property>

<distribution>
<entry value="OK" p="0.8"/>
<entry value="FAIL" p="0.2"/>

</distribution>

<fromEvidence>
<evidence propPath="verifyDNSLookupTest|dnsLookupTestResult" />

</fromEvidence>
</belief>

Figure 4-3: A belief identifies the subject component and property to which it applies,
provides a probability distribution table for the property, and lists the evidence used to
derive the belief.

In addition to the metadata common to all pieces of information, a belief contains the
following:

1. A subject indicating the component individual to which this belief applies. A com-
ponent individual is identified either by its component class and identifying proper-
ties, or by its component ID.

2. A property indicating the property of the component over which the agent formed
a belief. This corresponds to the variablex in the expressionP(x|e) or P(e|x).

3. A distribution expressed as a conditional probability table indicating for each
possible value of the specifiedproperty, the probability that the property has that
value. For example, the status of the web server at www.example.com isOK with
23% probability andFAIL with 77% probability. Expressing probabilistic evidence

52



using conditional probabilities has the advantage that a conditional probability table
can express any arbitrary probability distribution, but has the limitation that it can
only express probability distributions for discrete variables. Minka describes how
one might perform distributed probabilistic inference over continuous variables by
expressing beliefs using parameterized Gaussian functions [65].

4. A fromEvidence field listing the evidence from which the inference was made.Each
piece of evidence is described by aproperty pathfrom thesubject component indi-
cating the component individual and property name of the evidence. A property path
is a list of zero or more relationship properties followed byanother property, and
identifies a component individual and property in terms of its relationship to another
component. For example, a belief about the status of aDNS Lookupcomponent
might be based on evidence described by the pathverifyDNSLookupTest.dns-
LookupTestResult. This property path refers to thednsLookupTestResult prop-
erty of the component to which theverifyDNSLookupTest relationship property of
the DNS Lookuprefers. This thesis represents property paths as a list of property
names separated by periods (‘.’) or vertical bars (‘|’). All properties in the path ex-
cept possibly the last property must be relationship properties. Describing evidence
in terms of property paths has important advantages in termsof information hiding.
Firstly, it permits agents to make inferences from beliefs without needing to know the
identity of the components from which the evidence is derived. Furthermore, agents
can determine whether a belief provides new information without knowing the actual
value of the observations that the beliefs were based on. Agents also use property
paths in other contexts as well, such as to describe their diagnostic capabilities (see
Chapter 5). Note that thefromEvidence field only specifies which properties an
agent used as evidence to produce the belief, and not the values of the properties. If
desired, an agent can provide the actual property values of this evidence as a separate
observation.

An agent may also optionally communicate additional information about the observa-
tions and knowledge it used to produce the belief. Providingsuch additional information
allows other agents to more effectively cache information,compute the value of available
actions, and aggregate similar requests, but some agents may choose not to provide this
information for policy reasons.

Agents represent likelihoods analogously to beliefs. The primary difference is that
instead of adistribution table representingP(x|e), a likelihood contains alikelihood
table representingP(e|x).

Though CAPRI does not provide agents with the ability to explicitly represent proba-
bilistic beliefs over relationship properties, in many cases one can accomplish effectively
the same thing using beliefs over the properties of a component. For example, if an agent
wishes to express the belief that with 80% probability anHTTP Connectionis to a web
server with IP address 192.0.0.1 and with 20% probability the HTTP Connectionis to a
web server with IP address 192.0.0.2, it can indicate this asa belief about the value of the
IP address property of the web server component.
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4.2.4 Probabilistic dependency knowledge

One of the primary ways in which CAPRI differs from previous architectures for probabilis-
tic diagnosis is that agents can exchange probabilistic dependency knowledge. Dependency
knowledge describes the probabilistic relationships between component and diagnostic test
properties in terms of conditional probability tables (CPTs). Unlike beliefs and likelihoods
that describe probabilistic evidence about individual components and tests, probabilistic
dependency knowledge applies to all individuals in a particular class. For example, if web
servers in one Internet autonomous system (AS) fail more frequently than web servers in
another AS, a piece of dependency knowledge about the class of all web servers might ex-
press the conditional probability a web server has failed given its AS number. Dependency
knowledge may come either from human experts or from Bayesian learning. For many
component classes such as IP paths, the CPTs associated withthe dependency knowledge
simply deterministically encode truth tables for AND or OR.In such cases application
developers or other experts can easily specify the CPT. Evenif the exact conditional prob-
abilities are unknown, however, agents can learn them collectively using Bayesian learn-
ing [57].

The probabilistic dependency knowledge for a component class describes a kind of
probabilistic “success story” in the sense that it allows anagent to infer the probability
that a component’s status isOK given observations and beliefs about the properties of other
components in the network. Conditional probability tablesprovide diagnostic agents with
the ability to perform bothcausalanddiagnostic inference. Causal inference allows an
agent to infer the status of a component from the status of other components it depends on.
For example, if a web server has failed, then an HTTP connection to that web server will
also fail. Diagnostic inference enables an agent to infer the status of a component from
the status of other components that it affects or from diagnostic tests that depend on the
component. For example, a failed ping test to a destination host may indicate that the host
has failed.

A key feature of probabilistic inference using Bayesian networks is that it facilitates
the reuse and composition of specialized dependency knowledge about related component
classes. Agents can then take advantage of new dependency knowledge for inference with-
out domain-specific knowledge. For example, someone might develop a new application
classNewAppand create a knowledge agent that provides dependency knowledge indicat-
ing how the status of aNewAppcomponent depends on the status of two relatedHTTP
Connections. Suppose that another specialist agent has the ability to diagnoseHTTP Con-
nectionfailures. A regional agent that knows of the existence of both of the above agents
may then offer a new diagnostic service that uses dependencyknowledge aboutNewApp
and the diagnostic capabilities of theHTTP Connectionspecialist to diagnoseNewApp
failures.

By collecting probabilistic dependency knowledge from other agents, an agent can gain
new diagnostic capabilities and diagnose failures that it could not diagnose before. For ex-
ample, an agent that learns the conditional probability of TCP connection failure given the
source and destination ASes of the connection may communicate this dependency knowl-
edge to other agents so that they can diagnose TCP connectionfailures as well. Or an agent
might learn the probability of observing certain web browser application errors given the
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status of the destination web server and the user’s network connectivity. An agent may then
communicate this newly learned diagnostic knowledge so that other agents can diagnose
web connectivity failures given observations of web browser errors.

CAPRI enables agents to define new component and diagnostic test subclasses for ex-
tensibility while retaining compatibility with agents that do not have knowledge about the
new subclasses. To support diagnosis of such new subclasses, when building a probabilistic
failure dependency graph for a particular component of class C, an agent may use CPTs
from its knowledge base for the classC or any superclass ofC. For example, if an agent has
the knowledge to infer the status of anIP Link component but does not have any knowledge
pertaining to the subclassWireless IP Link, then it can use its knowledge ofIP Links to di-
agnose a component of classWireless IP Link. This aids extensibility by enabling agents
to introduce new subclasses of existing classes without disrupting the ability of existing
agents to diagnose components of previously defined classes.

Table 4.1 gives an example of probabilistic dependency knowledge expressed as a con-
ditional probability table. Figure 4-4 demonstrates how anagent represents the knowledge
in Table 4.1 using XML.

DNS Lookup TestdnsLookupResult:
dnsLookupResult dnsLookup.statusP(dnsLookupResult|

dnsLookup.status)
LOOKUP ERRORCONFIRMED FAIL 0.70
LOOKUP ERRORUNCONFIRMED FAIL 0.05
CORRECT FAIL 0.01
INCORRECT FAIL 0.10
LOOKUP ERROR FAIL 0.05
ALIAS FAIL 0.09
LOOKUP ERRORCONFIRMED OK 0.01
LOOKUP ERRORUNCONFIRMED OK 0.02
CORRECT OK 0.40
INCORRECT OK 0.01
LOOKUP ERROR OK 0.01
ALIAS OK 0.55

Table 4.1: An agent represents probabilistic dependency knowledge for aDNS Lookup
Testas a table of conditional probabilities. The value of the property dnsLookupResult
depends on the value of its parentdnsLookup.status.

A piece of dependency knowledge contains the following fields:

1. A subject indicating the component or test class for which this knowledge applies
(e.g.HTTP Connection). The component or test class is defined in the component or
test ontology.

2. A property indicating the property of the component for which this piece of knowl-
edge applies (e.g.status).
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<knowledge>
<subject> Verify_DNS_Lookup_Test </subject>
<property> dnsLookupResult </property>
<cpt>
<parents> dnsLookup|status </parents>

<entry value="LOOKUP_ERROR_CONFIRMED" parentVals="FAIL" p="0.70" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" parentVals="FAIL" p="0.05" />
<entry value="CORRECT" parentVals="FAIL" p="0.01" />
<entry value="INCORRECT" parentVals="FAIL" p="0.10" />
<entry value="LOOKUP_ERROR" parentVals="FAIL" p="0.05" />
<entry value="ALIAS" parentVals="FAIL" p="0.09" />

<entry value="LOOKUP_ERROR_CONFIRMED" parentVals="OK" p="0.01" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" parentVals="OK" p="0.02" />
<entry value="CORRECT" parentVals="OK" p="0.40" />
<entry value="INCORRECT" parentVals="OK" p="0.01" />
<entry value="LOOKUP_ERROR" parentVals="OK" p="0.01" />
<entry value="ALIAS" parentVals="OK" p="0.55" />

</cpt>
</knowledge>

Figure 4-4: An agent represents the probabilistic dependency knowledge from Table 4.1
using XML.
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3. A parents field supplying the list of parent variables on which the property de-
pends. If aparents field is empty, the conditional probability table (CPT) for this
piece of knowledge represents prior probabilities; otherwise this piece of knowledge
represents conditional probabilities. Parent variables are described in terms of prop-
erty paths, as defined in Section 4.2.3. Parents may include both other properties
of the subject component as well as properties of other related components(e.g.
httpServer.status).

4. A cpt (conditional probability table) containing a list of entries stating for each value
and each combination of parent values for the specifiedproperty, the probability
that the property has that value. For example, this can express the probability that
anHTTP Connectionsucceeds given each possible combination of status values for
the web server and the routers along the IP path to the web server. Theparents and
cpt fields together specify how one property (such asstatus) of a component of the
specified class depends on the other properties of the component as well as properties
of other components.

5. An optionalknowledgeMethod describing the algorithm used to make create the
knowledge. For example, this knowledge may have been supplied manually by an
expert, or it may have been learned from observations.

A piece of diagnostic knowledge may express both prior probabilities as well as con-
ditional probabilities. If the CPT contains only 1s and 0s, then it specifies a deterministic
dependency model, such as an IP path that functions if and only if all of its constituent
links function, or a DNS resolution process that functions if at least one of several alter-
native DNS servers functions. In general, the CPT can express any arbitrary conditional
probability function of the set of parent variables. One drawback of expressing dependen-
cies in terms of CPTs is that CPTs only support discrete variables. One way to address
inference over continuous variables is to convert them to discrete variables. For example,
rather than considering bandwidth as a continuous variable, one might discretize bandwidth
into three values, high, medium, and low. Alternatively, tosupport the communication of
knowledge using continuous variables (for example, latency), agents may use an alternative
representation such as a parameterized Gaussian model of probabilities. Another drawback
of representing dependencies as CPTs is that a CPT representation may be unnecessarily
verbose for certain types of data that can be compactly represented in another form, such
as a BGP routing table, for example. For this reason, two agents that wish to communi-
cate such specialized diagnostic knowledge may choose to use a more compact alternative
representation when appropriate.

Agents may also express fragments of dependency knowledge if they only know the
dependencies for a fraction of the component individuals ina class. For instance, an agent
might know the conditional probability of failure for TCP connections between a particular
source and destination, but not for other sources and destinations. One caveat with using
fragments of dependency knowledge is that if an agent does not have a complete CPT for a
variable, it cannot accurately perform certain inference operations such as marginalization.

Note that it is possible to have conflicting diagnostic knowledge of a component class
if the sets of parents or the probabilities do not agree. In such a case, an agent uses its local
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policy to decide which CPT to use. Alternatively, an agent might attempt to produce a new
combined conditional probability distribution using a noisy-OR or noisy-AND rule.

CAPRI provides an initial knowledge agent that supplies other agents with knowledge
of certain dependencies among component classes in the common component ontology,
such as the deterministic dependence of anHTTP Connectionupon its associatedLocal
Network, HTTP Server, DNS Lookup, andIP Routingcomponents.
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Chapter 5

Discovering and Advertising Diagnostic
Capabilities

Each agent in CAPRI has the capability to communicate certain types of diagnostic infor-
mation, described in Chapter 4. Chapter 6 presents the actual protocol that agents use for
communication. This chapter describes how agents express their diagnostic capabilities
and represent the diagnostic capabilities of other agents.The key challenge is to describe
diagnostic capabilities in a flexible and extensible fashion to support many different types
of diagnostic capabilities while enabling agents to understand and take advantage of the ca-
pabilities of other agents. For extensibility to support new diagnostic technologies, CAPRI
must allow new diagnostic agents with new capabilities to share their expertise with exist-
ing agents. To address this challenge, CAPRI provides agents with a common service de-
scription language for describing diagnostic capabilities in terms ofservices. This service
description language enables agents to describe the observations, beliefs, and knowledge
they can provide to other agents so that other agents can takeadvantage of these new diag-
nostic capabilities. Using this language, agents can look up the capabilities of other agents
and dynamically determine which agents to contact to obtaindesired diagnostic informa-
tion.

The strength of this service description language is it allows other agents to look up and
compute the value of available services based on the inputs and outputs of a service, and
not just by name. Explicitly specifying the inputs and outputs of a service provides benefits
in terms of extensibility so that agents can determine the usefulness of new services without
domain-specific information.

For scalability to support diagnosis using a large number ofagents, this service descrip-
tion language also helps agents manage the complexity of selecting services in a system
with many agents and services. CAPRI allows agents to specify input and requester re-
strictions to limit the requests that each agent receives and to reduce the number of services
that each agent needs to know about.

Another advantage of dynamically selecting actions according to service descriptions is
that it provides CAPRI agents with the flexibility to supporta multitude of communication
patterns and take advantage of new agents. Unlike previous systems for distributed fault
diagnosis that only support a limited range of diagnostic communication patterns, CAPRI
gives agents the ability to discover new services and the flexibility to choose among mul-
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tiple alternative methods for diagnosis. For example, if anagent diagnosing an HTTP
connection failure cannot contact an agent that monitors the web server’s status, then it
may choose to infer the probability of web server failure from user connection histories
collected from other agents. The service description language described in this chapter
enables agents to dynamically select an agent to contact to obtain necessary diagnostic
information.

Both service descriptions and diagnostic information refer to components and proper-
ties using the same component ontology, but the service description language agents use to
describe their diagnostic capabilities differs from the language that agents use to describe
diagnostic information for several reasons. Firstly, the protocol for exchanging diagnos-
tic information is different from the protocol for exchanging service descriptions; service
descriptions are communicated between agents and the service directory, while diagnos-
tic information is communicated from agent to agent. Secondly, agents use diagnostic
information and service descriptions in different ways; diagnostic information is used to
describe network components and dependency knowledge for inference, while service de-
scriptions are used to describe agent capabilities and to help agents select next actions to
take. Though it is possible to define a kind of upper ontology that unifies these two con-
cepts into a single language, it is not necessary to do so in order to perform diagnostic
reasoning in CAPRI. Therefore for clarity, simplicity, andease of implementation, CAPRI
defines separate languages for diagnostic information and service descriptions, though both
languages refer to component and properties defined in the same component ontology.

5.1 Diagnostic capabilities and services

Before an agent can request diagnostic information, it needs to know thediagnostic ca-
pabilities of other diagnostic agents. Diagnostic capabilities describe the types of infor-
mation that an agent can provide to requesters, including observations, beliefs and likeli-
hoods, diagnosis, and knowledge. A diagnostic capability also specifies the input that the
agent requires to produce the information it provides. Eachagent may have a different
set of diagnostic capabilities because each agent may have the ability to diagnose differ-
ent components, perform different tests, and provide different observations. Since each
agent may have different capabilities, in order to effectively perform diagnosis a diagnostic
agent needs the ability to advertise its own capabilities and look up the capabilities of other
agents.

An agent advertises its ability to provide diagnostic information in terms ofservices.
CAPRI provides agents with a common language for describing, advertising, and looking
up services. When an agent joins the system, it advertises its diagnostic capabilities in
terms of service descriptions to an agent directory. Agentsperiodically retrieve service
descriptions provided by other agents from the agent directory to dynamically discover the
capabilities of other agents. This thesis assumes a centralized agent directory, but one might
implement this directory in a more distributed way for additional scalability and robustness.

Each agent may advertise a different set of services depending on its diagnostic capa-
bilities. Each agent may advertise zero or more services. Each service is associated with
an individual diagnostic agent. Agents may offer four different types of services: obser-
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vation services, belief services, diagnosis services, anddependency knowledge services.
A service can be thought of as a remote procedure call that when given input in a certain
form, produces a specified type of output. For example, an agent may provide a traceroute
service that when given a destination IP address, produces observations about the routers
along the IP path to that IP address.

Some agents may collect and aggregate information from other agents to produce new
diagnostic information. To support such collection of information, in addition to advertis-
ing service descriptions, CAPRI allows agents to communicate notification subscriptions.
A notification subscription requests notifications for information that matches the subscrip-
tion. For example, a web server history diagnostic agent mayrequest to receive notifica-
tions about the status of HTTP connections to a set of web servers in order to compute the
probability of failure of these web servers. The concept of subscribing to notifications of
diagnostic information in CAPRI is related to the idea of content-based matching in pub-
lish/subscribe systems [28]. A major challenge of content-based publish/subscribe systems
is the cost of maintaining a large number of subscriptions and matching content to subscrip-
tions. Section 5.4 describes how agents in CAPRI can addressthis issue by constructing
aggregation-friendly agent topologies.

This thesis primarily focuses on how agents can exchange andreason about diagnostic
information. Though this thesis discusses how agents can discover and make use of services
other agents provide, reasoning about the relationships among services is out of scope of
this thesis. Therefore as a first step, in this thesis I define services using a flat namespace.
Services do not specify their relationship to other services.

5.1.1 Service advertisements

The purpose of service advertisements is to provide a requester with enough information
to determine whether or not to use a service. Therefore a service advertisement specifies
both optional and required inputs for the service, the output produced by the service, and
the cost of using the service.

Figure 5-1 gives an example of a DNS lookup belief service advertisement. The bel:dns-
lookup.status service advertised requires as input aDNS Lookupcomponent and itshost-
name andipAddrs properties. The advertisement restricts the set of valid requesters to
regional agents. The service produces a belief about the status of theDNS Lookupcom-
ponent provided as input using thednsLookupResult of a Verify DNS Lookup Testas
evidence. In addition, this service provides an observation of thednsLookupResult of
a Verify DNS Lookup Testand dependency knowledge about the prior probabilities of the
status of individuals of theDNS Lookupcomponent class. Appendix A.3 contains the full
specification of service descriptions.

Every service advertisement and notification subscriptioncontains the following:

1. Service ID. A string to identify this service or subscription (e.g. “diag:http”). Note
that a service ID has no inherent meaning and is unique only tothe agent advertising
the service. Another agent may advertise a service with the same service ID.

2. Agent URI. The agent URI and service ID string uniquely identify a service or sub-
scription. For robustness to DNS lookup failures, agents identify themselves using a
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<serviceAdvertisement serviceID="bel:dnslookup.status"
agentURI="http://18.26.0.240/dnsAgent"
time="1170701032"
messageType="beliefRequest"
cost="10000"
requesterType="regional"
inputClass="DNS_Lookup">

<inputProperty propPath="hostname" required="true" />
<inputProperty propPath="ipAddrs" required="true" />

<outputBelief propPath="status">
<fromEvidence propPath="verifyDNSLookupTest|dnsLookupResult" />

</outputBelief>

<outputObservation propPath="verifyDNSLookupTest|dnsLookupResult" />

<outputKnowledge subject="DNS_Lookup" property="status" />

</serviceAdvertisement>

Figure 5-1: A DNS lookup specialist agent advertises a belief service advertisement that
requires as input aDNS Lookupcomponent and itshostname andipAddrs properties, and
produces as output a belief, an observation, and dependencyknowledge.
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URI with an IP address (e.g. http://18.26.0.240/regionalAgent).

3. Last modification time. The time this service or subscription was last updated to
make it easier for the agent directory and other agents to determine whether to update
their service tables.

4. Message type. The type of service advertised. The message type may be either
an observation service, belief service, knowledge service, diagnosis service, or a
notification subscription.

5. Cost. An integer cost of using this service to help other agents decide which ser-
vices to prefer. For notification subscriptions, cost represents the amount that the
subscriber is willing to pay for this information. Agents might set costs based on the
time this service requires to produce a response, the computational cost of a diag-
nostic test, or a monetary cost. This thesis assumes that costs are exogenous to the
system and does not discuss how agents set costs.

6. Requester restrictions. An agent may choose to restrict the range of allowed re-
questers for a service. For example, specialist agents may choose to only answer
requests from regional agents and not from user agents for scalability reasons. Simi-
larly, a regional agent may choose to provide diagnosis onlyto requesters in a partic-
ular region of the network. A requester restriction may be based on credentials or on
other properties of the requester such as the requester’s IPaddress. For notification
subscriptions, the requester restrictions indicate the set of requesters from which the
subscriber wishes to receive information.

5.1.2 Knowledge services

In addition to the fields common to all service advertisements, a knowledge service adver-
tisement contains the following:

1. Output knowledge. A list of knowledge entries this agent can provide. Each knowl-
edge entry specifies the subject, property, and parent property paths of the knowledge
(see Section 4.2.3 for the definition of property paths). If no parent property paths
are provided, then the knowledge represents prior probabilities. The parent property
paths are relative to the subject component of the knowledgeentry. For example, an
agent might advertise the ability to provide dependency knowledge forHTTP Con-
nectionstatus givenlocalNet.status, dnsLookup.status, ipRouting.status,
andwebServer.status.

5.1.3 Observation and belief services

An observation service provides observations about diagnostic tests or network compo-
nents. A belief service can also provide probabilistic beliefs about the properties of compo-
nents. In addition to the fields contained in a knowledge service advertisement, observation
and belief service advertisements also contain the following:
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1. Input class. The class of diagnostic test or component this service requires as input
(e.g.HTTP Connection). This is not necessarily the same as the class of component
for which this service provides beliefs and observations.

2. Input properties . The properties that the agent requires to provide this observa-
tion (e.g. destIP). This is specified as a list of property paths. Input properties
may refer to properties of other components as well using property path notation
(e.g. asPath.nextASHop.srcAS). Each input property also indicates whether it is
required or optional. A requesting agent must provide the value of all required prop-
erties in its request and should provide the value of all known optional properties.
Not specifying an optional property may diminish the accuracy of the information
produced by the service. In addition, an agent may restrict the set of valid input
components by specifying anindex functionand andindex rangefor a required in-
put property. If these are specified, then the value of the index function on the input
property must fall within the specified index range. Input restrictions are described
in more detail below.

3. Output observations. A list of properties for which this service provides observa-
tions, specified as a list of property paths relative to the input component.

4. Output beliefs. For belief services, a list of properties for which this service provides
beliefs, specified as a list of property paths relative to theinput component.

5. Output likelihoods. For belief services, a list of properties for which this service
provides likelihoods, specified as a list of property paths relative to the input compo-
nent.

Note that if multiple observations match the input provided, an observation provider
may supply multiple observations in the response. For example, a request for observations
of HTTP connection failure to a particular destination overthe past hour may return mul-
tiple results. Alternatively, an agent can subscribe to notifications to receive continuously
updated information. Notifications are described in Section 5.1.5.

In many cases, an agent can only provide diagnostic information about a subset of com-
ponents in a class. For example, an agent may only have the ability to perform traceroutes
for IP Routingcomponents whosesrcIP is within a given range. CAPRI provides agents
with the ability to specifyinput restrictionsto limit the set of permissible input compo-
nents that an agent accepts. An input restriction consists of an index functionand anindex
rangeon a component property. An input satisfies an input restriction if the index function
applied to the property value falls within the index range. CAPRI provides the following
index functions:

1. b64toint. Converts a base64 encoded string to an integer.

2. mod y. Returns the value ofx mody for a given value ofy.

3. iptoint. Convert an IP address to its network integer representation.

4. asn. Convert an IP address to an AS number.
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An agent may compose multiple index functions in an input restriction. For example, the
index functioniptoint,mod 4 first converts the property value from an IP address string
to an integer, and then computes its value modulo 4.

Agents can define input restrictions for a number of purposes. One use of index func-
tions is to distribute responsibility for a class of components among multiple agents. For
example, for scalability, one might partition the set of allISPs by their AS number and
have a separate agent provide diagnostic information for each ISP. As mentioned above,
another use of input restrictions is to describe the capability to diagnose only a subset of
the components in a class. An agent may also use input restrictions together with costs to
indicate different costs for different input components.

5.1.4 Diagnosis services

A diagnosis service returns the likelihood of several candidate explanations given a compo-
nent perceived to have failed. In addition to all the parts ofa belief service advertisement,
a diagnosis service advertisement contains the following:

1. Candidate explanations. The set of properties that a requesting agent can provide in
its explanations (e.g.webServer.status, asPath.nextAS.status). This allows a
requesting agent to determine the level of detail that the diagnosis provider agent can
provide in its diagnosis.

5.1.5 Notification subscriptions

A notification subscription resembles a service advertisement, and contains the following
parts:

1. Input class. The class of diagnostic test or component for which to receive notifica-
tions (e.g.HTTP Connection).

2. Input properties . The properties that the agent wishes to receive, specified as a list
of property paths. (e.g.status). This is specified as a list of property paths. Input
properties may refer to properties of other components as well using property path
notation (e.g. asPath.nextASHop.srcAS). As with service advertisements, each
input property also indicates whether it is required or optional and may specify an
index function and range. An agent should only send information to a subscriber
that matches all the required input properties and input restrictions. Note that since
input properties may refer to properties of components other than the one specified
in the input class, a notification may contain information about multiple related com-
ponents, and not just components of the input class.

5.1.6 Strengths and limitations

This service description language allows agents to describe a wide range of services, sup-
porting the exchange of observations, beliefs and likelihoods, and dependency knowledge
in a non–domain-specific way. It allows new agents to advertise new services that provide
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new information. It enables aggregation of services for scalability using both input and
requester restrictions. In addition, it allows agents to advertise services useful for tasks
other than fault diagnosis, such as predicting properties of a component besides status.
For example, an agent may provide a service for predicting the duration of failure for a
component.

Unlike most previous systems for fault diagnosis that use a fixed procedure for diagno-
sis, the service description language described in this chapter allows agents to dynamically
select diagnostic actions to take based on the information and knowledge an agent has
available. This has several benefits. Firstly, it allows agents to take advantage of new and
better diagnostic services provided by new agents. Secondly, it allows a requester agent
to choose the best service for the situation based on the properties of the components in
its component graph. Thirdly, it allows the modular distribution of diagnostic reasoning
across multiple agents so that no single agent needs to have all the capabilities required
for diagnosis. Chapter 7 describes in more detail how agentsdynamically select diagnostic
actions using service descriptions.

This service description language has some limitations, however. Using this service
description language, an agent advertises its input restrictions and then a requester must
determine whether an input component satisfies the input restrictions. Specifying input
restrictions has the advantage that it allows a requester agent to select services dynamically
based on the properties of components. In some cases, however, a requester agent might
not know whether an input satisfies an input restriction because the agent does not know
the value of the property associated with the input restriction. In such cases, a requester
may either simply assume that the input is valid and ignore the input restriction, or assume
that the input is invalid and not send a request. Both approaches have drawbacks, however.
Assuming that the input is valid leads to unnecessary requests, while an agent that assumes
the input is invalid loses the opportunity to obtain additional information.

Similarly, an agent advertising a service might not know whether or not an input com-
ponent is valid until the agent processes the request. In other cases, an agent might not wish
to reveal the set of inputs that it accepts for privacy or policy reasons. In both of these cases
an agent may simply omit the input restriction and return an error message when the agent
receives an invalid input, but doing so makes it more difficult for requesters to accurately
determine the expected value of using a service.

Another limitation of this service description language isthat it assumes that an agent
knows what information a service will produce. In many cases, however, an agent does not
know whether it can obtain the information advertised in theservice until after performing
a diagnostic test. One way to address this challenge is to allow the description of services
that do not always return the information requested. This makes it much more difficult for
a requester to compute the value of a service, however.

5.2 Service discovery

The information provided in these service advertisements enables other agents to automat-
ically discover new services and to determine what servicescan provide useful information
for diagnosis. Chapter 7 describes the procedure that agents use for determining what ser-
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vices to use.
Each agent maintains a table of service advertisements in aservice table. In this thesis

I assume that an agent can send and receive service advertisements to and from a central
agent directory server, and that all agents know the identity of the agent directory server.
When an agent starts up for the first time, it advertises all the services it can provide to the
agent directory, retrieves a list of available services, and stores these service advertisements
in its service table. The agent directory uses the requesterrestriction information in the
service advertisements to decide what services to provide each agent. Agents periodically
poll the directory server in order to discover new services.

The combination of notification subscriptions and service advertisements enables agents
to describe many different types of services, including data aggregation services. Aggre-
gating data can be thought of as transforming one type of datainto another type of data.
An aggregating agent may subscribe to notifications or request diagnostic data from many
other agents, and then advertise the ability to provide aggregated data. For example, an
agent may offer a service that takes as input a destination web server, and provides as out-
put the total number of recent users who have connected to it over the past hour and the
number of users who could not connect.

5.3 Constructing a scalable agent topology

An important feature of CAPRI is that the service description language facilitates the cre-
ation of a scalable and aggregation-friendly topology for agent communication by enabling
agents to specify requester restrictions and input property index ranges. IP routing in the
Internet using BGP scales well because each router can aggregate routes on the basis of its
IP prefix and route data through a relatively small number of neighboring routers. Simi-
larly, in CAPRI, each diagnostic agent only needs to know about a relatively small number
of other agents in the network. Regional agents effectivelyact as routers of diagnostic re-
quests so that other agents do not need to know about all otheragents in the network. User
agents can send any diagnostic request to a regional agent without knowing what diagnostic
capabilities other agents may be able to provide. The regional agent then decides which
specialist agents to contact next. The regional agent effectively acts as a gateway router for
diagnostic information, hiding knowledge and specialist agents from user agents.

Specialist agents may also act as gateways to other more specialized agents as well.
For example, a generic DNS specialist agent may dispatch requests for DNS lookup beliefs
to other agents that specialize in particular aspects of DNSlookups. The generic DNS
specialist agent may combine information from these more specialized DNS agents and
effectively hide the knowledge of the specialized DNS agents from the regional agent. An
agent may dispatch incoming requests on the basis of the index ranges of input properties
(for example, to achieve load balancing by distributing theresponsibility of diagnosis);
or based on additional information, possibly obtained fromother tests. An example of
the former is the way in which web server history agents are distributed by destination IP
address in the prototype implementation described in Chapter 8. An example of the latter
is the way in which regional agents in the prototype implementation decide whether to
contact a server history agent, a DNS lookup test agent, or ASpath test agent based on the
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probabilistic dependency knowledge, the value of information, and the result of AS path
lookups they perform.

Such hierarchical organization of diagnostic specialtieshas several benefits. Firstly
it reduces the complexity of the service tables at each agentsince an agent only needs to
know about a limited number of other agents. Secondly, it makes it easier to add new agents
into the system since only a relatively small number of agents need to know about a new
agent. Thirdly, it promotes effective aggregation and caching of diagnostic information.
By having a small set of agents handle requests for information of a particular type, those
agents can effectively cache information for future requests.

One must balance several tradeoffs to construct an effective aggregation tree for diagno-
sis. If there are too many levels, it may lead to inefficiencies and be more prone to failure.
If there are too few, information and requests may not be effectively aggregated. Similarly,
if requests are distributed among too many agents, it may reduce the effectiveness of ag-
gregation, but if there are too few agents, the agents may become overloaded. In Chapter 8
I demonstrate and evaluate several types of aggregation in aprototype implementation.

5.4 Managing the cost of notifications

CAPRI allows diagnostic agents to collect information fromother agents via notification
subscriptions. One challenge in CAPRI is to manage the cost of such notifications. CAPRI
agents reduce the number of messages sent by batching many pieces of information to-
gether. Though batching may introduce some delay, frequently a subscriber to a certain
type of information does not require the information right away. For example, in the pro-
totype implementation described in Chapter 8, user agents batch connection history infor-
mation to reduce the number of messages sent to regional agents.

One challenge of publish/subscribe systems is the cost of matching information against
a potentially long list of subscribers. Unlike publish/subscribe systems for distributing
news in which a large number of users may potentially subscribe to notifications of the
same information, however, in distributed Internet fault diagnosis frequently only a rela-
tively small number of agents need to know any particular piece of information. In many
cases, only certain specialist agents have the ability to make inferences from a particular
observation, or an observation is only useful for diagnosing failures within a particular re-
gion of the network. For example, in the prototype implementation, for any given HTTP
connection observation, there exists only one server history agent to which a notification
should be sent.

In those cases where many agents do wish to receive notifications of the same piece
of information, frequently a data aggregation service can reduce the amount of informa-
tion that must be distributed. For example, in the prototypeimplementation, rather than
distributing connection history information to all diagnostic agents, connection history in-
formation goes only to web server history and server statistics specialist agents. These
specialist agents then compute aggregate statistics such as the number of consecutive fail-
ures to a web server. Specialist agents then communicate only these aggregate statistics—or
beliefs inferred using these statistics—to regional agents. The web server history agent is
a type of data aggregation agent because it reduces a large amount of connection history
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information into a concise aggregate statistic or belief about the status of a web server. This
procedure for data aggregation both reduces the number of notifications sent and hides the
details of data aggregation and belief inference from regional agents.
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Chapter 6

Diagnostic Message Exchange Protocol
(DMEP)

Another challenge of distributed Internet fault diagnosisis to develop a common commu-
nication protocol that enables agents to perform diagnosisusing information from multiple
sources, including information from new agents with new capabilities. To address this chal-
lenge, CAPRI provides agents with a Diagnostic Message Exchange Protocol (DMEP) for
communicating diagnostic information, includingobservationsof diagnostic test results
and component properties, probabilisticbeliefsandlikelihoodsabout the values of various
properties of components, and probabilisticdependency knowledgespecifying the depen-
dency relationships among classes of components and diagnostic tests that agents can use
to make inferences from observations, beliefs, and likelihoods.

Note that unlike previous architectures for communicatingdiagnostic information such
as Sophia [93] that only allow communication of observations of component properties, or
belief propagation algorithms that only enable the exchange of probabilistic beliefs [17],
CAPRI also enables agents to communicate probabilistic dependency knowledge about
classes of components. Exchanging such dependency knowledge gives agents the ability to
learn and accumulate new dependency knowledge to take into account new diagnostic tech-
nologies and changing network conditions. For example, an agent may learn that with 90%
probability, when three different users cannot connect to aweb server in the past minute,
the web server has failed. An agent may then communicate thisdependency knowledge to
other agents who can then diagnose web server failures with greater accuracy and fewer ac-
tive probes. DMEP also provides agents with the informationnecessary to make effective
accuracy/cost tradeoffs and resolve conflicting information.

Recall that in addition to the communication of diagnostic messages, agents also com-
municate service descriptions (see Chapter 5) and may retrieve component class and prop-
erty definitions (see Chapter 4). This chapter discusses only the communication of diag-
nostic messages.
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6.1 Communicating diagnostic messages

CAPRI agents communicate diagnostic observations, beliefs and likelihoods, dependency
knowledge, and diagnostic results with one another by sending messages. A single message
may contain multiple pieces of diagnostic information. Diagnostic agents may create new
information as they process messages they receive from other agents. While processing a
message, an agent may send additional requests and notifications to other agents.

A message from one agent to another is either a request, a response to a request, or
an asynchronous notification. Requests and responses allowagents to request particular
pieces of information from other agents, while notifications allow agents to communicate
new information as it becomes available. The types of messages correspond to the types of
services described in Chapter 5. Each type of request has a corresponding type of response.

1. Observation request. The requesting agent requests an observation of a property
of a component from a provider agent. The provider agent may already have this
information or it may need to perform a diagnostic test to collect it. Responding
to observation requests does not require any probabilisticinference. Examples of
observation requests are requests for connection histories, requests for the results of
a diagnostic test, and requests for aggregate statistics about a component.

2. Belief request. A belief request produces a probabilistic belief about thevalue of a
component property. Belief requests include requests for the probability that a partic-
ular component has failed, or the likelihood that one of a number of other components
has failed given a known component failure.

3. Knowledge request. The requesting agent requests a piece of dependency knowl-
edge from another agent for a property of a component of a particular class. For
example, an agent may wish to know the probabilistic dependencies for the status
of a class of component or the prior probability of a propertyfor components of a
particular class.

4. Diagnosis request. The requesting agent requests diagnosis from another agent. The
diagnosis provider agent may do additional tests and recursive requests to diagnose
the failure. In a request for remote diagnosis, the requester wishes to know the like-
lihood of each of a set of possible explanations for a failure. Unlike a belief request,
a diagnosis response indicates the probability that a set ofproperties have particu-
lar values whereas a belief response only provides the probability distribution for a
single variable.

5. Notification. Asynchronous notifications allow agents to communicate new informa-
tion when it becomes available, including new observations, beliefs, and knowledge.

6.1.1 Protocol requirements

To support both diagnosis on demand as well as the asynchronous propagation of diagnostic
information, DMEP allows the communication of both requests and responses as well as
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asynchronous notifications. In designing a protocol for distributed diagnosis in the Internet,
we must consider the cost of diagnosis. DMEP provides several mechanisms for agents to
control the cost of diagnosis.

In order to prevent loops and runaway explosions of diagnostic messages, each diag-
nosis request contains a budget, confidence threshold, and expiration time to bound the
number of messages produced in response to a diagnosis. A cost budget or a confidence
threshold for diagnosis allow agents to trade off accuracy and cost. Agents also specify an
expiration time to bound the amount of time a diagnosis can take; sometimes a rapid diag-
nostic response is more important than a slow but accurate response. These mechanisms
for limiting the number of messages generated are similar tothe idea of decrementing a
TTL when routing an IP packet. Another technique for preventing certain loops is to not
use a service if its service description indicates that it does not provide any new informa-
tion. In addition, using the procedure for diagnosis described in Chapter 7, for any given
diagnosis request, a diagnostic agent will not reuse the same service with the same input.
This prevents certain infinite loops by ensuring that every time an agent performs an action,
either the set of available actions decreases or the agent gains some additional information.
Note that simply recording the diagnostic agents who have contributed to diagnosis is not
enough to prevent looping because an agent may legitimatelycontribute multiple times to
a diagnosis due to the incremental, iterative nature of diagnosis.

6.1.2 Message format

Each message has the following format:

1. Header indicating the type of message: observation request, belief request, knowl-
edge request, diagnostic request, notification, observation response, belief response,
knowledge response, or diagnostic response.

2. TherequesterID of the requesting agent as a URI written using the IP address of
the agent.

3. TheserviceID indicating the service that the agent is requesting. The service ID
must match the service ID provided in the service description of the responding
agent.

4. Message-type specific headers.

5. An messagebody containing additional diagnostic data, beliefs, and knowledge. For
example, if a diagnostic agent wishes to pass on all the data it has about a failure for
another agent to diagnose, this body is a failure story comprising all the observations
and beliefs it has related to the failure.

Below I describe in more detail the format of each type of diagnostic message. Please
refer to Appendix A.2 for examples of diagnostic messages and the detailed specification
of the protocol.
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6.1.3 Observation and belief requests

Observation and belief requests have similar forms. An observation or belief request con-
tains the following message-type specific headers:

1. A requestID string.

2. An integerexpires indicating the expiration time of the request specified as the
number of milliseconds since Jan 1, 1970 UTC. If the expiration time passes, then
the agent does not perform any more diagnostic actions and returns the information
it has collected.

3. An integerbudget. Each diagnostic test or inference involves some computation
cost or network resource usage. The cost of diagnostic testsand inference is de-
ducted from the budget every time an agent performs a diagnostic action. If the
budget reaches zero, the request is dropped. To allow for further refinements later,
the default cost of a diagnostic action is 10. To bound the number of diagnostic
messages generated by a request, the default budget is 1000.

4. An inputComponent that satisfies the input requirements of the service description
for the observation or belief request.

The body of an observation or belief request must provide therequired inputs speci-
fied in the provider agent’s service description for the requested service. Note that even
though an observation request provides only a single input component, a requester can
supply observations and beliefs about other components in the body of the message. For
example, an observation request may provide anHTTP Connectioncomponent as input,
but also provide information about the hostname of theDNS Lookupcomponent associated
with theHTTP Connection. The requester can indicate the relationship between thesetwo
components using relationship properties.

Belief requests have the same format as observation requests. A request for belief asks
another agent to compute the probability some property of a component has a particular
valuex given any evidencee that the agent has. A belief represents the value ofP(x|e).

6.1.4 Knowledge requests

In addition to the header fields common to all requests, a knowledge request contains an
integer request ID. No additional information is required in a knowledge request.

6.1.5 Diagnosis requests

A diagnosis request asks for the likelihood of several candidate explanations for a compo-
nent failure. A diagnosis request specifies a list of candidate explanations, identifies the
component that has failed, and may provide the value of some of the component’s proper-
ties and the value of the properties of other related components as well. When requesting
remote diagnosis, an agent may optionally provide additional observations and beliefs (i.e.
the failure story) in the body of the request. The diagnosingagent may then incorporate
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the evidence in this failure story in its diagnosis. Additionally the output may include ad-
ditional observations, beliefs, and knowledge not directly related to the component under
diagnosis in order to assist in future diagnoses.

The primary difference between a diagnosis request and a belief request is that a diag-
nosis response indicates the probability that a set of variables has a particular value whereas
a belief response only provides the probability distribution for a single variable. This al-
lows an agent to answer questions such as, “Is my HTTP connection failure caused by the
failure of the destination web server or the failure of my network connection to my ISP?”
In addition, a diagnosis provider usually performs additional tests and requests to achieve
the desired confidence level.

Diagnostic requests include all the headers of a belief request with the addition of the
following:

1. A set of candidate explanations, where each explanation specifies a set of compo-
nents and their statuses. These explanations come from the candidate explanations
provided in the service description.

2. Confidence threshold. If the confidence in a diagnosis exceeds this threshold, then no
further diagnostic tests or inference need be performed. Each user requesting diag-
nosis in the Internet may have different accuracy and cost requirements for diagnosis.
Some may want more accurate and precise diagnosis while others may only want to
know the approximate location of failure. A confidence threshold enables requesters
to choose between a fast and inexpensive diagnosis versus a more costly and more
accurate diagnosis.

A diagnostic request may contain additional observations about the perceived failure
(the “failure story”) in the body of the message. Observations may include error codes from
an application, recent events, configuration files, run-time dependency analysis, and so on.
The service description for a diagnosis service specifies a list of both required and optional
input properties that are useful for diagnosis. A diagnosisrequester can use this service
description to decide what information to include in a diagnostic request. For example, the
input properties of a service description for an HTTP connection failure diagnosis service
may include the source IP, destination hostname, the time the failure occurred, the number
of recent failures the user has experienced, the application error message, and whether the
user is using a web proxy. The user agent can provide observations of all these properties
in the body of a diagnostic request. Note that an agent may include observations in its
failure story that it does not know how to use for diagnosis because such observations may
be useful to other agents.

6.1.6 Notification

A notification specifies the service ID of its associated notification subscription. The body
of a notification contains a list of one or more observations or beliefs. The body must
contain all the required input properties specified in the notification subscription.
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6.2 Responses

When an agent receives a request, it first needs to determine whether it can answer the
request. If the time has already expired, it does not have thecapability to respond, the
requester does not have permission to make the request, or ifthe budget is insufficient, then
it may refuse the request and return an error message.

Each response includes the integer request ID of the requestfor which it is a response.
The body of the response contains the information requestedby the agent. A response body
may also include additional useful information that was notexplicitly requested.

6.2.1 Observation response

To answer an observation request, an agent returns the requested information either from
its cache or by conducting a diagnostic test using the methodindicated in the service de-
scription. More generally, the output of a test may include multiple observations.

6.2.2 Belief response

When an agent receives a belief request, it may return its existing beliefs or it may choose
to perform additional tests to improve the accuracy of its beliefs. A belief response has
almost exactly the same form as an observation response, except that it may contain beliefs
as well as observations.

6.2.3 Diagnostic response

A diagnostic response reports the likelihood of each candidate explanation provided in
the request. When an agent receives a diagnostic request, itmay choose among multiple
methods for performing diagnosis. Chapter 7 describes the process of diagnosis in more
detail. Each time an agent requests information from another agent, it deducts the cost of
the the operation from its budget.

A diagnostic response may include all the types of data in a belief response. The re-
sponse should contain at least the amount of detail specifiedin the agent’s advertisement.
A response may also include additional observations, beliefs, and knowledge to justify the
explanations provided. A diagnostic response must containthe likelihood of each of the
candidate explanations specified in the original diagnostic request. The confidence in the
most likely explanation is defined as the likelihood of the most probable explanation given
the evidence that the diagnosis provider has.

6.2.4 Knowledge response

A knowledge response provides the requested knowledge.
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6.2.5 Error messages

There are several types of errors that can occur. Some types of error messages include the
following.

1. Insufficient input. An agent needs additional inputs to perform a service. This error
message specifies what additional data is necessary.

2. Permission denied. An agent may refuse a request from a requester with insufficient
permissions.

3. Request refused. An agent may decline a request for now, but accept requests in the
future.

4. Insufficient budget. The cost of responding to this request is greater than the supplied
budget.

5. Request expired. The expiration time has passed.

6.3 Messaging protocol

Many possibilities exist for the choice of transport protocol. In order to simplify adoption
and implementation, I choose an approach based on HTTP and XML.

The messaging protocol in CAPRI resembles existing remote procedure call protocols
such as XML-RPC1 and SOAP.2 XML-RPC does not easily support the complex data struc-
tures that diagnostic agents exchange, however, and the complexity of SOAP lessens its
appeal for use as a messaging protocol. Therefore I decide toimplement messaging in
CAPRI using a custom protocol based on HTTP.

To circumvent firewalls and network address translation (NAT) boxes and for ease of
implementation I choose to implement DMEP over HTTP. Every diagnostic agent is identi-
fied and accessed using a URI. A diagnostic agent might run as adedicated web server, or a
single web server might multiplex requests for multiple diagnostic agents having different
URIs on the same host and port number. Asynchronous notifications are implemented as
HTTP POST requests. A DMEP request is sent as an HTTP POST containing the request
message using the responding agent’s URI as the resource name. The HTTP response con-
tains the content of the DMEP response. For resilience to DNSfailures, diagnostic agents
advertise their URIs in terms of IP addresses rather than DNSnames. Note that a response
may require a long time to complete because a diagnostic agent may perform many diag-
nostic tests and contact other agents to produce a response.In case the connection is reset
or interrupted, an responding agent may reply to the original requesting agent by sending
the response as an HTTP POST message to the requesting agent’s URI.

Another advantage of using HTTP as a transport protocol is that it facilitates the im-
plementation of diagnostic agents using existing HTTP server software. In addition, client

1http://www.xmlrpc.com/
2http://www.w3.org/TR/soap/
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support for making HTTP requests is widespread. Furthermore, HTTP supports authenti-
cation and encryption, which is important for security.

HTTP has some drawbacks, however, such as verbose headers and awkwardness of
implementing server-initiated messages (See http://www.ietf.org/internet-drafts/draft-ietf-
netconf-soap-08.txt). Nevertheless these drawbacks are not fatal and are offset by the prac-
tical advantages of easier adoption and implementation of HTTP as a transport protocol.
Other possibilities for a messaging protocol include BEEP,SMTP, and constructing a cus-
tom protocol.

With HTTP as the messaging protocol, each response should have an HTTP return
code of 200 OK and content-type of text/xml. A request is a POST with content-type
text/xml. For maximum ability to get around firewalls and NATboxes, the recommended
port number is port 80, the default for HTTP. If it is not possible to use port 80 because
another application is using it, then port 8111 is recommended.

In addition, to reduce the number of HTTP requests, an agent may batch together multi-
ple messages in a single HTTP request. Agents may also make parallel requests to multiple
agents simultaneously.

The contents of the messages themselves is XML because of widespread support for
parsing and serializing data to and from XML. The advantagesof XML over a plain text
or custom format include the ability to support Unicode and the ability to easily extend
the DMEP protocol in the future. Though other formats such asN33 exist for concisely
describing information, parsers for such languages are notas widely available as for XML.
The main disadvantages are the additional parsing and serialization time, increased mes-
sage size, and verbosity.

3http://www.w3.org/2000/10/swap/Primer
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Chapter 7

Message Processing Procedure

The previous chapters described how CAPRI agents can represent and communicate diag-
nostic information with one another in terms of diagnostic messages. Simply being able
to communicate diagnostic information is insufficient for diagnosis, however; agents also
need a common procedure for making sense of the information they receive and deciding
what actions to take next based on this information. For extensibility, this procedure must
allow agents to process new information without domain-specific knowledge. For scala-
bility, this procedure must facilitate aggregation of similar requests to reduce the cost of
diagnosing a large number of failures. CAPRI addresses these challenges by providing
agents with a general and dynamic procedure for agents to perform diagnosis while coping
with communication costs and network failures.

The strength of this message processing procedure is that itgives agents the ability
to compute the value of new services and to incorporate new observations, beliefs, like-
lihoods, and dependency knowledge from multiple other agents without domain-specific
knowledge. Using this procedure, agents can dynamically choose which agents to contact
and what actions to take next. Most previous systems for distributed fault diagnosis support
only static communication patterns and cannot take advantage of new capabilities offered
by new agents. Some systems collect data in a distributed wayand then perform diagnostic
inference at a single centralized location [98, 50]. Otherspotentially require all diagnostic
agents to participate in diagnostic inference [17, 27]. In areal network fault diagnosis sce-
nario, however, network failures, cost considerations, and the heterogeneous capabilities
of diagnostic agents may restrict communication among diagnostic agents. For example,
a network failure might prevent an agent from obtaining a particular piece of diagnostic
information, forcing it to choose an alternate strategy fordiagnostic communication, data
collection, and inference involving a different set of agents and information.

Thus agents need the ability to dynamically choose among multiple communication
patterns for fault diagnosis. For example, a series of agents might simply hand off a di-
agnostic request to the next diagnostic agent until one of them has the ability to diagnose
it. Alternatively, an agent may first request additional data from another agent, and then
forward the request on to another agent based on the data it receives. Many other possi-
bilities exist as well. The most appropriate agent to contact next depends on many factors,
including the capabilities of available agents, the observations and beliefs collected about
a failure, and the probabilistic dependencies among components. CAPRI provides agents
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with a flexible procedure for fault diagnosis in which agentscan process the information
they receive from other agents to form acomponent graphrepresenting its beliefs and ob-
servations about the network and apply probabilistic dependency knowledge to construct
a failure dependency graphfor performing fault diagnosis. Agents can then dynamically
compute the value of available diagnostic services and select an action to perform while
taking into account both the accuracy and cost of diagnosis.

Another major challenge of fault diagnosis in the Internet is managing cost. Costs in-
clude both the cost of performing diagnostic tests (probingcost) and the communication
cost of exchanging diagnostic information. Previous research in minimizing the cost of
diagnosis considers only the cost of making diagnostic tests and not the cost of communi-
cation among multiple diagnostic agents in the Internet [76, 58, 51]. Communication costs
can be substantial, however. The large number of hosts in theInternet creates the potential
for concentration of the costs of diagnostic probes and diagnostic messages, leading to im-
plosion. Consider a serious failure that simultaneously affects millions of users in multiple
administrative domains (e.g. Internet autonomous systems). If all affected users simulta-
neously request diagnosis from a single agent, the implosion of requests can overwhelm
the diagnostic agent. If instead each affected user attempts to conduct their own diagnostic
tests to diagnose the failure and ping the failed destination, their tests may trigger intrusion
detection systems and cause denial of service.

Also, diagnosis occurs repeatedly, especially when a serious failure affects multiple
users that notice the failure and request diagnosis over a period of time. Previous re-
searchers have considered how to minimize the cost of probing for a single act of fault
diagnosis [61, 76, 51], but since evidence gathered in one time period may provide infor-
mation for future diagnosis, minimizing the cost of multiple diagnoses over a period of
time may require a different pattern of diagnosis than minimizing the cost of each individ-
ual diagnosis. Therefore agents can greatly reduce the costof diagnosis for serious network
failures by aggregating similar requests. This chapter describes how agents in CAPRI can
control both the probing and communication costs of diagnosis, preventing implosion and
trading off accuracy and cost using confidence thresholds, evidence propagation, caching,
and aggregation trees.

Yet another challenge of fault diagnosis in the Internet is dealing with incomplete or
probabilistic information and diagnoses. Due to network failures, differing diagnostic ca-
pabilities, and the cost of diagnostic tests and communication, agents must be able to di-
agnose failures with as little or as much evidence as they have available. Many diagnostic
tests are imperfect and can only give probabilistic evidence of failures. To address the chal-
lenges of incomplete and probabilistic information, CAPRIprovides a procedure for agents
to dynamically combine observations, beliefs, and dependency knowledge to probabilisti-
cally diagnose failures with incomplete information without domain-specific knowledge.

The message processing procedure described in this chapteraddresses the challenges
listed above using several techniques. Firstly, to deal with incomplete information and dis-
tributed dependency knowledge, an agent diagnoses failures using distributed probabilistic
inference. Secondly, to incorporate new diagnostic information without domain-specific
knowledge, an agent combines information from multiple sources to construct acompo-
nent graph. Thirdly, an agent reduces the cost of diagnosing multiple failures by caching
component information in acomponent information base. Fourthly, in order to diagnose

80



failures using new evidence and new dependency knowledge, an agent dynamically con-
structs afailure dependency graphfrom a component graph and adependency knowledge
base. Finally, to take advantage of new services provided by new agents, an agent dynami-
cally computes the set of possible next actions to take and the value of each action using a
failure dependency graph.

Together, these capabilities provide CAPRI agents with a general procedure to diagnose
failures in a distributed manner without domain-specific knowledge. This procedure is
general enough to support many different communication patterns and inference methods,
including both centralized techniques as well as more distributed patterns such as belief
propagation. In addition, I show how this procedure allows agents to manage costs using
caching, evidence propagation, aggregation of requests, and confidence thresholds.

Agents follow the same general procedure for processing alltypes of incoming mes-
sages. At a high level, the procedure is as follows:

1. Parse an incoming message to construct a component graph.

2. Retrieve component class and property definitions for anyunknown classes and prop-
erties.

3. If the incoming message is an observation or belief request:

(a) Perform the requested observations and infer the requested beliefs.

4. If the incoming message is a diagnostic request, repeat until done:

(a) Incorporate cached diagnostic information into the component graph from a
component information base.

(b) Construct a failure dependency graph from the componentgraph.

(c) Infer the cause of failure.

(d) If the agent’s confidence in its diagnosis is sufficient, the budget has expired, or
the expiration time has passed, return a diagnosis.

(e) Compute the value of each possible diagnostic action.

(f) If no actions are available, return a diagnosis.

(g) Perform the diagnostic action with greatest utility.

(h) Incorporate any new information into the component graph and dependency
knowledge base.

5. Save the component graph to the component information base.

6. Return a response containing the requested information.

7. Send notifications to the appropriate subscribers if necessary.

This chapter discusses each of these steps in more detail anddescribes the data struc-
tures and algorithms involved in message processing. FirstI describe diagnosis using prob-
abilistic inference and the output of diagnosis. Next I discuss the data structures involved
in message processing. Then I explain how agents can select diagnostic actions and incor-
porate information from multiple sources for inference.
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Figure 7-1: A Bayesian network for IP path diagnosis allows agents to infer the status of a
component from available evidence.

7.1 Probabilistic inference

To address issues of incomplete information and distributed dependency knowledge, di-
agnosis in CAPRI is based on the principle of probabilistic inference using Bayesian net-
works. Diagnosis using probabilistic inference has several important advantages over de-
terministic rule-based approaches. Firstly, Bayesian networks can model both deterministic
and probabilistic dependencies among many types of Internet components and diagnostic
tests. Probabilistic dependencies may model both causal knowledge of the variables that in-
fluence a component property as well as diagnostic knowledgeof tests that reveal evidence
about a component property. For example, a piece of causal knowledge may specify that an
IP path functions if and only if the first hop link functions and the rest of the path functions.
A piece of diagnostic knowledge may state that a ping along that path will always fail if the
path has failed, but may fail 5% of the time even when the path is functioning. Individual
links function 99% of the time. Figure 7-1 illustrates a Bayesian network for diagnosing
the pathA→ B→C. Using this network, an agent can infer, for example, the conditional
probability that LinkB-C has failed given evidence that PingA→C has failed and LinkA-B
is functioning. An agent’s failure dependency graph represents dependencies and evidence
in terms of such a Bayesian network. To take into account evidence from active probing or
changing network conditions, an agent rebuilds its failuredependency graph whenever its
component graph or dependency knowledge base changes.

The conditional independence assumptions of a Bayesian network facilitate distributed
reasoning and enable the distribution of dependency knowledge and diagnostic capabilities
among multiple agents. For example, an agent can infer that an IP path has failed if that
agent has evidence that a link along that path has failed without knowing the cause of the
link failure. This structure minimizes the number of other agents with which an agent needs
to communicate to infer a diagnosis. Thus each agent can maintain only a local dependency
model and request additional data from a small set of other agents when required.

Probabilistic inference can greatly reduce the number of diagnostic tests required to
infer the root cause of a failure compared to deterministic probing methods such as Plan-
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etseer [98]. When high-impact failures occur and an agent receives many failure requests
with the same root cause, Bayesian inference enables an agent to infer the root cause with
high probability without additional tests [57]. When an agent does not have enough in-
formation for diagnosis, an agent can determine which testswill provide the maximum
amount of diagnostic information and perform only those tests [76].

Probabilistic inference also enables agents to provide diagnosis even when they cannot
obtain accurate data due to failures or lack of information.This is a crucial advantage
because frequently diagnostic agents do not have access to all information about a failure.
For example, if the agent responsible for diagnosing IP connectivity failures in an Internet
autonomous system (AS)X is unreachable, another agent can still infer the most probable
explanation for a failure in ASX based on historical IP link failure probabilities.

Bayesian inference has some limitations, however. Firstly, if the dependency structure
does not exhibit much conditional independence, then it maynot be possible to modu-
larly decompose the dependency knowledge for diagnosis. Secondly, if the model assumes
conditional independence when variables are not actually conditionally independent, then
inference may produce an incorrect result. In practice, however, such problems may not
be very serious. Although assumptions about conditional independence may not always
be correct, in practice agents can still use probabilistic inference to produce reasonably
accurate results most of the time.

Unlike domains such as medical diagnosis, typically the consequences of an incorrect
diagnosis in Internet fault diagnosis are not severe. If a diagnostic agent can quickly and
accurately diagnose the majority of failures, it can greatly assist a human network admin-
istrator. For the more difficult to diagnose failures and in the cases where the diagnosis is
incorrect, a human administrator can manually perform additional tests and inference as
they do today.

7.1.1 Output of diagnosis

In CAPRI, the task of fault diagnosis is to decide which of a number of candidate expla-
nations for the failure is most likely. A diagnosis providerspecifies the set of candidate
explanations that it understands, and the diagnosis requester indicates which of the expla-
nations they wish to distinguish among. The appropriate setof candidate explanations to
consider depends on the level and type of detail that a diagnosis requester desires. For
example, a typical user when faced with a failure to connect to web server may want to
know who is responsible for the failure: themselves, the webserver, their ISP, or some-
one else; whereas a network administrator may wish to know exactly which component
has failed. Having a list of candidate explanations to consider enables an agent to provide
the appropriate amount of detail in the diagnosis. To diagnose a failure an agent collects
evidence to identify which explanation is most likely. A candidate explanationh is simply
a set of one or more variable assignments. Then given a set ofn candidate explanations
H = {h1, . . . ,hn}, the task of a diagnostic agent is to collect evidencee to identify the most
likely candidate explanationh∗ that explains the evidencee:

h∗ = argmax
hi∈H

P(hi|e) (7.1)
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An agent also returns the value ofP(h|e) for each candidate explanationh to the requester.

Note that the common approach of diagnosis by computing the most probable explana-
tion (MPE) of the available evidence is not appropriate in this case. Computing the MPE
involves assigning a value to every property in the failure dependency graph to maximize
the probability of the observed evidence. In Internet faultdiagnosis, however, a user re-
questing fault diagnosis does not know nor care about all components and properties in the
network; typically they only want to know which of a small number of possible causes of
failure is most likely.

7.2 Data structures

A key feature of the procedure that agents follow for diagnosis is that it is dynamic and
not domain-specific so that agents can take into account new information and knowledge
received from new agents. Therefore a CAPRI agent generatesthe data structures for fault
diagnosis dynamically each time it receives a diagnostic request.

CAPRI agents represent the information they have about network component individu-
als and component dependencies using several types of data structures. For every diagnos-
tic request, an agent constructs acomponent graphrepresenting observations and beliefs
about components relevant for the current diagnosis, and afailure dependency graphde-
rived from the component graph and dependency knowledge that represents the probabilis-
tic evidence and dependencies for properties of componentsin the component graph. The
component graph represents the current state of diagnosis,including the results of tests that
have been performed, the observations received from other agents about the current failure,
and the relationships between components and diagnostic tests. An agent uses its com-
ponent graph to determine whether it can respond to a requestusing cached information.
Whenever the component graph changes or new dependency knowledge becomes available
in the process of diagnosing a failure, an agent rebuilds itsfailure dependency graph to
take into account new evidence or dependencies. The failuredependency graph contains
the probabilistic dependencies and evidence that an agent uses to infer beliefs about the
value of unobserved properties and to compute the value of performing diagnostic actions.
I describe these data structures in more detail below.

Each diagnostic agent also maintains acomponent information baseof cached informa-
tion obtained from previous diagnoses and adependency knowledge baseof dependency
knowledge. The component information base stores observations, beliefs, and likelihoods
received from other agents so that this information may be used for diagnosing future fail-
ures. For example, an agent can store information about failed web servers received from
other agents so that it can quickly diagnose future connection failures to those servers.
The dependency knowledge base stores probabilistic dependency knowledge about com-
ponents. An agent can add to its dependency knowledge base bylearning probabilistic
dependencies from observations or by incorporating knowledge from other agents. For ex-
ample, an agent might learn the conditional probability a ping test succeeds given the status
of the destination host and store this knowledge in its dependency knowledge base.
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7.2.1 Component information base

A component information base stores cached information about component individuals
from the agent’s component graph. The component information base contains a list of
observations, beliefs, and likelihoods about components,indexed by their identifying prop-
erties. Each entry in the component information base also includes an expiration time. An
agent’s component information base might contain multipleobservations of the same com-
ponent, each made at a different time, from different agents, and containing information
about a different set of properties. Some of these observations, beliefs, and likelihoods
may conflict with one another. Agent can resolve such conflicts using the metadata as-
sociated with pieces of information, preferring more recently made observations to older
observations, for example.

Caching information in a component information base helps support aggregation of
requests to reduce the communication costs of diagnosis. Aggregation of requests refers
to the ability to diagnose multiple similar failures using the same information. In CAPRI,
aggregation of requests can occur whenever a single diagnosis provider agent offers to
diagnose failures for many other agents. If the failures that the requesters want diagnosed
tend to be similar, then the diagnosis provider agent will likely be able to use the same
data to diagnose multiple failures at relatively low cost. For example, if each Internet
Autonomous System (AS) has an associated diagnostic agent that can diagnose failures
within that AS, and each agent only accepts requests from agents for neighboring ASes,
then diagnosing a failure that may be caused by a failure of any one of the ASes along an
IP path by requesting diagnosis from the agent for the next AShop will result in efficient
aggregation. By returning cached information from its component information base, a
diagnostic agent can answer multiple similar requests without conducting additional tests
or requests.

7.2.2 Dependency knowledge base

A knowledge base data structure stores the probabilistic dependency knowledge that an
agent receives from other agents. A knowledge base entry specifies a conditional prob-
ability table for a component class, property, and set of parent variables. Each piece of
dependency knowledge provides a way to infer the value of a property based on its parent
variables. See Section 4.2.4 for more details about dependency knowledge.

Each piece of dependency knowledge also has an associated expiration time. Expiring
knowledge forces agents to periodically reload dependencyknowledge from the knowl-
edge provider agent, allowing agents to discover updated dependency knowledge when
available.

7.3 Building a component graph

The first step of fault diagnosis is parsing the information provided in a diagnostic request
to construct a component graph. This involves identifying the components and properties
described in the body of the request and correctly setting observations, beliefs, and relation-
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ship properties for each component. An agent also adds any new dependency knowledge to
its knowledge base. In addition, an agent retrieves component class and property definitions
for any new components and properties.

Agents parse diagnostic messages to update two data structures: a component informa-
tion base of known component individuals and diagnostic test results, and the associated
beliefs of the component properties; and a dependency knowledge base containing proba-
bilistic dependency information for each component and diagnostic test class. Using these
two data structures, an agent can perform probabilistic inference to infer the status of com-
ponents in the component model.

The procedure for parsing messages is as follows:

1. An agent receives a message.

2. The agent decodes the message according to the diagnosticmessage format. That
is, it parses the XML message to determine whether it is a diagnostic request, a
notification, or a diagnostic response. The agent then extracts the headers and body
according to the message definition.

3. The agent determines whether it has the capability to answer the message, or if the
message is malformed, expired, or if for some other reason the agent cannot return a
response. If the agent cannot respond to the request, it returns an error message.

4. The agent parses the body of the message, extracting observations, beliefs and like-
lihoods, and knowledge, as well as the input component if it exists.

5. For each observation:

(a) First, determine whether it describes a component or a test result based on the
element name inside the observation. Suppose it is a component.

(b) Next check eachclass element inside thecomponent element. If a class defini-
tion is not in the agent’s class definition table, the agent retrieves the component
class definition using the URI for the class.

(c) The agent parses each property of the component. If the property definition for
any of the properties is not in the agent’s property definition table, it retrieves
the appropriate definition using the URI of the property.

(d) The agent checks its component graph to determine whether this component is
already in its component graph based on the component’s identifying properties
or based on the component ID.

(e) The agent adds or updates the information in its component graph as necessary
based on the metadata associated with the observation. Notethat it may need
to make two passes: one pass to create all the components described in the
message, and another pass to make the proper assignments to the component
relationship properties. If an agent has multiple observations of the same com-
ponent, it may keep multiple conflicting observations or it may discard one or
more observations based on its local conflict resolution policy.
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6. For each belief or likelihood:

(a) Extract the metadata for the belief or likelihood.

(b) Identify the component individual specified in the subject using either its iden-
tifying properties or its component ID. If the agent’s component model does not
contain the specified individual, then create the individual and set its properties
accordingly.

(c) Identify the property of the component specified in the belief or likelihood.

(d) Identify the evidence on which the belief or likelihood is based.

(e) Beliefs and likelihoods are expressed as probability tables. Parse the distribu-
tion or likelihood table to produce a probability table. Associate this table with
the component property in the component graph. In case of multiple conflicting
observations, beliefs, or likelihoods for the same property, the agent decides
which to use or discard based on the metadata. An agent may choose to keep
multiple conflicting beliefs or it may discard one or more beliefs or likelihoods
based on its local conflict resolution policy.

7. For each piece of dependency knowledge:

(a) Extract the metadata from the knowledge.

(b) Identify the component class specified in the subject. Ifthe agent’s knowledge
base does not contain the specified class, then create a new entry for the class.

(c) Identify the property of the component specified in the knowledge.

(d) Identify the parent paths for the knowledge.

(e) Parse the CPT. First, identify the parent properties. Use theparentVal, value,
andp elements to construct a CPT. Store this CPT in the agent’s knowledge
base indexed by the component class (from step (b)), property (from step (c)),
and parent paths. In case of multiple conflicting CPTs for thesame component
class, property, and parents, the agent may keep multiple CPTs or it may decide
to discard one or more CPTs based on its local conflict resolution policy. For
example, it may choose to keep only the most recent piece of knowledge.

This procedure allows agents to combine information from multiple sources into a sin-
gle component graph. For example, consider a regional diagnostic agent that receives two
observations from different sources. First it receives an observation in a diagnostic request
from a user agent about anHTTP Connectionand its associatedLocal NetworkandDNS
Lookupcomponents. Next the regional agent requests additional observations from a DNS
lookup test specialist agent. The DNS lookup test agent provides the regional agent with
an observation describing the results of aDNS Lookup Testfor a DNS Lookupcomponent.
Figure 7-2 illustrates the information in these two observations. Using the procedure for
parsing diagnostic information, an agent identifies components that are the same and com-
bines these observations into a single component graph, illustrated in Figure 7-3. This
example illustrates a relatively straightforward case of unifying information from multiple
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sources in which the observations share only one component in common and there are no
conflicts, but in general there may be more overlapping components and conflicting obser-
vations.

HTTP Connection Local Network
localNet

DNS Lookup
dnsLookup

destHost: www.example.com
connTime: 1172181867190
srcIP: 18.26.0.100
status: FAIL
elapsedTime: 438

ipAddr: 18.26.0.100

hostname: www.example.com
ipAddrs: (None)

DNS Lookup Verify DNS Lookup Test
verifyDNSLookupTest

hostname: www.example.com
ipAddrs: (None)

hostname: www.example.com
dnsLookupResult:
LOOKUP_ERROR_CONFIRMED

Figure 7-2: An agent obtains diagnostic observations from two different sources. Note that
both observations refer to the sameDNS Lookupcomponent.

Note that an agent can disambiguate multiple components of the same class using re-
lationship properties and property paths. For example, consider aDNS Lookupcomponent
D with two relationship properties,primaryDNSServer andsecondaryDNSServer, each
referring to a differentDNS Servercomponent. Suppose that agentA has an observation
of DNS LookupcomponentD in its component graph but does not know the identity of
the twoDNS Serversreferred to by theprimaryDNSServer andsecondaryDNSServer
relationship properties. AgentA wishes to request an observation of the status of the
primaryDNSServer component from another agentB. Using property path notation, agent
A requests an observation ofprimaryDNSServer.status, providing theDNS Lookup
componentD as the input component. AgentB returns a response indicating that theDNS
Servercomponent to which theprimaryDNSServer relationship property of component
D refers has statusOK. Thus when agentA receives the observation from agentB, it can
unambiguously determine whichDNS Servercomponent the observation refers to.

7.4 Preprocessing

After constructing a component graph, an agent may perform certain preprocessing opera-
tions on the information in the component graph before performing additional actions. For
example, for privacy or policy reasons, an agent may encode or remove information before
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HTTP Connection Local Network
localNet

DNS Lookup
dnsLookup

destHost: www.example.com
connTime: 1172181867190
srcIP: 18.26.0.100
status: FAIL
elapsedTime: 438

ipAddr: 18.26.0.100

hostname: www.example.com
ipAddrs: (None)

Verify DNS Lookup Test

verifyDNSLookupTest

hostname: www.example.com
dnsLookupResult:
LOOKUP_ERROR_CONFIRMED

Figure 7-3: An agent unifies the pieces of diagnostic information from Figure 7-2 into a
single component graph.

taking additional actions. In addition, in some cases an agent may modify information in
the component graph to correct errors due to unsynchronizedclocks, for example.

7.5 Incorporating cached information

To reduce the costs of diagnosis, agents can incorporate previously cached information
from the component information base into the component graph. For each component
in its component graph, a diagnostic agent determines whether it has previously cached
information about that component and sets the appropriate properties and beliefs in its
component graph. Cached information may include observations such as the results of
recent tests, beliefs such as recently inferred status of components, and relationships such
as the previously computed dependencies of an AS path. For example, an agent may set the
status of an AS path based on cached information from a previous diagnosis. An agent may
cache component relationships in its component information base as well. For example,
suppose an agent has an entry in its component information base stating that theIP Routing
component withsrcIP 18.26.0.100 anddestIP 140.211.166.81 has a relationship property
asPath referring to theAS Pathcomponent withsrcAS 3 anddestAS 3701. An agent may
then use this component information base entry to set theasPath relationship property of
the IP Routingcomponent in its component graph and create the corresponding AS Path
component.

Caching information in a component information base can greatly reduce the cost of
diagnosing multiple failures. For example, an agent that determines that an HTTP connec-
tion failure is due to a failed web server can use this information to diagnose future failures
to the same destination without performing any additional tests or requests.

One challenge is determining whether or not to use cached information. Using cached
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information can reduce the cost of diagnosis, but it may alsoreduce accuracy if the infor-
mation is out of date. Deciding whether to use cached information requires considering
several factors. Different types of information may have different lifetimes; some obser-
vations such as the AS number of an IP address may be valid for years, while others such
as the average round-trip time of a TCP connection may changerapidly. Also, the conse-
quences of using out-of-date information may differ greatly. Incorrectly identifying an AS
hop in the AS path of an IP route may not matter much if the status of the incorrect AS hop
is the same as the status of the actual AS hop. On the other hand, if an agent incorrectly
believes a web server to have failed when it has not, it may mistakenly diagnose an HTTP
connection failure. To address this challenge, the originator of a piece of information sets
the expiration time of every piece of information it produces. If a piece of information
has expired, then an agent does not use the information and removes it from its component
information base.

7.5.1 Incorporating past evidence using DBNs

Agents may also use cached data in a component information base to infer the current sta-
tus of a component using a temporal failure model described by probabilistic dependency
knowledge. This means that if a diagnostic agent has knowledge of how long a failure will
last, it can communicate this information to other agents that can then use this knowledge
to infer the status of a component from past evidence. Agentsmay model temporal depen-
dencies among components using dynamic Bayesian networks (DBNs) [78] to incorporate
cached data. A DBN enables an agent to infer the status of a component from past evidence
given a discrete time hidden Markov model (HMM) of the network.

A Markov model encodes the probability that a variable has a particular value given past
values of the variable. Many network components can be modeled as Markov processes.
For example, a Gilbert model is a common model of network linkfailures in which the
status of a link depends probabilistically on its status in the previous time step [96].

One can transform a HMM into a dynamic Bayesian network (DBN)by representing
the status of a component in each time step with a different variable. For example, in
a discrete first-order Markov model, the statusXi of a componentX at time i depends
probabilistically on its status in the previous time interval i−1. An agent represents the
transition probabilitiesP(Xj |Xj−1) as a conditional probability table. To incorporatek time
steps of past evidence into this model, an agent “unrolls” this DBN by adding additional
nodes and edges. It can then compute the marginal probability P(Xi|o) of componentXi

given observed datao using standard inference techniques:

P(Xi|o) = ∑
Xi−1,...,Xi−k

P(Xi−k|o) ∏
k< j≤i

P(Xj |Xj−1) (7.2)

For greater accuracy an agent can model network components using higher order hidden
Markov models using the same approach.

One challenge of reasoning in DBNs is that if there are many temporal dependencies in
the model, the cost of inference can increase exponentiallyas the number of time steps in-
creases. Fortunately, some properties do not have temporaldependencies. For example, the
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status of abstract components such asTCP ConnectionsandDNS Lookupsdo not have any
direct temporal dependencies since they depend only on the present status of the underlying
hardware such as routers and DNS servers. This can greatly reduce the cost of inference
and enable agents to make use of past evidence to reduce the costs of data collection and
communication.

A DBN enables an agent to infer the most likely status of a component given past
evidence of the status of the component. Note that this also enables an agent to compute
the relevance of a past observation with respect to a set of other variables given the available
evidence [61]. An agent might compute the relevance of information to decide whether to
use cached information or when to expire information in its cache.

7.6 Constructing a failure dependency graph

After incorporating cached information into its componentgraph, an agent constructs a fail-
ure dependency graph from the component graph and dependency knowledge. A failure
dependency graph is a Bayesian network that describes components and diagnostic tests
involved in the failure, any applicable observations and beliefs about these components,
and the probabilistic dependencies among properties of these components and tests. More
formally, a failure dependency graph consists of variables, edges, probabilistic dependency
knowledge, and evidence, where each variable represents a property of a component in-
dividual and each edge(u,v) indicates that the value of the parent variableu influences
the value of the child variablev. A failure dependency graph may incorporate both deter-
ministic evidence about a variable from an observation as well as probabilistic evidence
about a variable from a belief or likelihood. Each variable also has probabilistic depen-
dency knowledge specifying the conditional probability ofthe variable given the value of
its parent variables. A failure dependency graph can be thought of as a type of probabilistic
relational model [33].

An agent uses a failure dependency graph to make probabilistic inferences to diag-
nose a failure. For example, a diagnostic agent with the component graph in Figure 7-3
and dependency knowledge from Table 7.1 can construct the failure dependency graph in
Figure 7-4. This failure dependency graph illustrates thatthe status of theHTTP Con-
nectionto www.example.com at time 1172181867190 depends on the status of aLocal
Network, HTTP Server, IP Routing, andDNS Lookup. Additionally, the result of aVerify
DNS Lookup Testcan provide evidence about the status of theDNS Lookup. This agent has
evidence that theHTTP Connectionhas failed and that the result of theVerify DNS Lookup
Testis LOOKUP ERROR CONFIRMED.

To construct a failure dependency graph, an agent consults its dependency knowledge
base to identify relevant pieces of dependency knowledge for the components in its com-
ponent graph. At the start of diagnosis, an agent begins witha failure dependency graph
consisting only of the failed component and the list of candidate explanations. For each
component propertyP whose value is unknown, an agent may be able to infer its sta-
tus either from dependency knowledge describing how the property P depends on other
component properties (causal inference), from dependencyknowledge describing how the
properties of other components and tests depend on the status of P (diagnostic inference),
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HTTP Connectionstatus:
localNet.- httpServer.- dnsLookup.- ipRouting.-P(status= OK|parents)

status status status status
OK OK OK OK 1
OK FAIL OK OK 0
FAIL OK OK OK 0
FAIL FAIL OK OK 0
OK OK FAIL OK 0
OK FAIL FAIL OK 0
FAIL OK FAIL OK 0
FAIL FAIL FAIL OK 0
OK OK OK FAIL 0
OK FAIL OK FAIL 0
FAIL OK OK FAIL 0
FAIL FAIL OK FAIL 0
OK OK FAIL FAIL 0
OK FAIL FAIL FAIL 0
FAIL OK FAIL FAIL 0
FAIL FAIL FAIL FAIL 0

Local Networkstatus:
P(status= OK)
0.95

HTTP Serverstatus:
P(status= OK)
0.99

DNS Lookupstatus:
P(status= OK)
0.98

IP Routingstatus:
P(status= OK)
0.99

Verify DNS Lookup TestdnsTestResult:
dnsLookup.status P(dnsTestResult= LOOKUP ERRORCONFIRMED|parents)
OK 0.01
FAIL 0.80

Table 7.1: An agent’s dependency knowledge base contains both probabilistic and deter-
ministic dependency knowledge about component classes andproperties.
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HTTP Connection
destHost: www.example.com
connTime: 1172181867190

status
FAIL

Local Network

status

HTTP Server

status

IP Routing

status

DNS Lookup

status

hostname: www.example.com

Verify DNS Lookup Test
hostname: www.example.com

dnsLookupResult
LOOKUP_ERROR_CONFIRMED

Figure 7-4: An agent constructs a failure dependency graph using the component graph
from Figure 7-3 and dependency knowledge from Table 7.1

or from knowledge of prior probabilities. For each piece of dependency knowledge that
the agent wishes to apply, it adds additional components or diagnostic tests to its failure
dependency graph as necessary. For example, in order to infer the status of an HTTP server
using diagnostic inference an agent may choose to add aPing Test.pingTestResult vari-
able to its failure dependency graph and add an edge fromHTTP Server.status to the new
variable. For each additional component or diagnostic testadded to the failure dependency
graph, an agent checks its component information base to determine whether it already has
observations or beliefs about any of the properties of thesecomponents or tests. Note that
at this point the agent does not yet actually perform any of the diagnostic tests; it is only
constructing a failure dependency graph to determine what additional diagnostic actions
are possible. An agent chooses what dependency knowledge touse based on its expected
cost, expected accuracy, or local policy. An agent recursively adds additional components
to its failure dependency graph. For each unknown componentproperty, if an agent has de-
pendency knowledge that it can use to infer the value of that property, it may add additional
components to its failure dependency graph. For example, toinfer the value of anHTTP
Connection.status variable, an agent may addIP Routing.status variables to its failure
dependency graph. To infer the value of anIP Routing.status variable, it may then add
additionalAS Path.status variables, and so on.

7.7 Inferring a diagnosis

The procedure for diagnosis in CAPRI allows each agent to seta confidence threshold for
diagnosis and provide a set of candidate explanationsH to test. This gives users and agents
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some control over the accuracy and cost of diagnosis. The higher the threshold, the more
accurate the diagnosis and the greater the potential cost. In addition, a confidence metric
lets agents indicate the probability that their diagnosis is correct. If the Bayesian network
used for inference is correct, the confidence threshold gives a lower bound on the accuracy.
Note that when dependencies are not deterministic, it may not be possible to achieve 100%
confidence in a diagnosis.

The set of hypotheses that an agent must distinguish betweenalso affects the cost of
diagnosis. Generally if there are only a small number of candidate explanations, an agent
can determine which is most likely at fairly low cost. On the other hand, if the set of
candidate explanations is large and involves many variables, then diagnosis may be more
costly. For example, a requester may simply wish to confirm a suspicion that a component
status propertyX has the valueFAIL. That is, the set of candidate explanations is

H = {{X = OK},{X = FAIL}} (7.3)

Another possibility is that the requester wants to know the value of allmparent component
status variablesY = 〈Y1, . . . ,Ym〉 for a componentstatus variableX:

H = {{Y = v}|v ∈ {OK,FAIL}m} (7.4)

If the failed component depends on all on its parent components functioning, a requester
may simply wish to know which of the dependencies is most likely to have failed:

H = {{Y1 = FAIL}, . . . ,{Ym = FAIL}} (7.5)

Note that if the set of variables to consider in each candidate explanation differs, then
multiple candidate explanations may be true.

Giving the user control over the confidence threshold and theset of candidate explana-
tions to consider allows them to choose between a quick and cheap diagnosis and a slow
and accurate one. Diagnostic agents under load may also choose to lower their confidence
threshold or the number of candidate explanations they consider to reduce the cost of diag-
nosis. In addition, by adjusting the set of candidate explanations a user can initially request
diagnosis using a small set of candidate explanations to geta quick, low-cost response, and
then request more detailed diagnoses later if necessary.

Alternatively, one can also consider diagnosis using a procedure to maximize accuracy
without exceeding the budget. Krause and Guestrin describealgorithms to address these
issues in more detail [51].

7.8 Performing diagnostic actions

If an agent cannot infer the root cause of a failure with sufficient confidence, it repeatedly
performs additional diagnostic actions until it has sufficient confidence in its diagnosis.
CAPRI differs from previous architectures for fault diagnosis that only support fixed com-
munication patterns among diagnostic agents. Instead, CAPRI agents dynamically com-
pute the set of available next actions from service descriptions and select an action based
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on the value of each action. Diagnostic actions may include both local tests and requests for
additional information from other agents. After each diagnostic action, an agent updates its
failure dependency graph to take into account the new observations and evidence it collects
from other agents. Note that the set of available actions maychange as agents learn new
dependency knowledge, researchers develop new diagnostictests, and new agents adver-
tise their services. Therefore agents need a way to dynamically determine what actions are
possible and the value of those actions while being able to set a policy to prefer certain
actions based on its preferences, requirements, and capabilities.

An agent may have the ability to perform both local and remoteactions. One type of
local action is to fill in the property values of components using local information. For
example, a local agent might be able to determine the IP address of the current user or the
time of the last HTTP connection using local information from applications or the operating
system. Another local action is to perform a diagnostic testto determine the properties of
a diagnostic test component. For example, an agent might conduct aPing Testin order to
obtain evidence of a ping test result to infer the status of anIP Host. An agent may also
request observations, beliefs or likelihoods, or dependency knowledge from other agents.

Not all actions are relevant for diagnosis, however. The setof useful next actions an
agent may take depends on the services available to it as wellas the information in an
agent’s component graph. To identify the set of useful next actions that it can take, for
each service in its service table, an agent determines whether it has any components in its
component graph that can be used as an input for that service.In addition, it determines
whether that service would produce useful outputs given theinput component. If all these
criteria are met, the agent computes the value of the serviceand adds the service and input
to its list of available possible next actions.

Each action may have a different value for diagnosis. The challenge is for the agent to
select an action that significantly improves the accuracy ofits diagnosis while minimizing
the cost expended. An agent takes into account several factors to calculate service value.
Firstly an agent takes into account the myopic value of information. That is, what is the ex-
pected value of having the information that the service produces for diagnosing the current
failure. One way to quantify this value is to compute the expected change in diagnostic
confidence.

To compute the myopic value of information for an action given a service and an input
component, an agent first determines what evidence that service will produce based on the
service description in the agent’s service table. The evidence that the service produces
includes all its output observations and all the evidence onwhich its output beliefs are
based. Next, for each of these pieces of evidence, an agent computes the expected change
in diagnostic confidence of having that evidence. Simply computing the myopic value
of information may not be adequate, however, since the valueof conducting a series of
tests may be different from the sum of the value of the individual tests. If two tests have
similar value but are based on the same evidence, it may only be useful to perform one
of the two tests. Other researchers have considered the problem of selecting actions non-
myopically [51, 43, 58], but algorithms for computing the non-myopic value of information
involve much more computational complexity or require domain-specific assumptions for
efficient approximation.

Another factor to take into account is the expected future distribution of failures. For
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the purposes of aggregation, it is important to select actions that produce information that
can be reused to cheaply diagnose future failures. This requires an agent to predict the
expected distribution of future failures.

Another consideration is whether performing an action enables an agent to make use
of cached information in its component information base. For example, an agent may have
cached information about the status of AS paths. By performing an action that reveals the
AS path of an IP route, an agent may be able to make use of cachedinformation in its
component information base.

Once an agent has a list of possible next actions and has computed the value of each
of these actions, it sorts these actions by utility, where utility is a function of value and
cost. An agent may choose a utility function to use dependingon the agent’s tradeoff
between accuracy and cost. This is similar to the way in whichthe service selection agent
in the Personal Router chooses which Internet access service provider to use [56]. Finally
the agent performs the action with greatest utility and repeats the steps above until its
confidence exceeds a threshold, the request expires, the budget is expended, or no more
actions are available. Each time an agent performs an action, it removes that action from
its set of available actions. To prevent endlessly retryingthe same service, an agent only
recomputes the set of available next actions if it receives new information.

Note that this procedure can automatically work around diagnostic agent failures; if a
specialist agent cannot perform a diagnostic test or is not reachable, and another specialist
agent with similar capabilities is available, the regionalagent will automatically try request-
ing information from the next specialist agent. On the otherhand, if multiple specialists
all provide the same information, then after getting the information from one specialist,
the regional agent knows that requesting information from the other specialists provides
no additional diagnostic value and so will not request information from the other special-
ists. This action selection procedure also provides agentswith a mechanism for providing
redundant backup services. If one or more agents advertise services with identical inputs
and outputs but different costs, then a requester will always prefer the lower cost service if
available; if that service fails or becomes unavailable, however, then it will use the backup
instead. Agents can also use a similar technique to preferentially handle requests from cer-
tain other agents. For example, a regional agent that wishesto handle diagnostic requests
for all agents in a particular AS can advertise its service ata lower cost than other generic
regional agents that handle requests from all agents. Thus auser agent choosing a regional
agent to contact will choose the regional agent for its AS if available, otherwise it will
choose one of the generic regional agents.

This procedure for action selection gives agents great flexibility in how they perform
diagnosis. The operator of a diagnostic agent can adjust several parameters to change how
diagnosis is performed. For example, to avoid costly diagnostic actions, one can use a
utility function that penalizes actions with high cost. Similarly, one can tune the param-
eters of the service value computation to favor short-term accuracy or to minimize long-
term cost. This thesis does not discuss the range of possibleadjustments one can make,
but it is important to note that this architecture supports awide range of action selection
strategies. Other researchers describe some possible approaches to select diagnostic ac-
tions [76, 58, 51, 3, 61, 62]. The probabilistic approach to computing action value and
selecting actions presented in this thesis resembles approaches described in previous work,
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but whereas previous work mainly focuses on action selection for domain-specific diagno-
sis, this thesis addresses the challenges of selecting actions in a general way using service
descriptions.

This procedure also supports distributed diagnosis using belief propagation, in which
multiple agents in different parts of the network with knowledge of different components
perform probabilistic inference and then share their beliefs and likelihoods to compute a
diagnosis in a distributed manner. To perform belief propagation in CAPRI, an agent re-
quests beliefs and likelihoods from other agents and performs probabilistic inference. The
advantage of belief propagation is that each agent only needs to know a subset of the com-
plete dependency graph and can compute beliefs using only local information. Procedures
for belief propagation in Bayesian networks for distributed inference are well known. For
more details please refer to [71].

7.9 Returning a response

After completing all the necessary data collection and diagnostic inference, an agent as-
sembles the requested information into a response message.The provider agent adds to the
response message the output observations, beliefs, likelihoods, knowledge, and diagnosis
that the requested service offers.

7.10 Postprocessing

After performing a diagnosis, an agent propagates evidenceand beliefs to other agents
based on notification subscriptions. Such propagation of evidence and beliefs can poten-
tially reduce the future costs of diagnosis. For example, anagent that observes a failure in
a critical network component may communicate this observation to other agents that can
then use this information to diagnose future failures. Agents can use service advertisements
to construct an aggregation-friendly topology to facilitate such aggregation (see Chapter 5).
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Chapter 8

Prototype Diagnostic Network

The previous chapters described the CAPRI architecture forfault diagnosis and the ben-
efits it can provide in terms of extensibility, cost management, and ability to deal with
incomplete information. This chapter demonstrates these benefits of CAPRI for real di-
agnostic agents. To evaluate the capabilities of CAPRI, I develop a prototype network of
agents for diagnosing HTTP connection failures for end users. This prototype implemen-
tation includes several types of agents, including user agents, regional agents, a knowledge
agent, and several types of specialist agents that perform awide range of active and pas-
sive tests, including DNS lookup tests, connectivity probes, Rockettrace measurements,
and web server history tests. I show how the CAPRI component ontology and communica-
tion protocol enables heterogeneous agents to discover thecapabilities of other agents and
communicate diagnostic information about new components and diagnostic tests. I show
how agents in this network can reduce the probing and communication costs of diagnosis
by aggregating related requests and propagating evidence and beliefs. I also demonstrate
the ability to add new diagnostic agents to the system by implementing a CoDNS lookup
test agent. Finally, I show how agents can perform probabilistic diagnosis using whatever
evidence is available to deal with incomplete information.

This chapter describes the types of failures agents diagnose in this prototype imple-
mentation, the types of agents I implement, the classes of diagnostic components and tests
agents understand, the types of information agents communicate, and the procedure that
agents use for diagnosis. Finally I describe the advantagesof fault diagnosis using this
prototype implementation over previous research in distributed fault diagnosis. The next
chapter presents the results of experiments to quantify thebenefits of diagnosis using the
CAPRI architecture.

8.1 Diagnosis of HTTP connection failure

For my prototype implementation of fault diagnosis, I choose to diagnose HTTP connection
failures for several reasons. Firstly, an HTTP connection failure can have multiple causes,
and well-known diagnostic tests exist for testing these causes. Secondly, web browsing is
a commonly used network application for which it is relatively easy to collect data from
users. In this experiment, diagnostic agents determine, for each HTTP connection failure
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observed by a user’s web browser, whether the failure was dueto a DNS lookup failure, a
web server failure, a network connectivity problem from theuser to their ISP, or whether
an IP routing failure1 occurred between the user’s ISP and the destination web server. Di-
agnosis in this experiment occurs in real time. When the useragent detects a failure, it
requests diagnosis and displays the result to the user when diagnosis is complete.

Note that it is not always possible to determine the true cause of failure. The goal of
this prototype is not to diagnose failures with maximum accuracy, but rather to demon-
strate the benefits of the CAPRI architecture in terms of extensibility, the ability to perform
distributed diagnosis, and the ability to control the cost of diagnosis.

8.2 Types of agents

Firstly, I show that CAPRI allows heterogeneous agents withdifferent capabilities in differ-
ent parts of the network to cooperate to diagnose failures. Diagnosis involves conducting
diagnostic tests, aggregating data, learning dependency knowledge, and probabilistic in-
ference. In the prototype implementation I develop, no single agent performs all of these
functions; instead, for improved scalability and cost management I deploy several types of
diagnostic agents throughout the Internet. User diagnostic agents implemented as Mozilla
Firefox extensions run inside users’ web browsers and collect observations about failures.2

Regional diagnostic agents respond to diagnostic requestsfrom user agents and act as ag-
gregation points to reduce the load of diagnosis on specialist agents. Regional agents can
request additional diagnostic information from four typesof specialist agents: stats agents,
web server history agents, AS path test agents, and DNS lookup test agents. Stats agents
collect user connection history information to destination hostnames and provide observa-
tions of various statistics about connections to the hostname. Web server history agents
collect user connection history information to web server IPs and infer web server status.
AS path test agents test the status of IP routing along the AS hops from the user to the web
server. DNS lookup test agents test the correctness of the user’s DNS lookup. Knowledge
agents collect aggregate data from users and server historyagents to produce new depen-
dency knowledge and provide this knowledge to other agents.All agents advertise and
retrieve service descriptions from a centralized service directory. The specialist agents and
regional agents operate on Planetlab at sites around the world. The learning agent and the
service directory run on a machine at MIT. Appendix B contains the ontologies, service
descriptions, and knowledge for these agents.

This prototype implementation supports the addition of newagents as well. New user
agents may join at any time. When new user agents join the network for fault diagno-
sis, they automatically look up the identities of the regional agent and the server history
agents with which they need to communicate using the servicedirectory. The directory
server assigns regional agents to users based on their AS to distribute load and provides
regional agents with a way to locate the specialist agents they wish to contact. For ease of

1Technically, the failure of an IP path may be caused either byan incorrect route (an IP routing failure) or
a failure to forward a packet along the route (an IP forwarding failure). It is difficult for users to distinguish
among these two cases, and so in this thesis I refer to both types of failures as IP routing failures.

2http://servstats.mozdev.org/
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implementation and evaluation, this prototype implementation uses a centralized directory
server. This directory server provides agents with a list ofavailable diagnostic services
that other agents offer, including knowledge, observation, and belief services as well as
subscription notifications. An agent stores this list in itsservice table for future lookups. If
additional robustness is desired, this centralized directory service could be replaced with a
more distributed peer-to-peer system, but implementing such a directory service is outside
the scope of this thesis.

This prototype implementation includes over 10,000 user agents from around the world,
4 web server history agents, 4 stats agents, 3 DNS lookup testagents, 14 AS path test
agents, and 15 regional agents.

8.3 Components and diagnostic tests

In this implementation, agents exchange diagnostic information according to the compo-
nent ontology described in Chapter 4 and using the protocol described in Chapter 6. Agents
communicate information about several types of componentsand diagnostic tests. In this
section I briefly describe each of the types of components andtests that agents understand.
Section 8.5 describes how agents observe these components and properties and use this in-
formation for diagnosis. The complete component ontology can be found in Appendix B.

8.3.1 Components

Agents in this prototype implementation diagnose HTTP connection failures. AnHTTP
Connectionclass has descriptive propertiessrcIP, destHost, destHash (MD5 hash of
the destination hostname),connTime, andstatus; and relationship propertiesdnsLookup,
httpServer, localNet, andipRouting. An HTTP Connectionis identified byconnTime
anddestHash. An HTTP Connectionfailure may be due to a failure in theDNS Lookup, a
failure at the destinationHTTP Server, aLocal Networkconnectivity problem between the
user and their ISP, or anIP Routingfailure elsewhere in the network. When an agent starts
up for the first time, it retrieves dependency knowledge about HTTP Connectionsfrom the
knowledge agent.

An HTTP Serverclass has an identifying propertyipAddr indicating its IP address. An
HTTP Serveralso has a status property and an aggregate propertyconsecFailuresTo-
Server representing the number of consecutive users who experienced failures connecting
to this server. Server history agents can probabilistically infer the status of a server from
consecFailuresToServer.

A Local Networkclass has an identifying propertyipAddr, a status property, and
an aggregate propertyconsecFailuresFromUser representing the number of consecutive
unique destinations to which this host experienced HTTP connection failures. User agents
and regional agents can useconsecFailuresFromUser to infer the status of aLocal Net-
work component.

A DNS Lookupclass has astatus property, a destinationhostname property, and an
IP address list propertyipAddrs. The IP address list property contains a list of the IP
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addresses for the given hostname returned by the DNS lookup,or is empty if the DNS
lookup failed.

An IP Routingclass has astatus property, asrcIP property, and adestIP property.
IP Routingcomponents are identified by their source and destination IPaddresses. The
status of anIP Routingcomponent depends on the status of the underlyingAS Path.

AS Pathcomponents have asrcAS property, adestAS property, astatus property,
and two component relationship properties:nextASHop, and anextASPath property that
refers recursively to anotherAS Path. AS Hopcomponents also have the propertiessrcAS,
destAS, andstatus.

8.3.2 Diagnostic tests

To illustrate the range of possible diagnostic tests CAPRI supports, I implemented several
different types of diagnostic tests that vary greatly in terms of required inputs, outputs, and
cost. These diagnostic tests include both passive measurements computed from historical
observations, as well as active measurements that probe thecurrent state of the network. In
addition, some diagnostic tests such as aVerify DNS Lookup Testproduce only an observa-
tion of the value of the property of a diagnostic test. Othersalso produce information about
the dependencies of a component, such as anAS Path Testthat provides information about
both the AS path dependencies of an IP path as well as information about the status of the
links along the path.

One diagnostic test is to observe the error code returned by the web browser application.
A Firefox Error Testhas a descriptive propertyffoxErrorCode and a relationship property
httpConn indicating the correspondingHTTP Connection. See the Appendix B for the full
list of error codes.

Another useful diagnostic test is to determine whether the user can connect to a known
good web server. AnOutbound Conn Testdiagnostic test class has descriptive properties
srcIP, probeURI, andprobeResult. The test result is eitherOK or FAIL depending on
whether the user agent was able to connect to the destinationhost. Users and regional
agents can use the result of anOutbound Conn Testto infer the status of aLocal Network.

DNS specialist agents can perform aVerify DNS Lookup Test. This test has descrip-
tive propertieshostname anddnsLookupResult; and a component relationship property
dnsLookup referring to the DNS Lookup component tested. The test result may be one of
six possible values:

LOOKUP ERROR CONFIRMED Neither the user nor the DNS agent was able to get
an IP address for the given hostname.

LOOKUP ERROR UNCONFIRMED The user was unable to get an IP address, but the
DNS agent was able to obtain an IP address for the given hostname.

CORRECT The IP addresses in the DNS Lookup component match the IP addresses ob-
tained by the DNS agent.

INCORRECT The IP addresses in the DNS Lookup component differ from the IP ad-
dresses obtained by the DNS agent.
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LOOKUP ERROR The user obtained an IP address for the hostname, but the DNS agent
failed to get an IP address.

ALIAS The DNS agent’s DNS lookup indicated that the hostname is an alias for another
hostname. In such situations, frequently different users will obtain different IP ad-
dresses for the same hostname. For example, content delivery networks such as
Akamai use DNS aliases to return different IP addresses to different users.

A DNS specialist agent infers the status of aDNS Lookupusing the value ofdnsLookup-
Result.

IP routing specialist agents can performAS Hop TestsandAS Path Teststo determine
the status ofIP Routingbetween two Internet autonomous systems. AnAS Hop Testhas
descriptive propertiessrcAS, destAS, andasHopTestResult; and a component relation-
ship propertyasHop indicating theAS Hopbeing tested. AnasHopTestResult is either
OK or FAIL, depending on whether the agent was able to successfully route IP packets from
the source AS to the destination AS. The source and destination ASes of anAS Hop Test
must be neighboring ASes. AnAS Path Testhas descriptive propertiessrcAS, destAS,
andasPathTestResult. An asPathTestResult is eitherOK if the traceroute was able to
reach the AS of the destination IP address, orFAIL otherwise. An IP routing agent infers
the status of anAS Hopfrom the result ofAS Hop Tests, and can infer the status of an
AS Pathfrom AS Path TestsandAS Hop Testsalong the AS path from the source to the
destination. It can then infer the status of theIP Routingcomponent. In this prototype
implementation, this test is performed using the Scriptroute Rockettrace tool [81] and des-
tination ASes are looked up using whob.3 Note that an agent may not always be able to test
the status of an AS hop if the agent is not along the AS path fromthe user to the web server
or if a failure occurs before reaching the source AS.

8.4 Routing of diagnostic information

Fault diagnosis in this implementation requires the exchange of diagnostic information
among multiple agents. In order to compute aggregate statistics about web servers, server
history agents subscribe to notifications ofHTTP Connections. Learning agents subscribe
to information about diagnostic results. In the process of diagnosis, notifications of di-
agnostic information flow from user agents to a regional agent and then to server history
agents and a learning agent. Regional agents can then request the observations, beliefs, and
knowledge generated by the web server history and learning agents. User agents may then
request dependency knowledge from regional agents. Regional agents aggregate requests
from user agents, request additional diagnostic information from specialist agents, and fi-
nally respond to requests. In this section I describe the routing and aggregation patterns of
diagnostic information in my prototype implementation.

Notification subscriptions allow certain agents to aggregate certain types of diagnostic
information. In order to learn dependency knowledge for diagnosing failures, knowledge
agents collect observations aboutHTTP Connectionsand their associatedLocal Network

3http://pwhois.org/lft/
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andHTTP Serverstatistics. Rather than collecting server connection history observations
directly from users, which does not scale well with the number of users, the learning agent
requests aggregate data from server history agents and subscribes to notifications of di-
agnostic results from regional agents. Note that a learningagent can perform this data
collection periodically and do learning offline to reduce communication cost.

User agents make observations aboutHTTP Connections, Outbound Conn Tests, and
Firefox Error Tests. User agents periodically send these observations to regional agents,
which then forward on the observations to server history diagnostic agents, which then
compute theconsecFailuresToServer for each destination MD5 hash. AllHTTP Con-
nectionswith the same destination MD5 hash get sent to the same serverhistory agent.
User agents also periodically send aggregate statistics onconsecFailuresFromUser and
the results of its diagnostic tests to a regional diagnosticagent.

Here is an example of aHTTP Connectionobservation made by a user agent:

<notification
xmlns:core="http://capri.csail.mit.edu/2006/capri/core#"
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
version="0.3"
time="12345"
clientVer="0.30"
notificationID="10">

<body>
<observation>

<component id="1">
<class>

http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection
</class>
<com:destHash>+0THLqaZnxk9I8bU5ZgDGA==</com:destHash>
<com:connTime>123</com:connTime>
<core:status>OK</core:status>
<com:elapsedTime>340</com:elapsedTime>

</component>
</observation>
</body>
</notification>

Next, the learning agent collectsconsecFailuresToServer statistics from server his-
tory agents. The learning agent labels past failures, learns dependency knowledge, and
then communicates this dependency knowledge to regional diagnostic agents, which then
communicate this knowledge to user agents.

Diagnostic requests flow from users to regional diagnostic agents. Regional diagnostic
agents may then request additional information from serverhistory agents, AS path test
agents, or DNS lookup test agents. A regional agent can reduce the cost of diagnosis by
incorporating cached information in its component information base relevant for diagnosis.
A regional agent may also request information from other agents to maximize the expected
future value of that information. This process is a form of request aggregation in that
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it enables an agent to diagnose multiple failures using fewer tests and requests than is
required to diagnose each failure individually.

Regional agents may communicate additional observations about HTTP Servercom-
ponents to user agents in their diagnostic responses to reduce the cost of diagnosing fu-
ture failures. For example, if a web server fails, the serveragent for that web server will
notice that multiple users cannot connect to that web serverand increase theconsec-
FailuresToServer statistic for that web server. A regional agent diagnosing the failure
requests theconsecFailuresToServer information from the server agent and uses it to
diagnose theHTTP Connectionfailures from users. The regional agent also communicates
theconsecFailuresToServer statistics to user agents so that the user agents can diagnose
future failures in connecting to the failed web server.

The web server history agent collects and aggregates HTTP connection history data
from user agents to produceconsecFailuresToServer observations, the number of con-
secutive unique-user failures to a destination web server IP address. The web server history
agent combines this aggregate data from users with its dependency knowledge to compute
a belief about the status of the destination web server.

For additional scalability and to balance the load of diagnosis, in this experiment there
are four web server history agents distributed throughout Planetlab, each responsible for a
different set of web server IP addresses. Each web server history agent subscribes toHTTP
Connectionobservations for a different set of web servers. This demonstrates the ability
of CAPRI to distribute dependency knowledge and diagnosticcapabilities among multiple
agents.

8.5 Diagnosis procedure

The procedure for diagnosis described in Chapter 7 allows agents without any previous
knowledge of these types of diagnostic information to automatically learn the meaning of
these component and test classes from the component ontology and diagnose failures us-
ing dependency knowledge collected from other agents. Thisallows regional diagnostic
agents to automatically construct failure dependency graphs from observations of connec-
tion failures from users and dependency knowledge from server history agents. Agents in
this implementation follow the following procedures for fault diagnosis.

8.5.1 User agent

When a user agent first starts (i.e. a user opens their Firefoxweb browser), it checks its
service table to determine the regional agents it can use. Ifits service table has expired,
it requests new services from the agent directory. A user agent expires a service 24 hours
after receiving it from the agent directory.

When a user agent detects an HTTP connection failure, it collects data about the Fire-
fox error code associated with the failure and creates the corresponding observations of
the HTTP ConnectionandFirefox Error Test. A failure is defined as an HTTP request
that results in a Firefox error code corresponding to a network error. In addition, because
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many network failures manifest themselves as slow-loadingweb pages, failures also in-
clude HTTP requests that the user cancels (i.e. presses the “Stop” button in their browser
or navigates away from a page) after 15 seconds without a response from the web server.

When a failure occurs, the user agent also computes theconsecFailuresFromUser
statistic for theLocal Networkcomponent corresponding to the user’s local network. The
user agent then checks its component information base to determine whether it has any
information about theHTTP ServerandLocal Networkcomponents for thisHTTP Con-
nection. If so, the user agent fills in the properties of theHTTP ServerandLocal Network
components using information from its component information base. The user agent then
constructs a failure dependency graph containing the failed HTTP Connection, theFire-
fox Error Test, theLocal Network, a DNS Lookup, and theHTTP Server. All user agents
have dependency knowledge stating that the status of anHTTP Connectiondepends on
the Local Networkstatus, DNS Lookupstatus, IP Routingstatus, andHTTP Server
status. If the user agent has probabilistic dependency knowledge for inferring the proba-
bility of HTTP Serverfailure andLocal Networkfailure fromconsecFailuresToServer
andconsecFailuresFromUser, then it adds the corresponding edges to the failure depen-
dency graph.

The user agent then performs probabilistic Bayesian inference using its failure depen-
dency graph to compute the likelihood of failure for theLocal Network, theDNS Lookup,
IP Routing, andHTTP Servercomponents in its failure dependency graph. If its confi-
dence in its diagnosis is insufficient, the agent then conducts anOutbound Conn Testand
performs diagnostic inference again. If it still does not have sufficient knowledge to diag-
nose the failure, or if its confidence in its diagnosis is too low, then the user agent requests
diagnosis from the regional diagnostic agent. The user agent then constructs a failure re-
port containing the information in its failure dependency graph and transmits a diagnostic
request containing this failure report to the regional diagnostic agent.

Every five minutes, a user agent sends a batch of HTTP connection history notifications
and diagnosis history notifications to a regional agent.

8.5.2 Regional agent

Regional agents act as dispatchers and aggregation points.Using the general, dynamic pro-
cedure for processing messages described in Chapter 7, theyidentify possible similarities
among diagnostic requests and decide which agent to contactnext based on the value of the
information each agent provides. When a regional diagnostic agent receives a diagnostic
request from a user agent, it takes the component graph in therequest and adds any relevant
information it has in its component information base, such as theconsecFailuresToSer-
ver for the destination host or the results of other previous tests. A regional agent also
computes the AS path for the IP route from the user to the destination web server in order
to identify potentially similar failures. The regional diagnostic agent requests new depen-
dency knowledge if necessary. It then performs probabilistic inference to infer the cause
of failure. If the regional agent’s confidence in its diagnosis exceeds a threshold, then it
returns a diagnosis to the user agent. Otherwise, it computes possible next actions, requests
additional tests from specialist agents as necessary, and repeats its diagnostic inference.

A regional agent uses information in its component information base to identify similar
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failures. When a regional agent receives a diagnostic request, it has three options for ob-
taining additional information about the components involved in the failure: it may request
web server status beliefs from a server history agent, DNS lookup status beliefs from a
DNS lookup verification agent, or IP routing status beliefs from an AS path test agent. In
order to control the cost of diagnosis, a regional agent selects the action with greatest util-
ity, where utility is the expected confidence of diagnosis using the information produced
by the action divided by the cost of that action. The procedure for probabilistic inference
provided by CAPRI can automatically take into account the value of information of various
tests based on available evidence and dependency knowledge.

Note that a regional agent does not need the ability to perform any diagnostic tests; it
simply requests information it needs from other agents. Using the dependency knowledge,
beliefs, and observations it obtains, a regional agent can diagnose failures in a general way.
This procedure makes it easy to add additional specialist agents, component classes, and
diagnostic tests.

8.5.3 Web server history test agent

A web server history test agent is one of four types of specialist agents in this proto-
type. The server history agent is a type of passive diagnostic agent that does not per-
form any active probes or diagnostic tests, but rather simply collects observations from
other agents in order to produce aggregate statistics useful for diagnosis. A server his-
tory agent collects observations ofHTTP Connectionsfrom many users to a singleHTTP
ServerIP address. It then uses these observations to compute the number of consecutive
users who cannot connect to theHTTP Server. A server history agent assigns this value to
theconsecFailuresToServer property of the correspondingHTTP Servercomponent. A
server history uses this information to infer a belief in thestatus of the HTTP server. Server
history agents respond to belief requests for HTTP server status given the IP address of a
server as input.

To demonstrate the possibility of distributed diagnosis using multiple server history
agents, this prototype contains four server history agents, each responsible for a different
set of destination IP addresses. Web server history test agents specify input restrictions
in their service advertisements to achieve this distribution of responsibility. A regional
agent dynamically determines the appropriate server history agent to use by consulting the
service descriptions in its service table.

8.5.4 DNS lookup test agent

A DNS lookup test agent infers beliefs about the status of aDNS Lookupcomponent given
a hostname and the IP addresses returned by a lookup. In this prototype implementation,
the DNS lookup verification agent performs another DNS lookup and compares the IP
addresses it obtains with the IP addresses obtained by the user when the HTTP failure
occurred. This test can detect several types of DNS lookup problems. For instance, suppose
that the user was not able to obtain an IP address for the destination hostname. If the
DNS lookup verification agent is able to get an IP address, it may indicate that the user’s
DNS servers have failed. Alternatively, if the IP addressesobtained by the user and the
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DNS agent differ, it may indicate that the user’s DNS server has incorrect or out of date
information. A DNS lookup verification agent can respond to belief requests forDNS
Lookupstatus given a hostname and a set of IP addresses as input.

This prototype implementation contains three DNS lookup verification agents. Each
agent can diagnose any hostname. A regional agent selects a DNS lookup test agent by
consulting the service descriptions in its service table.

8.5.5 AS path test agent

AS path test agents infer beliefs about the status of anIP Routingcomponent by performing
Rockettrace tests. A Rockettrace test provides information about the status of IP routing
across different ASes.

An AS path test agent responds to belief requests forIP Routingcomponent status. In a
belief response, an AS path test agent also includes beliefsabout the status of the AS hops
along the IP path in order to assist regional agents with aggregation.

Since the ability of an AS path test agent to test a given IP route depends on its location
in the Internet network topology, the AS path test agent specifies an input restriction in its
service description to only accept requests for IP routes for which the source IP is within
the same AS as the AS path test agent.

Note that many existing traceroute tools exist today, and many services exist to perform
traceroutes [63].4 CAPRI allows one to wrap such existing tools and services so that other
agents can automatically request such data and incorporateit for diagnosing failures.

8.5.6 Stats agent

The four stats agents in this prototype demonstrate the ability to aggregate observations of
HTTP connections from multiple users to a destination hostname and produce observations
of aggregate statistics. To distribute responsibility among the four stats agents, each stats
agent specifies an input restriction on the set of web server hostname hashes for which it
can provide information.

8.5.7 Knowledge agent

Agents diagnose failures using probabilistic inference and Bayesian networks. To perform
such probabilistic inference, agents need probabilistic dependency knowledge. Some of
this dependency knowledge may come from expert humans, but it may also be learned
automatically by agents. In this prototype, I demonstrate how a knowledge agent can learn
dependency knowledge from observations of past failures and communicate this knowledge
to other agents.

A knowledge agent creates new dependency knowledge by reconstructing failure de-
pendency graphs for past failures, labeling each diagnosiswith the true cause of failure,
and then learning the probabilistic dependencies using a Bayesian learning algorithm. In
my prototype implementation, the knowledge agent collectsevidence about failures and

4http://www.bgp4.net/wiki/doku.php?id=tools:ipv4traceroute
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diagnostic tests using a notification subscription. Once a day, the knowledge agent also re-
queststotalConsecFailuresToServer observations from web server history agents for
each diagnosis notification it receives.

Next the knowledge agent labels each diagnosis with the truecause of failure. In this
prototype implementation, it is not always clear what the true cause of failure is in each
case, however. Therefore in this implementation a knowledge agent uses the set of rules in
Algorithm 1 for labeling the cause of failure. I chose the rules below because they appear
to classify failures fairly accurately for most of the real-world network failures I examined.
The number oftotalConsecFailuresFromUser for a failure represents the total number
of consecutive failures to unique destinations both beforeand after the failure in question,
whereasconsecFailuresFromUser only counts the number of consecutive failures before
the failure in question. For example, if a user cannot connect to three consecutive different
destinations, then the number of total consecutive failures from the user is three for all
three failures. Similarly,totalConsecFailuresToServer represents the total number of
consecutive failures from unique users both before and after the failure in question.

Algorithm 1 The procedure for labeling failures using a posteriori information
if totalConsecFailuresFromUser≥ 3 then

Label it a local network failure.
else iftotalConsecFailuresToServer≥ 2 then

Label it a web server failure.
else ifOutbound Conn TestprobeResult = FAIL then

Label it a local network failure.
else ifFirefox Error TestffoxErrorCode = 30 (server not found)then

Label it a DNS lookup failure.
else ifAS Path TestasPathTestResult = FAIL then

Label it an IP routing failure.
else ifFirefox Error TestffoxErrorCode = 13 (connection refused)then

Label it a web server failure.
else ifAS Path TestasPathTestResult = OK then

Label it a web server failure.
else ifFirefox Error TestffoxErrorCode = 14 (connection timed out)then

Label it an IP routing failure.
else

Label it an unknown failure.
end if

Once a learning agent learns dependency knowledge, it communicates this knowledge
to regional and specialist agents. Because the distribution of failures in the Internet changes
frequently, knowledge learned at one point in time may differ from knowledge learned at
another time. Therefore it is important to continually learn and communicate new depen-
dency knowledge. The optimal frequency with which a learning agent collects observa-
tions and communicates knowledge depends on the rate at which dependency knowledge
changes, the cost of collecting observations, and the tradeoffs one is willing to make be-
tween accuracy and cost.
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Though it is possible to have multiple learning agents to distribute the communication
and component cost of learning, having fewer learning agents improves accuracy because
then each agent has a more complete set of observations from which to learn.

8.6 Extensibility

The strength of the CAPRI architecture is that it allows one to introduce new diagnostic
agents and diagnostic tests, and diagnose failures using different patterns of communica-
tion. This implementation can be extended to support new types of agents and information
in several ways.

Initially, this implementation has four types of specialist agents: web server history
agents, DNS lookup test agents, AS path test agents, and stats agents. The strength of the
CAPRI architecture is that it allows one to add new agents or enhance existing agents with
new diagnostic tests. For example, instead of simply performing another DNS lookup, a
DNS lookup agent might also attempt to validate DNS server configuration by checking
for inconsistencies [29]. An AS path agent might use other tools in addition to traceroute
to test AS hops. A web server diagnosis agent may also performactive probes or measure
statistics such as latency and failure rate.

To demonstrate extensibility in my experiments, I add a new specialist agent to the
system that uses the CoDNS service [69] to provide beliefs about DNS Lookupstatus.
Chapter 9 describes the results of these experiments.

In addition, one can imagine other types of specialist agents as well. For example,
a web browser specialist agent might be able to determine whether a failure was due to
a software bug. An IP link specialist agent might be able to identify individual IP link
failures caused by router or switch failures. To add a new specialist agent, we need to make
three modifications to this implementation:

1. Add new component class and property definitions to the component ontology if
necessary. For example, to diagnose DNS servers one must define aDNS Server
class and add a component relationship property to theDNS Lookupclass relating a
DNS Lookupwith aDNS Server.

2. Advertise the new capabilities of the agent to the agent directory. For example, a DNS
specialist agent might provide information about the probability of DNS Lookupand
DNS Serverfailure given aDNS ServerIP address and a hostname.

3. Optionally provide new dependency knowledge for any newly defined properties by
advertising a knowledge service. For example, a DNS server agent might provide
knowledge of the conditional probability ofDNS Lookupstatus given thestatus
of the correspondingDNS Server. Note that a specialist agent need not reveal this
knowledge; it may choose to keep this knowledge private if itwishes. If the agent
does reveal this knowledge, however, then other agents can infer thestatus of a
DNS Lookupfrom observations ofDNS Serverstatus without requesting diagnosis
from the specialist agent.
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Also, note that there are several ways in which a specialist agent might operate. For ex-
ample, a server history agent might only provide observations of consecutive failures to a
server without having any knowledge of the probabilistic dependencies between this statis-
tic and the status of an HTTP server. Then another agent with the proper knowledge can
perform inference of HTTP server status. Alternatively, the agent might provide only the
beliefs without providing the evidence. For this to work, a requesting agent must provide
the necessary likelihood or beliefs for belief propagationin order to get an accurate result,
possibly involving more communication overhead. A third possibility, and the one I im-
plement here, is for the specialist agent to provide both theknowledge and the evidence so
that the requesting agent can aggregate more effectively with fewer messages and without
prior knowledge of the methods that the specialist agent uses for diagnosis.

Another way to extend this prototype is to introduce new diagnostic test classes and new
properties of previously defined component classes. For example, in addition toconsec-
FailuresToServer, the server history agent might also provide statistics on the average
rate of failure to particular destinations. To add such new diagnostic tests and properties,
one must define the new property, create an agent that advertises the capability to provide
observations of the new property, and optionally provide new diagnostic knowledge.

Another possibility is to use existing agents in different ways. For instance, in this
implementation the AS path test agents are only used to run traceroutes from the user to the
server. It may also be useful to use AS path test agents to attempt to run traceroutes from
the server to the user, for example.

8.7 Controlling cost

The diagnostic procedure above controls costs of communicating diagnostic observations,
knowledge, and requests by aggregating multiple similar failures and distributing requests
across multiple agents.

HTTP Connectioninformation from all users is distributed among multiple server his-
tory agents based on the destination of theHTTP Connections. Thus a single server history
agent only needs to handle a fraction of the total amount of connection history data. This
architecture allows us to support additional users by adding more server history agents and
redistributing the set of destination servers among the server history agents.

Each user agent requests diagnosis from a particular regional agent. Thus to support
additional users while limiting the number of user agents for which a single regional agent
diagnoses failures, we can add additional regional agents and assign the new users to these
additional regional agents. Regional agents also act as aggregation points for requesting
observations from server history agents and dependency knowledge from learning agents,
limiting the load of diagnostic requests on server history and learning agents. In addition,
aggregating multiple diagnostic requests at a single regional agent allows a regional agent
to diagnose multipleHTTP Connectionfailures caused by the failure of a singleHTTP
Server. This architecture also means that user agents do not need toknow what specialist
agents exist or which ones to contact to diagnose a failure.

Note that adding new regional agents involves a tradeoff. Increasing the number of re-
gional agents reduces the number of requests each one needs to handle, but it also reduces
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opportunities to use cached information to diagnose multiple similar failures. The optimal
number of regional agents depends on many factors, including the frequency of failures,
the burstiness of requests, the rate at which regional agents can process requests, the prob-
ability that cached information collected during the diagnosis of one failure can be used for
diagnosing future failures, and the assignment of user agents to regional agents.

In this implementation, aggregation of requests occurs at both user agents as well as at
regional agents. User agents can cache information about the results of outbound connec-
tivity probes and the number of consecutive failures to particular destinations. A user agent
may then use this information to diagnose future failures with fewer requests.

In order to learn an accurate dependency model forHTTP Connectionfailures, a learn-
ing agent must collect observations for allHTTP Connectionfailures. Therefore it sub-
scribes to notifications of historical observations ofHTTP Connectionfailures and their
associated diagnostic tests and dependent components fromregional agents and requests
aggregate data from server history agents. Since dependency knowledge changes relatively
slowly compared to statistics such asconsecFailuresToServer, a learning agent does
not need to receive immediate notifications of every failureand can just collect batched
observations ofHTTP Connectionsperiodically.

8.8 Diagnosis with incomplete information

Diagnostic information and capabilities are distributed over multiple diagnostic agents in
this prototype implementation. Diagnostic agents use probabilistic inference to compute
the probability of the most likely cause of failure and the confidence of their diagnosis with
possibly incomplete information. In addition, agents can propagate useful observations and
knowledge to other agents so that they can use this information to diagnose future failures.
Probabilistic inference combined with propagation of information allows diagnostic agents
to diagnose failures even when other diagnostic agents failor are unreachable. For example,
if a user agent cannot contact a regional agent for diagnosisbut has dependency knowledge
about how to infer the most likely cause of failure fromconsecFailuresFromUser, it can
still provide an approximate diagnosis without knowing theresults of other tests. Simi-
larly, even if a regional agent cannot obtain up-to-dateconsecFailuresToServer obser-
vations from a server history agent, the regional agent may still use cached observations of
consecFailuresToServer in its diagnosis.

The ability to perform diagnosis with incomplete information also provides robustness
to network failures and agent failures. For example, even though a user without network
connectivity may not be able to connect to their regional agent, the user agent can use
outbound connectivity tests and observations of consecutive failures to diagnose a failure
with incomplete information.

Diagnosis with incomplete information also gives users theoption to trade off privacy
and accuracy. In my prototype implementation, knowing the identity of the destination web
server can greatly improve the accuracy of HTTP connection failure diagnosis, but some
users may not wish to reveal such personal information. In general, the more information
that a diagnostic agent has, the more options it has for diagnosis and the more accurate its
diagnosis. CAPRI allows agents to trade off privacy and accuracy by allowing a diagnosis
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requester to provide as little or as much information as theywish. For example, rather than
revealing the full URI of the destinations that users wash toreach, a user agent might only
reveal an MD5 hash of the destination hostname. This potentially reduces the accuracy of
diagnosis because although it still provides server diagnostic agents with enough informa-
tion to determine if multiple users experience failures connecting to the same destination
hostname, it prevents an agent from determining how many failures have occurred to the
destination IP address or whether the DNS lookup completed successfully. On the other
hand, it provides additional privacy because the requesterdoes not reveal the actual identity
of the destination host. Even though hashing the hostname does not provide very strong
security because an agent may attempt a dictionary attack tofind hash collisions, it does
illustrate how a diagnosis requester may make tradeoffs between privacy and accuracy.

8.9 Agent implementation details

All regional and specialist agents are deployed on Planetlab nodes. The service direc-
tory and knowledge agent run on a machine at MIT. User agents in this implementation
operate as Firefox extensions inside web browsers on end user machines. Implementing
user agents as Firefox extensions has a number of advantages. Firstly, Firefox supports
multiple platforms, including Windows, MacOS, and Linux. Secondly, Firefox has an ac-
tive community of extension developers. Thirdly, the Firefox addons web site5 provides
a convenient distribution channel to reach a large number ofusers around the world. For
platform independence, I implemented user agents using Javascript. User agents do not
advertise any services; they only issue notifications and diagnosis requests.

All other agents are implemented as Python 2.4 scripts running as Apache modpython
handlers interfacing with a MySQL database backend. There are several advantages to
implementing agents using Apache, Python, and MySQL.

Firstly, Apache is multithreaded, allowing agents to handle multiple requests simultane-
ously. Secondly, Apache can demultiplex requests to multiple diagnostic agents operating
as HTTP request handlers on the same web server. Thirdly, Apache provides a common
logging infrastructure. Fourthly, Apache provides tools for monitoring HTTP server sta-
tus to assist in debugging. A disadvantage of Apache is the additional memory and CPU
overhead of running a web server.

Python has several advantages as well. Firstly, as a high-level scripting language that
provides many built-in features and modules, it allows for much more rapid development
than C or Java. Secondly, Python is a popular and easy to understand language, which
makes it easier for others to build their own agents using thecode I developed. A disadvan-
tage of Python is that it is an interpreted language, and is slower and uses more memory
than a natively compiled program written in C or C++. This disadvantage is somewhat
mitigated by the fact that Python does support modules written in C. I decided to accept
this tradeoff because my experiments primarily evaluate the functionality of CAPRI, and
not the speed of diagnosis.

I choose to use a MySQL database rather than memory or disk files for storing data in

5https://addons.mozilla.org/en-US/firefox
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this implementation for several reasons. Firstly, a database provides atomicity and consis-
tency to support multithreaded operation. Secondly, a database provides a standard SQL
interface for querying and aggregating information agentscollect. Each Python agent main-
tains its component information base, knowledge base, service table, and component class
and property definitions in database tables. In addition, web server history agents, stats
agents, and knowledge agents record and aggregate notifications they receive using con-
nection history and diagnosis history tables.

Agents send and receive service advertisements using a centralized agent directory
server located at MIT. All agents know the URI of the service directory. In order to dis-
cover newly available services, Python agents reload theirlist of available services from
the agent directory approximately once an hour. To take advantage of new regional agents
that become available, user agents reload available services approximately once a day. Re-
gional and specialist agents use requester AS restrictionsand costs to preferentially handle
requests from requesters in the same AS. Thus users who are inthe same AS as a regional
agent send diagnostic requests and notifications to that regional agent. Similarly, regional
agents request beliefs from specialist agents within theirAS if available.

To support the creation of new diagnostic agents, most of thecommon functionality of
CAPRI agents such parsing messages, maintaining a component ontology, managing a ser-
vice table, constructing failure dependency graphs, and performing probabilistic inference
is contained in a Python module. Python agents use the OpenBayes6 module to perform
probabilistic inference and use the PyXML module7 to parse XML messages. Knowledge
agents use the SMILE reasoning engine to learn probabilistic dependencies.8 Creating a
new diagnostic agent simply involves extending the defaultdiagnostic agent implementa-
tion with the desired capabilities and placing new component class and property definitions
and service descriptions in the appropriate locations.

Below are tables of the notification subscriptions and the services offered by diagnostic
agents in my prototype implementation. Input and requesterrestrictions are not shown
here. In addition, most services also have a corresponding “local” version with lower cost
for those requesters in the same AS as the agent. Appendix B contains the full service
descriptions.

6http://www.openbayes.org/
7http://pyxml.sourceforge.net/
8SMILE is available from the Decision Systems Laboratory, University of Pittsburgh

(http://dsl.sis.pitt.edu)
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Service ID Input Output Cost

diag:http HTTP Connection Explanations 1000
status localNet.status
dnsLookup.hostname httpServer.status
localNet.srcIP dnsLookup.status
ipRouting.destIP ipRouting.status

obs:stats HTTP Connection Observation 1000
destHash (required) users

avgLatency
lastSuccess
lastFailure
recentStatusDist

knowledge:http Knowledge 100
Local Network.status
Local Network.consecFailuresFromUser
HTTP Connection.status
DNS Lookup.status
IP Routing.status
HTTP Server.status
HTTP Server.consecFailuresToServer
OutboundConn Test.probeResult
Firefox Error Test.ffoxErrorCode

Table 8.1: Regional agent services

115



Agent/Service ID Input Output Cost

Web Server History HTTP Server Belief 1000
Agent ipAddr (required) status

bel:webserver.status connTime (required) Observation
hostHash consecFailuresToServer
httpConn Knowledge
httpConn.status HTTP Server.status
httpConn.destHash
httpConn.destIP
httpConn.srcIP
httpConn.connTime
httpConn.elapsedTime
httpConn.ffoxErrorTest
httpConn.ffoxErrorTest.-

ffoxErrorCode
Web Server History HTTP Server Observation 1000
Agent ipAddr (required) consecFailuresToServer

obs:webserver.cfts connTime (required) totalConsecFailuresToServer
DNS Lookup Agent DNSLookup Belief 10000

bel:dnslookup.status hostname (required) status
Observation

verifyDNSLookupTest.-
dnsLookupResult

Knowledge
DNS Lookup.status

AS Path Agent IP Routing Belief 100000
bel:iprouting.status srcIP (required) status

destIP (required) Observation
asPathTest.asPathTestResult

Knowledge
IP Routing.status

Stats Agent HTTP Connection Observation 100
obs:stats destHash (required) users

avgLatency
lastSuccess
lastFailure
recentStatusDist

Table 8.2: Specialist agent services
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Service ID Input Output Cost

knowledge:http(learned) Knowledge 1000
Local Network.status
Local Network.consecFailuresFromUser
HTTP Connection.status
DNS Lookup.status
IP Routing.status
HTTP Server.status
HTTP Server.consecFailuresToServer
OutboundConn Test.probeResult
Firefox Error Test.ffoxErrorCode
Verify DNS Lookup Test.dnsLookupResult
AS Path.status
AS PathTest.asPathTestResult
AS Hop.status
AS Hop Test.asHopTestResult

knowledge:specialist Knowledge 1000
Local Network.status
Local Network.consecFailuresFromUser
DNS Lookup.status
IP Routing.status
HTTP Server.status
HTTP Server.consecFailuresToServer
OutboundConn Test.probeResult
Verify DNS Lookup Test.dnsLookupResult
AS Path.status
AS PathTest.asPathTestResult
AS Hop.status
AS Hop Test.asHopTestResult

Table 8.3: Knowledge agent services
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Service ID Input

notify:connHist HTTP Connection
status
destHash
srcIP
destIP
connTime
elapsedTime
ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

notify:diagHist HTTP Connection
localNet
localNet.status
localNet.ipAddr
localNet.consecFailuresFromUser
localNet.totalConsecFailuresFromUser
httpServer
httpServer.status
httpServer.consecFailuresToServer
dnsLookup
dnsLookup.status
dnsLookup.hostname
ipRouting
ipRouting.status
ipRouting.srcIP
ipRouting.destIP
outboundConnTest
outboundConnTest.probeResult
outboundConnTest.probeURI
ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

Table 8.4: Regional agent notification subscriptions
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Agent/Service ID Input

Stats Agent HTTP Connection
notify:connHist(destHash) status

destHash (required)
srcIP
destIP
connTime
elapsedTime
ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

Web Server History Agent HTTP Connection
notify:connHist(destIP) status

destIP (required)
srcIP
connTime
elapsedTime
ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

Table 8.5: Specialist agent notification subscriptions

Service ID Input

notify:diagHist HTTP Connection
localNet (required)
localNet.status (required)
localNet.ipAddr (required)
localNet.consecFailuresFromUser (required)
localNet.totalConsecFailuresFromUser
httpServer (required)
httpServer.status
httpServer.consecFailuresToServer
dnsLookup (required)
dnsLookup.status
dnsLookup.hostname
ipRouting (required)
ipRouting.status
ipRouting.srcIP
ipRouting.destIP
outboundConnTest (required)
outboundConnTest.probeResult
outboundConnTest.probeURI
ffoxErrorTest (required)
ffoxErrorTest.ffoxErrorCode

Table 8.6: Knowledge agent notification subscriptions
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Chapter 9

Experimental Results

The purpose of the CAPRI architecture is to provide a common framework for distributed
diagnosis among heterogeneous diagnostic agents. This chapter evaluates the effective-
ness of distributed diagnosis using the diagnostic agents in the prototype implementation
described in Chapter 8. I demonstrate that multiple heterogeneous diagnostic agents with
different capabilities and located in different parts of the network can use CAPRI to effec-
tively diagnose real-world HTTP connection failures in a distributed manner in real time.
Unlike previous research in distributed diagnosis [44, 67,98], agents in CAPRI can in-
corporate information from multiple types of diagnostic tests, including both active and
passive measurements, and can deal with incomplete information caused by network fail-
ures. In addition, I demonstrate the ability to add new diagnostic agents to the system and
show that existing diagnostic agents can take advantage of new dependency knowledge
and new diagnostic agents to improve the accuracy and cost ofdiagnosis. This chapter also
illustrates the effectiveness of aggregation and caching to reduce the cost of diagnosing
multiple similar failures for scalability. Unlike previous research that only considers the
probing costs of single diagnoses [76], this experiment shows how agents can manage both
the probing and communication costs of multiple, repeated diagnoses.

This chapter presents experimental results demonstratingthe advantages of the CAPRI
architecture. I show that regional agents dynamically select diagnostic actions without
domain-specific knowledge. Heterogeneous diagnostic agents use belief propagation to di-
agnose failures in a distributed way even when no single agent has enough information to
adequately diagnose a failure. I also find that caching and probabilistic inference reduces
the number of diagnostic requests sent to specialists and toregional agents. Also, I show
that adding learned dependency knowledge improves the accuracy of diagnosis while re-
ducing cost. In addition, adding a new type of diagnostic agent can reduce the response
time of certain requests. I also show that the confidence metric produced in a diagnosis can
be used to predict the expected accuracy of a diagnosis if thedependency knowledge used
for diagnosis is correct.

The experimental evaluation described in this thesis differs from previous work in dis-
tributed Internet fault diagnosis in that it evaluates the performance of real-time, online
distributed diagnosis for real-world failures. Previous researchers generally focus on off-
line diagnosis or diagnosis of simulated failures in simulated networks. Evaluation using
real-world failures can provide better insight into the challenges of diagnosis under real-
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world conditions, in which network failures can interfere with diagnostic communication
and diagnostic tests may produce noisy or inaccurate results. The data for the experimen-
tal results shown below were collected over a period of over one month, from March 6
to April 10, 2007. In this experiment, diagnostic agents collect information about a total
of approximately 500,000 HTTP connections per day, and diagnose approximately 3,000
HTTP connection failures per day.

9.1 Distributed diagnosis

Chapter 8 describes the range of diagnostic agents that I implemented and deployed. Figure
9-1 illustrates the knowledge that agents use to diagnose failures in my implementation.
Each type of diagnostic agent knows a different subset of this dependency knowledge. The
CAPRI architecture enables distributed agents to discoverone another and communicate
observations, beliefs, and knowledge to perform distributed fault diagnosis.

HTTP Conn
status

Local Net
status

Web Server
status DNS Lookup

status

IP Routing
status

Consec failures
to server

Consec failures
from user

DNS Lookup
Test result

AS Path
Test result

Outbound Conn
Test result

AS Path
status

Firefox
error code

User Agent Knowledge

Web Server 
History Agent
Knowledge

DNS Lookup 
Agent 

Knowledge

AS Path 
Agent 

Knowledge

Figure 9-1: Agents with different capabilities and knowledge exchange observations and
beliefs to diagnose failures.

9.2 Dynamic action selection

Agents in CAPRI diagnose failures dynamically based on the information in a request, ser-
vice descriptions, and dependency knowledge. This general, dynamic message processing
procedure allows agents to automatically take into accountnew dependency knowledge
and new services when they become available. Figure 9-2 illustrates diagnostic requests
that regional agents receive and the requests that they maketo specialist agents for 27,641
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diagnostic requests from March 6 to March 21, 2007. Table 9.1presents this data in tabular
form. Given a Firefox error code and a combination of specialist agents, the table indicates
the number of diagnoses for which a regional agent contactedall of those specialist agents
to diagnose a failure of that type. The figure shows that regional agents are able to dynam-
ically decide what actions are appropriate in a non-domain-specific way, based only on the
information in the request, service descriptions, and dependency knowledge.

Firefox error code

DNS Lookup
Test Requests

8508

Web Server
History Test
Requests

12086

AS Path Test
Requests

2952

5510

1373                                         

2316

2690

1037

5080

2158

650

2123

Server not found
10002

Request canceled
by user
7500

Connection refused
3751

Connection
timed out

3780

Connection reset
1993

Other 650

Total specialist requests:
23546

Total regional agent diagnoses:
27641

Specialist 
requests

Figure 9-2: Regional agents dynamically select specialistagents to contact.

Diagnostic requests at the left of the figure are categorizedby the error code reported
by the Firefox web browser. The arrows indicate the total number of diagnostic requests
regional agents made to each type of specialist agent. Note that for clarity, arrows with
fewer than 100 requests are not shown. Certain types of failures are easier to diagnose
than others. For example, regional agents respond to diagnostic requests for which the
Firefox error code is “server not found” using only probabilistic dependency knowledge
without any additional diagnostic tests. Such failures arewith very high probability DNS
Lookup failures. This capability to diagnose failures withhigh accuracy with incomplete
information in a general way is one important advantage of probabilistic diagnosis. For
other types of failures, such as “request canceled by user”,a regional agent may need to
request additional tests from multiple other specialist agents.

This figure also shows the ability of agents in CAPRI to take into account the cost of
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Diagnoses using indicated specialists
W = Web Server Test
D = DNS Lookup Test

A = AS Path Test
Firefox error code none W D WD A WA DA WDA Total
Canceled by user 1020 1265 866 3717 56 79 48 449 7500
Connection refused 1378 2250 21 26 27 2 9 38 3751
Connection timed out 665 506 64 422 175 276 186 1486 3780
Connection reset 474 467 134 846 6 9 6 51 1993
Server not found 9997 1 2 0 0 2 0 0 10002
Other 383 80 25 80 5 10 8 24 615
Total 13917 4569 1112 5091 269 378 257 204827641

Table 9.1: Distribution of specialist agent requests from regional agents by Firefox error
code

different tests when selecting actions. In my prototype implementation, some services have
greater costs than others. Web server history tests have thelowest cost, followed by verify
DNS lookup tests, while AS path tests have the greatest cost.For this reason, using the
dynamic procedure for action selection provided by CAPRI, agents will typically request
additional diagnostic tests useful for diagnosis in order of increasing cost.

This figure also illustrates the ability of agents to automatically decide what actions are
possible based on the inputs specified in service descriptions. In certain cases, agents do not
have the necessary inputs to request certain diagnostic tests. For example, when a “server
not found” error occurs, the user agent does not have an IP address for the destination web
server and so cannot conduct a web server history test or an ASpath test.

CAPRI also allows agents to preferentially handle requestsfrom nearby agents by ad-
vertising lower costs. Three out of the 14 regional agents inmy experiments can request
DNS lookup tests from specialist agents located in the same AS. Because DNS lookup
specialist agents advertise a lower cost of diagnosis to regional agents within the same AS
(9000 instead of 10000), regional agents in the same AS as a DNS specialist agent request
DNS lookup tests from specialist agents within the same AS. In this experiment I found
that 2801 out of 8508 (33%) of DNS lookup requests are handledby DNS specialist agents
in the same AS as the regional agent.

The procedure that agents use action selection also enablesan agent to automatically
work around failures in other agents simply by considering the value of the information
actions provide. For example, at one point in my experimentsa DNS lookup agent at the
University of Oregon became unreachable due to a Planetlab software upgrade. Because
multiple DNS lookup specialists offer the same services, a regional agent has multiple DNS
lookup test request actions in its list of possible next actions, all with the same value. A
regional agent that fails to connect to the University of Oregon DNS lookup agent selects
another DNS lookup test action with the same value if available. Once a regional agent
successfully obtains DNS lookup test information from a specialist, however, the value
of all other DNS lookup test actions becomes zero because they do not provide any new
information.
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These experimental results illustrate some of the benefits of dynamic message process-
ing and action selection based on action value and cost. The action selection procedure that
CAPRI agents use automatically distinguishes between possible and impossible actions
based on the information in an agent’s component graph, and can take into account the
different costs of actions to preferentially request lowercost tests. This procedure allows
an agent to automatically work around failures in other agents and estimate the expected
gain in accuracy of available diagnostic actions without domain-specific knowledge.

9.3 Probabilistic diagnosis

This thesis proposes the use of probabilistic models for representing diagnostic informa-
tion and dependencies and making inferences. This section presents experimental results
demonstrating several benefits of probabilistic diagnosis. Probabilistic inference provides
CAPRI agents with the ability to diagnose failures with incomplete information. Previous
systems for distributed fault diagnosis such as Netprofiler[67], Shrink [44], and Planet-
seer [98] cannot function without complete information from all or most of the parts of
the system. Frequently when network failures occur, however, an agent cannot reach other
diagnostic agents. In my experiments, I show that user agents can diagnose failures using
probabilistic inference even when network failures prevent them from contacting regional
agents.

Unlike previous work in distributed fault diagnosis, CAPRIagents can exchange prob-
abilistic dependency knowledge in addition to observations and beliefs. The ability to
communicate dependency knowledge allows agents both to take advantage of information
about new diagnostic tests and to increase the accuracy and cost of diagnosis using existing
tests. In my experiments, a knowledge agent learns more accurate dependency knowledge
using Bayesian learning and communicates this knowledge toregional agents. Using this
learned dependency knowledge, regional agents diagnose failures with both higher accu-
racy and lower cost.

In order to illustrate the effectiveness of probabilistic inference for modeling and diag-
nosing real-world failures, I measure the accuracy of diagnosis in my prototype implemen-
tation. Note that the purpose of this experiment is to demonstrate the ability for diagnostic
agents to use distributed probabilistic inference for diagnosis and not to show that the prob-
abilistic models I implemented are necessarily the best or more accurate.

In my experiments, a knowledge agent distributes probabilistic dependency knowledge
to all other agents. Figure 9-1 illustrates the probabilistic dependencies that agents use for
diagnosis in my prototype implementation. Initially, I manually specify the conditional
probabilities for the dependency knowledge in the figure andprovide the knowledge agent
with this dependency knowledge. The knowledge agent advertises the capability to pro-
vide regional agents with dependency knowledge. As regional agents receive requests and
require knowledge for diagnosis, regional agents request dependency knowledge from the
knowledge agent. Similarly, when user agents start up, theyrequest dependency knowledge
from regional agents in turn. Note that user agents only receive a subset of all dependency
knowledge from regional agents; user agents do not know about the dependencies for the
information collected by specialist agents.
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This section evaluates the accuracy and cost of probabilistic diagnosis in my experi-
ments. In addition, this section discusses several advantages of a probabilistic approach,
including the ability to compute the confidence of a diagnosis and the ability to compute
the value of available diagnostic actions.

9.3.1 Improving accuracy and cost by learning

Cause of failure Count
DNS lookup 9395 (31%)
Web server 6106 (20%)
Local network 5103 (17%)
IP routing 2373 (8%)
Unknown 7023 (23%)

Table 9.2: Distribution of 30,000 failures

In order to evaluate the accuracy of diagnosis, I label 30,000 reported failures using a set
of manually specified rules based on a posteriori information such as the number of consec-
utive failures to a web server and from a user. Figure 1 lists these rules. Table 9.2 illustrates
the distribution of labels for the these failures. Though these labels may not always be cor-
rect, they provide a good starting point for estimating diagnostic accuracy. The strength
of the CAPRI architecture is that if an expert develops more accurate rules for labeling
failures, they can then train a Bayesian network using theserules to produce more accurate
dependency knowledge for fault diagnosis. To demonstrate this feature of CAPRI, I trained
the Bayesian network in figure 9-1 using the labels above on the first 20,000 failures. Ap-
pendix B.3 contains the conditional probabilities for dependency knowledge before and
after learning. To evaluate the accuracy of diagnosis usingthis learned dependency model,
I tested the learned dependency knowledge on the next 10,000failures.

I evaluate the accuracy of diagnosis in terms of recall and precision. Recall refers
to the number of correct diagnoses of a particular type divided by the total number of
actual failuresof that type, while precision represents the number of correct diagnoses of
a particular type divided by the total number ofdiagnosesof that type. Accurate diagnosis
requires both high recall and high precision. Low recall fora type of failure implies agents
frequently misdiagnose failures of that type. Low precision for diagnoses of a given type
implies that diagnoses of that type are frequently inaccurate.

Figure 9-3 shows the accuracy of diagnosis in terms of recalland precision for each
candidate explanation before and after learning. Table 9.3classifies failures by true cause
and diagnosis using dependency knowledge before and after learning. Diagnosis using
learned dependency knowledge increases overall accuracy from 86% to 97%. Notice that
before learning, agents misdiagnosed many web server failures as DNS lookup or IP rout-
ing failures, resulting in low recall for web server failurediagnosis and low precision for
DNS lookup and IP routing diagnosis. After learning, however, the recall of web server di-
agnosis and the precision of DNS lookup and IP routing diagnosis increased significantly,
demonstrating the effectiveness of Bayesian learning for improving diagnostic recall and
precision.
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Figure 9-3: Learning dependency knowledge improves recalland precision

Diagnoses before learning
True cause Local net Web server DNS lookup IP routingTotal Recall
Local net 1691 1 55 2 1749 97%
Web server 90 1163 527 279 2059 56%
DNS lookup 36 0 3068 0 3104 99%
IP routing 0 53 7 747 807 93%
Total 1817 1217 3657 10287719
Precision 93% 96% 84% 73% 86%

Diagnoses after learning
True cause Local net Web server DNS lookup IP routingTotal Recall
Local net 1738 11 0 0 1749 99%
Web server 97 1888 25 49 2059 92%
DNS lookup 36 1 3066 1 3104 99%
IP routing 0 3 0 804 807 100%
Total 1871 1903 3091 854 7719
Precision 93% 99% 99% 94% 97%

Table 9.3: Diagnoses before and after learning
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Also, notice that even though the probabilistic dependencymodel that agents use for di-
agnosis is relatively simple and leaves out many additionaldependencies such as the user’s
operating system, link layer connectivity, and software dependencies, agents can still di-
agnose most failures with reasonable accuracy. This resultdemonstrates that probabilistic
inference can frequently produce good results even withouta complete model of depen-
dencies. One reason for this robustness is that many common failures are relatively easy to
diagnose. For example, an agent can diagnose failures having a Firefox “server not found”
error code using anOutbound Conn Testwith very high accuracy. If theprobeResult of
the Outbound Conn Testis OK, then it is a DNS lookup failure. Otherwise, it is a local
network failure with high probability. If an agent has accurate tests and accurate prob-
abilistic dependency knowledge for diagnosing common failures, the agent can diagnose
such common failures with high accuracy even if the probabilistic dependency knowledge
it has for other components is incomplete or inaccurate. Of course, if an expert has accurate
dependency knowledge of these additional dependencies, the expert can introduce this new
knowledge into the system to improve accuracy.
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Figure 9-4: Learned knowledge improves accuracy and cost

Also, notice that learning new dependency knowledge not only improves accuracy, it
reduces the cost of diagnosis as well. Using learned knowledge, the average accuracy of
diagnosis increased from 79% to 94%, where accuracy is defined as the number of cor-
rect diagnoses divided by the total number of diagnoses. In addition, as regional agents
retrieve the newly learned dependency knowledge from the knowledge agent, the average
cost of diagnosis also decreases. Figure 9-4 shows average accuracy, the number of diag-
nosis requests to regional agents, and the number of specialist agent requests over time.
After acquiring new dependency knowledge at approximately2.7 days, the regional agents
significantly reduce the number of requests they make to specialist agents while accuracy
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improves. The number of diagnostic requests of all types decreases substantially after in-
troducing the new dependency knowledge. This result suggests that the new dependency
knowledge enables agents to diagnose failures more accurately with less evidence.

9.3.2 Predicting accuracy using confidence
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Another benefit of probabilistic diagnosis is that it allowsan agent to indicate its confi-
dence in its diagnosis. A confidence metric helps a requesterdecide how much to believe
the diagnosis and whether to request additional tests. Figure 9-5 plots the average accuracy
of diagnosis for various confidence ranges for 55,866 diagnoses made between March 17
and April 10, 2007 using learned dependency knowledge. Eachpoint on the plot represents
the average accuracy of diagnoses with the specified explanation and confidence within the
indicated range. For example, a diagnosis of DNS lookup failure with confidence between
0.95 and 1.0 is accurate nearly 100% of the time, while a diagnosis of DNS lookup failure
with confidence between 0.90 and 0.95 is accurate 88% of the time. In this experiment,
agents diagnose failures using a confidence threshold of 90%. Once an agent reaches 90%
confidence, it does not perform any additional diagnostic tests. For clarity, the plot does not
include points for confidence ranges with fewer than 50 diagnoses. For the data depicted
in this figure, 86% of the diagnoses have confidence values over 90%. In general, greater
confidence corresponds to greater accuracy, suggesting that a requester can use confidence
as a prediction of diagnostic accuracy, especially for confidence levels greater than 90%.

This experiment also illustrates a deficiency in the probabilistic dependency model that
agents use for diagnosis in this experiment. If agents had accurate dependency knowledge,
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average accuracy would closely correspond to confidence. This is not the case in this exper-
iment, however; confidence does not predict accuracy well for diagnoses with confidence
levels less than 90%. This suggests that the dependency knowledge used by agents in this
experiment does not accurately model all real-world dependencies. For example, most of
the web server failure diagnoses with less than 90% confidence have affoxErrorCode of
14 (connection timed out), aconsecFailuresToServer of 0, and adnsLookupResult of
CORRECT. According to the rules for labeling failures in Figure 1, this is an IP routing fail-
ure. Using learned dependency knowledge, however, regional agents misdiagnose these IP
routing failures as web server failures. The fact that an agent has high confidence for incor-
rect diagnoses of certain types of failures suggests that the Bayesian network in Figure 9-1
does not completely capture all the dependencies in the system.

Unlike other systems for fault diagnosis that rely on staticalgorithms for diagnosis,
however, CAPRI allows one to correct inaccuracies by introducing new dependency knowl-
edge and new specialist agents. For example, one could create a new piece of dependency
knowledge indicating that anHTTP Connectionfailure with ffoxErrorCode 14 and 0
consecFailuresToServer is most likely due to anIP Routingfailure. One could de-
fine a new diagnostic test class with a property that represents ffoxErrorCode = 14∧
consecFailuresToServer = 0 and then addffoxErrorCode, consecFailuresToSer-
ver, and IP Routingstatus as parent properties. A new agent with this new knowl-
edge may either directly offer its new knowledge to other agents, or it may simply offer a
new service for inferringIP Routingstatus given anHTTP Connectionfailure for which
ffoxErrorCode is 14 andconsecFailuresToServer is 0. Existing regional agents could
then automatically discover and take advantage of the new dependency knowledge or new
service to correctly diagnose previously misdiagnosed failures.

Deciding whether to directly provide the new knowledge or toencapsulate it as a new
service involves making a tradeoff between inference cost and communication cost. Di-
rectly providing the knowledge to regional agents can reduce the number of requests that
regional agents need to perform for diagnosis, but increases the complexity of the failure
dependency graphs used for inference. On the other hand, providing a new service may
increase communication cost but does not increase the complexity of diagnostic inference
at the regional agent.

9.3.3 Predicting change in accuracy using action values

Probabilistic dependency knowledge enables diagnostic agents in CAPRI to estimate the
value of the information an action produces based on available evidence in a non–domain-
specific way. The effectiveness of action selection based onaction value depends on how
closely action value corresponds to improvement in accuracy. In my experiments, agents
compute action value as the expected change in confidence given the information produced
by the action. To measure the degree of correlation between action value and improvement
in accuracy, I compute diagnostic accuracy before and aftereach action that each regional
agent performs. Figure 9-6 plots the average change in accuracy for actions having values
within the indicated ranges for 2805 specialist requests from regional agents. On average,
actions having value between 0 and 0.05 only improve accuracy by 2.1%, actions with
value between 0.05 and 0.10 improve accuracy by 25%, and actions with value between
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Figure 9-6: Action value predicts an action’s effect on accuracy

0.15 and 0.20 improve accuracy by 55%. This result suggests that action value roughly
predicts the expected change in accuracy for an action, withthe notable exception of web
server history tests having value between 0.20 and 0.25, which I examine in more detail
below. In addition to helping agents decide what actions to take, action value might also
help a requester decide whether to request additional information. For example, one might
extend the CAPRI messaging protocol so that in addition to indicating the most probable
cause of failure and the confidence of the diagnosis, a diagnostic response also includes a
list of additional actions an agent can perform and their associated action values and costs.

Comparing action value and average change in accuracy can help identify inaccurate
probabilistic dependency knowledge. For example, Figure 9-6 indicates web server history
tests with value between 0.20 and 0.25 only improve accuracyby 14% on average. An ex-
amination of the log files reveals that in this experiment regional agents tend to overestimate
the value of web server history tests for the diagnosis of HTTP connection timed out errors.
Using learned dependency knowledge, a regional agent diagnosing an HTTP connection
failure havingffoxErrorCode 14 (connection timed out), 0consecFailuresFromUser,
andOutbound Conn TestprobeResult OK computes the value of a web server history test
as 0.234 and requests this information from a web server history agent. In most cases, how-
ever,consecFailuresToServer equals 1, which actually decreases the regional agent’s
confidence in its diagnosis. This discrepancy between action value and average change in
confidence indicates a deficiency in the regional agent’s probabilistic dependency knowl-
edge. In particular, the regional agent incorrectly assumes conditional independence be-
tweenconsecFailuresToServer andffoxErrorCode in cases whereffoxErrorCode
equals 14 andconsecFailuresToServer equals 1. To remedy this deficiency, one might
introduce a new diagnostic agent that has more accurate dependency knowledge relating
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ffoxErrorCode andconsecFailuresToServer, as described in Section 9.3.2.

9.4 Managing cost

Probabilistic inference allows agents in CAPRI to manage cost by diagnosing failures with
incomplete information as well as using cached informationto diagnose future similar fail-
ures. This section presents experimental results illustrating the ability of diagnostic agents
to aggregate multiple similar failures to reduce the average cost of diagnosing multiple
failures.

One of the key benefits of diagnosis in CAPRI is that a diagnostic agentA can com-
municate observations, beliefs, and probabilistic dependency knowledge to another agent
B so that agentB can cache this information and diagnose future failures without having
to contact agentA again. Note that by caching the intermediate observations used to pro-
duce a diagnosis and not just the final diagnostic result, agents can use this information to
diagnose other similar but not identical failures in the future to efficiently aggregate mul-
tiple similar requests. This can both reduce the communication cost of diagnosis as well
as provide additional robustness to network failures so that an agent can perform diagnosis
even if it cannot contact any other agents in the network. In my experiments, I show that
both regional and user agents can use the results of previously collected diagnostic tests
to diagnose multiple similar failures using the same information without having to contact
additional diagnostic agents.

9.4.1 Regional agents aggregate similar failures
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Figure 9-7 illustrates a case of diagnosing multiple similar failures to the same destina-
tion hostname. Each point in the figure represents a connection attempt from a user to the
destination web server hostname. In this case, multiple users experience failures connect-
ing to the same destination hostname. Over the time period indicated in the figure, the IP
address for the destination hostname changes. During the transition period, DNS lookup
for the destination hostname fails for some time, and requests to the old IP address also fail
for some time. This figure shows three regional agents diagnosing failures to connect to
this destination from three different users. Initially, when RA1 first receives a diagnostic
request at approximately 1.6 hours, it contacts two specialist agents to request two types
of diagnostic tests, a web server history agent to request a belief about thestatus of the
HTTP Serverinferred fromconsecFailuresToServer; and a DNS lookup test agent to
request a belief about theDNS Lookupstatus using thednsLookupResult from a Ver-
ify DNS Lookup Test. Using this information, the agent diagnoses the failure asa DNS
Lookup failure. It then caches this information to diagnosethe next 10 failures. TheVerify
DNS Lookup Testinformation times out after one hour, and RA1 requests this information
again. It then caches it for use in diagnosing the next several failures. Similarly, the second
regional agent requestsHTTP Serverstatus beliefs from the web server history agent and
uses this information to diagnose the next few failures. In this case, three diagnostic agents
diagnose a total of 37 failures using only a total of six specialist agent requests, demonstrat-
ing the usefulness of caching and aggregation for reducing the cost of diagnosing multiple
similar failures. Of the 37 failures, 26 are server not founderrors, 6 are requests canceled
by the user, 3 are connection reset errors, and 2 are connection refused errors. The regional
agents diagnose all the failures as DNS lookup failures except the three failures between
time 4.7 and 5.5 hours, which RA2 diagnoses as web server failures.

Note that the majority of failure requests in my experimentsare for failures experienced
by only one user. Therefore not every failure presents an agent with an opportunity for
aggregation. As the number of users and failures increases,however, I expect that more
opportunities for aggregation will arise.

This experiment also illustrates a limitation of diagnosisusing my prototype implemen-
tation. In my prototype, agents do not distinguish among different types of DNS lookup
failures. For example, a DNS lookup failure might result from one of a number of different
causes, including a mistyped URL, a failure of the authoritative DNS server responsible for
the web server’s domain, a failure of the user’s ISP’s DNS server, a DNS server misconfig-
uration, or an IP routing failure between a user and a DNS server.

Unlike previous systems for fault diagnosis that can only distinguish among a limited
set of explanations for a failure, however, CAPRI allows theintroduction of new diagnostic
agents with new capabilities. For example, an expert with the ability to distinguish among
various types of DNS lookup failures might create a new diagnostic agent that offers a more
detailed DNS diagnosis service. The expert might define additional network component
classes such asDNS Server, additional diagnostic tests such asMistyped URL Test, and
new knowledge indicating the probabilistic dependencies among properties of these new
classes andDNS Lookupstatus. The new DNS diagnosis agent may then advertise the
ability to distinguish among various candidate explanations for DNS lookup failure. A
user that wishes to obtain more detailed diagnosis of DNS lookup failures can then request
additional diagnosis from the new agent.
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Figure 9-8: Aggregation reduces the cost of diagnosis as therate of failures increases.

To quantify the effect of aggregation, I plot the number of specialist requests that re-
gional agents make as a function of the number of recent diagnostic requests they have
received. An important reason to aggregate similar requests is to reduce the cost of diag-
nosing high-impact failures that affect a large number of users. Figure 9-8 shows that as
the rate of requests a regional agent receives increases, the average number of specialist
agent requests that agent makes decreases. The figure plots the average number of spe-
cialist requests for 30,000 regional agent diagnoses from March 5 to March 16, 2007 as
a function of Firefox error code and the number of requests anagent has received in the
past 15 minutes. For clarity, the figure only plots points corresponding to averages of 15 or
more diagnoses. An agent that has received many requests in the past 15 minutes is more
likely to have cached information useful for diagnosing a failure. This result suggests that
caching recent failures is an effective way to reduce the cost of diagnosing multiple similar
failures, especially when many such failures occur in a short period of time.

9.4.2 User agents aggregate similar failures

User agents also aggregate similar failures. In particular, if a user experiences multiple
simultaneous failures to different destinations, there isa high probability that the failures
are all due to a local network connectivity problem, such as adisconnected network cable.
In such cases, a user agent diagnoses all of these failures without requesting additional
diagnosis from regional agents. It is important for user agents to diagnose such failures
efficiently because a user disconnected from the network cannot contact a regional agent
for additional diagnosis. Figure 9-9 illustrates such a case of aggregation at a user agent.
In this case, a user experiences eight consecutive failuresto eight different destination web
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Figure 9-9: A user agent aggregates multiple similar failures

servers within a space of less than ten seconds. The user might be a mobile user who
just turned on their computer and does not have network connectivity for several seconds
until they receive an IP address using DHCP. When these failures occur, the user agent
conducts local tests, including outbound connectivity tests and computing the number of
consecutive failures from the user. Using the results of these tests, the user agent diagnoses
all of these failures as local network failures. This example illustrates how aggregation of
similar failures at the user agent can greatly reduce the number of diagnostic requests that
regional agents must handle. In addition, this case demonstrates the ability to diagnose
failures with incomplete information using probabilisticdiagnosis, which is essential when
network failures prevent agents from collecting additional diagnostic information.

9.5 Extensibility

The experiments I conduct illustrate extensibility in several ways. Firstly, they show the
ability for agents to add new dependency knowledge. Once theknowledge agent learns new
dependency knowledge, it can provide other agents with these new updated probabilities.
As demonstrated in the previous section, this both improvesthe accuracy of diagnosis and
also reduces cost.

Another type of extensibility is the ability to support new diagnostic tests in order to
provide new functionality, improve accuracy, or reduce costs. My prototype implementa-
tion makes it easy to wrap existing diagnostic tests to produce new diagnostic agents. In
my experiments, I introduced a second specialist agent for diagnosingDNS Lookupcom-
ponents that uses the CoDNS service [69]. CoDNS is an existing service on Planetlab
that caches DNS lookups to provide faster response times. Inorder to add a new type of
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specialist agent that can perform CoDNS lookup tests, I performed the following steps:

1. I extended the component ontology by defining a newCoDNS Lookup Testclass
and a propertycodnsLookupResult. I defined these in a new component class and
property definition file. See Appendix B for the actual definitions. Other diagnostic
agents automatically request these definitions using the URI

http://capri.csail.mit.edu/2006/capri/planetlab

when they encounter the new component class and property.

2. I deployed a CoDNS specialist agent on Planetlab that advertises the capability
to produce beliefs aboutDNS Lookupstatus from thecodnsLookupResult of a
CoDNS Lookup Test. Appendix B includes the actual service descriptions. Since
CoDNS caches DNS lookups among Planetlab nodes, an agent canperform aCoDNS
Lookup Testfaster and using less network resources than a regularVerify DNS Lookup
Test. Therefore CoDNS specialist agents can advertise a lower cost for performing
CoDNS lookup tests.

3. I added new dependency knowledge to the CoDNS specialist agent. The CoDNS
agent then provides the new knowledge to other agents so thatthey can use cached
CoDNS Lookup Testinformation and compute the value of information provided by
acodnsLookupResult. Appendix B contains this dependency knowledge.
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Figure 9-10: CoDNS lookup agents respond to requests more quickly than DNS lookup
agents

After introducing CoDNS agents, regional agents discover the new specialist agents
through the agent directory. Because the CoDNS agents advertise their services at lower

136



cost than regular DNS lookup agents, regional agents preferthem over regular DNS lookup
agents. Figure 9-10 depicts the cumulative fraction of responses as a function of time. The
median time for a CoDNS agent to perform a test is 0.84 seconds, compared to 1.21 seconds
for regular DNS lookup agents, an improvement of 41%. Noticethat the lines in the figure
cross at about 0.5 and 4.5 seconds. This reflects the different distribution of response times
for CoDNS and DNS lookup tests. The CoDNS agent requires moretime to produce a
response than the DNS lookup agent for the fastest 15% and theslowest 15% of responses.
The DNS lookup agent might perform slightly better than the CoDNS agent for the fastest
15% of responses because it does not incur the overhead of using the CoDNS service. For
the slowest 15% of responses, the CoDNS agent requires significantly more time to produce
a response. This slowness might be caused by heavy load on theCoDNS agent generated
by other processes on the Planetlab node.

The different cost distribution of different diagnostic tests suggests that it may be valu-
able for agents to represent diagnostic cost as a distribution rather than simply as a scalar
value. For example, an agent wishing tightly bound the time required to perform an ac-
tion may select actions on the basis of 95th percentile cost,while an agent with no time
constraints might select actions based simply on expected cost. In future work, one might
extend the CAPRI service advertisement language to supportsuch cost distributions.

This case also demonstrates the ability of agents to automatically compute the value of
information provided by a service and to select additional diagnostic actions when neces-
sary. ACoDNS Lookup Testdoes not provide as much information as a regularVerify DNS
Lookup Test. In particular, aCoDNS Lookup Testcannot determine whether a hostname is
an alias or not, which is a strong indicator that the web site uses Akamai and that different
users will get different IP addresses. Sometimes aCoDNS Lookup Testis sufficient to di-
agnose a failure, but in most cases an agent determines that theCoDNS Lookup Testdoes
not provide enough information and requests a regularVerify DNS Lookup Testas well.

9.6 Summary of results

The prototype implementation described in this thesis and the experiments I conduct using
this prototype illustrate several important benefits of theCAPRI architecture, including the
ability to distribute diagnostic information among multiple agents, the ability to perform di-
agnosis with incomplete information, extensibility to support new dependency knowledge
and new agents, and the ability to reduce the cost of diagnosing multiple failures using
caching and aggregation.

Additionally, this experiment demonstrates the ability for diagnostic agents to aggregate
observations collected from multiple users to produce new observations and dependency
knowledge. CAPRI enables distributed processing of information so that one agent can ag-
gregate and compose information to produce new informationthat other agents can use for
diagnosis. In my experiments, web server history agents receive notifications of approxi-
mately 500,000HTTP Connectionobservations per day from over 10,000 users to compute
consecFailuresToServerand produce beliefs aboutHTTP Serverstatus. A knowledge
agent collects observations ofHTTP Connectionfailures andconsecFailuresToServer
observations to learn new probabilistic dependency knowledge.
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Chapter 10

Conclusion and Future Work

This thesis proposes a new way of looking at the problem of Internet fault diagnosis. Rather
than attempting to develop specialized, isolated systems for the diagnosis of different types
of failures, I seek to create a common framework for fault diagnosis in the Internet to
enable cooperation among multiple diagnostic systems. Thegenerality and extensibility of
CAPRI allows the accumulation of new diagnostic capabilities and dependency knowledge
to improve the quality of diagnosis over time.

This thesis addresses several challenges of developing such a common architecture.
Firstly, CAPRI addresses the challenge of representing diagnostic information by defining
a language for defining new component classes and propertiesin a general and extensible
way. This representation enables CAPRI to support the diagnosis of new types of network
components and new classes of diagnostic tests. Secondly, CAPRI addresses the challenge
of discovering the capabilities of new diagnostic agents byproviding a service description
language for agents to specify the inputs and outputs of their diagnostic services. Using
this service description language, agents can automatically take advantage of new diag-
nostic capabilities offered by other agents. Thirdly, CAPRI addresses the challenge of
distributed inference by providing diagnostic agents witha general, non–domain-specific
procedure for dynamically constructing failure dependency graphs from diagnostic infor-
mation to perform fault diagnosis. This procedure allows agents with different capabilities
and different diagnostic information to cooperate to perform distributed diagnostic infer-
ence while managing cost. I demonstrate the capabilities ofthe CAPRI architecture with
a prototype implementation for the distributed diagnosis of real-world HTTP connection
failures using several types of diagnostic agents.

Several important features of CAPRI include:

1. The separation of representation of diagnostic information in a component graph
from the probabilistic dependency knowledge used to make inferences based on the
information (see Chapter 4). This representation enables agents to apply new de-
pendency knowledge for inference and to distribute the responsibility for collecting
evidence, learning dependency knowledge, and performing diagnostic inference.

2. Dynamically specifying the set of candidate explanations in a diagnostic request
based on the candidate explanations specified in a diagnosisservice advertisement
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(see Section 3.2). This allows the introduction of new diagnostic agents that can dis-
tinguish among new possible causes of failure, and it gives requesters the ability to
specify the candidate explanations that they care about.

3. Dynamically selecting actions to perform in a general, non–domain-specific way
based on the inputs and outputs specified in a service description (see Section 7.8).
This procedure makes it possible for agents to discover new diagnostic services and
use them for diagnosis.

4. The ability to use probabilistic inference to diagnose failures with incomplete infor-
mation. The procedure described in Section 7.8 allows an agent to provide a diagno-
sis with incomplete information even when it cannot contactother agents or conduct
certain tests.

10.1 Limitations and future work

Many open questions and areas of future work remain. In this thesis I make many design
choices based on simplicity and ease of deployment. In some cases, however, alternative
design choices might result in improved expressiveness or accuracy. Below I discuss the
strengths and limitations of CAPRI, possible improvements, and future research directions.

10.1.1 Scalability

A major strength of the CAPRI architecture is that it supports the addition of new agents,
new services and new dependency knowledge. In order for agents to effectively take advan-
tage of new services and knowledge, however, the architecture must scale as the number of
agents and knowledge in the system increases. This thesis considers three types of scalabil-
ity: scalability to support many diagnostic requests, scalability to support a large number
of available diagnostic services, and scalability to support a large amount of dependency
knowledge. Below I discuss these scalability issues and describe possible areas of future
work to better understand the scalability of CAPRI.

The first type of scalability is the ability to support a largenumber of diagnostic re-
quests. In my experiments I show that agents in CAPRI can aggregate multiple similar
failures using cached information to reduce the cost of diagnosing many similar failures.
Secondly, I show how specialist agents use input restrictions to limit the requests they re-
ceive and distribute requests across multiple agents. Another technique that may reduce
the cost of diagnosing multiple similar failures is evidence propagation. An agent that has
evidence useful for diagnosing a failure may propagate thatevidence to other agents that
it believes may benefit from that evidence. Evidence propagation might be implemented
as a type of notification subscription, or the evidence mightsimply be piggybacked on a
response message. Such evidence propagation may increase the short-term communication
costs of diagnosis by generating additional messages, but evidence propagation can poten-
tially reduce the load of diagnosis on an agent with information that many other agents
want and increase the speed with which failures are diagnosed in the long term. An area of

140



future work is to examine this tradeoff and determine when itis appropriate to propagate
evidence to other agents.

Second is scalability in terms of available services. As thenumber of services that
agents can choose from increases, it becomes more costly to compute the value of all ser-
vices and choose among them. Agents in CAPRI address this issue by aggregating multiple
specialist services together into a more general service. CAPRI service descriptions enable
agents to achieve such aggregation of services using both input restrictions and requester
restrictions. For example, in my prototype implementation, regional agents hide the com-
plexity of specialist agents from user agents by aggregating all the specialist services into
a single HTTP connection diagnosis service. Aggregation ofservices reduces the number
of other agents and services that each agent needs to know fordiagnosis, but an agent that
knows about fewer services might not be able to achieve the same level of accuracy as an
agent with access to more services. In addition, having multiple intermediate generalist
agents may increase the communication costs of distributeddiagnosis because more agents
might need to be contacted. On the other hand, a generalist agent can also reduce cost
if it can cache multiple similar requests. Effectively constructing a scalable topology for
distributed diagnosis requires consideration of all of these factors. An area of future work
is to conduct experiments to better understand these tradeoffs for real-world diagnosis.

A third issue is scalability in terms of dependency knowledge and failure dependency
graphs. Additional dependency knowledge and more complex failure dependency graphs
can improve diagnostic accuracy, but at the cost of additional computation to perform in-
ference. Agents in CAPRI manage such costs by decomposing dependencies into condi-
tionally independent parts and exchanging information using belief propagation. In reality,
few component properties are truly conditionally independent, though in practice we can
safely assume independence in many cases where the dependencies are sufficiently weak.
To take an extreme example, two ISPs in different cities may fail simultaneously due to
a sudden hurricane that hits both cities, but since the probability of such an occurrence is
extremely low, it is probably safe to model the status of the two ISPs as being condition-
ally independent. An area of future work is to quantify the tradeoff between accuracy and
inference cost to determine when it is safe to assume independence.

10.1.2 Extending the prototype implementation

The prototype implementation in Chapter 8 demonstrates theability to diagnose HTTP
connection failures using the CAPRI architecture. In orderto demonstrate the generality
and extensibility of CAPRI, it would be valuable to implement additional agents with new
capabilities for diagnosing new types of failures.

For example, we might consider more detailed diagnosis of DNS lookup failures. A
DNS lookup failure may be caused by an incorrectly typed URL,a malfunctioning or mis-
configured DNS server, or a failure to reach the DNS server. One might develop additional
agents to distinguish among these cases, or use the information provided by existing agents.
For example, an agent might attempt to infer whether a hostname is spelled correctly by
requesting an observation from the stats agent to determinehow many previous users have
attempted to connect to that hostname. Alternatively, one might perform multiple verify
DNS lookup tests using multiple agents in different parts ofthe network and determine
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whether the results are consistent. Or if one has access to the configuration of the DNS
server, an agent might analyze the configuration file to identify any misconfigurations.

Another type of failure one might diagnose is IP routing failures. If one has the ability
to perform traceroutes from different locations in the Internet, one can develop diagnostic
agents that can infer the status of an IP route from the resultof multiple traceroutes. This
approach is similar to that of Planetseer [98]. In addition,we can consider the diagnosis of
other applications, such as FTP connection failures and SMTP failures.

Another direction of future work is to consider alternativetechnologies for implement-
ing diagnostic agents in order to achieve better performance or to support additional plat-
forms. The primary objective of my experiments in this thesis is to demonstrate the benefits
of the CAPRI architecture, and not to optimize the performance of diagnostic agents. We
can improve the performance of diagnostic agents in severalways. In this thesis I imple-
mented CAPRI diagnostic agents using two technologies: Firefox extensions and Apache
mod python handlers. A major cost of diagnosis in CAPRI is the computation of service
value. Computing the value of a service requires multiple inferences about the expected
value of information that the server produces. The Python OpenBayes module for Bayesian
inference that agents currently use is quite slow, however.For improved performance, one
might implement diagnostic agents natively in C or C++, or replace the OpenBayes module
with a module written in C. For example, the SMILE Bayesian inference library can pro-
vide roughly a factor of 10 to 100 times speed improvement over the Python OpenBayes
inference module.

Though in my experiments I found HTTP and XML suitable for theimplementation
of diagnostic agents, in future work we may also consider implementations of CAPRI
agents using other technologies. Custom protocols might yield a performance advantage or
provide other benefits.

10.1.3 Representation of diagnostic information

CAPRI provides diagnostic agents with a probabilistic representation for diagnostic infor-
mation. This representation is general and extensible to support a wide range of observa-
tions, beliefs, and dependency knowledge about network components and diagnostic tests,
but this representation has some limitations.

As mentioned in Chapter 4, one limitation is that agents cannot represent probabilistic
beliefs about relationship properties. This limitation arises from the Bayesian model of
network dependencies. Bayesian inference does not supportprobabilistic beliefs about the
structure of a Bayesian network. In many cases an agent can work around this limitation
using probabilistic beliefs about the properties of a component, however.

Also, in CAPRI the range of properties is limited to individual values and individual
components, and not sets of values or sets of components. In some cases one may wish
to describe a property with multiple values. For example, anagent might wish to describe
a router that has multiple neighboring routers using a relationship property whose value
is the set of neighboring router components. One way to overcome this limitation is to
enhance component class and property definitions to allow the definition of properties with
multiple values. In addition, agents will also need the ability to reason about properties
with multiple values and to identify components within a setof multiple components.
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Agents in CAPRI make a tradeoff by communicating compiled knowledge rather than
deep knowledge about the network. The advantage of communicating compiled knowledge
is that other agents do not need domain-specific informationto diagnose failures. On the
other hand, using compiled knowledge may throw away information useful for diagnosis.
To address this problem, CAPRI agents might communicate detailed observations about
properties for which they do not have dependency knowledge.If new agents with new
dependency knowledge for these observations join the system in the future, other agents
may then use the observations for diagnostic reasoning.

CAPRI agents represent beliefs and probabilistic dependencies using conditional prob-
ability tables. Though conditional probability tables canexpress any probabilistic function
over discrete variables, they have two limitations. Firstly is that they require discrete vari-
ables. In practice this is often not a major problem because one can usually discretize
continuous variables without losing much accuracy. Another drawback is that they can be
extremely verbose, especially for conditional probability tables with many parent variables
or variables with a large number of possible values. To address these challenges, one might
consider representing probabilities using Gaussian or other probability distributions [65].

10.1.4 Probabilistic inference

This thesis demonstrates the advantages of probabilistic inference as a general technique
for distributed fault diagnosis. Some of the advantages of probabilistic diagnosis include
the ability to diagnose failures with incomplete information, the ability to diagnose fail-
ures without domain-specific knowledge, the ability to takeinto account new probabilistic
dependency knowledge, the ability to dynamically compute the value of actions, and the
ability to decompose dependencies and distributed dependency knowledge across multi-
ple agents. A valuable area of future work is to examine the limitations of probabilistic
inference in CAPRI and investigate possible improvements.

One area of future work is to evaluate probabilistic inference using more complex de-
pendency models than the ones in my prototype implementation. The prototype imple-
mentation described in this thesis diagnoses failures using a polytree-structured Bayesian
network with no undirected cycles. This Bayesian network omits some dependencies how-
ever, such as software dependencies and link layer dependencies. An area of future work
is to examine the impact of adding such additional dependencies. Standard belief propaga-
tion is not designed for inference when undirected cycles are present in a Bayesian network;
an interesting question is whether loopy belief propagation [17] is effective for real-world
network fault diagnosis.

Another possible research direction is to examine the effectiveness of dynamic Bayesian
networks (DBN) for diagnostic inference in CAPRI. Section 7.5.1 describes how to apply
DBNs for inference in CAPRI. Inference using DBNs allows agents to take into account
temporal models of failure, though with significantly greater computational cost. An area
of future work is to evaluate the tradeoffs in accuracy and cost that DBNs can provide for
real-world fault diagnosis.

In my experiments the knowledge agent periodically learns new dependency knowledge
offline. One possible area of future research is to investigate the advantages and drawbacks
of other approaches for learning new dependency knowledge,such as on-line learning and
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reinforcement learning. Because probabilistic dependencies might change over time in the
Internet, another question is how frequently to learn new dependency knowledge. Agents
must make a tradeoff between learning more frequently basedon less data, or learning less
frequently using more data.

Another limitation of CAPRI is that by its very nature, probabilistic diagnosis according
to a general and dynamic architecture for fault diagnosis requires additional overhead and
computational cost compared to a specialized diagnostic system. Exact Bayesian inference
can be computationally costly, especially in DBNs as the number of nodes in a Bayesian
network increases. If computers continue to become faster and less expensive, however,
then the computational cost of diagnosis will decrease overtime. In addition, one might
reduce the computational cost of diagnosis using algorithms for approximate inference [65,
26].

10.1.5 Service description and discovery

CAPRI agents look up and retrieve service descriptions using a centralized service direc-
tory. A centralized directory is vulnerable to failure and attack, however, so one might con-
sider building a more decentralized and distributed directory service. Implementing such
a distributed directory presents many challenges, however, including maintaining consis-
tency and the distribution of services among multiple directory servers. One might also
examine enhancements to the service advertisement and lookup protocol, such as a more
sophisticated service indexing system and a lookup protocol that enables agents to retrieve
only services that have changed to reduce the size of servicedirectory messages. Another
area of research is to consider other modes of service discovery as well, such as using link
layer broadcast messages.

In future research, one might consider the advantages of a richer service description
language. As a first step, in this thesis I define services using a flat namespace. Services
do not specify their relationship to other services. An interesting area of future work is
to examine the potential benefits of organizing services into classes and subclasses and
explicitly describing the relationships among different services to create a service ontology.
Such a service ontology might enable agents to better reasonabout how to compose and
aggregate multiple services.

10.1.6 Action selection

The prototype CAPRI agents described in this thesis select actions myopically according
to their expected value of information. An area of future work is to examine more sophis-
ticated action selection algorithms that can take into account additional factors such as the
value of performing multiple simultaneous actions, the expected future distribution of fail-
ures, the expected future cost of diagnosis, and the trustworthiness of the agent providing
the information.

Another question is whether an action selection algorithm that performs multiple ac-
tions simultaneously in parallel can improve the cost and accuracy of diagnosis. Currently
agents only select single actions myopically; implementing an action selection algorithm
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that takes into account the expected benefits and costs of multiple actions may produce
better results.

Another challenge is to take into account issues of security, trust, and authentication
when deciding what services to use and which agents to contact. As the number of special-
ist agents increases, agents need to be able to decide which ones are trustworthy and which
ones are malicious. In addition, some agents may provide more accurate information than
others. Especially when different agents have conflicting information, agents need to be
able to decide which other agents to contact. Possible approaches to this problem are to
learn the value of the services other agents offer, to construct a web of trust, or to develop a
reputation system whereby accurate and reliable agents gradually accumulate a reputation.

10.1.7 Cost and economics

This thesis assumes that the costs of diagnostic services are set exogenously. Costs may
reflect the expected time to perform a diagnostic test, the network resources used, or may be
tied to actual monetary payments. Quantifying the cost of diagnostic tests can be difficult,
however, especially since the cost of an action may not be known ahead of time. One area
of future work is to examine how agents might set these costs.The cost of performing a test
may be borne by not only the agent performing the test, but other entities in the network as
well. In order to avoid concentration of costs, it is important to consider all of those who
may be affected by a test.

Another possible area of research is to investigate other cost models. CAPRI limits cost
descriptions to scalar integer values, but in some cases it may be more accurate to specify a
cost distribution instead. For example, an agent wishing totightly bound the time required
to perform an action may select actions on the basis of 95th percentile cost, while an agent
with no time constraints might select actions based simply on expected cost.

Another area of future work is to study the incentives and economics of a marketplace
for diagnosis. In my prototype implementation, the cost of services is fixed. As an alter-
native, agents might dynamically set the cost of a service. An agent under heavy load may
choose to increase the cost of its service temporarily to reduce the number of requesters, for
example. Such dynamic pricing may also lead to competition among multiple diagnostic
agents for servicing requests and create a marketplace for diagnosis.

A related question is to evaluate the costs and benefits of diagnosis in terms of the repair
actions that requesters take on the basis of diagnostic results. The accuracy and value of a
diagnosis should ultimately be calculated in terms of the effects of the repair actions that the
requester takes. Certain types of misdiagnoses may have more serious consequences than
others. For example, if a network administrator brings downtheir entire network in order to
repair a failure based on incorrect information in a diagnostic response, then a misdiagnosis
can be very costly. On the other hand, if the action taken by the requester is the same as
the one that they would have taken given the correct diagnosis, then the misdiagnosis does
not cause any harm. An area of future work is to consider how toincorporate this type of
reasoning into diagnostic agents.
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10.1.8 User interface and user feedback

Another research direction is to consider how to provide better feedback to users and to
support more interactive diagnosis. The prototype implementation in this thesis does not
give users the ability to provide feedback to diagnostic agents or adjust the parameters of
diagnosis. To increase interactivity, one might modify theuser interface to enable users
to request additional tests and adjust the confidence threshold, budget, and expiration time
of diagnosis according to their needs. In addition, one might modify the user interface
to allow users to provide feedback about the results of diagnosis. Such feedback might
allow agents to improve their accuracy or provide a mechanism for distinguishing among
trustworthy and untrustworthy agents.

Another area of research is to examine the benefits of providing diagnosis requesters
with more information about the tradeoffs of specifying different parameters in a diagnostic
request. For example, a diagnosis requester might provide more or less information in the
request, or specify different confidence thresholds, budgets, and expiration times. A recip-
ient of a diagnostic response does not know whether the diagnosis provider had the ability
to produce a more accurate diagnosis but chose not to becauseit had sufficient confidence,
expended its budget, or exceeded the expiration time. To help a requester better determine
the degree to which they should believe the diagnosis and thetradeoffs of requesting addi-
tional diagnostic tests, perhaps an agent could estimate the potential additional confidence
and cost of diagnosis with an increased confidence threshold, budget, or expiration time.
A diagnostic agent might also specify in a response how much additional confidence it can
provide in a diagnosis given various combinations of inputs. An agent might estimate its
expected confidence with additional inputs by computing theexpected value of information
of the additional inputs. A diagnosis provider might also provide more information about
what actions it took and what actions were available to give the requester more feedback
about the process of diagnosis.

Another research direction is to consider giving requesters more control over the actions
taken in a diagnosis. For example, a diagnosis provider might provide a requester with the
set of possible actions it has available for diagnosis and the value and cost of each action.
The requester might then explicitly specify which tests it wishes to conduct and which ones
it does not. Allowing requesters to explicitly specify tests to perform introduces additional
challenges, however. A requester may not have all the information necessary to decide
what tests to perform, and exposing the set of available actions to requesters makes it more
difficult to introduce new specialist agents and to change the way in which a diagnosis
provider operates.

10.2 Conclusion

In this thesis, I present a new approach to fault diagnosis based on a common architec-
ture for communicating diagnostic information and performing diagnostic reasoning. By
providing modular interfaces for diagnostic agents, CAPRIenables cooperation among
multiple specialized diagnostic agents. I hope that this general architecture encourages
future researchers in Internet fault diagnosis to rethink the way they develop diagnostic
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tools. I hope that rather than developing monolithic tools for diagnosis using domain-
specific knowledge, future researchers will consider more modular tools and share their
diagnostic knowledge to encourage reuse and cooperation. As researchers develop new
and more sophisticated diagnostic agents, the accuracy andpower of diagnosis will im-
prove. Combining new diagnostic agents and new knowledge innovel ways may produce
new and unexpected capabilities. If a common architecture for fault diagnosis such as
CAPRI becomes widely adopted, both users and network administrators will benefit from
faster, cheaper, and more accurate diagnosis of network failures. This thesis is just the first
step towards this goal, however, and much work remains for future researchers to address.
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Appendix A

CAPRI Language Specifications

CAPRI provides diagnostic agents with an ontology languagefor defining component and
diagnostic test classes and their properties, a language for representing diagnostic informa-
tion and diagnostic messages, and a language for representing service descriptions. This
appendix contains the specifications for each of these languages expressed using XML.

A.1 Component ontology language

CAPRI provides agents with a component ontology language for defining component and
diagnostic test classes and their properties. This sectiondescribes the XML serialization of
this ontology language.

A.1.1 Component class and property definition files

Component and diagnostic test classes are defined in component class and property defi-
nition files. A file may contain multiple class and property definitions. Every component
class and property definition also has an associated unique URI that refers to the class or
property’s corresponding component class and property definition file.

A component class and property definition file contains a single root element,compo-
nentOntology. ThecomponentOntology element may contain any number ofcompo-
nentClass, descriptiveProperty, andrelationshipProperty child elements. The
order of the component class and property definitions withinthe file does not matter.

A.1.2 Defining component classes

A component or diagnostic test class definition is specified using thecomponentClass
element. Thename attribute ofcomponentClass element specifies the component class
name as a URI. ThecomponentClass element may have zero or moresubclassOf and
idProperty child elements listing its superclasses and identifying properties, respectively.
The order of theidProperty elements does not matter. EachsubclassOf property has
a name attribute whose value is the URI of a superclass for the component or diagnostic
test class. EachidProperty child element has aname attribute whose value is the URI
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of an identifying property for the component or diagnostic test class. For example, the
component class definition forHTTP Connection is as follows.

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
<idProperty name="http://capri.csail.mit.edu/2006/capri/common#destHash" />
<idProperty name="http://capri.csail.mit.edu/2006/capri/common#connTime" />

</componentClass>

A.1.3 Defining properties

CAPRI supports the definition of both descriptive properties and relationship properties.

Defining descriptive properties

A descriptive property is defined using adescriptiveProperty element whosename
attribute specifies its full name as a URI. A descriptive property may also optionally contain
a range child element specifying the range of possible values that this property can have.
Therange element contains a list of two or moreentry elements. Thevalue attribute of
anentry element specifies a possible value that the property can have. The order of the
entries does not matter. Note that to facilitate extensibility to support new properties of
existing components, the set of allowable properties of a component is not restricted. For
similar reasons, the domain of a property is also unrestricted so that any component may
have any defined property. For example, the property definition forstatus is given below.

<descriptiveProperty name="http://capri.csail.mit.edu/2006/capri/core#status">
<range>
<entry value="OK" />
<entry value="FAIL" />

</range>
</descriptiveProperty>

Defining relationship properties

A relationship property is defined using therelationshipProperty element, whosename
attribute specifies the full name of the property as a URI. ArelationshipProperty el-
ement must also have arange attribute whose value is the component class name of the
class of component to which this property refers. ArelationshipProperty element may
optionally specify asymmetricProp attribute whose value is the name of a symmetric
relationship property. To understand the meaning of a symmetric property, consider a rela-
tionship propertyprop has with rangeA and symmetric propertysymProp. This definition
implies that for every componentX with a relationship propertyprop referring to a com-
ponentY, an agent can infer that componentY has a relationship propertysymProp that
refers toX. As an example, the definition of theasHopTest relationship property is given
below.
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<relationshipProperty
name="http://capri.csail.mit.edu/2006/capri/common#asHopTest"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#asHop"

/>

A.2 Representation of diagnostic messages

This section describes the representation of diagnostic information and diagnostic messages
using XML.

A.2.1 Representing diagnostic information

Agents can communicate four types of diagnostic information: observations, beliefs, like-
lihoods, and dependency knowledge.

Representing observations

Agents express observations using anobservation element. The observation has five
attributes providing metadata about the observation: anid attribute, atime attribute in-
dicating the time the observation was made in milliseconds since Jan 1, 1970 UTC; an
originator attribute indicating the URI of the agent that originally made the observation;
a Booleancached attribute indicating whether the observation was cached ornot; and an
expires attribute indicating the time the information expires in milliseconds since Jan 1,
1970 UTC.

An observation element has exactly one child element, either acomponent element
or atest element, depending on whether the input component is a network component or
a diagnostic test. Thecomponent or test element has one or moreclass child elements
specifying the class or classes to which the component or test belongs. The content of each
class element is a class name. The component or test element may also have zero or more
additional child elements describing its properties. Eachproperty is expressed as a child
element whose tag name is a property name and whose content isthe the value of the prop-
erty. For convenience, agents can abbreviate the property name using XML namespaces.
The order of the classes and properties does not matter. The value of descriptive prop-
erties is expressed as a string. Leading and trailing whitespace is ignored. The value of
relationship properties is expressed as acomponentRef child element. AcomponentRef
element has an attributeref whose value is theid value of another component in the com-
ponent graph. The metadata in theobservation element applies to all properties in the
observation. Below I give an example of an observation of an outbound connectivity test.

<observation id="obs-3"
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
time="1168356309119"
originator="http://18.26.0.100/userAgent"
cached="false"
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expires="1170451641706">
<test id="test-6">
<class>

http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test
</class>
<com:srcIP> 127.0.0.1 </com:srcIP>
<com:probeURI> capri.csail.mit.edu </com:probeURI>
<com:probeResult> OK </com:probeResult>
<com:localNet> <componentRef ref="com-2"/> </com:localNet>

</test>
</observation>

Representing beliefs

Agents represent beliefs and likelihoods using thebelief element. The metadata attributes
of a belief element are identical to those of anobservation element. A belief has
four child elements: asubject indicating the component for which the belief applies, a
property specifying the property of the component the belief describes, afromEvidence
element listing the evidence used to produce the belief, andeither adistribution in-
dicating the probability of each of the possible values of the property or alikelihood
element indicating the probability of the evidence given each possible value of the prop-
erty. Thesubject element has one child, either acomponent, test, or componentRef
element. The format of each of these elements is described above in Section A.2.1. The
content of theproperty element is the name of the property associated with the belief. The
fromEvidence element contains zero or moreevidence child nodes describing the evi-
dence used to infer the belief. If thefromEvidence element has noevidence child nodes,
then the belief was inferred using only probabilistic dependency knowledge without any
additional evidence. Eachevidence node has apropPath attribute indicating the prop-
erty path to a property for which the creator of this belief had evidence it used to infer the
belief. Thedistribution element has two or moreentry child elements. Eachentry el-
ement has avalue attribute and ap attribute such thatP(property= value|evidence) = p.
A likelihood element has the same format, except that for theentry elements for a
likelihood, P(evidence|property= value). Below I give an example of a belief about the
status of anHTTP Servercomponent inferred from the number of consecutive failuresto
the server.

<belief id="bel-2"
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
originator="http://18.26.0.100:8111/da"
time="1160577157224"
cached="true"
expires="1170451641706">

<subject>
<component id="com-1">

<class>
http://capri.csail.mit.edu/2006/capri/common#HTTP_Server

</class>
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<com:hostHash>+0THLqaZnxk9I8bU5ZgDGA==</com:hostHash>
</component>

</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<distribution>
<entry value="OK" p="0.8"/>
<entry value="FAIL" p="0.2"/>

</distribution>
<fromEvidence>
<evidence

propPath="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"
/>

</fromEvidence>
</belief>

Representing dependency knowledge

Agents represent dependency knowledge using theknowledge element. Knowledge has
the same five metadata attributes as observations and beliefs. A knowledge element has
three child elements. Thesubject andproperty child elements contain the names of the
component class and property, respectively, for which the dependency knowledge applies.
Thecpt child specifies the conditional probability table associated with the knowledge. A
cpt element has a singleparents child element containing a whitespace delimited list of
parent property paths. The order of the parents matters. Acpt element also has two or
moreentry child nodes. Eachentry child node has three attributesvalue, parentVals,
andp such thatP(property= value|parents = parentVals) = p. TheparentVals at-
tribute is a whitespace delimited list of parent property values in the order specified in the
parents element. Below I give an example of a piece of dependency knowledge for the
asHopTestResult property of theAS Hop Testcomponent class.

<knowledge id="knowledge-2"
originator="http://18.26.0.100:8111/da"
time="1160577157224"
cached="false"
expires="1170451641706">

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#asHopTestResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asHop|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.995000’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.020000’ parentVals=’OK’ value=’FAIL’/>
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<entry p=’0.005000’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.980000’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>

A.2.2 Representing diagnostic messages

Diagnostic agents communicate diagnostic messages in batches. A batch can contain one
or more diagnostic messages. Agents represent a batch usinga capriMessage element.
A capriMessage element contains aversion attribute specifying the DMEP protocol
version, aclientAgent attribute describing the implementation of the agent sending the
batch, aclientVer attribute indicating the version number of the sending agent, and a
time attribute indicating the time at which the batch is sent.

A capriMessage element contains one or more child elements, where each child el-
ement is either anobservationRequest, beliefRequest, knowledgeRequest, diagRe-
quest, notification, observationResponse,beliefResponse, knowledgeResponse,
diagResponse, notificationResponse, or error.

Observation requests

An observation request is described using anobservationRequest element. Theobser-
vationRequest element contains arequester attribute indicating the URI of the request-
ing agent, arequestID attribute, aserviceID attribute indicating the observation service
corresponding to the request, and anexpires attribute indicating the expiration time of
this request in milliseconds since Jan 1, 1970 UTC.

An observationRequest element may optionally have aninputComponent child el-
ement specifying the input component for the service requested. An inputComponent
element has exactly one child element, either acomponent, test, or componentRef as
described in Section A.2.1. In addition, anobservationRequest element may have an
optionalbody child element describing additional diagnostic information to communicate.
A body element contains zero or moreobservation, belief, andknowledge elements.
For example, a request for the number of consecutive failures to a web server may look as
follows.

<observationRequest
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
requester="http://18.26.0.100/regionalAgent"
requestID="101"
serviceID="obs:webserver.cfts"
expires="1160577160000">

<inputComponent>
<component>
<class>

http://capri.csail.mit.edu/2006/capri/common#HTTP_Server
</class>
<com:ipAddr> 192.168.10.10 </com:ipAddr>
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<com:hostHash> +0THLqaZnxk9I8bU5ZgDGA== </com:hostHash>
<com:connTime> 1167766762747 </com:connTime>

</component>
</inputComponent>
</observationRequest>

Belief requests

Agents express belief requests using thebeliefRequest element. Belief requests have
the same form as observation requests, except that abeliefRequest element also has a
budget attribute. Below I give an example of a belief request forHTTP Serverstatus.

<beliefRequest
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
requester="http://18.26.0.100/regionalAgent"
requestID="102"
serviceID="bel:webserver.status"
budget="1000"
expires="1160577160000">

<inputComponent>
<component id="com-1">
<class>

http://capri.csail.mit.edu/2006/capri/common#HTTP_Server
</class>
<com:hostHash> +0THLqaZnxk9I8bU5ZgDGA== </com:hostHash>
<com:connTime> 1167766762747 </com:connTime>

</component>
</inputComponent>
</beliefRequest>

Knowledge requests

Agents express knowledge requests using theknowledgeRequest element. Knowledge
requests have the same form as observation and belief requests, except that they do not
require aninputComponent. For example,

<knowledgeRequest
requester="http://18.26.0.100/regionalAgent"
requestID="103"
serviceID="knowledge:http"
expires="1160577160000" />

Diagnosis requests

Agents express diagnosis requests using thediagRequest element. AdiagRequest has
the same format as abeliefRequest, except that adiagRequest element also has a
explanations child element specifying the set of alternative explanations for the fail-
ure. An explanations element has two or moreexplanation child elements. Each
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explanation child element contains one or morecomponentRef elements. Eachcom-
ponentRef element has aref attribute indicating a component, and astatus element
specifying the status of the component. Each component in each explanation must be in
the list of candidate explanations for the service corresponding to the diagnosis request.
Part of anHTTP Connectionfailure diagnosis request is given below.

<diagRequest requester="http://18.26.0.100:8111/userAgent"
requestID="501"
serviceID="diag:http"
budget="1000"
expires="1160577160000"
confThresh="0.9">

<inputComponent>
<componentRef ref="com-1" />

</inputComponent>
<explanations>

<explanation>
<componentRef ref="com-2" status="FAIL" />

</explanation>
<explanation>
<componentRef ref="com-3" status="FAIL" />

</explanation>
<explanation>
<componentRef ref="com-4" status="FAIL" />

</explanation>
<explanation>
<componentRef ref="com-5" status="FAIL" />

</explanation>
</explanations>
<body>
<observation time="1168356307879">

<component id="com-1">
<class>

http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection
</class>
<com:srcIP> 127.0.0.1 </com:srcIP>
<com:destHash> aRexNPkGuP1p9s54cXAIQg== </com:destHash>
<com:connTime> 1168356307879 </com:connTime>
<core:status> FAIL </core:status>

<com:dnsLookup> <componentRef ref="com-4"/> </com:dnsLookup>
<com:ipRouting> <componentRef ref="com-5"/> </com:ipRouting>
<com:httpServer> <componentRef ref="com-3"/> </com:httpServer>
<com:localNet> <componentRef ref="com-2"/> </com:localNet>
<com:outboundConnTest> <componentRef ref="com-6"/> </com:outboundConnTest>
<com:ffoxErrorTest> <componentRef ref="com-7"/> </com:ffoxErrorTest>

</component>
</observation>
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<observation time="1168356309119">
<component id="com-2">
<class>

http://capri.csail.mit.edu/2006/capri/common#Local_Network
</class>
<com:ipAddr> 127.0.0.1 </com:ipAddr>
<com:consecFailuresFromUser> 0 </com:consecFailuresFromUser>

</component>
</observation>
...
</body>

Note several characteristics of this diagnostic request. It contains a set of observations
relating to the failure (a failure story). Each observationcontains a description of a com-
ponent individual, including the properties of the component such as its identity, its parent
(dependent) components, its status, and other characteristics. The properties a component
may have are defined in the component class ontology. An observation also includes some
metadata, including the time the observation was made and where the the observation came
from. Also, the component IDs above are only used to construct the graph structure and do
not mean anything outside this failure story. Each explanation is a status assignment to one
or more components. The task of diagnosis is to identify the likelihood of each explanation.

Notifications

Agents express notifications using thenotification element. A notification element has
only two attributes, aserviceID specifying the notification subscription for this notifica-
tion, and anotificationID. The content of anotification element is the same as an
observation or belief request, and can containinputComponent and abody child elements.
Below is an example of anHTTP Connectionnotification.

<notification
xmlns:core="http://capri.csail.mit.edu/2006/capri/core#"
xmlns:com="http://capri.csail.mit.edu/2006/capri/common#"
serviceID="notify:connHist"
notificationID="10">

<inputComponent>
<componentRef ref="com-1" />

</inputComponent>
<body>

<observation time="1160577160000">
<component id="com-1">

<class>
http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection

</class>
<com:destHash> +0THLqaZnxk9I8bU5ZgDGA== </com:destHash>
<com:connTime> 1160577158287 </com:connTime>
<core:status> OK </core:status>
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<com:elapsedTime> 340 </com:elapsedTime>
<com:srcIP> 1.2.3.4 </com:srcIP>
<com:destIP> 50.60.70.80 </com:destIP>

</component>
</observation>

</body>
</notification>

Observation response

Agents express observation responses using theobservationResponse element. Anob-
servationResponse contains therequestID of the correspondingobservationRequest,
the correspondingserviceID, and aresponseStatus. The value ofresponseStatus
is either 0 to indicate an error producing the response, or 1 indicating a successful re-
sponse. AnobservationResponse element contains abody child element with zero or
moreobservation, belief, andknowledge child elements. Note that an observation re-
sponse may contain observations, beliefs, and dependency knowledge not specified in the
corresponding service description so that an agent can propagate additional information to
the requester even when not explicitly requested. Also notethatcomponentRef elements
in a response can refer to components described in the request.

Below I give an example of an observation response for a request for server statistics
may look as follows:

<observationResponse
xmlns:ss="http://capri.csail.mit.edu/2006/capri/servstats#"
responseStatus="1"
serviceID="obs:stats"
requestID="101"
time="1176087435536">

<body>
<observation
id="obs-1"
time="1176087435532"
originator="http://127.0.0.1:80/statsAgent"
cached="false"
expires="1176087435532">

<component id="http://127.0.0.1:80/statsAgent/com-1">
<class>

http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection
</class>
<ss:users> 3 </ss:users>
<ss:destHash> +0THLqaZnxk9I8bU5ZgDGA== </ss:destHash>
<ss:avgLatency> 336 </ss:avgLatency>
<ss:recentStatusDist> 0,2|1,2|14,3 </ss:recentStatusDist>
<ss:lastFailure> 250000 </ss:lastFailure>
<ss:lastSuccess> 12300 </ss:lastSuccess>
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</component>
</observation>

</body>
</observationResponse>

Belief Response

Agents express belief responses using thebeliefResponse element. AbeliefResponse
element has the same format as anobservationResponse, though the information pro-
vided in the body may differ.

KnowledgeResponse

Agents express knowledge responses using theknowledgeResponse element. Aknowl-
edgeResponse element has the same format as anobservationResponse, though the
information provided in the body may differ.

Diagnosis Response

Agents express diagnosis responses using thediagResponse element. A diagnosis re-
sponse has the same format as anobservationResponse, except that it also contains a
explanations child element listing the probability of each candidate explanation pro-
vided in the request. Theexplanations element contains one or moreexplanation
elements. The content of theexplanation element is the same as in adiagRequest.
Eachexplanation element has an attributep indicating the probability all the compo-
nents in the explanation have the specified status values. Toprovide additional information
to requesters about the beliefs and evidence used to producethe diagnosis, an agent may
also include additional observations and beliefs in the body of the response. Below is an
example of a diagnostic response for an HTTP Connection failure diagnosis.

<diagResponse
responseStatus="1"
serviceID="diag:http"
requestID="321"
time="1176088430691">
<explanations>
<explanation p="1.0000">

<componentRef status="FAIL" ref="com-4"/>
</explanation>
<explanation p="0.0431">

<componentRef status="FAIL" ref="com-3"/>
</explanation>
<explanation p="0.0016">

<componentRef status="FAIL" ref="com-5"/>
</explanation>
<explanation p="0.0000">

<componentRef status="FAIL" ref="com-2"/>
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</explanation>
</explanations>
<body>
<belief

id="bel-1"
time="1176088430689"
originator="http://142.150.238.12:8111/regionalAgent"
cached="false"
expires="1176092030689">
<subject>

<componentRef ref="com-4"/>
</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<distribution>

<entry p="0.999997" value="FAIL"/>
<entry p="0.000003" value="OK"/>

</distribution>
<fromEvidence/>

</belief>
<belief

id="bel-2"
time="1176088430689"
originator="http://142.150.238.12:8111/regionalAgent"
cached="false"
expires="1176092030689">
<subject>

<componentRef ref="com-3"/>
</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<distribution>

<entry p="0.043079" value="FAIL"/>
<entry p="0.956921" value="OK"/>

</distribution>
<fromEvidence/>

</belief>
<belief

id="bel-3"
time="1176088430689"
originator="http://142.150.238.12:8111/regionalAgent"
cached="false"
expires="1176092030689">
<subject>

<componentRef ref="com-5"/>
</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<distribution>

<entry p="0.001625" value="FAIL"/>
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<entry p="0.998375" value="OK"/>
</distribution>
<fromEvidence/>

</belief>
<belief

id="bel-4"
time="1176088430689"
originator="http://142.150.238.12:8111/regionalAgent"
cached="false"
expires="1176092030689">
<subject>

<componentRef ref="com-2"/>
</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<distribution>

<entry p="0.000005" value="FAIL"/>
<entry p="0.999995" value="OK"/>

</distribution>
<fromEvidence/>

</belief>
</body>

</diagResponse>

Notification response

An agent that receives a notification responds with a notification response to acknowledge
receipt of the notification. AnotificationResponse element contains only anotifica-
tionID attribute and aresponseStatus attribute.

Error response

An agent that cannot process a request produces an error response using aerror element.
The content of theerror element is a text string describing the error.

A.3 Service description language

This section describes the XML service description language that CAPRI agents use to
represent their diagnostic capabilities. See Appendix B.2for actual service descriptions
used in the prototype implementation described in Chapter 8.

A.3.1 Directory updates

Agents communicate service descriptions to a service directory using directory update mes-
sages. A directory update message has the root elementdirectoryUpdate. A directory-
Update element contains one or moreserviceAdvertisement elements. Eachservice-
Advertisement element contains aserviceID attribute; atime attribute indicating when
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the service was defined; amessageType attribute whose value is eitherobservationRe-
quest, beliefRequest, diagRequest, or notification; anagentURI attribute indicat-
ing the URI of the agent providing the service; acost attribute; an optionalrequest-
erType attribute specifying the types of requesters that may use this service; an optional
requesterASRange attribute specifying a comma delimited list of Internet autonomous
system numbers of requesters allowed to use this service, and an optionalinputClass
attribute. If therequesterType attribute is not present, then all types of requesters are
allowed. If therequesterASRange attributes is not present, then requesters from all ASes
are allowed. A service advertisement with the sameagentURI andserviceID as another
service but with a greatertime value supersedes the older service.

A serviceAdvertisementmay have zero or moreinputProperty, outputObserva-
tion, outputBelief, outputKnowledge, andcandidateExplanation child elements.

An inputProperty element has apropPath attribute specifying the property path
of the input property relative to the input component. AninputProperty also has an
optionalrequired property indicating whether the property is required to usethe service.
By default a property is not required. An input property withinput restrictions also has
indexFunc andindexRange attributes. See Section 5.1.3 for the list of allowable index
functions.

An observation, belief, or diagnosis service may have one ormore output observations.
An outputObservation has apropPath attribute specifying the property path of an ob-
servation produced by the service relative to the input component.

A belief or diagnosis service may have one or more output beliefs. AnoutputBelief
also has apropPath attribute referring to the component and property of the belief the
service produces. In addition, anoutputBelief also has zero or morefromEvidence
child elements. EachfromEvidence child element has apropPath attribute indicating a
property that the provider agent can access as evidence to produce the belief.

An observation, belief, diagnosis, or knowledge service may have one or more knowl-
edge outputs. AnoutputKnowledge element has asubject attribute and aproperty
attribute indicating the corresponding subject and property for a piece of knowledge the
service produces. In addition, anoutputKnowledge element has zero or moreparent
child elements. Eachparent element has apropPath attribute indicating the path to one
of the parent properties for the dependency knowledge.

A diagnosis service may provide one or more candidate explanations. Acandidate-
Explanation element has apropPath attribute indicating the path to the property for the
candidate explanation.

A directory service responds to a directory update with a directory update response. A
directory update response contains a singledirectoryUpdateResponse element with a
single attributeresponseStatus, whose value is 1 if the directory update was processed
successfully or 0 otherwise.

A.3.2 Service map requests

An agent requests the list of available services using an service map request. A ser-
vice map request is an XML message with root elementserviceMapRequest. A ser-
viceMapRequest element has aversion attribute indicating the service directory proto-
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col version, aclientVer attribute indicating the version of the requesting agent, and an
agentType attribute indicating the type of agent (e.g. user, specialist, or regional).

A.3.3 Service map responses

A directory service responds to a service map request with a service map response. A
service map response is an XML message with root elementserviceMap. A serviceMap
element contains zero or moreserviceAdvertisement child nodes. If an agent has a
choice between two services with the same utility, the agentshould use the service that
appears first in the service map. This allows the directory service to balance load and
control the distribution of requests across multiple agents.

A.3.4 Service retractions

An agent may also retract a service that it no longer offers. Aretraction message consists
of a directoryUpdate element withserviceID, agentURI, andtime attributes corre-
sponding to the service to retract. ThedirectoryUpdate element for a retraction message
also has an additional attributeretract having the valuetrue. After the directory ser-
vice receives a retraction message for a service, it no longer advertises the service to other
agents.
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Appendix B

Prototype Implementation Details

This appendix contains the ontology, service descriptions, and dependency knowledge used
in the prototype implementation described in Chapter 8.

B.1 Component class and property definitions

In the prototype implementation described in Chapter 8, agents load component class and
property definitions from the core component ontology, the common component ontology,
a ServStats component ontology, and a CoDNS component ontology. These ontologies are
provided below, and can be downloaded using their respective URIs.

B.1.1 Core component ontology

<componentOntology>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/core#status">
<range>
<entry value="OK" />
<entry value="FAIL" />

</range>
</descriptiveProperty>

</componentOntology>

B.1.2 Common component ontology

<componentOntology>

<!-- ************************ Classes ************************** -->

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server">
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<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#ipAddr" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destHash" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#connTime" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destHash" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#Local_Network">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#ipAddr" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#hostname" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#probeURI" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#IP_Routing">

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destIP" />

</componentClass>

<componentClass
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name="http://capri.csail.mit.edu/2006/capri/common#Verify_DNS_Lookup_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#hostname" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#AS_Path">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcAS" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destAS" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#AS_Path_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcAS" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destAS" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#AS_Hop">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcAS" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destAS" />

</componentClass>

<componentClass
name="http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcAS" />

<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#destAS" />

</componentClass>

<!-- ************************ Properties ************************** -->

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcAS" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#destAS" />

<!-- a comma separated list of ASes along the path -->
<descriptiveProperty

name="http://capri.csail.mit.edu/2006/capri/common#pathASes" />

167



<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#asHopTestResult">
<range>
<entry value="OK" />
<entry value="FAIL" />

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#asPathTestResult">
<range>
<entry value="OK" />
<entry value="FAIL" />

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#connTime" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser">
<range>
<entry value="0" />
<entry value="1" />
<entry value="2" />
<entry value="3" />

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer">
<range>
<entry value="0" />
<entry value="1" />
<entry value="2" />
<entry value="3" />

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#destHash" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#destIP" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#probeURI" />

168



<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult">
<range>
<entry value="LOOKUP_ERROR_CONFIRMED" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" />
<entry value="CORRECT" />
<entry value="INCORRECT" />
<entry value="LOOKUP_ERROR" />
<entry value="ALIAS" />

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode">
<range>
<entry value="0" /> <!-- Success -->
<entry value="2" /> <!-- Canceled by user -->
<entry value="13" /> <!-- Connection refused -->
<entry value="14" /> <!-- Connection timed out -->
<entry value="20" /> <!-- Connection reset -->
<entry value="21" /> <!-- FTP login failed -->
<entry value="22" /> <!-- FTP CWD failed -->
<entry value="30" /> <!-- Server not found -->
<entry value="42" /> <!-- HTTP proxy not found -->
<entry value="71" /> <!-- Net interrupt -->
<entry value="72" /> <!-- HTTP proxy connection refused -->

</range>
</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#hostHash" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#hostname" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#ipAddr" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#ipAddrs" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#probeResult">
<range>
<entry value="OK" />
<entry value="FAIL" />

</range>
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</descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#totalConsecFailuresFromUser"
/>
<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/common#totalConsecFailuresToServer"
/>

<relationshipProperty
name="http://capri.csail.mit.edu/2006/capri/common#asPath"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Path"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#ipRouting"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#nextASPath"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Path"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#asHop"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Hop"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#nextASHop"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Hop"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#asPathTest"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Path_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#asPath"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#asHopTest"
range="http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#asHop"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#dnsLookup"
range="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#httpServer"
range="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"

/>
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<relationshipProperty
name="http://capri.csail.mit.edu/2006/capri/common#ipRouting"
range="http://capri.csail.mit.edu/2006/capri/common#IP_Routing"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#localNet"
range="http://capri.csail.mit.edu/2006/capri/common#Local_Network"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#verifyDNSLookupTest"
range="http://capri.csail.mit.edu/2006/capri/common#Verify_DNS_Lookup_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#dnsLookup"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest"
range="http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#httpConn"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest"
range="http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#httpConn"

/>
<relationshipProperty

name="http://capri.csail.mit.edu/2006/capri/common#httpConn"
range="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection"

/>

</componentOntology>

B.1.3 ServStats ontology

<componentOntology>

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#users" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#rootCause" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#consecFailures" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#avgLatency" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#lastSuccess" />

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/servstats#lastFailure" />

<descriptiveProperty
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name="http://capri.csail.mit.edu/2006/capri/servstats#recentStatusDist" />

</componentOntology>

B.1.4 CoDNS ontology

<componentOntology>
<!-- ************************* Classes ***************************** -->

<componentClass
name="http://capri.csail.mit.edu/2006/capri/planetlab#CoDNS_Lookup_Test">
<idProperty
name="http://capri.csail.mit.edu/2006/capri/common#hostname" />

</componentClass>

<!-- ************************* Properties ************************** -->

<descriptiveProperty
name="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult">
<range>
<entry value="LOOKUP_ERROR_CONFIRMED" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" />
<entry value="CORRECT" />
<entry value="INCORRECT" />
<entry value="LOOKUP_ERROR" />

</range>
</descriptiveProperty>

<relationshipProperty
name="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupTest"
range="http://capri.csail.mit.edu/2006/capri/planetlab#CoDNS_Lookup_Test"
symmetricProp="http://capri.csail.mit.edu/2006/capri/common#dnsLookup"

/>

</componentOntology>

B.2 Service descriptions

In each of the service descriptions below, agents advertising the services replace the string
localhost with their own IP address andlocalAS with their own AS number.

B.2.1 Regional agent

<directoryUpdate>

<!-- ************************ For local users ********************** -->
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<!-- Diagnostic requests from local agents in same AS. "localAS" will
get replaced with the local AS number. Since this one is lower cost
than the general one, users within the same AS as this regional agent
will prefer this one. -->

<serviceAdvertisement
serviceID="diag:http(localAS)"
time="1172597022"
messageType="diagRequest"
agentURI="http://localhost/regionalAgent"
cost="1000"
requesterType="user"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status"
required="false"

/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/common#hostname"
required="false"

/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#srcIP"
required="false"

/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#destIP"
required="true"

/>

<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|
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http://capri.csail.mit.edu/2006/capri/core#status" />
</serviceAdvertisement>

<!-- This is for connection history notifications, which will get
forwarded to history and stats agents. -->

<serviceAdvertisement
serviceID="notify:connHist(localAS)"
time="1172597022"
messageType="notification"
agentURI="http://localhost/regionalAgent"
cost="1000"
requesterType="user"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection" >

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
</serviceAdvertisement>

<!-- Diag history notifications that get propagated to the learning agent. -->

<serviceAdvertisement
serviceID="notify:diagHist(localAS)"
time="1172597022"
messageType="notification"
agentURI="http://localhost/regionalAgent"
cost="1000"
requesterType="user"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
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<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#ipAddr" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser"
/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#totalConsecFailuresFromUser"
/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"
/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/common#hostname" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#srcIP" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#destIP" />
<inputProperty

175



propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest|

http://capri.csail.mit.edu/2006/capri/common#probeResult" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest|

http://capri.csail.mit.edu/2006/capri/common#probeURI" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

</serviceAdvertisement>

<!-- To support stats. Recursively request from appropriate stats agent. -->
<serviceAdvertisement

serviceID="obs:stats(localAS)"
time="1172597022"
messageType="observationRequest"
agentURI="http://localhost/regionalAgent"
cost="1000"
requesterType="user"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash"
required="true" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#users" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#rootCause" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#consecFailures"

/>
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#avgLatency" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastSuccess" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastFailure" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#recentStatusDist"

/>
</serviceAdvertisement>

<!-- Diag knowledge for local agents -->
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<serviceAdvertisement
serviceID="knowledge:http(localAS)"
time="1172597022"
messageType="knowledgeRequest"
agentURI="http://localhost/regionalAgent"
cost="100"
requesterType="user"
requesterASRange="localAS">

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#Local_Network"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#Local_Network"

property="http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser"
>

<parent propPath="http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection"
property="http://capri.csail.mit.edu/2006/capri/core#status">
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#IP_Routing"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"

property="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"
>
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<parent propPath="http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test"
property="http://capri.csail.mit.edu/2006/capri/common#probeResult" >
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test"
property="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" >
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#ipRouting|
http://capri.csail.mit.edu/2006/capri/core#status" />

</outputKnowledge>
</serviceAdvertisement>

<!-- ************************** For all users ************************** -->

<!-- service for non AS users -->
<serviceAdvertisement

serviceID="diag:http"
time="1172597022"
messageType="diagRequest"
agentURI="http://localhost/regionalAgent"
cost="2000"
requesterType="user"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status"
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required="false"
/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/common#hostname"
required="false"

/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#srcIP"
required="false"

/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#destIP"
required="true"

/>

<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status" />
<candidateExplanation
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/core#status" />
</serviceAdvertisement>

<!-- This is for connection history notifications, which will get
forwarded to history and stats agents. -->
<serviceAdvertisement

serviceID="notify:connHist"
time="1172597022"
messageType="notification"
agentURI="http://localhost/regionalAgent"
cost="2000"
requesterType="user"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection"

>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash" />
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<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
</serviceAdvertisement>

<!-- Diag history notifications that get propagated to the learning agent. -->
<serviceAdvertisement

serviceID="notify:diagHist"
time="1172597022"
messageType="notification"
agentURI="http://localhost/regionalAgent"
cost="2000"
requesterType="user"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection" >
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#ipAddr" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|

http://capri.csail.mit.edu/2006/capri/common#totalConsecFailuresFromUser"
/>
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
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propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/common#hostname" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#srcIP" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|

http://capri.csail.mit.edu/2006/capri/common#destIP" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest|

http://capri.csail.mit.edu/2006/capri/common#probeResult" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#outboundConnTest|

http://capri.csail.mit.edu/2006/capri/common#probeURI" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

</serviceAdvertisement>

<!-- To support stats. Recursively request from appropriate stats agent. -->
<serviceAdvertisement

serviceID="obs:stats"
time="1172597022"
messageType="observationRequest"
agentURI="http://localhost/regionalAgent"
cost="2000"
requesterType="user"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash"
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required="true" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#users" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#rootCause" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#consecFailures"/>

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#avgLatency" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastSuccess" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastFailure" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#recentStatusDist"

/>
</serviceAdvertisement>

<!-- Diag knowledge for user agents -->
<serviceAdvertisement

serviceID="knowledge:http"
time="1172597022"
messageType="knowledgeRequest"
agentURI="http://localhost/regionalAgent"
cost="200"
requesterType="user"

>

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#Local_Network"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#Local_Network"

property="http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser"
>

<parent propPath="http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection"
property="http://capri.csail.mit.edu/2006/capri/core#status">
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpServer|

http://capri.csail.mit.edu/2006/capri/core#status" />
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<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status" />
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#ipRouting|
http://capri.csail.mit.edu/2006/capri/core#status" />

</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#IP_Routing"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"

property="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"
>

<parent propPath="http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test"
property="http://capri.csail.mit.edu/2006/capri/common#probeResult" >
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

</outputKnowledge>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test"
property="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" >
<parent

propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status" />

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#ipRouting|
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http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>

</serviceAdvertisement>

<!-- ************************** Local actions ************************* -->

<!-- Look up the AS path for an IP Routing component to incorporate cached
AS Path and AS Hop information. -->

<serviceAdvertisement
serviceID="aspath"
time="1170697052"
messageType="observationRequest"
agentURI="http://localhost/regionalAgent"
cost="10"
requesterType="local"
inputClass="http://capri.csail.mit.edu/2006/capri/common#IP_Routing" >

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP"
required="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP"
required="true" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#asPath" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#asPath|

http://capri.csail.mit.edu/2006/capri/common#srcAS" />
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#asPath|

http://capri.csail.mit.edu/2006/capri/common#destAS" />
</serviceAdvertisement>

</directoryUpdate>

B.2.2 Web server history test agent

<directoryUpdate>

<!-- %INDEX_RANGE gets replaced with either 0, 1, 2, or 3 depending on the web
server history agent -->

<serviceAdvertisement
serviceID="bel:webserver.status"
time="1170545800"
messageType="beliefRequest"
agentURI="http://localhost/historyAgent"
cost="1000"
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requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddr"
required="true"
indexFunc="iptoint,mod 4"
indexRange="%INDEX_RANGE" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime"
required="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostHash" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#destHash" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#destIP" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#srcIP" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#connTime" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#httpConn|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|
http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence

propPath="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"
/>

</outputBelief>
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<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"

/>

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

</serviceAdvertisement>

<serviceAdvertisement
serviceID="obs:webserver.cfts"
time="1170545800"
messageType="observationRequest"
agentURI="http://localhost/historyAgent"
cost="1100"
requesterType="learning"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Server">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddr"
required="true"
indexFunc="iptoint,mod 4"
indexRange="%INDEX_RANGE" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostHash" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime"
required="true" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer"

/>
<outputObservation

propPath="http://capri.csail.mit.edu/2006/capri/common#totalConsecFailuresToServer"
/>

</serviceAdvertisement>

<serviceAdvertisement
serviceID="notify:connHist(destIP)"
time="1170545800"
messageType="notification"
agentURI="http://localhost/historyAgent"
cost="1000"
requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">

<inputProperty
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propPath="http://capri.csail.mit.edu/2006/capri/core#status" />
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP"
required="true"
indexFunc="iptoint,mod 4"
indexRange="%INDEX_RANGE" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
</serviceAdvertisement>
</directoryUpdate>

B.2.3 DNS lookup test agent

<directoryUpdate>

<!-- Prefer requesters in the same AS by offering a lower cost. -->
<serviceAdvertisement

serviceID="bel:dnslookup.status(local)"
time="1170701032"
messageType="beliefRequest"
agentURI="http://localhost/dnsAgent"
cost="9000"
requesterType="regional"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostname"
required="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddrs"
required="true" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence

propPath="http://capri.csail.mit.edu/2006/capri/common#verifyDNSLookupTest|
http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult"
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/>
</outputBelief>
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#verifyDNSLookupTest|

http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult" />
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

</serviceAdvertisement>

<!-- The ad for non local AS requesters. ******************************* -->

<serviceAdvertisement
serviceID="bel:dnslookup.status"
time="1170701032"
messageType="beliefRequest"
agentURI="http://localhost/dnsAgent"
cost="10000"
requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostname"
required="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddrs"
required="true" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence
propPath="http://capri.csail.mit.edu/2006/capri/common#verifyDNSLookupTest|

http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult" />
</outputBelief>
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/common#verifyDNSLookupTest|

http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult" />
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

</serviceAdvertisement>
</directoryUpdate>

B.2.4 AS path test agent

<directoryUpdate>
<serviceAdvertisement
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serviceID="bel:iprouting.status"
messageType="beliefRequest"
agentURI="http://localhost/ipAgent"
time="1170545800"
cost="100000"
requesterType="regional"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#IP_Routing"
indexRange="0">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP"
required="true"
indexFunc="asn"
indexRange="localAS" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP"
required="true" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence

propPath="http://capri.csail.mit.edu/2006/capri/common#asPath|
http://capri.csail.mit.edu/2006/capri/common#asPathTest|
http://capri.csail.mit.edu/2006/capri/common#asPathTestResult"

/>
</outputBelief>
<outputKnowledge

subject="http://capri.csail.mit.edu/2006/capri/common#IP_Routing"
property="http://capri.csail.mit.edu/2006/capri/core#status" />

</serviceAdvertisement>
</directoryUpdate>

B.2.5 Stats agent

<directoryUpdate>
<!-- %INDEX_RANGE gets replaced with either 0, 1, 2, or 3 depending on the stats

agent -->
<serviceAdvertisement

serviceID="notify:connHist(destHash)"
time="1170545800"
messageType="notification"
agentURI="http://localhost/statsAgent"
cost="100"
requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection"

>
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<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/core#status" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash"
required="true"
indexFunc="b64toint,mod 4"
indexRange="%INDEX_RANGE" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#srcIP" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#connTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#elapsedTime" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ffoxErrorTest|

http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode" />
</serviceAdvertisement>

<serviceAdvertisement
serviceID="obs:stats"
time="1170545799"
messageType="observationRequest"
agentURI="http://localhost/statsAgent"
cost="100"
requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection">
<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#destHash"
required="true"
indexFunc="b64toint,mod %NUM_INDEXES"
indexRange="%INDEX_RANGE" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#users" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#rootCause" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#consecFailures"/>

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#avgLatency" />

<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastSuccess" />

<outputObservation
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propPath="http://capri.csail.mit.edu/2006/capri/servstats#lastFailure" />
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/servstats#recentStatusDist"

/>
</serviceAdvertisement>
</directoryUpdate>

B.2.6 CoDNS lookup test agent

<directoryUpdate>

<!-- Prefer requesters in the same AS by offering a lower cost. Have
the same ad, but one for agents in the same AS. CoDNS is cheaper than
regular DNS lookup. -->

<serviceAdvertisement
serviceID="bel:dnslookup.status(local)[codns]"
time="1170701032"
messageType="beliefRequest"
agentURI="http://localhost/codnsAgent"
cost="400"
requesterType="regional"
requesterASRange="localAS"
inputClass="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup"

>
<!-- here the indexrange is simply computed from the hostname -->

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostname"
required="true"
index="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddrs"
required="true" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence

propPath="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupTest|
http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult"

/>
</outputBelief>
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupTest|

http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult"
/>

</serviceAdvertisement>
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<!-- ******* The ad for non local AS requesters. **************** -->

<serviceAdvertisement
serviceID="bel:dnslookup.status[codns]"
time="1170701032"
messageType="beliefRequest"
agentURI="http://localhost/codnsAgent"
cost="500"
requesterType="regional"
inputClass="http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup">

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#hostname"
required="true"
index="true" />

<inputProperty
propPath="http://capri.csail.mit.edu/2006/capri/common#ipAddrs"
required="true" />

<outputBelief
propPath="http://capri.csail.mit.edu/2006/capri/core#status">
<fromEvidence

propPath="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupTest|
http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult"

/>
</outputBelief>
<outputObservation
propPath="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupTest|

http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult"
/>

</serviceAdvertisement>

<serviceAdvertisement
serviceID="knowledge:codns"
time="1170697054"
messageType="knowledgeRequest"
agentURI="http://localhost/codnsAgent"
cost="2000"
requesterType="regional"

>

<outputKnowledge
subject="http://capri.csail.mit.edu/2006/capri/planetlab#CoDNS_Lookup_Test"
property="http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult"
>

<parent
propPath="http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
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http://capri.csail.mit.edu/2006/capri/core#status" />
</outputKnowledge>

</serviceAdvertisement>
</directoryUpdate>

B.3 Dependency knowledge

B.3.1 Manually specified knowledge

At the start of my experiments, the knowledge agent providesthe following manually spec-
ified knowledge.

<knowledge expires=’1176096867062’>
<subject>http://capri.csail.mit.edu/2006/capri/common#HTTP_Server</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer

</property>
<cpt>
<parents>http://capri.csail.mit.edu/2006/capri/core#status</parents>
<entry p=’0.100000’ parentVals=’FAIL’ value=’0’/>
<entry p=’0.940000’ parentVals=’OK’ value=’0’/>

<entry p=’0.200000’ parentVals=’FAIL’ value=’1’/>
<entry p=’0.050000’ parentVals=’OK’ value=’1’/>

<entry p=’0.300000’ parentVals=’FAIL’ value=’2’/>
<entry p=’0.009000’ parentVals=’OK’ value=’2’/>

<entry p=’0.400000’ parentVals=’FAIL’ value=’3’/>
<entry p=’0.001000’ parentVals=’OK’ value=’3’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867001’>

<subject>http://capri.csail.mit.edu/2006/capri/common#HTTP_Server</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.020000’ value=’FAIL’/>
<entry p=’0.980000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867156’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection

</subject>
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<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#ipRouting|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’1.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK OK FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL OK FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK OK FAIL’ value=’FAIL’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’FAIL’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’OK’/>
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<entry p=’1.000000’ parentVals=’OK OK OK OK’ value=’OK’/>
</cpt>

</knowledge>
<knowledge expires=’1176096867277’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test

</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#ipRouting|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL FAIL’ value=’0’/>
<entry p=’0.020000’ parentVals=’OK FAIL FAIL OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL FAIL’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL OK’ value=’0’/>
<entry p=’0.010000’ parentVals=’OK OK OK FAIL’ value=’0’/>
<entry p=’0.950000’ parentVals=’OK OK OK OK’ value=’0’/>

<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL OK’ value=’13’/>
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<entry p=’0.010000’ parentVals=’FAIL FAIL OK FAIL’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK OK’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL FAIL’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL OK ’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK FAIL’ value=’13’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK OK ’ value=’13’/>
<entry p=’0.100000’ parentVals=’OK FAIL FAIL FAIL’ value=’13’/>
<entry p=’0.050000’ parentVals=’OK FAIL FAIL OK ’ value=’13’/>
<entry p=’0.100000’ parentVals=’OK FAIL OK FAIL’ value=’13’/>
<entry p=’0.250000’ parentVals=’OK FAIL OK OK ’ value=’13’/>
<entry p=’0.020000’ parentVals=’OK OK FAIL FAIL’ value=’13’/>
<entry p=’0.020000’ parentVals=’OK OK FAIL OK’ value=’13’/>
<entry p=’0.150000’ parentVals=’OK OK OK FAIL’ value=’13’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK ’ value=’13’/>

<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL OK’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK FAIL’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK OK’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL FAIL’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL OK’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK FAIL’ value=’14’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK OK’ value=’14’/>
<entry p=’0.050000’ parentVals=’OK FAIL FAIL FAIL’ value=’14’/>
<entry p=’0.050000’ parentVals=’OK FAIL FAIL OK’ value=’14’/>
<entry p=’0.250000’ parentVals=’OK FAIL OK FAIL’ value=’14’/>
<entry p=’0.050000’ parentVals=’OK FAIL OK OK’ value=’14’/>
<entry p=’0.050000’ parentVals=’OK OK FAIL FAIL’ value=’14’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL OK’ value=’14’/>
<entry p=’0.200000’ parentVals=’OK OK OK FAIL’ value=’14’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’14’/>

<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL OK’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK FAIL’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK OK’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL FAIL’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL OK’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK FAIL’ value=’20’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK OK’ value=’20’/>
<entry p=’0.050000’ parentVals=’OK FAIL FAIL FAIL’ value=’20’/>
<entry p=’0.050000’ parentVals=’OK FAIL FAIL OK’ value=’20’/>
<entry p=’0.150000’ parentVals=’OK FAIL OK FAIL’ value=’20’/>
<entry p=’0.050000’ parentVals=’OK FAIL OK OK’ value=’20’/>
<entry p=’0.050000’ parentVals=’OK OK FAIL FAIL’ value=’20’/>
<entry p=’0.020000’ parentVals=’OK OK FAIL OK’ value=’20’/>
<entry p=’0.050000’ parentVals=’OK OK OK FAIL’ value=’20’/>
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<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’20’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’21’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL FAIL’ value=’21’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL OK’ value=’21’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’21’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’21’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’22’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL FAIL’ value=’22’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL OK’ value=’22’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’22’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’22’/>

<entry p=’0.100000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL FAIL FAIL OK’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL FAIL OK FAIL’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL FAIL OK OK’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL OK FAIL FAIL’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL OK FAIL OK’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL OK OK FAIL’ value=’2’/>
<entry p=’0.100000’ parentVals=’FAIL OK OK OK’ value=’2’/>
<entry p=’0.390000’ parentVals=’OK FAIL FAIL FAIL’ value=’2’/>
<entry p=’0.430000’ parentVals=’OK FAIL FAIL OK’ value=’2’/>
<entry p=’0.420000’ parentVals=’OK FAIL OK FAIL’ value=’2’/>

197



<entry p=’0.570000’ parentVals=’OK FAIL OK OK’ value=’2’/>
<entry p=’0.390000’ parentVals=’OK OK FAIL FAIL’ value=’2’/>
<entry p=’0.390000’ parentVals=’OK OK FAIL OK’ value=’2’/>
<entry p=’0.440000’ parentVals=’OK OK OK FAIL’ value=’2’/>
<entry p=’0.040000’ parentVals=’OK OK OK OK’ value=’2’/>

<entry p=’0.850000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL FAIL FAIL OK’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL FAIL OK FAIL’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL FAIL OK OK’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL OK FAIL FAIL’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL OK FAIL OK’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL OK OK FAIL’ value=’30’/>
<entry p=’0.850000’ parentVals=’FAIL OK OK OK’ value=’30’/>
<entry p=’0.340000’ parentVals=’OK FAIL FAIL FAIL’ value=’30’/>
<entry p=’0.340000’ parentVals=’OK FAIL FAIL OK’ value=’30’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’30’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’30’/>
<entry p=’0.440000’ parentVals=’OK OK FAIL FAIL’ value=’30’/>
<entry p=’0.510000’ parentVals=’OK OK FAIL OK’ value=’30’/>
<entry p=’0.010000’ parentVals=’OK OK OK FAIL’ value=’30’/>
<entry p=’0.010000’ parentVals=’OK OK OK OK’ value=’30’/>

<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL FAIL OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL FAIL OK OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL OK FAIL OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’FAIL OK OK OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL FAIL’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL OK’ value=’42’/>
<entry p=’0.010000’ parentVals=’OK OK OK FAIL’ value=’42’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’42’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’71’/>
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<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL FAIL’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK FAIL FAIL OK’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK FAIL’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK FAIL OK OK’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL FAIL’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK OK FAIL OK’ value=’71’/>
<entry p=’0.010000’ parentVals=’OK OK OK FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’71’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK FAIL FAIL FAIL’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK FAIL FAIL OK’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK FAIL OK FAIL’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK FAIL OK OK’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK OK FAIL FAIL’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK OK FAIL OK’ value=’72’/>
<entry p=’0.020000’ parentVals=’OK OK OK FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’72’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867041’>

<subject>http://capri.csail.mit.edu/2006/capri/common#Local_Network</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser

</property>
<cpt>
<parents>http://capri.csail.mit.edu/2006/capri/core#status</parents>
<entry p=’0.500000’ parentVals=’FAIL’ value=’0’/>
<entry p=’0.950000’ parentVals=’OK’ value=’0’/>

<entry p=’0.300000’ parentVals=’FAIL’ value=’1’/>
<entry p=’0.040000’ parentVals=’OK’ value=’1’/>

<entry p=’0.150000’ parentVals=’FAIL’ value=’2’/>
<entry p=’0.009000’ parentVals=’OK’ value=’2’/>

<entry p=’0.050000’ parentVals=’FAIL’ value=’3’/>
<entry p=’0.001000’ parentVals=’OK’ value=’3’/>

</cpt>
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</knowledge>
<knowledge expires=’1176096866989’>

<subject>http://capri.csail.mit.edu/2006/capri/common#Local_Network</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.050000’ value=’FAIL’/>
<entry p=’0.950000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096866995’>

<subject>http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.050000’ value=’FAIL’/>
<entry p=’0.950000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867051’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test

</subject>
<property>http://capri.csail.mit.edu/2006/capri/common#probeResult</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’1.000000’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.020000’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.000000’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.980000’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867016’>

<subject>http://capri.csail.mit.edu/2006/capri/common#IP_Routing</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asPath|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.990000’ parentVals=’FAIL’ value=’FAIL’/>
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<entry p=’0.001000’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.010000’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.999000’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867031’>

<subject>http://capri.csail.mit.edu/2006/capri/common#IP_Routing</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.080000’ value=’FAIL’/>
<entry p=’0.920000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867072’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Verify_DNS_Lookup_Test

</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.090000’ parentVals=’FAIL’ value=’ALIAS’/>
<entry p=’0.550000’ parentVals=’OK’ value=’ALIAS’/>

<entry p=’0.010000’ parentVals=’FAIL’ value=’CORRECT’/>
<entry p=’0.418000’ parentVals=’OK’ value=’CORRECT’/>

<entry p=’0.100000’ parentVals=’FAIL’ value=’INCORRECT’/>
<entry p=’0.001000’ parentVals=’OK’ value=’INCORRECT’/>

<entry p=’0.700000’ parentVals=’FAIL’ value=’LOOKUP_ERROR_CONFIRMED’/>
<entry p=’0.010000’ parentVals=’OK’ value=’LOOKUP_ERROR_CONFIRMED’/>

<entry p=’0.050000’ parentVals=’FAIL’ value=’LOOKUP_ERROR_UNCONFIRMED’/>
<entry p=’0.020000’ parentVals=’OK’ value=’LOOKUP_ERROR_UNCONFIRMED’/>

<entry p=’0.050000’ parentVals=’FAIL’ value=’LOOKUP_ERROR’/>
<entry p=’0.001000’ parentVals=’OK’ value=’LOOKUP_ERROR’/>

</cpt>
</knowledge>
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<knowledge expires=’1176096867086’>
<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#nextASPath|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#nextASHop|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’1.000000’ parentVals=’FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL’ value=’FAIL’/>
<entry p=’0.000000’ parentVals=’OK OK’ value=’FAIL’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL’ value=’OK’/>
<entry p=’1.000000’ parentVals=’OK OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867112’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.002000’ value=’FAIL’/>
<entry p=’0.998000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867124’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path_Test</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#asPathTestResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asPath|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.999000’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.020000’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.001000’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.980000’ parentVals=’OK’ value=’OK’/>
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</cpt>
</knowledge>
<knowledge expires=’1176096867138’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Hop</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.100000’ value=’FAIL’/>
<entry p=’0.900000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1176096867144’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#asHopTestResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asHop|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.995000’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.020000’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.005000’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.980000’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>

B.3.2 Learned knowledge

The learned probabilistic dependency knowledge produced by the knowledge agent is as
follows.

<knowledge expires=’1175901865431’>
<subject>http://capri.csail.mit.edu/2006/capri/common#HTTP_Server</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#consecFailuresToServer

</property>
<cpt>
<parents>http://capri.csail.mit.edu/2006/capri/core#status</parents>
<entry p=’0.142081’ parentVals=’FAIL’ value=’0’/>
<entry p=’0.725422’ parentVals=’OK’ value=’0’/>

<entry p=’0.298753’ parentVals=’FAIL’ value=’1’/>
<entry p=’0.245047’ parentVals=’OK’ value=’1’/>
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<entry p=’0.485112’ parentVals=’FAIL’ value=’2’/>
<entry p=’0.026872’ parentVals=’OK’ value=’2’/>

<entry p=’0.074054’ parentVals=’FAIL’ value=’3’/>
<entry p=’0.002660’ parentVals=’OK’ value=’3’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865338’>

<subject>http://capri.csail.mit.edu/2006/capri/common#HTTP_Server</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.263687’ value=’FAIL’/>
<entry p=’0.736313’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865275’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#HTTP_Connection

</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#ipRouting|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’1.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL FAIL OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK OK FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL OK FAIL’ value=’FAIL’/>
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<entry p=’1.000000’ parentVals=’OK FAIL OK OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK OK OK FAIL’ value=’FAIL’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’FAIL’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’OK’/>
<entry p=’1.000000’ parentVals=’OK OK OK OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865425’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Firefox_Error_Test

</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#ffoxErrorCode

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#httpServer|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#httpConn|
http://capri.csail.mit.edu/2006/capri/common#ipRouting|
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http://capri.csail.mit.edu/2006/capri/core#status
</parents>
<entry p=’0.022017’ parentVals=’FAIL FAIL FAIL FAIL’ value=’0’/>
<entry p=’0.119692’ parentVals=’FAIL FAIL FAIL OK’ value=’0’/>
<entry p=’0.133655’ parentVals=’FAIL FAIL OK FAIL’ value=’0’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’0’/>
<entry p=’0.134272’ parentVals=’FAIL OK FAIL FAIL’ value=’0’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’0’/>
<entry p=’0.016216’ parentVals=’FAIL OK OK FAIL’ value=’0’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’0’/>
<entry p=’0.064925’ parentVals=’OK FAIL FAIL FAIL’ value=’0’/>
<entry p=’0.084086’ parentVals=’OK FAIL FAIL OK’ value=’0’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’0’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK OK’ value=’0’/>
<entry p=’0.076660’ parentVals=’OK OK FAIL FAIL’ value=’0’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’0’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’0’/>
<entry p=’0.000111’ parentVals=’OK OK OK OK’ value=’0’/>

<entry p=’0.060477’ parentVals=’FAIL FAIL FAIL FAIL’ value=’13’/>
<entry p=’0.136459’ parentVals=’FAIL FAIL FAIL OK’ value=’13’/>
<entry p=’0.016756’ parentVals=’FAIL FAIL OK FAIL’ value=’13’/>
<entry p=’0.372093’ parentVals=’FAIL FAIL OK OK’ value=’13’/>
<entry p=’0.006871’ parentVals=’FAIL OK FAIL FAIL’ value=’13’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’13’/>
<entry p=’0.202455’ parentVals=’FAIL OK OK FAIL’ value=’13’/>
<entry p=’0.182416’ parentVals=’FAIL OK OK OK’ value=’13’/>
<entry p=’0.082754’ parentVals=’OK FAIL FAIL FAIL’ value=’13’/>
<entry p=’0.080527’ parentVals=’OK FAIL FAIL OK’ value=’13’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’13’/>
<entry p=’0.447231’ parentVals=’OK FAIL OK OK’ value=’13’/>
<entry p=’0.120951’ parentVals=’OK OK FAIL FAIL’ value=’13’/>
<entry p=’0.001003’ parentVals=’OK OK FAIL OK’ value=’13’/>
<entry p=’0.000904’ parentVals=’OK OK OK FAIL’ value=’13’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’13’/>

<entry p=’0.168603’ parentVals=’FAIL FAIL FAIL FAIL’ value=’14’/>
<entry p=’0.101446’ parentVals=’FAIL FAIL FAIL OK’ value=’14’/>
<entry p=’0.039133’ parentVals=’FAIL FAIL OK FAIL’ value=’14’/>
<entry p=’0.232558’ parentVals=’FAIL FAIL OK OK’ value=’14’/>
<entry p=’0.116590’ parentVals=’FAIL OK FAIL FAIL’ value=’14’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’14’/>
<entry p=’0.167762’ parentVals=’FAIL OK OK FAIL’ value=’14’/>
<entry p=’0.137245’ parentVals=’FAIL OK OK OK’ value=’14’/>
<entry p=’0.150982’ parentVals=’OK FAIL FAIL FAIL’ value=’14’/>
<entry p=’0.083361’ parentVals=’OK FAIL FAIL OK’ value=’14’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’14’/>
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<entry p=’0.162278’ parentVals=’OK FAIL OK OK’ value=’14’/>
<entry p=’0.043511’ parentVals=’OK OK FAIL FAIL’ value=’14’/>
<entry p=’0.003210’ parentVals=’OK OK FAIL OK’ value=’14’/>
<entry p=’0.997145’ parentVals=’OK OK OK FAIL’ value=’14’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’14’/>

<entry p=’0.128651’ parentVals=’FAIL FAIL FAIL FAIL’ value=’20’/>
<entry p=’0.049197’ parentVals=’FAIL FAIL FAIL OK’ value=’20’/>
<entry p=’0.058300’ parentVals=’FAIL FAIL OK FAIL’ value=’20’/>
<entry p=’0.116279’ parentVals=’FAIL FAIL OK OK’ value=’20’/>
<entry p=’0.144194’ parentVals=’FAIL OK FAIL FAIL’ value=’20’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’20’/>
<entry p=’0.026932’ parentVals=’FAIL OK OK FAIL’ value=’20’/>
<entry p=’0.065940’ parentVals=’FAIL OK OK OK’ value=’20’/>
<entry p=’0.123446’ parentVals=’OK FAIL FAIL FAIL’ value=’20’/>
<entry p=’0.067232’ parentVals=’OK FAIL FAIL OK’ value=’20’/>
<entry p=’0.546458’ parentVals=’OK FAIL OK FAIL’ value=’20’/>
<entry p=’0.093284’ parentVals=’OK FAIL OK OK’ value=’20’/>
<entry p=’0.118216’ parentVals=’OK OK FAIL FAIL’ value=’20’/>
<entry p=’0.001939’ parentVals=’OK OK FAIL OK’ value=’20’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’20’/>
<entry p=’0.167018’ parentVals=’OK OK OK OK’ value=’20’/>

<entry p=’0.080270’ parentVals=’FAIL FAIL FAIL FAIL’ value=’21’/>
<entry p=’0.097347’ parentVals=’FAIL FAIL FAIL OK’ value=’21’/>
<entry p=’0.154658’ parentVals=’FAIL FAIL OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’21’/>
<entry p=’0.056294’ parentVals=’FAIL OK FAIL FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’21’/>
<entry p=’0.040168’ parentVals=’FAIL OK OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’21’/>
<entry p=’0.020431’ parentVals=’OK FAIL FAIL FAIL’ value=’21’/>
<entry p=’0.142134’ parentVals=’OK FAIL FAIL OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’21’/>
<entry p=’0.019329’ parentVals=’OK FAIL OK OK’ value=’21’/>
<entry p=’0.116575’ parentVals=’OK OK FAIL FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’21’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’21’/>

<entry p=’0.132340’ parentVals=’FAIL FAIL FAIL FAIL’ value=’22’/>
<entry p=’0.057270’ parentVals=’FAIL FAIL FAIL OK’ value=’22’/>
<entry p=’0.033964’ parentVals=’FAIL FAIL OK FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’22’/>
<entry p=’0.026202’ parentVals=’FAIL OK FAIL FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’22’/>
<entry p=’0.084725’ parentVals=’FAIL OK OK FAIL’ value=’22’/>
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<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’22’/>
<entry p=’0.095283’ parentVals=’OK FAIL FAIL FAIL’ value=’22’/>
<entry p=’0.087302’ parentVals=’OK FAIL FAIL OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’22’/>
<entry p=’0.012542’ parentVals=’OK FAIL OK OK’ value=’22’/>
<entry p=’0.123287’ parentVals=’OK OK FAIL FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’22’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’22’/>

<entry p=’0.080474’ parentVals=’FAIL FAIL FAIL FAIL’ value=’2’/>
<entry p=’0.063688’ parentVals=’FAIL FAIL FAIL OK’ value=’2’/>
<entry p=’0.151231’ parentVals=’FAIL FAIL OK FAIL’ value=’2’/>
<entry p=’0.232558’ parentVals=’FAIL FAIL OK OK’ value=’2’/>
<entry p=’0.135371’ parentVals=’FAIL OK FAIL FAIL’ value=’2’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’2’/>
<entry p=’0.070081’ parentVals=’FAIL OK OK FAIL’ value=’2’/>
<entry p=’0.100208’ parentVals=’FAIL OK OK OK’ value=’2’/>
<entry p=’0.074100’ parentVals=’OK FAIL FAIL FAIL’ value=’2’/>
<entry p=’0.116116’ parentVals=’OK FAIL FAIL OK’ value=’2’/>
<entry p=’0.337416’ parentVals=’OK FAIL OK FAIL’ value=’2’/>
<entry p=’0.257886’ parentVals=’OK FAIL OK OK’ value=’2’/>
<entry p=’0.022831’ parentVals=’OK OK FAIL FAIL’ value=’2’/>
<entry p=’0.016316’ parentVals=’OK OK FAIL OK’ value=’2’/>
<entry p=’0.001951’ parentVals=’OK OK OK FAIL’ value=’2’/>
<entry p=’0.826663’ parentVals=’OK OK OK OK’ value=’2’/>

<entry p=’0.077131’ parentVals=’FAIL FAIL FAIL FAIL’ value=’30’/>
<entry p=’0.101977’ parentVals=’FAIL FAIL FAIL OK’ value=’30’/>
<entry p=’0.047207’ parentVals=’FAIL FAIL OK FAIL’ value=’30’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’30’/>
<entry p=’0.193109’ parentVals=’FAIL OK FAIL FAIL’ value=’30’/>
<entry p=’1.000000’ parentVals=’FAIL OK FAIL OK’ value=’30’/>
<entry p=’0.043161’ parentVals=’FAIL OK OK FAIL’ value=’30’/>
<entry p=’0.482001’ parentVals=’FAIL OK OK OK’ value=’30’/>
<entry p=’0.071377’ parentVals=’OK FAIL FAIL FAIL’ value=’30’/>
<entry p=’0.122080’ parentVals=’OK FAIL FAIL OK’ value=’30’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’30’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK OK’ value=’30’/>
<entry p=’0.138651’ parentVals=’OK OK FAIL FAIL’ value=’30’/>
<entry p=’0.975460’ parentVals=’OK OK FAIL OK’ value=’30’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’30’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’30’/>

<entry p=’0.045796’ parentVals=’FAIL FAIL FAIL FAIL’ value=’42’/>
<entry p=’0.079017’ parentVals=’FAIL FAIL FAIL OK’ value=’42’/>
<entry p=’0.140285’ parentVals=’FAIL FAIL OK FAIL’ value=’42’/>
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<entry p=’0.046512’ parentVals=’FAIL FAIL OK OK’ value=’42’/>
<entry p=’0.144814’ parentVals=’FAIL OK FAIL FAIL’ value=’42’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’42’/>
<entry p=’0.027302’ parentVals=’FAIL OK OK FAIL’ value=’42’/>
<entry p=’0.006577’ parentVals=’FAIL OK OK OK’ value=’42’/>
<entry p=’0.143356’ parentVals=’OK FAIL FAIL FAIL’ value=’42’/>
<entry p=’0.048148’ parentVals=’OK FAIL FAIL OK’ value=’42’/>
<entry p=’0.000004’ parentVals=’OK FAIL OK FAIL’ value=’42’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK OK’ value=’42’/>
<entry p=’0.109213’ parentVals=’OK OK FAIL FAIL’ value=’42’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’42’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’42’/>
<entry p=’0.000779’ parentVals=’OK OK OK OK’ value=’42’/>

<entry p=’0.155340’ parentVals=’FAIL FAIL FAIL FAIL’ value=’71’/>
<entry p=’0.075350’ parentVals=’FAIL FAIL FAIL OK’ value=’71’/>
<entry p=’0.157546’ parentVals=’FAIL FAIL OK FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’71’/>
<entry p=’0.003059’ parentVals=’FAIL OK FAIL FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’71’/>
<entry p=’0.195512’ parentVals=’FAIL OK OK FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’FAIL OK OK OK’ value=’71’/>
<entry p=’0.009326’ parentVals=’OK FAIL FAIL FAIL’ value=’71’/>
<entry p=’0.126800’ parentVals=’OK FAIL FAIL OK’ value=’71’/>
<entry p=’0.116121’ parentVals=’OK FAIL OK FAIL’ value=’71’/>
<entry p=’0.003670’ parentVals=’OK FAIL OK OK’ value=’71’/>
<entry p=’0.023946’ parentVals=’OK OK FAIL FAIL’ value=’71’/>
<entry p=’0.000000’ parentVals=’OK OK FAIL OK’ value=’71’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’71’/>
<entry p=’0.005429’ parentVals=’OK OK OK OK’ value=’71’/>

<entry p=’0.048899’ parentVals=’FAIL FAIL FAIL FAIL’ value=’72’/>
<entry p=’0.118557’ parentVals=’FAIL FAIL FAIL OK’ value=’72’/>
<entry p=’0.067265’ parentVals=’FAIL FAIL OK FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL FAIL OK OK’ value=’72’/>
<entry p=’0.039225’ parentVals=’FAIL OK FAIL FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’FAIL OK FAIL OK’ value=’72’/>
<entry p=’0.125685’ parentVals=’FAIL OK OK FAIL’ value=’72’/>
<entry p=’0.025614’ parentVals=’FAIL OK OK OK’ value=’72’/>
<entry p=’0.164019’ parentVals=’OK FAIL FAIL FAIL’ value=’72’/>
<entry p=’0.042215’ parentVals=’OK FAIL FAIL OK’ value=’72’/>
<entry p=’0.000000’ parentVals=’OK FAIL OK FAIL’ value=’72’/>
<entry p=’0.003780’ parentVals=’OK FAIL OK OK’ value=’72’/>
<entry p=’0.106158’ parentVals=’OK OK FAIL FAIL’ value=’72’/>
<entry p=’0.002073’ parentVals=’OK OK FAIL OK’ value=’72’/>
<entry p=’0.000000’ parentVals=’OK OK OK FAIL’ value=’72’/>
<entry p=’0.000000’ parentVals=’OK OK OK OK’ value=’72’/>
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</cpt>
</knowledge>
<knowledge expires=’1175901865438’>

<subject>http://capri.csail.mit.edu/2006/capri/common#Local_Network</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#consecFailuresFromUser

</property>
<cpt>
<parents>http://capri.csail.mit.edu/2006/capri/core#status</parents>
<entry p=’0.006989’ parentVals=’FAIL’ value=’0’/>
<entry p=’0.985049’ parentVals=’OK’ value=’0’/>

<entry p=’0.099216’ parentVals=’FAIL’ value=’1’/>
<entry p=’0.003635’ parentVals=’OK’ value=’1’/>

<entry p=’0.608251’ parentVals=’FAIL’ value=’2’/>
<entry p=’0.010778’ parentVals=’OK’ value=’2’/>

<entry p=’0.285544’ parentVals=’FAIL’ value=’3’/>
<entry p=’0.000538’ parentVals=’OK’ value=’3’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865334’>

<subject>http://capri.csail.mit.edu/2006/capri/common#Local_Network</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.130702’ value=’FAIL’/>
<entry p=’0.869298’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865341’>

<subject>http://capri.csail.mit.edu/2006/capri/common#DNS_Lookup</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.333942’ value=’FAIL’/>
<entry p=’0.666058’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865444’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Outbound_Conn_Test

</subject>
<property>http://capri.csail.mit.edu/2006/capri/common#probeResult</property>
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<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#localNet|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.997443’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.013569’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.002557’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.986431’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865353’>

<subject>http://capri.csail.mit.edu/2006/capri/common#IP_Routing</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asPath|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.996292’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.024386’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.003708’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.975614’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865218’>

<subject>http://capri.csail.mit.edu/2006/capri/common#IP_Routing</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.010000’ value=’FAIL’/>
<entry p=’0.990000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865452’>

<subject>
http://capri.csail.mit.edu/2006/capri/common#Verify_DNS_Lookup_Test

</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#dnsLookupResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#dnsLookup|
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http://capri.csail.mit.edu/2006/capri/core#status
</parents>
<entry p=’0.166841’ parentVals=’FAIL’ value=’ALIAS’/>
<entry p=’0.248752’ parentVals=’OK’ value=’ALIAS’/>

<entry p=’0.144186’ parentVals=’FAIL’ value=’CORRECT’/>
<entry p=’0.596506’ parentVals=’OK’ value=’CORRECT’/>

<entry p=’0.229032’ parentVals=’FAIL’ value=’INCORRECT’/>
<entry p=’0.009483’ parentVals=’OK’ value=’INCORRECT’/>

<entry p=’0.310981’ parentVals=’FAIL’ value=’LOOKUP_ERROR_CONFIRMED’/>
<entry p=’0.001517’ parentVals=’OK’ value=’LOOKUP_ERROR_CONFIRMED’/>

<entry p=’0.079139’ parentVals=’FAIL’ value=’LOOKUP_ERROR_UNCONFIRMED’/>
<entry p=’0.044230’ parentVals=’OK’ value=’LOOKUP_ERROR_UNCONFIRMED’/>

<entry p=’0.069821’ parentVals=’FAIL’ value=’LOOKUP_ERROR’/>
<entry p=’0.099512’ parentVals=’OK’ value=’LOOKUP_ERROR’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865247’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#nextASPath|
http://capri.csail.mit.edu/2006/capri/core#status

http://capri.csail.mit.edu/2006/capri/common#nextASHop|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’1.000000’ parentVals=’FAIL FAIL’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’FAIL OK’ value=’FAIL’/>
<entry p=’1.000000’ parentVals=’OK FAIL’ value=’FAIL’/>
<entry p=’0.000000’ parentVals=’OK OK’ value=’FAIL’/>

<entry p=’0.000000’ parentVals=’FAIL FAIL’ value=’OK’/>
<entry p=’0.000000’ parentVals=’FAIL OK’ value=’OK’/>
<entry p=’0.000000’ parentVals=’OK FAIL’ value=’OK’/>
<entry p=’1.000000’ parentVals=’OK OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865347’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
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<parents>
</parents>
<entry p=’0.054708’ value=’FAIL’/>
<entry p=’0.945292’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865458’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Path_Test</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#asPathTestResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asPath|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.977004’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.251472’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.022996’ parentVals=’FAIL’ value=’OK’/>
<entry p=’0.748528’ parentVals=’OK’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865267’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Hop</subject>
<property>http://capri.csail.mit.edu/2006/capri/core#status</property>
<cpt>
<parents>
</parents>
<entry p=’0.001000’ value=’FAIL’/>
<entry p=’0.999000’ value=’OK’/>

</cpt>
</knowledge>
<knowledge expires=’1175901865270’>

<subject>http://capri.csail.mit.edu/2006/capri/common#AS_Hop_Test</subject>
<property>
http://capri.csail.mit.edu/2006/capri/common#asHopTestResult

</property>
<cpt>
<parents>

http://capri.csail.mit.edu/2006/capri/common#asHop|
http://capri.csail.mit.edu/2006/capri/core#status

</parents>
<entry p=’0.995000’ parentVals=’FAIL’ value=’FAIL’/>
<entry p=’0.020000’ parentVals=’OK’ value=’FAIL’/>

<entry p=’0.005000’ parentVals=’FAIL’ value=’OK’/>
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<entry p=’0.980000’ parentVals=’OK’ value=’OK’/>
</cpt>

</knowledge>

B.3.3 CoDNS knowledge

The new CoDNS agent provides the following knowledge. The conditional probabilities are
derived from the dependency knowledge for regular DNS lookup tests. These probabilities
assume that result of a CoDNS lookup test for a hostname for which the DNS lookup test
returnsALIAS is INCORRECT.

<knowledge>
<subject>

http://capri.csail.mit.edu/2006/capri/planetlab#CoDNS_Lookup_Test
</subject>
<property>

http://capri.csail.mit.edu/2006/capri/planetlab#codnsLookupResult
</property>
<cpt>

<parents>
http://capri.csail.mit.edu/2006/capri/common#dnsLookup|

http://capri.csail.mit.edu/2006/capri/core#status
</parents>
<entry value="CORRECT" parentVals="FAIL" p="0.144186" />
<entry value="INCORRECT" parentVals="FAIL" p="0.395873" />
<entry value="LOOKUP_ERROR" parentVals="FAIL" p="0.069821" />
<entry value="LOOKUP_ERROR_CONFIRMED" parentVals="FAIL" p="0.310981" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" parentVals="FAIL" p="0.079139" />

<entry value="CORRECT" parentVals="OK" p="0.596506" />
<entry value="INCORRECT" parentVals="OK" p="0.258235" />
<entry value="LOOKUP_ERROR" parentVals="OK" p="0.099512" />
<entry value="LOOKUP_ERROR_CONFIRMED" parentVals="OK" p="0.001517" />
<entry value="LOOKUP_ERROR_UNCONFIRMED" parentVals="OK" p="0.044230" />

</cpt>
</knowledge>
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