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Abstract

This thesis presents a new approach to root cause localzatid fault diagnosis in the In-
ternet based on a Common Architecture for Probabilisticsigeang in the Internet (CAPRI)
in which distributed, heterogeneodsagnostic agentgfficiently conduct diagnostic tests
and communicate observations, beliefs, and knowledgediogtuilistically infer the cause
of network failures. Unlike previous systems that can ongdose a limited set of net-
work component failures using a limited set of diagnosttdeCAPRI provides a common,
extensible architecture for distributed diagnosis thetved experts to improve the system
by adding new diagnostic tests and new dependency knowledge

To support distributed diagnosis using new tests and kragydeCAPRI must overcome
several challenges including the extensible represemtaind communication of diagnos-
tic information, the description of diagnostic agent calids, and efficient distributed
inference. Furthermore, the architecture must scale tp@tipgiagnosis of a large number
of failures using many diagnostic agents. To address thHeskages, this thesis presents a
probabilistic approach to diagnosis based on an extensldibutedcomponent ontol-
ogy to support the definition of new classes of components arnghdstic tests; aervice
description languagefor describing new diagnostic capabilities in terms of theputs
and outputs; and message processing procedurer dynamically incorporating new in-
formation from other agents, selecting diagnostic acti@ms! inferring a diagnosis using
Bayesian inference and belief propagation.

To demonstrate the ability of CAPRI to support distributedgtosis of real-world
failures, | implemented and deployed a prototype networkgénts on Planetlab for di-
agnosing HTTP connection failures. Approximately 10,088riagents and 40 distributed
regional and specialist agents on Planetlab collect indbion from over 10,000 users and
diagnose over 140,000 failures using a wide range of activepassive tests, including
DNS lookup tests, connectivity probes, Rockettrace memsents, and user connection
histories. | show how to improve accuracy and cost by legrmiew dependency knowl-
edge and introducing new diagnostic agents. | also shovati&its can manage the cost of
diagnosing many similar failures by aggregating relatepiests and caching observations
and beliefs.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist, Computer Science anifichat Intelligence Laboratory
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Chapter 1

Introduction

Often when network failures occur in the Internet, users retvork administrators have
difficulty determining the precise location and cause dufa. For example, a failure to
connect to a web server may result from faults in any one ofralbyer of locations; per-
haps the local network is misconfigured, a failure may haweioed along the route to the
server, or perhaps the server’'s network card has failed.ldma extent the difficulty of di-
agnosis results not from a lack of tools or techniques fogusis, but from the challenge
of efficiently coordinating the exchange of diagnostic ataagons, beliefs, and knowledge
across multiple administrative domains in an unreliabld dpnamic network. Accurate
diagnosis involves accurately determining the status afynireterdependent netwodom-
ponentsincluding processes such as DNS lookups and devices sugethasiet switches.
Proper diagnosis of failures in such components may regeirf@rming multiple imprecise
diagnostic tests and intelligently inferring the causeadife from their results.

Unfortunately, gathering accurate information for diagisdn the Internet is not easy.
Network topologies and the status of links may change rg@dt render previously col-
lected information useless. New classes of applicatiodddawices may become available
that require new techniques to diagnose. Researchers nalpgenew diagnostic tests and
methods for inference. Network failures may prevent théection of certain observations
and diagnostic information. Excessive diagnostic prolang communication may intro-
duce distortions or cause additional failures. Adding ® ¢hallenge, often collecting the
data necessary to diagnose a failure requires coordinatimng administrators in multiple
autonomous systems (ASes) that may have different capebiind conflicting interests.
Due to such challenges, today the diagnosis of networkr&sltequires slow and tedious
manual data collection, inference, and communication anmman network administra-
tors. As the size, complexity, and diversity of the Intermereases, so will the difficulty
of performing such manual diagnosis.

To address the challenges of distributed diagnosis, teEdshpresents a new approach to
fault diagnosis based on a Common Architecture for ProlsigiReasoning in the Internet
(CAPRI) in which distributed, heterogeneadisignostic agentsvith different capabilities
and goals efficiently conduct diagnostic tests and comnateicbservations, beliefs, and
knowledge to probabilistically infer the cause of failuneshe Internet. This thesis takes a
completely different approach to the problem of fault diagis compared to previous work.
Rather than developing a distributed system specificabyghed for diagnosing particular
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types of failures as previous researchers have done, ttrapyriobjective of this thesis is to
develop a general, extensible framework for fault diagseosit specific to the diagnosis of
any particular type of failure and not restricted to any jgaitr set of diagnostic tests. In-
stead, CAPRI provides a common architecture for cooparaimong multiple distributed
specialists, allowing experts to improve the system byrgldew diagnostic tests and new
dependency knowledge in the future. The generality of th&RPRarchitecture allows the
sharing of diagnostic information among agents that usede wéange of both new and
existing methods for fault diagnosis, including both wallewn active measurements such
as DNS lookups and traceroutes as well as passive inferdneelnserver status from
historical connectivity observations. Like the Internebt®col (IP) that glues together
heterogeneous link layer technologies to provide a commianface for higher-level com-
munication protocols and applications, CAPRI enables tmaraunication of diagnostic
information from various sources to provide a common platféor distributed diagnosis.
Chapter 2 describes the similarities and differences batw@APRI and previous research
in related areas.

A common and extensible architecture for fault diagnosthelinternet has the poten-
tial to catalyze innovation, encouraging the developménew diagnostic tools and tech-
nologies. As agents join the system and the number and yafi@APRI agents increases,
new diagnostic capabilities and applications will emenge e power and accuracy of the
system will improve. To facilitate such innovation, CAPRbypides modular interfaces
for communicating diagnostic information, encouraginga@plization, reuse, information
hiding, and composition of information. Researchers mayelig new agents with spe-
cial knowledge, technology, or resources for diagnosinguiqular set of components.
CAPRI enables such specialist agents to join the systembaard their diagnostic capabil-
ities with other agents. If the information that a spectgh®ovides is useful, other agents
may reuse the same information to diagnose many types afdail Agents may also hide
specialized information from others to help manage complend improve scalability,
reducing the amount of information that other agents neqeketiorm diagnosis. For ex-
ample, an agent may advertise the capability to diagnosgpsb of DNS lookup failures
without revealing information about all the other agentsdéds to contact to perform that
diagnosis. CAPRI also enables the composition of inforamafrom multiple agents to
produce new information. For example, an agent for diagrgpBiTTP connection failures
might have no special capabilities of its own and simply coralobservations, beliefs, and
dependency knowledge from other agents to produce its deagnLike the online ency-
clopedia Wikipedi&d which brings together distributed specialists to sharerimation and
build upon each other’s knowledge to produce a shared repgsif valuable information,
CAPRI provides a framework for specialist agents to conteltheir diagnostic capabili-
ties and build upon the capabilities of other agents. Ch&ypeecisely defines the problem
of fault diagnosis and describes the elements of the CARRiitacture.

The strength of the CAPRI architecture comes from its gditgi@nd extensibility to
support diagnosis using a wide range of diagnostic tesmylauge, and communication
patterns, but achieving such generality requires overngrseveral challenges including
representation of diagnostic information, descriptiond@gnostic capabilities, commu-

Ihttp://www.wikipedia.org/
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nication of diagnostic information, and the selection adgtiostic actions. This thesis
describes how CAPRI addresses each of these challenges pvbiliding the generality,
extensibility, and scalability to support the introductiaf a large number of new diagnostic
agents and capabilities.

Firstly, since diagnosis requires the communication ofjdastic information among
multiple diagnostic agents, CAPRI must provide agents witommon language for the
extensible representation and communication of networkpmnent and diagnostic test
class definitions. This language must support a wide rangmghostic information and al-
low researchers to define new types of information to suppent types of diagnostic tests.
CAPRI addresses this challenge by representing compondmiagnostic test classes and
properties using an extensible, distributemmponent ontology enabling agents to de-
fine new component classes and properties to support newarenjs and new diagnostic
tests. Chapter 4 describes the representation of diagno&irmation in more detalil.

Secondly, because each agent may have the capability tormesf different set of di-
agnostic tests and may not know about the existence of adir @apents in the network,
CAPRI must provide agents with a common language for desgriénd looking up diag-
nostic capabilities. This language must allow new agenjsitothe system and advertise
their capabilities so that existing agents can take adgaméthe new capabilities offered.
For scalability, this language must also control the coxipfeof routing diagnostic infor-
mation among a large number of diagnostic agents. CAPRIeadds this challenge by
providing a commorservice description languagehat enables agents to describe diag-
nostic capabilities in terms of their inputs and outputsisTanguage allows other agents
to dynamically compute the value of services offered by oHgents and select actions
in a general way without domain-specific knowledge. Thiwviserdescription language
also promotes scalability by allowing agents to aggregaitiphe specialized services to
reduce the number of services each agent needs to know &@imajter 5 describes service
advertisement and lookup in more detail.

Thirdly, distributed diagnosis requires a common protdoolexchanging diagnostic
observations, beliefs, and knowledge. In order to suppadrbsis using new informa-
tion produced by new agents, this protocol must allow an agenombine information
collected from multiple sources to build a dependency maed#iout domain-specific
knowledge. CAPRI addresses this challenge by providingniggeith a commommes-
sage exchange protocdhat enables agents to express diagnostic informatiorrinstef
observationsprobabilisticbeliefsandlikelihoods and probabilistidependency knowledge
in a general way. This protocol allows agents to construnotmanent graphs to represent
information they have about the network and probabilistitufe dependency graphs for
inferring the cause of failure in a general way. Chapter @dless the protocol that agents
use for exchanging diagnostic information.

Fourthly, for extensibility to support new diagnostic chpities offered by new agents,
agents need a general procedure for computing the valuevefseevices and deciding
what actions to take. In addition, this procedure must staleupport the diagnosis of
a large number of failures using many agents. To addresshhitenge, CAPRI provides
agents with a generatessage processing proceduffer dynamically computing the value
of available actions based on available diagnostic infoiona service descriptions, and
probabilistic dependency knowledge. This procedure esabyents to dynamically con-
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struct failure dependency graphs from a component graphaasheppendency knowledge
base for performing probabilistic inference with incontplenformation. In addition, for
scalability to support the diagnosis of a large number dtifas this procedure manages
the long-term average probing and communication costsagfraisis by aggregating data
and requests and propagating diagnostic information daugto an aggregation-friendly
overlay topology. Chapter 7 describes this procedure irendetail.

This thesis primarily considers the diagnosis of reaclitgbfilures, in which a user
cannot access a particular resource or service in the kttefinis thesis focuses on reacha-
bility failures because such failures occur relativelygimently and are difficult to diagnose
using information collected from any single point in thewetk, but can often be ac-
curately diagnosed by combining data collected from mldtgmints in the network and
performing inference. One can extend this architecturestd dith other types of failures
such as performance failures, but such failures are outbglscope of this thesis. This
thesis addresses only the problem of automated fault dsagand does not address other
parts of the management process such as automated con@iguaat! repair. Other chal-
lenges of distributed fault diagnosis include privacy aecisity, agent discovery, trust, and
incentives, but addressing such challenges is not the fofciings thesis.

This thesis evaluates CAPRI according to three criterie dbility to support dis-
tributed diagnosis among heterogeneous agents, ext@ysibisupport new diagnostic
tests and knowledge, and scalability to control the costiafrbsing large numbers of
failures using many agents. Note that the purpose of my atialuis not to show that
diagnostic agents can diagnose any particular types afrémlusing any particular set of
diagnostic tests; rather, the purpose of my evaluation ggio insight into the benefits and
tradeoffs of diagnosis using CAPRI.

To evaluate the capabilities of the CAPRI architecture yvietigped a prototype network
of agents on Planetlab for diagnosing real-world HTTP catioa failures for end users.
Chapter 8 describes the design and implementation of thistype network. In my exper-
iments, agents collect information from over 10,000 usasdiagnose over 140,000 fail-
ures over two months. These experiments demonstrateldittd diagnosis among eight
different types of diagnostic agents, including approxehal0,000 user agents and 40
regional and specialist agents on Planetlab. | show howxtemsibility of the CAPRI on-
tology and communication protocol enables agents to imngpemcuracy and cost by taking
into account new diagnostic knowledge. | show how agentsusarthe message process-
ing procedure provided by CAPRI to dynamically compute thkig of new services and
select diagnostic actions. | show how agents in this netwarkimprove the scalability
of diagnosing large numbers of failures and reduce the pgphnd communication costs
of diagnosis by aggregating related requests and cachisgredttions and beliefs. This
experiment also demonstrates the benefits of probabiligfigcence, including the ability
to indicate the confidence of a diagnosis, compute the vdlnew actions, and learn new
dependency knowledge. Chapter 9 presents the detailellsresthe experimental evalu-
ation.

The creation of a common architecture for fault diagnoste@internet opens up many
new avenues of future research. Chapter 10 concludes wiitas$ion of the contributions
of this thesis research and areas of future work.
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Chapter 2
Related Work

This thesis presents a new approach to fault diagnosis ilnteenet based on a common
architecture for communicating diagnostic informatioatthllows the introduction of new
diagnostic agents and new diagnostic capabilities. Thasishdraws upon many areas of
related work, including tools for Internet fault diagngsaschitectures for agent coordi-
nation, the representation of diagnostic information aeises, root cause localization,
dependency analysis, reasoning and logic with incompidtamation, and probabilistic
reasoning.

Unlike previous research in network management, prolsiulinference, machine
learning, and distributed systems, however, this the&issta broader, long-term, wide-
area networking approach to distributed fault diagnosiwlnch extensibility, robustness
to failure, communication costs, scalability, heteroggnencomplete information, and
conflicting interests all matter. In the Internet we canrssieme, for example, that all diag-
nostic agents know about all components in the network. fteget comprises thousands
of separate administrative domains, and no single entitypcasibly know the entire struc-
ture of the Internet at any given moment in time. Communngadiagnostic information
to all users affected by a failure may involve communicagamong possibly thousands or
millions of hosts; we must consider the cost of such commnatigo. Each diagnostic agent
may have different capabilities, and the set of availablEenégmay change as new agents
join or network failures occur. In addition, the dynamic amngpredictable nature of the
Internet means that diagnostic tests may produce unrelialdomplete, or out-of-date in-
formation. Furthermore, any lasting architectural santio this problem must be flexible
and extensible to accommodate the introduction of new etasscomponents and diagnos-
tic technologies. This chapter divides related work intorforoad categories: distributed
systems, diagnostic tools, representation, and faulindisig.

2.1 Distributed systems

CAPRI agents perform diagnosis in a distributed manner. ditelenges of distributed
diagnosis include coordination among distributed diagjn@gents and controlling the cost
of communication.
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2.1.1 Architectures for agent coordination

CAPRI is an architecture for coordinating diagnosis betwaaltiple agents, each with dif-
ferent resources, capabilities, and administrators. afgkitecture differs from most other
architectures for agent coordination in that agents exg@amgnostic information accord-
ing to an extensible ontology that enables them to reasontatew classes of compo-
nents and new properties, as well as dynamically requedi@aial information from other

agents when necessary. Agents exchange high-level predddrmg knowledge such as
component status and conditional probability tables, asdust low-level domain factual

knowledge about network observations such as link bandivadtound-trip packet delay.
This approach is based on the idea of the Knowledge Planenenoa infrastructure for

communicating data about the network that enables reag@tout high-level concepts
such as policies, configuration, and behavioral models [12]

One obstacle to the adoption of a common architecture farrglhaetwork data is that
network administrators see little incentive to make sucta devailable to others. Today,
network administrators do not share much management irgbom with administrators
in other domains for security and policy reasons. Calved @noffioen argue, however,
that network administrators might benefit from sharing ofiggoand configuration data,
possibly in aggregated and anonymized form, because itiogulify tasks such as fault
diagnosis [5].

Networking researchers have developed various architestfior exchanging network
observations among agents for distributed diagnosis. \&@wak, et al. developed a dis-
tributed knowledge base called Sophia that allows agentsaice queries about the state
of a distributed network using a declarative logic languf@®. The iPlane is another
distributed system for collecting and providing networksetvations [63]. Both Sophia
and the iPlane are designed for the exchange of low-levelaftofactual knowledge of
network observations such as link bandwidth and loss ratesreas agents in CAPRI ex-
change more high-level problem-solving information sustdapendency knowledge and
beliefs.

Performing diagnosis using such higher-level knowledgklaiiefs improves the mod-
ularity and extensibility of diagnosis. A researcher mayaduce a new diagnostic agent
that can produce the same diagnostic information as anaget using a new technique.
Other agents may then take advantage of the informationged\by the new agent without
knowing the low-level details about the new technique. lditah, communicating depen-
dency knowledge enables agents to take advantage of new ¢fmagnostic tests about
new classes of network components when such informatioorbes available. Chapter 4
discusses the advantages of communicating knowledge &efsbe more detail.

Thaler and Ravishankar describe an architecture for Qigted fault diagnosis using a
network of experts [89]. Each component in the system hagrasmonding expert that
can determine whether that component has failed and what ottimponents may be af-
fected by a failure in that component. Their architectureé @APRI share several common
goals: scalability in the global Internet, the ability oldnostic providers to control the
amount of information they divulge, and reliability in thack of failure. Like the failure
dependency graphs agents use in CAPRI to model the effeohgbanent failures on other
components, “cause-effect graphs” in their architectucgleh how failures in one part of
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the network propagate to other parts in the network. The mdfi@rences between CAPRI
and their architecture are that CAPRI takes a more genesalgilistic approach to mod-
eling dependencies, CAPRI provides agents with an extensiiiology that enables the
diagnosis of new types of network components using new dbpery knowledge, and that
CAPRI does not assume that there is only one way to diagnaskieef This is a more re-

alistic assumption because diagnostic agents in the ktteray have different information
and different methods for diagnosing failures.

Bouloutas, et al. propose a distributed system for diagriasivhich different manage-
ment centers are responsible for different componentsIfi2¢ authors consider only a two
phase diagnosis: first generate hypotheses and then padstsn In CAPRI, agents may
repeatedly perform tests and make inferences. Also, age@8PRI use a more general
probabilistic Bayesian model of failures and can represaiitiple levels of dependencies.

Others have developed architectures for coordinatingibiged data collection and in-
ference for certain classes of network failures. Zhang|. eleveloped PlanetSeer for using
both passive and active monitoring of network behavior ttecenetwork failures [98].
A set of monitoring daemons running on hosts located througithe Internet observe
incoming and outgoing TCP packets to identify possible as@s. When a monitoring
daemon detects a suspected anomaly, it activates a prob@dde collect data about the
suspected anomaly with active probes. The results of theepace then analyzed to verify
the anomaly. PlanetSeer coordinates data collection aaigisas among multiple daemons
distributed throughout the network, but does not provideftrilities for describing com-
ponents and dependencies as CAPRI does. Also, all the daamBtanetSeer follow the
same diagnostic methodology and cooperate with one antilitan CAPRI | assume that
each agent may employ different diagnostic methods anahgétodifferent administrative
domains.

2.1.2 Aggregation and scalable data distribution

In CAPRI, agents reduce the number of messages they musagetediagnose multiple
similar failures by reusing cached information from prawgadiagnoses and by selecting
diagnostic actions based on their expected value and ceestioBs research in web proxy
caching and multicast trees describe methods for widelyibliging data to many users
in a resource efficient manner [6, 7, 94]. Web proxy cacheyg nakd to match data on
the basis of URLs, while agents in CAPRI must match diagnastijuests to previous
diagnostic responses based on the properties of the reqlieste is also a great deal of
research in sensor networks in efficient disseminationfofmation [52, 42]. The primary
difference in CAPRI is that agents must perform more sopastd reasoning to determine
how to aggregate information and to whom to send diagnostjaests and responses.

2.2 Tools for diagnosis
To perform diagnosis in CAPRI, a diagnostic agent may perfdiagnostic tests to deter-

mine the status of various components in the network, ranigom processes such as DNS
lookup and devices such as Ethernet switches. Many resarbhve developed effective

19



tools for diagnosing failures in various types of networknpmnents, such as Internet Pro-
tocol (IP) link failure [44], Border Gateway Protocol (BGR)isconfiguration [29], DNS
configuration errors [68], network intrusion [70], perfoamce failures [92], and so on.
Each tool differs in the different types of failures it adskes, the assumptions it makes
about the network, the resources it requires for diagnasis, the speed, accuracy and
cost tradeoffs that it offers. CAPRI enables the constomctif agents that act as wrappers
around such existing tools.

To diagnose network failures, diagnostic agents may aldeat@bservations about the
network and use this data to infer the status of network corapts. Recent research in
network tomography demonstrate that end hosts in the letean collect fairly detailed
information such as link-level loss rates and delay, usiathlpassive and active mea-
surements [90, 4]. Mahajan, et al. developed a tool callégd that uses active probing
from a single host to collect data about each link along andth,pincluding round-trip
loss rate, packet reordering, and queuing delay [64]. WantgSchwartz describe a sys-
tem for identifying likely network failures based on whiclodes are accessible from a
network management node [91]. Roscoe, et al. use a logicidaygycalled InfoSpect to
detect configuration inconsistencies in a distributedesyd77]. Madhyastha, et al. devel-
oped iPlane, a system for collecting and distributing messents about various network
properties such as loss rates and bandwidth [63].

Another way to diagnose failures is to determine the statusmponents from network
measurements using statistical inference. Steinder atid gevide an overview of such
techniques for fault diagnosis [87] and describe method®faliagnosing network failures
using Bayesian inference [86]. Ward, et al. infer the preseof performance failures
based on the rate of requests processed at an HTTP proxy aed/@ CP connection state
[92]. NetProfiler uses a peer-to-peer network to combine $Hstics from multiple end
hosts to infer reachability [67]. Shrink infers the root sawf a failure using Bayesian
inference [44].

The contribution of the CAPRI architecture is to provide ancoon framework for
communicating the wide range of diagnostic informationt thgents might produce us-
ing existing diagnostic tests. Such a framework enablestag# all types to share their
diagnostic information and combine it to improve the accyraost, and robustness of
diagnosis.

2.3 Representation

An architecture for distributed fault diagnosis must pd®r/idiagnostic agents with a lan-
guage for representing diagnostic information and a serdescription language for com-
municating their diagnostic capabilities.

2.3.1 Representation of diagnostic information

Diagnostic agents need a common representation for conwauimy diagnostic informa-
tion in a way that facilitates reasoning and inference. Agen CAPRI define compo-
nent classes and properties according to a component gygtalad communicate diagnos-
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tic information in terms of observations, beliefs and likebds, and dependency knowl-
edge. Chandrasekaran and Josephson provide a good overvavaring problem-solving
knowledge using ontologies [8]. Unlike most previous reslean ontologies which focus
on “domain factual knowledge” describing objective realihe authors focus on the chal-
lenge of modeling “problem-solving knowledge”, which thagfine as “knowledge about
how to achieve various goals”. According to this definiti@APRI enables agents to rep-
resent problem-solving knowledge for fault diagnosis ia thternet. Chandrasekaran and
Josephson identify the five elements of a problem-solvirtglogy as a problem solving
goal, domain data describing the problem-instance, profdelving state, problem-solving
knowledge, and domain factual knowledge. In CAPRI, the j@mbsolving goal is iden-
tification of the mostly likely cause of failure from a list candidate explanations. The
domain data describing the problem-instance is the set e#ohtions, beliefs, and like-
lihoods that an agent has about components related to tfesfain CAPRI, the current
problem-solving state can be represented in terms of thetag@mponent grapdescrib-
ing the properties and relationships of components in tivwor& and afailure dependency
graph specifying the probabilistic dependencies among compomeperties. Problem-
solving knowledge consists of entries in an agedépendency knowledge babat indi-
cate the probabilistic dependencies among componeneslaB®main factual knowledge
is the knowledge to describe network components, incluthiegcore concepts alompo-
nents properties diagnostic informatiopand the component class and property definitions
in the component ontology. Chapter 4 describes componamthgr failure dependency
graphs, and dependency knowledge in more detail.

A number of domain factual ontologies for communicationvaks exist. Quirolgico,
et al. have proposed detailed ontologies for modeling nedsvbased on the Common
Information Model (CIM) [73]. This is a domain factual onbgly; its purpose is to describe
the components that exist in networks and their propertiesto capture the knowledge
necessary for diagnosing components.

The knowledge representation approach | take in CAPRI cahdagght of as a “com-
piled knowledge” approach as opposed to a “deep knowledppfoach [9] in that the
CAPRI ontology permits agents to express diagnostic kndgéen just enough detail for
diagnostic inference and does not try to capture all possiidbrmation about a failure.
Rather than passing around detailed low-level “deep kndgéé about the behavior and
characteristics of each component in the network, agen@ARRI reduce this data to
the essential component dependency relationships. Riédependency knowledge are a
form of compiled knowledge in that they reduce the full amioafndetail about a compo-
nent type into the minimum amount of information necessarngason about the status of a
component from the properties of other components. Chae&eaan and Mittal argue that
in general such a compiled knowledge approach can retaih @htise accuracy of having
deep knowledge while simplifying automated reasoning [9].

Crawford et al. describe a model for representing relatigpesamong devices [15]. The
authors argue that by modeling just a few types of deviceicglahips such adepends-on
part-of, and a device’s functional status, one can provide a genepatsentation suitable
for modeling a wide range of devices while capturing mosheféssential properties nec-
essary for diagnostic reasoning. CAPRI takes a similar @gugr, attempting to model
component relationships generally enough to enable therigéen of a wide range of
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network components while providing enough information &gents to reason about the
causes and consequences of failures.

Other researchers have investigated the use of ontologigsdsoning about network
phenomena. Pinkston et al. describe how to perform dig&tbdiagnosis of network at-
tacks using ontological inference [72]. The authors dégcan ontology that defines dif-
ferent types of network attacks in terms of their charast&s, and use this information
to identify various attacks based on data collected fromtigialobservers. The approach
described by Pinkston et al. performs inference using omi@Q%/L reasoner, butin CAPRI
agents may generate new beliefs and other diagnostic iaftvmusing other techniques
such as probabilistic inference and data collection.

2.3.2 Representation of diagnostic services

CAPRI provides a service description language for agentiesaribe their diagnostic ca-
pabilities so that an agent can automatically discover aakenuse of the diagnostic in-
formation other agents provide. Many languages for desailmetwork services exist
today for enabling such interoperation and compositioreofises. OWL-S allows service
providers to describe services using the OWL ontology laggtt The Web Service Def-
inition Language (WSDL) allows web service providers toatime SOAP web servicés.
WSDL allows a service provider to describe the allowablaiis@nd outputs of a service
and the message exchange patterns it supports. The dieggersice description language
agents use in CAPRI provides similar functionality, enadpline description of the inputs
and outputs of diagnostic services. CAPRI agents do noinethe full expressiveness of
OWL-S or WSDL, however, and they do not need to interoperatie @ther web services.
In addition, CAPRI requests and responses do not requinetag@ maintain state across
requests, which simplifies the description of the servitey tan provide. Therefore for
conciseness and ease of implementation | choose to definst@ntservice description
language for CAPRI.

Others have developed systems for describing, advertiamgjlooking up services in a
network. The Service Location Protocol (SLP) allows conepsiaind devices to advertise
services within a local network [39]. Sun developed the firastructure for commu-
nicating, describing, and using distributed services ireawork3 Unlike these generic
service discovery protocols, however, the service deSariganguage in CAPRI enables
the selection of actions for distributed diagnostic reasgpnThe CAPRI service description
language enables diagnostic agents to dynamically deterthe diagnostic capabilities of
other agents in terms of observations, beliefs, and depeydenowledge about network
components and diagnostic tests according to a distrilgeghonent ontology.

Ihttp://www.daml.org/services/owl-s/
2http://www.w3.0rg/TR/wsdI20/
Shttp://www.jini.org/
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2.4 Fault diagnosis

Many approaches to fault diagnosis and related problenss eday, including root cause
localization, dependency analysis, probabilistic reaspnmodel-based diagnosis, case-
based reasoning, fault detection, and event correlatidms Jection discusses related re-
search in these areas.

2.4.1 Root cause localization

Diagnosis in CAPRI is based on the concept of root causeifatain, also known as root
cause analysis or fault localization. Root cause locatimas the process of identifying
a set of root causes that can explain a failure, and then piipg the precise location of
the failed components. In CAPRI, a diagnostic responsetiftessithe most likely cause
of failure from a set of possible candidate explanationsoriter to apply root cause lo-
calization to fault diagnosis, one must have a causal fainodel. In CAPRI, this causal
failure model is based on the probabilistic dependenciesngnproperties of components
and diagnostic tests. The failure of a component with depecieés may be caused by a
failure in one of the components it depends upon.

Kiciman and Subramanian describe a model for root causdizatan based on com-
ponents and “quarks”, where quarks are are the smallestvaige unit of failure or suc-
cess [47]. A failed quark indicates that one of the compantrdt influence the quark has
failed. For example, a quark might represent the succesailard of an AS path, while
the components that influence the status of the quark aréPtheps along that path. An
end user may have the ability to observe the status of thékgjoair cannot directly observe
the status of the IP hops. This thesis takes a similar apbraad assumes that a failure
observed in one component may be caused by a failure in ons dependent compo-
nents, but agents in CAPRI do not have a universal notion aflgqubecause each agent
may be able to diagnose a different set of components. Whaboea agent considers to be
a quark (that is, a component whose dependent componemtstdaa observed) may not
be a quark to another agent tlzain observe its dependencies.

Steinder and Sethi describe a fault localization method ickv multiple managers
each perform diagnosis and then share their results [84¢ alhihors also describe how
to model network faults using a bipartite causality grapinich the failure of individual
links cause the failure of end-to-end connectivity, anchtperform fault localization using
a belief network [82]. Unlike the model described by Stemaled Sethi, however, agents
in CAPRI can have more complex dependency models, in whidit@m®@nd connectivity
may also depend on software applications, DNS, network gordtion, and so on. Like
Steinder and Sethi, | model failures probabilistically &ese the effect of a component
failure on the status of other components may be nondetesticin Steinder and Sethi
also propose incremental hypothesis updating, in whichagraisis provider supplies a
continually updated list of possible root cause faults [85]

Kompella et al. developed SCORE, a system for modeling digremnes among compo-
nents in an optical IP network and performing fault locdii@a using a minimum set cover
algorithm to infer the root cause Shared Resource Link Gsq@RLG) of failures in IP
paths [50]. These SRLGs correspond to the components of CATORE performs di-
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agnosis in a centralized way, with all diagnostic reasowiogurring at the SCORE server,
while CAPRI enables distributed diagnostic reasoning.

2.4.2 Dependency analysis

Root cause localization in CAPRI is based on dependencysisalThe properties of a
component may depend on the properties of other compori@gntsalyzing these depen-
dencies, agents can determine the root cause of a failure.

Keller, et al. provide a good overview of the types of depewiks in networks and how
dependency analysis can be used for root-cause localifdti$. The authors describe how
dependencies may be organized along multiple dimensi@mwdiag to the type of com-
ponents involved, the importance of the dependency (e.qxdatary or optional), where
the components are located, and so on. In CAPRI, agents mdegehdencies in a more
general way using probabilistic graphical models. Usinghsmodels, agents can represent
many different types of dependencies, including AND dep@ctes where a component
functions if and only if all its dependencies are functianpi®R dependencies that provide
multiple alternative ways to satisfy a dependency, andgidistic dependencies in which
the status of a component can depend probabilistically beratomponents. Keller, et al.
also describe how dependencies among software applisatiay be determined dynami-
cally at runtime from software package configuration.

Grushke describes how to perform root cause analysis bylsearthrough a depen-
dency graph [36]. Gopal represents network dependenc@sding to network protocol
layers [34]. Both Grushke and Gopal model dependencies gaygplications, network de-
vices, and services using a directed dependency graph.Guilshke, in CAPRI | choose
to model component status using binary sta@sandFAl L). In CAPRI, however, agents
use probabilistic inference to determine the status of compts. In addition, agents in
CAPRI can infer the status of a component from many othenlsées, not just the status of
other components. Unlike Grushke’s system and most otlestiqurs work in dependency
analysis, CAPRI agents can communicate probabilisticesad to perform inference in a
distributed manner.

Sometimes an agent may not know the dependencies for ayparteomponent indi-
vidual. Fonseca et al. describe how to discover runtime niggecies for a variety of net-
work applications by tagging messages with metadata ubmgTrace framework [32].
Bahl et al. describe a system for constructing probalilidépendency graphs based on
packet traces [1]. Gupta et al. show how to learn an accuratiehof dependencies from
observations of system behavior [38].

2.4.3 Probabilistic reasoning

Diagnosis requires distributed probabilistic reasonirReasoning must be probabilistic
because many diagnostic tests only indicate a probabififiaiture. SCORE infers the
cause of network failures using a Bayesian network in a aénéd fashion [50]. Deng, et
al. use Bayesian networks to infer the cause of failuresniedr lightwave networks [24].
Such centralized systems are inadequate because diagkiogtvledge and data may be
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distributed across multiple administrative domains. Bareple, a network administrator
may not have the data or knowledge necessary to diagnosesih their upstream ISP.

Crick and Pfeffer use loopy belief propagation as a way toerakerences based on
sensor readings in a distributed fashion [17]. Their resaliggest that communicating
beliefs rather than raw sensor readings can reduce comationicosts and deal with noisy
sensor readings. In CAPRI, agents use a similar strateggrform distributed diagnosis,
summarizing the results of diagnostic inference using ghbdkstic beliefs rather than only
exchanging low-level network observations.

Many researchers have studied probabilistic models foit ffiagnosis [59, 17, 76].
Shrink [44] and SCORE [50] use bipartite Bayesian netwodksliagnose Internet link
failures. Katzela and Schwartz model dependencies amangaaents using a probabilis-
tic dependency graph and show how to infer the most likelyseanf failure under certain
assumptions [45]. Steinder and Sethi also use belief paipayto diagnose path fail-
ures [83, 88]. No common architecture for sharing diagmostiowledge for distributed
probabilistic reasoning exists, however.

Agents in CAPRI perform probabilistic inference using kiegge about dependency
among classes of components. This approach is similar Wequeresearch in methods for
combining probabilistic inference with first-order logigd, 74, 78].

Researchers in belief propagation for distributed prolisitm inference consider the
cost of communicating information, but typically they ordgnsider the cost of inference
for diagnosing a single failure [71, 17, 27]. In Internetlfadiagnosis, frequently multiple
failures that occur over a period of time share the same rao$e, in such cases CAPRI
agents reduce the average cost of diagnosing each failuradhing the data obtained in
previous diagnoses.

The protocol for distributed inference described in thiesis assumes discrete vari-
ables. Minka describes how to generalize belief propagatilhandle inference over Gaus-
sian beliefs [65].

Agents in CAPRI model dependencies among network compsisitig Bayesian net-
works. Lerner et al. show how a dynamic Bayesian network (D& describe the behav-
ior of a dynamic system and enable the diagnosis of faultsguBayesian inference [59].
Lauber et al. use DBNs for real-time diagnosis of a mechadmace [55]. CAPRI allows
agents to describe such temporal dependencies.

One challenge of fault diagnosis is choosing which test ttop@ next to minimize the
overall cost of diagnosis. Probabilistic reasoning presgidgents with a framework for se-
lecting among multiple actions. Jensen and Liang desceberal approaches to this prob-
lem, including myopic test selection, selecting tests /kalking into account the impact
of the information they provide on future tests, and setggrtests to balance the value and
cost of tests [43]. Dittmer and Jensen present efficientahgos for myopically computing
the value of information from an influence diagram descglganobabilistic dependencies
among variables, the cost of performing tests, and theyutifivarious decisions [25]. Lee
et al. describe an algorithm for selecting a minimum expciast ordering in which to
perform diagnostic tests given a component failure prdiies and dependencies [58].
Krause and Guestrin describe a procedure for choosing ttimalmext diagnostic test to
perform based on the cost and expected information gainedtagiven a Bayesian model
of components and diagnostic tests [51]. RAIL diagnosekdam real-time by choosing
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components to probe based on a global dependency modeHitg]ie et al. consider how
to minimize the cost of probing for diagnosis using a Bayesiatwork approach [3]. Li

and Baras describe how to choose which probes to performatdt fliagnosis using be-
lief networks [61]. Littman et al. present an approach farteng the least cost plan for
testing and repairing network failures [62]. The procedorediagnosis in CAPRI allows

agents to use such cost minimization techniques to seledptimal diagnostic actions to
perform.

A related problem is forming an accurate model of the prolsitn dependencies
among various network components. Especially in a dynaretwork in which condi-
tions may change rapidly, an agent’s model of the dependsranong components may
become out-of-date and inaccurate. Kim and Valtorta des@n algorithm for detecting
when a Bayesian network for diagnosis may be inaccurate atwinatically constructing
a more accurate model [48]. In CAPRI, a knowledge agent maysush techniques to
continually provide updated dependency knowledge to aigents.

2.4.4 Reasoning and logic with incomplete information

Another approach for fault diagnosis is to make inferenoasfpossibly incomplete infor-
mation using logic and reasoning systems. Crawford and é¢aigdeveloped Algernon, a
system for knowledge representation using an access tifutgc [16]. This type of logic
is useful if one has a large knowledge base of facts and ruléssants to answer arbi-
trary queries. Since CAPRI uses a compiled knowledge apprtheat organizes diagnostic
information and knowledge into component graphs and degrarydknowledge bases, the
logical inference that agents perform is relatively stidigrward and does not require a
system such as Algernon.

CAPRI assumes that an agent can determine the possible oaAnvgéues for a com-
ponent property at the time of diagnosis (e.g. a componstdtsis is eithefK or FAI L).
Smyth considers how to reason about systems with unknowessf80]. Cohen, et al.
describe a system for identifying the states of a systemdoaséhistorical data collected
about the system [14]. Dawes, et al. describe an approachéagnosing network failures
when the status of certain components may be unknown [66n#sgn CAPRI take a more
general probabilistic approach using Bayesian networksddel incomplete information.

2.4.5 Model-based diagnosis

The high-level approach that agents in CAPRI follow for aiaging failures has some
similarities to traditional model-based diagnosis. CARR&bles agents to infer the status
of components based on a model of component structure, lmehand observed status.
Davis and Shrobe define model-based diagnosis in terms ofctwtal model describ-
ing the relationship between the components in a system aetavioral model that spec-
ifies how each component behaves [19]. In CAPRI, failure ddpecy graphs correspond
to structural models and pieces of dependency knowledgesqmynd to behavioral models.
De Kleer and Williams developed the GDE and Sherlock algor for online model-
based fault diagnosis [21, 22]. De Kleer and Raiman deserim@dification of the Sher-
lock diagnosis algorithm to take into account the compateti costs of diagnosis [20].
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GDE-based algorithms for fault diagnosis model depen@sramong components deter-
ministically, however, whereas the Bayesian approach is€APRI can also model prob-
abilistic dependencies.

Diagnosis in the Internet differs from typical model-baskalgnosis in several key re-
spects. Typically in model-based diagnosis, the inputirequor diagnosis is a structural
model describing the components in the system and a bebawadel describing com-
ponent behavior, component status, and observationshamaltput is a hypothesis about
component status that explains the failure [30]. Most disgie systems assume no design
error, assuming that the structural model accurately dsssrall the conditions required
for correct operation. In Internet-scale diagnosis, havean agent cannot assume that its
model is complete or correct since each agent only has alilmiew of the entire network.
A CAPRI agent may repeatedly update its failure dependerepigbased on dependency
knowledge and observations it receives from other agents.

Darwiche describes a method for model-based diagnosiditieetly compute a di-
agnosis based on a system structure that describes themslaps between components
in terms of an acyclic AND/OR graph [18]. Darwiche assumes the agent performing
the diagnosis knows the full and correct system structuheghvis not the case in Internet
fault diagnosis. Katker describes a framework for modetisterministic dependencies in
a distributed system, taking into account “virtual depeaies” [54].

Other researchers have proposed methods for distribuétaifagnosis based on model-
based diagnosis. Kurien et al. describe how distributegrdiais can be viewed as a dis-
tributed constraint satisfaction problem in which diagerssrepresent observations and
component models using logic [53]. Debouk et al. present thoaefor distributed fault
diagnosis in which a single coordinator combines diagoeasfiormation from multiple
diagnosers [75]. One key difference between CAPRI and thes@ous approaches is
that agents in CAPRI can share probabilistic dependencwlatye and construct failure
dependency graphs dynamically from such knowledge.

2.4.6 Case-based reasoning

Another approach to fault diagnosis is case-based reag¢8BR), in which a case-based
reasoner compares a diagnostic request to previous diagmeguests stored in a case
base and produces a diagnostic response based on simgar ¢agontrast to rule-based
systems that infer a diagnosis based on a set of rules, a CBBnsycan learn from ex-
perience, diagnose novel problems, and deal with changinditons. Some drawbacks
of CBR systems are that they require a method for retrievinglar cases and need ex-
ternal feedback to learn whether or not a diagnostic regpeatisfied the request. Lewis
describes a system for diagnosing network faults basedobl tickets using case-based
reasoning [60].

Feret and Glasgow propose Experience Aided Diagnosis (EABiXh combines model-
based diagnosis with case-based reasoning to help hunsgreogde faults when the struc-
tural model is incomplete or inaccurate [31]. The strudtaradel is decomposed and then
model-based diagnosis is applied to each piece. Then abeaset reasoner suggests al-
ternative diagnoses to the operator. The goal is to use e leased reasoner to provide
a human diagnoser with alternative diagnoses when an aydmadel-based approach is
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inadequate. CAPRI supports similar hybrid reasoning; tagribsis of portions of the full
structural model can be done independently in a distribfaskion, and then an agent can
combine this data or select a diagnosis according to a diffenethod, such as case-based
reasoning. Also, the ability of agents in CAPRI to answegdustic requests based on pre-
vious diagnostic information received from other agentsswme similarities to case-based
reasoning. Unlike Feret and Glasgow’s system which is desigo assist human diagno-
sis, however, CAPRI is meant to be automated from the momeet@est is generated
until a response is returned.

2.4.7 Fault detection

This thesis focuses primarily on the problem of fault diagjapor determining the cause
of failure once a failure has occurred. A related area ofaedeis fault detection, or
predicting when a failure will occur. Hood and Ji show how oaa use a Bayesian network
to model the behavior of network components to infer thegmes of abnormal behavior
that may lead to a failure [41]. Pinpoint detects and diagedailures in web services
by monitoring and logging the progress of each web requdst [like CAPRI, Pinpoint
can learn a probabilistic failure dependency model. Cohliexl. @ise probabilistic models
to predict whether a network failure will occur based on drigtal metrics such as CPU
usage and disk and network activity [13]. These systems comgider the detection and
diagnosis of failures within a single domain, however, anddt consider the problem of
distributed diagnosis of Internet failures.

2.4.8 Event correlation

Event correlation refers to the challenge of determiningthiler multiple alarm events are
related to the same root cause. This is closely related t@lalgm in fault diagnosis in
which a diagnostic agent wishes to determine whether aesiragit cause is responsible
for multiple failures so it can respond to multiple diagnosequests with the same diag-
nosis. Yemini et al. propose a language for specifying detastic dependencies among
components and alarms and propose a method for identifgihgés based on the alarms
generated [97]. Wu et al. propose a system for specifyingsrtdr correlating alarms [95].
Liu et al. examine sequences of events to infer the podyibiiia failure [37]. Klinger et al.
show how to represent the effects of a failure as a code, ardrttatching the symptoms
of a failure to a code [49]. Hasan and Sugla model causal anpddeal correlations among
alarms using a deterministic dependency model [40]. Chial. @lescribe a system for
learning probabilistic correlations among alarms in aliedtnetwork and use this informa-
tion to diagnose failures [10], but consider only a bipartitodel of network components.
Unlike previous research in event correlation, agents irPRAdescribe component de-
pendencies in a more general way using probabilistic maatedsperform diagnosis using
probabilistic inference.
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Chapter 3

Overview of Fault Diagnosis in CAPRI

The purpose of the CAPRI architecture is to enable distthtiagnosis among hetero-
geneous diagnostic agents in a general and extensible wisgy @daling with incomplete

information and managing cost. This chapter more precidefines fault diagnosis, di-
agnostic agents, probabilistic diagnosis, the elementsefCAPRI architecture, and the
scalability challenges it addresses.

3.1 Network failures

People use the term “network failure” to refer to a wide raofyghenomena, including bugs
in network applications, server misconfigurations, seddirgks, and network congestion.
Since CAPRI is a general architecture for fault diagnosas thust handle a wide range of
failures, this thesis broadly defines a network failure asragived component malfunction.
This thesis uses the term “component” not as it is commonggus network systems to
refer to physical devices, but rather in the abstract sessd in model-based diagnosis
and dependency modeling. | define a component as any procdssioe that provides a
resource or function and whose behavior can be observed adeled. For example, a
network switch is a component that provides network conwmiégcbetween the hosts that
plug into it. Thus if a network administrator discovers thawitch has failed, then that is
considered a network failure. Components also includegeses such as TCP connections,
which may fail due to the failure of other components suchedg/ark switches.

Note that | define a network failure asp&rceivedcomponent failure. The purpose
of CAPRI is not to discover and diagnose all possible netwaillires, but rather to only
diagnose failures that users or administrators notice. example, if a user disconnects
their computer from the network, it prevents them from cartimg to millions of other
hosts on the Internet. Rather than attempting to detect aghdse all of these possible
failures, agents in CAPRI only attempt to diagnose failubed users actually perceive,
such as a user’s inability to retrieve email from a POP servéris greatly reduces the
number of possible failures that agents must diagnose vemaring that the network
failures agents diagnose correspond to actual user pertpioblems.

A perceived component failure is not always due to an actoiponent failure, how-
ever. A perceived component failure means that the usertaronk administrator perceiv-
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ing the failure believes that the component is not behavinthé way that they expect.
There are two possible reasons for this: either the compdresnactually malfunctioned,
or the component is functioning correctly but the obseraepirectly perceived it to have
failed. A diagnostic agent can model this situation by repreing the true status of the
component as a hidden variable while treating a failure ntep® a piece of evidence that
can provide information about the true status of the compbne

The line between functioning and malfunctioning is not alsvelear, however. Clearly
a TCP connection with a 100% loss rate is malfunctioningj9ats% loss rate functional?
We may choose to model the degree of failure using some swalaector metric, but the
most appropriate metric to use to measure component pesfazenmay depend on the
type of component. Furthermore, reasoning about the sffgfctiifferent degrees of per-
formance failure on other components is difficult, so thiessik only distinguishes between
two possible component stat€¥ andFAI L. Though the distinction between functioning
and malfunctioning is not always clear, the point at whicarsgg make this distinction is not
essential to this thesis. All agents must agree on the mgarii@K andFAI L, but CAPRI
does not require all diagnostic agents to agree on the sibausy individual component. If
desired, one may construct an agent that can distinguish@more status values between
K andFAI L, but in this thesis | only consider the two state case.

This thesis focuses on fault diagnosis and not fault detectihe purpose of CAPRI
is to diagnose a failure once a user has noticed it, and natetatify and report failures
when they occur. There are two reasons for choosing thisoagpr Firstly, in a fault
detection system there is no easy way for agents to detemthinegh faults are important
enough to report and which do not affect a user, so a faulctieteapproach may result
in unnecessary processing and generate unnecessaryatmifsc Diagnosis only in re-
sponse to user requests ensures that agents only diagmnidtsetiat end users notice and
deem severe enough to request a diagnosis. Secondlyefdidtection requires an agent
to constantly monitor a network component while diagnosily meeds to determine the
status of a component in response to a request for diagiesiorming diagnosis only on
request reduces the communication and processing cosaghalsis.

CAPRI can support the diagnosis of failures in a wide rangeetivork components,
but as a starting point in my thesis | will focus primarily dretdiagnosis of reachability
failures for end users. This thesis focuses on “hard” netweachability failures in which
a user wants to access a particular network resource suchHJ&d ar a hostname and
port number (e.g. a mail server or a web page), but is unabte tso, either because a
component has failed or due to a misconfiguration. Some ebempfailures include, but
are not limited to:

1. Local misconfiguration. The user’s network configurai®imcorrect. For instance,
they are using the wrong DNS servers or have their gatewayriectly defined.

2. Link failure. The user cannot reach their ISP.

3. Routing failure. Their ISP or some other region in the iné cannot route the user’s
packets to the next hop towards their destination.

4. DNS server unreachable.
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5. DNS information incorrect. The DNS entry may be out of date
6. Destination host unreachable. The destination hostisido

7. Destination port unreachable. The destination hostashable, but the desired port
is closed.

8. Destination application unavailable. The destinatiosttand port are reachable, but
the desired service is not available. For example, the HEFAes on the destination
server is not responding to HTTP requests.

All of these failures can be represented as the failure obhaaerk component and possibly
some of its dependent components.

3.2 Fault diagnosis

This section defines distributdault diagnosisn the CAPRI architecture. Abstractly, fault
diagnosis is a process that takes as input a descriptioradtiagf from a diagnosis requester
and produces as output a description of the most likely catigglure. Unlike domain-
specific diagnosis systems that assume a fixed set of possibges of failure, however,
in CAPRI the set of possible causes of failure may vary fohediagnosis and must be
determined dynamically to support new diagnostic knowéedgd agents with different
capabilities. Keep in mind that the purpose of requestigaibsis in the first place is to
help the requester decide on a repair action. Thereforeutpuibof diagnosis should be in
terms of the possible repair actions that the requesteratan As different requesters may
have different repair capabilities (e.g. a network adnirater may more available repair
actions than an end user), different requesters may wishdoest diagnosis in terms of
different sets of candidate explanations. For exampleped&y user may wish to request
diagnosis of web connectivity failures in terms of user r@twvconnectivity, ISP status,
and destination server status; and not in terms of routefigunation files and web server
processes. On the other hand, network administrators @r @perts should be able to
request and access more detailed information. In addigiach diagnostic agent may have
the ability to distinguish among a different set of possitdeses. New, more sophisticated
diagnostic agents may have the ability to distinguish ammatg possible causes of failure
than previous agents. For example, one diagnostic ageiht mindy have the ability to de-
termine whether or not a failure was caused by a local netwosiconfiguration. Another
agent might provide a response indicating precisely whif is responsible for a failure.

Therefore for extensibility to support new diagnostic agemith new diagnostic capa-
bilities and to accommodate requesters with differentireguents for diagnosis, in CAPRI
the set of possible explanations for a failure is determitygaamically and may vary for
each request. In CAPRI, each diagnosis provider specifeeseh of explanations that it
can distinguish among in its service description (see Ghidpt and a diagnosis requester
specifies which of the candidate explanations it wishesdtrajuish among.

More precisely, in CAPRI a diagnosis requires as input a aomept perceived to have
failed (e.g. an HTTP connection) and a set of candidate eafitans for its failure (e.g. the
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web server is down, the user’s network connection has failelDNS lookup failed, or a
failure occurred in some other part of the network). The attf diagnosis specifies the
likelihood of each of the candidate explanations and idiestthe most likely explanation.
In addition, in order to help the requester better undedsteow much evidence went into
the diagnosis, an agent may optionally provide additiorenvations and beliefs that
describe the evidence used to produce the diagnosis.

Diagnosis may involve communication among multiple diagiimagents, each of which
may contribute some information useful for diagnosis. Thecpss of diagnosis begins
with an initial diagnostic request generated by a user diagia agent on behalf of a user.
The initial diagnostic request identifies the component Was observed to have failed,
supplies a set of candidate explanations for the failurd, @mntains a component graph
describing a set of observations the user agent has abofatlime. When a user diagnos-
tic agent first begins the process of diagnosis, it may hauelitde information about the
failure and can only provide a low accuracy diagnosis. Ingioeess of diagnosis, agents
in CAPRI gradually improve the accuracy of their diagnosigbrforming local diagnostic
tests and recursively requesting diagnostic informatromfother diagnostic agents until
either its confidence in its diagnosis exceeds a certairsitiotd, the cost of diagnosis ex-
ceeds the allowed budget, or the time of diagnosis exceeegaration time. Each time an
agent requests information from another agent, both theesitng and responding agents
exchange diagnostic information. As diagnostic agentaractate diagnostic information,
the accuracy of their diagnosis improves.

Note that since each agent may have different methods fgndg&ng failures, CAPRI
supports many different patterns of diagnosis. For exangaseries of agents might simply
hand off a diagnostic request to the next diagnostic agetiitame of them has the ability
to diagnose it. Alternatively, a series of agents may eachthéir own observations to a
failure story and pass it on to yet another agent to diagn@en agent might receive a
diagnostic request and then choose one of several agenk®ta  pass it on to depending
on the type of request. Another possibility is for an agenfirgi request additional data
from another agent, and then forward the request on to anathent based on the data
it receives. There are an endless number of possibilitigstie general pattern remains
the same: when an agent receives a diagnostic request, iepaatedly perform perform
local tests or diagnosis and recursively request data aghdsis from other agents before
producing a response. Chapter 7 describes this proceduneria detail.

3.3 Diagnostic agents

Fault diagnosis in CAPRI is performed by distributed diagfitoagents. Diagnostic agents
perform diagnostic tests and communicate with other agantsehalf of a user or network
administrator to collect diagnostic information and pemniadiagnostic reasoning. The pur-
pose of CAPRI is to support the communication of diagnosticrmation among hetero-
geneous diagnostic agents. Unlike previous systems forldised fault diagnosis such as
Planetseer [98] that assume all diagnostic agents are tegeog the same administrator
and know of the existence of all other agents, CAPRI agenisdiféer in terms of their
operators, diagnosis and data collection capabilitiestion in the network, technologies

32



they use, information and knowledge they possess, and iwdlyethey are implemented.
Diagnostic agents may be operated by ISPs, network admatoss, organizations, users,
or any other entity that wishes to request or provide diagoasformation. For resilience
to network failures, a diagnostic agent might reside in &ed#nt part of the network than
the components that it can diagnose. Such decoupling ofaddisction from diagnostic
inference resembles the layered design of the 4D archredtu network management
and control [35]. For resilience to DNS failures, diagnostgents are identified by an IP
address and port number.

Diagnostic agents may have a range of diagnostic capabilithgents may generate
diagnostic requests on behalf of a user, produce obsengatibdiagnostic tests, provide
probabilistic information about the status and propeiegrious components, supply de-
pendency knowledge to diagnose certain classes of commemggregate observations
to produce new information. Each agent may have a differenbtcapabilities due to
resources it possesses, its location in the network, oiagechnology. For example, only
diagnostic agents residing within a particular AS can penftraceroutes that originate in
that AS. For policy reasons, each agent may also have adtitfeet of neighboring agents
with which it may communicate. For example, an ISP might mte\a diagnostic agent
that only answers requests from customers of that ISP.

The heterogeneity of diagnostic agents has several intlitafor a protocol for diag-
nostic agent communication:

1. All agents must agree on a commsgrvice description languader describing di-
agnostic capabilities, including the inputs an agent neguand the outputs an agent
produces so that other agents can make use of the diagndstimation it produces.

2. Multiple agents may have the capability to diagnose tineeseomponent in differ-
ent ways and return different results. Therefore agents idestify the source of
information in their messages to enable the resolution oflming messages and to
identify duplicate data.

3. Agents must be able to perform recursive diagnosis. Whegant does not have the
knowledge or capability to diagnose a failure, recursiagdosis enables an agent to
dispatch requests to other agents or to compose diagnoftraiation from multiple
other agents.

4. For extensibility to support new classes of informat@gents must be able to accept
and communicate information about component classes apegies for which they
do not have any dependency knowledge. Even if an agent dbesderstand a piece
of data, it can pass on that data to another agent that doesstiad how to use it.

5. Agents should have control over how much information tfesseal to other agents
and are not required to reveal all information that they hadgents may choose to
reveal certain information only to authorized requesters.

Though CAPRI does not restrict the set of capabilities eggmghas, it is convenient
to classify diagnostic agents into five types based on th&sr
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1. User agentsthat interface with users so that users can make diagnajigests
and receive diagnostic responses. User agents requesibadtinformation from
regional agents to perform distributed diagnosis.

2. Local agentsthat perform diagnostic tests and make observations abpartizular
device or host. Frequently certain observations and test®nly be performed by a
local agent residing in a particular location. A local ageraty have access to infor-
mation not available elsewhere, such as server logs oragtjgn error messages.

3. Regional agentghat aggregate requests from multiple other user agentgormal
agents. A single regional agent is responsible for handliagnostic requests from a
set of local agents or other regional agents. For examplk&Rimight deploy a set of
regional agents to diagnose failures for its customersidRafagents have little or
no specialized information on their own. Instead, they esjadditional information
from specialist agents when necessary. As new speciakstiadpecome available,
regional agents automatically discover and take advarghtfeir capabilities using
the procedure for diagnosis described in Chapter 7. Rebamgents also act as dis-
patchers, deciding which agent to contact next to answeguest and where to send
notifications of diagnostic information. Regional agentsagly reduce the probing
and communication costs of diagnosis by aggregating meksimilar requests using
the procedure described in Chapter 7.

4. Specialist agentghat have specialized information or techniques for diagnd-or
example, a server history specialist agent might collenheation history data from
users who attempt to connect to a particular server and us@tbrmation to infer
the status of the server. A DNS specialist agent might be @blerify whether a
particular DNS server is functioning properly or not. Sgdist agents might collect
data from local agents or other agents.

5. Knowledge agentghat provide probabilistic dependency knowledge. Certygies
of dependency knowledge may be well known and unchangirdy as the deter-
ministic dependence of HTTP connection status on the stditiis associated local
network, DNS lookup, destination web server, and IP rout@ther types of knowl-
edge may change more frequently and can be learned from pastwations. For
example, a learning knowledge agent might periodicallyeoblinformation about
past diagnoses from many regional and specialist agentteandthe probabilistic
dependencies among properties of various classes of canorKnowledge agents
provide dependency knowledge to other agents.

These divisions are not always clear-cut; each of thesestgpagents may have multiple
diagnostic capabilities. For example, a regional agent alsxy be able to perform certain
specialized tests. A specialist agent may act as a regigealt #or a set of more specialized
agents. A user agent may also act as a local agent for thes esenputer.
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3.4 Architectural overview

A common architecture for fault diagnosis must specify ap$e¢presentations, protocols,
and procedures so that heterogeneous diagnostic agerts@aerate to diagnose failures.
An architecture for distributed fault diagnosis must ird#the following four elements: a
common, extensible representation for diagnostic infdioma a protocol for advertising
and retrieving information about the diagnostic capabsitagents can provide; a protocol
for communicating observations, beliefs, and knowledgevben agents; and a procedure
for agents to perform diagnostic actions for diagnosintufas in a probabilistic manner.
This section provides a high-level overview of the partsief CAPRI architecture. The
next several chapters examine each of these parts in mait det

Figure 3-1 illustrates how diagnostic agents process mé#&bion. An agent obtains
component class and property definitions from a distribet@dponent ontology. Though
CAPRI provides a framework for defining and communicatingrdgons of component
classes and their properties, defining all known networkpament classes and properties
is out of the scope of this thesis. An agent obtains serviserg#ions of the capabilities of
other agents from a service directory. This thesis assuroestealized directory server. For
additional robustness and scalability, one may considetementing a more distributed
directory service, but the design and implementation offirectory service is not the main
focus of this thesis. An agent then combines diagnostiamé&bion from other agents and
local diagnostic tests into a component graph and then mesfearious actions to produce
new diagnostic information. An agent may send this new diaga information to other
agents or store it for future use.

Component CAPRI
Class & Property Service
Definitions Descriptions

\ /

4 N

Diagnostic Agent

Component
Information Base
Component
Graph

Failure
Dependency
Graph

Diag Info Diag Info

Diag Info | —— — | Diag Info

Diag Info Diag Info
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Figure 3-1: A diagnostic agent combines diagnostic infaromafrom multiple sources
to produce new information using component and propertgsctiefinitions and CAPRI
service advertisements.

CAPRI provides diagnostic agents with a common set of remtasions, protocols, and
procedures for fault diagnosis. These include a representtor diagnostic information,
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a service description language, a protocol for commumgadiagnostic information, and
a dynamic procedure for processing diagnostic information

The first element of an architecture for distributed fauétghiosis is a common, exten-
sible representation for diagnostic information. Everufio many systems for performing
diagnostic tests and collecting diagnostic informatiorsietoday, no common language
exists for communication of such information. A common ex@ntation for diagnostic
information gives agents in different parts of the networkhvdifferent capabilities and
knowledge of different network components the ability t@rghdiagnostic observations,
beliefs and knowledge. Let us consider what types of diaggnmogormation agents might
wish to communicate with other agents. Firstly, they neebdde@ble to expressbserva-
tionsandprobabilistic beliefsabout component properties, such as the results of diagnost
tests or average loss rate of a link over the past hour. Theeyraded the ability to express
relationshipsamong components, such as the fact that a TCP connecti@rdesva par-
ticular IP link, or that an HTTP connection relied on a par& DNS lookup result. In
addition, agents must agree oomponent class and property definitianorder to com-
municate information about component individuals andrtpebdperties. If an agent has
knowledge about a new class of component or a new propertycofrgonent useful for
diagnosis, it needs a way to describe that new componentopepy to other agents so
that they can use that information for diagnosis. Also, &gemay learrprobabilistic de-
pendency knowledgdout components; they must be able to express such demaeslgn
they change or if new component classes and diagnostidtestsne available. For exam-
ple, the average probability of TCP connection failure kewhosts in two different ASes
in the Internet might change significantly from hour to hosinatwork conditions change.
In addition, to help an agent decide whether to keep or discédormation it receives, each
piece of diagnostic information must camyetadatato indicate who collected the data,
when it was collected, and the evidence from which the infiram was derived. To ad-
dress all of these challenges, CAPRI defines a common laedoagiescribing network
components, diagnostic tests, and diagnostic informatiam extensible manner. Chapter
4 describes this language in more detail.

The second element is a language for agents to describelthgirostic capabilities in
terms ofdiagnostic servicethey offer. Since each agent may have different capalslitie
and new agents may join the system, agents need a way toloetueir capabilities and
understand the diagnostic capabilities of other agentso,Aéach agent may require a
different set of inputs in order to produce information. Egample, one agent may be able
to provide a belief about the probability of a web serveruegl given only its hostname,
while another requires the web server’s IP address. Therefgents need a way to specify
both the inputs and outputs of their diagnostic servicehabdther agents can determine
which services they can use. Chapter 5 describes this settegcription language.

The third element of an architecture for fault diagnosissaocol for communicating
diagnostic information while managing cost. Such a comication protocol must enable
agents to request diagnostic information and respond toetq. Because every failure
may involve a different set of network components, agentdree way to dynamically
construct a&component grapfrom information about components collected from multiple
sources, and then to constructaslure dependency graptom this component graph to
make inferences and decide what actions to perform. In daleranage both the prob-
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ing and communication costs of diagnosis, a protocol folt i@agnosis must also enable
agents to make tradeoffs in both the accuracy and cost ohdgsg} Chapter 6 examines
these issues in more detail.

The fourth element of an architecture for fault diagnosia grocedure for agents to
select and perform actions for probabilistic diagnosisc&ese an agent may receive pos-
sibly conflicting diagnostic information from multiple smes, agents in CAPRI need a
procedure for managing the information they receive andgugiis information for diag-
nosis. To address this challenge, CAPRI provides agenksangrocedure for constructing
acomponent grapnddependency knowledge basemanage observations, beliefs, and
knowledge received from other agents. An agent uses itsndigpey knowledge base to
manage conditional probability tables and dependency taddeclasses of components
that it knows and that it receives from other agents. An agees its component graph
to keep track of observations, beliefs, and likelihoodséates and receives from other
agents, and caches information from its component graplcamgonent information base
for future use to manage cost. Chapter 7 describes how ajyeidisthese data structures
from the diagnostic information they exchange and thenhesse structures to perform dis-
tributed probabilistic inference. The procedure for diagjs in CAPRI is general enough
to support many different communication patterns and erfee methods, including both
centralized techniques as well as more distributed patench as belief propagation. In
addition, | show how this procedure allows agents to managesaising caching, evidence
propagation, aggregation of requests, and confidencehibicks

3.5 Scalability

A major strength of the CAPRI architecture is that it suppante addition of new agents,
new services and new dependency knowledge. In order fotageaffectively take advan-
tage of new services and knowledge, however, the archieectuist scale as the number
of agents and knowledge in the system increases. The CARRitesture addresses three
types of scalability challenges: scalability to supportmdiagnostic requests, scalability
to support a large number of available diagnostic servieed,scalability to support a large
amount of dependency knowledge.

The first type of scalability is the ability to support a langember of diagnostic re-
quests. CAPRI addresses this challenge in several wayst, EIAPRI allows agents to
cache information to reduce the cost of diagnosing manyairfailures. Secondly, agents
can use input restrictions to limit the requests they rexaind distribute requests across
multiple agents. Another technique that can reduce theafasagnosing multiple similar
failures is evidence propagation. An agent that has evieleaseful for diagnosing a failure
may propagate that evidence to other agents that it belreagdenefit from that evidence.
Chapter 7 describes these procedures in more detail.

Second is scalability in terms of available services. Asribenber of services that
agents can choose from increases, it becomes more costiyrtpute the value of all ser-
vices and choose among them. Agents in CAPRI address thisligsaggregating multiple
specialist services together into a more general servié€R service descriptions enable
agents to achieve such aggregation of services using bpti iastrictions and requester
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restrictions. Aggregation of services reduces the numbether agents and services that
each agent needs to know for diagnosis. Such aggregatiembdss the way Border Gate-
way Protocol (BGP) routers hide the complexity of multippeites by aggregating smaller
prefixes into larger prefixes. See Chapter 5 for more dethibsiaservice descriptions.

A third issue is scalability in terms of dependency knowlkedgd failure dependency
graphs. Additional dependency knowledge and more compliéxré dependency graphs
can improve diagnostic accuracy, but at the cost of additioaomputation to perform in-
ference. Agents in CAPRI manage such costs by decompospendencies into condi-
tionally independent parts and exchanging informationgisielief propagation so that no
single agent needs to know all dependencies. For examplagem responsible for the
diagnosis of network failures within ISRdoes not need to know the dependencies among
components within ISB. Similarly, an agent that diagnoses web server status does n
need dependency knowledge for diagnosing DNS servers. iEnarthical organization
of the Internet simplifies the decomposition of componenpprties into conditionally in-
dependent parts. See Section 4.2.4 for a discussion of hemtsagan scalably represent
dependency knowledge.

3.6 Probabilistic inference

In order to manage costs and deal with incomplete informadiod noisy measurements,
agents in CAPRI diagnose failures using a probabilisticaagh. Agents can exchange
probabilistic beliefs and likelihoods about componentd perform inference according
to probabilistic dependency knowledge. Agents constrradvgbilistic failure dependency
graphs and can perform distributed diagnosis accordingdbabilistic belief propagation.

Probabilistic inference using Bayesian networks has s¢aelvantages over determin-
istic dependency analysis approaches. The condition@pieadence assumptions of a
Bayesian network facilitate distributed reasoning. Foaregle, an agent can infer that
an IP path has failed if that agent has evidence that a limgatloat path has failed without
knowing the cause of the link failure. This structure miraes the number of other agents
with which an agent needs to communicate to infer a diagndsigs each agent can main-
tain only a local dependency model and request additiortal flam a small set of other
agents when required.

Probabilistic inference can greatly reduce the number afjuiostic tests required to
infer the root cause of a failure compared to deterministabpg methods such as Plan-
etseer [98]. When high-impact failures occur and an agergives many failure requests
with the same root cause, Bayesian inference enables ahtagafer the root cause with
high probability without additional tests [57]. When an agdoes not have enough in-
formation for diagnosis, an agent can determine which tegdtgrovide the maximum
amount of diagnostic information and perform only thosést¢g6].

Probabilistic inference also enables agents to providgmdisis even when they cannot
obtain accurate data due to failures or lack of informatiBor example, if the agent re-
sponsible for diagnosing IP connectivity failures in areniet autonomous system (A%)
is unreachable, another agent can still infer the most fnebaxplanation for a failure in
AS X based on historical IP link failure probabilities.
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Another important advantage of probabilistic inferencexgensibility to take into ac-
count new dependency knowledge and evidence from new dstigriests. If a researcher
develops a new diagnostic test that can provide evidencet @bfailure and provides de-
pendency knowledge for the new test, other agents can iocatgpthis new knowledge and
evidence to more accurately diagnose failures.
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Chapter 4

Representation of Diagnostic
Information

The first challenge of distributed Internet fault diagndsasidress in this thesis is the ex-
tensible representation of diagnostic information abattwoerk components and diagnos-
tic tests. CAPRI differs from other architectures for fadlagnosis in that it provides
extensibility to support new diagnostic tests and new tygfeimformation. Most previ-
ous architectures for distributed fault diagnosis onlymarpa limited range of diagnostic
tests. For example, Planetseer only supports diagnosig trsiceroute results [98]. Even
in more general architectures such as those proposed berTdradl Ravishankar [89] and
Bouloutas, et al. [2], agents cannot share new diagnostiwladge about components and
dependencies. The ability to share such knowledge in amgikie manner is essential due
to the continually changing nature of fault diagnosis in litiernet. In the Internet, new
devices and applications may appear and researchers melpg&ew diagnostic tests and
methods for diagnostic inference. Agents must be able tonwanncate information about
novel components or new methods for fault diagnosis thagradigents do not yet under-
stand. The challenge is to develop an extensible archreettat allows agents to take into
account these changes and new information.

The choice of representation for diagnostic informatiol€iPRI is driven by several
requirements. Firstly, it must be extensible to supportdéscription of diagnostic infor-
mation derived from new diagnostic tests about new networkponents. To address the
challenge of extensible representation of diagnosticrméiion, CAPRI provides agents
with a component ontology language for defining new claséesrmponents and tests and
their properties to create an extensible, distribudechponent ontologyThis ontology en-
ables agents to retrieve new class definitions for classesmaponents and tests that they
do not yet know about.

Secondly, it must support distributed diagnosis using abilistic inference. Proba-
bilistic inference requires the ability for agents to exggd®oth probabilistic dependencies
among variables and evidence about such variables. Tosslihie challenge, CAPRI pro-
vides agents with common representations for diagnostinmation about components
and tests defined in the component ontology. CAPRI agentesxgvidence about com-
ponents and properties in termsaifservation®f descriptive propertiesAgents express
dependencies among components and properties using atbsesofrelationship proper-
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tiescombined withprobabilistic dependency knowleddeAPRI separates the observation
of relationship properties from probabilistic dependeknpwledge to decouple the tasks
of making observations and learning dependency knowledge.

Thirdly, CAPRI must support efficient diagnosis when obaéons of evidence and
dependency knowledge are distributed among multiple agéit address this challenge,
agents can communicate probabilidheliefsand likelihoodswithout revealing the evi-
dence and dependency knowledge used to produce thosestalokfikelihoods in order to
perform belief propagation for distributed inference.

Though previous researchers have developed languagegsteds for describing var-
ious observations about network components [73, 93], systess are not designed for
diagnostic inference. Other researchers have developtdbdiied reasoning systems for
making inferences using data collected from different sesif{17], but do not consider
how to define new classes of diagnostic information. Theasgmtation described in this
chapter differs from these previous systems in that it botkbées the definition of new
component classes and properties as well as providing asrfeaagents to incorporate
new information about components and diagnostic testsaigndise failures.

4.1 Representing components and diagnostic tests

CAPRI must provide agents with the ability to represent aachmunicate information
about network components while providing extensibilitg&scribe new classes of network
components. Network components include both physicab@s\such as Ethernet switches
as well as abstract processes such as HTTP connectionse Toagponents may have
various properties, ranging from identifying propertiegls as hardware MAC addresses
and URIs, to component relationship properties such as #teserver corresponding to
a particular HTTP connection. An effective representattbmetwork components must
enable agents to express all of these types of propertigsasohiey can form an accurate
model of network components for fault diagnosis. To provadeommon language for
agents to describe network components, CAPRI initiallyates agents with a set of a
common component class and property definitions while @mglaigents to define new
classes of components in the future.

A component can be abstractly described in terms ofcdhssit belongs to and its
properties A component clasgefers to an abstract category of components (e.g. web
browsers), while @omponent individualefers to a particular concrete instance of a class
(e.g. the Firefox web browser running on your computer). iirty, a diagnostic test class
is a type of diagnostic procedure that produces an observattxamples of diagnostic
test classes includeing Test DNS Lookup TestandIP Routing Test CAPRI treats di-
agnostic test classes similarly to component classes. &@uoiponent and diagnostic test
individual can havepropertiesassociated with it. Properties of a component may include
details such as the version number of a web browser; statistich as the number of failed
HTTP connections in the past hour; and relationships thepoorant may have with other
components, such as the host machine on which the browspeiating.

CAPRI provides diagnostic agents with an ontology languageéefining component
and diagnostic test classes and properties. Though exstitology languages such as the

42



Web Ontology Language (OWL) [23] provide many useful feasuior defining objects and
properties, agents in CAPRI only need a subset of theserésatiniperform fault diagnosis.
Some of the capabilities that OWL provides include the abilb define properties that
can have more than one value and the ability to define traagmioperties to allow the
computation of transitive closure. Such capabilities,levbonceivably useful under certain
situations, are unnecessary in most cases and would gneathase the complexity of the
representation of diagnostic information and diagnostasoning. Therefore as a starting
point, in this thesis | choose a simpler custom represeamtdtir diagnostic information. If
the additional features of an ontology language such as Oifoaind to be useful, they
may be added in future work.

An agent in CAPRI describes diagnostic information abouhponents using aom-
ponent graphFigure 4-1 illustrates a component graph describing a @mapt individual
of the HTTP Connectiorcomponent class. Boxes indicate component individuak- It
icized text indicate component class names. Underlinedinelicate identifying proper-
ties. For instance, adTTP Componens identified by its destination host and connection
time. AnHTTP Componerdlso has a number of descriptive properties depicted irtkigle
box, includingsr cl P, st at us, andel apsedTi me. Each of these properties may have a
deterministic or probabilistic value associated with it dddition, anHTTP Component
has a number of relationship properties indicated as dditted that refer to other com-
ponent individuals. Thi$iTTP Connectioss relationship properties includeocal Net ,
htt pServer, dnsLookup, andi pRout i ng. Note that a component relationship property
can refer both to components whose identity is known, su¢hedsocal Networkcompo-
nent in the figure, as well as components with unknown idgrgiich as th&iTTP Server
component. Chapter 7 describes in more detail how agentsadiainformation about
components whose identity is unknown. | describe the casadcomponent classes and
properties in more detail later in this chapter.

. localNet
HTTP Connection ~ esesesasasasananas » Local Network

iQAddr: 18. 26. 0. 100

destHost: www. exanpl e. com httoServer

connTime: 1172181867190 p ........... » HTTP Server

srclP: 18. 26. 0. 100

status: {OK: 92%, FAI L: 8%} dnsLooku

elapsedTime: 438 ~ fesssseseeaans [.)...p DNS Lookup
hostname: www. exanpl e. com

ipRoutin .
p ........ g ..... » |IP Routing

Figure 4-1: AnHTTP Connectiowomponent identified by destination host and connection
time has both descriptive properties suctsasl P as well as relationship properties such
asdnsLookup.

Unlike domain-specific diagnosis systems that have builtAiderstanding of the mean-
ing of various types of components and tests, for exterigilid support new diagnostic

43



tests CAPRI requires the explicit definition of every comgoinclass and property that
agents communicate. In CAPRI, each component class, pyppad diagnostic test class
has a corresponding definition. To allow other agents toadiscnew definitions, the full
name of each class and property is a URI specifying the locatf its definition. For
example, the full name of thdTTP Connectiomomponent is

http://capri.csail.mit.edu/2006/capri/common#HTTBnnection

One may define a new component class or property simply byrgabe definition in
the appropriate location. The complete class and compaiefitition language can be
found in Appendix A.1. In this thesis | may omit the full namecomponent classes and
properties for brevity, but agents always refer to compomtasses and properties using
the full name.

The set of all component class and property definitions c@apracomponent ontol-
ogy. The component ontology provides a common language fortagerdescribe com-
ponents and their properties to other agents, as well asedeéw classes of components.
The component ontology can be distributed because agenliffenent parts of the net-
work may contribute new component class and property defivést In CAPRI, agents
automatically retrieve class and property definitions fritx@ir associated URIs when they
encounter unknown component classes and properties. ppisach is based on the idea
of the Semantic Web [79] in which information can be disttézliacross multiple locations
and automatically retrieved and combined to produce nearmétion. CAPRI provides
an initial core component ontologgt http://capri.csail.mit.edu/2006/capri/core, whiak d
fines concepts essential to fault diagnosis, such as thataefiof component status. In
addition, CAPRI initially provides all agents with theommon component ontology
http://capri.csail.mit.edu/2006/capri/common, whiafides a common set of well-known
component classes and diagnostic tests.

The component ontology is designed to support the desanipti network components
and diagnostic tests for the purpose of probabilistic irfiee. It enables agents to perform
automated reasoning to combine information from multipleeo agents in a distributed
way. Using this ontology, agents can determine whether wvoponents are the same or
not, whether two components share a superclass, and casynfenetric relationships.

To manage such a distributed ontology, agents need a wayefotkack of the classes
and properties they understand and a way to obtain defisimdmew classes and prop-
erties. Each agent maintains a local table of componens elad property definitions it
knows about. Whenever an agent encounters a componenbclaggperty not in its class
and property tables, it looks up the component or propertnii@®n using the URI corre-
sponding to the name of the component or test class. To awoifficts and to distinguish
between different versions of component class and propksfipitions, each version of a
class or property definition must have a different URI. Tlishie same assumption made
in the Semantic Web.

4.1.1 Component classes

Component and diagnostic test classes are named using tJRiswide a mechanism for
agents to retrieve information about new component clas§be URI associated with a
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component class or diagnostic test may or may not be hostel diggnostic agent. |
assume that URIs used to define component and test classesawmnge and are globally
unique. This section describes the information provideal@omponent class or diagnostic
test definition. In this section the term component classrsefo both component and
diagnostic test classes.

One challenge of communicating diagnostic informationagedmining whether two
observations actually refer to the same component. To hadpess this issue, a compo-
nent class definition specifies a setidéntifying properties Two components with the
same class and the same values for each of their identifyioygepties are considered to
be the same component. For example, suppose an agent sezobs@rvations from two
different agents regardirigthernet Carccomponents. ThEthernet Carccomponent class
definition specifies tha?AC Addr ess is its identifying property. If both observations refer
to Ethernet Cardcomponents with the same values for tHddC Addr ess properties, the
agent can infer that the two observations actually refehéostame=thernet Cardndivid-
ual. Note that some classes of components may have multipleifying properties. For
example,IP Routingmay require both a source and destination IP address fotifidan
tion. If a component class does not define any identifyingperties, then an agent might
not be able to determine whether two components of that elesthe same.

For extensibility to support new classes, CAPRI allows $agging where each sub-
class may have a different set of properties and diagnostiwledge. A component class
definition for a component clags may specify a list of component classggor which
C is a subclass dB. For example, aVireless IP Linkclass may be defined as a subclass
of anIP Link class with additional properties such as signal strengthradio frequency.
A component class inherits property definitions from allsitgerclasses. For example, an
individual of classWireless IP Linkhas all the properties of ai Link. All component
classes are subclasses of the b@senponentlass. A component may be a subclass of
multiple other classes. Subclass relationships are tre@sif classC is a subclass of class
B, and clas®8 is a subclass of clags thenC is also a subclass of clags An agent can
infer such relationships based on the component class tiefinin the component ontol-
ogy. Subclassing provides a mechanism for introducing nesses of components and
tests while retaining compatibility with existing diagniocsagents.

Subclassing introduces additional challenges for agentietermine whether two ob-
servations refer to the same component. In addition to chgakhether two components
have the same class and the same values of each identifyipgrpy, an agent also needs to
check for each combination of superclasses of each compamether they have identical
values for each identifying property.

4.1.2 Component properties

Agents make use of component properties in several waystlyian agent can use de-
pendency knowledge about one or more properties of one cg cwnponents to infer the
value of one or more other properties of other components.ekample, an agent might
be able to infer the status of a DNS lookup if it knows the valtithe IP address returned
by the DNS lookup. Secondly, properties can describe melahiips between components,
such as the HTTP client and server of an HTTP request. Suatiaeship properties enable
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agents to combine information about related components fnaltiple sources. Thirdly, an
agent may use component properties for identification pgepoLike component classes,
properties are identified by a URI to allow for extensibilagd to retrieve new property
definitions.

A property may be either a descriptive property or a relagiop property. A descriptive
property describes a characteristic of the component. dihge of a descriptive property is
a text string to simplify parsing. For example, a web servay fmave a descriptive property
i pAddr that specifies its IP address. A relationship property is ikcomponent pointer.
The value of a relationship property is a component indigldu-or example, atiTTP
Connectioncomponent may have a component relationship progertySer ver whose
value is the destination web server component associatbdiva HTTP connection. This
distinction between descriptive and relationship prapsrin CAPRI is similar to the way
in which RDF Schemadistinguishes between datatype properties and objecieptiep,
or how object-oriented programming languages distingbetiveen variables with built-in
types such as integers and variables that point or refetier atbjects.

An agent requires certain information about a property ieotto properly make use
of diagnostic information associated with that propertystly, an agent must be able to
determine whether a property is a descriptive property etaionship property. Addition-
ally, for relationship properties, an agent must be ablesteine the class of component
to which it refers. For descriptive properties for which dagdency knowledge is defined,
an agent also needs to know the range of values it may take ordar to properly per-
form probabilistic inference. Therefore in addition to t@me of the property, a property
definition specifies whether it is a descriptive or relatitpgroperty, and the range of the
property (a class name if it is a relationship property, astdf values if it is a descriptive
property). In addition, for defining property paths it is fideo know of any symmetric
properties that may exist. For example, if comporig theasPat hTest of anAS Path
A, thenAis theasPat h thatB is testing. Thus a property definition may also define such
symmetric properties when they exist.

Many types of descriptive properties exist, including aggte properties, identifying
properties, and metadata properties. A property may be ommce of these types of prop-
erties. An aggregate property is a descriptive propertguwtated from other data and its
value may constantly change. Aggregate properties incitiagstics about a component
such as the number of bytes a web server has sent in the pastritbiine average latency of
an IP link. Identifying properties enable agents to detaewhether two components are
the same. An agent can assume that the value of an identiyomerty for a component
never changes. A metadata property provides informati@ud component not inherent
to the component itself. For example, one type of metadaipepty isadmi ni strat or,
indicating the contact information of the network admirasbdr responsible for proper op-
eration of that component. For the purposes of fault diaign@sl components have a
descriptive propertgt at us, whose value may be eithéK or FAI L.

The semantics of both descriptive and relationship progeere exogenous to the sys-
tem. Diagnostic agents in CAPRI do not need any domain-Bp&oiowledge of the mean-
ing of component classes and properties beyond probabitispendency knowledge, as

http://iwww.w3.org/TR/rdf-schema/
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described in Section 4.2.4. CAPRI assumes that all ageatsctbate observations, be-
liefs, and knowledge about a property agree on the meanirgadi class and property,
though other agents that receive such observations arefdetin perform diagnosis with-
out understanding the meaning of all classes and propeRmsexample, consider a web
server history agent that can observethesecFai | uresToSer ver property of artHTTP
Servercomponent, and a knowledge agent that learns dependenuyddge relating the
consecFai | uresToServer property of anHTTP Servercomponent to itst at us prop-
erty. Both the web server history agent and the knowledgetagast agree on the meaning
of theconsecFai | uresToSer ver property for the observations and the knowledge to be
consistent with one another. A regional agent that receaamsecFai | uresToSer ver
observation from the web server history agent and the gooreding dependency knowl-
edge from the knowledge agent can then infer the status afTieP Servercomponent
without any knowledge of the meaning of thensecFai | uresToSer ver property or the
HTTP Serveclass, however.

Similarly, agents do not need to understand the meaninglatigaship properties to
perform diagnosis as long as all agents that create obgamgabeliefs, and knowledge that
refer to the same relationship property agree on its mean@®PRI does not constrain
the semantics of a relationship property. A relationshigperty simply points to another
component, and may or may not indicate a dependency. For@gapossible relationships
include:

1. verifyDNSLookupTest : A DNS Lookugomponent may havevar i f yDNSLookup-
Test relationship property whose value id/arify DNS Lookup Testomponent test-
ing theDNS Lookupgcomponent.

2. httpConnection: A Firefox Error Testcomponent may have dr t pConnecti on
relationship property whose value is tRE TP Connectiotomponent to which the
test applies.

3. dnsLookup: A HTTP Connectiorcomponent may have @nsLookup relationship
property whose value is thBNS Lookupcomponent describing the DNS lookup
used to determine the IP address of the destination for tHERbnnection.

Agents in CAPRI may set the value of relationship propettigiag local information, the
results of diagnostic tests, and domain-specific knowledige example, an agent might
determine the value of relationship properties using a sawh as X-Trace [32] or the
method described by Bahl et al. [1].

Note that component class and property definitions do notesspthe dependencies
among components; they only specify possible propertiegscamponent relationships.
The dependencies themselves are specified as dependendgd#ge in the form of con-
ditional probability tables (see Section 4.2.4). CAPRIaiques the dependency structure
itself from the definition of component classes to allow tl&rtbution of observations,
beliefs, and dependency knowledge across multiple agé&uaisexample, one agent may
have observations and beliefs about a component but notdependency knowledge for
it, while another agent has dependency knowledge abouttmaponent class but not ob-
servations and beliefs. These two agents can then perfambdited fault diagnosis by
communicating their diagnostic information.
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Another advantage of separating relationships from depecids is that it allows an
agent to choose among multiple pieces of dependency knge/lxt diagnosis. For ex-
ample, an agent may diagnose TCP failures based on depgrkiemeledge about their
source and destination IP addresses, or it may attempt ¢gmols® TCP failures based on
dependency knowledge about the status of the underlyingnk3.l The approach that
CAPRI agents use to represent classes, descriptive pregertlationship properties, and
dependency knowledge resembles probabilistic relatiomalels (PRMs) [33], which also
decouple relationships and dependencies.

For extensibility to support new properties of existingsslas, component class defini-
tions do not specify the set of possible properties a compioofethat class may have, nor
do component properties restrict the components that maygss them. Therefore to add
a new property to an existing class, one only needs to defenedtv property and does not
need to modify the class definition. For example, supposedstovers that the number
of other web pages that link to pages on a particular web s&vaghly correlated with
the probability the web server fails. Bob might then defineea property of web servers
called http://bob.example.com/capri#numLinkingWeb&&agnd host the property defini-
tion on his own web page. He might then create a new diagnaggat that computes
this property given a web server’'s IP address and providesgtbbabilistic dependency
knowledge specifying how to infer the probability of web\sarfailure given evidence
aboutnunLi nki ng\WWebPages. This new specialist agent can then advertise its capailit
to other agents using a service description and providetddnew diagnostic information
for the diagnosis of web servers and other network comparetdated to web servers. See
Section 4.2.4 for more details about how an agent descriepsrtiency knowledge and
Chapter 5 for more details about how an agent can advertiseliagnostic capabilities to
other agents.

4.2 Diagnostic information

CAPRI agents perform fault diagnosis using probabilistference. Abstractly, probabilis-
tic inference requires both a causal model of dependenaes @ variables and evidence
about variables from which to make inferences. In CAPRI,dhesal dependency model
comes from a&omponent grapldescribing the properties and relationships among various
components combined with probabilistiependency knowleddescribing the conditional
probabilities of observing certain property values giviea value of other properties. The
evidence that agents use for inference consistbeérvation®f the properties of network
components and diagnostic test results, probabilstlefsof component property values
given evidence, and probabilistigelihoodsof observing evidence given the value of cer-
tain component properties. Agents produce and commurticase four types of diagnostic
information: observations, beliefs, likelihoods, and eleglency knowledge.

| choose to decompose diagnostic information into thesetjges to distribute the pro-
cesses of observing evidence about component properbssnong relationships among
components, learning dependency knowledge, and infeb@tigfs and likelihoods. This
decomposition enables distributed agents in differertspErthe network to perform each
of the tasks of diagnosis with limited information and thembine the information to pro-
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duce a diagnosis. Some agents can perform diagnostic tesitéain observations. Others
can make inferences from observations using diagnostigvlkatme to form beliefs and
likelihoods. Another agent can learn dependency knowléage observations. Together,
these four types of information allow an agent to infer thegtist of various components
in the network to diagnose a failure. This section descrim®s agents represent each of
these types of diagnostic information. Appendix A.2 pr@gé more detailed specification
of the language agents use to express and communicate aticesv

4.2.1 Metadata

To help agents decide which pieces of data to keep and whidstard, each piece of
information that an agent exchanges also has some assbgiatadata that allows agents
to determine where the data came from, when it was createldhaw it was created. For
example, a simple heuristic for resolving conflicting infation is to prefer more recent
data to older data.

Each piece of diagnostic information provides the follogvmetadata:

1. Anori gi nat or attribute containing the URI of the agent generating thermftion.
This allows agents to identify the source of observatioe$iels, and knowledge in
order to take into account issues such as trust and identlcious or inaccurate
agents.

2. Ati ne attribute indicating the time at which the information wasated represented
as the number of milliseconds since Jan 1, 1970 UTC. Thisvallgents to deter-
mine which of two pieces of information is more up-to-datd emdecide whether old
data is still relevant. Note that this assumes all agente haeurate, synchronized
clocks. Even if two agents have unsynchronized clocks, kewehe timestamps
included in the header of diagnostic messages allow an &geompensate for large
differences (see Chapter 6).

3. A Boolearcached attribute indicating whether the information was cachedair If
an agent receives uncached information, it can assuménatformation it received
is the most current information that the originator can jlev If an agent receives
cached information, then it may be possible to get more ugate information.

4. An expires attribute specifying when this piece of information expireOther
agents may use this attribute to decide how long to keep dactiermation. Note
that each piece of information may have a different lifetime

4.2.2 Observations

Observations provide information about the propertieofiponent individuals that agents
can use for diagnosis, including the results of diagnosststas well as network configura-
tion information collected by an agent. For example, an ageght make the observation
thatr oundTri pTi ne = 293 ms for an individual of clagiing Teswith propertiessr cl P =
18.26.0.100¢est | P=18.26.0.1, ang@i ngTi me = 10:23 am. Other possible observations
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include the status of a TCP connection, the hostname of gsndion, or the number of

times a web server has failed in the past hour. Figure 4-Zginexample of an observation
represented using XML. Appendix A.2 contains the full sfieation for the representation

of observations and other diagnostic information.

<observation id="obs-1"
time="1160577157224"
originator="http://18.26.0.100/ user Agent"
cached="fal se">
<component id="com1">
<class> HITP Connection </class>

<dest Host > wwv. exanpl e. com </ dest Host >
<connTi me> 11605771538408 </ connTi me>
<status> FAI L </status>

<el apsedTi me> 32 </ el apsedTi ne>
<srcl P> 18.26. 0. 100 </srcl P>

<ffoxErrorTest> <conponentRef ref="com3" /> </ffoxErrorTest>
</ conponent >
</ observati on>

Figure 4-2: An observation of aHTTP Connectiorfailure includes metadata about the
observation, a component ID, the class of component obdedescriptive properties, and
relationship properties.

In addition to the metadata attributes common to all pie¢é@sformation, each obser-
vation contains a body consisting of eitherest or aconponent description containing
a set of attribute/value pairs describing an individuat tescomponent. In this section |
use the term component to refer to both network componemtdagnostic tests. Each
component description in an observation contains thewialig:

1. Ani d string so that agents can describe the relationships amiffegedt tests and
components without having to know the values of their idgimtg properties. It is
useful to be able to identify components using a componeradDbvell as by the
identifying properties of a component because frequentlplaservation may refer
to a component whose identifying properties are unknow. ekample, an agent
may know that the status of @dTTP Connectiordepends upon the status of its
associatedtHTTP Servecomponent without knowing the identity of the web server.
The component ID is unique across all components in a givemponent graph or
message. Chapter 7 describes how agents generate com{idsanid use them for
identifying components received in messages from othentage

2. Thecl ass of test or component represented as a URI. The class namebmast
valid URI that refers to the class definition. An agent pagdims observation can
use this class name to determine whether it knows about then giomponent or
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diagnostic test class or whether it needs to retrieve tifiogrimation from the ontology.
Representing observation classes as URIs enables agemttetal the component
and observation class ontologies with new components aseredtion classes.

3. A set of property names and values describing the comporiémese specify the
actual information observed, such as the round-trip tima ping or the destination
IP address of a TCP connection. These may also specify théfideg properties
of the component if available. Observed properties mayhelboth descriptive and
relationship properties.

4.2.3 Beliefs and likelihoods

CAPRI allows agents to express probabilistic evidencenmseof beliefsandlikelihoods

A belief or likelihood expresses the conditional probapibf an event given some evi-
dence. Abelief expresses the conditional probability that a property hasrtain value
given some evidence, andikelihood expresses the conditional probability of observing
certain evidence given certain property values [71]. Morefally, a belief aboux repre-
sentsP(x|e), the probability of observing each valuexofiven some evidence likelihood
represent$(e|x), the probability of observing the available evidence gieach value of
X. That is, a belief is a prediction about a variable given sewidence, whereas a likeli-
hood expresses how the value of a variable affects the pilaai the outcome observed.
For example, consider an agent diagnosing an HTTP conmefetiure. The agent may
compute a belief that the status of a web servéKisvith 90% probability andAl L with
10% probability given evidence of its historical connentitatus. After taking into ac-
count evidence from additional observations, howeveray mhetermine that the likelihood
of observing all the available evidence about a failure %%28the web server has failed
and 10% if it has not failed. Therefore it produces a diagnetiting that more likely than
not, the web server has failed. Both beliefs and likelihoagsnecessary to express the
messages required for belief propagation. This thesistadbp sametandA notation for
beliefs and likelihoods as Pearl [71]. Agents may infer aiaibstic beliefs and likelihoods
based on observations and dependency knowledge.

A belief also indicates the evidence on which it is based ab ather agents can de-
cide which beliefs to use and to avoid double-counting ewige For example, suppose
a regional agent infers the probability that an HTTP coninadbas failed using evidence
about the number of failures to the destination web servetiie HTTP connection. If
the regional agent then receives a belief from a speciajshabout the status of the web
server, the regional agent should only consider that nearimdtion if the new belief is
based on evidence other than the number of failures to thendéen web server.

There are several special cases of beliefs that are usefdidwibuted inference. If a
belief does not take into account any evidence, then it isa probability distribution. If
a likelihood does not consider any evidence, then the pibtyabk 1. If a belief takes into
account all evidence except the evidence downstream oftacydar childi (diagnostic
evidency then it isTik j(X). If a likelihood takes into account all evidence except the
evidence upstream of a parénicausal evidendethen it isAx j(X). Agents can perform
belief propagation by exchangimgandA beliefs and likelihoods.
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Figure 4-3 gives an example of a belief abouDES Lookupcomponent. The belief
identifies the component and property to which it appliesyjates a probability distribu-
tion for the property, and lists the evidence used to dehecdelief.

<belief id="bel-1"
originator="http://18.26.0.100/ dnsAgent"
time="1160577157224"
cached="true">
<subj ect >
<component >
<class> DNS Lookup </class>

<host name> www. exanpl e. com </ host name>
<i pAddrs> 192.168.11.12,192.168.11.13 </ipAddrs>
</ conponent >
</ subj ect>

<property> status </property>

<di stribution>
<entry val ue="CK"
<entry val ue="FAl L"

</distribution>

'0.8"/>
'0.2"/>

p
p

<fronktvi dence>
<evi dence propPat h="verifyDNSLookupTest|dnsLookupTest Result" />
</fronkvi dence>
</ belief>

Figure 4-3: A belief identifies the subject component andpprty to which it applies,
provides a probability distribution table for the properand lists the evidence used to
derive the belief.

In addition to the metadata common to all pieces of infororgta belief contains the
following:

1. Asubj ect indicating the component individual to which this beliepéips. A com-
ponent individual is identified either by its component slasd identifying proper-
ties, or by its component ID.

2. Aproperty indicating the property of the component over which the agemed
a belief. This corresponds to the varialle the expressioR(x|e) or P(e|x).

3. Adistribution expressed as a conditional probability table indicatingdach
possible value of the specifigd operty, the probability that the property has that
value. For example, the status of the web server at www.ebaogm isOK with
23% probability andrAl L with 77% probability. Expressing probabilistic evidence
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using conditional probabilities has the advantage thataitional probability table

can express any arbitrary probability distribution, bus hlae limitation that it can

only express probability distributions for discrete vates. Minka describes how
one might perform distributed probabilistic inference ogentinuous variables by
expressing beliefs using parameterized Gaussian fursci&si.

4. Afronktvi dence field listing the evidence from which the inference was magsch
piece of evidence is described bypmperty pathfrom thesubj ect component indi-
cating the component individual and property name of thdawie. A property path
is a list of zero or more relationship properties followed dryother property, and
identifies a component individual and property in terms f@ationship to another
component. For example, a belief about the status BN& Lookupcomponent
might be based on evidence described by the path f yDNSLookupTest . dns-
LookupTest Resul t. This property path refers to thlimsLookupTest Resul t prop-
erty of the component to which thver i f yDNSLookupTest relationship property of
the DNS Lookuprefers. This thesis represents property paths as a listaygguty
names separated by periods (*.") or vertical bary.(All properties in the path ex-
cept possibly the last property must be relationship progger Describing evidence
in terms of property paths has important advantages in tefrirgormation hiding.
Firstly, it permits agents to make inferences from beliethout needing to know the
identity of the components from which the evidence is detiveurthermore, agents
can determine whether a belief provides new informatiomhaut knowing the actual
value of the observations that the beliefs were based onnt&gdso use property
paths in other contexts as well, such as to describe thagndstic capabilities (see
Chapter 5). Note that thier onEvi dence field only specifies which properties an
agent used as evidence to produce the belief, and not thesvafuhe properties. If
desired, an agent can provide the actual property valudssoévidence as a separate
observation.

An agent may also optionally communicate additional infation about the observa-
tions and knowledge it used to produce the belief. Providimgch additional information
allows other agents to more effectively cache informatmympute the value of available
actions, and aggregate similar requests, but some ageptemease not to provide this
information for policy reasons.

Agents represent likelihoods analogously to beliefs. Thmary difference is that
instead of ali stri buti on table representinB(x|e), a likelihood contains &i kel i hood
table representinB(e|x).

Though CAPRI does not provide agents with the ability to exiy represent proba-
bilistic beliefs over relationship properties, in many ea®ne can accomplish effectively
the same thing using beliefs over the properties of a compuor@®r example, if an agent
wishes to express the belief that with 80% probabilityHiRiTP Connections to a web
server with IP address 192.0.0.1 and with 20% probabilieyHi TP Connections to a
web server with IP address 192.0.0.2, it can indicate tha laslief about the value of the
IP address property of the web server component.
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4.2.4 Probabilistic dependency knowledge

One of the primary ways in which CAPRI differs from previouslatectures for probabilis-
tic diagnosis is that agents can exchange probabilistienidgncy knowledge. Dependency
knowledge describes the probabilistic relationships ketwcomponent and diagnostic test
properties in terms of conditional probability tables (&P.TUnlike beliefs and likelihoods
that describe probabilistic evidence about individual poments and tests, probabilistic
dependency knowledge applies to all individuals in a paldicclass. For example, if web
servers in one Internet autonomous system (AS) fail moguizatly than web servers in
another AS, a piece of dependency knowledge about the diafiseb servers might ex-
press the conditional probability a web server has failegmits AS number. Dependency
knowledge may come either from human experts or from Bapelgarning. For many
component classes such as IP paths, the CPTs associatatievitbpendency knowledge
simply deterministically encode truth tables for AND or OR.such cases application
developers or other experts can easily specify the CPT. Evka exact conditional prob-
abilities are unknown, however, agents can learn themaolldy using Bayesian learn-
ing [57].

The probabilistic dependency knowledge for a componergsctiescribes a kind of
probabilistic “success story” in the sense that it allowsagent to infer the probability
that a component’s status@& given observations and beliefs about the properties ofrothe
components in the network. Conditional probability talyp)esvide diagnostic agents with
the ability to perform botlrcausaland diagnostic inference Causal inference allows an
agent to infer the status of a component from the status efratbmponents it depends on.
For example, if a web server has failed, then an HTTP conme¢ti that web server will
also fail. Diagnostic inference enables an agent to inferstiatus of a component from
the status of other components that it affects or from diagodests that depend on the
component. For example, a failed ping test to a destinatish imay indicate that the host
has failed.

A key feature of probabilistic inference using Bayesianwweks is that it facilitates
the reuse and composition of specialized dependency kdge&labout related component
classes. Agents can then take advantage of new dependewiekige for inference with-
out domain-specific knowledge. For example, someone migildp a new application
classNewAppand create a knowledge agent that provides dependency &dgevindicat-
ing how the status of &lewAppcomponent depends on the status of two reldi@d P
ConnectionsSuppose that another specialist agent has the abilityagnaseHTTP Con-
nectionfailures. A regional agent that knows of the existence ohludtthe above agents
may then offer a new diagnostic service that uses dependarmyledge abouNewApp
and the diagnostic capabilities of th€TTP Connectiorspecialist to diagnosBlewApp
failures.

By collecting probabilistic dependency knowledge fromesthgents, an agent can gain
new diagnostic capabilities and diagnose failures thaiuta not diagnose before. For ex-
ample, an agent that learns the conditional probability@PTconnection failure given the
source and destination ASes of the connection may commierticis dependency knowl-
edge to other agents so that they can diagnose TCP connftioas as well. Or an agent
might learn the probability of observing certain web browagplication errors given the
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status of the destination web server and the user’s netvaorRerctivity. An agent may then
communicate this newly learned diagnostic knowledge sbdtier agents can diagnose
web connectivity failures given observations of web braveseors.

CAPRI enables agents to define new component and diagnestisubclasses for ex-
tensibility while retaining compatibility with agents thdo not have knowledge about the
new subclasses. To support diagnosis of such new subclagsasbuilding a probabilistic
failure dependency graph for a particular component ofsstl@san agent may use CPTs
from its knowledge base for the claSor any superclass &. For example, if an agent has
the knowledge to infer the status of BhLink component but does not have any knowledge
pertaining to the subclasdireless IP Linkthen it can use its knowledge B Links to di-
agnose a component of cladsreless IP Link This aids extensibility by enabling agents
to introduce new subclasses of existing classes withoutiglisg the ability of existing
agents to diagnose components of previously defined classes

Table 4.1 gives an example of probabilistic dependency kexge expressed as a con-

ditional probability table. Figure 4-4 demonstrates howagent represents the knowledge
in Table 4.1 using XML.

DNS Lookup TestnsLookupResult:

dnsLookupResult dnsLookup.statuB(dnsLookupResult
dnsLookup.statys

LOOKUP_.ERRORCONFIRMED FAIL 0.70

LOOKUP_ERRORUNCONFIRMED FAIL 0.05

CORRECT FAIL 0.01

INCORRECT FAIL 0.10

LOOKUP_ERROR FAIL 0.05

ALIAS FAIL 0.09

LOOKUP_ERRORCONFIRMED OK 0.01

LOOKUP_ERRORUNCONFIRMED OK 0.02

CORRECT OK 0.40

INCORRECT OK 0.01

LOOKUP_ERROR OK 0.01

ALIAS OK 0.55

Table 4.1: An agent represents probabilistic dependencowladge for aDNS Lookup
Testas a table of conditional probabilities. The value of thepgnty dnsLookupResul t
depends on the value of its pareinsLookup. st at us.

A piece of dependency knowledge contains the following $ield

1. Asubj ect indicating the component or test class for which this knalgkeapplies

(e.g.HTTP Connectioh The component or test class is defined in the component or
test ontology.

2. Aproperty indicating the property of the component for which this gie¢ knowl-
edge applies (e.gt at us).
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<knowl edge>

<subject> Verify DNS Lookup_Test </subject>
<property> dnsLookupResult </property>
<cpt >

<parents> dnsLookup|status </parents>

<entry val ue="LOOKUP_ERROR CONFI RVED! parent Val s="FAIL" p="0.70" />
<entry val ue="LOOKUP_ERROR UNCONFI RVED' parent Val s="FAIL" p="0.05" />
<entry val ue=" CORRECT" parent Val s="FAIL" p="0.01" />
<entry val ue="| NCORRECT" parent Val s="FAIL" p="0.10" />
<entry val ue="LOOKUP_ERRCOR' parent Val s="FAIL" p="0.05" />
<entry val ue="ALI AS' parent Val s="FAIL" p="0.09" />
<entry val ue="LOOKUP_ERROR_CONFI RVED"  parentVal s="CK"  p="0.01" />
<entry val ue="LOOKUP_ERROR UNCONFI RVED" par ent Val s=" (K" p="0.02" />
<entry val ue=" CORRECT" parentVal s="COK"  p="0.40" />
<entry val ue="1 NCORRECT" par ent Val s=" (K" p="0.01" />
<entry val ue="LOOKUP_ERRCR' parentVal s="OK"  p="0.01" />
<entry val ue="ALI AS"' par ent Val s=" (K" p="0.55" />
</cpt>

</ know edge>

Figure 4-4: An agent represents the probabilistic depetyd&nowledge from Table 4.1
using XML.
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3. A parents field supplying the list of parent variables on which the mdp de-
pends. If aparents field is empty, the conditional probability table (CPT) fig
piece of knowledge represents prior probabilities; otheawhis piece of knowledge
represents conditional probabilities. Parent variabtegdascribed in terms of prop-
erty paths, as defined in Section 4.2.3. Parents may inclatte dither properties
of the subj ect component as well as properties of other related compor{ergs
htt pServer. st at us).

4. Acpt (conditional probability table) containing a list of emtsistating for each value
and each combination of parent values for the specjfirexperty, the probability
that the property has that value. For example, this can esptes probability that
anHTTP Connectiorsucceeds given each possible combination of status vatues f
the web server and the routers along the IP path to the webrsditvepar ent s and
cpt fields together specify how one property (suclat us) of a component of the
specified class depends on the other properties of the caenpas well as properties
of other components.

5. An optionalknow edgeMet hod describing the algorithm used to make create the
knowledge. For example, this knowledge may have been sgpplianually by an
expert, or it may have been learned from observations.

A piece of diagnostic knowledge may express both prior podies as well as con-
ditional probabilities. If the CPT contains only 1s and Ot it specifies a deterministic
dependency model, such as an IP path that functions if andiball of its constituent
links function, or a DNS resolution process that functidnatileast one of several alter-
native DNS servers functions. In general, the CPT can egpayg arbitrary conditional
probability function of the set of parent variables. Onendrack of expressing dependen-
cies in terms of CPTs is that CPTs only support discrete bbeta One way to address
inference over continuous variables is to convert them sordte variables. For example,
rather than considering bandwidth as a continuous variabkemight discretize bandwidth
into three values, high, medium, and low. Alternativelystgport the communication of
knowledge using continuous variables (for example, latgragents may use an alternative
representation such as a parameterized Gaussian modebattplities. Another drawback
of representing dependencies as CPTs is that a CPT repmsannay be unnecessarily
verbose for certain types of data that can be compactly septed in another form, such
as a BGP routing table, for example. For this reason, two tagéat wish to communi-
cate such specialized diagnostic knowledge may chooseeta osre compact alternative
representation when appropriate.

Agents may also express fragments of dependency knowlédigeyi only know the
dependencies for a fraction of the component individuaks @tass. For instance, an agent
might know the conditional probability of failure for TCP moections between a particular
source and destination, but not for other sources and @¢isins. One caveat with using
fragments of dependency knowledge is that if an agent dodsave a complete CPT for a
variable, it cannot accurately perform certain inferengerations such as marginalization.

Note that it is possible to have conflicting diagnostic knealge of a component class
if the sets of parents or the probabilities do not agree. élhsucase, an agent uses its local
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policy to decide which CPT to use. Alternatively, an agergmattempt to produce a new
combined conditional probability distribution using a s\iOR or noisy-AND rule.

CAPRI provides an initial knowledge agent that supplieeotgents with knowledge
of certain dependencies among component classes in the @ercomponent ontology,
such as the deterministic dependence oHAITP Connectiorupon its associatetdocal
Network HTTP ServerDNS LookupandIP Routingcomponents.
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Chapter 5

Discovering and Advertising Diagnostic
Capabillities

Each agent in CAPRI has the capability to communicate e¢etygies of diagnostic infor-
mation, described in Chapter 4. Chapter 6 presents thelgottacol that agents use for
communication. This chapter describes how agents exphhessdiagnostic capabilities
and represent the diagnostic capabilities of other agdiite.key challenge is to describe
diagnostic capabilities in a flexible and extensible fashmsupport many different types
of diagnostic capabilities while enabling agents to uniderd and take advantage of the ca-
pabilities of other agents. For extensibility to suppomvrtgagnostic technologies, CAPRI
must allow new diagnostic agents with new capabilities trslheir expertise with exist-
ing agents. To address this challenge, CAPRI provides ageétit a common service de-
scription language for describing diagnostic capabditieterms ofservices This service
description language enables agents to describe the aliees, beliefs, and knowledge
they can provide to other agents so that other agents camthiemtage of these new diag-
nostic capabilities. Using this language, agents can Igotha capabilities of other agents
and dynamically determine which agents to contact to oldesired diagnostic informa-
tion.

The strength of this service description language is ivelother agents to look up and
compute the value of available services based on the input®atputs of a service, and
not just by name. Explicitly specifying the inputs and ougpof a service provides benefits
in terms of extensibility so that agents can determine tleéulisess of new services without
domain-specific information.

For scalability to support diagnosis using a large numbegeints, this service descrip-
tion language also helps agents manage the complexity efts&j services in a system
with many agents and services. CAPRI allows agents to spemilt and requester re-
strictions to limit the requests that each agent receivds@areduce the number of services
that each agent needs to know about.

Another advantage of dynamically selecting actions adongrib service descriptions is
that it provides CAPRI agents with the flexibility to suppamnultitude of communication
patterns and take advantage of new agents. Unlike previmisras for distributed fault
diagnosis that only support a limited range of diagnostimewnication patterns, CAPRI
gives agents the ability to discover new services and théfléy to choose among mul-
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tiple alternative methods for diagnosis. For example, ifagent diagnosing an HTTP
connection failure cannot contact an agent that monitagswlb server’s status, then it
may choose to infer the probability of web server failurenfroiser connection histories
collected from other agents. The service description laggudescribed in this chapter
enables agents to dynamically select an agent to contaditeanonecessary diagnostic
information.

Both service descriptions and diagnostic informationrédecomponents and proper-
ties using the same component ontology, but the serviceigéen language agents use to
describe their diagnostic capabilities differs from thedaage that agents use to describe
diagnostic information for several reasons. Firstly, thetecol for exchanging diagnos-
tic information is different from the protocol for exchangi service descriptions; service
descriptions are communicated between agents and theselvectory, while diagnos-
tic information is communicated from agent to agent. Sefgrabents use diagnostic
information and service descriptions in different waysaghiostic information is used to
describe network components and dependency knowledgefésence, while service de-
scriptions are used to describe agent capabilities andlpodgents select next actions to
take. Though it is possible to define a kind of upper ontoldwt unifies these two con-
cepts into a single language, it is not necessary to do soderdo perform diagnostic
reasoning in CAPRI. Therefore for clarity, simplicity, asdse of implementation, CAPRI
defines separate languages for diagnostic informationemite descriptions, though both
languages refer to component and properties defined in the samponent ontology.

5.1 Diagnostic capabilities and services

Before an agent can request diagnostic information, it seedknow thediagnostic ca-
pabilities of other diagnostic agents. Diagnostic capabilities desdhe types of infor-
mation that an agent can provide to requesters, includisgmations, beliefs and likeli-
hoods, diagnosis, and knowledge. A diagnostic capabil#ty specifies the input that the
agent requires to produce the information it provides. Eagént may have a different
set of diagnostic capabilities because each agent may hawability to diagnose differ-
ent components, perform different tests, and provide diffe observations. Since each
agent may have different capabilities, in order to effedinperform diagnosis a diagnostic
agent needs the ability to advertise its own capabilitieslaak up the capabilities of other
agents.

An agent advertises its ability to provide diagnostic infation in terms okervices
CAPRI provides agents with a common language for descrjl@dgertising, and looking
up services. When an agent joins the system, it advertisediagnostic capabilities in
terms of service descriptions to an agent directory. Ageetsodically retrieve service
descriptions provided by other agents from the agent dirg¢b dynamically discover the
capabilities of other agents. This thesis assumes a ceetilagent directory, but one might
implement this directory in a more distributed way for aduhial scalability and robustness.

Each agent may advertise a different set of services depegrmdh its diagnostic capa-
bilities. Each agent may advertise zero or more servicesh Barvice is associated with
an individual diagnostic agent. Agents may offer four difet types of services: obser-
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vation services, belief services, diagnosis services,damendency knowledge services.
A service can be thought of as a remote procedure call thabwgheen input in a certain
form, produces a specified type of output. For example, antagay provide a traceroute
service that when given a destination IP address, produresreations about the routers
along the IP path to that IP address.

Some agents may collect and aggregate information fronr atfents to produce new
diagnostic information. To support such collection of imf@tion, in addition to advertis-
ing service descriptions, CAPRI allows agents to commuaieatification subscriptions
A notification subscription requests notifications for imf@tion that matches the subscrip-
tion. For example, a web server history diagnostic agent ragyest to receive notifica-
tions about the status of HTTP connections to a set of welesemv order to compute the
probability of failure of these web servers. The conceptudfseribing to notifications of
diagnostic information in CAPRI is related to the idea of m-based matching in pub-
lish/subscribe systems [28]. A major challenge of conteaged publish/subscribe systems
is the cost of maintaining a large number of subscriptiomsraatching content to subscrip-
tions. Section 5.4 describes how agents in CAPRI can adthiesssue by constructing
aggregation-friendly agent topologies.

This thesis primarily focuses on how agents can exchangeeasbn about diagnostic
information. Though this thesis discusses how agents c@moder and make use of services
other agents provide, reasoning about the relationshigsgraervices is out of scope of
this thesis. Therefore as a first step, in this thesis | definéces using a flat namespace.
Services do not specify their relationship to other semvice

5.1.1 Service advertisements

The purpose of service advertisements is to provide a réguesth enough information
to determine whether or not to use a service. Therefore acgeadvertisement specifies
both optional and required inputs for the service, the ouppaduced by the service, and
the cost of using the service.

Figure 5-1 gives an example of a DNS lookup belief serviceesthkement. The bel:dns-
lookup.status service advertised requires as infN& Lookupgomponent and itgost -
name andi pAddrs properties. The advertisement restricts the set of valigiesters to
regional agents. The service produces a belief about thesstd theDNS Lookupcom-
ponent provided as input using thlesLookupResul t of a Verify DNS Lookup Tesds
evidence. In addition, this service provides an obseraatibthe dnsLookupResul t of
a Verify DNS Lookup Testnd dependency knowledge about the prior probabilitiehef t
status of individuals of th®NS Lookupgomponent class. Appendix A.3 contains the full
specification of service descriptions.

Every service advertisement and notification subscriptmmtains the following:

1. Service ID. A string to identify this service or subscription (e.g. adchttp”). Note
that a service ID has no inherent meaning and is unique orthetagent advertising
the service. Another agent may advertise a service withdheesservice ID.

2. Agent URI. The agent URI and service ID string uniquely identify a g@or sub-
scription. For robustness to DNS lookup failures, agergsiifly themselves using a
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<servi ceAdvertisenment servicel D="bel: dnsl ocokup. st at us"
agent URI ="htt p: //18. 26. 0. 240/ dnsAgent "
time="1170701032"
messageType="bel i ef Request "
cost ="10000"
request er Type="regi onal "
i nput G ass="DNS_Lookup" >

<i nput Property propPat h="host nane" required="true" />
<input Property propPath="i pAddrs" required="true" />

<out put Bel i ef propPat h="st at us">
<fronkvi dence propPat h="verifyDNSLookupTest | dnsLookupResult" />
</ out put Bel i ef >
<out put Ghservati on propPat h="verifyDNSLookupTest| dnsLookupResult" />

<out put Know edge subj ect="DNS_Lookup" property="status" />

</ servi ceAdvertisenent >

Figure 5-1: A DNS lookup specialist agent advertises a bebevice advertisement that
requires as input BNS Lookugomponent and itsost name andi pAddr s properties, and
produces as output a belief, an observation, and depen#eneyedge.
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URI with an IP address (e.g. http://18.26.0.240/regioqi@t).

3. Last modification time. The time this service or subscription was last updated to
make it easier for the agent directory and other agents &riah@te whether to update
their service tables.

4. Message type The type of service advertised. The message type may ber eith
an observation service, belief service, knowledge seruiéggnosis service, or a
notification subscription.

5. Cost An integer cost of using this service to help other agentsdgewhich ser-
vices to prefer. For notification subscriptions, cost représ the amount that the
subscriber is willing to pay for this information. Agentsght set costs based on the
time this service requires to produce a response, the catnpual cost of a diag-
nostic test, or a monetary cost. This thesis assumes thtst @@sexogenous to the
system and does not discuss how agents set costs.

6. Requester restrictions An agent may choose to restrict the range of allowed re-
questers for a service. For example, specialist agents magse to only answer
requests from regional agents and not from user agents &atsbity reasons. Simi-
larly, a regional agent may choose to provide diagnosis tintgquesters in a partic-
ular region of the network. A requester restriction may bgdabon credentials or on
other properties of the requester such as the requesteaddress. For notification
subscriptions, the requester restrictions indicate thefsequesters from which the
subscriber wishes to receive information.

5.1.2 Knowledge services

In addition to the fields common to all service advertiserseaknowledge service adver-
tisement contains the following:

1. Output knowledge. A list of knowledge entries this agent can provide. Eachvdno
edge entry specifies the subject, property, and parent gyopeths of the knowledge
(see Section 4.2.3 for the definition of property paths). dfparent property paths
are provided, then the knowledge represents prior proibaisil The parent property
paths are relative to the subject component of the knowledtry. For example, an
agent might advertise the ability to provide dependencytedge forHTTP Con-
nectionstatus given ocal Net . st at us, dnsLookup. st at us, i pRout i ng. st at us,
andwebSer ver. st at us.

5.1.3 Observation and belief services

An observation service provides observations about distgmnoests or network compo-
nents. A belief service can also provide probabilisticéfslabout the properties of compo-
nents. In addition to the fields contained in a knowledgeiseradvertisement, observation
and belief service advertisements also contain the foligwi
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1. Input class. The class of diagnostic test or component this serviceiregjas input
(e.g.HTTP Connection This is not necessarily the same as the class of component
for which this service provides beliefs and observations.

2. Input properties. The properties that the agent requires to provide this rvbse
tion (e.g. dest | P). This is specified as a list of property paths. Input prapsrt
may refer to properties of other components as well usinggny path notation
(e.g. asPat h. next ASHop. sr cAS). Each input property also indicates whether it is
required or optional. A requesting agent must provide theevaf all required prop-
erties in its request and should provide the value of all kmaptional properties.
Not specifying an optional property may diminish the accyraf the information
produced by the service. In addition, an agent may restetset of valid input
components by specifying andex functiorand andndex rangefor a required in-
put property. If these are specified, then the value of thexridnction on the input
property must fall within the specified index range. Inpudtretions are described
in more detail below.

3. Output observations. A list of properties for which this service provides observ
tions, specified as a list of property paths relative to thpeiirtomponent.

4. Output beliefs. For belief services, a list of properties for which this\see provides
beliefs, specified as a list of property paths relative toitipeit component.

5. Output likelihoods. For belief services, a list of properties for which this\see
provides likelihoods, specified as a list of property patiative to the input compo-
nent.

Note that if multiple observations match the input provided observation provider
may supply multiple observations in the response. For ex@amapgequest for observations
of HTTP connection failure to a particular destination othex past hour may return mul-
tiple results. Alternatively, an agent can subscribe tafications to receive continuously
updated information. Notifications are described in Sechd.5.

In many cases, an agent can only provide diagnostic infoomabout a subset of com-
ponents in a class. For example, an agent may only have thiy &dbperform traceroutes
for IP Routingcomponents whoss cl P is within a given range. CAPRI provides agents
with the ability to specifyinput restrictionsto limit the set of permissible input compo-
nents that an agent accepts. An input restriction consista mdex functiorand anindex
rangeon a component property. An input satisfies an input regtnaf the index function
applied to the property value falls within the index rangéARRI provides the following
index functions:

1. b64t oi nt . Converts a base64 encoded string to an integer.
2. nod y. Returns the value of mody for a given value of;.
3. i ptoi nt. Convert an IP address to its network integer represemtatio

4. asn. Convert an IP address to an AS number.
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An agent may compose multiple index functions in an inputriggn. For example, the
index functioni pt oi nt, nod 4 first converts the property value from an IP address string
to an integer, and then computes its value modulo 4.

Agents can define input restrictions for a number of purpo§eee use of index func-
tions is to distribute responsibility for a class of compotseamong multiple agents. For
example, for scalability, one might partition the set of [&Ps by their AS number and
have a separate agent provide diagnostic information foln ¢8P. As mentioned above,
another use of input restrictions is to describe the cajpld diagnose only a subset of
the components in a class. An agent may also use input testsdogether with costs to
indicate different costs for different input components.

5.1.4 Diagnosis services

A diagnosis service returns the likelihood of several cdat# explanations given a compo-
nent perceived to have failed. In addition to all the parta bklief service advertisement,
a diagnosis service advertisement contains the following:

1. Candidate explanations The set of properties that a requesting agent can provide in
its explanations (e.grvebSer ver . st at us, asPat h. next AS. st at us). This allows a
requesting agent to determine the level of detail that thgrbsis provider agent can
provide in its diagnosis.

5.1.5 Notification subscriptions

A notification subscription resembles a service adverteaimand contains the following
parts:

1. Input class. The class of diagnostic test or component for which to xexabtifica-
tions (e.g.HTTP Connection

2. Input properties. The properties that the agent wishes to receive, speciiediat

of property paths. (e.gst at us). This is specified as a list of property paths. Input
properties may refer to properties of other components dsusang property path
notation (e.g.asPat h. next ASHop. sr cAS). As with service advertisements, each
input property also indicates whether it is required or opal and may specify an
index function and range. An agent should only send infoionatio a subscriber
that matches all the required input properties and inputicti®ns. Note that since
input properties may refer to properties of componentsraten the one specified
in the input class, a notification may contain informatiooatomultiple related com-
ponents, and not just components of the input class.

5.1.6 Strengths and limitations

This service description language allows agents to desertvide range of services, sup-
porting the exchange of observations, beliefs and likelds) and dependency knowledge
in a non—domain-specific way. It allows new agents to adsertiew services that provide

65



new information. It enables aggregation of services foitegnhty using both input and
requester restrictions. In addition, it allows agents tuegtise services useful for tasks
other than fault diagnosis, such as predicting propertfes component besides status.
For example, an agent may provide a service for predictiegdilration of failure for a
component.

Unlike most previous systems for fault diagnosis that useeafprocedure for diagno-
sis, the service description language described in thiptehallows agents to dynamically
select diagnostic actions to take based on the informatihkmowledge an agent has
available. This has several benefits. Firstly, it allowsragéo take advantage of new and
better diagnostic services provided by new agents. Segondlllows a requester agent
to choose the best service for the situation based on thesgirep of the components in
its component graph. Thirdly, it allows the modular disitibn of diagnostic reasoning
across multiple agents so that no single agent needs to Have @apabilities required
for diagnosis. Chapter 7 describes in more detail how agimtamically select diagnostic
actions using service descriptions.

This service description language has some limitationgelver. Using this service
description language, an agent advertises its input céisins and then a requester must
determine whether an input component satisfies the inptriggsns. Specifying input
restrictions has the advantage that it allows a requestattag select services dynamically
based on the properties of components. In some cases, hpwaaeguester agent might
not know whether an input satisfies an input restriction bheeahe agent does not know
the value of the property associated with the input resbmct In such cases, a requester
may either simply assume that the input is valid and ignoearput restriction, or assume
that the input is invalid and not send a request. Both apbembave drawbacks, however.
Assuming that the input is valid leads to unnecessary reguakile an agent that assumes
the input is invalid loses the opportunity to obtain addiibinformation.

Similarly, an agent advertising a service might not know thiee or not an input com-
ponent is valid until the agent processes the request. Br adses, an agent might not wish
to reveal the set of inputs that it accepts for privacy or@oleasons. In both of these cases
an agent may simply omit the input restriction and return@orenessage when the agent
receives an invalid input, but doing so makes it more diffioif requesters to accurately
determine the expected value of using a service.

Another limitation of this service description languagéehat it assumes that an agent
knows what information a service will produce. In many cabesvever, an agent does not
know whether it can obtain the information advertised ingbevice until after performing
a diagnostic test. One way to address this challenge isdw @lle description of services
that do not always return the information requested. Thikesat much more difficult for
a requester to compute the value of a service, however.

5.2 Service discovery
The information provided in these service advertisememébkes other agents to automat-

ically discover new services and to determine what sengaegprovide useful information
for diagnosis. Chapter 7 describes the procedure that sageetfor determining what ser-
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vices to use.

Each agent maintains a table of service advertisementsanace table In this thesis
| assume that an agent can send and receive service advatiteto and from a central
agent directory server, and that all agents know the idenfithe agent directory server.
When an agent starts up for the first time, it advertises alk#rvices it can provide to the
agent directory, retrieves a list of available servicesl stores these service advertisements
in its service table. The agent directory uses the requesstriction information in the
service advertisements to decide what services to prodde agent. Agents periodically
poll the directory server in order to discover new services.

The combination of notification subscriptions and servibesstisements enables agents
to describe many different types of services, includingadaggregation services. Aggre-
gating data can be thought of as transforming one type ofidé&daanother type of data.
An aggregating agent may subscribe to notifications or reiggiagnostic data from many
other agents, and then advertise the ability to provide eggged data. For example, an
agent may offer a service that takes as input a destinatibnsewver, and provides as out-
put the total number of recent users who have connected t@ittbe past hour and the
number of users who could not connect.

5.3 Constructing a scalable agent topology

An important feature of CAPRI is that the service descripnguage facilitates the cre-
ation of a scalable and aggregation-friendly topology fggra communication by enabling
agents to specify requester restrictions and input prgpedex ranges. IP routing in the
Internet using BGP scales well because each router cangeggneutes on the basis of its
IP prefix and route data through a relatively small numberea§hboring routers. Simi-
larly, in CAPRI, each diagnostic agent only needs to knowuabaelatively small number
of other agents in the network. Regional agents effectigetyas routers of diagnostic re-
quests so that other agents do not need to know about all agleaits in the network. User
agents can send any diagnostic request to a regional agdeutknowing what diagnostic
capabilities other agents may be able to provide. The rediagent then decides which
specialist agents to contact next. The regional agenttefédg acts as a gateway router for
diagnostic information, hiding knowledge and specialggats from user agents.
Specialist agents may also act as gateways to other moreakpet agents as well.
For example, a generic DNS specialist agent may dispatatests for DNS lookup beliefs
to other agents that specialize in particular aspects of Di¢&ups. The generic DNS
specialist agent may combine information from these moezigfized DNS agents and
effectively hide the knowledge of the specialized DNS agémm the regional agent. An
agent may dispatch incoming requests on the basis of the nadges of input properties
(for example, to achieve load balancing by distributing tesponsibility of diagnosis);
or based on additional information, possibly obtained frother tests. An example of
the former is the way in which web server history agents as&ributed by destination IP
address in the prototype implementation described in @nahtAn example of the latter
is the way in which regional agents in the prototype impletagon decide whether to
contact a server history agent, a DNS lookup test agent, quattest agent based on the
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probabilistic dependency knowledge, the value of inforomgtand the result of AS path
lookups they perform.

Such hierarchical organization of diagnostic specialtias several benefits. Firstly
it reduces the complexity of the service tables at each agjeoé an agent only needs to
know about a limited number of other agents. Secondly, itesatkeasier to add new agents
into the system since only a relatively small number of ag@eted to know about a new
agent. Thirdly, it promotes effective aggregation and aaglof diagnostic information.
By having a small set of agents handle requests for infoonaif a particular type, those
agents can effectively cache information for future redggies

One must balance several tradeoffs to construct an efeeatjgregation tree for diagno-
sis. If there are too many levels, it may lead to inefficiea@ad be more prone to failure.
If there are too few, information and requests may not becatfely aggregated. Similarly,
if requests are distributed among too many agents, it maycesthe effectiveness of ag-
gregation, but if there are too few agents, the agents mayheoverloaded. In Chapter 8
| demonstrate and evaluate several types of aggregatioprotatype implementation.

5.4 Managing the cost of notifications

CAPRI allows diagnostic agents to collect information frother agents via notification
subscriptions. One challenge in CAPRI is to manage the d¢astah notifications. CAPRI
agents reduce the number of messages sent by batching mengs @f information to-
gether. Though batching may introduce some delay, frefpuansubscriber to a certain
type of information does not require the information rigltag. For example, in the pro-
totype implementation described in Chapter 8, user agatthlzonnection history infor-
mation to reduce the number of messages sent to regionatisagen

One challenge of publish/subscribe systems is the cost tfimmg information against
a potentially long list of subscribers. Unlike publish/sabbe systems for distributing
news in which a large number of users may potentially subsdo notifications of the
same information, however, in distributed Internet fauéigthosis frequently only a rela-
tively small number of agents need to know any particulac@ief information. In many
cases, only certain specialist agents have the ability tkkenr#erences from a particular
observation, or an observation is only useful for diagng$ailures within a particular re-
gion of the network. For example, in the prototype impleraéion, for any given HTTP
connection observation, there exists only one server tyisigent to which a notification
should be sent.

In those cases where many agents do wish to receive notifisatf the same piece
of information, frequently a data aggregation service cafuce the amount of informa-
tion that must be distributed. For example, in the prototypplementation, rather than
distributing connection history information to all diagt@ agents, connection history in-
formation goes only to web server history and server stesisgpecialist agents. These
specialist agents then compute aggregate statistics sutie aumber of consecutive fail-
ures to a web server. Specialist agents then communicatétwde aggregate statistics—or
beliefs inferred using these statistics—to regional agemhe web server history agent is
a type of data aggregation agent because it reduces a laigenaf connection history
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information into a concise aggregate statistic or beliefialthe status of a web server. This
procedure for data aggregation both reduces the numbertibitations sent and hides the
details of data aggregation and belief inference from negjiagents.
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Chapter 6

Diagnostic Message Exchange Protocol
(DMEP)

Another challenge of distributed Internet fault diagnasiso develop a common commu-
nication protocol that enables agents to perform diagngsigg information from multiple
sources, including information from new agents with newedalities. To address this chal-
lenge, CAPRI provides agents with a Diagnostic Message &g Protocol (DMEP) for
communicating diagnostic information, includimdpservationof diagnostic test results
and component properties, probabilidteliefsandlikelihoodsabout the values of various
properties of components, and probabilistependency knowledgpecifying the depen-
dency relationships among classes of components and diagtests that agents can use
to make inferences from observations, beliefs, and lilosds.

Note that unlike previous architectures for communicatragnostic information such
as Sophia [93] that only allow communication of observatiohcomponent properties, or
belief propagation algorithms that only enable the exclkarnfgprobabilistic beliefs [17],
CAPRI also enables agents to communicate probabilistiem#gncy knowledge about
classes of components. Exchanging such dependency krgenges agents the ability to
learn and accumulate new dependency knowledge to takedotwat new diagnostic tech-
nologies and changing network conditions. For examplegami&may learn that with 90%
probability, when three different users cannot connectweeh server in the past minute,
the web server has failed. An agent may then communicatelémsndency knowledge to
other agents who can then diagnose web server failures vattier accuracy and fewer ac-
tive probes. DMEP also provides agents with the informatiecessary to make effective
accuracy/cost tradeoffs and resolve conflicting infororati

Recall that in addition to the communication of diagnosteEssages, agents also com-
municate service descriptions (see Chapter 5) and magvetdomponent class and prop-
erty definitions (see Chapter 4). This chapter discussgstbelcommunication of diag-
nostic messages.
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6.1 Communicating diagnostic messages

CAPRI agents communicate diagnostic observations, isadiedl likelihoods, dependency
knowledge, and diagnostic results with one another by sgndessages. A single message
may contain multiple pieces of diagnostic information. gnastic agents may create new
information as they process messages they receive from atjemts. While processing a
message, an agent may send additional requests and natifectd other agents.

A message from one agent to another is either a request, angspo a request, or
an asynchronous notification. Requests and responses afjents to request particular
pieces of information from other agents, while notificaiallow agents to communicate
new information as it becomes available. The types of messagrrespond to the types of
services described in Chapter 5. Each type of request hasesponding type of response.

1. Observation request The requesting agent requests an observation of a property
of a component from a provider agent. The provider agent nii@ady have this
information or it may need to perform a diagnostic test tdemlit. Responding
to observation requests does not require any probabilistezence. Examples of
observation requests are requests for connection histogquests for the results of
a diagnostic test, and requests for aggregate statistozg alcomponent.

2. Belief request A belief request produces a probabilistic belief aboutuhkeie of a
component property. Belief requests include requesthifoptobability that a partic-
ular component has failed, or the likelihood that one of a benof other components
has failed given a known component failure.

3. Knowledge request The requesting agent requests a piece of dependency knowl-
edge from another agent for a property of a component of acpéat class. For
example, an agent may wish to know the probabilistic depecide for the status
of a class of component or the prior probability of a propddycomponents of a
particular class.

4. Diagnosis request The requesting agent requests diagnosis from anothet.afjen
diagnosis provider agent may do additional tests and reeursquests to diagnose
the failure. In a request for remote diagnosis, the requesshes to know the like-
lihood of each of a set of possible explanations for a faillhelike a belief request,
a diagnosis response indicates the probability that a sptagferties have particu-
lar values whereas a belief response only provides the pitityadistribution for a
single variable.

5. Notification. Asynchronous notifications allow agents to communicateinéorma-
tion when it becomes available, including new observatibesefs, and knowledge.

6.1.1 Protocol requirements

To support both diagnosis on demand as well as the asynalsgmopagation of diagnostic
information, DMEP allows the communication of both reqsesmtd responses as well as
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asynchronous notifications. In designing a protocol fotrdigted diagnosis in the Internet,
we must consider the cost of diagnosis. DMEP provides sknerahanisms for agents to
control the cost of diagnosis.

In order to prevent loops and runaway explosions of diagooséssages, each diag-
nosis request contains a budget, confidence threshold, xqnichgon time to bound the
number of messages produced in response to a diagnosis.t Aurget or a confidence
threshold for diagnosis allow agents to trade off accuray@st. Agents also specify an
expiration time to bound the amount of time a diagnosis cke;tsometimes a rapid diag-
nostic response is more important than a slow but accurapornse. These mechanisms
for limiting the number of messages generated are similéhéodea of decrementing a
TTL when routing an IP packet. Another technique for preirentertain loops is to not
use a service if its service description indicates that édoot provide any new informa-
tion. In addition, using the procedure for diagnosis désadiin Chapter 7, for any given
diagnosis request, a diagnostic agent will not reuse the sarvice with the same input.
This prevents certain infinite loops by ensuring that evemgtan agent performs an action,
either the set of available actions decreases or the agerg g@me additional information.
Note that simply recording the diagnostic agents who hawtribmted to diagnosis is not
enough to prevent looping because an agent may legitimedelribute multiple times to
a diagnosis due to the incremental, iterative nature ofrebats.

6.1.2 Message format

Each message has the following format:

1. Header indicating the type of message: observation stghelief request, knowl-
edge request, diagnostic request, notification, obsenwatisponse, belief response,
knowledge response, or diagnostic response.

2. Therequest er | D of the requesting agent as a URI written using the IP address o
the agent.

3. Theservi cel D indicating the service that the agent is requesting. TheiceiD
must match the service ID provided in the service descmptd the responding
agent.

4. Message-type specific headers.

5. An messagkody containing additional diagnostic data, beliefs, and krealgke. For
example, if a diagnostic agent wishes to pass on all the th&siabout a failure for
another agent to diagnose, this body is a failure story caimgrall the observations
and beliefs it has related to the failure.

Below | describe in more detail the format of each type of dizgic message. Please
refer to Appendix A.2 for examples of diagnostic messagebsthe detailed specification
of the protocol.
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6.1.3 Observation and belief requests

Observation and belief requests have similar forms. An ofag®n or belief request con-
tains the following message-type specific headers:

1. Arequest | Dstring.

2. An integerexpi res indicating the expiration time of the request specified a&s th
number of milliseconds since Jan 1, 1970 UTC. If the exmratime passes, then
the agent does not perform any more diagnostic actions dachsethe information
it has collected.

3. An integerbudget . Each diagnostic test or inference involves some compmutati
cost or network resource usage. The cost of diagnostic &estanference is de-
ducted from the budget every time an agent performs a didgnastion. If the
budget reaches zero, the request is dropped. To allow fardurefinements later,
the default cost of a diagnostic action is 10. To bound the bemof diagnostic
messages generated by a request, the default budget is 1000.

4. Aninput Conponent that satisfies the input requirements of the service desmnip
for the observation or belief request.

The body of an observation or belief request must provider¢lggired inputs speci-
fied in the provider agent’s service description for the exjad service. Note that even
though an observation request provides only a single inpotponent, a requester can
supply observations and beliefs about other componentseithddy of the message. For
example, an observation request may provideHdA P Connectiorcomponent as input,
but also provide information about the hostname ofliNS Lookugomponent associated
with theHTTP ConnectionThe requester can indicate the relationship between tiagse
components using relationship properties.

Belief requests have the same format as observation requestquest for belief asks
another agent to compute the probability some property araponent has a particular
valuex given any evidence that the agent has. A belief represents the value(zfe).

6.1.4 Knowledge requests

In addition to the header fields common to all requests, a keuige request contains an
integer request ID. No additional information is requiradciiknowledge request.

6.1.5 Diagnosis requests

A diagnosis request asks for the likelihood of several cdaii explanations for a compo-
nent failure. A diagnosis request specifies a list of cantdiégaplanations, identifies the
component that has failed, and may provide the value of sdritteecomponent’s proper-
ties and the value of the properties of other related commisrees well. When requesting
remote diagnosis, an agent may optionally provide addiliobservations and beliefs (i.e.
the failure story) in the body of the request. The diagnosiggnt may then incorporate
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the evidence in this failure story in its diagnosis. Additdly the output may include ad-
ditional observations, beliefs, and knowledge not diserlated to the component under
diagnosis in order to assist in future diagnoses.

The primary difference between a diagnosis request andief betuest is that a diag-
nosis response indicates the probability that a set of bkesehas a particular value whereas
a belief response only provides the probability distribotfor a single variable. This al-
lows an agent to answer questions such as, “Is my HTTP caondeilure caused by the
failure of the destination web server or the failure of mywatk connection to my ISP?”
In addition, a diagnosis provider usually performs addisibtests and requests to achieve
the desired confidence level.

Diagnostic requests include all the headers of a beliefaswith the addition of the
following:

1. A set of candidate explanations, where each explanagienifies a set of compo-
nents and their statuses. These explanations come fronatitedate explanations
provided in the service description.

2. Confidence threshold. If the confidence in a diagnosisagisthis threshold, then no
further diagnostic tests or inference need be performedh kiger requesting diag-
nosis in the Internet may have different accuracy and cgsiirements for diagnosis.
Some may want more accurate and precise diagnosis whilesatiey only want to
know the approximate location of failure. A confidence thi@d enables requesters
to choose between a fast and inexpensive diagnosis versuseacostly and more
accurate diagnosis.

A diagnostic request may contain additional observatidmitithe perceived failure
(the “failure story”) in the body of the message. Observatimay include error codes from
an application, recent events, configuration files, ruretdependency analysis, and so on.
The service description for a diagnosis service specifies aflboth required and optional
input properties that are useful for diagnosis. A diagnosegiester can use this service
description to decide what information to include in a diagfic request. For example, the
input properties of a service description for an HTTP cotinadailure diagnosis service
may include the source IP, destination hostname, the tim&ilure occurred, the number
of recent failures the user has experienced, the applitatimr message, and whether the
user is using a web proxy. The user agent can provide obsamgaif all these properties
in the body of a diagnostic request. Note that an agent mdydecobservations in its
failure story that it does not know how to use for diagnosisause such observations may
be useful to other agents.

6.1.6 Notification

A notification specifies the service ID of its associatedfioaiion subscription. The body
of a notification contains a list of one or more observationdealiefs. The body must
contain all the required input properties specified in théfisation subscription.
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6.2 Responses

When an agent receives a request, it first needs to deternhieéher it can answer the
request. If the time has already expired, it does not havecéipability to respond, the
requester does not have permission to make the requestherbtidget is insufficient, then
it may refuse the request and return an error message.

Each response includes the integer request ID of the refpueshich it is a response.
The body of the response contains the information requéstéae agent. A response body
may also include additional useful information that waseqlicitly requested.

6.2.1 Observation response

To answer an observation request, an agent returns thestegu@formation either from
its cache or by conducting a diagnostic test using the meitiidated in the service de-
scription. More generally, the output of a test may includétiple observations.

6.2.2 Belief response

When an agent receives a belief request, it may return ittiagibeliefs or it may choose
to perform additional tests to improve the accuracy of iteeie A belief response has
almost exactly the same form as an observation responsgpietkat it may contain beliefs
as well as observations.

6.2.3 Diagnostic response

A diagnostic response reports the likelihood of each catdiégxplanation provided in
the request. When an agent receives a diagnostic requesiyithoose among multiple
methods for performing diagnosis. Chapter 7 describes theegs of diagnosis in more
detail. Each time an agent requests information from amagent, it deducts the cost of
the the operation from its budget.

A diagnostic response may include all the types of data inli@fbesponse. The re-
sponse should contain at least the amount of detail speaifidek agent’s advertisement.
A response may also include additional observations, tseked knowledge to justify the
explanations provided. A diagnostic response must conkeirikelihood of each of the
candidate explanations specified in the original diagnastjuest. The confidence in the
most likely explanation is defined as the likelihood of thestqmrobable explanation given
the evidence that the diagnosis provider has.

6.2.4 Knowledge response

A knowledge response provides the requested knowledge.
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6.2.5 Error messages

There are several types of errors that can occur. Some tyfpson messages include the
following.

1. Insufficient input. An agent needs additional inputs tdqren a service. This error
message specifies what additional data is necessary.

2. Permission denied. An agent may refuse a request fromugséer with insufficient
permissions.

3. Request refused. An agent may decline a request for ndawadoept requests in the
future.

4. Insufficient budget. The cost of responding to this retisegreater than the supplied
budget.

5. Request expired. The expiration time has passed.

6.3 Messaging protocol

Many possibilities exist for the choice of transport praibdn order to simplify adoption
and implementation, | choose an approach based on HTTP and XM

The messaging protocol in CAPRI resembles existing remiategplure call protocols
such as XML-RP&and SOAR. XML-RPC does not easily support the complex data struc-
tures that diagnostic agents exchange, however, and thplexity of SOAP lessens its
appeal for use as a messaging protocol. Therefore | decidepgizment messaging in
CAPRI using a custom protocol based on HTTP.

To circumvent firewalls and network address translation TNBoxes and for ease of
implementation | choose to implement DMEP over HTTP. Eveéagdostic agent is identi-
fied and accessed using a URI. A diagnostic agent might rulediaated web server, or a
single web server might multiplex requests for multiplegtastic agents having different
URIs on the same host and port number. Asynchronous notdiaare implemented as
HTTP POST requests. A DMEP request is sent as an HTTP POS@icmigt the request
message using the responding agent’s URI as the resouree id@HTTP response con-
tains the content of the DMEP response. For resilience to RiN&es, diagnostic agents
advertise their URIs in terms of IP addresses rather than DéNges. Note that a response
may require a long time to complete because a diagnostid agay perform many diag-
nostic tests and contact other agents to produce a resplonsse the connection is reset
or interrupted, an responding agent may reply to the origiguesting agent by sending
the response as an HTTP POST message to the requestingagdient’

Another advantage of using HTTP as a transport protocolasitHacilitates the im-
plementation of diagnostic agents using existing HTTPexesuftware. In addition, client

http://www.xmlrpc.com/
2http://www.w3.0rg/TR/soap/
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support for making HTTP requests is widespread. Furtheemidil TP supports authenti-
cation and encryption, which is important for security.

HTTP has some drawbacks, however, such as verbose headeessviwardness of
implementing server-initiated messages (See http://Metfworg/internet-drafts/draft-ietf-
netconf-soap-08.txt). Nevertheless these drawbacksotfatal and are offset by the prac-
tical advantages of easier adoption and implementationToffHas a transport protocol.
Other possibilities for a messaging protocol include BERTP, and constructing a cus-
tom protocol.

With HTTP as the messaging protocol, each response shouel dra HTTP return
code of 200 OK and content-type of text/xml. A request is a P@&h content-type
text/xml. For maximum ability to get around firewalls and NA®dxes, the recommended
port number is port 80, the default for HTTP. If it is not pddsito use port 80 because
another application is using it, then port 8111 is recomneeind

In addition, to reduce the number of HTTP requests, an agaptratch together multi-
ple messages in a single HTTP request. Agents may also medéepeequests to multiple
agents simultaneously.

The contents of the messages themselves is XML because e$priead support for
parsing and serializing data to and from XML. The advantagfesML over a plain text
or custom format include the ability to support Unicode ahe ability to easily extend
the DMEP protocol in the future. Though other formats suclNa$ exist for concisely
describing information, parsers for such languages arasuatidely available as for XML.
The main disadvantages are the additional parsing andisatian time, increased mes-
sage size, and verbosity.

Shttp://www.w3.0rg/2000/10/swap/Primer
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Chapter 7

Message Processing Procedure

The previous chapters described how CAPRI agents can exrasd communicate diag-
nostic information with one another in terms of diagnostiessages. Simply being able
to communicate diagnostic information is insufficient feaghosis, however; agents also
need a common procedure for making sense of the informatiey receive and deciding
what actions to take next based on this information. Forresibdity, this procedure must
allow agents to process new information without domairegfmeknowledge. For scala-
bility, this procedure must facilitate aggregation of damirequests to reduce the cost of
diagnosing a large number of failures. CAPRI addressesthkallenges by providing
agents with a general and dynamic procedure for agents torpediagnosis while coping
with communication costs and network failures.

The strength of this message processing procedure is tigates agents the ability
to compute the value of new services and to incorporate nesgrghtions, beliefs, like-
lihoods, and dependency knowledge from multiple other tgefithout domain-specific
knowledge. Using this procedure, agents can dynamicathpsé which agents to contact
and what actions to take next. Most previous systems fonboliged fault diagnosis support
only static communication patterns and cannot take adgaraénew capabilities offered
by new agents. Some systems collect data in a distributecineyhen perform diagnostic
inference at a single centralized location [98, 50]. Otlpatentially require all diagnostic
agents to participate in diagnostic inference [17, 27]. taa network fault diagnosis sce-
nario, however, network failures, cost considerations e heterogeneous capabilities
of diagnostic agents may restrict communication amongraiatic agents. For example,
a network failure might prevent an agent from obtaining aipalar piece of diagnostic
information, forcing it to choose an alternate strategyd@mgnostic communication, data
collection, and inference involving a different set of atgegnd information.

Thus agents need the ability to dynamically choose amondipteicommunication
patterns for fault diagnosis. For example, a series of agenght simply hand off a di-
agnostic request to the next diagnostic agent until onearhthas the ability to diagnose
it. Alternatively, an agent may first request additionaladatbm another agent, and then
forward the request on to another agent based on the dateeives. Many other possi-
bilities exist as well. The most appropriate agent to cantagt depends on many factors,
including the capabilities of available agents, the obatons and beliefs collected about
a failure, and the probabilistic dependencies among coentsn CAPRI provides agents
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with a flexible procedure for fault diagnosis in which agecas process the information
they receive from other agents to fornrtamponent graphepresenting its beliefs and ob-
servations about the network and apply probabilistic ddpeny knowledge to construct
afailure dependency graptor performing fault diagnosis. Agents can then dynamycall
compute the value of available diagnostic services andsale action to perform while
taking into account both the accuracy and cost of diagnosis.

Another major challenge of fault diagnosis in the Interrsetnianaging cost. Costs in-
clude both the cost of performing diagnostic tests (prolmagt) and the communication
cost of exchanging diagnostic information. Previous rege@ minimizing the cost of
diagnosis considers only the cost of making diagnostistastl not the cost of communi-
cation among multiple diagnostic agents in the Internet 8 51]. Communication costs
can be substantial, however. The large number of hosts imtemet creates the potential
for concentration of the costs of diagnostic probes andraiatic messages, leading to im-
plosion. Consider a serious failure that simultaneoudicad millions of users in multiple
administrative domains (e.g. Internet autonomous systethall affected users simulta-
neously request diagnosis from a single agent, the implosigequests can overwhelm
the diagnostic agent. If instead each affected user ateetogibnduct their own diagnostic
tests to diagnose the failure and ping the failed destinatieir tests may trigger intrusion
detection systems and cause denial of service.

Also, diagnosis occurs repeatedly, especially when a gerailure affects multiple
users that notice the failure and request diagnosis overiadoef time. Previous re-
searchers have considered how to minimize the cost of pgoloina single act of fault
diagnosis [61, 76, 51], but since evidence gathered in one fieriod may provide infor-
mation for future diagnosis, minimizing the cost of mulépliagnoses over a period of
time may require a different pattern of diagnosis than mining the cost of each individ-
ual diagnosis. Therefore agents can greatly reduce th@tditgnosis for serious network
failures by aggregating similar requests. This chaptecriess how agents in CAPRI can
control both the probing and communication costs of diagn@seventing implosion and
trading off accuracy and cost using confidence thresholdderce propagation, caching,
and aggregation trees.

Yet another challenge of fault diagnosis in the Internetaalohg with incomplete or
probabilistic information and diagnoses. Due to netwoilkufas, differing diagnostic ca-
pabilities, and the cost of diagnostic tests and commupitaggents must be able to di-
agnose failures with as little or as much evidence as theg haailable. Many diagnostic
tests are imperfect and can only give probabilistic evigavfdailures. To address the chal-
lenges of incomplete and probabilistic information, CARPRIvides a procedure for agents
to dynamically combine observations, beliefs, and depecylknowledge to probabilisti-
cally diagnose failures with incomplete information with@omain-specific knowledge.

The message processing procedure described in this cregutezsses the challenges
listed above using several techniques. Firstly, to dedi imitomplete information and dis-
tributed dependency knowledge, an agent diagnoses failisiag distributed probabilistic
inference. Secondly, to incorporate new diagnostic inftron without domain-specific
knowledge, an agent combines information from multiplerses to construct aompo-
nent graph Thirdly, an agent reduces the cost of diagnosing multigieifes by caching
component information in aomponent information basd-ourthly, in order to diagnose
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failures using new evidence and new dependency knowledgagent dynamically con-

structs afailure dependency grapinom a component graph anddependency knowledge
base Finally, to take advantage of new services provided by ngsnts, an agent dynami-
cally computes the set of possible next actions to take amdalue of each action using a
failure dependency graph.

Together, these capabilities provide CAPRI agents withreegg procedure to diagnose
failures in a distributed manner without domain-specifiowtedge. This procedure is
general enough to support many different communicatiotepa and inference methods,
including both centralized techniques as well as moreidigied patterns such as belief
propagation. In addition, | show how this procedure allogsrds to manage costs using
caching, evidence propagation, aggregation of requastisc@anfidence thresholds.

Agents follow the same general procedure for processintypéls of incoming mes-
sages. At a high level, the procedure is as follows:

1. Parse an incoming message to construct a component graph.

2. Retrieve component class and property definitions forerkynown classes and prop-
erties.

3. If the incoming message is an observation or belief reques
(a) Perform the requested observations and infer the réegibgliefs.
4. If the incoming message is a diagnostic request, repehtone:
(a) Incorporate cached diagnostic information into the ponent graph from a
component information base.
(b) Construct a failure dependency graph from the compogeauth.

(c) Infer the cause of failure.

(d) If the agent’s confidence in its diagnosis is sufficiemg, budget has expired, or
the expiration time has passed, return a diagnosis.

(e) Compute the value of each possible diagnostic action.
() If no actions are available, return a diagnosis.
(g) Perform the diagnostic action with greatest utility.
(h) Incorporate any new information into the component grapd dependency
knowledge base.
5. Save the component graph to the component informatios bas
6. Return a response containing the requested information.

7. Send notifications to the appropriate subscribers if srang.

This chapter discusses each of these steps in more detailesodbes the data struc-
tures and algorithms involved in message processing. IFdesstcribe diagnosis using prob-
abilistic inference and the output of diagnosis. Next | descthe data structures involved
in message processing. Then | explain how agents can ségctastic actions and incor-
porate information from multiple sources for inference.
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IP Path: @,@

0.99
~ B-C_|P(this=OK)
Path FAIL [0
B->C

1

P(this=OK)

OK | OK

Y| A>c | Pehis=0K)
FAIL |0
ok 1095

Figure 7-1: A Bayesian network for IP path diagnosis allogsras to infer the status of a
component from available evidence.

7.1 Probabilistic inference

To address issues of incomplete information and distribakependency knowledge, di-
agnosis in CAPRI is based on the principle of probabilistieience using Bayesian net-
works. Diagnosis using probabilistic inference has sdvarportant advantages over de-
terministic rule-based approaches. Firstly, Bayesiawords can model both deterministic
and probabilistic dependencies among many types of Inteoraponents and diagnostic
tests. Probabilistic dependencies may model both causallkdge of the variables that in-
fluence a component property as well as diagnostic knowletitgsts that reveal evidence
about a component property. For example, a piece of causallkdge may specify that an
IP path functions if and only if the first hop link functionschtie rest of the path functions.
A piece of diagnostic knowledge may state that a ping aloagghth will always fail if the
path has failed, but may fail 5% of the time even when the mathnctioning. Individual
links function 99% of the time. Figure 7-1 illustrates a Bsig® network for diagnosing
the pathA — B — C. Using this network, an agent can infer, for example, theddamal
probability that LinkB-C has failed given evidence that PiAg— C has failed and Linl&-B

is functioning. An agent’s failure dependency graph repnés dependencies and evidence
in terms of such a Bayesian network. To take into accountesdd from active probing or
changing network conditions, an agent rebuilds its faillependency graph whenever its
component graph or dependency knowledge base changes.

The conditional independence assumptions of a Bayesiavorietacilitate distributed
reasoning and enable the distribution of dependency krayelend diagnostic capabilities
among multiple agents. For example, an agent can infer th# gpath has failed if that
agent has evidence that a link along that path has failecbwitknowing the cause of the
link failure. This structure minimizes the number of othgeats with which an agent needs
to communicate to infer a diagnosis. Thus each agent cartamaonly a local dependency
model and request additional data from a small set of othemtagvhen required.

Probabilistic inference can greatly reduce the number afjabstic tests required to
infer the root cause of a failure compared to deterministabopg methods such as Plan-
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etseer [98]. When high-impact failures occur and an agergives many failure requests
with the same root cause, Bayesian inference enables ahtagafer the root cause with
high probability without additional tests [57]. When an agdoes not have enough in-
formation for diagnosis, an agent can determine which tedtgrovide the maximum
amount of diagnostic information and perform only thosést¢s6].

Probabilistic inference also enables agents to providgntisis even when they cannot
obtain accurate data due to failures or lack of informatidris is a crucial advantage
because frequently diagnostic agents do not have accelsrnfmanation about a failure.
For example, if the agent responsible for diagnosing IP eotiwity failures in an Internet
autonomous system (AS) is unreachable, another agent can still infer the most frieba
explanation for a failure in AX based on historical IP link failure probabilities.

Bayesian inference has some limitations, however. Firdttiie dependency structure
does not exhibit much conditional independence, then it matybe possible to modu-
larly decompose the dependency knowledge for diagnosarisidy, if the model assumes
conditional independence when variables are not actuatylitionally independent, then
inference may produce an incorrect result. In practice,dw@s such problems may not
be very serious. Although assumptions about conditiondgpendence may not always
be correct, in practice agents can still use probabilistference to produce reasonably
accurate results most of the time.

Unlike domains such as medical diagnosis, typically thesegnences of an incorrect
diagnosis in Internet fault diagnosis are not severe. Ifaguostic agent can quickly and
accurately diagnose the majority of failures, it can gseatisist a human network admin-
istrator. For the more difficult to diagnose failures andhie tases where the diagnosis is
incorrect, a human administrator can manually perform @altil tests and inference as
they do today.

7.1.1 Output of diagnosis

In CAPRI, the task of fault diagnosis is to decide which of anfwer of candidate expla-
nations for the failure is most likely. A diagnosis providgrecifies the set of candidate
explanations that it understands, and the diagnosis regjuadicates which of the expla-
nations they wish to distinguish among. The appropriate@tetaindidate explanations to
consider depends on the level and type of detail that a dagmequester desires. For
example, a typical user when faced with a failure to connest¢éb server may want to
know who is responsible for the failure: themselves, the weiver, their ISP, or some-
one else; whereas a network administrator may wish to knaaetexwhich component
has failed. Having a list of candidate explanations to atersenables an agent to provide
the appropriate amount of detail in the diagnosis. To diagrefailure an agent collects
evidence to identify which explanation is most likely. A digtate explanatioh is simply

a set of one or more variable assignments. Then given a setafdidate explanations
H = {hy,...,hn}, the task of a diagnostic agent is to collect evidemtreidentify the most
likely candidate explanatioln® that explains the evidenee

h* = argmaxP(h;|e) (7.1)
hieH
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An agent also returns the value®fh|e) for each candidate explanatibrio the requester.

Note that the common approach of diagnosis by computing thet probable explana-
tion (MPE) of the available evidence is not appropriate is ttase. Computing the MPE
involves assigning a value to every property in the failuep@hdency graph to maximize
the probability of the observed evidence. In Internet falidignosis, however, a user re-
questing fault diagnosis does not know nor care about all@srants and properties in the
network; typically they only want to know which of a small nber of possible causes of
failure is most likely.

7.2 Data structures

A key feature of the procedure that agents follow for diagmasthat it is dynamic and
not domain-specific so that agents can take into account m@nmation and knowledge
received from new agents. Therefore a CAPRI agent gendtsatata structures for fault
diagnosis dynamically each time it receives a diagnostjoest.

CAPRI agents represent the information they have aboutar&teomponent individu-
als and component dependencies using several types oftdathuses. For every diagnos-
tic request, an agent constructe@mponent graplepresenting observations and beliefs
about components relevant for the current diagnosis, afaillae dependency graptie-
rived from the component graph and dependency knowleddgedpieesents the probabilis-
tic evidence and dependencies for properties of compotetite component graph. The
component graph represents the current state of diagmodisgling the results of tests that
have been performed, the observations received from ogjestta about the current failure,
and the relationships between components and diagnost& t&n agent uses its com-
ponent graph to determine whether it can respond to a reqgséesy cached information.
Whenever the component graph changes or new dependencyekigelbecomes available
in the process of diagnosing a failure, an agent rebuildfaitsre dependency graph to
take into account new evidence or dependencies. The faikependency graph contains
the probabilistic dependencies and evidence that an agestto infer beliefs about the
value of unobserved properties and to compute the valuertdrnp@ng diagnostic actions.
| describe these data structures in more detail below.

Each diagnostic agent also maintairaponent information basé cached informa-
tion obtained from previous diagnoses andegpendency knowledge basiedependency
knowledge. The component information base stores obsengtoeliefs, and likelihoods
received from other agents so that this information may leel der diagnosing future fail-
ures. For example, an agent can store information aboetfaikeb servers received from
other agents so that it can quickly diagnose future conoedtilures to those servers.
The dependency knowledge base stores probabilistic depepknowledge about com-
ponents. An agent can add to its dependency knowledge bakatmyng probabilistic
dependencies from observations or by incorporating kndgddrom other agents. For ex-
ample, an agent might learn the conditional probabilityraygest succeeds given the status
of the destination host and store this knowledge in its dépeay knowledge base.
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7.2.1 Component information base

A component information base stores cached informatioruabomponent individuals

from the agent's component graph. The component informati@se contains a list of
observations, beliefs, and likelihoods about componémigxed by their identifying prop-

erties. Each entry in the component information base aldodies an expiration time. An

agent’s component information base might contain muligligervations of the same com-
ponent, each made at a different time, from different ageartd containing information

about a different set of properties. Some of these obsengtibeliefs, and likelihoods
may conflict with one another. Agent can resolve such cosflising the metadata as-
sociated with pieces of information, preferring more reabemade observations to older
observations, for example.

Caching information in a component information base helgspsrt aggregation of
requests to reduce the communication costs of diagnosigrejgtion of requests refers
to the ability to diagnose multiple similar failures usiriggetsame information. In CAPRI,
aggregation of requests can occur whenever a single diegposvider agent offers to
diagnose failures for many other agents. If the failures tihha requesters want diagnosed
tend to be similar, then the diagnosis provider agent wkiklly be able to use the same
data to diagnose multiple failures at relatively low costor Example, if each Internet
Autonomous System (AS) has an associated diagnostic dgaintdn diagnose failures
within that AS, and each agent only accepts requests fromtader neighboring ASes,
then diagnosing a failure that may be caused by a failure pbae of the ASes along an
IP path by requesting diagnosis from the agent for the nexh&®will result in efficient
aggregation. By returning cached information from its comgnt information base, a
diagnostic agent can answer multiple similar requestsamititonducting additional tests
or requests.

7.2.2 Dependency knowledge base

A knowledge base data structure stores the probabilispegency knowledge that an
agent receives from other agents. A knowledge base entgifiggea conditional prob-
ability table for a component class, property, and set oéplvariables. Each piece of
dependency knowledge provides a way to infer the value obpgaty based on its parent
variables. See Section 4.2.4 for more details about depeydaowledge.

Each piece of dependency knowledge also has an associgtieatiex time. Expiring
knowledge forces agents to periodically reload dependénoyvledge from the knowl-
edge provider agent, allowing agents to discover updateemency knowledge when
available.

7.3 Building a component graph
The first step of fault diagnosis is parsing the informatioomided in a diagnostic request
to construct a component graph. This involves identifyimg tomponents and properties

described in the body of the request and correctly settisgofations, beliefs, and relation-
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ship properties for each component. An agent also adds amgependency knowledge to
its knowledge base. In addition, an agent retrieves compatass and property definitions
for any new components and properties.

Agents parse diagnostic messages to update two data s&sictucomponent informa-
tion base of known component individuals and diagnosticresults, and the associated
beliefs of the component properties; and a dependency kugel base containing proba-
bilistic dependency information for each component angmistic test class. Using these
two data structures, an agent can perform probabilistererice to infer the status of com-
ponents in the component model.

The procedure for parsing messages is as follows:

1. An agent receives a message.

2. The agent decodes the message according to the diagneestgage format. That
is, it parses the XML message to determine whether it is andisiic request, a
notification, or a diagnostic response. The agent then@stthe headers and body
according to the message definition.

3. The agent determines whether it has the capability to entve message, or if the
message is malformed, expired, or if for some other reaspagient cannot return a
response. If the agent cannot respond to the request, ihgedun error message.

4. The agent parses the body of the message, extractingvabisas, beliefs and like-
lihoods, and knowledge, as well as the input component Kigits.

5. For each observation:

(@)

(b)

(€)

(d)

(e)

First, determine whether it describes a component ostaésult based on the
element name inside the observation. Suppose it is a compone

Next check eactl ass element inside theonponent element. If a class defini-
tion is not in the agent’s class definition table, the agemienees the component
class definition using the URI for the class.

The agent parses each property of the component. If thgepty definition for
any of the properties is not in the agent’s property definiti@ble, it retrieves
the appropriate definition using the URI of the property.

The agent checks its component graph to determine whitisscomponent is
already in its component graph based on the component'tifigiag properties
or based on the component ID.

The agent adds or updates the information in its comparaph as necessary
based on the metadata associated with the observation.tihdte may need
to make two passes: one pass to create all the componentibddsin the
message, and another pass to make the proper assignmemsdmnponent
relationship properties. If an agent has multiple obséruatof the same com-
ponent, it may keep multiple conflicting observations or @yndiscard one or
more observations based on its local conflict resolutioicpol
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6. For each belief or likelihood:

(a) Extract the metadata for the belief or likelihood.

(b) ldentify the component individual specified in the sabjgsing either its iden-
tifying properties or its component ID. If the agent’s compat model does not
contain the specified individual, then create the individunal set its properties
accordingly.

(c) Identify the property of the component specified in thidber likelihood.
(d) Identify the evidence on which the belief or likeliho@diased.

(e) Beliefs and likelihoods are expressed as probabilitjeta Parse the distribu-
tion or likelihood table to produce a probability table. Asgte this table with
the component property in the component graph. In case dipteutonflicting
observations, beliefs, or likelihoods for the same propefte agent decides
which to use or discard based on the metadata. An agent mageho keep
multiple conflicting beliefs or it may discard one or moreibf or likelihoods
based on its local conflict resolution policy.

7. For each piece of dependency knowledge:

(a) Extract the metadata from the knowledge.

(b) ldentify the component class specified in the subjedhdfagent’s knowledge
base does not contain the specified class, then create a tgvicgrihe class.

(c) Identify the property of the component specified in thewledge.
(d) Identify the parent paths for the knowledge.

(e) Parse the CPT. First, identify the parent propertieg thispar ent Val , val ue,
andp elements to construct a CPT. Store this CPT in the agent'wiatye
base indexed by the component class (from step (b)), pyoffeoim step (c)),
and parent paths. In case of multiple conflicting CPTs forsi|e component
class, property, and parents, the agent may keep multiples GPit may decide
to discard one or more CPTs based on its local conflict reswolydolicy. For
example, it may choose to keep only the most recent piecemfletge.

This procedure allows agents to combine information fronitiple sources into a sin-
gle component graph. For example, consider a regional dgtgnagent that receives two
observations from different sources. First it receives laseovation in a diagnostic request
from a user agent about &I TP Connectiorand its associateddocal NetworkandDNS
Lookupcomponents. Next the regional agent requests additiors@roations from a DNS
lookup test specialist agent. The DNS lookup test agentiges\the regional agent with
an observation describing the results dES Lookup Tedbr a DNS Lookugomponent.
Figure 7-2 illustrates the information in these two obstores. Using the procedure for
parsing diagnostic information, an agent identifies congmbsthat are the same and com-
bines these observations into a single component grapistréited in Figure 7-3. This
example illustrates a relatively straightforward case mfying information from multiple
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sources in which the observations share only one componemmmon and there are no
conflicts, but in general there may be more overlapping carepts and conflicting obser-
vations.

. localNet
HTTP Connection ~ |esseesaessassnanaes » Local Network
ipAddr: 18. 26. 0. 100
destHost: www. exanpl e. com
connTime: 1172181867190
srclP: 18. 26. 0. 100 DNS Lookup
sTatus:dFTAi\InI]_ 138 dnsLookup’ hostname: www. exanpl e. com
clapse & ipAddrs: ( None)
verifyDNSLookupTest
DNS Lookup ~ feseseseseseseses » Verify DNS Lookup Test

hostname: ww. exanpl e. com
dnsLookupResult:
LOOKUP_ERROR_CONFI RVED

hostname: www. exanpl e. com
ipAddrs: ( None)

Figure 7-2: An agent obtains diagnostic observations fiemdifferent sources. Note that
both observations refer to the sadlS Lookugomponent.

Note that an agent can disambiguate multiple componentseatame class using re-
lationship properties and property paths. For examplesicen aDNS Lookupgcomponent
D with two relationship propertiegr i mar yDNSSer ver andsecondar yDNSSer ver , each
referring to a differenDNS Servecomponent. Suppose that agénhas an observation
of DNS LookupcomponenD in its component graph but does not know the identity of
the two DNS Serverseferred to by thepri mar yDNSSer ver andsecondar yDNSSer ver
relationship properties. Agerft wishes to request an observation of the status of the
pri mar yDNSSer ver component from another ageiit Using property path notation, agent
A requests an observation pfi mar yDNSSer ver . st at us, providing theDNS Lookup
componenD as the input component. AgeBtreturns a response indicating that DES
Servercomponent to which ther i mar yDNSSer ver relationship property of component
D refers has statueK. Thus when agenA receives the observation from ageBtit can
unambiguously determine whiddNS Servecomponent the observation refers to.

7.4 Preprocessing
After constructing a component graph, an agent may perf@main preprocessing opera-

tions on the information in the component graph before pariiog additional actions. For
example, for privacy or policy reasons, an agent may encodenoove information before
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: localNet
HTTP Connection IS »| Local Network

ipAddr: 18. 26. 0. 100

destHost: www. exanpl e. com
connTime: 1172181867190

srclP: 18. 26. 0. 100 DNS Lookup
status: FAIL dnsLookup hostname: www. exanpl e. com
e|apsedT|me 438 == |sssssssssssssssssss > —|pAddrs (None)

: verifyDNSLookupTest

v

Verify DNS Lookup Test
hostname: www. exanpl e. com

dnsLookupResult:
LOOKUP_ERROR_CONFI RVED

Figure 7-3: An agent unifies the pieces of diagnostic infdromafrom Figure 7-2 into a
single component graph.

taking additional actions. In addition, in some cases amiagay modify information in
the component graph to correct errors due to unsynchromipetts, for example.

7.5 Incorporating cached information

To reduce the costs of diagnosis, agents can incorporateopsty cached information
from the component information base into the componenthgralpor each component
in its component graph, a diagnostic agent determines hétlhas previously cached
information about that component and sets the appropriadpepties and beliefs in its
component graph. Cached information may include obs@mwatsuch as the results of
recent tests, beliefs such as recently inferred statusrmpooents, and relationships such
as the previously computed dependencies of an AS path. Barge, an agent may set the
status of an AS path based on cached information from a prev@gnosis. An agent may
cache component relationships in its component informabase as well. For example,
suppose an agent has an entry in its component informatsendiating that thé> Routing
component witlsr cl P 18.26.0.100 andest | P 140.211.166.81 has a relationship property
asPat h referring to theAS Pathcomponent witlsr cAS 3 anddest AS 3701. An agent may
then use this component information base entry to setagRet h relationship property of
the IP Routingcomponent in its component graph and create the correspgp@@ Path
component.

Caching information in a component information base camttyeeduce the cost of
diagnosing multiple failures. For example, an agent thegrdeines that an HTTP connec-
tion failure is due to a failed web server can use this infdrometo diagnose future failures
to the same destination without performing any additioastd or requests.

One challenge is determining whether or not to use cachednration. Using cached
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information can reduce the cost of diagnosis, but it may edgloice accuracy if the infor-
mation is out of date. Deciding whether to use cached infaonaequires considering
several factors. Different types of information may havifedent lifetimes; some obser-
vations such as the AS number of an IP address may be valickosywhile others such
as the average round-trip time of a TCP connection may cheagély. Also, the conse-
quences of using out-of-date information may differ gnedthicorrectly identifying an AS

hop in the AS path of an IP route may not matter much if the stafihe incorrect AS hop
is the same as the status of the actual AS hop. On the other iiamdagent incorrectly

believes a web server to have failed when it has not, it mayakesly diagnose an HTTP
connection failure. To address this challenge, the originaf a piece of information sets
the expiration time of every piece of information it prodacef a piece of information

has expired, then an agent does not use the information amal/es it from its component
information base.

7.5.1 Incorporating past evidence using DBNs

Agents may also use cached data in a component informatsmtbanfer the current sta-
tus of a component using a temporal failure model descrilygorbbabilistic dependency
knowledge. This means that if a diagnostic agent has kn@eleflhow long a failure will
last, it can communicate this information to other agenaés tan then use this knowledge
to infer the status of a component from past evidence. Agaatsmodel temporal depen-
dencies among components using dynamic Bayesian netwDB{¥S) [78] to incorporate
cached data. A DBN enables an agent to infer the status of p@oemt from past evidence
given a discrete time hidden Markov model (HMM) of the netiwor

A Markov model encodes the probability that a variable haaréiqular value given past
values of the variable. Many network components can be nedded Markov processes.
For example, a Gilbert model is a common model of network faikures in which the
status of a link depends probabilistically on its statusimprevious time step [96].

One can transform a HMM into a dynamic Bayesian network (DB)yepresenting
the status of a component in each time step with a differenavi@. For example, in
a discrete first-order Markov model, the staXjsof a componeniX at timei depends
probabilistically on its status in the previous time in@rv— 1. An agent represents the
transition probabilitie$(Xj|Xj_1) as a conditional probability table. To incorpor&téme
steps of past evidence into this model, an agent “unrolls’ BN by adding additional
nodes and edges. It can then compute the marginal prolyaBili;|o) of componentX;
given observed datausing standard inference techniques:

PX[0)= T PO%lo) [T P(XiXj-1) (7.2)

Xi—15-, Xk k<j<i

For greater accuracy an agent can model network componsimtg higher order hidden
Markov models using the same approach.

One challenge of reasoning in DBNs is that if there are mamptgal dependencies in
the model, the cost of inference can increase exponengaltiife number of time steps in-
creases. Fortunately, some properties do not have tengepahdencies. For example, the
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status of abstract components sucif &P ConnectionandDNS Lookupslo not have any

direct temporal dependencies since they depend only orréiset status of the underlying
hardware such as routers and DNS servers. This can gredtlgeehe cost of inference
and enable agents to make use of past evidence to reducestiseotadata collection and
communication.

A DBN enables an agent to infer the most likely status of a comept given past
evidence of the status of the component. Note that this alables an agent to compute
the relevance of a past observation with respect to a sehef variables given the available
evidence [61]. An agent might compute the relevance of miron to decide whether to
use cached information or when to expire information in éslee.

7.6 Constructing a failure dependency graph

After incorporating cached information into its compongraph, an agent constructs a fail-
ure dependency graph from the component graph and depgnkeowledge. A failure
dependency graph is a Bayesian network that describes c@ngand diagnostic tests
involved in the failure, any applicable observations antielfiee about these components,
and the probabilistic dependencies among properties sethemponents and tests. More
formally, a failure dependency graph consists of varial@dges, probabilistic dependency
knowledge, and evidence, where each variable representsparpy of a component in-
dividual and each edgg,v) indicates that the value of the parent variablenfluences
the value of the child variable A failure dependency graph may incorporate both deter-
ministic evidence about a variable from an observation as ageprobabilistic evidence
about a variable from a belief or likelihood. Each variableoahas probabilistic depen-
dency knowledge specifying the conditional probabilitytteé variable given the value of
its parent variables. A failure dependency graph can beghioof as a type of probabilistic
relational model [33].

An agent uses a failure dependency graph to make probabiligerences to diag-
nose a failure. For example, a diagnostic agent with the corapt graph in Figure 7-3
and dependency knowledge from Table 7.1 can construct thedfalependency graph in
Figure 7-4. This failure dependency graph illustrates thatstatus of thedTTP Con-
nectionto www.example.com at time 1172181867190 depends on thesstd aLocal
Network HTTP ServerlP Routing andDNS Lookup Additionally, the result of a/erify
DNS Lookup Testan provide evidence about the status ofliiNS Lookup This agent has
evidence that thelTTP Connectiotas failed and that the result of terify DNS Lookup
Testis LOOKUP_ERROR_CONFI RIVED.

To construct a failure dependency graph, an agent conssiiiiependency knowledge
base to identify relevant pieces of dependency knowledgthBocomponents in its com-
ponent graph. At the start of diagnosis, an agent begins avithlure dependency graph
consisting only of the failed component and the list of cdatk explanations. For each
component property? whose value is unknown, an agent may be able to infer its sta-
tus either from dependency knowledge describing how theeitg P depends on other
component properties (causal inference), from dependiemayledge describing how the
properties of other components and tests depend on the stiudiagnostic inference),
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HTTP Connectiostatus:

localNet.- httpServer.- dnsLookup.- ipRouting.P(status= OK|parent$
status status status status
OK OK OK OK 1
OK FAIL OK OK 0
FAIL OK OK OK 0
FAIL FAIL OK OK 0
OK OK FAIL OK 0
OK FAIL FAIL OK 0
FAIL OK FAIL OK 0
FAIL FAIL FAIL OK 0
OK OK OK FAIL 0
OK FAIL OK FAIL 0
FAIL OK OK FAIL 0
FAIL FAIL OK FAIL 0
OK OK FAIL FAIL 0
OK FAIL FAIL FAIL 0
FAIL OK FAIL FAIL 0
FAIL FAIL FAIL FAIL 0

Local Networkstatus:
P(status= OK)

0.95

HTTP Serverstatus:
P(status= OK)

0.99

DNS Lookupstatus:
P(status= OK)
0.98

IP Routingstatus:
P(status= OK)
0.99

Verify DNS Lookup TesinsTestResult:
dnsLookup.status P(dnsTestResul: LOOKUP_.ERRORCONFIRMED|parent$

OK 0.01
FAIL 0.80

Table 7.1: An agent’'s dependency knowledge base contaihsppobabilistic and deter-
ministic dependency knowledge about component classegrapérties.
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Local Network HTTP Server IP Routing DNS Lookup
hostname: www. exanpl e. com

status
FAI L

dnsLookupResult
LOOKUP_ERROR_CONFI RVED
HTTP Connection

destHost: ww. exanpl e. com Verify DNS Lookup Test
connTime: 1172181867190

- Y

hostname: www. exanpl e. com

Figure 7-4: An agent constructs a failure dependency grahguthe component graph
from Figure 7-3 and dependency knowledge from Table 7.1

or from knowledge of prior probabilities. For each piece epdndency knowledge that
the agent wishes to apply, it adds additional componentsagndstic tests to its failure
dependency graph as necessary. For example, in order tdhefstatus of an HTTP server
using diagnostic inference an agent may choose to &id@Tespi ngTest Resul t vari-
able to its failure dependency graph and add an edge if®iFP Servest at us to the new
variable. For each additional component or diagnosticadded to the failure dependency
graph, an agent checks its component information base ¢ordigte whether it already has
observations or beliefs about any of the properties of tlhes@ponents or tests. Note that
at this point the agent does not yet actually perform any efdiagnostic tests; it is only
constructing a failure dependency graph to determine widitianal diagnostic actions
are possible. An agent chooses what dependency knowledge tbased on its expected
cost, expected accuracy, or local policy. An agent recalgigadds additional components
to its failure dependency graph. For each unknown compg@reperty, if an agent has de-
pendency knowledge that it can use to infer the value of tregiqaty, it may add additional
components to its failure dependency graph. For exampleféo the value of atHTTP
Connectiorst at us variable, an agent may ad@ Routingst at us variables to its failure
dependency graph. To infer the value of [BhRoutingst at us variable, it may then add
additionalAS Pathst at us variables, and so on.

7.7 Inferring a diagnosis

The procedure for diagnosis in CAPRI allows each agent ta seinfidence threshold for
diagnosis and provide a set of candidate explanatibtstest. This gives users and agents
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some control over the accuracy and cost of diagnosis. THeehitdpe threshold, the more
accurate the diagnosis and the greater the potential costddition, a confidence metric
lets agents indicate the probability that their diagnosisarrect. If the Bayesian network
used for inference is correct, the confidence thresholdsgadewer bound on the accuracy.
Note that when dependencies are not deterministic, it mapa&possible to achieve 100%
confidence in a diagnosis.

The set of hypotheses that an agent must distinguish betalseraffects the cost of
diagnosis. Generally if there are only a small number of wate explanations, an agent
can determine which is most likely at fairly low cost. On thiner hand, if the set of
candidate explanations is large and involves many vasafen diagnosis may be more
costly. For example, a requester may simply wish to confirmspiion that a component
st at us propertyX has the valu€Al L. That is, the set of candidate explanations is

H={{X=0K},{X=FAL} (7.3)

Another possibility is that the requester wants to know thlei® of allm parent component
st at us variablesY = (Y,...,Ym) for a componenst at us variableX:

H={{Y =v}ve {KFA L}™} (7.4)

If the failed component depends on all on its parent compisrfaimctioning, a requester
may simply wish to know which of the dependencies is mostyike have failed:

H={{vy=FAL},...,{Yn=FAIL}} (7.5)

Note that if the set of variables to consider in each candigiplanation differs, then
multiple candidate explanations may be true.

Giving the user control over the confidence threshold andé&tef candidate explana-
tions to consider allows them to choose between a quick aedpchiagnosis and a slow
and accurate one. Diagnostic agents under load may alseehodower their confidence
threshold or the number of candidate explanations theyident reduce the cost of diag-
nosis. In addition, by adjusting the set of candidate exgtians a user can initially request
diagnosis using a small set of candidate explanations ta geick, low-cost response, and
then request more detailed diagnoses later if necessary.

Alternatively, one can also consider diagnosis using aguare to maximize accuracy
without exceeding the budget. Krause and Guestrin desatgmithms to address these
issues in more detail [51].

7.8 Performing diagnostic actions

If an agent cannot infer the root cause of a failure with sigfitconfidence, it repeatedly
performs additional diagnostic actions until it has suffiti confidence in its diagnosis.
CAPRI differs from previous architectures for fault diagisthat only support fixed com-
munication patterns among diagnostic agents. Instead RCABents dynamically com-
pute the set of available next actions from service desoriptand select an action based
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on the value of each action. Diagnostic actions may includle lncal tests and requests for
additional information from other agents. After each diasfic action, an agent updates its
failure dependency graph to take into account the new oasens and evidence it collects
from other agents. Note that the set of available actions chayge as agents learn new
dependency knowledge, researchers develop new diagnests; and new agents adver-
tise their services. Therefore agents need a way to dyn#lyndetermine what actions are
possible and the value of those actions while being abletta g®licy to prefer certain
actions based on its preferences, requirements, and di#ipabi

An agent may have the ability to perform both local and renaamtigons. One type of
local action is to fill in the property values of componentgngdocal information. For
example, a local agent might be able to determine the IP agdifethe current user or the
time of the last HTTP connection using local informatiomfrapplications or the operating
system. Another local action is to perform a diagnostic testetermine the properties of
a diagnostic test component. For example, an agent mighlumbaPing Testin order to
obtain evidence of a ping test result to infer the status dfPaHost An agent may also
request observations, beliefs or likelihoods, or depeag&nowledge from other agents.

Not all actions are relevant for diagnosis, however. Theo$eiseful next actions an
agent may take depends on the services available to it asawehe information in an
agent’s component graph. To identify the set of useful nekibas that it can take, for
each service in its service table, an agent determines whitthas any components in its
component graph that can be used as an input for that seivicddition, it determines
whether that service would produce useful outputs givenrthet component. If all these
criteria are met, the agent computes the value of the seavideadds the service and input
to its list of available possible next actions.

Each action may have a different value for diagnosis. Théexinge is for the agent to
select an action that significantly improves the accuradaysaliagnosis while minimizing
the cost expended. An agent takes into account severaldaci@alculate service value.
Firstly an agent takes into account the myopic value of mition. That is, what is the ex-
pected value of having the information that the service poed for diagnosing the current
failure. One way to quantify this value is to compute the expeé change in diagnostic
confidence.

To compute the myopic value of information for an action gieeservice and an input
component, an agent first determines what evidence thateesl produce based on the
service description in the agent's service table. The exaddhat the service produces
includes all its output observations and all the evidencevbith its output beliefs are
based. Next, for each of these pieces of evidence, an agemutes the expected change
in diagnostic confidence of having that evidence. Simply potimg the myopic value
of information may not be adequate, however, since the valudnducting a series of
tests may be different from the sum of the value of the indigidests. If two tests have
similar value but are based on the same evidence, it may anlyskful to perform one
of the two tests. Other researchers have considered théepnatf selecting actions non-
myopically [51, 43, 58], but algorithms for computing theramyopic value of information
involve much more computational complexity or require dowspecific assumptions for
efficient approximation.

Another factor to take into account is the expected futustrithution of failures. For
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the purposes of aggregation, it is important to select astibat produce information that
can be reused to cheaply diagnose future failures. Thisinexjan agent to predict the
expected distribution of future failures.

Another consideration is whether performing an action é&sbn agent to make use
of cached information in its component information basea.&@mple, an agent may have
cached information about the status of AS paths. By perfognan action that reveals the
AS path of an IP route, an agent may be able to make use of cacfugthation in its
component information base.

Once an agent has a list of possible next actions and has tedhe value of each
of these actions, it sorts these actions by utility, wherktyis a function of value and
cost. An agent may choose a utility function to use dependimghe agent’s tradeoff
between accuracy and cost. This is similar to the way in wthehservice selection agent
in the Personal Router chooses which Internet access sgwovider to use [56]. Finally
the agent performs the action with greatest utility and a¢pe¢he steps above until its
confidence exceeds a threshold, the request expires, tlyetisdexpended, or no more
actions are available. Each time an agent performs an adtimmoves that action from
its set of available actions. To prevent endlessly retryheysame service, an agent only
recomputes the set of available next actions if it receivag imformation.

Note that this procedure can automatically work around misgc agent failures; if a
specialist agent cannot perform a diagnostic test or iseeathrable, and another specialist
agent with similar capabilities is available, the regicagént will automatically try request-
ing information from the next specialist agent. On the othend, if multiple specialists
all provide the same information, then after getting theinfation from one specialist,
the regional agent knows that requesting information fréva dther specialists provides
no additional diagnostic value and so will not request infation from the other special-
ists. This action selection procedure also provides ageititsa mechanism for providing
redundant backup services. If one or more agents advedrsess with identical inputs
and outputs but different costs, then a requester will abyagfer the lower cost service if
available; if that service fails or becomes unavailableyéwer, then it will use the backup
instead. Agents can also use a similar technique to prefaligrhandle requests from cer-
tain other agents. For example, a regional agent that wishleandle diagnostic requests
for all agents in a particular AS can advertise its servica lawer cost than other generic
regional agents that handle requests from all agents. Thasraagent choosing a regional
agent to contact will choose the regional agent for its ASvdilable, otherwise it will
choose one of the generic regional agents.

This procedure for action selection gives agents greattlgyi in how they perform
diagnosis. The operator of a diagnostic agent can adjustalgvarameters to change how
diagnosis is performed. For example, to avoid costly diagjncactions, one can use a
utility function that penalizes actions with high cost. 8arly, one can tune the param-
eters of the service value computation to favor short-tecoueacy or to minimize long-
term cost. This thesis does not discuss the range of possilplstments one can make,
but it is important to note that this architecture supportgide range of action selection
strategies. Other researchers describe some possibleaags to select diagnostic ac-
tions [76, 58, 51, 3, 61, 62]. The probabilistic approach amputing action value and
selecting actions presented in this thesis resembles agipes described in previous work,
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but whereas previous work mainly focuses on action seled¢tipdomain-specific diagno-
sis, this thesis addresses the challenges of selectimgnadh a general way using service
descriptions.

This procedure also supports distributed diagnosis usétigfipropagation, in which
multiple agents in different parts of the network with knedde of different components
perform probabilistic inference and then share their lielaad likelihoods to compute a
diagnosis in a distributed manner. To perform belief prgteg in CAPRI, an agent re-
quests beliefs and likelihoods from other agents and paggrobabilistic inference. The
advantage of belief propagation is that each agent onlyseekhow a subset of the com-
plete dependency graph and can compute beliefs using acdyildformation. Procedures
for belief propagation in Bayesian networks for distrikditeference are well known. For
more details please refer to [71].

7.9 Returning a response

After completing all the necessary data collection and wegjc inference, an agent as-
sembles the requested information into a response mesBag@rovider agent adds to the
response message the output observations, beliefshitkals, knowledge, and diagnosis
that the requested service offers.

7.10 Postprocessing

After performing a diagnosis, an agent propagates evidancebeliefs to other agents
based on notification subscriptions. Such propagation iofeexce and beliefs can poten-
tially reduce the future costs of diagnosis. For exampleagant that observes a failure in
a critical network component may communicate this obsewab other agents that can
then use this information to diagnose future failures. Agean use service advertisements
to construct an aggregation-friendly topology to factitauch aggregation (see Chapter 5).
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Chapter 8

Prototype Diagnostic Network

The previous chapters described the CAPRI architecturéaidt diagnosis and the ben-
efits it can provide in terms of extensibility, cost managemand ability to deal with
incomplete information. This chapter demonstrates thesefits of CAPRI for real di-
agnostic agents. To evaluate the capabilities of CAPRIyvelig a prototype network of
agents for diagnosing HTTP connection failures for endsiséhis prototype implemen-
tation includes several types of agents, including usentsgeegional agents, a knowledge
agent, and several types of specialist agents that perfomde@range of active and pas-
sive tests, including DNS lookup tests, connectivity pmbRockettrace measurements,
and web server history tests. | show how the CAPRI compon&olagy and communica-
tion protocol enables heterogeneous agents to discoveattabilities of other agents and
communicate diagnostic information about new componemtiscdagnostic tests. | show
how agents in this network can reduce the probing and comeation costs of diagnosis
by aggregating related requests and propagating evidentéedliefs. | also demonstrate
the ability to add new diagnostic agents to the system byemphting a CoDNS lookup
test agent. Finally, | show how agents can perform protstiildiagnosis using whatever
evidence is available to deal with incomplete information.

This chapter describes the types of failures agents diaggimothis prototype imple-
mentation, the types of agents | implement, the classesaghdistic components and tests
agents understand, the types of information agents conuatgiand the procedure that
agents use for diagnosis. Finally | describe the advantafjésult diagnosis using this
prototype implementation over previous research in diated fault diagnosis. The next
chapter presents the results of experiments to quantifpémefits of diagnosis using the
CAPRI architecture.

8.1 Diagnosis of HTTP connection failure

For my prototype implementation of fault diagnosis, | chetsdiagnose HTTP connection
failures for several reasons. Firstly, an HTTP connectalufe can have multiple causes,
and well-known diagnostic tests exist for testing theseseauSecondly, web browsing is
a commonly used network application for which it is relalveasy to collect data from

users. In this experiment, diagnostic agents determimesdoh HTTP connection failure
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observed by a user’s web browser, whether the failure wasaadONS lookup failure, a
web server failure, a network connectivity problem from tlser to their ISP, or whether
an IP routing failuré occurred between the user’s ISP and the destination webrsdis
agnosis in this experiment occurs in real time. When the agent detects a failure, it
requests diagnosis and displays the result to the user whgnasis is complete.

Note that it is not always possible to determine the true eaddailure. The goal of
this prototype is not to diagnose failures with maximum aacy, but rather to demon-
strate the benefits of the CAPRI architecture in terms ofresitelity, the ability to perform
distributed diagnosis, and the ability to control the cdddiagnosis.

8.2 Types of agents

Firstly, | show that CAPRI allows heterogeneous agents different capabilities in differ-
ent parts of the network to cooperate to diagnose failureagrivsis involves conducting
diagnostic tests, aggregating data, learning dependemawlkdge, and probabilistic in-
ference. In the prototype implementation | develop, nolsirgent performs all of these
functions; instead, for improved scalability and cost ngeeraent | deploy several types of
diagnostic agents throughout the Internet. User diagnagients implemented as Mozilla
Firefox extensions run inside users’ web browsers and ciotleservations about failurés.
Regional diagnostic agents respond to diagnostic reqfrestsuser agents and act as ag-
gregation points to reduce the load of diagnosis on spstidjents. Regional agents can
request additional diagnostic information from four typéspecialist agents: stats agents,
web server history agents, AS path test agents, and DNS fotglal agents. Stats agents
collect user connection history information to destinattmstnames and provide observa-
tions of various statistics about connections to the hastnaWeb server history agents
collect user connection history information to web senRs &nd infer web server status.
AS path test agents test the status of IP routing along theopS fiom the user to the web
server. DNS lookup test agents test the correctness of #r&sUBNS lookup. Knowledge
agents collect aggregate data from users and server hasgenyts to produce new depen-
dency knowledge and provide this knowledge to other ageAtsagents advertise and
retrieve service descriptions from a centralized servioectbry. The specialist agents and
regional agents operate on Planetlab at sites around tHd.widre learning agent and the
service directory run on a machine at MIT. Appendix B corgdime ontologies, service
descriptions, and knowledge for these agents.

This prototype implementation supports the addition of rge&nts as well. New user
agents may join at any time. When new user agents join theanktfer fault diagno-
sis, they automatically look up the identities of the regilbagent and the server history
agents with which they need to communicate using the sedireetory. The directory
server assigns regional agents to users based on their ASttibute load and provides
regional agents with a way to locate the specialist ageetgwhsh to contact. For ease of

Technically, the failure of an IP path may be caused eithearbiyncorrect route (an IP routing failure) or
a failure to forward a packet along the route (an IP forwagdailure). It is difficult for users to distinguish
among these two cases, and so in this thesis | refer to bo#is tyfofailures as IP routing failures.
2http://servstats.mozdev.org/
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implementation and evaluation, this prototype implemioiieuses a centralized directory
server. This directory server provides agents with a lisawdilable diagnostic services
that other agents offer, including knowledge, observataomd belief services as well as
subscription notifications. An agent stores this list irs#svice table for future lookups. If
additional robustness is desired, this centralized dirgctervice could be replaced with a
more distributed peer-to-peer system, but implementirody sudirectory service is outside
the scope of this thesis.

This prototype implementation includes over 10,000 usenggfrom around the world,
4 web server history agents, 4 stats agents, 3 DNS lookumtgsits, 14 AS path test
agents, and 15 regional agents.

8.3 Components and diagnostic tests

In this implementation, agents exchange diagnostic in&ion according to the compo-

nent ontology described in Chapter 4 and using the proteestisbed in Chapter 6. Agents

communicate information about several types of componamiisdiagnostic tests. In this

section | briefly describe each of the types of componentgestd that agents understand.
Section 8.5 describes how agents observe these componentsaperties and use this in-

formation for diagnosis. The complete component ontolagyloe found in Appendix B.

8.3.1 Components

Agents in this prototype implementation diagnose HTTP eation failures. AnHTTP
Connectionclass has descriptive propertiescl P, dest Host , dest Hash (MD5 hash of
the destination hostnamepnnTi me, andst at us; and relationship propertiesmsLookup,

htt pServer,| ocal Net, andi pRout i ng. An HTTP Connectiors identified byconnTi me
anddest Hash. An HTTP Connectioffiailure may be due to a failure in tHeéNS Lookupa
failure at the destinatioHTTP ServeralLocal Networkconnectivity problem between the
user and their ISP, or d® Routingfailure elsewhere in the network. When an agent starts
up for the first time, it retrieves dependency knowledge abtiurP Connectionfom the
knowledge agent.

An HTTP Serveclass has an identifying propeiitpAddr indicating its IP address. An
HTTP Serveralso has a status property and an aggregate propensecFai | uresTo-
Server representing the number of consecutive users who expeddadures connecting
to this server. Server history agents can probabilisycalier the status of a server from
consecFai | uresToServer.

A Local Networkclass has an identifying propertypAddr, a st at us property, and
an aggregate propertpnsecFai | ur esFroniser representing the number of consecutive
unique destinations to which this host experienced HTTHeotion failures. User agents
and regional agents can usensecFai | ur esFromJser to infer the status of &ocal Net-
work component.

A DNS Lookuglass has at at us property, a destinatiohost name property, and an
IP address list propertypAddrs. The IP address list property contains a list of the IP
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addresses for the given hostname returned by the DNS loakuig, empty if the DNS
lookup failed.

An IP Routingclass has at at us property, asr cl P property, and aest | P property.
IP Routingcomponents are identified by their source and destinatioadd?esses. The
status of alP Routingcomponent depends on the status of the underli@drath

AS Pathcomponents have sr cAS property, adest AS property, ast at us property,
and two component relationship propertiesxt ASHop, and anext ASPat h property that
refers recursively to anoth&S Path AS Hopcomponents also have the propersesAS,
dest AS, andst at us.

8.3.2 Diagnostic tests

To illustrate the range of possible diagnostic tests CARRpsrts, | implemented several
different types of diagnostic tests that vary greatly imtgiof required inputs, outputs, and
cost. These diagnostic tests include both passive measuatsrmomputed from historical
observations, as well as active measurements that proloaitfent state of the network. In
addition, some diagnostic tests such a&efy DNS Lookup Tegiroduce only an observa-
tion of the value of the property of a diagnostic test. Otladss produce information about
the dependencies of a component, such ad%&Rath Testhat provides information about
both the AS path dependencies of an IP path as well as infmmabout the status of the
links along the path.

One diagnostic test is to observe the error code returnelddoywéb browser application.
A Firefox Error Testhas a descriptive property oxEr r or Code and a relationship property
ht t pConn indicating the correspondingTTP ConnectionSee the Appendix B for the full
list of error codes.

Another useful diagnostic test is to determine whether e nan connect to a known
good web server. Abutbound Conn Testiagnostic test class has descriptive properties
srcl P, probeURl, andprobeResul t. The test result is eitheé® or FAI L depending on
whether the user agent was able to connect to the destinatisin Users and regional
agents can use the result of @atbound Conn Tegb infer the status of &ocal Network

DNS specialist agents can performVarify DNS Lookup TestThis test has descrip-
tive propertieshost name anddnsLookupResul t ; and a component relationship property
dnsLookup referring to the DNS Lookup component tested. The test teésay be one of
six possible values:

LOOKUP _ERROR_CONFIRMED Neither the user nor the DNS agent was able to get
an IP address for the given hostname.

LOOKUP _ERROR_UNCONFIRMED The user was unable to get an IP address, but the
DNS agent was able to obtain an IP address for the given hostna

CORRECT The IP addresses in the DNS Lookup component match the IR skl ob-
tained by the DNS agent.

INCORRECT The IP addresses in the DNS Lookup component differ from Ehad-
dresses obtained by the DNS agent.
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LOOKUP _ERROR The user obtained an IP address for the hostname, but the D&t a
failed to get an IP address.

ALIAS The DNS agent’s DNS lookup indicated that the hostname idias far another
hostname. In such situations, frequently different uselsolrtain different IP ad-
dresses for the same hostname. For example, content gehedwvorks such as
Akamai use DNS aliases to return different IP addressedfereint users.

A DNS specialist agent infers the status dDBIS Lookupusing the value ofinsLookup-
Resul t.

IP routing specialist agents can perfoA® Hop TestandAS Path Testto determine
the status ofP Routingbetween two Internet autonomous systems. AAhHop Teshas
descriptive propertiesr cAS, dest AS, andasHopTest Resul t ; and a component relation-
ship propertyasHop indicating theAS Hopbeing tested. ArasHopTest Resul t is either
X or FAI L, depending on whether the agent was able to successfuliy lBypackets from
the source AS to the destination AS. The source and destimAites of arAS Hop Test
must be neighboring ASes. AAS Path Teshas descriptive properties cAS, dest AS,
andasPat hTest Resul t . An asPat hTest Resul t is eitherCK if the traceroute was able to
reach the AS of the destination IP addressFAirL otherwise. An IP routing agent infers
the status of a\S Hopfrom the result ofAS Hop Testsand can infer the status of an
AS Pathfrom AS Path Testand AS Hop Testgalong the AS path from the source to the
destination. It can then infer the status of iReRoutingcomponent. In this prototype
implementation, this test is performed using the ScrigigdRiockettrace tool [81] and des-
tination ASes are looked up using whéblote that an agent may not always be able to test
the status of an AS hop if the agent is not along the AS path thenuser to the web server
or if a failure occurs before reaching the source AS.

8.4 Routing of diagnostic information

Fault diagnosis in this implementation requires the exgeaof diagnostic information
among multiple agents. In order to compute aggregate statebout web servers, server
history agents subscribe to notificationsHbf TP ConnectionsLearning agents subscribe
to information about diagnostic results. In the processiaf@dosis, notifications of di-
agnostic information flow from user agents to a regional agei then to server history
agents and a learning agent. Regional agents can then téggiebservations, beliefs, and
knowledge generated by the web server history and learmgagta. User agents may then
request dependency knowledge from regional agents. Ralghgents aggregate requests
from user agents, request additional diagnostic inforomefitom specialist agents, and fi-
nally respond to requests. In this section | describe theémgand aggregation patterns of
diagnostic information in my prototype implementation.

Notification subscriptions allow certain agents to aggregartain types of diagnostic
information. In order to learn dependency knowledge fogdising failures, knowledge
agents collect observations abdtit TP Connectionand their associateldocal Network

Shttp://pwhois.org/Ift/
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andHTTP Servesstatistics. Rather than collecting server connectiorohysbbservations
directly from users, which does not scale well with the nundfaisers, the learning agent
requests aggregate data from server history agents andrigssto notifications of di-
agnostic results from regional agents. Note that a learagnt can perform this data
collection periodically and do learning offline to reducerocaunication cost.

User agents make observations abdiitTP ConnectionsOutbound Conn Testand
Firefox Error Tests User agents periodically send these observations to matjagents,
which then forward on the observations to server histongustic agents, which then
compute theonsecFai | uresToSer ver for each destination MD5 hash. AHTTP Con-
nectionswith the same destination MD5 hash get sent to the same seistery agent.
User agents also periodically send aggregate statisticemsecFai | ur esFronmser and
the results of its diagnostic tests to a regional diagn@sjent.

Here is an example of ATTP Connectiombservation made by a user agent:

<notification
xm ns: core="http://capri.csail.nit.edu/ 2006/ capri/core#"
xm ns: com="http://capri.csail.nit.edu/ 2006/ capri/comon#"
versi on="0. 3"
time="12345"
clientVer="0.30"
notificationl D="10">
<body>
<observat i on>
<component id="1">
<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on
</cl ass>
<com dest Hash>+0THLgaznxk9l 8bU5ZgDGA==</ com dest Hash>
<com connTi me>123</ com connTi ne>
<core: stat us>X</ cor e: st at us>
<com el apsedTi me>340</ com el apsedTi nme>
</ conponent >
</ observati on>
</ body>
</notification>

Next, the learning agent colleatsnsecFai | ur esToSer ver statistics from server his-
tory agents. The learning agent labels past failures, edapendency knowledge, and
then communicates this dependency knowledge to regioaghdstic agents, which then
communicate this knowledge to user agents.

Diagnostic requests flow from users to regional diagnogjengés. Regional diagnostic
agents may then request additional information from selm&tory agents, AS path test
agents, or DNS lookup test agents. A regional agent can ecthéccost of diagnosis by
incorporating cached information in its component infotimabase relevant for diagnosis.
A regional agent may also request information from othenégto maximize the expected
future value of that information. This process is a form ofjuest aggregation in that
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it enables an agent to diagnose multiple failures using feests and requests than is
required to diagnose each failure individually.

Regional agents may communicate additional observatibogt&d TTP Servercom-
ponents to user agents in their diagnostic responses taedtie cost of diagnosing fu-
ture failures. For example, if a web server fails, the seagegnt for that web server will
notice that multiple users cannot connect to that web seawdrincrease theonsec-

Fai | uresToServer statistic for that web server. A regional agent diagnosheyfailure
requests theonsecFai | uresToSer ver information from the server agent and uses it to
diagnose th&iTTP Connectioffailures from users. The regional agent also communicates
theconsecFai | uresToSer ver statistics to user agents so that the user agents can deagnos
future failures in connecting to the failed web server.

The web server history agent collects and aggregates HThReotion history data
from user agents to producensecFai | uresToSer ver observations, the number of con-
secutive unique-user failures to a destination web seRradddress. The web server history
agent combines this aggregate data from users with its dieppen knowledge to compute
a belief about the status of the destination web server.

For additional scalability and to balance the load of dieggsidn this experiment there
are four web server history agents distributed throughdanétlab, each responsible for a
different set of web server IP addresses. Each web sernteryhegent subscribes téTTP
Connectionobservations for a different set of web servers. This dertnates the ability
of CAPRI to distribute dependency knowledge and diagnastpabilities among multiple
agents.

8.5 Diagnosis procedure

The procedure for diagnosis described in Chapter 7 allovesnisgwithout any previous
knowledge of these types of diagnostic information to awtbecally learn the meaning of
these component and test classes from the component opthodiagnose failures us-
ing dependency knowledge collected from other agents. dllesvs regional diagnostic
agents to automatically construct failure dependencylggdmm observations of connec-
tion failures from users and dependency knowledge fromesdristory agents. Agents in
this implementation follow the following procedures foufadiagnosis.

8.5.1 User agent

When a user agent first starts (i.e. a user opens their Fing&dxbrowser), it checks its
service table to determine the regional agents it can usis $fervice table has expired,
it requests new services from the agent directory. A usentagpires a service 24 hours
after receiving it from the agent directory.

When a user agent detects an HTTP connection failure, gkctslidata about the Fire-
fox error code associated with the failure and creates tmeesponding observations of
the HTTP Connectiorand Firefox Error Test A failure is defined as an HTTP request
that results in a Firefox error code corresponding to a ngtweoror. In addition, because
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many network failures manifest themselves as slow-loadia pages, failures also in-
clude HTTP requests that the user cancels (i.e. presseSthp™button in their browser
or navigates away from a page) after 15 seconds without @nsggrom the web server.

When a failure occurs, the user agent also computesdhgecFai | ur esFromJser
statistic for theLocal Networkcomponent corresponding to the user’s local network. The
user agent then checks its component information base @rdiete whether it has any
information about theHTTP ServerandLocal Networkcomponents for thi$iTTP Con-
nection If so, the user agent fills in the properties of tH€TP ServerandLocal Network
components using information from its component informatbase. The user agent then
constructs a failure dependency graph containing thed&ll€TP Connectionthe Fire-
fox Error Test the Local Network a DNS Lookupand theHTTP Server All user agents
have dependency knowledge stating that the status ¢fTaiP Connectiordepends on
the Local Networkst at us, DNS Lookupst at us, IP Routingst at us, andHTTP Server
st at us. If the user agent has probabilistic dependency knowledgmferring the proba-
bility of HTTP Serverfailure andLocal Networkfailure fromconsecFai | ur esToSer ver
andconsecFai | ur esFromJser, then it adds the corresponding edges to the failure depen-
dency graph.

The user agent then performs probabilistic Bayesian infagausing its failure depen-
dency graph to compute the likelihood of failure for thecal Network the DNS Lookup
IP Routing andHTTP Servercomponents in its failure dependency graph. If its confi-
dence in its diagnosis is insufficient, the agent then cotsdaicOutbound Conn Testnd
performs diagnostic inference again. If it still does notéaufficient knowledge to diag-
nose the failure, or if its confidence in its diagnosis is w,lthen the user agent requests
diagnosis from the regional diagnostic agent. The usertafgen constructs a failure re-
port containing the information in its failure dependencgh and transmits a diagnostic
request containing this failure report to the regional diagfic agent.

Every five minutes, a user agent sends a batch of HTTP coondustory notifications
and diagnosis history notifications to a regional agent.

8.5.2 Regional agent

Regional agents act as dispatchers and aggregation positgy the general, dynamic pro-
cedure for processing messages described in Chapter 7iddnayfy possible similarities
among diagnostic requests and decide which agent to corgacbased on the value of the
information each agent provides. When a regional diago@gfent receives a diagnostic
request from a user agent, it takes the component graph redgjuest and adds any relevant
information it has in its component information base, susthaconsecFai | ur esToSer -
ver for the destination host or the results of other previoussteé regional agent also
computes the AS path for the IP route from the user to the risdin web server in order
to identify potentially similar failures. The regional diaostic agent requests new depen-
dency knowledge if necessary. It then performs probalulisference to infer the cause
of failure. If the regional agent’s confidence in its diagsasxceeds a threshold, then it
returns a diagnosis to the user agent. Otherwise, it corsassible next actions, requests
additional tests from specialist agents as necessaryeqeats its diagnostic inference.

A regional agent uses information in its component infoiiorabase to identify similar
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failures. When a regional agent receives a diagnostic stqitehas three options for ob-
taining additional information about the components imedlin the failure: it may request
web server status beliefs from a server history agent, DNBuUp status beliefs from a
DNS lookup verification agent, or IP routing status beligtsf an AS path test agent. In
order to control the cost of diagnosis, a regional agentselde action with greatest util-
ity, where ultility is the expected confidence of diagnosisigishe information produced
by the action divided by the cost of that action. The procedar probabilistic inference
provided by CAPRI can automatically take into account tHaevaf information of various
tests based on available evidence and dependency knowledge

Note that a regional agent does not need the ability to parony diagnostic tests; it
simply requests information it needs from other agentsnyiie dependency knowledge,
beliefs, and observations it obtains, a regional agent @gndse failures in a general way.
This procedure makes it easy to add additional specialestag component classes, and
diagnostic tests.

8.5.3 Web server history test agent

A web server history test agent is one of four types of spestialgents in this proto-
type. The server history agent is a type of passive diagnaestent that does not per-
form any active probes or diagnostic tests, but rather singpllects observations from
other agents in order to produce aggregate statistics lusefdiagnosis. A server his-
tory agent collects observations dif TP Connectionfom many users to a singldTTP
ServerlP address. It then uses these observations to compute thieenwf consecutive
users who cannot connect to tHE TP Server A server history agent assigns this value to
theconsecFai | uresToSer ver property of the correspondingTTP Servecomponent. A
server history uses this information to infer a belief in shatus of the HTTP server. Server
history agents respond to belief requests for HTTP senaustgiven the IP address of a
server as input.

To demonstrate the possibility of distributed diagnosismgisnultiple server history
agents, this prototype contains four server history ageash responsible for a different
set of destination IP addresses. Web server history testtageecify input restrictions
in their service advertisements to achieve this distriouf responsibility. A regional
agent dynamically determines the appropriate servertyistgent to use by consulting the
service descriptions in its service table.

8.5.4 DNS lookup test agent

A DNS lookup test agent infers beliefs about the status@N& Lookugomponent given
a hostname and the IP addresses returned by a lookup. Inrthatype implementation,
the DNS lookup verification agent performs another DNS Ignknd compares the IP
addresses it obtains with the IP addresses obtained by #rewlen the HTTP failure
occurred. This test can detect several types of DNS lookoiplems. For instance, suppose
that the user was not able to obtain an IP address for thendé@sti hostname. If the
DNS lookup verification agent is able to get an IP addressal indicate that the user’s
DNS servers have failed. Alternatively, if the IP addressetained by the user and the
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DNS agent differ, it may indicate that the user's DNS senas imcorrect or out of date
information. A DNS lookup verification agent can respond ®&idf requests foDNS
Lookupst at us given a hostname and a set of IP addresses as input.

This prototype implementation contains three DNS lookupfication agents. Each
agent can diagnose any hostname. A regional agent selediSaddkup test agent by
consulting the service descriptions in its service table.

8.5.5 AS path test agent

AS path test agents infer beliefs about the status dPdoutingcomponent by performing
Rockettrace tests. A Rockettrace test provides informadioout the status of IP routing
across different ASes.

An AS path test agent responds to belief request#fdoutingcomponent status. In a
belief response, an AS path test agent also includes balefst the status of the AS hops
along the IP path in order to assist regional agents witheagagion.

Since the ability of an AS path test agent to test a given IRerdapends on its location
in the Internet network topology, the AS path test agentiips@an input restriction in its
service description to only accept requests for IP routesviich the source IP is within
the same AS as the AS path test agent.

Note that many existing traceroute tools exist today, anadynsarvices exist to perform
traceroutes [63}. CAPRI allows one to wrap such existing tools and servicehiabdther
agents can automatically request such data and incorpofataliagnosing failures.

8.5.6 Stats agent

The four stats agents in this prototype demonstrate théyatalaggregate observations of
HTTP connections from multiple users to a destination rerstand produce observations
of aggregate statistics. To distribute responsibility amthe four stats agents, each stats
agent specifies an input restriction on the set of web semsiname hashes for which it
can provide information.

8.5.7 Knowledge agent

Agents diagnose failures using probabilistic inferencg Bayesian networks. To perform
such probabilistic inference, agents need probabilistigethdency knowledge. Some of
this dependency knowledge may come from expert humans loay also be learned
automatically by agents. In this prototype, | demonstrat® b knowledge agent can learn
dependency knowledge from observations of past failurdeammunicate this knowledge
to other agents.

A knowledge agent creates new dependency knowledge by s&aoting failure de-
pendency graphs for past failures, labeling each diagmvaisisthe true cause of failure,
and then learning the probabilistic dependencies usingya®an learning algorithm. In
my prototype implementation, the knowledge agent collegidence about failures and

“http://www.bgp4.net/wiki/doku.php?id=tools:ipyraceroute
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diagnostic tests using a notification subscription. Oncaya tthe knowledge agent also re-
questd ot al ConsecFai | uresToSer ver observations from web server history agents for
each diagnosis notification it receives.

Next the knowledge agent labels each diagnosis with thectiuse of failure. In this
prototype implementation, it is not always clear what theetcause of failure is in each
case, however. Therefore in this implementation a knowdealgent uses the set of rules in
Algorithm 1 for labeling the cause of failure. | chose theesibelow because they appear
to classify failures fairly accurately for most of the reabrld network failures | examined.
The number of ot al ConsecFai | ur esFronser for a failure represents the total number
of consecutive failures to unique destinations both bedme after the failure in question,
whereagonsecFai | ur esFromJser only counts the number of consecutive failures before
the failure in question. For example, if a user cannot contwethree consecutive different
destinations, then the number of total consecutive fasldrem the user is three for all
three failures. Similarlyt ot al ConsecFai | ur esToSer ver represents the total number of
consecutive failures from unique users both before and #ifesfailure in question.

Algorithm 1 The procedure for labeling failures using a posteriori infation

if t ot al ConsecFai | uresFronmlJser > 3then
Label it a local network failure.

else ift ot al ConsecFai | uresToServer > 2then
Label it a web server failure.

else ifOutbound Conn Tegr obeResul t = FAI L then
Label it a local network failure.

else ifFirefox Error Testf f oxEr r or Code = 30 (server not foundhen
Label it a DNS lookup failure.

else ifAS Path TestsPat hTest Resul t = FAI L then
Label it an IP routing failure.

else ifFirefox Error Testf f oxEr r or Code = 13 (connection refusedhen
Label it a web server failure.

else ifAS Path TestsPat hTest Resul t = OKthen
Label it a web server failure.

else ifFirefox Error Testf f oxEr r or Code = 14 (connection timed outhen
Label it an IP routing failure.

else
Label it an unknown failure.

end if

Once a learning agent learns dependency knowledge, it comeatas this knowledge
to regional and specialist agents. Because the distribofitailures in the Internet changes
frequently, knowledge learned at one point in time may diffem knowledge learned at
another time. Therefore it is important to continually leand communicate new depen-
dency knowledge. The optimal frequency with which a leagrnagent collects observa-
tions and communicates knowledge depends on the rate ahwbmendency knowledge
changes, the cost of collecting observations, and thedftsdene is willing to make be-
tween accuracy and cost.
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Though it is possible to have multiple learning agents térithste the communication
and component cost of learning, having fewer learning agemproves accuracy because
then each agent has a more complete set of observations finich o learn.

8.6 Extensibility

The strength of the CAPRI architecture is that it allows oméntroduce new diagnostic
agents and diagnostic tests, and diagnose failures udiiegedit patterns of communica-
tion. This implementation can be extended to support neesyyh agents and information
in several ways.

Initially, this implementation has four types of speciabgents: web server history
agents, DNS lookup test agents, AS path test agents, asdgiatts. The strength of the
CAPRI architecture is that it allows one to add new agentsibeace existing agents with
new diagnostic tests. For example, instead of simply penrifog another DNS lookup, a
DNS lookup agent might also attempt to validate DNS servefigaration by checking
for inconsistencies [29]. An AS path agent might use othelston addition to traceroute
to test AS hops. A web server diagnosis agent may also pewdotive probes or measure
statistics such as latency and failure rate.

To demonstrate extensibility in my experiments, | add a npecmlist agent to the
system that uses the CoDNS service [69] to provide beliedaieDNS Lookupst at us.
Chapter 9 describes the results of these experiments.

In addition, one can imagine other types of specialist agastwell. For example,
a web browser specialist agent might be able to determinghghea failure was due to
a software bug. An IP link specialist agent might be able &ntdy individual IP link
failures caused by router or switch failures. To add a newigfist agent, we need to make
three modifications to this implementation:

1. Add new component class and property definitions to thepomant ontology if
necessary. For example, to diagnose DNS servers one museé ddiiNS Server
class and add a component relationship property t@iR& Lookuplass relating a
DNS Lookupwith aDNS Server

2. Advertise the new capabilities of the agent to the ageattbry. For example, a DNS
specialist agent might provide information about the plolitg of DNS Lookuand
DNS Servefailure given aDNS ServetP address and a hostname.

3. Optionally provide new dependency knowledge for any gedefined properties by
advertising a knowledge service. For example, a DNS seryentamight provide
knowledge of the conditional probability @NS Lookugst at us given thest at us
of the correspondin@®NS Server Note that a specialist agent need not reveal this
knowledge; it may choose to keep this knowledge privatewfighes. If the agent
does reveal this knowledge, however, then other agentsnfanthest at us of a
DNS Lookugdrom observations oDNS Servest at us without requesting diagnosis
from the specialist agent.
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Also, note that there are several ways in which a speciajshemight operate. For ex-
ample, a server history agent might only provide obserwstiaf consecutive failures to a
server without having any knowledge of the probabilistipeledencies between this statis-
tic and the status of an HTTP server. Then another agent whéiptoper knowledge can
perform inference of HTTP server status. Alternatively #gent might provide only the
beliefs without providing the evidence. For this to work eguesting agent must provide
the necessary likelihood or beliefs for belief propagatioorder to get an accurate result,
possibly involving more communication overhead. A thirdsgibility, and the one | im-
plement here, is for the specialist agent to provide botlktieevledge and the evidence so
that the requesting agent can aggregate more effectivétyfeiver messages and without
prior knowledge of the methods that the specialist agerd fegediagnosis.

Another way to extend this prototype is to introduce new dasglic test classes and new
properties of previously defined component classes. Fanpleg in addition taconsec-

Fai | uresToSer ver, the server history agent might also provide statisticshenaverage
rate of failure to particular destinations. To add such né&guostic tests and properties,
one must define the new property, create an agent that askgthe capability to provide
observations of the new property, and optionally provide deagnostic knowledge.

Another possibility is to use existing agents in differerdys. For instance, in this
implementation the AS path test agents are only used to ageitoutes from the user to the
server. It may also be useful to use AS path test agents tmgitt® run traceroutes from
the server to the user, for example.

8.7 Controlling cost

The diagnostic procedure above controls costs of commtingcdiagnostic observations,
knowledge, and requests by aggregating multiple similiéurias and distributing requests
across multiple agents.

HTTP Connectiomnformation from all users is distributed among multipleve his-
tory agents based on the destination of#¥&'P ConnectionsThus a single server history
agent only needs to handle a fraction of the total amount nheotion history data. This
architecture allows us to support additional users by agithore server history agents and
redistributing the set of destination servers among theesdristory agents.

Each user agent requests diagnosis from a particular regagent. Thus to support
additional users while limiting the number of user agentsihich a single regional agent
diagnoses failures, we can add additional regional agewntsssign the new users to these
additional regional agents. Regional agents also act azgaton points for requesting
observations from server history agents and dependenayl&dge from learning agents,
limiting the load of diagnostic requests on server historg Eearning agents. In addition,
aggregating multiple diagnostic requests at a single refiagent allows a regional agent
to diagnose multipleHTTP Connectiorfailures caused by the failure of a singlI' TP
Server This architecture also means that user agents do not ndewvowhat specialist
agents exist or which ones to contact to diagnose a failure.

Note that adding new regional agents involves a tradeotfel@sing the number of re-
gional agents reduces the number of requests each one odeaisdie, but it also reduces
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opportunities to use cached information to diagnose malspnilar failures. The optimal
number of regional agents depends on many factors, ingjuth@ frequency of failures,
the burstiness of requests, the rate at which regional agamt process requests, the prob-
ability that cached information collected during the diagis of one failure can be used for
diagnosing future failures, and the assignment of usertagemegional agents.

In this implementation, aggregation of requests occur®t bser agents as well as at
regional agents. User agents can cache information abeuesults of outbound connec-
tivity probes and the number of consecutive failures toipaldr destinations. A user agent
may then use this information to diagnose future failurethf@wer requests.

In order to learn an accurate dependency modeHforP Connectiofailures, a learn-
ing agent must collect observations for BITTP Connectiorfailures. Therefore it sub-
scribes to notifications of historical observationsH6f TP Connectiorfailures and their
associated diagnostic tests and dependent componentsdgiomal agents and requests
aggregate data from server history agents. Since depeynéaowledge changes relatively
slowly compared to statistics such @snsecFai | uresToServer, a learning agent does
not need to receive immediate notifications of every failanel can just collect batched
observations oHTTP Connectionperiodically.

8.8 Diagnosis with incomplete information

Diagnostic information and capabilities are distributegromultiple diagnostic agents in
this prototype implementation. Diagnostic agents use givdistic inference to compute
the probability of the most likely cause of failure and thefidence of their diagnosis with
possibly incomplete information. In addition, agents cesppgate useful observations and
knowledge to other agents so that they can use this infoomé&bi diagnose future failures.
Probabilistic inference combined with propagation of mfiation allows diagnostic agents
to diagnose failures even when other diagnostic agentsrfaile unreachable. For example,
if a user agent cannot contact a regional agent for diaghosisas dependency knowledge
about how to infer the most likely cause of failure framnsecFai | ur esFromJser , it can
still provide an approximate diagnosis without knowing teeults of other tests. Simi-
larly, even if a regional agent cannot obtain up-to-datesecFai | ur esToSer ver obser-
vations from a server history agent, the regional agent rtithyise cached observations of
consecFai | uresToSer ver in its diagnosis.

The ability to perform diagnosis with incomplete infornatialso provides robustness
to network failures and agent failures. For example, evengh a user without network
connectivity may not be able to connect to their regionalnagthe user agent can use
outbound connectivity tests and observations of consextdilures to diagnose a failure
with incomplete information.

Diagnosis with incomplete information also gives usersdpgon to trade off privacy
and accuracy. In my prototype implementation, knowing themtity of the destination web
server can greatly improve the accuracy of HTTP connectidnre diagnosis, but some
users may not wish to reveal such personal information. hegs, the more information
that a diagnostic agent has, the more options it has for deEigmnd the more accurate its
diagnosis. CAPRI allows agents to trade off privacy and eamuby allowing a diagnosis
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requester to provide as little or as much information as thisy. For example, rather than
revealing the full URI of the destinations that users wasteazh, a user agent might only
reveal an MD5 hash of the destination hostname. This paignteduces the accuracy of
diagnosis because although it still provides server diailoagents with enough informa-
tion to determine if multiple users experience failuresreecting to the same destination
hostname, it prevents an agent from determining how mamyrés have occurred to the
destination IP address or whether the DNS lookup complaiedessfully. On the other

hand, it provides additional privacy because the requesies not reveal the actual identity
of the destination host. Even though hashing the hostnares ot provide very strong

security because an agent may attempt a dictionary attafitkddash collisions, it does

illustrate how a diagnosis requester may make tradeofigdssi privacy and accuracy.

8.9 Agent implementation details

All regional and specialist agents are deployed on Planettzdes. The service direc-
tory and knowledge agent run on a machine at MIT. User agentisis implementation
operate as Firefox extensions inside web browsers on endnasehines. Implementing
user agents as Firefox extensions has a number of advant&gssy, Firefox supports
multiple platforms, including Windows, MacOS, and Linuwec®ndly, Firefox has an ac-
tive community of extension developers. Thirdly, the Fiseiddons web sifeprovides
a convenient distribution channel to reach a large numbeisefs around the world. For
platform independence, | implemented user agents usirgsdeapt. User agents do not
advertise any services; they only issue notifications aagriisis requests.

All other agents are implemented as Python 2.4 scripts nghas Apache magython
handlers interfacing with a MySQL database backend. The¥eseveral advantages to
implementing agents using Apache, Python, and MySQL.

Firstly, Apache is multithreaded, allowing agents to handultiple requests simultane-
ously. Secondly, Apache can demultiplex requests to malt@gnostic agents operating
as HTTP request handlers on the same web server. ThirdlychAgpprovides a common
logging infrastructure. Fourthly, Apache provides toass monitoring HTTP server sta-
tus to assist in debugging. A disadvantage of Apache is th&iadal memory and CPU
overhead of running a web server.

Python has several advantages as well. Firstly, as a hiyggeripting language that
provides many built-in features and modules, it allows faram more rapid development
than C or Java. Secondly, Python is a popular and easy to staddrlanguage, which
makes it easier for others to build their own agents usingtiu | developed. A disadvan-
tage of Python is that it is an interpreted language, andisesl and uses more memory
than a natively compiled program written in C or C++. Thisatigantage is somewhat
mitigated by the fact that Python does support modulesewriith C. | decided to accept
this tradeoff because my experiments primarily evaluageftimctionality of CAPRI, and
not the speed of diagnosis.

| choose to use a MySQL database rather than memory or diskditestoring data in

Shttps://addons.mozilla.org/en-US/firefox
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this implementation for several reasons. Firstly, a detalgaovides atomicity and consis-
tency to support multithreaded operation. Secondly, albdesta provides a standard SQL
interface for querying and aggregating information agenottect. Each Python agent main-
tains its component information base, knowledge baseicgetable, and component class
and property definitions in database tables. In additiorh s&rver history agents, stats
agents, and knowledge agents record and aggregate natificdhey receive using con-

nection history and diagnosis history tables.

Agents send and receive service advertisements using eakieed agent directory
server located at MIT. All agents know the URI of the serviaectory. In order to dis-
cover newly available services, Python agents reload tisiof available services from
the agent directory approximately once an hour. To takem@dge of new regional agents
that become available, user agents reload available ssrajgproximately once a day. Re-
gional and specialist agents use requester AS restrictiodgosts to preferentially handle
requests from requesters in the same AS. Thus users who e same AS as a regional
agent send diagnostic requests and notifications to thetrraigagent. Similarly, regional
agents request beliefs from specialist agents within #8iif available.

To support the creation of new diagnostic agents, most ofdinemon functionality of
CAPRI agents such parsing messages, maintaining a compamtefogy, managing a ser-
vice table, constructing failure dependency graphs, anidpeing probabilistic inference
is contained in a Python module. Python agents use the OgedBmodule to perform
probabilistic inference and use the PyXML module parse XML messages. Knowledge
agents use the SMILE reasoning engine to learn probabitigpendencieb.Creating a
new diagnostic agent simply involves extending the defdialgnostic agent implementa-
tion with the desired capabilities and placing new compookss and property definitions
and service descriptions in the appropriate locations.

Below are tables of the notification subscriptions and timeices offered by diagnostic
agents in my prototype implementation. Input and requagtgtrictions are not shown
here. In addition, most services also have a correspondiagl™ version with lower cost
for those requesters in the same AS as the agent. Appendinine the full service
descriptions.

Shttp://www.openbayes.org/

"http://pyxml.sourceforge.net/

8SMILE is available from the Decision Systems Laboratory, iMdrsity of Pittsburgh
(http://dsl.sis.pitt.edu)
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| Service ID | Input | Output | Cost |
diag:http HTTP_Connection Explanations 1000
status localNet.status
dnsLookup.hosthameé  httpServer.status
localNet.srclP dnsLookup.status
ipRouting.destIP ipRouting.status
obs:stats HTTP_Connection Observation 1000
destHash (required) users
avglLatency
lastSuccess
lastFailure
recentStatusDist
knowledge:http Knowledge 100

Local Network.status

Local Network.consecFailuresFromUs
HTTP_Connection.status

DNS _Lookup.status

IP_Routing.status

HTTP_Server.status
HTTP_Server.consecFailuresToServer
OutboundConn Test.probeResult
Firefox_Error_Test.ffoxErrorCode

Table 8.1: Regional agent services
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| Agent/Service ID | Input | Output | Cost|
Web Server History HTTP_Server Belief 1000
Agent ipAddr (required) status
bel:webserver.status connTime (required) Observation
hostHash consecFailuresToServer
httpConn Knowledge
httpConn.status HTTP_Server.status
httpConn.destHash
httpConn.destIP
httpConn.srclP
httpConn.connTime
httpConn.elapsedTime
httpConn.ffoxErrorTest
httpConn.ffoxErrorTest.-
ffoxErrorCode
Web Server History HTTP_Server Observation 1000
Agent ipAddr (required) consecFailuresToServer
obs:webserver.cfts connTime (required) totalConsecFailuresToServer
DNS Lookup Agent DNS.Lookup Belief 10000
bel:dnslookup.status  hostname (required) status
Observation
verifyDNSLookupTest.-
dnsLookupResult
Knowledge
DNS _Lookup.status
AS Path Agent IP_Routing Belief 100000
bel:iprouting.status srclP (required) status
destlIP (required) Observation
asPathTest.asPathTestReslt
Knowledge
IP_Routing.status
Stats Agent HTTP_Connection Observation 100
obs:stats destHash (required) users
avgLatency
lastSuccess
lastFailure
recentStatusDist

Table 8.2: Specialist agent services
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| Service ID | Input | Output

| Cost |

knowledge:http(learned

Knowledge

LocalNetwork.status
Local.Network.consecFailuresFromUser
HTTP_Connection.status
DNS_Lookup.status

IP_Routing.status

HTTP_Server.status
HTTP_Server.consecFailuresToServer
OutboundConn. Test.probeResult
Firefox_Error_Test.ffoxErrorCode

Verify _DNS_Lookup.Test.dnsLookupResu
AS_Path.status
AS_PathTest.asPathTestResult
AS_Hop.status
AS_Hop_Test.asHopTestResult

1000

knowledge:specialist

Knowledge

Local_Network.status
Local.Network.consecFailuresFromUser
DNS _Lookup.status

IP_Routing.status

HTTP_Server.status
HTTP_Server.consecFailuresToServer
OutboundConn Test.probeResult

Verify _DNS_Lookup.Test.dnsLookupResu
AS_Path.status
AS_PathTest.asPathTestResult
AS_Hop.status
AS_Hop_Test.asHopTestResult

1000

—

Table 8.3: Knowledge agent services
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| Service ID

| Input

notify:connHist

HTTP_.Connection

status

destHash

srclP

destIP

connTime

elapsedTime

ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

notify:diagHist

HTTP_.Connection

localNet

localNet.status

localNet.ipAddr
localNet.consecFailuresFromUser
localNet.totalConsecFailuresFromUs|
httpServer

httpServer.status
httpServer.consecFailuresToServer
dnsLookup

dnsLookup.status
dnsLookup.hostname

ipRouting

ipRouting.status

ipRouting.srclP

ipRouting.destIP
outboundConnTest
outboundConnTest.probeResult
outboundConnTest.probeURI
ffoxErrorTest
ffoxErrorTest.ffoxErrorCode

Table 8.4: Regional agent notification subscriptions
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| Agent/Service ID | Input \

Stats Agent HTTP_Connection
notify:connHist(destHash) status

destHash (required)

srclP

destIP

connTime

elapsedTime

ffoxErrorTest

ffoxErrorTest.ffoxErrorCode

Web Server History Agent | HTTP_Connection
notify:connHist(destIP) status

destIP (required)

srclP

connTime

elapsedTime

ffoxErrorTest

ffoxErrorTest.ffoxErrorCode

Table 8.5: Specialist agent notification subscriptions

| Service ID | Input |

notify:diagHist | HTTP-Connection
localNet (required)
localNet.status (required)
localNet.ipAddr (required)
localNet.consecFailuresFromUser (required)
localNet.totalConsecFailuresFromUser
httpServer (required)

httpServer.status
httpServer.consecFailuresToServer
dnsLookup (required)
dnsLookup.status
dnsLookup.hostname

ipRouting (required)

ipRouting.status

ipRouting.srclP

ipRouting.destIP

outboundConnTest (required)
outboundConnTest.probeResult
outboundConnTest.probeURI
ffoxErrorTest (required)
ffoxErrorTest.ffoxErrorCode

Table 8.6: Knowledge agent notification subscriptions
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Chapter 9

Experimental Results

The purpose of the CAPRI architecture is to provide a commaméwork for distributed
diagnosis among heterogeneous diagnostic agents. Thiechevaluates the effective-
ness of distributed diagnosis using the diagnostic agerise prototype implementation
described in Chapter 8. | demonstrate that multiple hetmegus diagnostic agents with
different capabilities and located in different parts of tietwork can use CAPRI to effec-
tively diagnose real-world HTTP connection failures in atdbuted manner in real time.
Unlike previous research in distributed diagnosis [44, 89], agents in CAPRI can in-
corporate information from multiple types of diagnostistge including both active and
passive measurements, and can deal with incomplete infanme@aused by network fail-
ures. In addition, | demonstrate the ability to add new demgic agents to the system and
show that existing diagnostic agents can take advantagewfdependency knowledge
and new diagnostic agents to improve the accuracy and cdsagnosis. This chapter also
illustrates the effectiveness of aggregation and cachongeduce the cost of diagnosing
multiple similar failures for scalability. Unlike previguresearch that only considers the
probing costs of single diagnoses [76], this experimeniwshitmow agents can manage both
the probing and communication costs of multiple, repeatagribses.

This chapter presents experimental results demonstrétergdvantages of the CAPRI
architecture. | show that regional agents dynamically celigagnostic actions without
domain-specific knowledge. Heterogeneous diagnostictagee belief propagation to di-
agnose failures in a distributed way even when no singletagghenough information to
adequately diagnose a failure. | also find that caching aolatnilistic inference reduces
the number of diagnostic requests sent to specialists arejtonal agents. Also, | show
that adding learned dependency knowledge improves theamcof diagnosis while re-
ducing cost. In addition, adding a new type of diagnostimagean reduce the response
time of certain requests. | also show that the confidenceio@tnduced in a diagnosis can
be used to predict the expected accuracy of a diagnosis dapendency knowledge used
for diagnosis is correct.

The experimental evaluation described in this thesis diffieom previous work in dis-
tributed Internet fault diagnosis in that it evaluates tlegf@rmance of real-time, online
distributed diagnosis for real-world failures. Previoesearchers generally focus on off-
line diagnosis or diagnosis of simulated failures in sinedanetworks. Evaluation using
real-world failures can provide better insight into the lidrages of diagnosis under real-
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world conditions, in which network failures can interferélwdiagnostic communication
and diagnostic tests may produce noisy or inaccurate geslifte data for the experimen-
tal results shown below were collected over a period of over month, from March 6

to April 10, 2007. In this experiment, diagnostic agentdemilinformation about a total

of approximately 500,000 HTTP connections per day, andraiag approximately 3,000
HTTP connection failures per day.

9.1 Distributed diagnosis

Chapter 8 describes the range of diagnostic agents thatémgmted and deployed. Figure
9-1 illustrates the knowledge that agents use to diagnokeesa in my implementation.
Each type of diagnostic agent knows a different subset sfdependency knowledge. The
CAPRI architecture enables distributed agents to discomeranother and communicate
observations, beliefs, and knowledge to perform distedudault diagnosis.

Web Server ;
. Consec failures
History Agent to server
Knowledge
status
Local Net
status

DNS Lookup
Agent

Knowledge ==~
Test result
AS Path
DNS Lookup
status AS Path
Test result

IP Routing
status AS Path
Outbound Conn Agent
~" KnO\?vIedge

HTTP Conn »‘ Firefox
Consec failures status error code
from user

User Agent Knowledge

Figure 9-1: Agents with different capabilities and knowgedexchange observations and
beliefs to diagnose failures.

9.2 Dynamic action selection

Agents in CAPRI diagnose failures dynamically based onnfarination in a request, ser-
vice descriptions, and dependency knowledge. This gerdyrahmic message processing
procedure allows agents to automatically take into accoemwt dependency knowledge
and new services when they become available. Figure 9-&rdites diagnostic requests
that regional agents receive and the requests that they toaecialist agents for 27,641
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diagnostic requests from March 6 to March 21, 2007. Tablg@f&ents this data in tabular
form. Given a Firefox error code and a combination of spéstialgents, the table indicates
the number of diagnoses for which a regional agent contadted those specialist agents
to diagnose a failure of that type. The figure shows that regiagents are able to dynam-
ically decide what actions are appropriate in a non-donsaiecific way, based only on the
information in the request, service descriptions, and ddpecy knowledge.

Specialist

Firefox error code
Connection reset

Connection refused
3751

Request canceled
by user
7500

Connection
timed out
3780

Server not found AS Path Test

10002 Requests
2952

Total regional agent diagnoses: Total specialist requests:
27641 23546

Other 650 |

Figure 9-2: Regional agents dynamically select speciagishts to contact.

Diagnostic requests at the left of the figure are categori®ethe error code reported
by the Firefox web browser. The arrows indicate the total banof diagnostic requests
regional agents made to each type of specialist agent. Natefdr clarity, arrows with
fewer than 100 requests are not shown. Certain types ofréailare easier to diagnose
than others. For example, regional agents respond to dsignequests for which the
Firefox error code is “server not found” using only probadiit dependency knowledge
without any additional diagnostic tests. Such failuresvaitd very high probability DNS
Lookup failures. This capability to diagnose failures witigh accuracy with incomplete
information in a general way is one important advantage obabilistic diagnosis. For
other types of failures, such as “request canceled by uaa@gional agent may need to
request additional tests from multiple other specialigrds.

This figure also shows the ability of agents in CAPRI to take sccount the cost of
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Diagnoses using indicated specialists
W = Web Server Test
D = DNS Lookup Test
A = AS Path Test
Firefox error code none W D WD A WA DA WDA | Total
Canceled by user 1020 1265 866 3717 56 79 48 4497500
Connection refused | 1378 2250 21 26 27 2 9 38 3751
Connectiontimed out 665 506 64 422 175 276 186 14863780

Connection reset 474 467 134 846 6 9 6 51 1993
Server not found 9997 1 2 0 0 2 0 Q 10002
Other 383 80 25 80 5 10 8 24 615
Total 13917 4569 1112 5091 269 378 257 20487641

Table 9.1: Distribution of specialist agent requests fragional agents by Firefox error
code

different tests when selecting actions. In my prototypelenpentation, some services have
greater costs than others. Web server history tests havewlest cost, followed by verify
DNS lookup tests, while AS path tests have the greatest ¢astthis reason, using the
dynamic procedure for action selection provided by CAPRErds will typically request
additional diagnostic tests useful for diagnosis in ordenoreasing cost.

This figure also illustrates the ability of agents to autdoslly decide what actions are
possible based on the inputs specified in service desargtia certain cases, agents do not
have the necessary inputs to request certain diagnostsc fésr example, when a “server
not found” error occurs, the user agent does not have an IRssltbr the destination web
server and so cannot conduct a web server history test or graf&est.

CAPRI also allows agents to preferentially handle requiesta nearby agents by ad-
vertising lower costs. Three out of the 14 regional agentmynexperiments can request
DNS lookup tests from specialist agents located in the sa®eB®cause DNS lookup
specialist agents advertise a lower cost of diagnosis tomagjagents within the same AS
(9000 instead of 10000), regional agents in the same AS as&d4plcialist agent request
DNS lookup tests from specialist agents within the same AShis experiment | found
that 2801 out of 8508 (33%) of DNS lookup requests are harfufddNS specialist agents
in the same AS as the regional agent.

The procedure that agents use action selection also eralagent to automatically
work around failures in other agents simply by considering Yalue of the information
actions provide. For example, at one point in my experimar¥NS lookup agent at the
University of Oregon became unreachable due to a Planetiilvaze upgrade. Because
multiple DNS lookup specialists offer the same servicesganal agent has multiple DNS
lookup test request actions in its list of possible nextandj all with the same value. A
regional agent that fails to connect to the University of ganre DNS lookup agent selects
another DNS lookup test action with the same value if avilal®nce a regional agent
successfully obtains DNS lookup test information from acsglest, however, the value
of all other DNS lookup test actions becomes zero becausedih@ot provide any new
information.
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These experimental results illustrate some of the bendfigrmamic message process-
ing and action selection based on action value and cost. diltmaelection procedure that
CAPRI agents use automatically distinguishes betweenilgessnd impossible actions
based on the information in an agent’s component graph, andake into account the
different costs of actions to preferentially request lowest tests. This procedure allows
an agent to automatically work around failures in other &gamd estimate the expected
gain in accuracy of available diagnostic actions withouhdm-specific knowledge.

9.3 Probabilistic diagnosis

This thesis proposes the use of probabilistic models foresgmting diagnostic informa-
tion and dependencies and making inferences. This sectemepts experimental results
demonstrating several benefits of probabilistic diagnd3iebabilistic inference provides
CAPRI agents with the ability to diagnose failures with ingaete information. Previous
systems for distributed fault diagnosis such as Netprofdét, Shrink [44], and Planet-
seer [98] cannot function without complete informationnfr@ll or most of the parts of
the system. Frequently when network failures occur, howereagent cannot reach other
diagnostic agents. In my experiments, | show that user agemt diagnose failures using
probabilistic inference even when network failures préxeem from contacting regional
agents.

Unlike previous work in distributed fault diagnosis, CAP&Jents can exchange prob-
abilistic dependency knowledge in addition to observatiand beliefs. The ability to
communicate dependency knowledge allows agents both ¢caidkantage of information
about new diagnostic tests and to increase the accuracyoahdfdiagnosis using existing
tests. In my experiments, a knowledge agent learns morgatecdependency knowledge
using Bayesian learning and communicates this knowledgegional agents. Using this
learned dependency knowledge, regional agents diagnibgeegawith both higher accu-
racy and lower cost.

In order to illustrate the effectiveness of probabilistiterence for modeling and diag-
nosing real-world failures, | measure the accuracy of dosggin my prototype implemen-
tation. Note that the purpose of this experiment is to dernatesthe ability for diagnostic
agents to use distributed probabilistic inference for d@gis and not to show that the prob-
abilistic models | implemented are necessarily the bestaeraccurate.

In my experiments, a knowledge agent distributes prolsttuldependency knowledge
to all other agents. Figure 9-1 illustrates the probaliilidependencies that agents use for
diagnosis in my prototype implementation. Initially, | mely specify the conditional
probabilities for the dependency knowledge in the figure @nodide the knowledge agent
with this dependency knowledge. The knowledge agent adesrthe capability to pro-
vide regional agents with dependency knowledge. As re@jagents receive requests and
require knowledge for diagnosis, regional agents requesédency knowledge from the
knowledge agent. Similarly, when user agents start up,bmgyest dependency knowledge
from regional agents in turn. Note that user agents onlyiveae subset of all dependency
knowledge from regional agents; user agents do not knowtahewlependencies for the
information collected by specialist agents.

125



This section evaluates the accuracy and cost of probabitigignosis in my experi-
ments. In addition, this section discusses several adgastaf a probabilistic approach,
including the ability to compute the confidence of a diage@sid the ability to compute
the value of available diagnostic actions.

9.3.1 Improving accuracy and cost by learning

Cause of failure Count

DNS lookup 9395 (31%)
Web server 6106 (20%)
Local network | 5103 (17%)
IP routing 2373  (8%)
Unknown 7023 (23%)

Table 9.2: Distribution of 30,000 failures

In order to evaluate the accuracy of diagnosis, | label 3Dr8Ported failures using a set
of manually specified rules based on a posteriori infornmegiach as the number of consec-
utive failures to a web server and from a user. Figure 1 listsé¢ rules. Table 9.2 illustrates
the distribution of labels for the these failures. Thougbsthlabels may not always be cor-
rect, they provide a good starting point for estimating diagfic accuracy. The strength
of the CAPRI architecture is that if an expert develops maueate rules for labeling
failures, they can then train a Bayesian network using thdss to produce more accurate
dependency knowledge for fault diagnosis. To demonstngddature of CAPRI, | trained
the Bayesian network in figure 9-1 using the labels above eriitst 20,000 failures. Ap-
pendix B.3 contains the conditional probabilities for degency knowledge before and
after learning. To evaluate the accuracy of diagnosis usiisgearned dependency model,
| tested the learned dependency knowledge on the next 1€300€@s.

| evaluate the accuracy of diagnosis in terms of recall argtipion. Recall refers
to the number of correct diagnoses of a particular type éditly the total number of
actual failuresof that type, while precision represents the number of @bméegnoses of
a particular type divided by the total numberdégnose®f that type. Accurate diagnosis
requires both high recall and high precision. Low recallddype of failure implies agents
frequently misdiagnose failures of that type. Low preaisior diagnoses of a given type
implies that diagnoses of that type are frequently inadeura

Figure 9-3 shows the accuracy of diagnosis in terms of rexall precision for each
candidate explanation before and after learning. Table@ssifies failures by true cause
and diagnosis using dependency knowledge before and afemnihg. Diagnosis using
learned dependency knowledge increases overall accumatyd6% to 97%. Notice that
before learning, agents misdiagnosed many web serverdaims DNS lookup or IP rout-
ing failures, resulting in low recall for web server failudgagnosis and low precision for
DNS lookup and IP routing diagnosis. After learning, howetlee recall of web server di-
agnosis and the precision of DNS lookup and IP routing diagniocreased significantly,
demonstrating the effectiveness of Bayesian learningrfgroving diagnostic recall and
precision.
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Figure 9-3: Learning dependency knowledge improves recallprecision

Diagnoses before learning

True cause | Local net Web server DNS lookup IP routingiotal Recall
Local net 1691 1 55 2 1749 97%
Web server 90 1163 527 279 2059 56%
DNS lookup 36 0 3068 0 3104 99%
IP routing 0 53 7 747, 807 93%
Total 1817 1217 3657 10287719

Precision 93% 96% 84% 73% 86%

Diagnoses after learning

True cause | Local net Web server DNS lookup IP routingiotal Recall
Local net 1738 11 0 0 1749 99%
Web server 97 1888 25 49 2059 92%
DNS lookup 36 1 3066 1/ 3104 99%
IP routing 0 3 0 804| 807 100%
Total 1871 1903 3091 8547719

Precision 93% 99% 99% 94% 97%

Table 9.3: Diagnoses before and after learning
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Also, notice that even though the probabilistic dependenagiel that agents use for di-
agnosis is relatively simple and leaves out many additidependencies such as the user’s
operating system, link layer connectivity, and softwarpeatedencies, agents can still di-
agnose most failures with reasonable accuracy. This rdsuaibnstrates that probabilistic
inference can frequently produce good results even withotmmplete model of depen-
dencies. One reason for this robustness is that many conenlarek are relatively easy to
diagnose. For example, an agent can diagnose failuresgha\iirefox “server not found”
error code using a@utbound Conn Testith very high accuracy. If ther obeResul t of
the Outbound Conn Tegs K, then it is a DNS lookup failure. Otherwise, it is a local
network failure with high probability. If an agent has acater tests and accurate prob-
abilistic dependency knowledge for diagnosing commorufes, the agent can diagnose
such common failures with high accuracy even if the prolistinldependency knowledge
it has for other components is incomplete or inaccurate.ddfge, if an expert has accurate
dependency knowledge of these additional dependencesxfiert can introduce this new
knowledge into the system to improve accuracy.
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Figure 9-4: Learned knowledge improves accuracy and cost

Also, notice that learning new dependency knowledge not omproves accuracy, it
reduces the cost of diagnosis as well. Using learned knayeletthe average accuracy of
diagnosis increased from 79% to 94%, where accuracy is defisghe number of cor-
rect diagnoses divided by the total number of diagnoses.ddlitian, as regional agents
retrieve the newly learned dependency knowledge from tleeviedge agent, the average
cost of diagnosis also decreases. Figure 9-4 shows avetageaay, the number of diag-
nosis requests to regional agents, and the number of sis¢@gent requests over time.
After acquiring new dependency knowledge at approximatefydays, the regional agents
significantly reduce the number of requests they make toiglgagents while accuracy
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improves. The number of diagnostic requests of all typesedses substantially after in-
troducing the new dependency knowledge. This result sugglest the new dependency

knowledge enables agents to diagnose failures more aetuveth less evidence.

9.3.2 Predicting accuracy using confidence
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Figure 9-5: High confidence indicates high accuracy

Another benefit of probabilistic diagnosis is that it alloarsagent to indicate its confi-
dence in its diagnosis. A confidence metric helps a requdst@de how much to believe
the diagnosis and whether to request additional testsré&@1b plots the average accuracy
of diagnosis for various confidence ranges for 55,866 diagaonade between March 17
and April 10, 2007 using learned dependency knowledge. Raitt on the plot represents

the average accuracy of diagnoses with the specified exparand confidence within the
indicated range. For example, a diagnosis of DNS lookupr@iWwith confidence between
0.95 and 1.0 is accurate nearly 100% of the time, while a disigrof DNS lookup failure
with confidence between 0.90 and 0.95 is accurate 88% of it tin this experiment,
agents diagnose failures using a confidence threshold of @%e an agent reaches 90%
confidence, it does not perform any additional diagnossitsta-or clarity, the plot does not
include points for confidence ranges with fewer than 50 diags. For the data depicted
in this figure, 86% of the diagnoses have confidence values3®#. In general, greater
confidence corresponds to greater accuracy, suggesting thguester can use confidence

as a prediction of diagnostic accuracy, especially for ctanfce levels greater than 90%.

This experiment also illustrates a deficiency in the prolisthd dependency model that
agents use for diagnosis in this experiment. If agents hadrate dependency knowledge,

129



average accuracy would closely correspond to confidends.ig hot the case in this exper-
iment, however; confidence does not predict accuracy welllimgnoses with confidence
levels less than 90%. This suggests that the dependencyléahgevused by agents in this
experiment does not accurately model all real-world depanis. For example, most of
the web server failure diagnoses with less than 90% confelbage & f oxEr r or Code of
14 (connection timed out),@nsecFai | uresToSer ver of 0, and adlnsLookupResul t of
CORRECT. According to the rules for labeling failures in Figure 1listis an IP routing fail-
ure. Using learned dependency knowledge, however, relggeats misdiagnose these IP
routing failures as web server failures. The fact that amagas high confidence for incor-
rect diagnoses of certain types of failures suggests tleaB#yesian network in Figure 9-1
does not completely capture all the dependencies in thersyst

Unlike other systems for fault diagnosis that rely on stalgorithms for diagnosis,
however, CAPRI allows one to correct inaccuracies by intamalg new dependency knowl-
edge and new specialist agents. For example, one coulee@easw piece of dependency
knowledge indicating that akiTTP Connectiorfailure with f f oxError Code 14 and O
consecFai | uresToServer is most likely due to arlP Routingfailure. One could de-
fine a new diagnostic test class with a property that reptesftoxErrorCode = 14A
consecFailuresToServer = 0 and then adéf oxErr or Code, consecFai | uresToSer -
ver, andIP Routingst at us as parent properties. A new agent with this new knowl-
edge may either directly offer its new knowledge to othemaggeor it may simply offer a
new service for inferrindP Routingst at us given anHTTP Connectioffiailure for which
ff oxError Code is 14 andconsecFai | uresToSer ver is 0. Existing regional agents could
then automatically discover and take advantage of the ngeradkency knowledge or new
service to correctly diagnose previously misdiagnosddrias.

Deciding whether to directly provide the new knowledge oeteapsulate it as a new
service involves making a tradeoff between inference codt@mmunication cost. Di-
rectly providing the knowledge to regional agents can redihe number of requests that
regional agents need to perform for diagnosis, but inceets® complexity of the failure
dependency graphs used for inference. On the other handdprg a new service may
increase communication cost but does not increase the eaitypbf diagnostic inference
at the regional agent.

9.3.3 Predicting change in accuracy using action values

Probabilistic dependency knowledge enables diagnosaotagn CAPRI to estimate the
value of the information an action produces based on aveilabdence in a non—domain-
specific way. The effectiveness of action selection baseaction value depends on how
closely action value corresponds to improvement in acguratmy experiments, agents
compute action value as the expected change in confidenee thig information produced

by the action. To measure the degree of correlation betweiznavalue and improvement
in accuracy, | compute diagnostic accuracy before and afieh action that each regional
agent performs. Figure 9-6 plots the average change inacgdor actions having values
within the indicated ranges for 2805 specialist requesisifregional agents. On average,
actions having value between 0 and 0.05 only improve acguogc2.1%, actions with

value between 0.05 and 0.10 improve accuracy by 25%, andnactvith value between
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Figure 9-6: Action value predicts an action’s effect on aacy

0.15 and 0.20 improve accuracy by 55%. This result suggkatsaction value roughly
predicts the expected change in accuracy for an action,thwtimotable exception of web
server history tests having value between 0.20 and 0.25hnhéxamine in more detail
below. In addition to helping agents decide what actionske taction value might also
help a requester decide whether to request additionalnrdton. For example, one might
extend the CAPRI messaging protocol so that in addition dacating the most probable
cause of failure and the confidence of the diagnosis, a degn@sponse also includes a
list of additional actions an agent can perform and theioaissed action values and costs.

Comparing action value and average change in accuracy ¢andaatify inaccurate
probabilistic dependency knowledge. For example, Figusar@licates web server history
tests with value between 0.20 and 0.25 only improve accurgcy4% on average. An ex-
amination of the log files reveals that in this experimentoegl agents tend to overestimate
the value of web server history tests for the diagnosis of H€®nnection timed out errors.
Using learned dependency knowledge, a regional agent asagg an HTTP connection
failure havingf f oxEr r or Code 14 (connection timed out), €onsecFai | ur esFromJser,
andOutbound Conn Tegr obeResul t OK computes the value of a web server history test
as 0.234 and requests this information from a web servestyisigent. In most cases, how-
ever,consecFai | uresToServer equals 1, which actually decreases the regional agent’s
confidence in its diagnosis. This discrepancy betweenmeadue and average change in
confidence indicates a deficiency in the regional agent’baiiistic dependency knowl-
edge. In patrticular, the regional agent incorrectly assuomnditional independence be-
tweenconsecFai | uresToServer andf f oxError Code in cases wheréf oxError Code
equals 14 andonsecFai | uresToServer equals 1. To remedy this deficiency, one might
introduce a new diagnostic agent that has more accuratendepey knowledge relating
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f f oxErr or Code andconsecFai | ur esToSer ver, as described in Section 9.3.2.

9.4 Managing cost

Probabilistic inference allows agents in CAPRI to manag# by diagnosing failures with
incomplete information as well as using cached informattodiagnose future similar fail-
ures. This section presents experimental results illtisgahe ability of diagnostic agents
to aggregate multiple similar failures to reduce the averegst of diagnosing multiple
failures.

One of the key benefits of diagnosis in CAPRI is that a diago@sfentA can com-
municate observations, beliefs, and probabilistic depaog knowledge to another agent
B so that agenB can cache this information and diagnose future failurebout having
to contact agenf again. Note that by caching the intermediate observatised to pro-
duce a diagnosis and not just the final diagnostic resulfytagen use this information to
diagnose other similar but not identical failures in thaufetto efficiently aggregate mul-
tiple similar requests. This can both reduce the commuioicatost of diagnosis as well
as provide additional robustness to network failures sbahagent can perform diagnosis
even if it cannot contact any other agents in the network. yrexperiments, | show that
both regional and user agents can use the results of préyiocokected diagnostic tests
to diagnose multiple similar failures using the same infation without having to contact
additional diagnostic agents.

9.4.1 Regional agents aggregate similar failures
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Figure 9-7: A regional agent aggregates multiple simildufas

132



Figure 9-7 illustrates a case of diagnosing multiple sinfadures to the same destina-
tion hostname. Each point in the figure represents a corameattempt from a user to the
destination web server hostname. In this case, multiplesiesgerience failures connect-
ing to the same destination hostname. Over the time peraidated in the figure, the IP
address for the destination hostname changes. Duringdhsition period, DNS lookup
for the destination hostname fails for some time, and regueghe old IP address also fail
for some time. This figure shows three regional agents disiggdailures to connect to
this destination from three different users. Initially, @hRAL1 first receives a diagnostic
request at approximately 1.6 hours, it contacts two spistiafjents to request two types
of diagnostic tests, a web server history agent to requestief labout thest at us of the
HTTP Serveiinferred fromconsecFai | uresToSer ver ; and a DNS lookup test agent to
request a belief about tHeNS Lookupst at us using thednsLookupResul t from aVer-
ify DNS Lookup TestUsing this information, the agent diagnoses the failura &3NS
Lookup failure. It then caches this information to diagntree=next 10 failures. Theerify
DNS Lookup Teshformation times out after one hour, and RA1 requests tifisrmation
again. It then caches it for use in diagnosing the next sefaghares. Similarly, the second
regional agent requestsT TP Servest at us beliefs from the web server history agent and
uses this information to diagnose the next few failureshlis tase, three diagnostic agents
diagnose a total of 37 failures using only a total of six spkstiagent requests, demonstrat-
ing the usefulness of caching and aggregation for redutiegost of diagnosing multiple
similar failures. Of the 37 failures, 26 are server not foemars, 6 are requests canceled
by the user, 3 are connection reset errors, and 2 are cooneefused errors. The regional
agents diagnose all the failures as DNS lookup failuresgtes three failures between
time 4.7 and 5.5 hours, which RA2 diagnoses as web serverdail

Note that the majority of failure requests in my experimetsfor failures experienced
by only one user. Therefore not every failure presents amtagegh an opportunity for
aggregation. As the number of users and failures incredm®eever, | expect that more
opportunities for aggregation will arise.

This experiment also illustrates a limitation of diagnassg my prototype implemen-
tation. In my prototype, agents do not distinguish amongedeht types of DNS lookup
failures. For example, a DNS lookup failure might resulinfrone of a number of different
causes, including a mistyped URL, a failure of the authtovigeDNS server responsible for
the web server's domain, a failure of the user's ISP’s DNSexen DNS server misconfig-
uration, or an IP routing failure between a user and a DNSeserv

Unlike previous systems for fault diagnosis that can onftidguish among a limited
set of explanations for a failure, however, CAPRI allowsittieoduction of new diagnostic
agents with new capabilities. For example, an expert wighathility to distinguish among
various types of DNS lookup failures might create a new disgic agent that offers a more
detailed DNS diagnosis service. The expert might definetaaail network component
classes such d@NS Serveradditional diagnostic tests such kliéstyped URL Testand
new knowledge indicating the probabilistic dependencrasray properties of these new
classes an@®NS Lookupst at us. The new DNS diagnosis agent may then advertise the
ability to distinguish among various candidate explametifor DNS lookup failure. A
user that wishes to obtain more detailed diagnosis of DNEBuUpdailures can then request
additional diagnosis from the new agent.
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Figure 9-8: Aggregation reduces the cost of diagnosis asatleeof failures increases.

To quantify the effect of aggregation, | plot the number oéa@plist requests that re-
gional agents make as a function of the number of recent d&tgnrequests they have
received. An important reason to aggregate similar reguedb reduce the cost of diag-
nosing high-impact failures that affect a large number @rsis Figure 9-8 shows that as
the rate of requests a regional agent receives increasesydrage number of specialist
agent requests that agent makes decreases. The figureh@asdrage number of spe-
cialist requests for 30,000 regional agent diagnoses froanch5 to March 16, 2007 as
a function of Firefox error code and the number of requestagant has received in the
past 15 minutes. For clarity, the figure only plots pointgesponding to averages of 15 or
more diagnoses. An agent that has received many requesis past 15 minutes is more
likely to have cached information useful for diagnosingitufe. This result suggests that
caching recent failures is an effective way to reduce théaiodiagnosing multiple similar
failures, especially when many such failures occur in atghenod of time.

9.4.2 User agents aggregate similar failures

User agents also aggregate similar failures. In particular user experiences multiple
simultaneous failures to different destinations, thera iEgh probability that the failures
are all due to a local network connectivity problem, such dseonnected network cable.
In such cases, a user agent diagnoses all of these failutBeuvirequesting additional
diagnosis from regional agents. It is important for usermageo diagnose such failures
efficiently because a user disconnected from the networkatacontact a regional agent
for additional diagnosis. Figure 9-9 illustrates such aeaafsaggregation at a user agent.
In this case, a user experiences eight consecutive failareight different destination web
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Figure 9-9: A user agent aggregates multiple similar fagur

servers within a space of less than ten seconds. The uset begh mobile user who
just turned on their computer and does not have network aiivitg for several seconds
until they receive an IP address using DHCP. When theserdailaccur, the user agent
conducts local tests, including outbound connectivitystesd computing the number of
consecutive failures from the user. Using the results dfatiests, the user agent diagnoses
all of these failures as local network failures. This exaanpustrates how aggregation of
similar failures at the user agent can greatly reduce thebeumf diagnostic requests that
regional agents must handle. In addition, this case demaiastthe ability to diagnose
failures with incomplete information using probabilistimgnosis, which is essential when
network failures prevent agents from collecting additiadiagnostic information.

9.5 Extensibility

The experiments | conduct illustrate extensibility in sevevays. Firstly, they show the
ability for agents to add new dependency knowledge. Onclrtb@ledge agent learns new
dependency knowledge, it can provide other agents witrethess updated probabilities.
As demonstrated in the previous section, this both imprdvesccuracy of diagnosis and
also reduces cost.

Another type of extensibility is the ability to support nevagnostic tests in order to
provide new functionality, improve accuracy, or reducetsodly prototype implementa-
tion makes it easy to wrap existing diagnostic tests to ptechew diagnostic agents. In
my experiments, | introduced a second specialist agentifmmdsingDNS Lookupom-
ponents that uses the CoDNS service [69]. CoDNS is an egistmvice on Planetlab
that caches DNS lookups to provide faster response timesrdier to add a new type of
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specialist agent that can perform CoDNS lookup tests, loperéd the following steps:

1. | extended the component ontology by defining a t&DNS Lookup Testlass
and a propertgodnsLookupResul t . | defined these in a new component class and
property definition file. See Appendix B for the actual defons. Other diagnostic
agents automatically request these definitions using thie UR

http://capri.csail.mit.edu/2006/capri/planetlab
when they encounter the new component class and property.

2. | deployed a CoDNS specialist agent on Planetlab thatrases the capability
to produce beliefs aboldNS Lookupst at us from thecodnsLookupResul t of a
CoDNS Lookup TestAppendix B includes the actual service descriptions. &inc
CoDNS caches DNS lookups among Planetlab nodes, an aggrgidarm aCoDNS
Lookup Testaster and using less network resources than a relalély DNS Lookup
Test Therefore CoDNS specialist agents can advertise a lowstrfoo performing
CoDNS lookup tests.

3. | added new dependency knowledge to the CoDNS specigkstta The CoDNS
agent then provides the new knowledge to other agents sthiyatcan use cached
CoDNS Lookup Teshformation and compute the value of information providgd b
acodnsLookupResul t . Appendix B contains this dependency knowledge.

Rl CoDNS Lookup Agent .
/ L ! | D||\|S Lookup Aqent 7777777
o L

0 1 2 3 4 5 6
Response time (seconds)

Cumulative fraction of responses within time
o
(63}
I

Figure 9-10: CoDNS lookup agents respond to requests maooklguhan DNS lookup
agents

After introducing CoDNS agents, regional agents discolierriew specialist agents
through the agent directory. Because the CoDNS agentstabvéneir services at lower
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cost than regular DNS lookup agents, regional agents pitegen over regular DNS lookup
agents. Figure 9-10 depicts the cumulative fraction ofeesps as a function of time. The
median time for a CoDNS agent to perform a test is 0.84 secandspared to 1.21 seconds
for regular DNS lookup agents, an improvement of 41%. Nathe the lines in the figure
cross at about 0.5 and 4.5 seconds. This reflects the difféignbution of response times
for CODNS and DNS lookup tests. The CoDNS agent requires rore to produce a
response than the DNS lookup agent for the fastest 15% arslidlvest 15% of responses.
The DNS lookup agent might perform slightly better than tleGIS agent for the fastest
15% of responses because it does not incur the overheadnof e CoDNS service. For
the slowest 15% of responses, the CoDNS agent requiregisagrily more time to produce
a response. This slowness might be caused by heavy load @ofDES agent generated
by other processes on the Planetlab node.

The different cost distribution of different diagnostiste suggests that it may be valu-
able for agents to represent diagnostic cost as a distibusither than simply as a scalar
value. For example, an agent wishing tightly bound the tisguired to perform an ac-
tion may select actions on the basis of 95th percentile edsle an agent with no time
constraints might select actions based simply on expedsd th future work, one might
extend the CAPRI service advertisement language to suppoit cost distributions.

This case also demonstrates the ability of agents to autcaiigtcompute the value of
information provided by a service and to select additionafjdostic actions when neces-
sary. ACoDNS Lookup Testoes not provide as much information as a reguaify DNS
Lookup TestlIn particular, aCoDNS Lookup Testannot determine whether a hostname is
an alias or not, which is a strong indicator that the web ssesuAkamai and that different
users will get different IP addresses. Sometim&o®NS Lookup Tess$ sufficient to di-
agnose a failure, but in most cases an agent determinehé@dDNS Lookup Testoes
not provide enough information and requests a regutaify DNS Lookup Tests well.

9.6 Summary of results

The prototype implementation described in this thesis Arekperiments | conduct using
this prototype illustrate several important benefits of @RI architecture, including the
ability to distribute diagnostic information among mulé@gents, the ability to perform di-
agnosis with incomplete information, extensibility to popt new dependency knowledge
and new agents, and the ability to reduce the cost of diaggasultiple failures using
caching and aggregation.

Additionally, this experiment demonstrates the abilitydeagnostic agents to aggregate
observations collected from multiple users to produce nbseovations and dependency
knowledge. CAPRI enables distributed processing of infdrom so that one agent can ag-
gregate and compose information to produce new informahiahother agents can use for
diagnosis. In my experiments, web server history agentsivremotifications of approxi-
mately 500,00(HTTP Connectiombservations per day from over 10,000 users to compute
consecFai | uresToSer ver and produce beliefs aboHT TP Servest at us. A knowledge
agent collects observations BT TP Connectiorfailures andconsecFai | uresToSer ver
observations to learn new probabilistic dependency kndgéde
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Chapter 10

Conclusion and Future Work

This thesis proposes a new way of looking at the problem ef it fault diagnosis. Rather
than attempting to develop specialized, isolated systenthé diagnosis of different types
of failures, | seek to create a common framework for faultgdiasis in the Internet to
enable cooperation among multiple diagnostic systems géherality and extensibility of
CAPRI allows the accumulation of new diagnostic capabsgititnd dependency knowledge
to improve the quality of diagnosis over time.

This thesis addresses several challenges of developigaw@ommon architecture.
Firstly, CAPRI addresses the challenge of representingnaistic information by defining
a language for defining new component classes and proparteegeneral and extensible
way. This representation enables CAPRI to support the disigrof new types of network
components and new classes of diagnostic tests. SecomRCaddresses the challenge
of discovering the capabilities of new diagnostic agentptoywiding a service description
language for agents to specify the inputs and outputs of thagnostic services. Using
this service description language, agents can automigtizskle advantage of new diag-
nostic capabilities offered by other agents. Thirdly, CARRdresses the challenge of
distributed inference by providing diagnostic agents veteneral, non—domain-specific
procedure for dynamically constructing failure dependegi@phs from diagnostic infor-
mation to perform fault diagnosis. This procedure allowsrdg with different capabilities
and different diagnostic information to cooperate to perfalistributed diagnostic infer-
ence while managing cost. | demonstrate the capabilitiegseoCAPRI architecture with
a prototype implementation for the distributed diagnogiseal-world HTTP connection
failures using several types of diagnostic agents.

Several important features of CAPRI include:

1. The separation of representation of diagnostic infoiomain a component graph
from the probabilistic dependency knowledge used to maleza@nces based on the
information (see Chapter 4). This representation enalgesta to apply new de-
pendency knowledge for inference and to distribute theawesibility for collecting
evidence, learning dependency knowledge, and performagndstic inference.

2. Dynamically specifying the set of candidate explanaiona diagnostic request
based on the candidate explanations specified in a diagsesice advertisement
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(see Section 3.2). This allows the introduction of new daggit agents that can dis-
tinguish among new possible causes of failure, and it giggsesters the ability to
specify the candidate explanations that they care about.

3. Dynamically selecting actions to perform in a generalp-mdomain-specific way
based on the inputs and outputs specified in a service désar{gee Section 7.8).
This procedure makes it possible for agents to discover nagndstic services and
use them for diagnosis.

4. The ability to use probabilistic inference to diagnoskifas with incomplete infor-
mation. The procedure described in Section 7.8 allows antdagerovide a diagno-
sis with incomplete information even when it cannot contdber agents or conduct
certain tests.

10.1 Limitations and future work

Many open questions and areas of future work remain. In b@sis | make many design
choices based on simplicity and ease of deployment. In s@®es¢ however, alternative
design choices might result in improved expressivenessaisracy. Below | discuss the
strengths and limitations of CAPRI, possible improvemgansl future research directions.

10.1.1 Scalability

A major strength of the CAPRI architecture is that it suppadte addition of new agents,
new services and new dependency knowledge. In order fotatgeaffectively take advan-
tage of new services and knowledge, however, the archreeatust scale as the number of
agents and knowledge in the system increases. This thesgleos three types of scalabil-
ity: scalability to support many diagnostic requests, &ogity to support a large number
of available diagnostic services, and scalability to suppdarge amount of dependency
knowledge. Below | discuss these scalability issues andritespossible areas of future
work to better understand the scalability of CAPRI.

The first type of scalability is the ability to support a langember of diagnostic re-
quests. In my experiments | show that agents in CAPRI caneggte multiple similar
failures using cached information to reduce the cost of migghg many similar failures.
Secondly, | show how specialist agents use input restristto limit the requests they re-
ceive and distribute requests across multiple agents. Hendechnique that may reduce
the cost of diagnosing multiple similar failures is evidempropagation. An agent that has
evidence useful for diagnosing a failure may propagatedhatence to other agents that
it believes may benefit from that evidence. Evidence propaganight be implemented
as a type of notification subscription, or the evidence mgiimply be piggybacked on a
response message. Such evidence propagation may indnead®tt-term communication
costs of diagnosis by generating additional messagesyliérece propagation can poten-
tially reduce the load of diagnosis on an agent with infoiorathat many other agents
want and increase the speed with which failures are diaghiogbe long term. An area of
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future work is to examine this tradeoff and determine wheag @ppropriate to propagate
evidence to other agents.

Second is scalability in terms of available services. Asribhmber of services that
agents can choose from increases, it becomes more costiyrtpute the value of all ser-
vices and choose among them. Agents in CAPRI address thisligsaggregating multiple
specialist services together into a more general servié€ R service descriptions enable
agents to achieve such aggregation of services using bpti rastrictions and requester
restrictions. For example, in my prototype implementati@gional agents hide the com-
plexity of specialist agents from user agents by aggregatihthe specialist services into
a single HTTP connection diagnosis service. Aggregatioseofices reduces the number
of other agents and services that each agent needs to knaafprosis, but an agent that
knows about fewer services might not be able to achieve thme $avel of accuracy as an
agent with access to more services. In addition, havingiplelintermediate generalist
agents may increase the communication costs of distrilaiggphosis because more agents
might need to be contacted. On the other hand, a generaésit @gn also reduce cost
if it can cache multiple similar requests. Effectively ctrasting a scalable topology for
distributed diagnosis requires consideration of all okthéactors. An area of future work
is to conduct experiments to better understand these tifadeoreal-world diagnosis.

A third issue is scalability in terms of dependency knowlkeadgd failure dependency
graphs. Additional dependency knowledge and more comgliéxé dependency graphs
can improve diagnostic accuracy, but at the cost of additioomputation to perform in-
ference. Agents in CAPRI manage such costs by decompospendencies into condi-
tionally independent parts and exchanging informationgbielief propagation. In reality,
few component properties are truly conditionally indepamic though in practice we can
safely assume independence in many cases where the depsdamre sufficiently weak.
To take an extreme example, two ISPs in different cities nadlysimultaneously due to
a sudden hurricane that hits both cities, but since the fibtyaof such an occurrence is
extremely low, it is probably safe to model the status of the ISPs as being condition-
ally independent. An area of future work is to quantify thedeoff between accuracy and
inference cost to determine when it is safe to assume indigpee.

10.1.2 Extending the prototype implementation

The prototype implementation in Chapter 8 demonstratesabilty to diagnose HTTP
connection failures using the CAPRI architecture. In otdedemonstrate the generality
and extensibility of CAPRI, it would be valuable to implenhadditional agents with new
capabilities for diagnosing new types of failures.

For example, we might consider more detailed diagnosis oSDdbkup failures. A
DNS lookup failure may be caused by an incorrectly typed U&malfunctioning or mis-
configured DNS server, or a failure to reach the DNS servee @ight develop additional
agents to distinguish among these cases, or use the infompaibvided by existing agents.
For example, an agent might attempt to infer whether a hasena spelled correctly by
requesting an observation from the stats agent to deternovwanany previous users have
attempted to connect to that hostname. Alternatively, orghtperform multiple verify
DNS lookup tests using multiple agents in different partsh&f network and determine
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whether the results are consistent. Or if one has acces® toottfiguration of the DNS
server, an agent might analyze the configuration file to ileahy misconfigurations.

Another type of failure one might diagnose is IP routingdegls. If one has the ability
to perform traceroutes from different locations in the intt, one can develop diagnostic
agents that can infer the status of an IP route from the re$uftultiple traceroutes. This
approach is similar to that of Planetseer [98]. In additiva,can consider the diagnosis of
other applications, such as FTP connection failures andSKilures.

Another direction of future work is to consider alternatteehnologies for implement-
ing diagnostic agents in order to achieve better performmamdo support additional plat-
forms. The primary objective of my experiments in this tlsasito demonstrate the benefits
of the CAPRI architecture, and not to optimize the perforogaof diagnostic agents. We
can improve the performance of diagnostic agents in sevaags. In this thesis | imple-
mented CAPRI diagnostic agents using two technologiegfdsirextensions and Apache
mod_python handlers. A major cost of diagnosis in CAPRI is the potation of service
value. Computing the value of a service requires multipferences about the expected
value of information that the server produces. The PythoarBayes module for Bayesian
inference that agents currently use is quite slow, howdwarimproved performance, one
might implement diagnostic agents natively in C or C++, plaee the OpenBayes module
with a module written in C. For example, the SMILE Bayesiafeiance library can pro-
vide roughly a factor of 10 to 100 times speed improvement tve Python OpenBayes
inference module.

Though in my experiments | found HTTP and XML suitable for thglementation
of diagnostic agents, in future work we may also considerl@mgntations of CAPRI
agents using other technologies. Custom protocols mighd w performance advantage or
provide other benefits.

10.1.3 Representation of diagnostic information

CAPRI provides diagnostic agents with a probabilistic esgntation for diagnostic infor-

mation. This representation is general and extensible pp@t a wide range of observa-
tions, beliefs, and dependency knowledge about networkpooents and diagnostic tests,
but this representation has some limitations.

As mentioned in Chapter 4, one limitation is that agents oargpresent probabilistic
beliefs about relationship properties. This limitatiomsas from the Bayesian model of
network dependencies. Bayesian inference does not supptabilistic beliefs about the
structure of a Bayesian network. In many cases an agent cdnasaund this limitation
using probabilistic beliefs about the properties of a congra, however.

Also, in CAPRI the range of properties is limited to indivadwalues and individual
components, and not sets of values or sets of component@nia sases one may wish
to describe a property with multiple values. For exampleagent might wish to describe
a router that has multiple neighboring routers using a iatahip property whose value
is the set of neighboring router components. One way to aveecthis limitation is to
enhance component class and property definitions to allewléfinition of properties with
multiple values. In addition, agents will also need theigbtb reason about properties
with multiple values and to identify components within asktnultiple components.
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Agents in CAPRI make a tradeoff by communicating compiledvidedge rather than
deep knowledge about the network. The advantage of comitimjocompiled knowledge
is that other agents do not need domain-specific informatatiagnose failures. On the
other hand, using compiled knowledge may throw away infdimnauseful for diagnosis.
To address this problem, CAPRI agents might communicata&lddtobservations about
properties for which they do not have dependency knowledf@ew agents with new
dependency knowledge for these observations join the mysteéhe future, other agents
may then use the observations for diagnostic reasoning.

CAPRI agents represent beliefs and probabilistic depeasidsmising conditional prob-
ability tables. Though conditional probability tables apress any probabilistic function
over discrete variables, they have two limitations. Fr#lthat they require discrete vari-
ables. In practice this is often not a major problem becauseaan usually discretize
continuous variables without losing much accuracy. Anotlrawback is that they can be
extremely verbose, especially for conditional probapilbles with many parent variables
or variables with a large number of possible values. To asfieese challenges, one might
consider representing probabilities using Gaussian arqifobability distributions [65].

10.1.4 Probabilistic inference

This thesis demonstrates the advantages of probabiliggcance as a general technique
for distributed fault diagnosis. Some of the advantagesralbgbilistic diagnosis include
the ability to diagnose failures with incomplete infornuattj the ability to diagnose fail-
ures without domain-specific knowledge, the ability to take account new probabilistic
dependency knowledge, the ability to dynamically compbgeualue of actions, and the
ability to decompose dependencies and distributed depegdaenowledge across multi-
ple agents. A valuable area of future work is to examine thmtditions of probabilistic
inference in CAPRI and investigate possible improvements.

One area of future work is to evaluate probabilistic infeenising more complex de-
pendency models than the ones in my prototype implementafitne prototype imple-
mentation described in this thesis diagnoses failuregyusipolytree-structured Bayesian
network with no undirected cycles. This Bayesian networktesome dependencies how-
ever, such as software dependencies and link layer depeiederAn area of future work
is to examine the impact of adding such additional dependsn&tandard belief propaga-
tion is not designed for inference when undirected cyclepagsent in a Bayesian network;
an interesting question is whether loopy belief propagefti] is effective for real-world
network fault diagnosis.

Another possible research direction is to examine the efferess of dynamic Bayesian
networks (DBN) for diagnostic inference in CAPRI. Sectiab.T describes how to apply
DBNSs for inference in CAPRI. Inference using DBNs allows rigeto take into account
temporal models of failure, though with significantly geratomputational cost. An area
of future work is to evaluate the tradeoffs in accuracy anst toat DBNs can provide for
real-world fault diagnosis.

In my experiments the knowledge agent periodically leaevs dependency knowledge
offline. One possible area of future research is to investitiee advantages and drawbacks
of other approaches for learning new dependency knowlexdgd as on-line learning and
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reinforcement learning. Because probabilistic depeni@ésmaight change over time in the
Internet, another question is how frequently to learn nepedeency knowledge. Agents
must make a tradeoff between learning more frequently basdess data, or learning less
frequently using more data.

Another limitation of CAPRI is that by its very nature, prddigstic diagnosis according
to a general and dynamic architecture for fault diagnosisiires additional overhead and
computational cost compared to a specialized diagnosstesy. Exact Bayesian inference
can be computationally costly, especially in DBNs as the Ipemof nodes in a Bayesian
network increases. If computers continue to become fasigiless expensive, however,
then the computational cost of diagnosis will decrease twe. In addition, one might
reduce the computational cost of diagnosis using algostftmapproximate inference [65,
26].

10.1.5 Service description and discovery

CAPRI agents look up and retrieve service descriptionsguainentralized service direc-
tory. A centralized directory is vulnerable to failure artthak, however, so one might con-
sider building a more decentralized and distributed dasctervice. Implementing such
a distributed directory presents many challenges, howaveluding maintaining consis-
tency and the distribution of services among multiple dwec servers. One might also
examine enhancements to the service advertisement anddgohktocol, such as a more
sophisticated service indexing system and a lookup prétbabenables agents to retrieve
only services that have changed to reduce the size of satfireetory messages. Another
area of research is to consider other modes of service disgas well, such as using link
layer broadcast messages.

In future research, one might consider the advantages ahemriservice description
language. As a first step, in this thesis | define servicegyusifiat namespace. Services
do not specify their relationship to other services. Aniiesting area of future work is
to examine the potential benefits of organizing services addsses and subclasses and
explicitly describing the relationships among differeamsces to create a service ontology.
Such a service ontology might enable agents to better realsout how to compose and
aggregate multiple services.

10.1.6 Action selection

The prototype CAPRI agents described in this thesis setgiires myopically according
to their expected value of information. An area of future kvizrto examine more sophis-
ticated action selection algorithms that can take into astadditional factors such as the
value of performing multiple simultaneous actions, theamtpd future distribution of fail-
ures, the expected future cost of diagnosis, and the trustimess of the agent providing
the information.

Another question is whether an action selection algorithat performs multiple ac-
tions simultaneously in parallel can improve the cost araigacy of diagnosis. Currently
agents only select single actions myopically; implemeantin action selection algorithm
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that takes into account the expected benefits and costs dipialdctions may produce
better results.

Another challenge is to take into account issues of seguriigt, and authentication
when deciding what services to use and which agents to dotathe number of special-
ist agents increases, agents need to be able to decide wiestace trustworthy and which
ones are malicious. In addition, some agents may provide mccurate information than
others. Especially when different agents have conflictifgrmation, agents need to be
able to decide which other agents to contact. Possible appes to this problem are to
learn the value of the services other agents offer, to coastrweb of trust, or to develop a
reputation system whereby accurate and reliable agendsigitg accumulate a reputation.

10.1.7 Cost and economics

This thesis assumes that the costs of diagnostic servieeseatexogenously. Costs may
reflect the expected time to perform a diagnostic test, thear& resources used, or may be
tied to actual monetary payments. Quantifying the cost afjdostic tests can be difficult,
however, especially since the cost of an action may not bevkrahead of time. One area
of future work is to examine how agents might set these casits.cost of performing a test
may be borne by not only the agent performing the test, bugraghtities in the network as
well. In order to avoid concentration of costs, it is impaittéo consider all of those who
may be affected by a test.

Another possible area of research is to investigate otrstmaodels. CAPRI limits cost
descriptions to scalar integer values, but in some casemyitm more accurate to specify a
cost distribution instead. For example, an agent wishirtgytaly bound the time required
to perform an action may select actions on the basis of 95ttepéle cost, while an agent
with no time constraints might select actions based simplgxpected cost.

Another area of future work is to study the incentives ancheaaics of a marketplace
for diagnosis. In my prototype implementation, the costeies is fixed. As an alter-
native, agents might dynamically set the cost of a servigeagent under heavy load may
choose to increase the cost of its service temporarily togedhe number of requesters, for
example. Such dynamic pricing may also lead to competitmanrag multiple diagnostic
agents for servicing requests and create a marketplacedgnaosis.

Arelated question is to evaluate the costs and benefits ghdss in terms of the repair
actions that requesters take on the basis of diagnostittse3ine accuracy and value of a
diagnosis should ultimately be calculated in terms of tieot$ of the repair actions that the
requester takes. Certain types of misdiagnoses may have sedpus consequences than
others. For example, if a network administrator brings ddeir entire network in order to
repair a failure based on incorrect information in a diagiwoesponse, then a misdiagnosis
can be very costly. On the other hand, if the action taken byrd¢iguester is the same as
the one that they would have taken given the correct diagnthen the misdiagnosis does
not cause any harm. An area of future work is to consider howwdorporate this type of
reasoning into diagnostic agents.
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10.1.8 User interface and user feedback

Another research direction is to consider how to providddrdeedback to users and to
support more interactive diagnosis. The prototype implaiat®on in this thesis does not
give users the ability to provide feedback to diagnosticiger adjust the parameters of
diagnosis. To increase interactivity, one might modify tiser interface to enable users
to request additional tests and adjust the confidence tbickdbudget, and expiration time
of diagnosis according to their needs. In addition, one migbdify the user interface
to allow users to provide feedback about the results of diagn Such feedback might
allow agents to improve their accuracy or provide a mecharieg distinguishing among
trustworthy and untrustworthy agents.

Another area of research is to examine the benefits of progidiagnosis requesters
with more information about the tradeoffs of specifyingeiient parameters in a diagnostic
request. For example, a diagnosis requester might provate or less information in the
request, or specify different confidence thresholds, btsj@ad expiration times. A recip-
ient of a diagnostic response does not know whether the dgagprovider had the ability
to produce a more accurate diagnosis but chose not to beitdagksufficient confidence,
expended its budget, or exceeded the expiration time. Todetquester better determine
the degree to which they should believe the diagnosis anttdteoffs of requesting addi-
tional diagnostic tests, perhaps an agent could estimatpdtential additional confidence
and cost of diagnosis with an increased confidence threshoftbet, or expiration time.
A diagnostic agent might also specify in a response how mdditianal confidence it can
provide in a diagnosis given various combinations of inp#s agent might estimate its
expected confidence with additional inputs by computingettpected value of information
of the additional inputs. A diagnosis provider might alsoypde more information about
what actions it took and what actions were available to dgieerequester more feedback
about the process of diagnosis.

Another research direction is to consider giving requastasre control over the actions
taken in a diagnosis. For example, a diagnosis provider npigivide a requester with the
set of possible actions it has available for diagnosis ard/éthue and cost of each action.
The requester might then explicitly specify which testsighles to conduct and which ones
it does not. Allowing requesters to explicitly specify &8d perform introduces additional
challenges, however. A requester may not have all the irdtion necessary to decide
what tests to perform, and exposing the set of availablemstio requesters makes it more
difficult to introduce new specialist agents and to changewhy in which a diagnosis
provider operates.

10.2 Conclusion

In this thesis, | present a new approach to fault diagnossed@n a common architec-
ture for communicating diagnostic information and perforghdiagnostic reasoning. By
providing modular interfaces for diagnostic agents, CARR&bles cooperation among
multiple specialized diagnostic agents. | hope that thisega architecture encourages
future researchers in Internet fault diagnosis to rethimk way they develop diagnostic
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tools. | hope that rather than developing monolithic toas diagnosis using domain-
specific knowledge, future researchers will consider mocelmtar tools and share their
diagnostic knowledge to encourage reuse and cooperatigntegearchers develop new
and more sophisticated diagnostic agents, the accuracy@ndr of diagnosis will im-
prove. Combining new diagnostic agents and new knowledgewel ways may produce
new and unexpected capabilities. If a common architectordault diagnosis such as
CAPRI becomes widely adopted, both users and network adtratdrs will benefit from
faster, cheaper, and more accurate diagnosis of netwdukdai This thesis is just the first
step towards this goal, however, and much work remains toréuresearchers to address.

147



148



Appendix A
CAPRI Language Specifications

CAPRI provides diagnostic agents with an ontology languagdefining component and
diagnostic test classes and their properties, a languagegdeesenting diagnostic informa-
tion and diagnostic messages, and a language for repregesgtivice descriptions. This
appendix contains the specifications for each of these kEgegiexpressed using XML.

A.1 Component ontology language

CAPRI provides agents with a component ontology languagddéining component and
diagnostic test classes and their properties. This sedgsaribes the XML serialization of
this ontology language.

A.1.1 Component class and property definition files

Component and diagnostic test classes are defined in comipdiass and property defi-
nition files. A file may contain multiple class and propertfidigions. Every component
class and property definition also has an associated unigieHat refers to the class or
property’s corresponding component class and propertyitiefi file.

A component class and property definition file contains alsingopt elementgonpo-
nent Ont ol ogy. Theconponent Ont ol ogy element may contain any number @inpo-
nent Cl ass, descriptiveProperty, andrel ati onshi pProperty child elements. The
order of the component class and property definitions witihénfile does not matter.

A.1.2 Defining component classes

A component or diagnostic test class definition is specifigitigitheconponent C ass
element. Thename attribute ofconponent O ass element specifies the component class
name as a URI. Theonmponent Cl ass element may have zero or mosebcl assOf and

i dProperty child elements listing its superclasses and identifyirgpprties, respectively.
The order of the dProperty elements does not matter. Eaglibcl assOf property has
anane attribute whose value is the URI of a superclass for the carapbor diagnostic
test class. EachdProperty child element has aane attribute whose value is the URI
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of an identifying property for the component or diagnoseésttclass. For example, the
component class definition f&ff TP Connect i on is as follows.

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on">
<i dProperty name="http://capri.csail.mt.edu/ 2006/ capri/comon#dest Hash" />
<i dProperty name="http://capri.csail.mt.edu/ 2006/ capri/common#connTi ne" />
</ conponent Cl ass>

A.1.3 Defining properties
CAPRI supports the definition of both descriptive propeara@d relationship properties.

Defining descriptive properties

A descriptive property is defined usingdascri ptiveProperty element whoseane
attribute specifies its full name as a URI. A descriptive grdypmay also optionally contain
arange child element specifying the range of possible values thiatgroperty can have.
Ther ange element contains a list of two or moeat ry elements. The&al ue attribute of
anent ry element specifies a possible value that the property can Hawe order of the
entries does not matter. Note that to facilitate extengyib support new properties of
existing components, the set of allowable properties ofragmment is not restricted. For
similar reasons, the domain of a property is also unrestlisb that any component may
have any defined property. For example, the property defimftor st at us is given below.

<descriptiveProperty name="http://capri.csail.mt.edu/ 2006/ capri/core#status">
<range>
<entry val ue="CK" />
<entry value="FAIL" />
</range>
</descriptiveProperty>

Defining relationship properties

A relationship property is defined using thel at i onshi pPr operty element, whoseane
attribute specifies the full name of the property as a URt.eRat i onshi pProperty el-
ement must also haverange attribute whose value is the component class name of the
class of component to which this property refers. e\ at i onshi pPr operty element may
optionally specify asymet ri cProp attribute whose value is the name of a symmetric
relationship property. To understand the meaning of a symecr@operty, consider a rela-
tionship propertypr op has with rangé\ and symmetric propertyynPr op. This definition
implies that for every componedt with a relationship propertgr op referring to a com-
ponentY, an agent can infer that componéfihas a relationship propergynPr op that
refers toX. As an example, the definition of tlisHopTest relationship property is given
below.
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<rel ati onshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/commn#asHopTest"
range="http://capri.csail.nmit.edu/ 2006/ capri/comon#AS Hop Test"
symetri cProp="http://capri.csail.mt.edu/ 2006/ capri/comon#asHop"
/>

A.2 Representation of diagnostic messages

This section describes the representation of diagnostairation and diagnostic messages
using XML.

A.2.1 Representing diagnostic information

Agents can communicate four types of diagnostic infornmatmbservations, beliefs, like-
lihoods, and dependency knowledge.

Representing observations

Agents express observations usingaser vati on element. The observation has five
attributes providing metadata about the observationi daattribute, at i ne attribute in-
dicating the time the observation was made in millisecondsesJan 1, 1970 UTC; an
ori gi nat or attribute indicating the URI of the agent that originally skegthe observation;
a Boolearcached attribute indicating whether the observation was cachetbtrand an
expi r es attribute indicating the time the information expires inlliméconds since Jan 1,
1970 UTC.

An observati on element has exactly one child element, eitheo@gponent element
or at est element, depending on whether the input component is a nletwemnponent or
a diagnostic test. Theonponent ortest element has one or moc¢ ass child elements
specifying the class or classes to which the component bbédsngs. The content of each
class element is a class name. The component or test eleragralso have zero or more
additional child elements describing its properties. Epaiperty is expressed as a child
element whose tag name is a property name and whose contieatlse value of the prop-
erty. For convenience, agents can abbreviate the propamerusing XML namespaces.
The order of the classes and properties does not matter. dloe wf descriptive prop-
erties is expressed as a string. Leading and trailing whetes is ignored. The value of
relationship properties is expressed aoaponent Ref child element. Aconponent Ref
element has an attributef whose value is thed value of another component in the com-
ponent graph. The metadata in thigser vat i on element applies to all properties in the
observation. Below | give an example of an observation ofwetha@und connectivity test.

<observation id="obs-3"
xm ns: com="http://capri.csail.nit.edu/ 2006/ capri/comon#"
time="1168356309119"
originator="http://18.26.0.100/ user Agent"
cached="fal se"
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expires="1170451641706" >
<test id="test-6">

<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/common#Qut bound_Conn_Test

</cl ass>

<com srcl P> 127.0.0.1 </comsrcl P>

<com probeURl > capri.csail.nit.edu </ com pr obeUR >

<com probeResul t> K </ com probeResul t >

<com | ocal Net > <conponent Ref ref="com2"/> </com | ocal Net >
</test>
</ observati on>

Representing beliefs

Agents represent beliefs and likelihoods usingitéle ef element. The metadata attributes
of a bel i ef element are identical to those of abservati on element. A belief has
four child elements: aubj ect indicating the component for which the belief applies, a
proper ty specifying the property of the component the belief dessiilaf r onEvi dence
element listing the evidence used to produce the belief,eter adi stri bution in-
dicating the probability of each of the possible values & pmoperty or d i kel i hood
element indicating the probability of the evidence givenhepossible value of the prop-
erty. Thesubj ect element has one child, eithercanponent , t est, or conponent Ref
element. The format of each of these elements is describeekah Section A.2.1. The
content of ther oper t y element is the name of the property associated with thefb&lhe

f ronEvi dence element contains zero or moe&i dence child nodes describing the evi-
dence used to infer the belief. If theonEvi dence element has nevi dence child nodes,
then the belief was inferred using only probabilistic degeamcy knowledge without any
additional evidence. Eadtvi dence node has a@r opPat h attribute indicating the prop-
erty path to a property for which the creator of this beliefllevidence it used to infer the
belief. Thedi stri buti on element has two or moent ry child elements. Eacéntry el-
ement has aal ue attribute and @ attribute such tha®(property= valugevidence = p.

A likelihood element has the same format, except that fordhtery elements for a
l'i kel i hood, P(evidencéproperty= value). Below | give an example of a belief about the
status of atHTTP Servercomponent inferred from the number of consecutive faildces
the server.

<belief id="bel-2"
xm ns: com="http://capri.csail.nit.edu/ 2006/ capri/comon#"
originator="http://18.26.0.100:8111/da"
time="1160577157224"
cached="true"
expi res="1170451641706" >

<subj ect >
<conponent id="com1">
<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Ser ver
</class>
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<com host Hash>+0THLgaZnxk9l 8bU5ZgDGA==</ com host Hash>
</ conponent >
</ subj ect>
<property>http://capri.csail.mt.edu/ 2006/ capri/core#stat us</property>
<di stribution>
<entry val ue="CK" p="0.8"/>
<entry value="FAIL" p="0.2"/>
</distribution>
<fronkvi dence>
<evi dence
propPat h="http://capri.csail.mnt.edu/ 2006/ capri/common#consecFai | uresToServer"
/>
</fronkvi dence>
</ bel i ef >

Representing dependency knowledge

Agents represent dependency knowledge usingtivel edge element. Knowledge has
the same five metadata attributes as observations andsheldfnowl edge element has
three child elements. Theubj ect andpr operty child elements contain the names of the
component class and property, respectively, for which #ggeddency knowledge applies.
Thecpt child specifies the conditional probability table assaawith the knowledge. A
cpt element has a singf&r ent s child element containing a whitespace delimited list of
parent property paths. The order of the parents mattersptAelement also has two or
moreent ry child nodes. Eachnt ry child node has three attributeal ue, par ent Val s,
andp such thatP(property= valugparents = parentVals) = p. Theparent Val s at-
tribute is a whitespace delimited list of parent propertjuea in the order specified in the
par ent s element. Below | give an example of a piece of dependency latye for the
asHopTest Resul t property of theAS Hop Testomponent class.

<knowl edge id="know edge- 2"
originator="http://18.26.0.100: 8111/ da"
time="1160577157224"
cached="fal se"
expires="1170451641706" >

<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#AS Hop_Test </ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#asHopTest Resul t
</ property>
<cpt >
<par ent s>
http://capri.csail.nit.edu/ 2006/ capri/comron#asHop
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p="0.995000" parentVals="FAIL" value="FAIL />
<entry p="0.020000" parentVal s=" K val ue="FAI L' />

153



<entry p='0.005000" parentVals="FAIL'" value=" K />
<entry p='0.980000" parentVal s=' K val ue=’ K' / >
</ cpt>
</ know edge>

A.2.2 Representing diagnostic messages

Diagnostic agents communicate diagnostic messages ihdsaté\ batch can contain one
or more diagnostic messages. Agents represent a batch aisaq i Message element.
A capri Message element contains &er si on attribute specifying the DMEP protocol
version, acl i ent Agent attribute describing the implementation of the agent semthe
batch, acl i ent Ver attribute indicating the version number of the sending &gand a

t i me attribute indicating the time at which the batch is sent.

A capri Message element contains one or more child elements, where eactl ehil
ement is either anbser vat i onRequest , bel i ef Request , know edgeRequest , di agRe-
quest,notification,observati onResponse,bel i ef Response, know edgeResponse,

di agResponse, noti fi cati onResponse, orerror.

Observation requests

An observation request is described usinghser vat i onRequest element. Thebser -

vat i onRequest element containsieequest er attribute indicating the URI of the request-
ing agent, a equest | D attribute, aser vi cel D attribute indicating the observation service
corresponding to the request, andexpi r es attribute indicating the expiration time of
this request in milliseconds since Jan 1, 1970 UTC.

An obser vat i onRequest element may optionally have amput Conponent child el-
ement specifying the input component for the service retgaesAn i nput Conponent
element has exactly one child element, eithemaponent , t est, or conmponent Ref as
described in Section A.2.1. In addition, abhser vati onRequest element may have an
optionalbody child element describing additional diagnostic inforroatto communicate.
A body element contains zero or mooéser vati on, bel i ef , andknow edge elements.
For example, a request for the number of consecutive falto@ web server may look as
follows.

<observat i onRequest
xm ns: com="http://capri.csail.mt.edu/ 2006/ capri/comon#"
requester="http://18.26.0. 100/ r egi onal Agent"
request | D="101"
servi cel D="obs: webserver. cfts"
expi res="1160577160000" >

<i nput Conponent >
<component >

<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Server

</ cl ass>

<com i pAddr>  192.168. 10. 10 </ com i pAddr >
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<com host Hash> +0THLgaZnxk9l 8bU5ZgDGA== </ com host Hash>
<com connTi me> 1167766762747 </ com connTi me>
</ conponent >
</'i nput Conponent >
</ observat i onRequest >

Belief requests

Agents express belief requests using bleéi ef Request element. Belief requests have
the same form as observation requests, except that ieef Request element also has a
budget attribute. Below | give an example of a belief requestHidrTP Servest at us.

<bel i ef Request
xm ns: com="http://capri.csail.mt.edu/ 2006/ capri/comon#"
requester="http://18.26.0. 100/ r egi onal Agent "
request | D="102"
servi cel D="bel : webserver. st at us"
budget =" 1000"
expi res="1160577160000" >
<i nput Conponent >
<component id="com1">

<cl ass>
http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Server

</ cl ass>

<com host Hash> +0THLgaZnxk9l 8bU5ZgDGA== </ com host Hash>

<com connTi me> 1167766762747 </ com connTi me>

</ conponent >
</ i nput Conponent >
</ bel i ef Request >

Knowledge requests

Agents express knowledge requests usingkiier edgeRequest element. Knowledge
requests have the same form as observation and belief tsgessept that they do not
require an nput Conponent . For example,

<knowl edgeRequest
requester="http://18.26.0. 100/ r egi onal Agent "
request | D="103"
servi cel D="know edge: http"
expi res="1160577160000" />

Diagnosis requests

Agents express diagnosis requests usingltlagRequest element. Adi agRequest has
the same format as leel | ef Request, except that ali agRequest element also has a
expl anat i ons child element specifying the set of alternative explamatitor the fail-
ure. Anexpl anations element has two or morexpl anati on child elements. Each
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expl anati on child element contains one or mocenponent Ref elements. Eachom
ponent Ref element has aef attribute indicating a component, andstat us element
specifying the status of the component. Each componentdh egplanation must be in
the list of candidate explanations for the service corragpgy to the diagnosis request.
Part of anHTTP Connectioffiailure diagnosis request is given below.

<di agRequest requester="http://18.26.0.100: 8111/ user Agent "
request | D="501"
servi cel D="di ag: http"

budget =" 1000"

expi res="1160577160000"
conf Thresh="0.9">

<i nput Conponent >

<conponent Ref ref="com1" />

</i nput Conponent >
<expl anati ons>
<expl anati on>
<conponent Ref
</ expl anat i on>
<expl anat i on>
<conponent Ref
</ expl anat i on>
<expl anat i on>
<component Ref
</ expl anat i on>
<expl anat i on>
<component Ref
</ expl anati on>
</ expl anat i ons>
<body>

ref="com2"

ref="com3"

ref="com4"

ref="comb5"

status="FAIL" />

status="FAIL" />

status="FAIL" />

status="FAIL" />

<observation tine="1168356307879">

<component id="com1">
<cl ass>

http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on

</ cl ass>
<comsrcl P>
<com dest Hash>
<com connTi ne>
<core: status>

<com dnsLookup>
<com i pRout i ng>
<com htt pServer>
<com | ocal Net >
<com out boundConnTest >
<com f f oxError Test >
</ conponent >
</ observation>

127.0.0.1
aRexNPkQUP1p9s54c XAl g==
1168356307879

FAI L

<conponent Ref
<conponent Ref
<conponent Ref
<conponent Ref
<conponent Ref
<conponent Ref

156

ref="com4"/>
ref="com5"/>
ref="com3"/>
ref="com?2"/>
ref="com6"/>
ref="com7"/>

</comsrcl P>

</ com dest Hash>
</ com connTi me>
</ core:status>

</ com dnsLookup>

</ com i pRout i ng>

</ com htt pServer>
</com | ocal Net >

</ com out boundConnTest >
</com ffoxErrorTest>



<observation tine="1168356309119">
<component id="com2">

<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/comron#Local _Network
</cl ass>
<com i pAddr > 127.0.0.1 </comi pAddr>
<com conseckFai | uresFromJer> 0 </ com consecFai | ur esFronser >

</ conponent >
</ observati on>

</ body>

Note several characteristics of this diagnostic requéstortains a set of observations
relating to the failure (a failure story). Each observatommtains a description of a com-
ponent individual, including the properties of the comparaich as its identity, its parent
(dependent) components, its status, and other chardw®gri$he properties a component
may have are defined in the component class ontology. An wdsan also includes some
metadata, including the time the observation was made aedathe the observation came
from. Also, the component IDs above are only used to consstingcgraph structure and do

not mean anything outside this failure story. Each explanas a status assignment to one
or more components. The task of diagnosis is to identifyiketihood of each explanation.

Notifications

Agents express notifications using ti i f i cati on element. A notification element has
only two attributes, aer vi cel D specifying the notification subscription for this notifica-
tion, and anot i ficationl D. The content of aot i fication element is the same as an
observation or belief request, and can contaiput Conponent and abody child elements.
Below is an example of aHTTP Connectiomotification.

<notification
xm ns: core="http://capri.csail.mt.edu/ 2006/ capri/core#"
xm ns: com="http://capri.csail.mt.edu/ 2006/ capri/comon#"
servicel D="noti fy: connHi st"
notificationl D="10">
<i nput Conponent >
<component Ref ref="com1" />
</'i nput Conponent >
<body>
<observation time="1160577160000">
<component id="com1">

<cl ass>
http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connection

</class>

<com dest Hash> +0THLgazZnxk9l 8bU5ZgDGA== </ com dest Hash>

<com connTi ne> 1160577158287 </ com connTi me>

<core: status> X </ core: status>
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<com el apsedTi me> 340 </ com el apsedTi ne>
<com srcl P> 1.2.3.4 </comsrcl P>
<com dest | P> 50. 60. 70. 80 </ com dest | P>
</ conponent >
</ observation>
</ body>
</notification>

Observation response

Agents express observation responses usingliber vat i onResponse element. Arob-
servat i onResponse contains the equest | Dof the correspondingbser vat i onRequest ,
the correspondinger vi cel D, and ar esponseSt at us. The value ofr esponseSt at us
is either O to indicate an error producing the response, ardicating a successful re-
sponse. Arpbservati onResponse element contains body child element with zero or
moreobservati on, bel i ef , andknow edge child elements. Note that an observation re-
sponse may contain observations, beliefs, and dependeeylddge not specified in the
corresponding service description so that an agent caragedp additional information to
the requester even when not explicitly requested. Also ti@tconponent Ref elements
in a response can refer to components described in the reques

Below | give an example of an observation response for a doe server statistics
may look as follows:

<observat i onResponse
xmns:ss="http://capri.csail.nit.edu/ 2006/ capri/servstats#"
responseStat us="1"
servi cel D="obs: st at s"
request | D="101"
time="1176087435536">
<body>
<observation
i d="obs- 1"
time="1176087435532"
originator="http://127.0.0.1: 80/ st at sAgent "
cached="fal se"
expi res="1176087435532" >

<conponent id="http://127.0.0. 1: 80/ st at sAgent/com 1" >

<cl ass>

http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on
</class>
<ss: users> 3 </ ss: users>
<ss: dest Hash> +0THLgaZnxk9l 8bU5ZgDGA== </ ss: dest Hash>
<ss:avglLat ency> 336 </ ss:avglat ency>
<ss:recent StatusDist> 0,2|1,2|14,3 </ss.recent StatusDi st>
<ss: | astFail ure> 250000 </ss:lastFailure>
<ss: | ast Success> 12300 </ ss: | ast Success>

158



</ conponent >
</ observati on>
</ body>
</ observat i onResponse>

Belief Response

Agents express belief responses usinghiéle ef Response element. Abel i ef Response
element has the same format asadser vat i onResponse, though the information pro-
vided in the body may differ.

KnowledgeResponse

Agents express knowledge responses usingtiogl edgeResponse element. Aknow -
edgeResponse element has the same format asdaser vat i onResponse, though the
information provided in the body may differ.

Diagnosis Response

Agents express diagnosis responses usingltlagResponse element. A diagnosis re-
sponse has the same format asoégmer vat i onResponse, except that it also contains a
expl anations child element listing the probability of each candidate larption pro-
vided in the request. Thexpl anati ons element contains one or moexpl anati on
elements. The content of thexpl anati on element is the same as indaagRequest .
Eachexpl anati on element has an attribute indicating the probability all the compo-
nents in the explanation have the specified status valugzolide additional information
to requesters about the beliefs and evidence used to pradeckagnosis, an agent may
also include additional observations and beliefs in theybafdthe response. Below is an
example of a diagnostic response for an HTTP Connectionréadiagnosis.

<di agResponse
responseSt at us="1"
servicel D="di ag: htt p"
request | D="321"
time="1176088430691">
<expl anat i ons>
<expl anation p="1.0000">
<conponent Ref status="FAIL" ref="com4"/>
</ expl anat i on>
<expl anation p="0.0431">
<conponent Ref status="FAIL" ref="com3"/>
</ expl anati on>
<expl anation p="0.0016">
<conponent Ref status="FAIL" ref="com5"/>
</ expl anat i on>
<expl anation p="0.0000">
<conponent Ref status="FAIL" ref="com2"/>
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</ expl anati on>
</ expl anati ons>
<body>
<bel i ef
i d="bel -1"
time="1176088430689"
originator="http://142.150.238. 12: 8111/ r egi onal Agent"
cached="fal se"
expires="1176092030689" >
<subj ect >
<conponent Ref ref="com4"/>
</ subj ect>
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#status</ property>
<di stribution>
<entry p="0.999997" val ue="FAIL"/>
<entry p="0.000003" val ue="X"/>
</distribution>
<fronkvi dence/ >
</ bel ief>
<bel i ef
i d="bel - 2"
time="1176088430689"
originator="http://142.150.238. 12: 8111/ regi onal Agent"
cached="fal se"
expi res="1176092030689" >
<subj ect >
<component Ref ref="com 3"/>
</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#status</property>
<di stri bution>
<entry p="0.043079" val ue="FAIL"/>
<entry p="0.956921" val ue="X"/>
</distribution>
<frontvi dence/ >
</ bel ief>
<bel i ef
i d="bel - 3"
time="1176088430689"
originator="http://142.150.238. 12: 8111/ r egi onal Agent"
cached="fal se"
expi res="1176092030689" >
<subj ect >
<conponent Ref ref="com5"/>
</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#status</property>
<di stribution>
<entry p="0.001625" val ue="FAIL"/>
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<entry p="0.998375" val ue="X"/>
</distribution>
<fromnkvi dence/ >
</ belief >
<bel i ef
i d="bel -4"
time="1176088430689"
originator="http://142.150.238. 12: 8111/ regi onal Agent"
cached="fal se"
expi res="1176092030689" >
<subj ect >
<component Ref ref="com2"/>
</ subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/ core#status</property>
<di stribution>
<entry p="0.000005" val ue="FAIL"/>
<entry p="0.999995" val ue="X"/>
</distribution>
<fromnkvi dence/ >
</ bel i ef >
</ body>
</ di agResponse>

Notification response

An agent that receives a notification responds with a notibobaesponse to acknowledge
receipt of the notification. Aot i fi cati onResponse element contains onlyrmot i fi ca-
ti onl Dattribute and aesponsesSt at us attribute.

Error response

An agent that cannot process a request produces an erronsespsing &r r or element.
The content of therror element is a text string describing the error.

A.3 Service description language

This section describes the XML service description langudngit CAPRI agents use to
represent their diagnostic capabilities. See AppendixfBr2actual service descriptions
used in the prototype implementation described in Chapter 8

A.3.1 Directory updates

Agents communicate service descriptions to a servicetdingasing directory update mes-
sages. Adirectory update message has the root elenesdt or yUpdat e. Adi rectory-
Updat e element contains one or mager vi ceAdverti sement elements. Eacber vi ce-
Advertisenent element contains ger vi cel D attribute; & i ne attribute indicating when
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the service was defined;n@ssageType attribute whose value is eithebser vat i onRe-
quest, bel i ef Request , di agRequest, ornoti ficati on; anagent URl attribute indicat-

ing the URI of the agent providing the servicerast attribute; an optionat equest -

er Type attribute specifying the types of requesters that may usestirvice; an optional
request er ASRange attribute specifying a comma delimited list of Internet@dmous
system numbers of requesters allowed to use this servickaaroptionali nput G ass
attribute. If ther equest er Type attribute is not present, then all types of requesters are
allowed. If ther equest er ASRange attributes is not present, then requesters from all ASes
are allowed. A service advertisement with the samgent URI andser vi cel Das another
service but with a greateii me value supersedes the older service.

A servi ceAdvertisenent may have zero or moienput Pr operty, out put Qoser va-
tion, out put Bel i ef , out put Know edge, andcandi dat eExpl anat i on child elements.

An input Property element has @ropPat h attribute specifying the property path
of the input property relative to the input component. Amput Property also has an
optionalr equi r ed property indicating whether the property is required to theeservice.
By default a property is not required. An input property witiput restrictions also has
i ndexFunc andi ndexRange attributes. See Section 5.1.3 for the list of allowable inde
functions.

An observation, belief, or diagnosis service may have omaae output observations.
An out put Cbser vat i on has apr opPat h attribute specifying the property path of an ob-
servation produced by the service relative to the input comept.

A belief or diagnosis service may have one or more outpuekeliAnout put Bel i ef
also has ar opPat h attribute referring to the component and property of thedbehe
service produces. In addition, amt put Bel i ef also has zero or morkr onEvi dence
child elements. EachronEvi dence child element has pr opPat h attribute indicating a
property that the provider agent can access as evidencedo@z the belief.

An observation, belief, diagnosis, or knowledge servicg mave one or more knowl-
edge outputs. Amut put Knowl edge element has aubj ect attribute and gr operty
attribute indicating the corresponding subject and prigpfar a piece of knowledge the
service produces. In addition, aat put Know edge element has zero or mogpar ent
child elements. Eacpar ent element has ar opPat h attribute indicating the path to one
of the parent properties for the dependency knowledge.

A diagnosis service may provide one or more candidate eafitams. Acandi dat e-
Expl anat i on element has ar opPat h attribute indicating the path to the property for the
candidate explanation.

A directory service responds to a directory update with actory update response. A
directory update response contains a sirtjleect or yUpdat eResponse element with a
single attribute esponseSt at us, whose value is 1 if the directory update was processed
successfully or 0 otherwise.

A.3.2 Service map requests

An agent requests the list of available services using anicgemap request. A ser-
vice map request is an XML message with root elenssmtvi ceMapRequest . A ser-
vi ceMapRequest element has aer si on attribute indicating the service directory proto-

162



col version, &l i ent Ver attribute indicating the version of the requesting agent| an
agent Type attribute indicating the type of agent (e.g. user, spestiadir regional).

A.3.3 Service map responses

A directory service responds to a service map request witereice map response. A
service map response is an XML message with root elesemi ceMap. A servi ceMap
element contains zero or moser vi ceAdverti sement child nodes. If an agent has a
choice between two services with the same utility, the agbould use the service that
appears first in the service map. This allows the directoryise to balance load and
control the distribution of requests across multiple agent

A.3.4 Service retractions

An agent may also retract a service that it no longer offersetfaction message consists
of adirectoryUpdat e element withser vi cel D, agent URl , andt i me attributes corre-
sponding to the service to retract. Tdie ect or yUpdat e element for a retraction message
also has an additional attributet r act having the value r ue. After the directory ser-
vice receives a retraction message for a service, it no loadeertises the service to other
agents.
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Appendix B

Prototype Implementation Detalls

This appendix contains the ontology, service descriptiand dependency knowledge used
in the prototype implementation described in Chapter 8.

B.1 Component class and property definitions

In the prototype implementation described in Chapter 8neglwad component class and
property definitions from the core component ontology, tbemon component ontology,

a ServStats component ontology, and a CoDNS componenogytal hese ontologies are

provided below, and can be downloaded using their respetiiRis.

B.1.1 Core component ontology

<conponent Ont ol ogy>

<descriptiveProperty
name="http://capri.csail.nit.edu/ 2006/ capri/core#status">
<range>
<entry val ue="K" />
<entry value="FAIL" />
</range>
</descriptiveProperty>

</ conponent Ont ol ogy>

B.1.2 Common component ontology
<conponent Ont ol ogy>

<|__ kkkhkkkhkkkhkkkhkkkkkkkkkkkkkk%*%x Gasses kkkkkkkhkkhkkhkkhkkhkkhkkhkhkkkhkkhk%x >

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#HTTP_Server">
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<i dProperty
name="http://capri.csail.nt.edu/ 2006/ capri/conmon#i pAddr" />
</ conponent Cl ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#HTTP_Connecti on">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#dest Hash" />
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmmon#connTi ne" />
</ conponent C ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#Firefox_Error_Test">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#dest Hash" />
</ conponent Cl ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#Local _Network">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#i pAddr" />
</ conponent Cl ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#DNS_Lookup" >
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#host name" />
</ conponent Cl ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#Cut bound_Conn_Test ">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#srclP" />
<i dProperty
name="http://capri.csail.nt.edu/ 2006/ capri/conmon#probeURl" />
</ conponent C ass>

<conponent d ass
name="http://capri.csail.nt.edu/ 2006/ capri/common#l P_Routing">
<i dProperty
name="http://capri.csail.nt.edu/ 2006/ capri/common#srclP" />
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#dest|P" />
</ conponent Cl ass>

<conponent d ass

166



name="http://capri.csail.mt.edu/ 2006/ capri/common#Verify DNS Lookup_Test">
<i dProperty
name="http://capri.csail.nt.edu/ 2006/ capri/conmmon#host nane" />
</ conponent C ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#AS_Pat h">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#sr cAS" />
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#dest AS" />
</ conponent Cl ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/comon#AS Path Test">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comron#srcAS" />
<i dProperty
name="http://capri.csail.nmt.edu/ 2006/ capri/conmon#dest AS" />
</ conponent G ass>

<conponent d ass
name="http://capri.csail.nit.edu/ 2006/ capri/conmon#AS Hop">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comron#srcAS" />
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#dest AS" />
</ conponent C ass>

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/common#AS Hop Test">
<i dProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comron#srcAS" />
<i dProperty
name="http://capri.csail.nmt.edu/ 2006/ capri/conmon#dest AS" />
</ conponent Cl ass>

<|__ khkkhkkkhkkkhkkkhkkhkkkkkkkdkkkk%*%x Propertles kkkhkkkhkkhkhkkhkhkkhhkdhkdkkhhkhhrkhkx* >

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#sr cAS" />

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#dest AS" />

<I-- a comm separated |ist of ASes along the path -->

<descri ptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#pat hASes" />
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<descriptiveProperty
name="http://capri
<range>

.csail.mt.edu/ 2006/ capri/comon#asHopTest Resul t">

<entry value="X" />
<entry value="FAIL" />

</range>

</descriptiveProperty>

<descriptiveProperty
name="http://capri
<range>

.csail.mt.edu/ 2006/ capri/ conmon#asPat hTest Resul t ">

<entry value="CK" />
<entry value="FAIL" />

</range>

</ descriptiveProperty>

<descriptiveProperty
name="http://capri

<descriptiveProperty
name="http://capri
<range>
<entry val ue="0"
<entry val ue="1"
<entry val ue="2"
<entry val ue="3"
</range>

.csail.mt.edu/ 2006/ capri/comon#connTi me" />

.csail.mt.edu/ 2006/ capri/ conmon#consecFai | ur esFromser" >

/>
/>
/>
/>

</descriptiveProperty>

<descriptiveProperty
name="http://capri
<range>
<entry val ue="0"
<entry val ue="1"
<entry val ue="2"
<entry val ue="3"
</range>

.csail.mt.edu/ 2006/ capri/ comron#consecFai | uresToServer" >

/>
/>
/>
/>

</ descriptiveProperty>

<descriptiveProperty
name="http://capri
<descriptiveProperty
name="http://capri
<descriptiveProperty
name="http://capri

.csail.mt.edu/ 2006/ capri/comon#dest Hash" />
.csail.mt.edu/ 2006/ capri/conmon#dest | P* />

.csail.mt.edu/ 2006/ capri/ comron#probeURl " />
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<descriptiveProperty
name="http://capri.csail.nit.edu/ 2006/ capri/commn#dnsLookupResul t">
<range>
<entry val ue="LOOKUP_ERROR CONFI RVED' />
<entry val ue="LOOKUP_ERROR_UNCONFI RVED' />
<entry val ue="CORRECT" />
<entry val ue="| NCORRECT" />
<entry val ue="LOOKUP_ERRCR' />
<entry val ue="ALIAS" />
</range>
</ descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#el apsedTi me" />

<descriptiveProperty
name="http://capri.csail.nit.edu/ 2006/ capri/common#f f oxError Code" >
<range>
<entry value="0" /> <l-- Success -->
<entry value="2" /> <I-- Cancel ed by user -->
<entry value="13" /> <!I-- Connection refused -->
<entry value="14" /> <!-- Connection timed out -->
<entry value="20" /> <!-- Connection reset -->
<entry value="21" /> <!-- FTP login failed -->
<entry value="22" /> <I-- FTP QWD failed -->
<entry value="30" /> <!-- Server not found -->
<entry value="42" /> <I-- HITP proxy not found -->
<entry value="71" /> <I-- Net interrupt -->
<entry value="72" /> <lI-- HITP proxy connection refused -->
</range>
</ descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#host Hash" />

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#host nane" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#i pAddr" />
<descriptiveProperty
name="http://capri.csail.nit.edu/ 2006/ capri/comon#i pAddrs" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#pr obeResul t ">
<range>
<entry value="X" />
<entry value="FAIL" />
</range>
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</ descriptiveProperty>

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#srcl P" />

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#t ot al ConsecFai | ur esFronmser”
/>

<descri ptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#t ot al ConsecFai | uresToServer"
/>

<rel ati onshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#asPat h"
range="http://capri.csail.mt.edu/ 2006/ capri/comon#AS Pat h"
symretricProp="http://capri.csail.nit.edu/ 2006/ capri/common#i pRouting"

/>

<rel ationshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/comon#next ASPat h"
range="http://capri.csail.mt.edu/ 2006/ capri/comon#AS_Pat h"

/>

<rel ationshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/commn#asHop"
range="http://capri.csail.mt.edu/ 2006/ capri/common#AS_Hop"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/commn#next ASHop"
range="http://capri.csail.nit.edu/ 2006/ capri/common#AS_Hop"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#asPat hTest"
range="http://capri.csail.mt.edu/ 2006/ capri/conmmon#AS_Pat h_Test"
symmetri cProp="http://capri.csail.mt.edu/ 2006/ capri/comon#asPat h

/>

<rel ationshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/commn#asHopTest"
range="http://capri.csail.mt.edu/ 2006/ capri/common#AS Hop_Test"
symretri cProp="http://capri.csail.mt.edu/ 2006/ capri/comon#asHop"

/>

<rel ationshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/comon#dnsLookup"
range="http://capri.csail.nmt.edu/ 2006/ capri/comon#DNS Lookup"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmmon#httpServer"
range="http://capri.csail.nit.edu/ 2006/ capri/common#HTTP_Server"

/>
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<rel ati onshi pProperty
name="http://capri.csail.nit.edu/ 2006/ capri/common#i pRouti ng"
range="http://capri.csail.mt.edu/ 2006/ capri/comon#l P_Routi ng"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#l ocal Net"
range="http://capri.csail.nmt.edu/ 2006/ capri/comon#Local _Network"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmmon#verifyDNSLookupTest"
range="http://capri.csail.mt.edu/ 2006/ capri/comron#Verify_DNS_Lookup_Test"
synmmetri cProp="http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup"

/>

<rel ati onshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/common#out boundConnTest "
range="http://capri.csail.mt.edu/ 2006/ capri/conmon#Cut bound_Conn_Test"
symmetri cProp="http://capri.csail.nmt.edu/ 2006/ capri/comon#httpConn"

/>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test"
range="http://capri.csail.nmit.edu/ 2006/ capri/comon#Firefox_ Error_Test"
symetricProp="http://capri.csail.mt.edu/ 2006/ capri/comron#httpConn"

/>

<rel ati onshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/conmon#httpConn"
range="http://capri.csail.nit.edu/ 2006/ capri/common#HTTP_Connecti on"

/>

</ conponent Ont ol ogy>

B.1.3 ServStats ontology

<conponent Ont ol ogy>

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/servstat s#users" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/servstat s#root Cause" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/servstat s#consecFai | ures" />
<descriptiveProperty
name="http://capri.csail.nit.edu/ 2006/ capri/servstat s#avglLat ency" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/servstat s#l ast Success" />
<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/servstat s#l ast Fai lure" />
<descriptiveProperty
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name="http://capri.csail.nit.edu/ 2006/ capri/servstats#recent StatusDi st" />

</ conponent Ont ol ogy>

B.1.4 CoDNS ontology

<conponent Ont ol ogy>

<|__ kkkhkkkhkkkhkkkkkkkkkkkkhkkhkkk k% Gasses kkkkkkkhkkhkkhkhkkhkkhkkdkkhkkkhkkhxk >

<conponent d ass
name="http://capri.csail.mt.edu/ 2006/ capri/pl anet| ab#CoDNS_Lookup_Test ">
<i dProperty
name="http://capri.csail.nmt.edu/ 2006/ capri/conmon#host nane" />
</ conponent C ass>

<|__ khkkkkkhkkhhkkkkhhhkkdhhkddhkkx*x PrOpertleS khkkkkkhkkhkhkkkkhhhkhkkhkdhhkkhdkkkhxx >

<descriptiveProperty
name="http://capri.csail.mt.edu/ 2006/ capri/ pl anet | ab#codnsLookupResul t ">
<range>
<entry val ue="LOOKUP_ERROR_CONFI RVED" />
<entry val ue="LOOKUP_ERROR UNCONFI RVED' />
<entry val ue=" CORRECT" />
<entry val ue="1 NCORRECT" />
<entry val ue="LOOKUP_ERRCR' />
</range>
</descriptiveProperty>

<rel ationshi pProperty
name="http://capri.csail.mt.edu/ 2006/ capri/pl anet| ab#codnsLookupTest "
range="http://capri.csail.mt.edu/ 2006/ capri/pl anet| ab#CoDNS_Lookup_Test"
synmmetricProp="http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup"

/>

</ conponent Ont ol ogy>

B.2 Service descriptions

In each of the service descriptions below, agents advegtiie services replace the string
| ocal host with their own IP address aridcal AS with their own AS number.

B.2.1 Regional agent
<di rect oryUpdat e>

<|__ khkkkkkhkkhkkkkkhkkhkkkkhhkkkhkx*k For |oca| users khkkkkkhkkhkkkkkhkkhkkkkhhkkk*x*x >
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<I'-- Diagnostic requests fromlocal agents in same AS. "local AS" will
get replaced with the local AS number. Since this one is |ower cost
than the general one, users within the same AS as this regional agent
will prefer this one. -->

<servi ceAdvertisenent
servicel D="di ag: htt p(l ocal AS)"
time="1172597022"
messageType="di agRequest "
agent URI ="http://1 ocal host/regi onal Agent"
cost ="1000"
request er Type="user"
request er ASRange="1 ocal AS"
i nput d ass="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on">

<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/core#status"
required="fal se"
/>
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/comon#host nane"
requi red="fal se"
/>
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/comoni#srclP"
required="fal se"
/>
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/comron#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/comon#dest|P"
required="true"
/>

<candi dat eExpl anati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<candi dat eExpl anati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<candi dat eExpl anati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status” />
<candi dat eExpl anati on
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#i pRouti ng
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http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ servi ceAdvertisenent >

<I-- This is for connection history notifications, which will get
forwarded to history and stats agents. -->

<servi ceAdvertisenent
servicel D="notify: connHi st (I ocal AS)"
time="1172597022"
messageType="notification"
agent URI ="http:/ /1 ocal host/regi onal Agent"
cost ="1000"
request er Type="user"
request er ASRange="1 ocal AS"
i nput A ass="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connection" >

<i nput Property
propPat h="http://capri.csail.nit.edu/2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comon#dest Hash" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#srclP" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest|P" />
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#connTi ne" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#el apsedTi ne" />
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#ff oxError Test" />
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/comron#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/common#f f oxError Code" />
</ servi ceAdvertisenent >

<I-- Diag history notifications that get propagated to the learning agent. -->

<servi ceAdvertisenent
servicel D="notify: di agHi st (| ocal AS)"
time="1172597022"
messageType="notifi cation"
agent URI ="http://l ocal host/regi onal Agent"
cost ="1000"
request er Type="user"
request er ASRange="1 ocal AS"
input G ass="http://capri.csail.mt.edu/ 2006/ capri/common#HTTP_Connection">
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<i nput Property

propPat h="htt p:

<i nput Property

propPat h="htt p:

<i nput Property

propPat h="htt p:
htt p:

<i nput Property

propPat h="htt p:
http:

<i nput Property
propPat h="htt p:
http://capri.
/>
<i nput Property

propPat h="htt p:

http://capri
/>
<i nput Property

propPat h="ht t p:

<i nput Property

propPat h="ht t p:
http:

<i nput Property

propPat h="htt p:

http://capri
/>
<i nput Property

propPat h="htt p:

<i nput Property

propPat h="htt p:
http:

<i nput Property

propPat h="htt p:
http:

<i nput Property

propPat h="ht t p:

<i nput Property

propPat h="ht t p:
http:

<i nput Property

propPat h="htt p:
http:

<i nput Property

propPat h="htt p:
http:

<i nput Property

[l capri.csai
[lcapri.csai

[l capri.csai
[/ capri.csai

[lcapri.csai
[Icapri.csai

[l capri.csai

.mit.edu/ 2006/ capri/core#status" />
.mt.edu/ 2006/ capri/comon#l ocal Net" />

.mt.edu/ 2006/ capri/conmmon#l ocal Net |
.mt.edu/ 2006/ capri/core#status" />

.mit.edu/ 2006/ capri/comon#l ocal Net |
.mt.edu/ 2006/ capri/ conmon#i pAddr" />

.mt.edu/ 2006/ capri/conmon#l ocal Net |

csail.mt.edu/ 2006/ capri/ conmon#consecFai | uresFronser"

[/ capri.csai

[lcapri.csai

[lcapri.csai
[l capri.csai

[l capri.csai

[l capri.csai

[l capri.csai
'/ capri . csai

[/capri.csai
[l capri.csai

[lcapri.csai

[lcapri.csai
[l capri.csai

[l capri.csai
[l capri.csai

[l capri.csai
[/ capri.csai

.mt.edu/ 2006/ capri/ comon#l ocal Net |
.csail.mt.edu/ 2006/ capri/comon#t ot al ConsecFai | ur esFromiser"
.mt.edu/ 2006/ capri/ comon#htt pServer" [>

.mt.edu/ 2006/ capri/ comoni#ht t pServer
.mit.edu/ 2006/ capri/core#status" />

.mt.edu/ 2006/ capri/ conmon#ht t pServer
.csail.mt.edu/ 2006/ capri/conmon#consecFai | uresToServer"
.mt.edu/ 2006/ capri/ comron#dnsLookup” />

.mt.edu/ 2006/ capri/ conmon#dnsLookup
.mit.edu/ 2006/ capri/ common#host name" />

.mt.edu/ 2006/ capri/ comon#dnsLookup
.mt.edu/ 2006/ capri/core#status" />

.mt.edu/ 2006/ capri/comon#i pRouting" />

.mt.edu/ 2006/ capri/ conmon#i pRout i ng
.mit.edu/ 2006/ capri/core#status" />

.mit.edu/ 2006/ capri/ common#i pRout i ng
.mt.edu/ 2006/ capri/comond#srcl P' />

.mt.edu/ 2006/ capri/ conmon#i pRout i ng
.mit.edu/ 2006/ capri/comon#dest| P" />
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propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#out boundConnTest" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#out boundConnTest |
http://capri.csail.mit.edu/ 2006/ capri/common#probeResult" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#out boundConnTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#probeUR " />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/common#f f oxError Code" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test" />
</ servi ceAdvertisenment >

<I-- To support stats. Recursively request fromappropriate stats agent. -->
<servi ceAdvertisenment
servicel D="obs: stats(l ocal AS)"
time="1172597022"
messageType="observati onRequest "
agent URI ="http://1 ocal host/regi onal Agent"
cost ="1000"
request er Type="user"
request er ASRange="1ocal AS"
i nputdass="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Connection">
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest Hash"
requi red="true" />

<out put Chservati on

propPat h="http://capri.csail.nt.edu/ 2006/ capri/servstat s#users" />
<out put Chservati on

propPat h="http://capri.csail.nit.edu/ 2006/ capri/servstat s#root Cause" />
<out put Chservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstat s#consecFai | ures"
/>
<out put Chservati on

propPat h="http://capri.csail.nt.edu/ 2006/ capri/servstat s#avgLat ency” />
<out put Chservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#l ast Success" />
<out put Chservati on

propPat h="http://capri.csail.nit.edu/ 2006/ capri/servstats#l astFailure" />
<out put Chservati on

propPat h="http://capri.csail.nit.edu/ 2006/ capri/servstats#recent StatusD st"
/>

</ servi ceAdvertisement >

<I-- Diag know edge for |ocal agents -->
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<servi ceAdvertisenment
servi cel D="know edge: http(l ocal AS)"
time="1172597022"
messageType="know edgeRequest "
agent URI ="http://l ocal host/regi onal Agent"
cost ="100"
request er Type="user"
request er ASRange="1 ocal AS">

<out put Knowl edge
subject="http://capri.csail.nit.edu/2006/capri/comon#Local _Network"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<out put Know edge
subject="http://capri.csail.nit.edu/2006/capri/comon#Local _Network"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFail uresFromJser"
>
<parent propPath="http://capri.csail.mt.edu/2006/capri/core#status" />
</ out put Know edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/2006/capri/comon#HTTP_Connection"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status">
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/2006/capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comron#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comron#i pRouti ng|
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Knowl edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup"
property="http://capri.csail.nmit.edu/ 2006/ capri/core#status" />
<out put Knowl edge
subject="http://capri.csail.mt.edu/ 2006/ capri/conmmon#l P_Routing"
property="http://capri.csail.mt.edu/ 2006/ capri/coref#status" />
<out put Know edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Server"
property="http://capri.csail.nmit.edu/ 2006/ capri/core#status" />
<out put Know edge
subject="http://capri.csail.mt.edu/ 2006/ capri/conmon#HTTP_Server"

property="http://capri.csail.mnt.edu/ 2006/ capri/common#consecFail uresToServer"
>
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<parent propPath="http://capri.csail.nit.edu/2006/capri/core#status" />
</ out put Know edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#Qut bound_Conn_Test"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#pr obeResult" >
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Knowl edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#Firefox_Error_Test"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#ff oxError Code" >
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.nit.edu/ 2006/ capri/common#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.nmt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.mt.edu/ 2006/ capri/conmon#i pRouti ng|
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Know edge>

</ servi ceAdverti senent >

<|__ khkkkkkhkkhkkkkkhhkkkhhkkkkhkkkxx%x For all users khkkkkkhkkhkkkkkhkhkkkhhkkkhhkkx*x%x >

<l-- service for non AS users -->
<servi ceAdverti senent

servicel D="di ag: htt p"

time="1172597022"

messageType="di agRequest "

agent URI ="http://1 ocal host/regi onal Agent"

cost ="2000"

request er Type="user"

input G ass="http://capri.csail.mt.edu/ 2006/ capri/conmon#HTTP_Connection">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/core#status"
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required="fal se"
/>
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/comon#host nane"
required="fal se"
/>
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/comon#srcl P"
required="fal se"
/>
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/comon#dest|P"
required="true"
/>

<candi dat eExpl anati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<candi dat eExpl anati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<candi dat eExpl anati on
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status” />
<candi dat eExpl anati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ servi ceAdvertisement >

<I-- This is for connection history notifications, which will get
forwarded to history and stats agents. -->
<servi ceAdvertisenent
servicel D="notify: connH st"
time="1172597022"
messageType="notification"
agent URI ="http://1 ocal host/regi onal Agent"
cost ="2000"
request er Type="user"
i nput  ass="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connection"

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/comon#dest Hash" />

179



<i nput Property

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#srclP" />
<i nput Property

propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest|P" />
<i nput Property

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#connTi me" />
<i nput Property

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#el apsedTi mne" />
<i nput Property

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test" />
<i nput Property

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test |

http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Code" />
</ servi ceAdvertisenent >

<I-- Diag history notifications that get propagated to the |earning agent. -->
<servi ceAdvertisenent
servicel D="notify: di agH st"
time="1172597022"
messageType="notifi cation"
agent URI ="http://l ocal host/regi onal Agent"
cost ="2000"
request er Type="user"
i nputd ass="http://capri.csail.nit.edu/2006/capri/comon#HTTP_Connection" >
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/common#l ocal Net" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status” />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/comon#i pAddr" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/comon#consecFai | uresFronmser” />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/comuon#t ot al ConsecFai | ur esFronmJser"
/>
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/conmmon#httpServer" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmron#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<i nput Property
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propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#htt pServer
http://capri.csail.nt.edu/ 2006/ capri/common#consecFai | uresToServer" />
<i nput Property
propPat h="http://capri.csail.nit.edu/2006/ capri/comon#dnsLookup" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/comon#host name" />
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status” />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#i pRouting" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/core#status” />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/comon#srclP" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#i pRouti ng
http://capri.csail.mt.edu/ 2006/ capri/comon#dest|P" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/common#out boundConnTest" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#out boundConnTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#probeResult" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#out boundConnTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#probeUR " />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Code" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#f f oxError Test" />
</ servi ceAdvertisement >

<I-- To support stats. Recursively request fromappropriate stats agent. -->
<servi ceAdvertisenent

servi cel D="obs: st at s"

time="1172597022"

messageType="obser vati onRequest "

agent URI ="http://l ocal host/regi onal Agent"

cost ="2000"

request er Type="user"

i nput G ass="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on">

<i nput Property

propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest Hash"
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required="true" />

<out put Chservati on

propPat h="http://capri.csail.nit.edu/ 2006/ capri/servstats#users" />
<out put Chservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstat s#root Cause" />
<out put Goservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#consecFail ures"/>
<out put Ghservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstat s#avglLat ency" />
<out put Ghservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#l ast Success" />
<out put Ghservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#l astFailure" />
<out put Chservati on

propPat h="http://capri.csail.nt.edu/ 2006/ capri/servstat s#recent StatusDi st"
/>

</ servi ceAdvertisement >

<I-- Diag know edge for user agents -->
<servi ceAdvertisenent
servi cel D="know edge: http"
time="1172597022"
messageType="know edgeRequest "
agent URI ="http://l ocal host/regi onal Agent"
cost ="200"
request er Type="user"

<out put Know edge
subject="http://capri.csail.nt.edu/ 2006/ capri/conmon#Local _Network"
property="http://capri.csail.nit.edu/ 2006/ capri/coref#status" />
<out put Knowl edge
subject="http://capri.csail.nit.edu/2006/capri/comon#Local _Net work"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFail uresFromJser"
>
<parent propPath="http://capri.csail.nit.edu/2006/capri/core#status" />
</ out put Know edge>
<out put Know edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Connection"
property="http://capri.csail.nit.edu/ 2006/ capri/core#status">
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comron#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
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<par ent
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.nit.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#i pRouti ng|
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Knowl edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<out put Know edge
subject="http://capri.csail.mt.edu/ 2006/ capri/common#l P_Routing"
property="http://capri.csail.nit.edu/ 2006/ capri/coref#status" />
<out put Know edge
subject="http://capri.csail.mt.edu/ 2006/ capri/conmon#HTTP_Server"
property="http://capri.csail.nmit.edu/ 2006/ capri/core#status" />
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Server"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFail uresToServer"
>
<parent propPath="http://capri.csail.nit.edu/2006/capri/core#status" />
</ out put Know edge>
<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#Qut bound_Conn_Test"
property="http://capri.csail.mt.edu/ 2006/ capri/comon#pr obeResult" >
<par ent
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Know edge>
<out put Know edge
subject="http://capri.csail.mt.edu/ 2006/ capri/conmmon#Firefox Error_Test"
property="http://capri.csail.nit.edu/ 2006/ capri/common#ff oxError Code" >
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.nit.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nt.edu/ 2006/ capri/conmon#htt pConn
http://capri.csail.mt.edu/ 2006/ capri/comron#htt pServer
http://capri.csail.nit.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/conmon#htt pConn
http://capri.csail.mt.edu/ 2006/ capri/common#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#i pRouting|
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http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Know edge>
</ servi ceAdvertisement >

<|__ kkkhkkkhkkkhkkkkhkkhkkhkkdkkhkkkhkkhkx* LOCal aCtlonS kkkhkkkhkkkhkkkhkkkkhkkhkkhkkhkkhkkk k% >

<I-- Look up the AS path for an IP Routing conponent to incorporate cached
AS Path and AS Hop information. -->
<servi ceAdvertisenent
servi cel D="aspat h"
time="1170697052"
messageType="observati onRequest "
agent URI ="http://1 ocal host/regi onal Agent"
cost ="10"
request er Type="1 ocal "
i nputdass="http://capri.csail.nit.edu/2006/capri/comon#l P_Routing" >

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#srclP"
required="true" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#dest | P"
requi red="true" />
<out put Gbservati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#asPath" />
<out put Gbservati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#asPat h|
http://capri.csail.mt.edu/ 2006/ capri/comon#srcAS" />
<out put Chservati on
propPat h="http://capri.csail.nt.edu/ 2006/ capri/conmmon#asPat h|
http://capri.csail.mt.edu/ 2006/ capri/comon#dest AS" />
</ servi ceAdvertisenent >

</ directoryUpdat e>

B.2.2 Web server history test agent

<di rect or yUpdat e>

<I-- 99 NDEX RANGE gets replaced with either 0, 1, 2, or 3 depending on the web
server history agent -->
<servi ceAdvertisenent
servi cel D="bel : webserver. st at us"
time="1170545800"
messageType="bel i ef Request "
agent URI ="http://1 ocal host/ hi st or yAgent"
cost ="1000"
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request er Type="regi onal "
input d ass="http://capri.csail.mit.edu/2006/capri/comon#HTTP_Server">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#i pAddr"
required="true"
i ndexFunc="i pt oi nt, nod 4"
i ndexRange="9% NDEX_ RANGE" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#connTi me"
required="true" />
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/comron#host Hash" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#httpConn" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#htt pConn|
http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#dest Hash" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmron#httpConn
http://capri.csail.nit.edu/ 2006/ capri/conmon#dest|P" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#httpConn
http://capri.csail.mt.edu/ 2006/ capri/common#srclP" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#connTi me" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#el apsedTi me" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conron#htt pConn|
http://capri.csail.mt.edu/ 2006/ capri/common#ffoxErrorTest" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmron#httpConn
http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/common#f f oxError Code" />

<out put Bel i ef
propPat h="http://capri.csail.nit.edu/ 2006/ capri/coret#status">
<fronkvi dence
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFai | uresToServer"
/>
</ out put Bel i ef >
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<out put Chservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFail uresToServer"
/>

<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Server"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ servi ceAdvertisement >

<servi ceAdvertisenment
servi cel D="obs: webserver.cfts"
time="1170545800"
messageType="obser vati onRequest "
agent URI ="http://l ocal host/ hi storyAgent"
cost="1100"
request er Type="1 ear ni ng"
i nputdass="http://capri.csail.nit.edu/2006/capri/comon#HTTP_Server">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#i pAddr"
requi red="true"
i ndexFunc="i ptoi nt, nod 4"
i ndexRange="9% NDEX_RANGE" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comron#host Hash" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comron#connTi ne"
requi red="true" />
<out put Ghservati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#consecFail uresToServer"
/>
<out put Chservati on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/common#t ot al ConsecFai | uresToServer"
/>
</ servi ceAdvertisement >

<servi ceAdvertisenent
servicel D="notify: connH st (destIP)"
time="1170545800"
messageType="notifi cation"
agent URI ="http:// I ocal host/ hi storyAgent"
cost ="1000"
request er Type="regi onal "
i nput G ass="http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on">

<i nput Property
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propPat h="http://capri.csail.nit.edu/ 2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#dest | P"
requi red="true"
i ndexFunc="i ptoi nt, mod 4"
i ndexRange="9% NDEX_RANGE" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#srclP" [>
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#connTi me" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#el apsedTi me" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#f f oxError Test" />
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/comron#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/common#f f oxError Code" />
</ servi ceAdvertisenent >
</ di rect oryUpdat e>

B.2.3 DNS lookup test agent

<di rect oryUpdat e>

<I-- Prefer requesters in the same AS by offering a |ower cost. -->
<servi ceAdvertisenent

servi cel D="bel : dnsl ookup. status(!l ocal )"

time="1170701032"

messageType="bel i ef Request "

agent URI="http://I ocal host/dnsAgent"

cost ="9000"

request er Type="regi onal "

request er ASRange="1 ocal AS"

i nputdass="http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#host name"
required="true" />

<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#i pAddrs"
requi red="true" />

<out put Bel i ef
propPat h="http://capri.csail.nit.edu/ 2006/ capri/core#status">
<fronkvi dence
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#verifyDNSLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookupResul t"
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/>
</ out put Bel i ef >
<out put Chservati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#verifyDNSLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookupResult" />
<out put Knowl edge
subject="http://capri.csail.nit.edu/2006/capri/comon#DNS_Lookup"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ servi ceAdvertisement >

<l -- The ad fOf non |0ca| AS requesters. khkkkkkkhhkhhhhkhhhdhrhkrhkhkhxhrkx - >

<servi ceAdvertisenent
servi cel D="bel : dnsl ookup. st at us"
time="1170701032"
messageType="bel i ef Request "
agent URI ="http:// I ocal host/dnsAgent"
cost ="10000"
request er Type="regi onal "
i nputdass="http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#host name"
required="true" />

<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#i pAddrs"
requi red="true" />

<out put Bel i ef
propPat h="http://capri.csail.nit.edu/ 2006/ capri/core#status">
<fronkvi dence
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#verifyDNSLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookupResult" />
</ out put Bel i ef >
<out put Chservati on
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#verifyDNSLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookupResul t" />
<out put Knowl edge
subject="http://capri.csail.nit.edu/2006/capri/comon#DNS_Lookup"
property="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ servi ceAdvertisenment >
</ di rect oryUpdat e>

B.2.4 AS path test agent

<di rect or yUpdat e>
<servi ceAdverti senent
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servi cel D="bel :iprouting. status"

messageType="bel i ef Request"

agent URI="http://l ocal host/i pAgent"

time="1170545800"

cost ="100000"

request er Type="regi onal "

request er ASRange="1 ocal AS"

i nput G ass="http://capri.csail.mt.edu/2006/capri/comon#l P_Routing"
i ndexRange="0">

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmron#srclP"
required="true"
i ndexFunc="asn"
i ndexRange="1ocal AS" />

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#dest | P"
required="true" />

<out put Bel i ef
propPat h="http://capri.csail.mt.edu/ 2006/ capri/core#status">
<fronkvi dence
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#asPat h
http://capri.csail.mt.edu/ 2006/ capri/comron#asPat hTest |
http://capri.csail.mt.edu/ 2006/ capri/common#asPat hTest Resul t"
/>
</ out put Bel i ef >
<out put Know edge
subject="http://capri.csail.mt.edu/ 2006/ capri/common#l P_Routing"
property="http://capri.csail.nmt.edu/ 2006/ capri/coref#status" />
</ servi ceAdvertisement >
</ directoryUpdat e>

B.2.5 Stats agent

<di r ect or yUpdat e>
<I'-- 94 NDEX RANGE gets replaced with either 0, 1, 2, or 3 depending on the stats
agent -->
<servi ceAdvertisenent
servi cel D="noti fy: connHi st (dest Hash) "
time="1170545800"
messageType="notification"
agent URI ="http://| ocal host/stat sAgent"
cost="100"
request er Type="regi onal "
i nputdass="http://capri.csail.nit.edu/2006/capri/comon#HTTP_Connection"
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<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/core#status" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest Hash"
required="true"
i ndexFunc="Db64t oi nt, nod 4"
i ndexRange="9% NDEX_RANGE" />
<i nput Property
propPat h="http://capri.csail.nmt.edu/ 2006/ capri/common#dest|P" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/common#srclP" />
<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#connTi ne" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#el apsedTi me" />
<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#ff oxError Test" />
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/common#f f oxError Test |
http://capri.csail.mt.edu/ 2006/ capri/comon#f f oxError Code" />
</ servi ceAdvertisement >

<servi ceAdvertisenent
servi cel D="obs: stat s"
time="1170545799"
messageType="obser vat i onRequest "
agent URI ="http://| ocal host/stat sAgent"
cost="100"
request er Type="regi onal "
i nputd ass="http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Connection">
<i nput Property
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comon#dest Hash"
requi red="true"
i ndexFunc="b64t oi nt, nod %NUM | NDEXES"
i ndexRange="9% NDEX RANGE" />

<out put Ghservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#users" />
<out put Gbservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#root Cause" />
<out put Ghservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#consecFail ures"/>
<out put Ghservati on

propPat h="http://capri.csail.nt.edu/ 2006/ capri/servstat s#avgLat ency" />
<out put Chservati on

propPat h="http://capri.csail.nmt.edu/ 2006/ capri/servstats#l ast Success" />
<out put Gbservati on
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propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#l astFailure" />
<out put Chservati on

propPat h="http://capri.csail.mt.edu/ 2006/ capri/servstats#recent StatusDi st"
/>

</ servi ceAdvertisenent >
</ di rect oryUpdat e>

B.2.6 CoDNS lookup test agent

<di rect oryUpdat e>

<I-- Prefer requesters in the sane AS by offering a | ower cost. Have
the same ad, but one for agents in the same AS. CoDNS is cheaper than
regul ar DNS | ookup. -->

<servi ceAdverti senent

<

servi cel D="bel : dnsl ookup. status(l ocal ) [ codns] "

time="1170701032"

messageType="bel i ef Request "

agent URI ="http://l ocal host/codnsAgent "

cost ="400"

request er Type="regi onal "

request er ASRange="1ocal AS"

input G ass="http://capri.csail.mt.edu/2006/capri/comon#DNS_Lookup"

-- here the indexrange is sinply conputed fromthe hostnane -->

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comon#host name"
required="true"
i ndex="true" />

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/comron#i pAddrs"
requi red="true" />

<out put Bel i ef
propPat h="http://capri.csail.nit.edu/ 2006/ capri/coret#status">
<fronkvi dence
propPat h="http://capri.csail.nit.edu/ 2006/ capri/planet| ab#codnsLookupTest |
http://capri.csail.nit.edu/ 2006/ capri/planet| ab#codnsLookupResult"
/>
</ out put Bel i ef >
<out put Chservat i on
propPat h="http://capri.csail.mt.edu/ 2006/ capri/planet| ab#codnsLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/planetl ab#codnsLookupResult"
/>

</ servi ceAdverti senent >

191



<I-- **xxxxx The ad for non |ocal AS requesters. ***xxkkxxwaidxsx .5

<servi ceAdvertisenent
servi cel D="bel : dnsl ookup. st at us[ codns] "
time="1170701032"
messageType="bel i ef Request "
agent URI ="http://1 ocal host/codnsAgent"
cost =" 500"
request er Type="regi onal "
i nput G ass="http://capri.csail.mt.edu/ 2006/ capri/comon#DNS_Lookup">

<i nput Property
propPat h="http://capri.csail.nt.edu/ 2006/ capri/comron#host nane"
required="true"
i ndex="true" />

<i nput Property
propPat h="http://capri.csail.mt.edu/ 2006/ capri/conmon#i pAddrs"
required="true" />

<out put Bel i ef
propPat h="http://capri.csail.mt.edu/ 2006/ capri/core#status">
<fronkvi dence
propPat h="http://capri.csail.nit.edu/ 2006/ capri/planet!| ab#codnsLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/planet| ab#codnsLookupResul t"
/>
</ out put Bel i ef >
<out put Chservati on
propPat h="http://capri.csail.nt.edu/ 2006/ capri/planet| ab#codnsLookupTest |
http://capri.csail.mt.edu/ 2006/ capri/planet| ab#codnsLookupResul t"
/>
</ servi ceAdvertisement >

<servi ceAdverti senent
servi cel D="know edge: codns"
time="1170697054"
messageType="know edgeRequest "
agent URI ="http://1 ocal host/codnsAgent "
cost ="2000"
request er Type="regi onal "

<out put Knowl edge
subject="http://capri.csail.nit.edu/ 2006/ capri/pl anet| ab#CoDNS_Lookup_Test"

property="http://capri.csail.nit.edu/2006/capri/planet!| ab#codnsLookupResul t"
>

<par ent
propPat h="http://capri.csail.nit.edu/ 2006/ capri/comrmon#dnsLookup
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http://capri.csail.mt.edu/ 2006/ capri/core#status" />
</ out put Know edge>

</ servi ceAdverti sement >
</ di rect oryUpdat e>

B.3 Dependency knowledge

B.3.1 Manually specified knowledge

At the start of my experiments, the knowledge agent providegollowing manually spec-
ified knowledge.

<knowl edge expires="1176096867062" >
<subject>http://capri.csail.nt.edu/ 2006/ capri/comon#HTTP_Server</subj ect >
<property>
http://capri.csail.nit.edu/ 2006/ capri/comron#consecFail uresToServer
</ property>
<cpt >
<parents>http://capri.csail.nit.edu/ 2006/ capri/core#status</parents>
<entry p='0.100000" parentVals="FAIL' value="0"/>
<entry p='0.940000" parentVal s=' K value="0"/>

<entry p='0.200000" parentVals="FAIL" value="1"/>

<entry p="0.050000" parentVal s=" K value="1'/>

<entry p='0.300000" parentVals="FAIL'" value="2"/>

<entry p="0.009000" parentVal s=' K value="2'/>

<entry p='0.400000" parentVals="FAIL" value="3/>

<entry p="0.001000" parentVal s=' K value="3'/>
</cpt>

</ know edge>
<know edge expires='1176096867001" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/conmmon#HTTP_Server </ subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/core#status</property>
<cpt >
<parent s>
</ parents>
<entry p='0.020000" value="FAIL' />
<entry p='0.980000" value=" K />
</cpt>
</ know edge>
<know edge expires="1176096867156" >
<subj ect >
http://capri.csail.mt.edu/ 2006/ capri/comon#HTTP_Connecti on
</ subj ect>
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<property>http://capri.

<cpt >
<parent s>
http://capri.csai
http://capri.csai
http://capri.csai
http://capri.csai
http://capri.csai
http://capri.csai
http://capri.csai
http://capri.csai
</ parents>
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="1.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p='0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000
<entry p="0.000000

.mt.
.mt.

.mt.
.mt.

.mt.
.mt.

.mt.
.mt.

parent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=’ FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K
parent Val s=" K
par ent Val s=" (K
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” K
par ent Val s=" K
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FAI L
FAI L
FAI L
FAI L

FAI L
FAI L
(0
K
FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAl L
FAI L

FAI'L’
K’
FAI'L’
K’
FAI'L’
oK’
FAI L’
oK’
FAI L’
oK’
FAI'L’
oK’
FAI'L’
K’
FAI'L’
K’

FAI L’
oK
FAI L’
oK’
FAI L’
K
FAI L’

FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’

csail . mt.edu/ 2006/ capri/ core#st at us</ property>
edu/ 2006/ capri / common#l ocal Net |
edu/ 2006/ capri/ cor e#tst at us

edu/ 2006/ capri / common#ht t pSer ver
edu/ 2006/ capri/ core#st at us

edu/ 2006/ capri / common#dnsLookup
edu/ 2006/ capri / cor e#st at us

edu/ 2006/ capri / common#i pRout i ng|
edu/ 2006/ capri / cor e#st at us

val ue=" FAIL' />
value=" FAIL' />
value="FAIL' />
value=" FAIL' />
val ue="FAIL' />
value=" FAIL' />
value="FAIL' />
value=" FAIL' />
value=" FAIL' />
val ue=" FAIL' />
val ue="FAIL' />
val ue=" FAIL' />
val ue="FAIL' />
value=" FAIL' />
val ue="FAIL' />
val ue=" FAIL' />

val ue=" &K' />
val ue=" K' / >
val ue=" &K' />
val ue=" &K' />
val ue=' K' / >
val ue=" &K'/ >
val ue=' K' / >
val ue=" &K'/ >
val ue=’ K' / >
val ue=" &K'/ >
val ue=’ K' / >
val ue=" K' / >
val ue=" &K'/ >
val ue=" K' / >
val ue=" K' / >



<entry p='1.000000

</ cpt>

</ know edge>
<know edge expires=' 1176096867277 >

<subj ect >

parentVals== (K K K K val ue=' K' / >

http://capri.csail.mt.edu/ 2006/ capri/comon#Firefox_Error_Test
</ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#ff oxError Code
</ property>

<cpt>
<par ent s>
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
http://capri.csail
</ parent s>
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000
<entry p="0.010000’
<entry p="0.020000
<entry p="0.010000’
<entry p="0.010000
<entry p="0.010000’
<entry p="0.010000
<entry p="0.010000
<entry p="0.950000
<entry p="0.010000
<entry p="0.010000

.mt.
.mt.
.mt.

.mt.
.mt.
.mt.

.mt.
.mt.
.mt.

.mt.
.mt.
.mt.

edu/ 2006/ capri / common#ht t pConn|
edu/ 2006/ capri / common#l ocal Net |
edu/ 2006/ capri / cor e#st at us

edu/ 2006/ capri / common#ht t pConn|
edu/ 2006/ capri / common#ht t pSer ver |
edu/ 2006/ capri / cor e#st at us

edu/ 2006/ capri / common#ht t pConn|
edu/ 2006/ capri / common#dnsLookup|
edu/ 2006/ capri/ cor e#tst at us

edu/ 2006/ capri / common#ht t pConn|
edu/ 2006/ capri / common#i pRout i ng|
edu/ 2006/ capri/ core#st at us

parentVal s=" FAIL FAIL FAIL FAIL' value="0"/>
parentVals=" FAIL FAIL FAIL K value="0"/>
parentVal s=" FAIL FAIL K FAIL" value="0"/>
parentVals=" FAIL FAIL K K  value="0'/>
parentVal s=" FAIL K FAIL FAIL' value="0"/>
parentVals=" FAIL K FAIL K  value="0'/>
parentVal s=" FAIL &K  OK FAIL" value="0"/>
parentVal s= FAIL (K K K value="0'/>
parentVals=" K FAIL FAIL FAIL' value="0'/>
parentVal s=" K FAIL FAIL K value="0'/>
parentVals=" K FAIL K FAIL" value="0'/>
parentVals== K FAIL K K value="0'/>
parentVals= K K FAIL FAIL' value='0'/>
parentVals== 0K K FAIL K value="0"/>
parentVals= K K K FAIL' value='0'/>
parentVals== (K K K KK value="0"/>

parentVal s=" FAIL FAIL FAIL FAIL' value="13"/>
parentVals=" FAIL FAIL FAIL K val ue="13"/>
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<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
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O O OO OO OO ODODO0OOOO oo
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. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
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. 050000’
. 100000’
. 250000’
. 020000’
. 020000’
. 150000’
. 000000’

. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 050000’
. 050000’
. 250000’
. 050000’
. 050000’
. 010000’
.200000’
. 000000’

. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 050000’
. 050000’
. 150000’
. 050000’
. 050000’
. 020000’
. 050000’

parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” OK
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K
parent Val s=" K
par ent Val s=" (K
par ent Val s=” OK
par ent Val s=" (K
par ent Val s=” OK
par ent Val s=" K
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FAIL X
FAI L
FAl L

FAI L
FAI L

FAI L
FAI L

FAI L
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FAI L
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FAI L
FAl L

FAI L
FAI L

FAl L
FAI L

FAI L
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X
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K

FAI'L’
K’
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oK’
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X
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FAI L’
oK
FAI L’
oK’
FAI L’
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FAI L
K’
FAI L’
oK
FAI L’
oK
FAI L’

val ue=" 13' />
val ue="13'/>
val ue="13'/>
val ue=' 13' />
val ue="13'/>
val ue="13'/>
val ue=" 13' />
val ue="13'/>
val ue=" 13' />
val ue="13'/>
val ue="13' />
val ue="13'/>
val ue=" 13' />
val ue=" 13' />

val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/ >
val ue="14'/>
val ue=' 14' />
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>

val ue="20'/>
val ue=" 20"/ >
val ue="20'/>
val ue="20'/>
val ue=' 20"/ >
val ue="20'/>
val ue=" 20"/ >
val ue="20'/>
val ue=' 20" / >
val ue="20'/>
val ue=' 20" / >
val ue=" 20"/ >
val ue="20'/>
val ue=" 20"/ >
val ue=" 20"/ >



<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
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<entry
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<entry
<entry

<entry
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. 000000’
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. 100000’
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. 420000’

par ent Val s=" K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=” K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K

par ent Val s=" K

par ent Val s=" K
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FAI'L’
m!
FAI'L’

FAI'L’
K’
FAI'L’
K’
FAI'L’
X
FAI'L’
K’
FAI L’
K’
FAI L’

FAI'L’
m7
FAI L’

FAI L’
X
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’

FAI L’
oK’
FAI L’
K’
FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’

val ue="20"/>

val ue="21'/>
val ue='21'/ >
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
value="21"/>
value="21'/>
val ue="21'/>
val ue="21'/>

val ue="22'/>
val ue="22"/>
val ue=' 22"/ >
val ue="22"/>
val ue=' 22' / >
val ue="22"/>
val ue="22'/>
val ue="22'/>
val ue='22"/>
val ue="22'/>
val ue="22'/>
val ue="22'/>
val ue='22"/>
val ue="22'/>
val ue="22'/>
val ue="22"/>

value="2"/>
val ue="2"/>
val ue="2"/>
value="2"/>
value="2'/>
val ue="2"/>
value="2'/>
val ue="2"/>
val ue="2'/>
value="2"/>
value="2"/>



<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry

T T T T T

T T T O T T T T T T T T T T T T

T ©T T O T T T T T T T T T T T T

T T T T T T T

O O O O o

O OO O OO ODODOODO0OOOO oo

O OO OO OO0 O0OO0OO0OO0OO0OOoO oo

O O O OO oo

. 570000’
. 390000’
. 390000’
. 440000’
. 040000’

. 850000’
. 850000’
. 850000’
. 850000’
. 850000’
. 850000’
. 850000’
. 850000’
. 340000’
. 340000’
. 010000’
. 010000’
. 440000’
. 510000’
. 010000’
. 010000’

. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 010000’
. 000000’

. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’

par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
parent Val s=" K

par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s= (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K

parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
parent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L

FAI L

FAl L
FAI L
FAl L
FAI L
(0
(0.4

(0
FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAl L
FAI L
(0.4
X
FAl L
FAI L

parentVal s=" FAIL K K
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oK
FAI L’
K’
FAI L’
K’

FAI'L’
oK’
FAI'L’
K’
FAI L’
X
FAI'L’
K’
FAI L’
K’
FAI L’

FAI'L’
X
FAI'L’
X

FAI L’
X
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’

FAI L’
oK
FAI L’
oK

FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’

value="2"/>
val ue="2"/>
val ue="2"/>
value="2'/>
val ue="2"/>

val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >

val ue=' 42"/ >
val ue="42' />
val ue="42' />
val ue="42'/>
val ue="42" />
val ue="42" />
val ue="42'/>
val ue="42" />
val ue="42' />
val ue="42' />
val ue="42' />
val ue="42' />
val ue="42' />
val ue="42'/>
val ue="42' />
val ue="42"/>

value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>



<entry p='0.000000" parentVals="FAIL X K K val ue="71'/>
<entry p='0.010000" parentVals="OK FAIL FAIL FAIL'" value="71"/>
<entry p='0.010000" parentVals="OK FAIL FAIL K value="71'/>
<entry p='0.010000" parentVals="OK FAIL K FAIL" value="71/>
<entry p='0.010000" parentVals="OK FAIL X K value="71'/>
<entry p='0.010000" parentVals="OK OK FAIL FAIL'" value="71/>
<entry p="0.010000" parentVals="OK O FAL K val ue="71'/>
<entry p='0.010000" parentVals==OK OK K FAIL" value="71/>
<entry p="0.000000" parentVals==K K XK KK val ue="71"/>
<entry p="0.000000" parentVals="FAIL FAIL FAIL FAIL' value="72"/>
<entry p="0.000000" parentVals="FAIL FAIL FAIL K value="72' />
<entry p="0.000000" parentVals="FAIL FAIL OK FAIL' value="72"/>
<entry p='0.000000" parentVals="FAIL FAL K val ue="72"/>
<entry p='0.000000" parentVals="FAIL OK FAIL FAIL'" value="72"/>
<entry p='0.000000" parentVals="FAIL X FAL K value="72'/>
<entry p='0.000000" parentVals="FAIL K O FAIL" value="72"/>
<entry p='0.000000" parentVals="FAIL X K K val ue="72' />
<entry p='0.020000" parentVals="OK FAIL FAIL FAIL' value="72"/>
<entry p='0.020000" parentVals="OK FAIL FAIL &K val ue="72' />
<entry p='0.020000" parentVals="OK FAIL K FAIL" value="72"/>
<entry p='0.020000" parentVals="OK FAIL K KK val ue="72' />
<entry p='0.020000" parentVals="OK OK FAIL FAIL'" value="72"/>
<entry p='0.020000" parentVals="K K FAL K val ue="72' />
<entry p='0.020000" parentVals== K OK K FAIL" value="72"/>
<entry p='0.000000" parentVals==K K XK KK val ue="72"/>
</cpt>

</ know edge>

<knowl edge expires=" 1176096867041 >

<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#Local _Network</ subject >

<property>

http://capri.csail.mt.edu/ 2006/ capri/comon#consecFai | uresFronser

</ property>
<cpt >

<parents>http://capri.csail.nit.edu/ 2006/ capri/core#status</ parents>

<entry p='0.500000" parentVals="FAIL'" value="0"/>
<entry p="0.950000" parentVal s=' K value="0"/>
<entry p='0.300000" parentVals="FAIL'" value="1"/>
<entry p='0.040000" parentVal s=' K value="1"/>
<entry p='0.150000" parentVals="FAIL' value="2"/>
<entry p='0.009000" parentVal s=' K value="2"/>
<entry p="0.050000" parentVals="FAIL" value="3/>
<entry p="0.001000" parentVal s=" K val ue="3"/>
</ cpt>
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</ know edge>
<knowl edge expires=" 1176096866989 >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/common#Local _Network</subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#stat us</ property>
<cpt >
<par ent s>
</ parent s>
<entry p='0.050000" value="FAIL />
<entry p="0.950000" value="K/>
</ cpt>
</ know edge>
<knowl edge expires=" 1176096866995 >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup</ subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/core#status</property>
<Cpt >
<parent s>
</ parents>
<entry p="0.050000" value="FAIL />
<entry p='0.950000" value=" K />
</cpt>
</ know edge>
<know edge expires='1176096867051" >
<subj ect >
http://capri.csail.nit.edu/ 2006/ capri/common#Qut bound_Conn_Test
</ subj ect>
<property>http://capri.csail.mt.edu/ 2006/ capri/conmmon#probeResul t </ property>
<cpt >
<parent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parents>
<entry p="1.000000" parentVals="FAIL" value="FAIL />
<entry p='0.020000" parentVal s=' K val ue=" FAIL' />

<entry p='0.000000" parentVals="FAIL" value=" K />
<entry p='0.980000" parentVal s=' K val ue=’ X' / >
</cpt>
</ know edge>
<know edge expires="1176096867016" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/common#l P_Routi ng</subj ect>
<property>http://capri.csail.mt.edu/ 2006/ capri/core#status</property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#asPath
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p="0.990000" parentVals="FAIL'" value="FAIL />
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<entry p='0.001000" parentVal s=' K value="FAIL" />

<entry p='0.010000" parentVals="FAIL'" value=" K />
<entry p='0.999000" parentVal s=' K val ue=" K' />
</ cpt>
</ know edge>
<know edge expires=' 1176096867031 >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/conmon#l P_Routi ng</subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/core#status</property>
<cpt >
<par ent s>
</ parents>
<entry p="0.080000" value="FAIL />
<entry p="0.920000" val ue="K'/>
</ cpt>
</ know edge>
<knowl edge expires=' 1176096867072 >
<subj ect >
http://capri.csail.mt.edu/ 2006/ capri/comon#Verify DNS Lookup_ Test
</ subj ect >
<property>
http://capri.csail.nt.edu/ 2006/ capri/comron#dnsLookupResul t
</ property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p="0.090000" parentVals="FAIL" value="ALIAS />
<entry p="0.550000" parentVal s=' K val ue=" ALI AS />

<entry
<entry

. 010000’ parentVal s=" FAIL" val ue=" CORRECT" / >
.418000" parentVal s=' K val ue=" CORRECT’ / >

o o

p
p

<entry
<entry

.100000" parentVal s=" FAIL' val ue=" | NCORRECT' / >
.001000" parentVal s=' K val ue=" | NCORRECT' / >

- ©
TR
o o

<entry
<entry

. 700000" parentVal s=" FAIL' val ue=" LOOKUP_ERROR CONFI RVED' / >
. 010000’ parentVal s=" K val ue=" LOOKUP_ERROR _CONFI RVED' [ >

T ©
o o

<entry
<entry

. 050000’ parentVal s=" FAIL' val ue=" LOOKUP_ERROR_UNCONFI RVED / >
.020000" parentVal s=' K val ue=" LOOKUP_ERROR_UNCONFI RVED' / >

T
1
o O

<entry p
<entry p=
</ cpt>
</ know edge>

.050000" parentVal s=" FAIL" val ue=" LOOKUP_ERRCR />
.001000" parentVal s=" K val ue=" LOOKUP_ERROR />

1
o o
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<know edge expires="1176096867086" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#AS Pat h</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#st at us</property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#next ASPat h|
http://capri.csail.mt.edu/ 2006/ capri/core#status

http://capri.csail.mt.edu/ 2006/ capri/comon#next ASHop
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>

<entry p="1.000000" parentVals="FAIL FAIL' value="FAIL />
<entry p="1.000000" parentVals="FAIL K value="FAIL' />
<entry p="1.000000" parentVals="OK FAIL value="FAIL />
<entry p='0.000000" parentVals="OK K val ue=" FAIL' />
<entry p='0.000000" parentVals="FAIL FAIL' value= X />
<entry p="0.000000" parentVals="FAIL K val ue=" &K'/ >
<entry p='0.000000" parentVals="OK FAIL" value= K />
<entry p="1.000000" parentVals=" K O val ue=" K' />
</ cpt>

</ know edge>
<knowl edge expires='1176096867112' >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#AS_Pat h</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#st at us</property>
<Cpt >
<par ent s>
</ parent s>
<entry p='0.002000" value="FAIL />
<entry p="0.998000" val ue="K'/>
</cpt>
</ know edge>
<knowl edge expires="1176096867124" >
<subj ect>http://capri.csail.nt.edu/ 2006/ capri/comon#AS_Pat h_Test </ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#asPat hTest Resul t
</ property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#asPat h
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parents>
<entry p='0.999000" parentVal s=" FAIL' value="FAIL' />
<entry p="0.020000" parentVal s=" K val ue="FAI L' />

<entry p='0.001000" parentVals="FAIL'" value=" &K />
<entry p="0.980000" parentVal s=' K val ue=" '/ >
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</cpt>
</ know edge>
<knowl edge expires="1176096867138" >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/comon#AS Hop</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#stat us</property>
<cpt >
<parent s>
</ parents>
<entry p="0.100000" value="FAIL />
<entry p='0.900000" value=" K />
</cpt>
</ know edge>
<know edge expires=' 1176096867144 >
<subject>http://capri.csail.nit.edu/ 2006/ capri/comon#AS Hop_Test </ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#asHopTest Resul t
</ property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comrmon#asHop
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p='0.995000" parentVals="FAIL' value="FAIL />
<entry p='0.020000" parentVal s=' K value="FAIL' />

<entry p='0.005000" parentVals="FAIL" value=" K />
<entry p="0.980000" parentVal s=' K val ue= X' / >
</cpt>
</ know edge>

B.3.2 Learned knowledge

The learned probabilistic dependency knowledge produgetthd knowledge agent is as
follows.

<knowl edge expires=' 1175901865431 >

<subj ect>http://capri.csail.nt.edu/ 2006/ capri/comon#HTTP_Server </ subj ect >

<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#consecFai |l uresToSer ver

</ property>

<cpt >
<parents>http://capri.csail.nit.edu/ 2006/ capri/core#status</ parents>
<entry p='0.142081" parentVal s="FAIL'" value="0"/>
<entry p='0.725422" parentVal s=' K value="0"/>

<entry p='0.298753" parentVal s="FAIL' value="1"/>
<entry p='0.245047" parentVal s=" K val ue="1"/>
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<entry p='0.485112" parentVal s=' FAIL' value="2"/>
<entry p='0.026872" parentVal s=' K value="2'/>

<entry p='0.074054" parentVal s=' FAIL' value="3"/>
<entry p='0.002660" parentVal s=' K value="3"/>
</ cpt>
</ know edge>
<knowl edge expires=" 1175901865338 >
<subject>http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Server </ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#st at us</property>
<cpt>
<par ent s>
</ parent s>
<entry p='0.263687" value="FAIL />
<entry p='0.736313" value=’ K />
</cpt>
</ know edge>
<know edge expires=" 1175901865275 >
<subj ect >
http://capri.csail.nit.edu/ 2006/ capri/comon#HTTP_Connecti on
</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#status</property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status

http://capri.csail.mt.edu/ 2006/ capri/conmron#htt pServer
http://capri.csail.mt.edu/ 2006/ capri/core#status

http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status

http://capri.csail.mt.edu/ 2006/ capri/conmon#i pRouti ng|
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parents>

<entry p="1.000000" parentVals="FAIL FAIL FAIL FAIL' value="FAIL />
<entry p='1.000000" parentVals="FAIL FAIL FAIL K value=" FAIL' />
<entry p="1.000000" parentVals="FAIL FAIL OK FAIL' value="FAIL />
<entry p='1.000000" parentVals="FAIL FAIL (X value=" FAIL' />
<entry p='1.000000" parentVals="FAIL OK FAIL FAIL' value="FAIL />
<entry p='1.000000" parentVals="FAIL K FAIL X value="FAIL' />
<entry p="1.000000" parentVals="FAIL 0K OK FAIL' value="FAIL />
<entry p='1.000000" parentVals= " FAL K &K & val ue="FAIL' />
<entry p="1.000000" parentVals="OK FAIL FAIL FAIL" value="FAIL />
<entry p="1.000000" parentVals="OK FAIL FAL &K val ue="FAIL' />
<entry p="1.000000" parentVals="OK FAIL K FAIL" value="FAIL />
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<entry
<entry
<entry
<entry
<entry

'tﬁ'o?'o-c

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
</ cpt>
</ know edge>

T T T O T T T T T T T T T T T T

P OO O OO0 O0OD0O00O00O00O00O0OO0OOoOOo

I N

. 000000’
. 000000’
. 000000’
. 000000’
. 000000’

. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’
. 000000’

par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
parent Val s=" K

par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s= (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K

<knowl edge expires=" 1175901865425 >

<subj ect >

FAIL &
K FAL
K FAL
X &
XK K
FAIL FAIL
FAIL FAIL
FAIL K
FAIL &
X FAL
K FAL
X K
X K
FAIL FAI'L
FAIL FAIL
FAIL &
FAIL &
X FAL
X FAL
XK K
X &

oK
FAI L’
K’
FAI L’
K’

FAI'L’
m!
FAI'L’

FAI L’
X
FAI L’
oK
FAI L’
oK
FAI L’

FAI'L’
X
FAI'L’
X

value="FAIL' />
value=" FAIL' />
val ue=" FAIL' />
value=" FAIL' />
value="FAI L'/ >

val ue=’ K' / >
val ue=" &K'/ >
val ue=" K' / >
val ue=" &K'/ >
val ue=" K' / >
val ue=" &K' />
val ue=' K' / >
val ue=' K' / >
val ue=" &K' />
val ue=' K' / >
val ue=" &K'/ >
val ue=' K' / >
val ue=" &K'/ >
val ue=' K' / >
val ue=" &K'/ >
val ue=' K' / >

http://capri.csail.mt.edu/ 2006/ capri/comon#Firefox Error_Test

</ subj ect>
<property>

http://capri.csail.mt.edu/ 2006/ capri/comon#ff oxError Code

</ property>
<cpt >
<par ent s>
http:
http:
http:

http:
http:
http:

http:
http:
http:

http:
http:

/1 capri
[lcapri
Ilcapri

[lcapri.
Il capri
Ilcapri

[lcapri
I/ capri
/1 capri

I/ capri
I/ capri

.csail
.csail
.csail

csail
.csail
.csail

.csail

. csaill

.csail
.csail

.mt.
.mt.
.mt.

.mt
.mt.
.mt

.mt.
.mt.
.csail.

.mt.
.mt.

m t
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edu/ 2006/ capri / common#ht t pConn
edu/ 2006/ capri / common#l ocal Net |
edu/ 2006/ capri/ cor e#tst at us

. edu/ 2006/ capri / common#ht t pConn
edu/ 2006/ capri / common#ht t pSer ver
. edu/ 2006/ capri / cor e#st at us

edu/ 2006/ capri / comon#ht t pConn
edu/ 2006/ capri / common#dnsLookup
. edu/ 2006/ capri / cor e#st at us

edu/ 2006/ capri / common#ht t pConn
edu/ 2006/ capri / common#i pRout i ng|



http://capri.csail.mt.edu/ 2006/ capri/core#status

</ parents>

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

T ©T T ©T T T T T T T T T T T T T

'CI?'G'D'C'D'O'O'O'O'O'O'O'O'C'O'C

T T T T T T T T T T T

O O OO OO OO OO0OO0OOO0OO oo

O O OO OO OO ODODODOOO oo

O O OO OO0 OO oo

. 022017
. 119692
. 133655’
. 000000’
. 134272
. 000000’
. 016216’
. 000000’
. 064925’
. 084086’
. 000000’
. 000000’
. 076660’
. 000000’
. 000000’
. 000117

. 060477
. 136459’
. 016756’
. 372093
. 006871
. 000000’
. 202455’
. 182416’
. 082754’
. 080527
. 000000’
447231
. 120957
. 001003
. 000904’
. 000000’

. 168603’
. 101446’
. 039133
. 232558
. 116590’
. 000000’
. 167762’
. 137245’
. 150982’
. 083361
. 000000’

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K

par ent Val s=” K

par ent Val s=" K
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FAI L
FAl L
FAI L
FAl L

FAI L
FAl L

FAI'L’
X
FAI'L’
X
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI L’
K’
FAI L’
K’

FAI'L’
m7
FAI L’

FAI L’
X
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’

FAI L’
K’
FAI L’
K’
FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’

value="0"/>
value="0'/>
value="0"/>
value="0"/>
value="0"/>
value="0"/>
value="0"/>
value="0"/>
value="0"/>
value="0"/>
value="0'/>
value="0'/>
value="0"/>
value="0'/>
value="0"/>
value="0'/>

val ue=" 13' />
val ue="13'/>
val ue="13' />
val ue="13'/>
val ue=' 13' />
val ue="13'/>
val ue=" 13' />
val ue="13"/>
val ue=" 13' />
val ue="13'/>
val ue="13' />
val ue="13'/>
val ue=" 13' />
val ue="13'/>
val ue=" 13' />
val ue="13'/>

val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue=' 14' />
val ue="14'/>
val ue=' 14' />
val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue="14'/>



<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry

T T T T T

T T T O T T T T T T T T T T T T

T ©T T O T T T T T T T T T T T T

T T T T T T T

O O O O o

O OO O OO ODODOODO0OOOO oo

O OO OO OO0 O0OO0OO0OO0OO0OOoO oo

O O O OO oo

. 162278
. 043511
. 003210’
. 997145
. 000000’

. 128651
. 049197
. 058300’
. 116279
. 144194
. 000000’
. 026932’
. 065940’
. 123446
. 067232
. 546458’
. 093284’
. 118216
. 001939’
. 000000’
. 167018

. 080270’
. 097347
. 154658’
. 000000’
. 056294’
. 000000’
. 040168’
. 000000’
. 020437
. 142134
. 000000’
. 019329’
. 116575
. 000000’
. 000000’
. 000000’

. 132340°
. 057270
. 033964’
. 000000’
. 026202’
. 000000’
. 084725’

par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
parent Val s=" K

par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s= (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K

parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
parent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K

parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L

FAI L

FAl L
FAI L
FAl L
FAI L
(0
(0.4

(0
FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAl L
FAI L
(0.4
X
FAl L
FAI L

parentVal s=" FAIL K K
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oK
FAI L’
K’
FAI L’
K’

FAI'L’
oK’
FAI'L’
K’
FAI L’
X
FAI'L’
K’
FAI L’
K’
FAI L’

FAI'L’
X
FAI'L’
X

FAI L’
X
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’
K’
FAI'L’

FAI L’
oK
FAI L’
oK

FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’

val ue="14'/>
val ue="14'/>
val ue="14'/>
val ue=' 14' />
val ue="14'/>

val ue=" 20"/ >
val ue="20'/>
val ue=" 20"/ >
val ue="20'/>
val ue=" 20"/ >
val ue="20'/>
val ue=' 20"/ >
val ue=' 20"/ >
val ue="20'/>
val ue=" 20"/ >
val ue="20'/>
val ue=' 20" / >
val ue="20'/>
val ue=' 20"/ >
val ue="20'/>
val ue=" 20"/ >

val ue='21'/ >
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21"/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
val ue="21'/>
value="21'/>
val ue="21'/>
value="21"/>

val ue=' 22"/ >
val ue="22"/>
val ue=' 22' / >
val ue="22'/>
val ue="22'/>
val ue='22"/>
val ue="22"/>



<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry

T T T T T T T T O

T ©T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T

T T T

O O O OO OO oo

O OO O OO OO0 O0ODO0OOOOOoOOo

O O OO OO OO O0OOkFrrOO0OOOoOOo

o O O

. 000000’
. 095283
. 087302’
. 000000’
. 012542
. 123287
. 000000’
. 000000’
. 000000’

. 080474’
. 063688’
. 1512371
. 232558’
. 135371
. 000000’
. 070081
. 100208’
. 074100’
. 116116’
. 337416
. 257886’
. 022831
. 016316’
. 001951
. 826663’

077131
. 101977
. 047207
. 000000’
. 193109’
. 000000’
. 043167
. 482001
.071377
. 122080’
. 000000’
. 000000’
. 138651
. 975460’
. 000000’
. 000000’

. 045796’
. 079017
. 140285’

parentVals=" FAIL K K

par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
parent Val s=" K
par ent Val s=" (K
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” K

parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" OK

par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
parent Val s=" (K
par ent Val s=" (K

par ent Val s=" FAI L
par ent Val s=" FAI L

FAI L
FAI L
FAl L
FAI L
X

FAl L
FAI L

FAI L
FAI L
(0
K
FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAl L
K
X

FAI L
FAI L

parentVal s=" FAIL FAIL K
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FAI L’
K’
FAI L’
K’
FAI L’
oK
FAI L’
oK

FAI L’
X
FAI L’
oK
FAI L’
oK
FAI L’

FAI'L’
X
FAI'L’
X
FAI'L’
X
FAI L’
K’

FAI'L’
K’
FAI'L’
X
FAI'L’
K’
FAI'L’

FAI L’
X
FAI'L’
X
FAI'L’
X
FAI'L’
K’

FAI L’
m’
FAI'L’

val ue="22'/>
val ue="22"/>
val ue="22"/>
val ue=' 22' / >
val ue="22"/>
val ue="22'/>
val ue="22"/>
val ue="22'/>
val ue='22"/>

value="2"/>
val ue="2'/>
value="2"/>
value="2"/>
val ue="2'/>
value="2"/>
val ue="2'/>
value="2"/>
val ue="2"/>
val ue="2"/>
val ue="2"/>
value="2'/>
value="2"/>
value="2'/>
val ue="2'/>
val ue="2"/>

val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue="30'/>
val ue=" 30" / >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30"/ >
val ue="30'/>
val ue=" 30" / >

val ue="42" />
val ue="42"/>
val ue="42"/>



<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry
<entry

T T T T T T T T T T T T T

T ©T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T

O O O OO OO OO0OOOoO oo

O O O OO OO OO0OO0O0O0O0OO0OO0oOoOOo

O O OO OO OO O0OO0ODOOOO oo

. 046512’
. 144814
. 000000’
. 027302’
. 006577
. 143356’
. 048148’
. 000004
. 000000’
. 109213
. 000000’
. 000000’
. 000779’

. 155340’
. 075350’
. 157546’
. 000000’
. 003059’
. 000000’
. 195512
. 000000’
. 009326’
. 126800’
116121
. 003670’
. 023946’
. 000000’
. 000000’
. 005429’

. 048899’
. 118557
. 067265’
. 000000’
. 039225
. 000000’
. 125685’
. 025614’
. 164019’
. 04221%
. 000000’
. 003780’
. 106158’
. 002073
. 000000’
. 000000’

parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" OK
par ent Val s=" (K
par ent Val s=” OK
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
parent Val s=" K
par ent Val s=" (K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" (K
par ent Val s=” K

par ent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=’ FAI L
parent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" K
parent Val s=" K
par ent Val s=" (K
par ent Val s=” OK
par ent Val s=" (K
par ent Val s=" K
par ent Val s=" K
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FAIL &K
FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAI L

FAI L
FAl L

FAI L
FAI L

X K

oK
FAI L’
K’
FAI L’
K’
FAI L’
oK
FAI L’
oK
FAI L’
oK
FAI L’

FAI L’
O<!
FAI L’

FAI L’
oK
FAI L’
oK
FAI L’
oK
FAI L’
oK
FAI L’
oK
FAI L’

FAI'L’
O(i
FAI'L’

FAI L’
X
FAI'L’
X
FAI'L’
X
FAI'L’
oK’
FAI'L’
oK’
FAI'L’
K’

val ue="42'/>
val ue="42' />
val ue="42' />
val ue=' 42"/ >
val ue="42' />
val ue="42"/>
val ue="42' />
val ue="42' />
val ue="42' />
val ue="42' />
val ue="42" />
val ue="42' />
val ue="42' />

value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>
value="71'/>

value="72"/>
val ue="72"/>
value="72"/>
val ue="72"/>
val ue="72"/>
value="72"/>
val ue="72"/>
value="72"/>
val ue="72"/>
value="72' />
value="72"/>
value="72' />
value="72"/>
val ue="72"/>
value="72"/>
value="72"/>



</cpt>
</ know edge>
<knowl edge expires=' 1175901865438 >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#Local _Network</ subject >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#consecFai | uresFronser
</ property>
<cpt >
<parents>http://capri.csail.nit.edu/ 2006/ capri/core#status</parents>
<entry p='0.006989" parentVals="FAIL'" value="0"/>
<entry p='0.985049" parentVal s=' K val ue="0"/>

<entry p='0.099216" parentVals="FAIL'" value="1"/>

<entry p="0.003635" parentVal s=' K value="1'/>

<entry p='0.608251" parentVals="FAIL'" value="2"/>

<entry p='0.010778" parentVal s=' K value="2'/>

<entry p='0.285544" parentVal s=" FAIL' value="3"/>

<entry p='0.000538" parentVal s=' K val ue="3"/>
</ cpt>

</ know edge>
<knowl edge expires='1175901865334" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/comon#Local _Network</ subject >
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#st at us</property>
<Cpt >
<par ent s>
</ parent s>
<entry p='0.130702" value="FAIL />
<entry p='0.869298" val ue="K'/>
</cpt>
</ know edge>
<knowl edge expires=' 1175901865341 >
<subject>http://capri.csail.nit.edu/ 2006/ capri/comon#DNS_Lookup</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#st at us</property>
<cpt >
<par ent s>
</ parents>
<entry p='0.333942" value="FAIL' />
<entry p='0.666058" value="K />
</cpt>
</ know edge>
<know edge expires=' 1175901865444’ >
<subj ect >
http://capri.csail.mt.edu/ 2006/ capri/comon#Qut bound_Conn_Test
</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/common#probeResul t </ property>
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<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comron#l ocal Net |
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parents>
<entry p='0.997443" parentVal s=" FAIL'" value="FAIL />
<entry p='0.013569" parentVal s=" K val ue="FAI L' />

<entry p='0.002557" parentVals=" FAIL'" value=" K />
<entry p='0.986431" parentVal s=' K val ue= X' / >
</cpt>
</ know edge>
<know edge expires="1175901865353" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/common#l P_Routi ng</subject>
<property>http://capri.csail.mt.edu/ 2006/ capri/ core#st at us</property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#asPat h
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p='0.996292" parentVal s="FAIL' value="FAIL />
<entry p='0.024386" parentVal s=' K value="FAIL' />

<entry p='0.003708" parentVals="FAIL' value=" K />
<entry p='0.975614" parentVal s=' K val ue= X' / >
</ cpt>
</ know edge>
<know edge expires="1175901865218" >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/conmmon#l P_Routi ng</subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/core#status</property>
<cpt >
<parent s>
</ parents>
<entry p='0.010000" value="FAIL' />
<entry p='0.990000" value=" K />
</cpt>
</ know edge>
<knowl edge expires='1175901865452" >
<subj ect >
http://capri.csail.mt.edu/ 2006/ capri/comon#Verify DNS Lookup_ Test
</ subj ect>
<property>
http://capri.csail.mt.edu/ 2006/ capri/conmron#dnsLookupResul t
</ property>
<cpt >
<parent s>
http://capri.csail.mt.edu/ 2006/ capri/comon#dnsLookup
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http://capri.csail.mt.edu/ 2006/ capri/core#status

</ parents>

<entry
<entry

<entry
<entry

<entry
<entry

<entry
<entry

<entry
<entry

<entry
<entry
</cpt>

p="0.
p="0.

p
p

T o
I

T

T ©

o o

p
p="

</ know edge>

<know edge expires=' 1175901865247 >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/conmmon#AS Pat h</ subj ect >
<property>http://capri.csail.mt.edu/ 2006/ capri/core#st at us</ property>

<cpt >

<par ent s>

http://capri.
http://capri.

http://capri.
http://capri.
</ parent s>

<entry
<entry
<entry
<entry

<entry
<entry
<entry
<entry
</ cpt>

TS
or P -

T T T T

1
_ O O O

T T T ©

</ know edge>

<know edge expires=' 1175901865347 >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/conmmon#AS_Pat h</ subj ect >
<property>http://capri.csail.nit.edu/ 2006/ capri/core#status</property>

<Cpt >

o o o o o o

o o

166841
248752’

144186’
596506’

. 229032’
. 009483

. 310981
. 001517

. 079139
. 044230’

069821
099512’

. 000000’
. 000000’
. 000000’
. 000000’

. 000000’
. 000000’
. 000000’
. 000000’

csail .
csail .

csail .
csail .

parent Val s=" FAI L’
parent Val s=’ K

parent Val s=" FAI L’
parent Val s=" K

par ent Val s=" FAI L’
par ent Val s=" K

parent Val s=" FAI L’
parent Val s=" K

parent Val s=" FAI L’
parent Val s=" K

parent Val s=" FAI L’
par ent Val s=" K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=’ (K
parent Val s=" (K

par ent Val s=" FAI L
parent Val s=" FAI L
par ent Val s=" (K
par ent Val s=" K
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val ue=" ALI AS' / >
val ue=" ALI AS' / >

val ue=" CORRECT' / >
val ue=" CORRECT' / >

val ue=" | NCORRECT' /| >
val ue='"1 NCORRECT' / >

val ue=" LOOKUP_ERROR_CONFI RVED' / >
val ue=" LOOKUP_ERROR_CONFI RVED' / >

val ue=" LOOKUP_ERROR_UNCONFI RVED' / >
val ue=" LOOKUP_ERROR_UNCONFI RVED' / >

val ue=" LOOKUP_ERROR / >
val ue=" LOOKUP_ERRCR />

m t. edu/ 2006/ capri / common#next ASPat h|
m t. edu/ 2006/ capri/ cor e#st at us

m t. edu/ 2006/ capri / comron#next ASHop|
mt. edu/ 2006/ capri/ core#st at us

FAIL" value="FAIL' />
K val ue="FAIL' />
FAIL" value="FAIL' />
03¢ value="FAIL' />

FAIL'" value=" &K />
K val ue=’ &K' / >
FAIL' value=" &K />
K val ue=’ &K' / >



<par ent s>
</ parents>
<entry p='0.054708" value="FAIL />
<entry p='0.945292" val ue=" K />
</ cpt>
</ know edge>
<know edge expires='1175901865458" >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/conmon#AS Pat h_Test </ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comopn#asPat hTest Resul t
</ property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/conmon#asPat h
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parent s>
<entry p='0.977004" parentVals="FAIL' value="FAIL />
<entry p='0.251472" parentVal s=' K value="FAIL" />

<entry p='0.022996" parentVal s=" FAIL' val ue=' K />
<entry p='0.748528" parentVal s=' K val ue=’ XK' / >
</cpt>
</ know edge>
<know edge expires=' 1175901865267 >
<subj ect>http://capri.csail.mt.edu/ 2006/ capri/conmon#AS_Hop</ subj ect >
<property>http://capri.csail.nmit.edu/ 2006/ capri/core#status</property>
<cpt >
<parent s>
</ parents>
<entry p='0.001000" value="FAIL' />
<entry p='0.999000" value=’ K />
</cpt>
</ know edge>
<know edge expires="1175901865270" >
<subj ect>http://capri.csail.nit.edu/ 2006/ capri/common#AS Hop_ Test </ subj ect >
<property>
http://capri.csail.mt.edu/ 2006/ capri/comon#asHopTest Resul t
</ property>
<cpt >
<par ent s>
http://capri.csail.mt.edu/ 2006/ capri/comrmon#asHop
http://capri.csail.mt.edu/ 2006/ capri/coret#status
</ parent s>
<entry p="0.995000" parentVals="FAIL'" value="FAIL />
<entry p="0.020000" parentVal s=' K val ue=" FAIL’ />

<entry p="0.005000" parentVals="FAIL" value=" K />
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<entry p='0.980000" parentVal s=' K val ue=" K' />
</ cpt>
</ know edge>

B.3.3 CoDNS knowledge

The new CoDNS agent provides the following knowledge. Thel@wmnal probabilities are
derived from the dependency knowledge for regular DNS |pdiests. These probabilities
assume that result of a CoDNS lookup test for a hostname farhathe DNS lookup test
returnsALI AS is | NCORRECT.

<knowl edge>
<subj ect >
http://capri.csail.mt.edu/ 2006/ capri/planet| ab#CoDNS Lookup_Test
</ subj ect >
<property>
http://capri.csail.nit.edu/ 2006/ capri/pl anet! ab#codnsLookupResul t
</ property>
<cpt >
<par ent s>
http://capri.csail.nit.edu/ 2006/ capri/comon#dnsLookup
http://capri.csail.mt.edu/ 2006/ capri/core#status
</ parents>

<entry val ue=" CORRECT" parent Val s="FAI L" p="0.144186" />
<entry val ue="1 NCORRECT" parent Val s="FAI L" p="0.395873" />
<entry val ue="LOOKUP_ERRCR" parent Val s="FAI L" p="0.069821" />
<entry val ue="LOOKUP_ERROR_CONFI RVED'  parent Val s="FAI L" p="0.310981" />
<entry val ue="LOOKUP_ERROR_UNCONFI RVED" parent Val s="FAI L" p="0.079139" />
<entry val ue=" CORRECT" par ent Val s=" (K" p="0.596506" />
<entry val ue="1 NCORRECT" par ent Val s=" (K" p="0.258235" />
<entry val ue="LOOKUP_ERRCR' parent Val s="OK"  p="0.099512" />
<entry val ue="LOOKUP_ERROR_CONFI RVED"  parentVal s="CK"  p="0.001517" />
<entry val ue="LOOKUP_ERROR_UNCONFI RVED" parent Val s="CK"  p="0. 044230" />

</cpt>
</ know edge>
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