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Abstract

Analog designers are interested in optimization tools which automate the process of
circuit sizing. Geometric programming, which uses posynomial models of MOSFET
parameters, represents one such tool. Genetic algorithms have been used to evolve
posynomial models for geometric programs, with a reasonable mean error when mod-
eling MOSFET parameters. By visualizing MOSFET data using two dimensional
plots, this thesis investigates the behavior of various MOSFET small and large signal
parameters and consequently proposes a lower bound on the maximum error, which a
posynomial cannot improve upon. It then investigates various error metrics which can
be used to balance the mean and maximum errors generated by posynomial MOSFET
models. Finally, the thesis uses empirical data to verify the existence of the lower
bound, and compares the maximum error from various parameters modeled by the
genetic algorithm and by monomial fitting. It concludes that posynomial MOSFET
models suffer from inherent inaccuracies. Additionally, although genetic algorithms
improve on the maximum model error, the improvement, in general, does not vastly
surpass results obtained through monomial fitting, which is a less computationally
intensive method. Genetic algorithms are hence best used when modeling partially
convex MOSFET parameters, such as r0.
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Chapter 1

Introduction

1.1 Circuit Sizing Approaches

Although analog and mixed mode circuits constitute a fundamental component of

electronic design, the stages of their design and verification continue to pose a sig-

nificant bottleneck within the overall production process. The lack of automation

in the design stages delays the release of the product for marketing. Therefore, fast

and reliable Computer Aided Design (CAD) tools have become a pressing demand

for analog designers.

Analog designers are tasked with taking large and small signal models of circuit

components, and, in order to fulfill certain performance requirements, deducing the

components input parameters in accordance with the output constraints. For ex-

ample, given output performance measurements like gain gm , unity gain bandwidth

wc , and phase margin φ, they must correspondingly produce the input MOSFET

parameters, e.g. the length L, and width W and the input current I. The process

of translating the performance measurements into component parameters is called

circuit sizing. In a modern analog design process, designers can specify between 10 to

100 input parameters in order to achieve up to 20 output performance measurements.

Several automatic and manual methods for circuit sizing exist in practice. The

manual method involves a designer using his or her accumulated knowledge of cir-

cuit behavior to iteratively adjust the component parameters such that they satisfy
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a set of first order transistor models, and then test the accuracy of these models.

Naturally, tests performed on the fabricated silicon circuit produce the largest accu-

racy, but since continuously fabricating test circuits is costly and not readily available

during the design stages, simulating the circuit with SPICE yields a good approxima-

tion of circuit behavior. SPICE is a circuit simulator with highly complex physical

device models: its results reliably confirm whether a circuit meets its performance

specifications given its sizing parameters.

In practice, the mapping between the input component parameters and output

performance measurements is multi-modal and misbehaved due to parameter cou-

pling. Therefore adjusting one parameter to satisfy a certain performance constraint

may result in a failure to satisfy another constraint, and hence trades off one improve-

ment in performance with a degradation in performance relative to another variable.

Therefore, the manual process is a very lengthy and tedious one, because, since it

is impossible to satisfy all the required constraints on the first pass, the designer is

forced to continuously readjust the parameters and try again.

In order to tackle the issue of parameter coupling, circuit sizing can by recast as an

optimization problem, where a specific algorithm optimizes one or several objectives

subject to a set of constraints. But before one can choose the most suitable optimiza-

tion method for circuit sizing, it becomes imperative to evaluate several available

optimization methods in terms of speed, ease of use, and accuracy.

Automated Equation-Based Approaches fall under one class of optimization tech-

niques, and they use simplified transistor models in lieu of manual designer effort.

The approaches analytically solve multiple symbolic equations relating the perfor-

mance measurements and input parameters. Although faster, the approaches remain

relatively less accurate, since the equations do not provide as good estimates of true

circuit specifications as SPICE does. Since the equations are based upon certain

assumptions and approximations in terms of transistor behavior, the inaccuracies

become even more notable as technologies scale down.

On the other hand, Simulation Based Approaches deploy Black Box Optimization

that simply uses SPICE combined with an adaptive search algorithm (e.g. simulated
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annealing or genetic algorithms) to optimize one or more targets subject to multiple

constraints. SPICE is computationally expensive so, although more accurate, Black

Box Optimization typically takes a long time. More recently, Black Box Optimization

has been sped up with more powerful computers and parallelization.

Finally, Equation Driven Global Optimization, such as Geometric Programming,

expresses the structure of the multiple symbolic performance measurement equations

in a form that can be almost instantly solved. In Geometric Programming, output per-

formance parameter equations are approximately expressed using posynomials, which

are polynomials restricted to only containing positive coefficients. From there, geo-

metric programming takes the performance measurements and constraints expressed

as a series of posynomial equations, and computes the global optimum for the objec-

tives in a matter of seconds. Unfortunately, the process of expressing the performance

measurements in posynomial form is often performed manually, resulting in posyno-

mial models which do not accurately reflect transistor behavior and thus leading to

the determination of faulty global optima. On a similar note, although the Geometric

Program itself consumes a relatively small of time, the process of expressing transistor

models as posynomials manually proves to be quite taxing.

Using empirical data gathered from several transistors, Genetic Algorithms can

generate the posynomial MOSFET models required for the Geometric Program. Ag-

garwal et al.[1] used Genetic Algorithms to generate the posynomial MOSFET models

and measure the mean fitness of these models. Because they depend on measured

empirical data, for which a certain error metric is minimized, the generated posyno-

mial models exhibit an improvement in accuracy. The following section will discuss

Genetic Algorithms as an approach to circuit modeling in more detail.

1.2 Genetic Algorithms for Circuit Modeling

In the field of automated circuit design, Genetic Algorithms have been previously

used as standalone methods for generating both the topology and components of a

circuit. Koza et al.[2] has shown that, given the number of inputs and outputs of
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the circuit, the set of available components, and a fitness measurement in terms of

performance, Genetic Programming tended to perform satisfactorily in synthesizing

8 different analog circuits. Nevertheless, the computational cost for solving the siz-

ing problem becomes less feasible for more complex circuits such as op-amps, which

require more stringent constraints and therefore larger dimensionality. In fact, due

to the need to simulate each new generation in SPICE for a large number of fitness

evaluations, even simple filter circuits took 2 days to run on a parallel computing

system with 64 80-MHz processors.

In order to improve computation speed, Grimbleby et al.[3] decoupled the circuit

synthesis problem into two different stages: topology design, then component param-

eter selection. The two stage hybrid Genetic Algorithm uses evolutionary techniques

to choose the topology of the first circuit, and then numerical optimizations to size the

circuit components. Although the hybrid Genetic Algorithm exhibits a performance

improvement in linear analysis, non-linear analysis continues to consume a significant

chunk of computational power in the numerical optimization stages.

The above two simulation based techniques suffer from scalability problems, and

often yield solutions that are suboptimal. They are therefore unfeasible for the com-

mercial design of robust products. Geometric Programming provides a solution to

these problems: since it uses simplified interior-point methods in place of the numer-

ical optimization of the hybrid Genetic Algorithm problem it does not suffer from

reduced performance and scalability problems. Hershenson et al. [4] and Mandal et

al.[6] applied Geometric Programming on simple CMOS op-amp circuits and arrived

at a global optimum in a matter of seconds. Unfortunately, Geometric Programming

equations, as mentioned in Section 1.1, can be subject to inaccuracy in the hand-

written equations. Along the same lines, the generation of the posynomial equations

would benefit from automation and relaxing the need for topology specific knowledge,

so that the Geometric Programming optimization can extend beyond simple op-amp

circuits.

Finally, Genetic Algorithms were proposed as tools for reducing the inaccuracies

found in the MOSFET posynomial equations, [1, 5]. Given certain performance vari-
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able constraints, posynomial equations were evolved and then evaluated for fitness

against a random sample from 70000 data points of measured empirical data. Each

data point corresponds to a performance measurement for a TSMC 0.18µm NMOS

MOSFET given its parameters L, W and I. The points were systematically generated

by sweeping through the MOSFET’s entire range within the saturation region. The

new algorithm, which generated models optimized for mean squared error, generally

showed a reduced mean squared error over models generated by hand written posyno-

mial models, piecewise monomials and logarithmic regression. But, although the new

method showed up to a 85% 1 performance increase over other models, on the other

hand it exhibited large error for certain estimated component parameters.

1.3 Problem Statement

In retrospect, although a reduction in mean squared error seems like a substantial

improvement in model accuracy, analog designers are more interested in reducing the

maximum single data point error between the posynomial transistor models and the

underlying physical ones. A reduction in maximum error will, as a result, ensure that

solutions from the Geometric Program don’t “fall out” when they are simulated later

in SPICE. But, it is important to recognize that the mean and maximum errors exist

in tradeoff. Therefore, the most useful model is one which balances both: its is a

model that achieves a relatively small maximum error without greatly compromising

the value of the mean error.

This thesis discusses various approaches aimed at achieving models with a smaller

maximum error. It investigates and compares these approaches and determines which

of them is best in terms of balancing both the mean and maximum error. It also

examines output parameters with large maximum error and attempts to explain the

limitation of the algorithm when applied to these parameters.

On the other hand, whilst evaluating the accuracy of various posynomial models

1The evolved posynomial models for parameter gds showed an 85% improvement in mean error
over piecewise monomial fitting
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on different output parameters, a new question rose to the surface: are we in any

sense constrained by only using a posynomial form to express the models? In other

words, does the posynomial formulation possess some inherent limitation that re-

stricts model accuracy? Despite the accepted use of posynomial models coupled with

Geometric Programming for solving MOSFET optimization problems, there remains

a need to examine the suitability of posynomial models with regards to the nature of

the MOSFET data. In accordance with the special requirements enforced by the Ge-

ometric Program, we have so far been concerned with generating better posynomials.

But the question we should ask ourselves is whether or not MOSFET parameters are

well approximated by posynomials models in the first place.

In order to answer the new questions posed, the consequent chapters will, in ad-

dition to evaluating models that reduce the maximum error, investigate the nature

of the MOSFET data and how well we can use posynomial models to emulate MOS-

FET behavior. They will present a visualization method for viewing five dimensional

MOSFET data, and provide insights on the behavior of a selection of performance pa-

rameters using the proposed method. Given the nature of the data, the chapters will

propose a theoretical bound on the maximum error arising from posynomial models.

They will consequently attempt to verify that such a bound exists. Furthermore, the

last chapter will discuss future work in terms of proposed optimization models to be

investigated.
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Chapter 2

Understanding MOSFET Behavior

2.1 Data Aggregation

In our system formulation, the Genetic Algorithm, (GA), seeks one primary goal: to

evolve viable posynomial MOSFET models, mapping the input MOSFET parameters

(e.g. L, W, I and Vds) into the output small and large signal performance parameters

(e.g. the transconductance gm). Of course, the algorithm requires empirical training

data for calculating the error generated by a particular model, which in turn acts

as a selection metric for propagating current models into the next generation of the

genetic algorithm.

In order to evaluate the performance of different models generated by the genetic

algorithm, a better insight into the nature of the training data is required. Only by

exploring the behavior of the output parameters as response to the input parameters

for real, physical mosfets, can we derive some intuition about how close our evolved

models come to emulating the underlying physical ones.

Using typical TMSC 0.18µm n-doped and p-doped MOSFETs, fabricated with

the 0.18µm Logic Salicide (1P6M, 1.8V/3.3V) process, four input parameters, L, W

Vgs, and Vds were used in a SPICE simulation of the MOSFETs. The simulation

swept across the input parameters, beginning at their lower bound and reaching their

upper bound in increments of a fixed step size, as shown in Table 2.1 . For some

parameters, namely L and W, a logarithmic scale was used. During the simulation,
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Parameter Lower Bound Upper Bound Number
of Steps

Logarithmic
Scale

Units

L 1.8× 10−7 1.8× 10−6 5 Yes m
W 8.95× 10−7 2.0× 10−5 5 Yes m
Vgs 0.2 1.98 10 No V
Vds 0.0 1.98 8 No V

Table 2.1: Parameter ranges and sampling used for SPICE simulation

Input Parameters A: L,W, Vgs, Vds Input Parameters B: L,W, I, Vds

Parameter Units Parameter Units

gm S gm S
gds S gds S
ρ Ω ρ Ω
Cdb F Cdb F
Cgs F Cgs F
Cgd F Cgd F
VdSAT V VdSAT V
Veff V Veff V
VT V VT V
I A Vgs V

Table 2.2: Performance output parameters measured using SPICE

a set of output parameters were measured for each combination of input parameters.

These were consequently filtered to ensure that the MOSFET was operating in the

saturation region, yielding about 900 data points. Given the output parameters, two

sets of input to output mappings can be examined, and used to generate the MOSFET

models using the Genetic Algorithm. On one hand, we can use the parameters L, W,

Vgs and Vds as input parameters. On the other hand, we can use L, W, Vds and I.

Keep in mind that the current I constitutes a measured parameter from the SPICE

simulation. By changing the dependency between the input and output parameters,

we can generate two different MOSFET models, and evaluate their performance.

Table 2.2 shows the two sets of input parameters, and the output parameters that are

associated with them. Figure 2-1 shows a diagram of the small signal representation

of a MOSFET, illustrating the significance of the small signal output parameters

shown in Table 2.2.
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Figure 2-1: Small signal MOSFET model

2.2 Visualization

Since the genetic algorithm will evolve models dependent upon four input param-

eters, any data visualization technique aimed at understanding the data distribution

will require plotting the output parameter as a function of the four proposed input

parameters, thus dealing with a five dimensional array. By fixing two of the input

parameters, the problem can be reduced to a three dimensional plot. But, in reality,

two dimensional plots are probably the easiest to understand. Therefore, we decided

to flatten out the third dimension. To obtain a two dimensional plot, we initially

slice along two dimensions by fixing two of the input parameters for the current plot.

Then, we then sweep through values within the third dimension’s range, and for each

value, plot the output parameter against the final input parameter. The method,

as a result, produces multiple superimposed curves corresponding to different values

of the third input parameter, for each plot of the output parameter against one of

the remaining input parameters. If we use a Matlab GUI tool, we can also add an

animation feature, where instead of fixing the second parameter, we produce several

plots corresponding to a different value of the second parameter, and animate across

them.

The interactive Matlab GUI tool, shown in Figure 2-2, allows for an ease of ma-

nipulation of the data, where the user can specify where to make the slices along any

different dimension, resulting in a simplified two dimensional plot. Before running
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the visualization tool, the user can easily select which dimension will be plotted on

the x-axis, and which dimensions will be toggled by any of the three pulldown menus.

On launching the tool, the user can then use the pulldown menus to fix certain di-

mensions, while changing others. The tool also features the use of color for sweeping

through values corresponding to the third dimension. As can be seen in Figure 2-2,

the curves traverse from dark to light blue as the value of the third input parameter

increases. Therefore, we can easily use the tool to obtain a spectrum of plots, and to

inspect the MOSFET data from all possible angles.

Figure 2-2: Screen shot of Visualization Tool
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2.3 Case Study of MOSFET Parameters

In the following discussion, we will be performing case studies on a subset of the

parameters shown in Table 2.2, considering data from n-doped MOSFETs. We will

be examining the the characteristics of the output parameters gm, gds, r0 and Cgs

across the four dimensions specified by the input parameters B. The case studies

aim to fuel future arguments regarding posynomial models and their use for fitting

MOSFET data. All plots in the following were generated using the visualization tool

described earlier, and plotted on a logarithmic scale for both the x and y axes 1.

2.3.1 Characteristics of the Transconductance gm

Perhaps the best method for understanding the behavior of gm in relation to input

parameters L, W , Vgs and Vds requires plotting gm against each input parameter in

turn, whilst fixing two of the other parameters and sweeping through the last. The

specifics involving which two parameters are fixed and which is swept through are of

little consequence, as long as we plot the same parameter on the x-axis. Figures 2-3

and 2-4 show some plots of gm against each of these four parameters on the x-axis,

which in a sense summarize gm’s behavior across the four dimensions. From the small

signal MOSFET model, the relationship between the output and input parameters is

given by:

gm
∼= µnCox

W

L
(Vgs − VT ) =

√
2
W

L
µnCoxI (2.1)

Where Cox and µn are constants respectively denoting the gate oxide capacitance

and the electron mobility.

The relation above indicates that gm should be linear in L, W and Vgs in log-

arithmic space. But the three plots of Figure 2-3(a) outline gm’s concave response

with respect to Vgs. The discrepancy results from the underlying inaccuracy of the

square-law, from which equation 2.1 was derived. On the other hand, the plots of

Figure 2-3(b) show gm against W for different slices of L and Vgs, and, in compliance

1Since posynomials are log-convex, we use a logarithmic scale for insights into how well posyno-
mials will model the MOSFET parameters.
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with the first order equation, the plots are linear in logarithmic space.

It is also important to note that since the channel length modulation is small,

i.e. λn is small, the MOSFET’s small signal gain gm exhibits very little dependence

on Vds. Figure 2-4(a) shows plots of gm against Vds for different values of W , and,

since they are approximately straight horizontal lines, they indicate that gm doesn’t

change much with increasing values of Vds. Nevertheless, the plots display some slight

convexity, especially for lower values of L. Finally, gm plotted against L for small

values of Vgs shows the predicted linearity. But as we increase Vgs, the plots become

more and more concave. Figure 2-4(b) shows the concave behavior of gm with respect

to L.

2.3.2 Characteristics of the Output Conductance gds

The small signal approximation of gds using the square-law is given by:

gds =
W

2L
µnCox(Vgs − VT )2 · λn (2.2)

The equation indicates that gds should be linear with respect to L and W in loga-

rithmic space, whereas it should be concave with respect to Vgs. After simulation,

Figures 2-5 and 2-6 show the empirical behavior of the parameter gds with respect to

the input parameters. Interestingly, the curvature of gds with respect to Vgs changes

drastically as we traverse from low values of L to higher ones. As Figure 2-5(a) shows,

gds ellicts some concavity for small values of L, but as L increases, gds begins to twist

around an inflection point. The data is concave to the left side of the inflection point,

and convex to the right side of it. Similarly, the data is largely dependent on Vds, and

as Vds increases (and the shades of the lines grow lighter), the data’s curvature be-

comes more and more pronounced. In fact, the data is nearly linear for smaller values

of Vds. As for gds’s dependence on W , it is linear in logarithmic space. gds’s response

to L, on the other hand, although approximately linear, shows some non-linearity in

the form of an inflection point, as seen in Figure 2-6(b). Finally, gds is convex with

respect to Vds, and the convex curves move upwards as we increase Vgs.
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Figure 2-3: gm plotted against a) Vgs, b) W , for an n-doped MOSFET, with param-
eter Vds swept across range [0.28V 1.98V ].
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Figure 2-4: gm from an n-doped MOSFET plotted against a) Vds with W swept across
range [0.895µm 20µm] b) L with Vds swept across range [0.28V 1.98V ].
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Figure 2-5: gds plotted against a) Vgs b)W , for an n-doped MOSFET, with parameter
Vds swept across range [0.28V 1.98V ].
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Figure 2-6: gds from an n-doped MOSFET plotted against a) Vds with Vgs swept
across range [0.596V 1.98V ] b) L with Vds swept across range [0.28V 1.98V ].

30



2.3.3 Characteristics of the Output Resistance r0

Since r0 is given by the equation:

r0 =
1

gds

(2.3)

we expect plots of r0 with respect to its input parameters to be the reflection of gds

plots along the y = x axis. Therefore, it is not surprising that input parameters, like

Vds for smaller values of L, which were concave for the parameter gds, become convex

for the parameter r0. Conversely data which is convex, such as gds relative to Vds,

becomes concave, as shown in Figures 2-7 and 2-8. Finally, for the dimensions that

exhibit inflection points, i.e. L and Vgs, the curvature around the inflection point is

inverted for r0.

2.3.4 Characteristics of the Capacitance Cgs

The small signal capacitances, namely Cgs, Cdb and Cgd, are linear, or approximately

linear in logarithmic space. Cgs and Cgd are approximated by the following equations:

Cgs =
2

3
WLCox +WCov (2.4)

Cgd = WCov (2.5)

For example, when we plot Cgs for we obtain an approximately linear plot shown

in Figures 2-9 and 2-10. Cgs is linear with respect to L and W as can be seen from the

figures. It is also slightly concave with respect to the parameter Vgs. Finally, Cgs is

very weakly dependent on Vds, therefore the its plot is a horizontal line in logarithmic

space.

2.3.5 Characteristics of the Current I

Some parameters exhibit large jumps within their range, where the data seems to be

accumulated in two contiguous clusters. The output parameter I plotted against Vgs

exhibits this property, as can be seen in Figure 2-11. For a fixed length L, the data
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Figure 2-7: r0 plotted against a) Vgs b) W , for an n-doped MOSFET, with parameter
Vds swept across range [0.28V 1.98V ].
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Figure 2-8: r0 from an n-doped MOSFET plotted against a) Vds with Vgs swept across
range [0.596V 1.98V ] b) L with Vds swept across range [0.28V 1.98V ].
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Figure 2-9: Cgs from an n-doped MOSFET, plotted against Vgs and W , with Vgs

swept across range [0.28V 1.98V ].

34



10
0

10
−15

10
−14

10
−13

Vds/ V
L = 1.8e−07 m

W = 4.2308e−06 m

C
G

S
R

10
−7

10
−6

10
−15

10
−14

10
−13

L / m
W = 8.95e−07 m
Vgs= 1.1889 V

C
G

S
R

10
0

10
−15

10
−14

10
−13

Vds/ V
L = 5.6921e−07 m
W = 9.1987e−06 m

C
G

S
R

10
−7

10
−6

10
−15

10
−14

10
−13

L / m
W = 4.2308e−06 m

Vgs= 1.98 V

C
G

S
R

10
0

10
−15

10
−14

10
−13

Vds/ V
L = 1.8e−07 m

W = 9.1987e−06 m

C
G

S
R

10
−7

10
−6

10
−15

10
−14

10
−13

L / m
W = 2e−05 m

Vgs= 0.59556 V

C
G

S
R

(a) (b)

Figure 2-10: Cgs from an n-doped MOSFET plotted against a) Vds with Vgs swept
across range [0.596V 1.98V ] b) L with Vds swept across range [0.28V 1.98V ].
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begins with convex curvature, and as we increase W , new convex data appears at a

higher range of I. In a sense, the current I is therefore split into two concave ranges,

and we toggle between them by increasing the value of W .
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Figure 2-11: I from an n-doped MOSFET, plotted against Vgs for various values of
W and L, and with parameter Vds swept across range [0.28V 1.98V ].

2.4 Posynomial Models

Returning to our original problem of circuit sizing, a geometric program is required

to compute globally optimal values for the input parameters, such that they satisfy

specific constraints on the output parameter values. A geometric program will find
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the global optima in a matter of seconds by minimizing a target function subject to

a group of constraints with a special form, shown below:

minimize f0(x) (2.6)

subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

Where f0 and fi are posynomial functions, gi are monomial functions, and x are the

optimization variables. A monomial is a function of the form:

g(x) = cxa1
1 x

a2
2 · · ·xan

n where c > 0 and a ∈ < (2.7)

Where x1 . . . xn are n real positive variables.

In other words, a monomial function is required to have positive coefficients, but

its exponents can take either positive or negative values. A posynomial, on the other

hand, is a sum of monomial terms, i.e.:

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · · xank
b where ck > 0 and ak ∈ < (2.8)

K is the maximum number of terms constituting the posynomial. According to this

formulation, a monomial function is in fact a posynomial function with one term.

Evidently, in order to obtain a well formed geometric program that optimizes the

input parameters, it is necessary to form MOSFET models that are in fact posynomial

functions. Therefore, we need to find posynomial functions of the input parameters

that map to output parameters according to the following equations:

f(L,W, I, Vds) =
K∑

k=1

ckL
a1k ·W a2k · Ia3k · V a4k

ds (2.9)

where ck > 0 and ak ∈ <

where f(x) is an output parameter dependent on a posynomial relation involving
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input parameters A. Simiarly,

f(L,W, Vgs, Vds) =
K∑

k=1

ckL
a1k ·W a2k · V a3k

gs · V
a4k
ds (2.10)

where ck > 0 and ak ∈ <

where the output parameter f(x) depends on input parameters B.

2.5 Theoretical Bounds on Error

Given that our MOSFET models are posynomial functions, we have now reached

a point where we can make predictions about how closely these models follow the

empirical MOSFET data. But before we continue with our discussion, we must first

ask ourselves: what are the curvature properties of a posynomial function on a loga-

rithmic plot? The answer depends on the number of posynomial terms. Posynomials

with one term, i.e. monomials, are linear in log-log space. Otherwise, any posyno-

mial with K > 1, exhibits convex curvature on a log-log plot, as has been visualized

graphically by Aggarwal[10].

Since our output parameters were orignally classified according to their curvatures

in section 2.2, we can go through each different case and make general predictions

about how well our posynomial models should perform, in terms of the maximum

error as a measure of performance.

2.5.1 Concave Data

On enlisting a posynomial to fit data that is inherently concave in logarithmic space,

the best fit, in terms of maximum error, is a monomial. We can deduce that mono-

mials are the best fit for concave data by considering a two dimensional example, and

extending the conclusions we derive to multiple dimensions. We begin as follows: A

two dimensional function, concave in the interval defined by the domain [x1 x2] as

shown in Figure 2-12, can be described as a function that lies above any line con-

necting two points on its curve, within the range defined by the interval. In other
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words:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) (2.11)

where 0 ≤ λ ≤ 1

and x1 ≤ x ≤ x2

Consider a linear fit of this concave interval, denoted by
−→
ab, as shown in Figure 2-12.

In general, the maximum absolute error between the concave function and its fitness

line
−→
ab is defined as follows:

x1 x2λx1 + (1 - λ)x2

λf(x1) + (1 - λ)f(x2)

f(λx1 + (1 - λ)x2)

x

ε

f(x)

a

b

c

d

f(x1)

f(x2)

Figure 2-12: A concave function, and a linear fit of the function plotted on a log-log
scale. The fit is a line anchored at the function’s domain endpoints. The maximum
error ε is generated by the fit.

εmax = max |f(x)− f̃(x)| ∀ x ∈ [x1 x2] (2.12)

where f̃(x) represents the model approximating the behavior of f(x).

For the line joining the end points of the concave curve, we can assume that the

maximum error occurs at some value of λ, and that the error can be expressed as:
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ε = f(λx1 + (1− λ)x2)− λf(x1)− (1− λ)f(x2) (2.13)

The absolute value disappears from the equation because, for a line joining the

end points x1 and x2, the inequality 2.11 holds, and the difference between the two

terms f(x) and f̃(x) is positive.

If we now take the derivative of the error ε with respect to λ, and set the result

to zero, we can determine the value of λ which achieves the maximum error.

dε

dλ
= (x1 − x2) ·

df(λx1 + (1− λ)x2)

d(λx1 + (1− λ)x2)
− f(x1) + f(x2) = 0

df(λx1 + (1− λ)x2)

d(λx1 + (1− λ)x2)
=
f(x1)− f(x2)

x1 − x2

(2.14)

Note that the right hand side of Equation 2.14 actually corresponds to the slope

of the fitness line
−→
ab. In other words, the maximum error occurs at a value of λ where

the derivative of the concave function at x = λx1 + (1− λ)x2 equals the slope of the

fitness line
−→
ab. Therefore, the maximum error occurs at the point where a line

−→
cd

parallel to the original fitness line
−→
ab is tangent to the concave curve. As a result,

the maximum error is just the vertical difference between f(λx1 + (1 − λ)x2) at the

point of tangency and f̃(λx1 + (1− λ)x2) on the line, as shown in Figure 2-12.

Now that we can locate the data point with the maximum error between a fitness

line and a concave function, our next step is to minimize this error. Suppose we

shift and tilt the original fitness line upwards in an attempt to decrease the error,

without worrying about maintaining the slope of the original line. Figure 2-13 shows

that in the new scenario, the maximum error occurs at one of three points: either

the point where a line parallel to the fitness line is tangent to the curve, or at one

of the two endpoints. The errors are, once again, calculated by taking the vertical

difference between the three aforementioned points on curve and their counterparts

on fitness line, and the maximum error is the largest of the three errors, ε1, ε2 and
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Figure 2-13: A concave function fitted with a new line, and the resulting errors ε1,
ε2 and ε3 generated by that fit.

ε3. Figure 2-13 shows the largest error, ε2, occurring at one of the end points.

Once again, we can minimize the error even further. We can pivot the fitness

line on its left endpoint, and, as before, tilt it upwards in an attempt to achieve an

equilibrium between errors ε1 and ε2. Figure 2-14 shows the result: an increase in ε1

accompanied with a decrease in ε2. The process can be repeated until the two errors

are equal, producing the smallest maximum error.

On the other hand, we can accomplish a decrease in error by simply translating

the original fitness line
−→
ab upwards along the perpendicular to the curve’s tangent,

rather than tilting it. In this case, we obtain Figure 2-15, which shows the smallest

maximum error one can achieve using a fitness line parallel to
−→
ab. As can be seen in

the figure, the ε’s are all equal in magnitude, hence producing an optimal maximum

error. In fact, if we assume that the concave function is monotonic, we can argue

that any line used to fit a concave interval will produce a maximum error equivalent

to the error produced by a line parallel to a line through the endpoints of the concave

interval.
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Figure 2-14: If we tilt our fitness line upwards, whilst pivoting on the leftmost end-
point, we achieve a smaller maximum error. The original fitness line and its associated
errors are shown in faint grey.

Finally, if we attempt to improve the fitness obtained above by using a convex

function rather than a line, Figure 2-16 shows the result. In order to maintain the

original lower bound on the maximum error we had previously achieved by using

a line, we would place the convex function such that we maintain the central error

value, ε2. The function, shown in Figure 2-16 would produce larger endpoint errors

than its linear counterpart. Even if we reduce the curvature of the convex function,

we will always do worse than a linear function. Therefore, a line is the only convex

function producing the smallest maximum error when fitting a convex curve.

As a result of the previous discussion, we can conclude that monomials, which are

linear in logarithmic space, form the best fit for concave data in logarithmic space.

But, one might argue, although our entire argument has been grounded in two

dimensions, how does the discussion scale to multiple dimensions? Increasing the

dimensionality of the input data and the posynomial model increases the degrees of

freedom one can manipulate in order to decrease the maximum error. Regardless, if
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Figure 2-15: If we tilt our fitness line upwards, whilst pivoting on the leftmost end-
point, we achieve a smaller maximum error. The original fitness line and its associated
errors are shown in faint grey.

the data is concave across all of its dimensions in logarithmic space, we predict that

once again a hyperplane, i.e. a monomial, constitutes the best convex fit. Otherwise,

data concave across some of its dimensions and not others would require a fitness

curve that is more difficult to describe. Nevertheless, for data that exhibits some

concavity, we predict the existence of a lower bound on the maximum error we can

achieve. The lower bound arises because convex posynomials fit concave data rather

poorly.

2.5.2 Data Containing an Inflection Point

In a manner similar to our previous discussion, let us begin by examining the two

dimensional scenario. Figure 2-17 shows a function that contains an inflection point

p, such that it is convex to the right of p, and concave to the left of it. Let us, for the

sake of argument, split the function into two segments: concave and convex. From

Section 2.5.1, we know that the best fit for the concave segment is in fact a line with

43



x1 x2

x

f(x)

ε2

ε1

ε3

Figure 2-16: If we tilt our fitness line upwards, whilst pivoting on the leftmost end-
point, we achieve a smaller maximum error. The original fitness line and its associated
errors are shown in faint grey.

the smallest maximum error within the segment itself. Similarly, the best convex fit

for the convex curve to the right of p should naturally be curve itself over the specified

interval. Figure 2-17 shows the resulting piecewise convex curve superimposed on

top of the original function we are trying to fit. But, since posynomial models are

monotonic and differentiable, the piecewise convex curve cannot be represented as a

posynomial in logarithmic space. Nevertheless, it acts as a weak lower bound on the

maximum error we can expect to achieve from any posynomial attempting to fit data

with one or more inflection points.

Consequently, one can imagine a convex function in logarithmic space which

smoothes out the discontinuity at the inflection point, producing a well formed posyn-

omial that minimizes the maximum error, as shown in Figure 2-18. Conversely, the

best fitness curve in terms of maximum error could be a line, as also seen in the

figure. Regardless of what form the best fitness curve assumes, we predict that it will

never do any better than the weak minimum bound proposed. A similar discussion
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Figure 2-17: The best theoretical fits of a concave-convex function in log-log space.

can be used for data which is convex to the left of the inflection point, and concave

to the right of it. For higher dimensionality, we still expect the lower bound to exist,

because we cannot fit the concave sections of the data very well.

2.5.3 Linear Data

Obviously, a monomial in logarithmic space fits a line in two dimensional logarithmic

space perfectly. As for higher dimensions, if the data is perfectly linear across all

dimensions, we expect a monomial hyperplane in logarithmic space to constitute the

best fit. Otherwise, we expect data which is linear in logarithmic space across some

of its dimensions to exhibit a smaller maximum error than data that displays other

forms of curvature across the same dimensions.

2.5.4 Convex Data

Finally, for data which is convex for low and high dimensions, we expect the best fit

to be a posynomial, i.e. a curve which is convex in logarithmic space. Although all
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Figure 2-18: A monomial and posynomial fit of a concave-convex function in log-log
space

posynomials are convex in logarithmic space, not all convex functions are posynomials.

As such, we cannot specify a lower bound on the maximum error, since, depending

on the form of the empirical data, the posynomial retains the potential to fit the data

perfectly.

2.5.5 Final Remarks

Now that we have made general predictions about the nature of the posynomial

models that will be used to fit the data, the next step is to determine whether the

Genetic Algorithm does in fact find the best of these models. Once the Genetic

Algorithm evolves a set of posynomial models to fit the data, we can once again use

our visualization tool to acquire some intuition about the generated models in relation

to the data, and its fitness.
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Chapter 3

System Design

A circuit sizing system used to generate posynomial models consists of three main

stages: evolution, optimization and finally validation, as shown in Figure 3-1. The

evolutionary stage uses a Genetic Algorithm, (GA), combined with a convex opti-

mization method such as QP or LP, to derive a posynomial model that emulates the

empirical MOSFET data with a high degree of accuracy. These models can be reused

for any circuit topology, provided it is consistent with the fabrication process that

generated the models in the first place. The optimization stage then converts the

posynomial for the consequent geometric program into a convex optimization prob-

lem, and then computes the global optima. Finally validation simulates the mosfet

parameters in SPICE, finds the performance measurements, and calculates the error

between the objective performance measurements and the simulated ones.

Combining the three stages, our overall circuit sizing system adheres to the fol-

lowing flow:

1. Initialization: the evolutionary stage during which the GA generates posynomial

MOSFET models to populate a reusable “library”.

2. Optimization: given the posynomial model library and a specific target topol-

ogy, we iterate through the following steps:

(a) Formulate the large and small signal MOSFET circuit equations in posyn-

omial form given both the topology and the model library.
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Figure 3-1: System Design
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(b) Specify a set of objectives and constraints derived from the above circuit

equations, to be optimized by the Geometric Program.

(c) Use the Geometric Program to solve for the optima.

(d) Validate the results in SPICE, and determine the error between the calcu-

lated and simulated parameters.

(e) Is the resulting validation error acceptable? If not, modify the Geomet-

ric Program objectives and constraints, and tighten the parameter range.

Then iterate with the adjusted equations for a new set of optimal solutions.

Otherwise, the flow is complete.

With the overall flow in mind, the following sections delve into the details of each

separate stage, placing the most emphasis on the evolutionary stage.

3.1 Evolutionary Stage

The evolutionary stage uses a Genetic Algorithm [11] to generate posynomial models

of the output parameters given either input parameters A or B. In order to evolve

the the models effectively, the system uses a specific genotype representation char-

acteristic to each different individual in the population. The genotype naturally en-

codes the exponents of each separate monomial term, such that we obtain the overall

posynomial by summing together the terms. Although it encodes the exponents, the

genotype has no knowledge of the terms’ coefficients. The coefficients are calculated

later using regression through Quadratic or Linear programming depending on which

type of error our models are attempting to minimize, as seen in [10].

Finally, our genotype representation retains the ability to encode a variable num-

ber of terms to form the final posynomial. Hence, it includes a choice variable that

equals one when a term should be used in the final posynomial representation. Oth-

erwise, when the choice variable is zero, the exponents for the term are ignored.

They are overlooked during both the phenotype generation and the coefficient regres-

sion stages. The genotype to phenotype mapping used in the algorithm is shown in
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Figure 3-2.
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Figure 3-2: Genotype representation and its mapping to the phenotype.

As shown by the figure, the posynomial function relating the output performance

parameters to the input parameters forms the phenotype of each individual. The

genotype, on the other hand, is represented by a matrix with a fixed number of

terms, with each row corresponding to a single term within the posynomial. The first

column of the matrix represents the choice variable, and, since the choice variable

allows us to have posynomials of varying length, the total number of terms in the

posynomial can lie anywhere between 1 and maxTerms. The remaining four columns

of the matrix each correspond to one of the four input parameters, with each cell

containing the exponent. In order to calculate the phenotype, the coefficients of

each term are calculated first by minimizing the error generated by a target fitness

function, and then both the coefficients and exponents are combined together to form

the phenotype.

The evolutionary stage begins by generating a random population, containing in-

dividuals with exponents randomly selected between [minExponent,maxExponent].

The choice variables are randomly initialized as well. The stage then calculates the

fitness of each individual by computing the error between the individual’s posynomial
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model and the 900 empirical data points generated through SPICE simulations. But,

before we calculate the fitness, the individual phenotypes need to be determined.

Hence, we first optimize for the posynomials’ coefficients, and then combine them

with the exponents and input parameters to form the final posynomial representa-

tion. The QP or LP stages can produce coefficients that are zero valued, since their

objectives are set to compute the optimal coefficients for each row. Therefore, the

coefficient optimization stage performs a variant of feature selection.

After calculating the fitness of each individual, tournament selection determines

which individuals are considered fit enough for propagation. The algorithm performs

N tournaments with replacement, where each tournament randomly chooses s indi-

viduals from the tournament pool. The individual with the best fitness in the current

tournament is selected for propagation and copied. All individuals are returned to

the pool thereafter. Since we are selecting the elitist from every tournament, after N

iterations there should be on average s copies of the best individual overall. Similarly,

no copies of the worst individual should appear in the next generation.

After tournament selection has chosen fit parents for propagation, the algorithm

generates the offspring by subjecting the parents to two variation operators. The

first, probably more vital operator, is the crossover operator. The algorithm applies

uniform crossover between individuals, where the crossover can only occur between

terms, i.e. rows in the genotype matrix. In fact, the recombination process operates

under the assumption that each term in the genotype, i.e. each monomial contribut-

ing to the overall posynomial, forms a building block [12]. The monomials, after all,

represent low order components of high fitness that will, in theory, yield a higher

fitness when added to other building blocks, thus generating a high fitness posyno-

mial. Therefore each parent individual undergoes recombination with a probability

of pcrossover, where the algorithm picks out another parent individual at random, and

then uniformly chooses which rows of the offspring are copied from the first parent,

and which rows from the second.

Once crossover is complete, the algorithm applies a mutation operator to perturb

each exponent within the genotype matrix. We mutate the exponent by adding it
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to a real valued number, drawn from a normal distribution with zero mean and a

variance of λ. As the number of generations increases, the algorithm decreases the

variance λ adaptively, in order to achieve two distinct variation stages: explorative

and exploitative. During the explorative stage, the GA will be attempting to discover

new building blocks of high fitness that will factor into the final solution, therefore

the mutation variance λ is relatively large. As for the exploitative stage, since λ is

small, the mutation injects random noise into the system in order to tweak exponents

slightly in the hopes of improving individuals which have already attained a relatively

high degree of fitness.

The algorithm makes a distinction between two different types of mutation applied

on the parents to achieve the progeny. Rows, i.e. monomial terms, deemed unnec-

essary by Linear or Quadratic program are mutated with a higher probability than

terms that have non-zero coefficients. Complying with our notion of building blocks, a

coefficient of zero indicates that the corresponding exponents are not building blocks

after all, and would be useless in finding a high fitness solution. Therefore, terms

with zero coefficients are treated separately, and mutated with probability pzero term,

while terms with non-zero coefficients are mutated with probability pnon zero term.

After the algorithm computes all the subsequent progeny, the new generation

becomes ready to undergo another iteration of the GA. Evolution runs to completion

(the maximum number of generations is attained), and from there the algorithm

evaluates the fitness of all the individuals in the final generation, and chooses the

best individual with the maximum fitness as the best posynomial model for the data.

It is important to note our trials were not intended to examine how well evolved

posynomial models generalize to more than the 900 input data points, upon which we

trained the GA. Rather, we are interested in determining how well the models perform

on data they have been actively trained upon, in order to determine whether there

exists a lower bound on the error generated by posynomial models of MOSFET data.

Similarly, in order to compare different error metrics used to compute coefficients

for each term within the posynomial, generalization becomes a secondary concern.

Therefore, our entire discussion will focus primarily upon error arising from training
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and testing on the 900 empirical data points, which were generated as described in

Section 2.1.

As can be inferred from the problem statement in Section 1.3, we will be mainly

concerned with the evolutionary stage of our system in order to answer the questions

we have posed. Nevertheless, the consequent two sections will tackle the remaining

two stages of the overall system for completeness.

3.2 Circuit Optimization Stage

Once we have arrived at a satisfactory set of posynomial models of the MOSFETs

using the evolutionary stage, they constitute a library that can be reused for any

circuit being designed with the same fabrication process. Given the model library,

and a specific circuit topology, the optimization stage applies a geometric program to

determine the optimal input parameters. The optimization stage creates a geometric

program of objectives and constraints expressing small and large signal specifications

derived using our MOSFET models. It then converts the geometric program to a

convex optimization problem by taking the logarithm of the input variables, objectives

and constraints in what it called the log-log transformation. Therefore the input

variable xi is replaced by yi = log(xi), where xi = eyi , and the geometric program is

transformed to the following convex optimization problem:

minimize log f0(x) (3.1)

subject to log fi(x) ≤ 0, i = 1, . . . ,m

log gi(x) = 0, i = 1, . . . , p

The constraints restricting the x’s to positive values are implicit in the transfor-

mation. By taking the logarithm of a posynomial function, monomials become linear,

and posynomials convex, facilitating convex optimization. The Geometric Program

then solves the convex optimization problem to produce the globally optimum input

parameter objectives.
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3.3 Validation Stage

Once the circuit sizes have been optimized for the performance objectives via the

Geometric Program, the validation stage determines how well the design truly meets

imposed specifications using SPICE. First, the performance measurements given the

optimal input parameters are calculated using analytical small and large signal equa-

tions. These are the objective performance measurements. Meanwhile, we use SPICE

to simulate the resulting MOSFET with the given optimized input parameters to pro-

duce the simulated performance measurements. The validations stage then calculates

the error between the objective and simulated performance measurements in order to

evaluate the performance of our models. If the error is acceptable, then the process

is complete. Otherwise, the algorithm returns to the optimizations stage for another

pass, after appropriately modifying the objectives and constraints for the Geometric

Program.

3.4 Monomial Fitting and Bisection

The GA proposed, although costly in terms of computational power, produces reusable

models with greater accuracy, which should decrease the number of parameters that

fail the validation stage. Yet, the fact that the GA is computationally intensive pro-

vokes a new question: is the GA better than existing, less computationally intensive

methods in terms of accuracy? Since the GA’s goal requires generating posynomial

models that minimize the maximum error, we need to select some form of benchmark

against which we can compare the performance of the GA’s models and deduce the

answer to our question. The posynomial models generated by the GA will be com-

pared with a more straightforward monomial fitting (MF) algorithm, proposed by

Boyd [8]. A monomial fit of a function f(xi) is represented by:

f̃(xi) = cxa1
1 x

a2
2 · · ·xan

n where c > 0 (3.2)
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For the benchmark, we are going to minimize the maximum absolute relative error,

given by:

εrlae = max
i=1,···,N

|f(xi)− f̃(xi)|
f(xi)

(3.3)

In order to find the values of c and a1, · · · , an from Equation 3.2, which minimize the

above relation, we should first transform the equation into a linear program and then

solve a regularized version of the initial problem. According to Boyd, we should first

choose a value t representing the target maximum error, such that:

|f(xi)− f̃(xi)|
f(xi)

≤ t, i = 1, · · · , N (3.4)

We can then determine whether the inequality 3.4 is feasible given the current

value of t by choice of c and a1, · · · , an, such that 0 < t < 1. But in order to do that,

the inequality should be converted to:

f(xi) · (1− t) ≤ f̃(xi) ≤ f(xi) · (1 + t), i = 1, · · · , N (3.5)

Then by taking the logarithm of both sides, such that yi = log xi, we obtain:

log (f(xi) · (1− t)) ≤ log c+ a1y1 + · · ·+ anyn ≤ log (f(xi) · (1 + t)) (3.6)

The equations 3.6 can be solved for c and the ai’s using linear programming, and

we can use bisection to determine the value of t such that the inequalities remain

feasible. Bisection, as seen in [7], operates by assuming the problem is feasible, and

starting within an interval [l u] within which we know the optimal maximum error t

should exist. We then choose a t at the midpoint of this range, such that t = l+u
2

.

Given the new t, we solve the complex feasibility problem, and if the problem is

unfeasible, then the optimal t should exist in the upper half of the interval. If the

problem is feasible on the other hand, then t should exist within the lower half of the

interval. Bisection therefore updates the interval and iterates once again, until the

width of the interval containing the optimal value of t falls beneath an acceptable

threshold. Finally, we can account for the cases where our error t is large and hence
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the upper bound l > 1. In this case, the left hand side of inequality 3.6 disappears

and we have a simpler optimization problem.

In order to penalize large exponents, we added a regularization term to the ob-

jective of our original Linear Program in the form of:

µ
∑

i=1,···,N
ai (3.7)

The regularization term attempts to minimize the sum of all the exponents, which in

turn minimizes the values of each different exponent subject to the aforementioned

constraints. The regularization ensures that the monomial is composed of exponents

within a reasonable range.

As demonstrated, monomial fitting using bisection constitutes a straightforward

rather light-weight model that can be used to emulate MOSFET data. We can

therefore evaluate the performance of GA generated posynomial models against the

benchmark provided by monomial fitting which attempts to minimize the maximum

error. If we obtain a notable improvement in maximum error using posynomial models

generated by the GA system described in this chapter, then the more time consuming

algorithm will be more favorable than mononomial fitting since it yields more accurate

results.
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Chapter 4

Error Metrics

In the previous chapter, we discussed how the GA in the evolutionary stage eval-

uated the fitness of each individual in order to propagate the elitist onto the next

generation. We also discussed the QP/LP optimization used for obtaining the posyn-

omial coefficients for each term. The current chapter discusses the error metrics used

for evaluating both the fitness of individuals, and as a minimization target for the

optimization problems used to determine the values of the coefficients.

4.1 Maximum Relative Error

As stated previously, analog designers are interested in minimizing the maximum error

between the posynomial MOSFET models, and the actual empirical data obtained

through simulating the MOSFETs themselves. Although already shown in section 3.4,

the relative error is given by the following equation:

εrlae = max
i=1,···,N

|f(xi)− f̃(xi)|
f(xi)

(4.1)

Since the output parameters span over several orders of magnitude, it becomes im-

perative that we use relative error in order to normalize the values of the output

parameters. Therefore, in order to determine the coefficients for the posynomial phe-

notype of each individual, we would use a Linear Program (LP) that minimizes the
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above error to solve for the coefficients, subject to the constraint that the coefficients

need to be greater than 0. After calculating the coefficients, we would report the

maximum relative error to the selection algorithm in the GA, and based on the error,

the best individual of each tournament is selected.

4.2 Mean Relative Error

Although analog designers are interested in reducing the overall maximum error,

the mean error between the posynomial models and the empirical MOSFET data

remains a vital concern. Therefore, another error metric which could be used as

a fitness measurement for tournament selection, and also as a method for selecting

posynomial coefficients is the relative mean squared error, which is given by the

following equation:

εrlse =

√√√√√ 1

N

N∑
i=1

(
f(xi)− f̃(xi)

f(xi)

)2

(4.2)

In this case, we use Quadratic Programming, i.e. QP in order to find optimal posyn-

omial coefficients given the exponents, which minimize the relative mean squared

error, subject to the constraint that all the coefficients need to be positive. Once we

determine the coefficients, the selection process determines the fitness of individuals

based on the relative mean squared error, and chooses the best fitness individuals

accordingly.

4.3 Adaptive Error

Rather than attempting to minimize either relative mean squared error, or relative

maximum error between the models and the empirical data, we would like to attempt

to control the tradeoff between obtaining a small mean error or maximum error.

Therefore, we will attempt to minimize the error adaptively, such that during earlier

generations, we place more emphasis on minimizing the mean error, whereas in later

generations we focus on minimizing the maximum error. We achieve the aforemen-
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tioned goal by introducing a new adaptive fitness measurement used for the selection

of individuals during the tournaments. The new adaptive fitness measurement is

given by the following:

εadapt = waεrlse + wbεrlae (4.3)

Here, the weights wa and wb are given by:

wb =
gno − 1

wf

wa = 1− wb (4.4)

Where gno denotes the current generation number during the GA iteration, and wf

denotes the weight factor, a constant which controls how fast we switch emphasis

from mean error to maximum error during the execution of the algorithm. For a

large wf , the transition of focus between mean to maximum error occurs more slowly

over the generations. By reporting an adaptive measure of the fitness, using both the

mean and maximum error as components of the overall fitness values, the GA should

in theory filter out individuals that exhibit a low fitness in mean and/or maximum

errors, and retain individuals which have relatively low maximum and mean errors.

By altering the fitness measurement to incorporate both mean and maximum

errors, there exists three different permutations of which coefficients to use for the

posynomial models, and which fitness measurement to report given two different

convex optimization algorithms for the coefficients.

1. In the first case, we can use both a QP which minimizes mean error, and an

LP which minimizes the maximum error to find the coefficients for the calcu-

lation of εrlse and εrlae respectively. We can then calculate the adaptive error

based on the two different values of error obtained above, and obtain εadapt qlp.

One pitfall for this method would be to assume that the error reported to the

GA corresponds to one specific model, whereas it corresponds to two different

models with two different coefficients for the same exponents in the genotype.

Therefore, although we choose an error metric based on both, we decided to

choose the coefficients determined by the QP as the model to adopt after the

final iteration of the GA.

59



2. Rather than use two different optimization algorithms to obtain the values of

the coefficients, we only use a QP aimed at minimizing the mean error εrlse, and

then calculate both the maximum and mean errors produced by the resulting

choice of coefficients. The error εadapt qp is obtained by adaptively adding the

mean and maximum errors obtained from using the coefficients determined by

the QP, and is then reported to the GA for individual selection.

3. Finally, we can use an LP which minimizes the maximum error, εrlae, to obtain

the coefficients for the posynomial phenotype, and then use the coefficients to

calculate our measures for mean and maximum error. The error measurement

εadapt lp encompasses both the mean and maximum errors calculated as a result

of the LP optimized coefficients, and is consequently reported to the GA so that

it can perform individual selection accordingly.

Now that we have obtained several methods for determining the coefficients and

measuring the fitness of the generated posynomial models, our next step is to evaluate

the performance of these different methods, and determine which of them is best in

terms of meeting some designer specifications on mean and maximum error.
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Chapter 5

Experiments and Results

In light of the theoretical bounds we posed on the error obtained from posynomial

modeling, and the various combinations of error metrics we can use as a measurement

of fitness, the current chapter discusses the experimental setup we used to test the

theories we postulated, and to compare the performance of the different types of

models. We performed three collections of experiments, each concerned with tackling

a specific question posited earlier. The first, Experiments A, compare the different

types of error metrics we used as fitness measurements for propagating individuals

in the GA. The comparison is performed across 4 of the output parameters we had

previously performed case studies on in Chapter 2. As for the second collection

of experiments, Experiments B, they collect data from the five output parameters

gm, gds, r0, Cgs and I which have been modeled using a GA which optimizes for

εrlae. The data is then plotted using the visualization tool described in section 2.2.

Finally, Experiments C generate posynomial models using a GA which optimizes for

εrlae. They gather results corresponding to all the output parameters across input

parameters A and B, for n and p-doped MOSFETs. They then compare the values

of εrlae obtained from the GA with those obtained from Boyd’s monomial fitting.
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5.1 Experimental Setup

For all collections of experiments, A through C, we used a particular setting of exper-

imental constants, e.g. the number of generations, in order to facilitate the smooth

execution of each run of the GA. Unless explicitly stated, the use of the constants

described below was maintained across all of the experiments. For each set of exper-

iments, we performed 5 different GA runs for each of the target output parameters.

The GA iterated for 500 generations per run, with a population of 50 individuals.

It randomly initialized the seed population. The choice variables were therefore ran-

domly chosen so that the number of posynomial terms retained an average of 3 terms,

and a maximum of 5 terms. The exponents were allowed to assume any real value

between [−5 7].

Experimental Constant Value

Npop 50
s 6
Runs 5
generations 500
minExponent -5
maxExponent 7
maxTerms 5
avgTerms 3
pcrossover 0.5
λ initial 2
λ rate Halved every 35 generations
pzero term 0.7
pnon zero term 0.3
wf 250

Table 5.1: Values of experimental constants used for the GA runs

Depending on the optimization applied to calculate the coefficients, and the error

metric used to calculate the fitness measurement, the weight factor wf = 250 was

used to adaptively change the dependency of the fitness on mean or maximum error.

Individual selection occurred within tournament sizes of 6 individuals, after which

crossover was applied with probability pcrossover = 0.5, and mutation of each exponent

was performed with probability pzero term = 0.7 for terms with zero coefficients, and
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pnon zero term = 0.3 for terms with non-zero coefficients. Finally, the mutation variance

λ was initialized to 2, and was halved every 35 generations. Table 5.1 summarizes

the experimental constants we used for the experiments.

In the case of the benchmark, monomial fitting, Table 5.2 shows the experimental

constants used when running the bisection algorithm.

Experimental
Constant

Value

µ 1
Lower Bound 0
Upper Bound 5
Threshold 0.001

Table 5.2: Values of experimental constants for monomial fitting using bisection

5.2 Experiments A: Error Metrics for Max-Mean

Error Tradeoff

We performed five sets of contiguous experiments, each corresponding to a different

error metric as described in Chapter 4. The five sets of experiments therefore used

εrlae, εrlse, εadapt qlp, εadapt qp, and εadapt lp respectively as a fitness measurements

for propagating the best individuals onto future generations. In order to obtain

statistically viable results, the GA was performed for 30 runs, using the 5 different

error metrics, in order to model the output parameters gm, gds, r0, and Cgs using

input parameters B. Therefore, we performed 5 × 30 runs per output parameter,

each set of 30 pertaining to a different model based on the error metric. We then

selected two individuals from each set of runs: the first is the best individual overall

in terms of maximum error, the second has the best overall mean. After extracting

these fit individuals, each of their mean and maximum errors were measured and

recorded in order to produce the tradeoff plots shown in Figures 5-1 and 5-2. In

the plots, RLAE denotes GA model which minimizes εrlae, RLSE the GA model

minimizing εrlse. Adapt-QLP-RLAE and Adapt-QLP-RLSE are errors arising from
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individuals with the two different sets of coefficients obtained from the GA which

minimizes εadapt qlp. The first, Adapt-QLP-RLAE denotes the error obtained when

the coefficients are chosen as a result of the LP, while Adapt-QLP-RLSE chooses the

coefficients from the QP. Finally, Adapt-QP and Adapt-LP denote the models with

error metrics εadapt qp and εadapt lp respectively.
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Figure 5-1: Tradeoff plots for parameters gm, gds.

By plotting the maximum absolute relative error against the relative mean squared

error for the individuals, we can quantify the tradeoff demonstrated by each of the

five different models in terms of maximum and mean errors. As seen across the four

output parameters, model RLSE, which results from a GA attempting to minimize

εrlse, naturally exhibits the largest maximum error. Because the model disregards
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maximum error when it selects individuals for propagation onto the next generation,

the maximum error of its final answer will be quite large, whereas the mean error is

the smallest. We will therefore use the RLSE points as a benchmark for the smallest

mean error we can obtain using our models.
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Figure 5-2: Tradeoff plots for parameters r0 and Cgs.

We take our comparison one step further by extracting all the nondominated

points that contribute to the Pareto optimal set [13] for each parameter, as shown

in Table 5.3. The points are nondominated because, subject to a small threshold

of leniency, there exists no other points with either a lower mean error or a lower

maximum error. The resulting Pareto fronts are plotted in Figure 5-3, where the two

fronts correspond to selecting the best individual based on the smallest maximum
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Parameter Optimal Set for Individ-
ual with Best Max

Optimal Set for Individ-
ual with Best Mean

gm

Max
Error

Mean
Error

Algorithm Max
Error

Mean
Error

Algorithm

0.3717 0.2557 RLAE 0.3862 0.2458 RLAE
0.5313 0.2338 RLSE 0.6299 0.2263 RLSE
0.3726 0.2593 Adapt-

QLP-
RLAE

0.3723 0.2560 Adapt-LP

gds

0.7083 0.2953 RLSE 0.7422 0.2937 RLSE
0.6433 0.4034 Adapt-

QLP-
RLAE

0.6720 0.4045 Adapt-
QLP-
RLAE

0.6443 0.4111 Adapt-QP
0.6443 0.4275 RLAE

r0
1.3644 0.3570 Adapt-

QLP-
RLSE

0.6692 0.4253 RLAE

0.6642 0.4052 Adapt-
QLP-
RLAE

1.5995 0.3331 RLSE

Cgs

0.0655 0.0326 RLAE 0.0664 0.0306 RLAE
0.0786 0.0310 RLSE 0.1103 0.0271 RLSE
0.0655 0.0334 Adapt-

QLP-
RLAE

0.0656 0.0349 Adapt-QP

Table 5.3: Pareto optimal sets for the four different parameters, and the algorithms
which generated them.
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Figure 5-3: Pareto fronts for the parameters gm, gds, r0 and Cgs. Front for individual
with best mean is shown in blue, while individual with best max is shown in red.
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or mean errors. From the table and plots, we can deduce that model RLAE, cor-

responding to the GA which minimizes εrlae, in addition to producing the smallest

maximum error with respect to all the other models, only compromises the mean error

very slightly. In other words, if we choose model RLAE, the mean error it produces

is about 5% larger than the smallest mean error we can obtain overall when using

the RLSE model. In fact, the adaptive models do not seem to incur any substantial

benefit in terms of improving the mean error whilst keeping the maximum error more

or less constant. The Adapt-LP model is the only model which does slightly better

on mean than the RLAE model, whilst maintaining the maximum error relatively

the same. Nevertheless, the improvement in mean error does not prove substantial

enough to warrant the use of a more complicated model over RLAE. Therefore, for

the purposes of future discussion, the RLAE model, which minimizes εrlae was chosen

for the GA, and the individual with the best maximum fitness was selected out of the

GA runs.

5.3 Experiments B: RLAE Model Error for gm, gds,

r0, Cgs and I

Now that we have chosen an error metric εrlae which minimizes the maximum error,

whilst maintaining the mean error at a reasonable value, we can now revisit the

parameters we had performed case studies upon in Chapter 2. To obtain the results

for the following discussion, we ran a GA minimizing εrlae for five runs per output

parameter obtained from an n-doped MOSFET, and then generated the values f̃(xi)

from the best resulting model. We then used our visualization tool to plot the values

of f̃(xi) predicted by the models on the same axes showing the simulated values of the

output parameters, f(xi). The model generated data is shown in decreasing shades

of red, while the empirical data is still shown in blue. We also incorporated the

maximum absolute relative error for the data shown in the plot on the graphs, where

the green line depicts the maximum overall error between the shown points across
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the entire data range, whereas a black line depicts the maximum error for the current

range designated by the plot.

5.3.1 Posynomial Model of the Transconductance gm

Figures 5-4 and 5-5 show the model outputs for the parameter gm. We can see that

the posynomial model for gm, which attempts to minimize the maximum error given

by εrlae, exhibits curvature properties we had previously predicted in Section 2.5. The

best posynomial fit for the concave dimensions of gm are lines in logarithmic space,

which can be seen for the dimensions Vgs and L. Similarly, the evolved posynomial

generates a line to fit the linear dimension of gm, W , in logarithmic space. Finally, the

posynomial model fits the slightly convex dimension, Vds with a line in logarithmic

space as well. Therefore, the resulting posynomial is in fact a mononomial, producing

a hyperplane in logarithmic space. One thing to note is that the dimensions are not

independent of one another, and that the best fit lies across all the dimensions,

resulting in a less than best fit if we slice along only one dimension. The maximum

error overall occurs between two points on the plot of gm versus L, where the models

uses a linear fit to model a concave curve. In other words, the evolved posynomial

model of gm reinforces the notion of a lower bound on error, resulting from the fact

that gm is concave across two of its dimensions.

5.3.2 Posynomial Model of the Output Conductance gds

Figures 5-6 and 5-7 show the outputs of the GA evolved posynomial model super-

imposed over the original empirical data for the parameter gds. In a manner similar

to the parameter gm, the posynomial model was linear in logarithmic space with re-

spect to the input paramter W . In other words the resulting posynomial modeled

the linear dimension using a linear fit in logarithmic space as predicted. On the other

hand, gds exhibits an inflection point with respect to Vgs and L. For both these input

parameters, the posynomial model uses a convex fit in logarithmic space to emulate

the empirical data. gds is slightly convex with respect to L, despite the presence of
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Figure 5-4: gm plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows gm against Vgs, and second against W
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Figure 5-5: gm plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows gm against Vds, and second against L
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the inflection point, and therefore the convex fit produces a smaller error along that

particular dimension. As for the input parameter Vds, the evolved posynomial model

is convex relative to Vds in order to fit the convex empirical data. Therefore, the re-

sults obtained for gds confirm the predictions regarding the curvature of posynomial

models in order to fit data which in convex along some dimensions, and containing

an inflection point along others. Similarly, the posynomial model for gds which min-

imizes εrlae demonstrates where the difficulty of fitting gds arises. Using a convex fit

to model data with an inflection point produces relatively large error, as can be seen

from the green error line in the figures.

5.3.3 Posynomial Model of the Output Resistance r0

As discussed earlier, the plots or r0 are in fact plots of gds reflected in the x = y axis.

Figures 5-8 and 5-9 show the plots of the posynomial model output superimposed with

the empirical MOSFET data for the parameter r0. In the case of r0, the posynomial

model fits the the concave data when r0 is plotted against Vds with a line in logarithmic

space. Similarly, a line is used to fit both the linear dimension with respect to W ,

and the dimension L, which shows a slight inflection point, but is overall concave.

Finally, the posynomial model is convex with respect to Vgs, in order to fit empirical

data that contains an inflection point.

5.3.4 Posynomial Model of the Capacitance Cgs

In contrast to other output parameters we have examined thus far, the parameter

Cgs proves a relatively easy parameter to fit. Its linearity, or near linearity across all

of its input dimensions, suggests that a mononomial must fit the data with a very

small maximum error. On plotting the results of the posynomial model generated by

the GA, as shown in Figures 5-10 and 5-11, we conclude that GA did in fact evolve

a monomial which produces a hyperplane in logarithmic space to fit Cgs. The largest

error arises in the regions where Cgs is slightly concave with respect to Vgs, which

once again validates the notion of a lower bound on error when fitting non-convex
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Figure 5-6: gds plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows gds against Vgs, and second against W
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Figure 5-7: gds plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows gds against Vds, and second against L
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Figure 5-8: r0 plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows r0 against Vgs, and second against W
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Figure 5-9: r0 plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows gm against Vds, and second against L.
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Figure 5-10: Cgs plotted for an n-doped MOSFET, with input parameters L, W, I
and Vds.

5.3.5 Posynomial Models of the Current I

Arguably, the current I is probably one of the most difficult parameters to fit. Recall

that the current is concave with respect to Vgs, and exhibits a jump from one range

to another when going from low Vgs to a higher Vgs. Figure 5-12 shows the plots

of the current I against Vgs whilst fixing the other three dimensions, for both the

empirical data and the posynomial model. As can be seen from the plots, a line in

logarithmic space proves to be the best the posynomial model can do in terms of
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Figure 5-11: Cgs plotted for an n-doped MOSFET, with input parameters L, W, I
and Vds, where Cgs is plotted against Vgs and then W
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fitting the concave, discontinuous data. As expected, the maximum error is quite

large, about 100% in the plots shown.
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Figure 5-12: I plotted for an n-doped MOSFET, with input parameters L, W, I and
Vds. The first column shows Cgs against Vds, while the second column shows Cgs

against L

5.4 Experiments C: Comparison of GA with εrlae

with Monomial Fitting

After we have attained some understanding regarding the behavior of our evolved

posynomial models, their curvature, and the sources of error between the models
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and the training data, we are now in the position to examine the overall maximum

and mean errors across our entire data spectrum, and compare them with those

derived from our benchmark algorithm, monomial fitting (MF). Posynomial models

should theoretically perform as well as monomial fits for parameters that are either

linear or concave across their various dimensions. On the other hand, posynomial

models evolved through the use of the GA should perform better for parameters

with non-linear, convex behavior across one or more of their dimensions. In order to

test such a claim, we generated posynomials using model RLAE, for which the GA

minimizes εrlae. We then selected the best overall individual in terms of maximum

error, and calculated its percentage mean (%εrlse) and maximum (%εrlae) errors. The

error percentages obtained from all the output parameters for input parameters A

are shown in Table 5.4, whereas the results from input parameters B are shown in

Table 5.5. Figures 5-13 and 5-14 plot the errors using a bar chart to emphasize any

discrepancies between the GA and MF errors.

From the charts, we can determine when there exists a larger payoff from the

use of GA evolved posynomial models, rather than monomial models from the less

time consuming MF algorithm. The general trend though, indicates that GA evolved

posynomials only perform slightly better than the MF models in terms of maximum

error, εrlae. For example, in terms of input parameters B, and the output parameter

gm for an N-FET, the GA evolved posynomial only shows a 1.0% improvement in

terms of maximum error over the MF produced monomial. Generally, the error

improvement never exceeds the order of 5% for most of the MOSFET parameters.

The trend nevertheless, restricts itself to parameters that are either mostly linear

in logarithmic space, or concave across some of their dimensions. For such parameters,

a mononomial remains the best fit for the data regardless of whether we generate it

using a GA or MF. The trend also includes parameters that are difficult to fit, such

as gds with respect to parameters A, or I with respect to parameters B. Since these

parameters exhibit a discontinuity in logarithmic space, once again, the best we can

do is fit the data using a mononomial. Therefore, the both the GA and MF models

produce maximum errors which are close to 100% for such parameters.
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Parameter Algorithm
N-FET P-FET

%εrlae %εrlse %εrlae %εrlse

gm
GA 51.3 36.4 65.7 0.521
MF 52.8 35.7 68.5 0.536

gds
GA 95.4 66.9 87.2 0.622
MF 95.9 68.2 85.9 0.639

r0
GA 74.2 47.2 48.3 0.299
MF 95.8 69.2 85.9 0.501

Cgs
GA 9.9 5.8 29.4 0.213
MF 10.0 6.0 30.1 0.253

Cdb
GA 9.3 4.8 0.7 0.004
MF 11.3 5.1 3.4 0.024

Cgd
GA 17.9 6.3 0.6 0.003
MF 18.3 7.9 0.7 0.003

Veff
GA 80.2 53.2 47.6 0.393
MF 80.6 51.5 48.3 0.401

VdSAT
GA 67.8 38.7 66.7 0.450
MF 68.4 41.9 67.1 0.470

VT
GA 1.1 0.7 0.6 0.003
MF 8.7 4.0 02.1 0.014

Vgs
GA 47.8 23.1 63.1 0.432
MF 48.7 23.9 71.7 0.538

Table 5.4: Percentage maximum and mean errors for the output parameters given
input parameters A
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On the other hand, recall that output parameters r0 or gds for an n-doped MOS-

FET with respect to parameters B, and r0 with respect to parameters A, are convex

or contain an inflection point with respect to some of their input parameters. For

these parameters, a GA evolved posynomial model produces an improvement in εrlae

for up to 22%. Therefore, in cases of parameters gds and r0, using the GA to evolve

a posynomial model of the data produces models with significantly larger accuracy,

and favors the GA over the MF algorithm. Nevertheless, MOSFET behavior has

shown that most of the output parameters we are concerned with are not convex in

logarithmic space.

Parameter Algorithm
N-FET P-FET

%εrlae % εrlse % εrlae %εrlse

gm
GA 37.2 25.6 67.1 49.4
MF 38.2 26.9 67.3 49.0

gds
GA 64.3 39.4 72.9 53.2
MF 82.8 40.1 72.8 53.7

r0
GA 66.9 43.6 60.8 34.4
MF 82.8 59.6 72.9 42.6

Cgs
GA 6.6 3.2 28.8 18.3
MF 6.7 3.3 29.2 18.7

Cdb
GA 6.0 2.9 0.6 0.4
MF 11.2 4.7 3.4 2.4

Cgd
GA 9.7 5.6 0.5 0.3
MF 16.2 8.5 0.6 0.3

Veff
GA 40.8 24.8 97.7 97.2
MF 41.1 25.6 100.0 99.4

VdSAT
GA 20.6 13.7 49.6 34.4
MF 20.7 13.9 49.7 34.9

VT
GA 1.1 0.7 0.6 0.3
MF 3.7 1.7 4.5 2.3

I
GA 99.9 63.5 100.0 78.3
MF 99.9 60.9 100.0 78.5

Table 5.5: Percentage maximum and mean errors for the output parameters given
input parameters B
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Figure 5-13: Bar chart of percentage mean and maximum error for n-doped and
p-doped MOSFETs, using parameters A.
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Figure 5-14: Bar chart of percentage mean and maximum error for n-doped and
p-doped MOSFETs, using parameters B.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

By empirically comparing various MOSFET models which attempt to minimize the

maximum relative absolute error, we have shown that minimizing εrlae throughout

the GA produces models with the smallest maximum error, without compromising

the mean error too greatly. We have also shown that a GA with an adaptively

adjusted error metric does not generate a significant improvement in mean error

when compared to a GA model which purely minimizes the maximum error.

Our results have revealed that monomial fitting produces a maximum error nearly

equivalent to that generated through the use of GA evolved posynomials for param-

eters that are either linear, or concave in logarithmic space. Nevertheless, the posyn-

omials produced by the GA showed up to 20% improvement in error over monomial

fitting when modeling parameters that showed an inherent convexity across some of

their dimensions.

Using the visualization tool we have developed, we can clearly illustrate why MOS-

FET parameters are difficult to fit using posynomial models. On effectively plotting

five-dimensional data, and providing insights on the behavior of MOSFET output

parameters, we have posed a theoretical lower bound on the maximum error gener-

ated by posynomial models. After gathering empirical results for different MOSFET

parameters, we have shown that the lower bound does exist for MOSFET posyno-
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mial models, and is a result of an inherent concavity in MOSFET data. Therefore,

Geometric Programming as a solution to the circuit sizing problem faces serious lim-

itations in terms of model accuracy, which in turn questions the wisdom of its use for

MOSFET parameter optimization.

6.2 Future Research

Throughout our investigation, we have been concerned with how well our evolved

posynomial models perform on the data they were originally trained upon. Therefore,

we have overlooked any questions pertaining to how well the models generalize to

unseen data. Although the posynomial models retain an inherent limitation, the

need to quantify how well the models generalize still remains.

On a different note, other types of models based on different optimization tech-

niques for generating the posynomial coefficients and selecting individuals for prop-

agation, require further investigation. We have begun assimilating a support vector

machine (SVM) regressor into the GA’s coefficient optimization stage, such that we

have a new formulation for maximum error, which attempts to minimize the geomet-

ric margin. The SVM formulation introduces slack variables, which can be adjusted

to control how stringently we attempt to fit data, thus allowing for certain points to

be excluded from contributing to the final fit. An SVM, combined with a posynomial

kernel, therefore constitutes a new area for exploration in the field of posynomial

modeling.

Finally, since the unavoidable lower bound on error exists when modeling concave

data, is there any way to work around this deterrence to geometric programming?

The answer lies in specifying smaller ranges of workability, such that the output

parameters are convex or linear within the specified ranges. The method should

theoretically work well for output parameters that exhibit a large jump between lower

and higher values, such as the current I modeled with respect to input parameters B.

Branch and bound algorithms for finding ranges with the smallest errors may come

in handy for such an approach, but one must keep in mind that such methods do
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not scale very well when subjected to an increase in degrees of freedom, such as an

increased number of input or output parameters.
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