SkillBuilder:
A Motor Program Design Tool for Virtual Actors
by

Swetlana Gaffron
Dipl.-Ing., Technical University Berlin (1991)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1994
(© Massachusetts Institute of Technology 1994. All rights reserved.

L T e S
Department of Mecham!;l/ Engineering
November 4, 1993

— /Lf_ﬂ;\

Certified by ...t Yeeonen ) 0,5 av] d W
Research Laboratory of Electronics

Thesis Supervisor

D

Read by ..................................... TR P A T Ve VR v 2 o IS W

Derek Rowell
Department of Mechanical Engineering
Thesis Reader

S

Accepted by ... P e e s w1 TR e
n A.A Sonin
Chairmap, Depa,'rtment ittee on Graduate Students

MASSM‘HU"E"‘T'} %N$T¥‘B‘E
{F T S v?

LIBRARI



SkillBuilder:
A Motor Program Design Tool for Virtual Actors
by
Swetlana Gaffron

Submitted to the Department of Mechanical Engineering
on November 4, 1993, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

To make more complex interactive virtual environments, it is desirable to incorporate
human figure models that are autonomous and capable of independent and adaptive
behavior. In order to achieve task-level interaction with virtual actors, it is abso-
lutely necessary to model elementary human motor skills. This thesis presents the
development of the SkillBuilder, a software system for constructing a set of motor
behaviors for a virtual actor by designing motor programs for arbitrarily complicated
skills. It shows how to generalize the generation of motor programs using finite state
machines. Visually guided reaching, grasping, and head/eye tracking motions, for a
kinematically simulated actor have been implemented. All of these actions have been
successfully demonstrated in real-time by permitting the user to interact with the
virtual environment using a VPL data glove.

Thesis Supervisor: David L. Zeltzer
Research Laboratory of Electronics



Acknowledgments

I am especially thankful to my advisor David Zeltzer for how much I have learned
from him. I have certainly enjoyed working with him. His encouragement was always
very helpful and supportive.

I am grateful to have had such a nice officemate as Steven Drucker who was always
happy to help out when it was needed and who generously made the command loop
idea and the views menu available for me.

Special thanks go to Dave Chen who has provided 3d and given me some starting
help on the use of it.

The Technical University Berlin has made it possible for me to come to MIT by
granting a scholarship for my first year. I am very happy for the help I got from the
people in the foreign exchange office at TUB.

Jake Fleisher deserves some special thanks for his comments on my writing. Thanks
also to Phill Apley for reading some of my thesis but even more for providing a nice
living environment at Alien Landing during my stay in Boston.

I cannot put in words how important it was and is to me to feel the love and support
from my parents, my sister, and my friends. Diego has shared lots of my fears and
happiness, not only about this work with me, for what I thank him very much.

A source of light during the hard time of writing up this thesis has been my friend
Walter who has brought strength and balance in my life.

This work was supported by the Office of Naval Research, grant # N00014-92-J-4005.



Contents

1 Introduction

2 Related Work

3 Architecture of the SkillBuilder

3.1 Task Level Interaction with Virtual Actors . . . .. .. ... ... ..
3.2 WavesWorld and the Skill Network . . . ... .............
3.3 Motor Goal Parser . . ... ... ... .. ... . ... . ...,
3.4 Components of the SkillBuilder . . . . .. ... ... .........
3.4.1 Model of the Virtual Actor . . . . ... ... .. ........
3.42 Motor Program Design . . . . ... ... .. ... .......
3.4.3 The Ultimate SkillBuilder Interface . . . . ... ... ... ..

Implementation

4.1 Development Environment for the SkillBuilder . . . . . ... ... ..
4.1.1 The 3d Virtual Environment Simulation System . . . ... ..
4.1.2 The Tc¢l Embeddable Command Language . ... ... .. ..
4.1.3 The Denavit-Hartenberg Notation . . . . .. .. ........

4.2 Graphical User Interface . . . . .. ... ... ... ... .. .....
4.2.1 The Extended3d Menu . ... .................
422 ViewsMenu . . .. ... ... ... ... .. .. .. ...

4.3 Generation of a Human Figure Model . . . . . ... .. ... ... ..
4.3.1 Generating the Body Parts . . . . ... .............
4.3.2 Building a Kinematic Structure of the Body . ... .. .. ..

44 MakingIt Move . . . . .. ... .. ... ...

10

12

16
16
17
18
19
20
20
22



4.5

44.1 Velocities . . ... ... ... .. ... 36
4.4.2 Local Motor Programs . . . . ... ............... 39
4.4.3 Concurrent Execution . . . ... ... ............. 42
Inverse Kinematics Algorithms . . . . . . ... ... ... ....... 44
4.5.1 Calculation of the shoulder-elbow-vector and the elbow-wrist-
vector . ... e e e e e e 45
4.5.2 Inverse Kinematics Algorithms for Orienting the Arm Links . 48

4.5.3 Inverse Kinematics Algorithms for Orienting the Hand Axes . 52

4.5.4 Inverse Kinematics Algorithm for Integrated Positioning and

Orientation of the Hand Thumb Axis . . . . .. ... ... .. 55

46 Collision Avoidance . . . . . . . .. ... ... ... 55
4.7 General Structure of Motor Programs . . . . . .. ... ........ 60
4.7.1 Motor Programs for Atomic Forward Kinematics Skills . . . . 60
4.7.2 Motor Programs for Atomic Inverse Kinematics Skills . . . . . 63
4.7.3 Motor Programs for Composite Skills . . . . . ... ... ... 64

4.8 Condition Procedures . . . . . . ... ... .. ... ... . ... ... 68
4.8.1 Classification of Condition Procedures . . ... .. .. .. .. 68
4.8.2 Implemented Condition Procedures . . . . ... ... ..... 70
4.8.3 Linking several Condition Procedures . . . . .. ... ... .. 74
Visually Guided Motion 75
5.1 Orientinga Body Part . . . ... ... ................. 75
5.1.1 Orienting the Upper Arm . . . .. .. ... ... ....... 75
5.1.2  Orienting the Lower Arm . . . . .. .. ... .......... 76
5.1.3 Orienting the Hand Axes . . . . ... ... ... ........ 76

52 Reaching . . ... ... .. ... . ... (i
5.2.1 Simple Reaching . ... .. ................... 7
5.2.2 Reaching for an Object with Alignment of the Hand . . . . . . 78
5.2.3 Reaching for an Object alonga Path . . ... ... ...... 79

5.3 Articulating the Fingers . . . . ... ... ............... 81



5.3.1 Grasping . . . . ... .. e
53.2 Makingafist . ... ... .. ... ...
5.3.3 Changing between Different Hand Postures . . . . . . . .. ..
5.4 Integrated Reaching and Grasping . . . . . .. ... ... .......
5.5 Putting the Arm on the Table . . . . . . ... ... ... ... ... .
56 Wavingthe Hand . . . . . ... .. .. ... . ...
5.7 Head/ Eye Controller . . . . .. .. ... ... ... .. ........

6 Future Work

7 Conclusion

References

A General Structure of Inverse Kinematics Skills
B Source Code Examples

C User Manual

81
82
82
85
85
86
87

90

93

97

101

103

134



List of Figures

4-1
4-2
4-3
4-4

4-6

4-7

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16

4-17
4-18

Block diagram of the SkillBuilder . . . . . .. ... ... ... .... 19
Example finite state machine to model an actor’s skill . . . . . .. .. 21
Denavit-Hartenberg link parameters . . . . . . ... .. ... ..... 26
Extended 3d Menu . . . .. ... ... ... ... 28
Object Edit popup menu . . . . . . . . ... ... ... 29
Limb Edit popupmenu . . . . . . .. .. .. ... .. ... 30
Views menu developed by Steven Drucker . . . . ... ... ... .. 32
Rotational object that can be generated using the make-bone-data

procedire . . . . . . ... i e e e e e 33
Layout of kinematic chains for a human figure model . . . .. .. .. 35
The kinematic chains of a) alegand b)anarm .. ... ... .. .. 36
Command Loopmenu . . ... ... ................. 43
Vectors defining the arm links . . . . .. ... ... .. .. ...... 46
Definition of the hand axes shown on the left hand (inner palm) . . . 53
Division of the space to find a collision free path (vertical cross-section) 56
Collision free path starting from an end effector position in area 3 . . 57
Insertion of P, in case the end effector is located in area 5 . . . . . 58
Generation of equidistant points on the collision free path . . . . . . . 60

Model of a composite skill composed of parallel, independent atomic
skills . . . L L 65

Model of a composite skill composed of parallel, dependent atomic skills 65

Model of a composite skill composed of a network of atomic skills . . 66



4-19 Option “z_plus_in” for the joint_in_box condition procedure . . . . . 71
5-1 Virtual actor performing the reach object_along path skill . . . . . 80
5-2 Composite skill graspobject . . . . . .. .. ... .. ... 81
5-3 Hand of the virtual actor grasping aglass. . . . ... ... ... ... 83
5-4 Hand of the virtual actor in point position . . . .. ... ... .. .. 84
5-5 Finite state machine for the atomic skill put.arm_on_table . . . . . . 85
5-6 Composite skillwavehand . . . . . .. .. .. ... .. .. ...... 87
5-7 Virtual actor looking at a ball initshand . . . . .. .. ... ... .. 89

7-1 Drinking actor. . . . . . . ... 96



List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

Denavit-Hartenberg parameters for the left leg and foot . . . . . . .. 34
Denavit-Hartenberg parameters for the spine . . . . . . ... ... .. 37
Denavit-Hartenberg parameters for the left arm . . . . .. ... . .. 37
Denavit-Hartenberg parameters for the left index . . . ... ... .. 33
Denavit-Hartenberg parameters for the left thumb . . . . . . . . . .. 38

Transformation between dhangle and real joint angles and joint limits 41



Chapter 1

Introduction

As applications of virtual environments increase [1] it becomes more and more impor-
tant to incorporate computer models of human figures that can move and function
in such a computer simulated world. Especially for applications in the education
and training domain, the benefit for the virtual environment participant of interact-
ing with human figure models, often referred to as virtual actors, becomes obvious.
There are many situations in which it would be, for example, too hazardous, too
distant, or too expensive to train in the real environment. Moreover, virtual actors
in a virtual environment can substitute for other crew members to simulate team
training.

Two types of virtual actors can be distinguished: The guided and the autonomous
actor. An actor is guided if it is slaved to the motions of a human virtual environment
participant. This can be done, for example, by means of body tracking. In my thesis
I concentrate on the second kind: the autonomous actor that operates under program
control and is capable of independent and adaptive behavior.

Zeltzer [31] recognized the need for finding the right level of abstraction to control
simulated objects and articulated figures in virtual environments. Considering that
the human body consists of about 200 degrees of freedom, it would certainly be much
too demanding to ask the user to specify values for all of them in order to control a
movement. It is desirable to have a higher level of interaction such that the user need
only to specify the goal of an action rather than all the necessary actions themselves.
One big step towards task level interaction is to provide the virtual actor with a set
of skills each of which is represented by an appropriate motor program.

This thesis presents a software system, the SkillBuilder, that can function as a design
tool for motor programs. Motor programs are the source code of skills a virtual actor
can perform. A motor goal parser will take care of translating a given task from a

10



1 Introduction 11

natural language interface to a set of task primitives which can then be passed to
the skill network. The skill network will be responsible for finding out which skills
need to be executed in what order and for invoking the appropriate motor programs
corresponding to those skills. This will allow the user to interact with the actor on a
task level.

The objective of this thesis was to develop motor skills to model an actors behavior
and to understand what is needed to build a visual programming environment for
defining motor skills. With regard to the latter, finite state machines have been
chosen to represent motor skills. In order to allow the user to build a finite state
machine it is essential to characterize the necessary components of which a finite
state machine consists. First, the desired action of each state has to be identified by
assigning appropriate local motor programs and second, initial conditions as well as
transition conditions between the states (also called ending conditions), have to be
defined. Furthermore, it is necessary to deal with issues like inverse kinematics and
collision avoidance.

The main contributions of this thesis are the generalization of the design of motor
programs and the characterization of transition conditions. A motor program library
for interactive reaching and grasping skills has been created. It has been demonstrated
that the presented approach is capable of generating approximate human movements
that look reasonably realistic. The validation of these movements with experimental
data is left for future work.

After reviewing some of the important work related to the thesis topic in chapter 2,
chapter 3 presents an overview of the larger project in which the SkillBuilder devel-
opment was embedded.

The implementation of the SkillBuilder using the virtual environment system 3d will
be discussed in full detail in chapter 4. It encompasses the generation of a kine-
matically controlled human figure model (section 4.3) and explains how to make it
move. Most basic movements are initiated by local motor programs (section 4.4.2)
that articulate a single joint each. A lot of motor skills are based on inverse kinemat-
ics algorithms explained in section 4.5. In section 4.6, a simple collision avoidance
feature will be presented for reaching an object placed on a table. The general design
of motor programs for different kinds of skills will then be described in section 4.7. A
discussion of condition procedures and their characterization is included in section 4.8.

The chapter about visually guided motion (chapter 5) introduces the implemented
skills that mainly include reaching and grasping motions. The thesis will close with
suggestions for future work in chapter 6 and a discussion of the results in the conclu-
sion (chapter 7).



Chapter 2

Related Work

Some issues in related fields, i.e. robotics, motor behavior, and figure animation, have
been reviewed during the development process of the SkillBuilder.

The control of a human figure is closely related to robotics given that the figure model
can be viewed as a composition of several robot manipulators. Paul describes the
Denavit-Hartenberg joint notation [19] that is used in the SkillBuilder to construct
the kinematic chains for the extremities. Lozano-Perez [14] and Brooks [5] have
developed motion planning algorithms that will be of very much use at a later state

of the SkillBuilder.

Researchers in motor behavior have studied the underlying processes of movement
control in humans and come to the conclusion that a sequence of movements can be
coordinated in advance of their execution to form a single complex action [4] [25]
[23]). They call this process motor planning or motor programming. Bizzi [4] studied
visually triggered head and arm movements in monkeys under the assumption that
the arm movement controlling motor commands are precomputed somewhere in the
central nervous system prior to movement initiation and that muscles can be modeled
by a mass/spring system including damping. He found that the motor program
specifies an intended equilibrium point between sets of agonist and antagonist muscles
that correctly positions the arm and the head in relation to a virtual target. However,
motor programs in the SkillBuilder control the movements by specifying necessary
joint angle changes.

In [25] Schmidt discusses the nature of motor programs and their interaction with
peripheral feedback. According to him, motor responses can be characterized in two
kinds of movements: 1) very short movements (< 200msec) that are planned in ad-
vance and do not seem to be consciously controllable while executed and 2) longer
movements with the opportunity for conscious control via feedback during the move-

12



2 Related Work 13

ment. His considerations are important for the SkillBuilder to decide when to allow
interaction while executing a motor program and how big a motor program unit
should be. Schmidt uses the term motor program as an abstract memory structure
that is prepared in advance of the movement causing muscle contractions and relax-
ations when executing. Furthermore, he compares the feedback during the execution
of motor programs to if-statements in computer programs. This suggests that using
finite state machines is a good choice to model motor programs in the SkillBuilder.

Shaffer analyses the basic properties of skilled performances [23]. He identifies fluency,
expressiveness and flexibility as basic properties of a skilled piano performance.

Badler and his research group at the University of Pennsylvania have been work-
ing on figure animation for several years. They developed the Jack system [3] for
the definition, manipulation, animation, and human factors performance analyses
of simulated human figures which is most comparable to the SkillBuilder. Like in
the current state of the SkillBuilder they were most concerned in capturing some of
the global characteristics of human-like movements without modeling too deeply the
physical laws of nature, so they describe motions kinematically. Their figures consist
of rigid body segments connected by joints like the SkillBuilder actor. They spent
a lot of effort in articulating the torso [20] by providing 18 vertebral joints whereas
the SkillBuilder concentrates more on the articulation of the hand. Jack contains
features for anthropometric figure generation, end effector positioning and orienting
under constraints, real-time end effector dragging, rotation propagation when joint
limits are exceeded, and strength guided motion. However, to animate a motion se-
quence they use keyframing of a series of postures and the subsequent interpolation
of the joint angles for postures in between. The SkillBuilder in contrast, computes
the joint angles for the posture to be rendered at the next time frame in real-time.
The animation sequences of Jack are primarily scripted and not provoked by motor
programs which is what the SkillBuilder focuses on. Jack does not provide any tool
to define motor skills. Badlers et al ultimate goal is to provide a high level of task
understanding and planning. Their approach includes research in natural language
instructions for driving animated simulations. The SkillBuilder is part of a bigger
project that also includes research on natural language to describe tasks, as will be
discussed in chapter 3.

Dynamics simulations as Wilhelms proposes in [28] allow physically correct motions
by using forces and torques to drive a figure. Finding realistic movement laws is a
difficult undertaking which often leads to movements that seem too regular. Besides,
solving the equations of motion is computationally very expensive and not necessarily
needed at this state of the SkillBuilder since the concern was not to model motions
most realistically, but find a means by what to describe motor behavior.



2 Related Work 14

Girard also argues [12] that the torque functions needed at each joint to produce
a desired limb motion are sufficient to capture uncoordinated limb motion but that
goal-oriented behavior cannot be properly simulated without kinematic trajectory
planning. He has been working on inverse kinematics and visual programming in-
terfaces to describe motor behavior for a number of years and concentrated mostly
on Jocomotion and dance. His figures can be controlled interactively by specifying a
spline curve as path for an end effector and applying inverse kinematics to compute
the desired joint angles of a limb. Rotations of joints can also be specified directly to
achieve desired limb postures. Assembling several postures yields a working posture
sequence. Yet a third method is to adjust a posture while keeping the end effector
at its current location. The SkillBuilder incorporates all of the named possibilities
in its inverse and forward kinematics skills. Posture changes for a fixed end effector
position can be achieved by modifying a global posture parameter for a limb.

Investigations on knowledge-based human grasping have been done by Rijpkema and
Girard [22]. Their hand model is, very similar to the SkillBuilder hand, kinematically
articulated by using the Denavit-Hartenberg notation. The high level control they
propose for the hand includes single-finger control, group control (closing and opening
or spreading a group of fingers), and hand control (using a hand posture library). All
the named methods are incorporated in the SkillBuilder.

Calvert describes the ideal human figure animation system [2] as a system that should
accept natural language and graphical input at its highest level and generate a script
with the details of movement specifications. The lowest level would comprise detailed
movement instructions for each limb segment as a function of time. He acknowledges
that they are still far away from its realization. He and his research group devel-
oped a prototype system, COMPOSE, for outlining a sequence for multiple animated
dancers. Many different stance phases for the dancers can be defined for placement
in a number of scenes much like storyboard sketches.

A motion control system, PINOCCHIO, is described by Maiocchi and Pernici [16].
They classify movements and their attributes using entries from natural language in a
general movement dictionary. Motions from their motion database can be assembled
in an animation script to display a movement sequence. Since the movements are
recorded from real human motions, however, no real-time interaction with the system
is possible.

Magnenat-Thalmann and Thalmann present a body animation system based on para-
metric keyframing [15]. In very tedious sessions the animator has to specify parame-
ters like joint angles of a stick figure model to describe frame by frame. Without the
possibility of any further interaction, in between frames will be interpolated and the
HUMAN FACTORY software will transform the character accordingly while mapping



2 Related Work 15

surfaces onto the stick figure. Joint dependent local deformation operators control
the evolution of surfaces to model soft tissue. Since the system generates relatively
realistic looking images but does not allow user interaction (either in real-time or on
a sufficiently high level), it is more suitable for making movies than for the purposes

aimed for by the SkillBuilder.

Zeltzer, who is involved in the project that includes the SkillBuilder development, has
been working for many years in the field of figure animation. He describes the layers of
abstraction for representing and controlling simulated objects and agents at different
interaction levels [31]. At Ohio State University he had developed the walking skeleton
George that is based on a skeleton description language. George’s different gaits and
jumps are controlled by motor programs using finite state machines [29]. In recent
years, he and Johnson have concentrated on the process of motor planning [32].
Zeltzer [33] accounts for everyday human activities by introducing task primitives
and reports motor goal parsing as a means to parse restricted natural language input
into motor skills. The motor goal parser will be explained in section 3.3 of this thesis.



Chapter 3

Architecture of the SkillBuilder

3.1 Task Level Interaction with Virtual Actors

The development of the SkillBuilder is part of a project called Virtual Sailor which
has as its goal the implementation of a virtual environment that includes autonomous
and interactive virtual actors. The attempt is to provide a level of interaction with
which the end-user is familiar from everyday life, i.e. through language and gesture in
real time. To achieve this kind of interaction that Zeltzer calls task level interaction
[31], elementary human motor skills have to be modeled and integrated into a be-
havior repertoire for an autonomous actor. Furthermore, a task-level, language-based
interface has to be developed.

The presented research is particularly concerned with the kinds of mechanical oper-
ations on physical objects encountered in everyday activities, such as reaching and
grasping, and manipulating tools and commonplace objects. The current effort is
focussed on the simulation of one individual actor. However, the ultimate goal is to
have multiple actors that are capable of coordinating their behavior with the actions
of other actors or human participants in the virtual environment [35].

The SkillBuilder is a tool for constructing a set of behaviors for a virtual actor by
designing motor programs for arbitrarily complicated skills. The coordination of the
skills to perform a given task has to be undertaken at runtime by a separate mech-
anism, i.e. the motor planning system, which takes care of selecting and sequencing
motor skills appropriate to the actor’s behavioral goals and the state of objects.
Zeltzer and Johnson call motor planning the process of linking perception of objects
and events with action [32].

Finally, an interface for constrained natural language input is needed to “translate”

16



3.2 WavesWorld and the Skill Network 17

a task description, e.g. “Go to the desk and pick up the glass” into a set of task
primitives [34]. The motor goal parser currently under development by Zeltzer takes
care of this decomposition.

3.2 WavesWorld and the Skill Network

Johnson is working on the development of WavesWorld, a software system imple-
mented for designing, building and debugging the object database, distributed virtual
environments, and virtual actors, of which a detailed description can be found in [34].

The motor planner component of WavesWorld, a reactive planning algorithm, is based
on a skill network [30], [32], [13] to model the behavior of virtual actors. A collection of
motor skills can be assembled into the skill network and the output can be visualized
by using WavesWorld. The execution of motor acts depends on sensory input and
current behavioral goals.

A virtual actor’s skill network is comprised of several agents that are each realized as
a set of processes distributed over a network of workstations. There are skill agents,
sensor agents, goal agents and a registry/dispatcher.

The sensor agents handle the perception of a virtual actor by measuring signs and
signals from the virtual world represented by proposition-value pairs, e.g. proposi-
tion: a-door-is-nearby, value: TRUE. Goals are handled by goal agents that are
represented as desired states, i.e. a proposition-value pair that needs to be sensed
true by a sensor agent to satisfy the goal. Finally, skill agents control the behavior of
a virtual actor and attach a set of pre- and postconditions to a skill name. A skill can
only be selected by the planning algorithm for execution if all its preconditions are
fulfilled. Postconditions are predictions about the state of the virtual world after the
execution of the skill. The central communication among all these agents is handled
by the registry/dispatcher which maintains a shared database for all agents.

The skill network is characterized by:
e a comprehensive sensing structure
e high-level controls through time-varying sampling rates

e computational economics at the lowest level

direct-manipulation interface to a large set of heterogeneous computing re-
sources.



3.3 Motor Goal Parser ’ 18

3.3 Motor Goal Parser

This section largely borrows from [34] in which Zeltzer describes the process of motor
goal parsing.

In motor goal parsing (MGP), the task manager must decompose each task descrip-
tion into a set of well-defined motor units, i.e. task primitives, that can be named
and simulated. A task description is a constrained natural language description of a
specific movement sequence, e.g. “Go to the door and close it”. The set of task prim-
itives that corresponds to the everyday activities to be simulated need to be specified.
In the above example they might include “move_to(door)”, “grasp(doorknob)”, and
“rotate(doorknob)”.

For two reasons, however, the mapping from these task primitives to specific mo-
tor skills cannot be one-to-one a priori, and the task primitives must be effector-
independent at the conceptual level. First, because of the problem of motor equiva-
lence: a given goal can often be accomplished in various ways, e.g. the door can be
closed by turning the doorknob with the right or left hand or by pushing the door
with one of the feet. Second, the objects named in the task description may deter-
mine which skill or skills are necessary to accomplish the task. If, instead of “Go
to the door”, the command were “Go to Mexico”, the task manager is expected to
output a very different list of skills. Once the task primitives have been identified
from the input task description, the task manager must consider the states of the
virtual actor, the targeted objects, and ongoing events in the virtual world, and then
determine the appropriate effector systems and motor skills to invoke. Therefore, the
task primitives must constitute an intermediate, effector-independent representation
which drives the selection of the underlying motor skills to be performed.

The task primitives Zeltzer uses are based on a set of primitive “ACTs” from Schank’s
Conceptual Dependency (CD) theory [24] and on “A-1 action units” described by
Schwartz et al [26]. Some of the task primitives represent physical actions, and some
of them represent abstract “mental actions”.

Zeltzer defines atomic skills as such that serve as task primitives while composite
skills represent learned behaviors. He proposes that affordances, (i.e. the properties
of objects and their environment that are necessary predictions for executing partic-
ular acts), should be stored with the task primitives. He argues that the notion of
affordances suggests the right approach for representing the common sense knowledge
that makes it possible to perform everyday activities.

An example of a motor goal parsing process is given in [34].



3.4 Components of the SkillBuilder 19

3.4 Components of the SkillBuilder
The SkillBuilder consists of several components as shown in figure 3-1 [35]:

o A skill template that has to be filled in by the user with all necessary information
for the motor planner: a set of pre- and postconditions, the end effector involved

in the skill, and a pointer to the appropriate motor program.

e A motor program builder that generates motor programs: the source code for
an actor’s skill based on finite state machines, i.e. definite states in if-then-else

clauses.

e A motion checker module that serves to display and visualize the execution of
defined skills.

{ Multi-level
Skill Builder Skill Repn.
o Skill templates
¢ incl. pre-, post-, follower and
conflictors
« effectors and effector variants
« select/edit motor program

I Skill
Motor Program Builder Network

Motion Checker

» Exercise a single skill
with an actor in a VE

Abmit toRD
Motor
1 _

Ski

Figure 3-1: Block diagram of the SkillBuilder



3.4 Components of the SkillBuilder 20

The main focus of the presented work is put in the understanding of the design
of motor programs and the elaboration of a general structure for motor programs by
developing motor programs in particular for reaching and grasping. The development
environment 3d (to be explained in section 4.1) provides all necessary tools to display
the defined skills which is the task of the motion checker module.

3.4.1 Model of the Virtual Actor

The development of the SkillBuilder includes the generation of a virtual actor, a com-
puter model of a human figure that consists of a compound of rigid body parts linked
together by a kinematic structure. The model has to be simple enough to allow real-
time interaction and facilitate the software development. Furthermore, it is not the
intent to build the most realistic looking virtual actor but rather have an articulated
model that suffices to show the execution of skills in order to learn how to generalize
the design of motor programs. A rigid body model purely animated by kinematics
will serve this purpose for the time being. As fidelity requirements increase for specific
applications the kinematic model can later be extended to simulate dynamics.

3.4.2 Motor Program Design

Every skill an actor can perform is based on a motor program that coordinates the
execution of several local motor programs and is modeled by a finite state machine. A
local motor programs is the mechanism that controls the rotation about a single joint
axis. The use of finite state machines to control walking skills has been successfully
demonstrated by Zeltzer [29], Raibert [21], and Brooks [6].

A finite state machine to model an actor’s skill can consist of any number of branches
and feedback loops and can be arbitrarily complicated (figure 3-2). Furthermore,
oscillators, servos, reflexes, mass/spring systems and collision detection module all
can be realized by finite state machines.

Most important is to decide which local motor programs should be involved in the
performance of the skill. Often, a skill can be modeled in many different ways,
involving different local motor programs. The next step is to decide which local
motor programs make up each state and how the designed states should be connected.
Finally, the initial conditions for the skill and the ending conditions of each state have

to be defined.

Each state is executed until its ending conditions are fulfilled. Ending conditions can
be geometric constraints (“Do this until the end effector is closer to a specified point



3.4 Components of the SkillBuilder 21

ending
condition
state X

[
D"‘""Dn Q
L]

b

Figure 3-2: Example finite state machine to model an actor’s skill

initial
condition:

state P

than a given goal point precision”), joint angle constraints (increase/decrease a joint
angle until it reaches a specified target joint angle or its limits), or even external
constraints (“Stop executing as soon as another motor program’s ending conditions
are fulfilled”). Once the ending conditions for a motor program are satisfied, its end
event will be evaluated. In defining another motor program as end event, several
motor programs can be linked to execute sequentially. Motor programs for atomic
skills will be classified as follows:

1. Forward kinematics skills
Forward kinematics skills are modeled by finite state machines with usually
more than one state. Examples of implemented forward kinematics skills are
put_arm_on_table and reach ceiling.

2. Inverse kinematics skills
Inverse kinematics skills usually have just one state and contain an inverse kine-
matics calculation procedure to synchronize the angle step size for all local motor

programs involved. Examples of inverse kinematics skills are move_arm_to_goal
and direct_hand.

Motor programs for composite skills are composed of several atomic skills that will
execute in parallel, sequentially, or in any possible combination of those two. This
will be explained in more detail in section 4.7.3.



3.4 Components of the SkillBuilder 22

3.4.3 The Ultimate SkillBuilder Interface

The ultimate SkillBuilder should provide a visual programming language for describ-
ing motor skills. Through the use of a graphical interface the user should be able to
point and click on selections of initial conditions, as well as selections of local motor
programs, defining each state of a finite state machine for an atomic skill. He should
then be able to click and drag on symbols for each state to position them in the order
of his choice, and then draw pointers between those states to define their connections.

A second graphical module should provide a menu of all pre-defined atomic skills,
from which the user could select as many as he wants and then assemble them in an
arbitrarily complicated network, thereby building a composite skill.

For atomic, as well as for composite skills, there should be an appropriate motor
program builder to automate the generation of the motor program procedures that
make up a skill once it has been graphically set up by the user.

A simple click on a motion checker button should execute the newly defined skill to
see whether the simulation satisfies the expected performance.



Chapter 4

Implementation

4.1 Development Environment for the SkillBuilder

4.1.1 The 3d Virtual Environment Simulation System

The SkillBuilder was developed using the virtual environment system 3d, an inter-
pretive toolkit for creating custom VE applications.

3d is a “testbed” system designed to support the specification of behaviors for virtual
worlds. It has been developed by the Computer Graphics and Animation Group of
M.L.T.’s Media Lab. Systematic descriptions of 3d can be found in [8] and [7]. The
system provides an interpreted command language that has many special purpose
rendering, dynamics, numerical math and user-interface functions.

The syntax for 3d is based on the “tool command language” (tcl) from U.C. Berkeley
[17]. The tel environment includes an interpreted command evaluator that allows
rapid prototyping of virtual worlds and VE interfaces. The application-specific code
for 3d has been developed on top of the RenderMatic C library of graphics and ren-
dering software [10]. The command interpreter has over 700 built-in and application-
specific functions. There are primitives for scene description and rendering, math, ma-
trix and vector operations, general data structure manipulation, Denavit-Hartenberg
joint description, finite element dynamics, and X/Motif interface building. A list of
all available 3d commands can be found in the appendix of [7].

In 3d it is very easy to build a collection of useful subroutines, because tcl allows pro-
cedure definition. In this way, the application software can be organized by creating
interpreted layers of language, as has been done in the work presented.

23



4.1 Development Environment for the SkillBuilder 24

4.1.2 The Tcl Embeddable Command Language

For a better understanding of the software examples in this thesis, a brief description
of the tcl language syntax follows. This section borrows largely from [18].

The syntax of tcl is similar to the UNIX shell syntax: A command consists of one or
more fields separated by blanks. The first field is the name of the command, which
can be either a build-in or application-specific command, or a tcl proc constructed
from a sequence of other commands. Subsequent fields are passed to the command
as arguments. Newlines and semicolons separate commands. Te¢l commands return
a string according to their evaluation, or an empty string if no return value was
specified.

Additional constructs give tcl a lisp-like feel. Comments are delineated by a pound
sign (#). The backslash character (\) denotes line continuation, or escapes special
characters for insertion as arguments. Curly braces ({}) can be used to group complex
list arguments. For example, the command

set echs {molchi {hoch drei}}

has two arguments, “echs”, and “molchi {hoch drei}”. The set command sets the
first argument to be the value of the second argument.

Command substitution is invoked by square brackets ([]). The content between those
brackets is treated as a command and evaluated recursively by the interpreter. The
result of the command is then substituted as the argument in place of the original
square bracketed string so that

div 6 [minus 4 1]

for example returns 2 because “minus 4 1” returns 3.

Finally, the dollar sign ($) is used for variable substitution. If the dollar appears in
an argument string, the subsequent characters are treated as a variable name, and
the contents of the variable are then substituted as the argument, in the place of the
dollar sign and variable name. For example,

set x [sqrt 4]
plus 5 $x

returns 7 because the variable x has the value 2.



4.1 Development Environment for the SkillBuilder 25

4.1.3 The Denavit-Hartenberg Notation

To support the construction of, and interaction with, kinematic chains as needed
for robotics applications, the Denavit-Hartenberg joint notation [19] has been imple-
mented in 3d. This feature has been used in the presented work to build the structure
of a jointed figure by defining kinematic chains for each of the extremities.

The Denavit-Hartenberg notation is a systematic method of describing the kinematic
relationship between a pair of adjacent links with a minimum number of parameters.
The relative position and orientation of the two coordinate frames attached to those
two links can be completely determined by the following 4 parameters (denoted as
dhparameters, see figure 4-1) :

1. a, : the length of the common normal

2. d, : the distance between the origin of joint n and the common normal along
Zn41

3. a, : the twist angle between the joint axes about z,

4. 0, : the angle between the z,_; axis and the common normal measured about
Zn—1

In a human skeleton all degrees of freedom can be satisfactorily modeled by revolute
joints. Changing the angle 8,, will cause a link n to turn about the z,_; axis. All other
dhparameters will remain constant. The relationship between adjacent coordinate
frames can be expressed in a 4x4 matrix:

cos®; —sin®;cosa; sin®;sina; a;cosO;

A; = sin®; cos (?; cosa; —cos®;sina; a;sin©®; (4.1)
0 sin o; COoS @; d;
0 0 0 1

Thus, the position and rotation matrix of joint n can be calculated by multiplying the
position and rotation matrix of a joint m (n > m) with all transformation matrices
from each joint in between m and n to its adjacent joint:

Mn == Mm * A.m+1 * Am+2 * et An_.l ° An 3 (n > m) (4.2)

In 3d every defined Denavit-Hartenberg joint n has a dhmatriz assigned to it which
is the matrix M, from equation (4.2). This way, 3d internally takes care of providing



4.2 Graphical User Interface 26

Joint n+l

9n+l

Joint n-}

_ Link n+l

fn-1 Link n-l

a, %
an Zn

— Xn

Link n-2

Xn-i

Figure 4-1: Denavit-Hartenberg link parameters

the absolute transformation matrices for all body parts, depending on the value of
the dhparameters.

Spherical joints can be defined by a system of three coincident joints, where no two
joint axes are parallel. When defining the kinematic chains for the extremities, a
few “dummy” joints have to be introduced. This is caused by the fact that it is not
always possible to rotate the subsequent coordinate frame to line up as desired, since
the twist angle a only produces a rotation about z,. The “dummy” joints will not
move but only serve to modify the coordinate frame orientation.

4.2 Graphical User Interface
The user interface of 3d consists of four kinds of dialogs:

1. Keyboard input
2. Manipulators (such as glovetool to control a data glove)

3. Mouse manipulation of objects inside the graphics window



4.2 Graphical User Interface 27

4. Interactive X Dialog Boxes

3d supports building of graphical interfaces with application-specific commands [7]
imported from OSF/Motif™ widgets [27].

It is desirable to control as much as possible through the use of a graphical interface
in order to make the SkillBuilder easier to use. For the most part, however, the actor
has to be controlled by using the keyboard, and typing commands directly in the 3d
window at the 3d> prompt. The graphical user interface for the SkillBuilder is an
important area that must be improved in the future.

In the following section the graphical user interface that has been used during the
development of the SkillBuilder will be explained. The 3d Menu provided by Dave
Chen [8] has been extended to include a few more features, and the Views menu
developed by Steven Drucker has been integrated. The Command Loop menu (see
figure 4-9, page 43) is based on the idea of a command loop also provided by Steven
Drucker that has been implemented as a graphical dialog for the SkillBuilder. It will
be explained in section 4.4.3.

4.2.1 The Extended 3d Menu
Figure 4-2 shows the extended 3d Menu that automatically pops up when calling
the SkillBuilder.

Features that were not included in the basic 3d Menu are:

1. Current Object as a button providing a pull down menu of all currently
available objects.

2. The Command text field.

What follows is a review and explanation of the most important features used during
the development of the SkillBuilder.

Changing the Current Object

Clicking on the Current Object button will cause a pull down menu listing all
currently existing objects to appear. If one of those objects is chosen, it will appear
in the text field right below the Current Object button. The current object can
also be set by clicking on the object in question with the middle mouse button, or by
typing it in the text field.



4.2 Graphical User Interface

Figure 4-2: Extended 3d Menu

28



4.2 Graphical User Interface 29

Object Edit Popup Menu

=] Object Edit

Figure 4-3: Object Edit popup menu

To make the Object Edit menu (see figure 4-3) pop up, click the Object label in the
upper left corner of the 3d Menu, and then choose Edit from the pull down menu
that appears. Toggle buttons are provided to choose the action to be taken by the
current object (whose name appears below the Current Object button in the 3d
Menu). The current object can be translated, rotated, scaled, or changed in color.
For the first three actions, the arrow buttons in the menu correspond to the x, y, and
z axis in this order, whereas when changing the color, those buttons control the r, g,
and b values in the rgb code. The + and the - buttons change all three values at the
same time by the same amount. Choosing “local” in the Transform field makes the
centroid of the object the reference frame. A different reference frame can be chosen
by typing its three coordinates in this text field instead of “local”.

Posting and Unposting Objects

Objects can be easily posted or unposted by chosing the option Post or Unpost in
the pull down menu which appears when clicking on Object in the upper left corner
of the 3d Menu. The object that will be posted or unposted is the current object.

Limb Edit Popup Menu

The Limb Edit menu (see figure 4-4) can be invoked by clicking Limb in the upper
right corner of the 3d Menu and pulling down to Edit. The Current Limb has to be
set to one of the limbs that is defined as a dhchain, i.e. l.arm, spine, 1 leg and 1 shoe.
Clicking now on one of the arrows in the lower right corner of the Limb Edit menu



4.2 Graphical User Interface

{==l Limb Edit

No Steps

i3 ‘
Theta Alpha
" Pump Up o .
- < Free Y0Ze)
> Ajr Out v
Ve‘lvGain Vel Const
, ltels ‘Steps Sz 0
‘ ~ Joint

Figure 4-4: Limb Edit popup menu

30



4.3 Generation of a Human Figure Model 31

will increase or decrease the current joint number. A coordinate frame displaying
the position and orientation of the dhmatrix of the current joint will appear in the
graphics window. To change the current joint angle, the slider above the label Theta
can be changed. Since the dhparameter alpha would change the definition of the
relationship between two links, its value should not be modified once the kinematic
chain of a limb has been set up. Note that it is possible to move the joints to angles
outside of their limits. That is the reason why the Limb Edit menu is meant only
to be used for testing and development purposes.

Command text field

At the bottom of the 3d Menu there is a text field labeled Command. Any com-
mand that might be typed in at the 3d> prompt in the 3d window can also be typed in
here with the same result. Once the command loop is running (refer to section 4.4.3),
the 3d window does not accept any input, but the menu windows do, because of an
x flush event at the end of each loop step.

Using the Mouse in the Graphics Window

Mouse use in the graphics window to change the view is explained in detail in the
User Manual included in appendix C, page 134.

4.2.2 Views Menu

With the kind permission of Steven Drucker, the Views menu (see figure 4-5) devel-
oped by him is made available for use in the SkillBuilder. The views menu controls
the synthetic camera which generates views of the 3d scene. A number of views stored
in a file can be retrieved any time and new views generated by mouse interaction in
the graphics window can be stored. The use of the Views menu is explained in the
User Manual (appendix C, page 135).

4.3 Generation of a Human Figure Model

Before one can start to animate a human figure, a model appropriate to the given goal
needs to be generated. Since this work is not concerned with soft tissue animation,
a stick figure model is sufficient to represent its movements. The model of the actor
consists of rigid 3d body parts that represent the limbs of the body. The limbs are



4.3 Generation of a Human Figure Model

~ 10

road |

Write

. !til.de'e’mdviews :

H

Figure 4-5: Views menu developed by Steven Drucker

32



4.3 Generation of a Human Figure Model 33

joined together forming several kinematic chains. Each kinematic chain is defined
using the Denavit-Hartenberg notation explained in section 4.1.3.

4.3.1 Generating the Body Parts

An object can be instanced in 3d, if a file with the object data in the so called OSU
format exists [11]. To generate data files in OSU format for rotational symmetric
objects, a tcl procedure named make-bone-data has been written (see appendix B,
page 124). The parameters the procedure needs as input are as follows:

make-bone-data name precision nrrad rl1 11 r2 12 ... rn

Alternately, the radii and the length between two radii have to be specified. To in-
fluence the shape of the cross-section, different precisions (number of points forming
the cross-section) can be specified, e.g. a precision of 3 would correspond to a tri-
angular cross-section, whereas 4 would yield a square cross-section and so forth. As
an example, a data file rot.asc for the rotational object shown in figure 4-6 can be
generated by the command:

make-bone-data rot 156 0 0234023200

4__
3-_ / |
2

14

4

——+—
12345

~

Figure 4-6: Rotational object that can be generated using the make-bone-data pro-
cedure

~

Most of the body parts have been constructed using the make-bone-data procedure,
some of them with subsequent scaling in one direction (e.g. the upper body). Some of
the conical body parts are extended by half a sphere of corresponding radius at each
end that will overlap with the reversed sphere from the adjacent limb. This way, the
transition between two limbs appears smooth while bending for example an elbow,
knee, or finger joint without a gap opening in the middle .



4.3 Generation of a Human Figure Model 34

Appendix B, includes all tcl procedures used to generate these kinds of objects. The
two procedures, left-circle (page 124) and right-circle (page 129), serve to
calculate the radii and length between every two radii needed to form a quarter of a
circle. The make-bone procedure (page 124) automatically generates a conic object
with half a sphere at each of its ends.

4.3.2 Building a Kinematic Structure of the Body

Figure 4-7 on page 35 demonstrates the design of the kinematic structure shown on
top of a human skeleton with the outline of the human. The base of the actor is
located in the pelvis. Attached to this center is a chain for each leg that goes along
the ankle to the heel (as shown in figure 4-8 a) ). Starting at the ankle, there is
another chain consisting of two links ending at the tip of the toes.

The dhparameters used to construct the two kinematic chains for the left leg are
shown in table 4.1.

dhc jointi  name 0O; d; a; o; comment
lleg 0 base: pelvis 90° 0 0 90°

1 90° 0 0 -90° dummy

2 -90° 0 3.24 90°

3 hip 0° 0 0 90°

4 90° 0 0 90°

5 0° 0 16.69 0°

6 knee 0° -0.3 14.64 0°

7 ankle 0° 0 0 90°

8 90° 0 0 -90°

9 0° 0 0 0°

10 90° -3.25 2.21 0° ee: heel tip
1_foot 0 base: ankle 90° -3.25 -3.66 0°

1 0° 0 0 -90° dummy

2 ball 0° 0 -3.66 0° ee: toe tip

Table 4.1: Denavit-Hartenberg parameters for the left leg and foot

Also attached to the base is a kinematic chain for the spine all the way up to the
head (see dhparameters in table 4.2, page 37). The chains for the arms originate in
the center of the chest. Figure 4-8 b) shows the arm chain from joint 6 on. The dhpa-
rameters for the left arm are given in table 4.3 (page 37). Each finger is represented



4.3 Generation of a Human Figure Model

Figure 4-7: Layout of kinematic chains for a human figure model

35



4.4 Making It Move 36

Figure 4-8: The kinematic chains of a) a leg and b) an arm

by a separate chain starting at the wrist. The dhparameters for the left index are
given in table 4.4 (page 38).

4.4 Making It Move

No attempt has been made yet to validate the developed motor programs against
clinical, experimental data. That will be left for future work. The movements are a
visual approximation to the normal human velocity. This assumption is embodied in
two global variables as will be explained in the following section.

4.4.1 Velocities

Velocities are controlled by two global variables depending on the kind of a skill.
When dealing with inverse kinematics skills, the end effector velocity is controlled
by the global variable dist_per_timestep that specifies the average distance the end
effector should travel per timestep (see discussion in section 4.7.2). For all other skills,
the joint velocities are controlled by the global variable angle_per timestep. This
variable specifies the average joint angle change per timestep. In case of a skill that
brings a limb into a target configuration, the variable angle per_timestep will be
applied to the joint that has to overcome the maximum angle. The angle stepsizes for



4.4 Making It Move

37

dhc joint i  name 0; d; a; o;
spine 0 base: pelvis 0° 0 0 -90°
1 -90° 0 0 90°
2 0° 0 7.1 Q°
3 waist -90° 0 0 -90°
4 90° 0 0 90°
5 90° 0 12.78 -90°
6 neck -90° 0 0 -90°
7 90° 0 0 90°
8 90° 0 4.26 -90°
9 head -90° 0 0 -90°
10 90° 0 0 90°
11 90° 0 0 —90°
Table 4.2: Denavit-Hartenberg parameters for the spine
dhc joint i name O; d; a; a; local motor program
l_arm 0 base: chest 0° 0 0 90°  move_shoulder
1 10° 0 0 90°  lift/drop shoulder
2 0° 0 5.3 0° (not used)
3 90° 0 0 90° (not used)
4 100° 0 0 90° (not used)
5 0° 0 2.3 0° (not used)
6 shoulder 0° 0 0 —90°  lift_arm sideward
7 80° 0 0 90°  lift_arm forward
8 50° 0 0 90° turn_arm
9 90° 0 10 0° (dummy)
10 elbow 100° 0 0 90°  bend_elbow
11 110° 0 0 90° turn_hand
12 90° 0 8.6 90° (dummy)
13 wrist 0° 0 0 90°  bend_hand
14 0° 0 0 0° twist_hand
15 0° -1.27 2.5 0° ee: hand palm

Table 4.3: Denavit-Hartenberg parameters for the left arm



4.4 Making It Move

dhe jointi name (0F d; a; «; angle name
index 0 base: wrist —12° 0 2.95 0° (fixed)
1 12° 0 0 -90°  spreadfinger
2 10° 0 1.14 0°  bend-fingerl
3 20° 0 0.83 0°  bend-finger2
4 13.33° 0 0.64 0°  bend-finger3
Table 4.4: Denavit-Hartenberg parameters for the left index
dhc joint i name 0; d; a; o; angle name
thumb 0 base: wrist —30° 0 1.35 0° (fixed)
1 -10° 0 0 -90°  spread_thumb
2 30° 0 1.12 0°  thumb_down
3 90° 0 0 90° (dummy)
4 90° 0 0 —90°  thumb_turn
5 —-60° 0 0.81 0°  bend_thumbl
6 15° 0 0.64 0°  bend_-thumb2

Table 4.5: Denavit-Hartenberg parameters for the left thumb




4.4 Making It Move 39

all other joints will be synchronized accordingly so that all joints reach their target
angle at the same timestep.

4.4.2 Local Motor Programs

The main focus of the presented work was put on skills that can be performed with
the arm, hand, and/or fingers, i.e. reaching and grasping. Based on the structure
of a skeleton arm [8], the kinematic chain for the arm provides joints for the clavicle
and the scapula (joints 0-5). Only two of them, joint 0 and joint 1, are used to
move the shoulder for- and backward as well as up and down. For reasons explained
in section 4.1.3, there are two dummy joints in the arm, i.e. joint 9 and joint 12.
The remaining 7 joints control the following joint motions: arm lifting sideward, arm
lifting for- and backward, arm turning (about the upper arm), elbow bending, hand
turning, hand bending, and hand twisting. Each of those joint motions can be invoked
by a corresponding local motor program, e.g. bend_elbow by 50 25 causes the elbow
to bend by 50 degrees in 25 timesteps (see proc bend_elbow on page 107 in appendix
B).

For the arm, there are the following local motor programs available:

move_shoulder option angle timesteps renopt
1lift/drop_shoulder option angle timesteps renopt
lift_arm sideward option angle timesteps renopt
lift_arm forward option angle timesteps renopt

turn_arm option angle timesteps renopt
bend_elbow option angle timesteps renopt
turn_hand option angle timesteps renopt
bend_hand option angle timesteps renopt
twist_hand option angle timesteps renopt

The parameters to a local motor program are the option, which specifies whether
the appropriate joint should be moved “by” the specified angle or “to” the specified
joint position, the joint angle (be it the absolute or relative one), the number of
timesteps in which the motion should be performed, and the renopt that can be set
to “ren” or “noren” depending on whether the image shall be updated on the screen,
i.e. rendered, with every timestep or not.

Bending and turning or twisting inwards are considered to change a joint angle in
positive direction. A fully extended or untwisted limb corresponds to a neutral joint
angle of 0°.



4.4 Making It Move 40

For not every joint is a change in the corresponding dhtheta value (also referred to
as dhangle ©, dhparameter ©, or simply @) consistent with the above convention.
Sometimes, the direction of dhtheta has to be reversed to convert into the real joint
angle, denoted as ®. Table 4.6 shows a “-1” in the “dir” column if this is the case.
Also, there might be an offset between © and @ (see column “off” in the same table).
Finally, the conversion from ® to © can be calculated by

O = &+ dir + of f (4.3)

and is noted in the column named dhangle ©.

Table 4.6 also shows the joint limits for the joint angles ® and their corresponding
limits in the dhparameter © according to the conversion equation 4.3. The joint
limits are recorded in the procedures get max_angle and get.min_angle included in
appendix B, page 117.

To access a current joint angle @, there is a procedure get_jointname_angle provided
for every joint that reads the dhtheta for the joint in question and converts it back
to the real joint angle ®. See procedure get_elbow_angle on page 117 of appendix
B for an example. Every local motor program consists of three main parts:

1. Joint limit test:
The procedure

in_range limb joint nr option angle min_angle max_angle restpos
off direc part action

(see appendix B, page 123) tests whether the desired motion exceeds the joint’s
limits. If it does, the procedure returns an appropriate reachable angle closest
to the one specified. Otherwise it returns the angle itself.

2. Angle conversion:
Conversion from the desired joint angle ® to the dhangle ©, depending on how
the option parameter is specified (equation 4.3).

3. Joint angle change:
The change of the corresponding dhtheta value is invoked by the procedure

move_a_joint limb joint nr option dhangle timesteps range_angle renopt
(see appendix B, page 125) which is the core of every local motor program. The

option parameter can be set to “to” or “by” which provokes either a movement
to a specified absolute angle or by a specified relative angle.



4.4 Making It Move

dhangle name & limits dir off dhangle ® O limits
O shoulder fb  -20 - 40 -1 0 -® -20 - 40
0, shoulder.1d -5-45 1 0 ) -5-45
O armls -180 - 180 1 0 ) -180 - 180
Q7 armIf -90 - 190 -1 90 -®+490 180 - -100
Os arm_turn -170 - 175 1 0 ® -170 - 175
O10 elbow 0-150 1 90 ® +90 90 - 240
011 hand_turn -40 - 190 1 90 ® 4+ 90 50 - 280
O3 hand_bend -80 - 80 1 0 d -80 - 80
O14 hand_twist -35- 35 -1 0 -® 35 --35

Table 4.6: Transformation between dhangle and real joint angles and joint limits

Local motor programs to control the finger and thumb joints are:

spread finger finger option angle timesteps renopt
bend_a finger_joint finger joint option angle timesteps renopt
move_thumb_outwards option angle timesteps renopt
turn_thumb option angle timesteps renopt
move_thumb_down option angle timesteps renopt
bend_thumb_joint joint option angle timesteps renopt

These local motor programs are controlled by the same parameters as the local mo-
tor programs for the arm (explained earlier in the text). The spread finger and
bend_a finger_joint procedures have an additional parameter to specify the finger
in question, including the thumb.

When specifying “thumb” as input for the finger parameter, the procedure spread -
finger calls the move_thumb_outwards procedure and is therefore in this case equiv-
alent to the latter one. In the same way, the procedure bend_a_finger_joint with
“thumb” as input for the finger parameter calls bend_thumb_joint, see the source
code on page 107 in appendix B.

To control the remaining 2 dofs of the thumb, the procedures move_thumb_down and
turn_thumb are provided. Refer to tables 4.4 and 4.5 (page 38) to find out which
dhtheta correspond to which local motor program.

Should all finger bending angles of one finger be bent by the same amount, the
procedure

bend one finger finger option angle timesteps renopt



4.4 Making It Move 42

provided for convenience can be called.

As Rijpkema and Girard mention in [22], it is almost impossible for a human to move
the last link (joint 4) of a finger without moving the next to last joint (joint 3) and
vice-versa, without forcing one of the two to move in some unnatural way.

Experimental data taken by Rijpkema and Girard have led them to the assumption
that the dependency of those last two joint angles could be reasonably approximated
by a linear relationship:

@4 ] 2/3 * @3 (44)

The bend_a_finger_joint procedure therefore only accepts “1” or “2” as input for
its parameter joint that specifies the number of the bending joint being moved.
According to table 4.4 the first two bending joints of a finger correspond to the
dhparameter ©, and ©3;. O, the dhparameter corresponding to the third bending
joint will automatically be changed according to equation 4.4 with a change in Os.
The last two links of the thumb are coupled in the same way.

4.4.3 Concurrent Execution

Performing composite skills often means that several atomic skills have to be executed
concurrently (see section 4.7.3). Also, the actor might have different tasks at the same
time, e.g. reach for a glass (which is a composite skill itself) and move his head and
eyes towards the glass. A command loop is introduced to realize the concurrent
execution of several procedures.

The idea of the command loop is to keep a list, the command list, of all commands
that should execute concurrently and to loop constantly through the list. Every
procedure that should execute at a particular time has an entry in the command list
at that time. Procedures on the command list can be control procedures for specific
motor programs, local motor programs, or procedures that provoke a change in the
environment of the virtual actor, such as procedures to move an object.

The procedure controlling the command loop is the server that can be looked at on
page 130 (in appendix B). After executing each of the commands on the command
list once, the image of the screen is updated by calling the rendering routine. Pro-
cessing several different local motor programs by small steps gives the impression of
concurrent movement. The command loop can be started and run uninterruptedly
or can be progressed step by step.

For example, bending the elbow by 50 degrees in 25 timesteps is realized by adding
the command bend_elbow 2 1 to the command list and removing it after 25 steps



4.4 Making It Move 43

through the command loop.

A procedure that returns either “limit”, “target”, or “stop” removes itself from the
command list. Beyond that, motor program control procedures posses the ability
to add or remove other procedures from the command list. The server takes into
account that new procedures might have been added to the list, and that they should
be executed before the end of the current step through the loop.

Access procedures that are able to add, insert, or remove commands from the com-
mand list are add_c, insert_c, and rem_c (included in appendix B pages 103, 123,
and 129 respectively).

=| Command Loop i . { QJ

‘Stop i
CommendList Update List | |
0 wave hand control
1 direct forearm statel {0.48 ~0.59 0.653} 0 33
2 align hand palm/point axis statel {0 -1 0} no 139

preanesy

Delete List |

| Do Commmand Once

vi--[' : — v Gesr |

Figure 4-9: Command Loop menu



4.5 Inverse Kinematics Algorithms 44

For convenience, an X menu is provided, i.e. the Command Loop menu, that shows
the current command list and has buttons to start, stop or step through the list (see
figure 4-9). At the end of every step through the list, all new x events are flushed.
This way, the actor can react to any command typed in the Do Command Once
text field at any time. Once the command loop is started, the actor can only be
controlled by using the Command Loop menu.

The system has an internal clock implemented as a global variable that is increased
by one timestep every step through the command loop.

4.5 Inverse Kinematics Algorithms

The basic inverse kinematics algorithm for the arm, explained in this chapter, is used
to position either the wrist or the end effector of the hand at a specific point in space.
The end effector is generally located in the center of the palm. This algorithm will
be later extended in order to obtain appropriate joint angles for all joints involved to
synchronously reach a target position and orientation of the end effector.

Four joint angles are taken into account by the basic inverse kinematics algorithm:
the two angles of the spherical joint at the shoulder that determine the upper arm
orientation, (i.e. the arm-lifting-forward angle (or arm-lf angle) and the arm-lifting-
sideward angle (or arm-ls angle)), the elbow-bending angle (or elbow angle), and the
arm-turn angle.

If the wrist is to be positioned, the hand angles (turning, bending, and twisting) do
not play a role. For the positioning of the end effector of the hand, constant hand
angles are assumed for now.

Having to determine 4 joint angles out of a 3 dimensional coordinate point in space
leaves 1 degree of freedom. This is used to influence the rotation of the arm about the
vector from the shoulder to the goal point. A parameter, called arm_pose_parameter
is introduced in order to specify the additional degree of freedom. The parameter can
take any value between 0 and 1, where 0 will result in a position with the elbow at the
lowest possible point and 1 in an elbow position at the highest possible point. The
elbow is always assumed to be on the outside of the plane defined by the upper arm,
and the forearm in the lowest elbow position, as viewed from the center of the body.
As a global variable, the arm_pose_parameter can be changed any time during the
execution of inverse kinematics routines by the procedure app (included in appendix
B on page 106).

The basic inverse kinematics algorithm is implemented in a procedure called goal-
-arm_angles_abs (see appendix B, page 118) that takes two parameters as input: the



4.5 Inverse Kinematics Algorithms 45

goal point, a three dimensional coordinate point in world space coordinates, and
gp-opt, the goal point option that can be either set to “wrist” or “ee” to specify
whether the wrist or the end effector is to be positioned at the given goal point. The
procedure returns the absolute angles, i.e. the arm-ls angle, the arm-If angle, the arm-
turn angle, and the elbow angle, necessary to reach the goal point. The algorithm
is divided into two major parts that will be explained in more detail in section 4.5.1
and 4.5.2. These are:

1. Calculation of the shoulder-elbow-vector and, in case gp_opt is set to “wrist”,
calculation of the elbow-wrist-vector.

2. Inverse kinematics calculation to determine the joint angles.

Adaptation to a moving body, shoulder movements and/or changes in the hand angles
will take place by recomputing the inverse kinematics algorithm every timestep.

Often it is desired not only to place the end effector or wrist at a specific point in
space but also to reach a specific orientation of the hand. Imagine washing windows.
The end effector should follow a looplike trajectory in the plane of the window, while
the hand plane should stay parallel to the plane of the window all the time. Another
example is grasping an object. If the actor grasps a glass, it should bring its end
effector together with a specific point on the glass and simultaneously align its thumb
azis (see figure 4-11 on page 53) with the longitudinal axis of the glass.

In section 4.5.3, the inverse kinematics calculations for aligning the hand axes will be
described. Section 4.5.4 then shows how to integrate reaching for a goal point and
the alignment of the hand.

4.5.1 Calculation of the shoulder-elbow-vector and the elbow-
wrist-vector

Figure 4-10 shows the arm positioned such that the end effector (ee) coincides with
a given goal point.

Calculation of the shoulder-elbow-vector

The vector from the shoulder to the elbow is calculated by the procedure calc_shoul-
der_elbow vector (see appendix B, page 110). From all possible solutions for the
shoulder-elbow-vector (s€v) one is chosen by taking the arm_pose_parameter into



4.5 Inverse Kinematics Algorithms 46

shoulder

elbow

goal point
Figure 4-10: Vectors defining the arm links

account. In order to calculate s€v, the angle v enclosed by sév and the shoulder-goal-
vector (sgv) has to be computed first. 4 can be computed out of the lengths of the
vectors sgv, s€v, and ecév (the vector from the elbow to the end effector):

(4.5)

sevl? + |sgu|? — |eeev|?
g

7 = arccos ( 2 |s8v] |sgv]

Equation (4.5) is implemented in procedure gamma included in appendix B, page 117.

|sgv], i.e. the distance from the shoulder to the goal point, is known since the shoulder
is assumed to remain at its current position, |s€v| is the length of the upper arm, and
|e€ev| is the distance between the current elbow position and the current end effector
position that will not change if the hand angles stay the same.

3d provides a command that returns the end effector position (dhgetee), whereas the
current positions of all joints can be accessed through the corresponding dhmatrices
(see e.g. procedure get_shoulder_position, appendix B, page 118).

In case not the end effector, but the wrist, is to be positioned at the goal point, |e€év|
has to be substituted by the length of the elbow-wrist-vector (|ewv|), i.e. the forearm
length.

All possible solutions for the shoulder-elbow-vector are located on a circle about
|sgv|. Supposed zs,, the z coordinate of |s€v| is known, (it will later be shown how
to determine z,c,), the other two coordinates can be computed using the following
two equations:

|sév|® = a2, + y2, + 23, (4.6)

|s€v| |sgu| cOS7Y = Tsew Tsgy + Ysew Ysgo + Zsev Zsgu (4.7)



4.5 Inverse Kinematics Algorithms 47

where equation (4.7) is nothing else but the definition of the dot product of two
vectors.

Solving equations (4.6) and (4.7) yields two solutions for ., :

——q (4.8)

xs&vlg = -

with . -
_ 2 Tsgu (Zseu Zsgy — '86’0, "ng' COs 7)

p=
2 2
msgv + ysgv

(4.9)

_ [s€v] [sgu] cosy (|s€v| [sgv] cosy =2 Zeew Zogu) F Zoen (Yigo + 2550) — [5EV[* ¥l

2 2
:l:sgu + ysgv

(4.10)

Equation (4.8) is implemented in procedure calc x2 included in appendix B, page 112.
For the left arm, the solution with the greater z., will always be chosen so to keep the
elbow turned “outside”, which is the more natural of the two solutions. y, will then
be calculated using equation (4.6) (see procedure calc_third component, appendix
B, page 112). Whether the positive or negative ys, is the valid solution will be
verified by means of procedure vangle2 (see appendix B, page 132) that calculates
the angle between the resulting sév and sgv.The resulting angle will be compared
with the angle 4 computed by equation (4.5).

A valid range for z,., can be computed from the condition that the root argument in
equation (4.8) has to be greater than or equal to zero (see procedure calc_z2 range in
appendix A, page 112). The z,., range will be mapped onto the arm_pose_parameter
(app) mentioned earlier on page 106, where an app=0 refers to z,,,,, and an app=1
refers to zgeyas-

The calc_shoulder_elbow_vector procedure also checks whether the computed so-
lution would end up in an elbow position inside or too close to the body, in which
case it would recompute the algorithm to find a better solution. The upper arm
orientation results directly from the shoulder-elbow-vector.

Calculation of the elbow-wrist-vector

If it is the wrist that is to be positioned at the goal point, the elbow-wrist-vector
can be obtained easily. Subtracting the shoulder-goal-vector from the just calculated
shoulder-elbow-vector yields the vector from the elbow to the wrist (ewv) :

eWv = $€V — SGv (4.11)



4.5 Inverse Kinematics Algorithms 48

The elbow-wrist-vector determines the forearm orientation, i.e. the target axis of the
forearm.

4.5.2 Inverse Kinematics Algorithms for Orienting the Arm
Links

Inverse kinematics has to be applied in order to calculate the arm-Is and arm-If angles
that result in the desired orientation of the upper arm (procedure upper_arm_an-
gles_abs). In case the gp_opt is set to “wrist” (refer to page 45), inverse kinematics
must again be applied to calculate the elbow and arm-turn angle, given the orientation
of the forearm (procedure forearm_angles_abs).

In case of a gp_opt “ee”, another inverse kinematics algorithm is used to calculate the
elbow and arm-turn angle, given the resulting coordinate frame at the elbow joint,
i.e. the dhmatrix M7. My depends on the new arm-Is and arm-If angles as well as
on the goal point itself (procedure calc_at_e).

Knowing the dhmatrix My, of a joint m that is temporarily fixed in space and knowing
parts of the target dhmatrix My, for a joint n located farther along the same dhchain,
equation (4.2) (page 25) makes it possible to calculate joint angles for all joints in
between m and n. After premultiplying equation (4.2) with the inverse of My,

Ami1 - Ampz o Ap1-Ap =Mzl M, | (n>m) (4.12)

a set of equations can be formulated containing trigonometric functions of the joint
angles in question. By skillful transformation of the resulting equation system, it is
possible to eliminate the joint angles one by one.

Aligning the upper arm along a given axis: computing the upper arm
angles

The upper arm angles arm-ls angle and arm-If angle correspond to the dhangles Og
and O, which can be calculated according to matrix equation (4.12):

Ag- A7 = Mgl - M~ (4.13)



4.5 Inverse Kinematics Algorithms

49

Taking the dhparameters for joints 6 and 7 from table 4.3 and putting them into the

transformation matrix (4.1) (on page 25), yields

ce 0 —sg O c; O
s¢ O c O | sz O
Ae=1 0 1 0 o Ar=1 9 1
0 0 0 1 0 O

where e.g. cs denotes cos B¢ etc.

S7

(4.14)

-0 O O

The target axis of the upper arm that is given by the shoulder-elbow-vector is the
third vector b defining the coordinate frame at joint 7 and is therefore contained in

dhmatrix My as follows:

* x by *

_ *  * b x

Mz = x  x by x
0 0 0 1

Multiplying Ag and A7 from equations (4.14) and defining
M;!-5=B

the third column of equation (4.13) can be written as

Ce S7 By
s¢ 57 | _ | B1
C7 - 132
0 0

In tcl, the calculation of vector Bis implemented as follows

Mset [dhmatrix 5 /1_arm/dhc]
Minvert

Mele 3 0 0

Mele 310

Mele 3 2 0

set B [Mxform $main_axis]

Solving equation (4.17) for ©g and Oz, results in

0, = arccos B, ©r, = — arccos B,

(4.15)

(4.16)

(4.17)

(4.18)



4.5 Inverse Kinematics Algorithms 50

Og, = arccos ( Bo ) Og, = — arccos ( Bo ) (4.19)

sin O sin ©7

Depending on the joint limits (see table 4.6, page 41), valid solutions for ©; and then
for O¢ will be chosen. In case both solutions for @ or @7 are valid, the one closer
to the current joint position will be chosen. Sometimes both solutions are outside
of the allowed joint angle range, in which case ©® will be set to its closest limit and
a warning message will be printed out saying that the target upper arm axis is not
reachable. ©¢ has to be verified using the second equation resulting from (4.17).

Finally, ©®¢ and ©7 are converted into the arm-ls and arm-If angle, using equa-
tion (4.3). The described computation is implemented in procedure upper_arm -
angles_abs (see appendix B, page 131).

Aligning the forearm along a given axis: computing the forearm angles

The following method, implemented in procedure forearm angles_abs (appendix B,
page 115), is applied in case the goal point is to be positioned at the wrist, (i.e.
gp-opt is set to “wrist”). The computation of the forearm angles that correspond
to dhangles ©g and ©,¢ is very similar to the procedure described previously. The
axis vector of the forearm, which is given by the elbow-wrist-vector, is contained in
dhmatrix Mg in the third column. Taking dhmatrix M~ as input for the calculation,
the application of equation (4.12) yields

Ag-Ag-Ajp = M7 My (4.20)

which results in

—S1068  Ss  cocs 0 * ok dp *

—381088 —Cg8 Ci1088 0 _ ~1 * * dl *
Ci0 0 S10 10 - M7 * * dz * (421)

0 0 0 1 0 0 0 1

after multiplying the transformation matrices Ag - Ag - A19, where all known dhpa-
rameters are put in according to table 4.3.

With the definition .
M;!-d=D (4.22)

equating the third column of matrix equation (4.21) yields

©100 = arcsin D, ©10 = 180° — arcsin D, (4.23)



4.5 Inverse Kinematics Algorithms 51

O, = arccos (cosD(f)lo) Ogp = — arccos (sirf)(i))m) (4.24)
Again, a solution for @, is chosen depending on the limits for joint 10. In case
of further ambiguity, the solution that is closer to the current joint angle is chosen.
The solution for Os is verified using the second equation resulting from (4.21). After
conversion of ©g and O,¢, the procedure forearm angles_abs returns the arm-turn
angle and elbow angle.

Parameter My is assigned to the procedure forearm angles_abs, which can either
be set to the current dhmatrix M7, in case the upper arm does not move, or to
M- calculated using new angles arm-ls and arm-If as input (see procedure calc M7,
appendix B, page 109). For the inverse kinematics positioning of the wrist at a goal
point, M7 is calculated using the arm-ls and arm-If angles (returned by the procedure
upper.arm_angles_abs).

Computing the forearm angles based on a given goal point for the end
effector

This computation is similar to the previous ones. Since the hand angles are assumed
to be constant and this time the goal point (g,, g1, 92) that can be found in the fourth
column of dhmatrix My is known, the problem can be reduced to the solution of

Ag-Ag-A1g-A11-A1z-Ayz-Arg-Ags = M7 - My (4.25)

After defining Atemp = A11-A12 - A13- Aj4- Ajs, equation (4.25) can be written
as

—810C8 S8 C10C8 0 * * *  go
—S1088 —¢cs closs 0 | _ -1 ¥k x4
C10 0 s, 10 Atemp = My X X x4 (4.26)
0 0 0 1 0 0 0 1

where Atemp is known since it only depends on the hand angles. The elements of the
matrix Atemp Will be assigned to variables as follows

ai1 Q12 Q13 Qa4

Atemp — a1 Q22 Q23 dAgq (4.27)

G31 a3z a33 az4

6 0 0 1



4.5 Inverse Kinematics Algorithms 52

With the definition B
M;'.§=G (4.28)

the fourth column of matrix equation (4.26) looks as follows:

—a14C8810 + A2488 + G34C8C10 Go
0145885810 — @24C8 + A3488C10 Gy
= 4.29
@14C10 — a34510 + 10 G, ( )
1 1
and yields
_ —a (10 - Gy) L | G (34 + a14 (10 — G3)? + a,)
$10a,p = 2 2 2 2 \2
ajy + a3y (a14 + a34)
(4.30)
Saup = 2Goay + (a34 — Go) (@14510 — @34¢10)? + (@14810 — a34C10)?
S a?, + (a14810 — a34¢10)? (@34 + (@14810 — a34€10)?)?
(4.31)

In each case (solution a as well as solution b for each sin ©) there will be two solutions
for ©, resulting from the arcsin function, yielding four solutions for each ©. Only
two of the four solutions in each case are true when verifying them with one of the
equations from 4.29. Of the two remaining solutions, one is picked that is within
the joints limits or, if both are within the limits, the one closer to the current joint
position is picked.

As in procedure forearm_angles_abs, Og and 0,9 will be converted into the arm-turn
angle and the elbow angle, which are the two return values of procedure calc_at_e.

4.5.3 Inverse Kinematics Algorithms for Orienting the Hand
Axes

Figure 4-11 shows the definition of the hand axes on the left hand. There are two
different inverse kinematics algorithms to calculate the necessary hand angles: one for
alignment of the palm axis or palm and point axes with target vectors and another
one for alignment of the thumb axis with the longitudinal axis of an object.



4.5 Inverse Kinematics Algorithms 53

Figure 4-11: Definition of the hand axes shown on the left hand (inner palm)
medium: point axis, light: thumb axis, dark: palm axis

Computing the hand angles based on a target thumb axis

One way of grasping an object like a glass is to align the thumb axis with the longitu-
dinal axis of the object, and then close the fingers around the object once approached.
This kind of grasping is the only kind considered for this thesis.

The computation of the hand angles, given a thumb axis, is based on equation (4.12)
so that the problem can be formulated as follows:

Ai1-A12-A13- A4 = MI(} - M4 (4.32)

The negative thumb axis is contained in dhmatrix M4 in the second column

* —to * x
Mig=| . ::: o (4.33)
0 0 0 1
so that after further substitutions (4.32) yields
—$11 813 S14 + C11 C14 —to To
BSOSRR R Il B I 43

0 0 0



4.5 Inverse Kinematics Algorithms 54

with the solutions

T
0,4, = arcsin ——2— O14 = 180° — O14, (4.35)
—cos O3

T cos ©14 + ToT3 tan O43

T3 + T2
By checking the joint limits and considering the solutions closer to the current configu-
ration, ©14 and ©y; are selected from (4.35) and (4.36). ©,3 can be freely chosen and is
therefore provided as an input parameter to the procedure aligned hand _angles_abs
(see appendix B, page 103), in form of the hand-bend angle. Another parameter to
that procedure is Mo that can either be set to the dhmatrix Mg or to a matrix cal-
culated depending on arm-ls, arm-1f, arm-turn and elbow angle (procedure calc M10,
appendix B, page 110).

(‘)11,1 = arcsin ( ) @115 = 180° - @11,1 (436)

Computing the hand angles based on target palm and point axes

In the same way as explained in the previous sections, the hand angles for given palm
and possibly also pointing axes are computed.

Dhmatrix M4 contains the palm axis, named p, and the pointing axis, named 7 as
follows:

Do * —MNg *
_ Y4l * —n *
Mis = by % —my (4.37)
0 0 0 1
The right side of equation (4.32) can then be defined as
Po * No *
- PR x N «x
Myg - Mg = P; . N: i (4.38)
0 0 0 1
which yields
811 813 C14 + €11 S14 Py
—C11 813 C14 + S11 S14 _ P
€13 C14 B P, (4'39)

0 0



4.6 Collision Avoidance 55

and
—S811 C13 No
C11 13 Nl
= 4.40
S13 N2 ( )
0 0

From (4.40) it becomes obvious that the hand-twist angle (corresponding to ©4)
does not influence the palm axis. Hence, it is possible to specify only a palm axis as
input for the hand angles calculation procedure hand _angles._rel (see appendix B,
page 119). In this case the procedure returns the new hand-turn angle and the new
hand-bend angle, but the current hand-twist angle. ©,3 and @, will be

0©13, = arcsin N, ©;3; = 180° — arcsin NV, (4.41)

— —N,
©;;, = arctan ( ]{[YO> ©115 = 180° + arctan ( N10> (4.42)

Is a point axis for the hand also given, then ©,4 can be computed considering the
third row in (4.39)

P

cos O3

) ©14p = — arccos ( P ) (4.43)

©14, = arccos (
cos O3

4.5.4 Inverse Kinematics Algorithm for Integrated Posi-
tioning and Orientation of the Hand Thumb Axis

For synchronous alignment of the hand thumb axis with a target axis while reaching a
goal point, it is necessary to compute the final hand angles depending on the dhmatrix
Mjo that results when the end effector is positioned at the goal point. Procedure
reach_angles_abs (see appendix A, page 129) combines the goal.arm angles_abs
procedure that calculates the arm-ls, arm-If, arm-turn, and elbow angle with the
align hand_angles_abs procedure (in which the 3 hand angles are computed). The
matrix Myp is computed from the four goal-arm-angles by the procedure calc M10,
mentioned earlier, and used as input for the computation of the hand angles.

4.6 Collision Avoidance

Collision avoidance will be of great importance once the actor moves in a more com-
plicated environment, performing ever more complex tasks. The collision avoidance
feature implemented as part of this thesis is limited to the generation of a collision



4.6 Collision Avoidance 56

free path for the end effector when performing a reaching motion towards an object
on the table.

According to the average distance, the end effector is expected to travel per timestep
(dist_per_timestep), equidistant goal points along the path are generated. The end
effector is supposed to move sequentially through all these goal points in order to
avoid collision.

The procedure that calculates points on a path around a collision object (collobj
parameter), i.e. the table in this example , is

find _path_pos object collobj showpath

The showpath parameter can be set to “yes” which will cause green balls to be
displayed at the calculated path points for demonstration purposes.

P
>

z

SILIIEIL
Yaista Ydisr2 //

Zdist2

Z nax collob] Zyistt \
collobj \;\\ 3 ‘\\
¥,

z

Y]

min collobj

\
-

1 Ydist1

|
Y max collobj y

Figure 4-12: Division of the space to find a collision free path (vertical cross-section)

The space around the collision object viewed in the yz-plane is divided into several
areas according to figure 4-12. The points P; to Ps will be calculated depending on
the position of the collision object and the object that is to be reached:

Pl = ( Tpy o Ymaz collobj + Ydist1 Zmin collobj — 2distl )
P2 = ( Tpy Ymaz collobj + Ydist1 » Zmaz collobj + Zdist1 )
P3 = ( Lps 5 Ymaz collobj + Ydise2 5 Zmaz collobj + Zdist2 )



4.6 Collision Avoidance 57

P4 = ( Tpy Ymaz collobj » Zmazx collobj + Zdist2 )
P5 ( Tpy Yobj + Ydist3 Zobj + Zdist3 )

The following values have been chosen for:

yaisn = 9.2 (accounting for the distance between the end effector and the tip of the
middle finger plus a safety distance of 2, measured in inches).

Ydistz = 3

Ydists = 1

Zgistt = 1

Zdistz = 3.0

zaists = 0.4

Depending on the current position of the end effector, the first point for the path
will be chosen. If the end effector is located in area 3 for example, the first point
on the path will be P; followed by Py, P, and finally the object’s centroid P,;, see
figure 4-13.

.

ot //\\

collob]

Figure 4-13: Collision free path starting from an end effector position in area 3

y

The x values of the path points depend on the x value of the current end effector
position (z.), and the position of the object on the table (z,4;). If the body is very
close to the table, and the end effector of the left hand is on the right side of the left
shoulder joint, then the path should lead the end effector to move just slightly to the
left of the shoulder joint at P;:



4.6 Collision Avoidance 58

if {($x_ee < $x_sp) & ($y_pl > -5) & ($x_obj < $x_ee)} {
set x_p1 [plus $x_sp 0.1]

} else {
set x_pl $x_eep

}

In order to approach the object with the left hand from the left side, z,, will be set
to

Tps = Tobj +3

and the other x values

— — Tps —Tpy — Zp %oy
Tpy, = Tpy s Tps = Tp, + ’ Tpy = 2

In case y,, is greater then y,,, P; will be skipped completely.

If the end effector is located in area 5, a new point P,., will be inserted between the
end effector and P; in case z.. is less than z.;, see figure 4-14. The coordinates of
P,y will be

Prew = ( Tobj y, Yobj + Ydist1 , Zobj + Zdists )

Figure 4-14: Insertion of P,., in case the end effector is located in area 5

In order to force the end effector to move along the collision free path smoothly,
equidistant goal points have to be generated on the polygon that is defined by all
path points included in the path. Procedure

make._equidistant_points point_list



4.6 Collision Avoidance 59

implements the following algorithm:

1. Calculate the length 1 of the polygon through a point list (po to p,).

2. Parameterize the polygon, store the parameter t at each point of the point list
(pO : th sy Pn o =1)

3. Find the number of goal points by dividing the polygon length by the global vari-
able dist_per_timestep and finding the closest integer (nry,, = int (I/dist_-
per_timestep) ).

4. Adapt the stepsize s accordingly (s = I/nrg, ).
5. Set the first goal point to be the first point from the point list (gpo = po)-

6. Increase the parameter along the polygon by the stepsize ( ¢z, = t5,_, + )
and check between which points (from the point list) the new goal point gp; is
located ( t; < tgp, < tiy1 ).

7. Calculate the coordinates of the new goal point from the parameter ., and the
linear equation formed by p; and p;4;.

8. Repeat steps 6 and 7 until the end of the point list.

9. Return a list with all goal points calculated.

Figure 4-15 shows the points of the original point list as black circles labeled P, to P
and the original polygon as a thin line. The new equidistant goal points are marked
by crosses and the new polygon is drawn bold.

Finally, the procedure equidistant_path_points combines both previously explained
procedures by providing the point 1ist returned by find_path_pos as input for
make_equidistant_points.

The implemented collision avoidance algorithm just described is specific for the left
arm and guarantees that the hand will move from its current position to the object
without colliding with a specified collision object, i.e. the table. However, the algo-
rithm does not yet guarantee collision free moves of the other arm links, i.e. the upper
arm and the forearm. In order to avoid collisions of these arm links it is necessary
to specify an appropriate arm pose_parameter. Remember, changing this parameter
will influence the position of the elbow, but not the end effector position.



4.7 General Structure of Motor Programs 60

z“

9]

collobj dist_per_timestep

—
>

y

Figure 4-15: Generation of equidistant points on the collision free path

4.7 General Structure of Motor Programs

Motor programs are the source code for an actor’s skills and implemented as finite
state machines as explained in section 3.4.2.

4.7.1 Motor Programs for Atomic Forward Kinematics Skills

A motor program for an atomic skill can consist of several tcl procedures, but has at
least two: the main motor program procedure and at least one state.

The name of the main motor program procedure is the skill’s name. Therefore the
execution of a skill is invoked by typing the skill’s name in the Do Command
Once text field of the Command Loop menu (see figure 4-9) if the command loop
is already running. Otherwise, the skill’s name can be typed at the 3d > prompt
and the command loop can be started thereafter by clicking the Go button in the
Command Loop menu.

The task of the main motor program procedure is to check whether the initial con-
ditions for a skill are fulfilled and to add the procedure for the first state to the
command list. In case the initial conditions are not fulfilled, the procedure will quit
and print out a warning message. The general structure of such a main motor program
procedure looks like the following:



4.7 General Structure of Motor Programs 61

proc skillname { args {end_event {}} } {
#
# Initial condition
#
set condition0 [condition_procedure args-C0]
if $conditionO then {
global skill_name_end_event
set skil name_end_event $end_event
add_c [list skillname_statel args_I]
} else {
echo Sorry, the initial conditions for executing this skill are not given!
}

return

“args” stands as a place holder for arbitrarily many arguments that the procedure
might need, for instance as input to the condition procedures, or for one of the
following states. The parameter end_event is contained in any atomic skill.

For every state in a finite state machine (refer to figure 3-2 on page 21), there is
a separate procedure named skill_name_stateM, where M is the number of the re-
spective state. The following shows the general structure of such a procedure for an
intermediate state:

proc skillname_stateM {args .M} {
#
# State ending condition
#
set conditionMa [condition_procedure_Ma args-CMa]l
set conditionMb [condition_procedure_Mb args_CMb]
if $conditionMa then {
add_c [list skillname_stateN args_N]
return stop
}
if $conditionMb then {
add_c [list skillname_stateP args_P]
return stop
}
local_motor_programM1 by angle 1 noren
local_motor_programM2 by angle 1 noren
local_motor_programMn by angle 1 noren
return



4.7 General Structure of Motor Programs 62

Every state is determined by several state ending conditions, and a number of local
motor program procedures that cause different limbs to move concurrently while a
state 1s being executed. As long as none of the ending conditions of a state is true, the
state remains on the command list and all local motor program procedures belonging
to that state are executed once every step through the command loop.

In the example procedure, the state M branched out to either state N or state P,
depending on whether condition Ma or condition Mb becomes true. Accordingly, the
state N or state P procedure will be added to the command list. In general, a state
could have any number of ending conditions (which, by themselves, could consist of
a compound of different subconditions). Any network of “and” and “or” connections
between the subconditions can make up a state’s ending condition.

If a state procedure returns “stop”, the state is automatically removed from the com-
mand list. Refer to the source code of the server procedure that runs the command
loop (page 130) to see how this is implemented.

The last state denoted here as state X will evaluate the end event upon satisfac-
tion of its ending condition X, but might branch out again, if other conditions
come true. This possible branching is not included in the example procedure for
a skill_name_state X:

proc skil_name_stateX {args_X} {
#
# State ending condition
#
set conditionX [condition_procedure_X args_CX]
if $conditionX then {
global skill_name_end_event
eval [set skillname_end_event]
return stop
}
local_motor_programX1 by angle 1 noren
local_motor_programX2 by angle 1 noren
local_motor_programXn by angle 1 noren
return

Given as a parameter to the main motor program procedure was the end_event. This
parameter is made accessible to the last state X by being defined as a global variable
in the procedure skill_name. As a default, the end_event is set to “{}” so that the
evaluation of a skill’s end event will have no effect. The procedure then goes on to



4.7 General Structure of Motor Programs 63

the command return stop which forces the skill to end, and causes the last state to
be removed from the command list.

There are cases where a changing environment makes it necessary to perform the
same skill over and over again, because once the skill is fulfilled, the initial conditions
might come true again. By defining the skill_name itself as end_event, the skill’s first
state will replace the skill’s last state.

In case the skill consists of just one state and it is desired to execute that skill again,
any time the initial conditions for the skill are satisfied, the end_event has to be set
to “return”. The procedure will then return before it reaches the command return
stop, so it will not yet be removed from the command list. This way, the statel for
that particular skill will remain on the list until it will get removed e.g. when another
skill’s end event comes true.

With the explained method, an adaptive reaching algorithm for a moving object can
be implemented. Once the object is reached, the ending condition will come true, but
the reaching state would not be removed from the command list. Any time the object
moves farther away in one timestep than a given goal-point-precision, the reaching
algorithm would be activated again.

An example of a forward kinematics skill put_arm_on_table will be discussed in sec-
tion 5.5.

4.7.2 Motor Programs for Atomic Inverse Kinematics Skills

Inverse kinematics skills are determined by an inverse kinematics calculation routine.
They consist of only one state containing all local motor programs involved in a
specific movement. The inverse kinematics calculation routine synchronizes the angle
steps of all these local motor programs, depending on how many timesteps the skill
should take until its fulfillment.

An example of a main motor program procedure for an inverse kinematics skill is
included in appendix A (page 101), and accounts for an initial condition composed
of many single condition_procedures.

Besides the parameter end_event which, as mentioned earlier, is contained in any
atomic skill, the inverse kinematics skills will all contain the parameters time_opt
and timesteps. If the parameter time_opt is set to “1”, the time when the execution
of the skill has to be finished, end_time, has to be calculated depending on the state
of the internal clock. During the execution of the IK_skill_name.statel (see appendix
A, page 102), the end time will be compared with the internal clock ic, and the
number of the remaining timesteps will be set accordingly. It will be guaranteed that



4.7 General Structure of Motor Programs 64

the number of timesteps never drops below one, even though the end_time for the
skill might be exceeded.

Usually, and as a default, the time_opt parameter will be set to “0”, which means
that the remaining number of timesteps will be calculated again every step by a
timesteps_calculation_procedure to control the end effector or joint velocities.. For
example, the procedure calc_dist_timesteps (see appendix A, page 109) calculates
the timesteps necessary to overcome a certain distance depending on the value of the
global variable dist_per_timestep that specifies the average distance an end effector
should travel per timestep. This global variable can be changed any time, even during
the execution of the skill, using the procedure dps.

Again, the parameter “args” accounts for any number of parameters specific to a skill
(see page 61).

The inverse_kinematics_calculation_procedure first calculates the final absolute joint
angles for the involved limbs, then converts the absolute angles into relative joint
angles necessary to reach the final goal (depending on the current state of the joints),
and finally returns the relative angle steps every joint has to move during the next
step. The local motor programs will only be activated if the corresponding angle step
size is greater than 0.001.

4.7.3 Motor Programs for Composite Skills

Atomic skills can be combined to composite skills in different ways:

1. Parallel, independent:
Two or more atomic skills are added to the command list at the same time so
that they start executing synchronously. Every atomic skill executes indepen-
dently from the others. That means that it will be removed from the command
list the moment it satisfies its ending conditions, independent of the duration
of the other atomic skills that might be different. See figure 4-16 for the finite
state machine model. The implementation is fairly easy:

proc composite_skill_name { args } {
skill_namel args_S1
skillname2 args_S2
return



4.7 General Structure of Motor Programs 65

skill name 1

Figure 4-16: Model of a composite skill composed of parallel, independent atomic
skills

2. Parallel, dependent:

As in the former case, all atomic skills will start executing synchronously, but
in this case, their ending conditions are coupled. That is to say, all atomic skills
corresponding to the same composite skill will be removed from the command
list only when they all satisfy their corresponding ending conditions at the same
time (see figure 4-17). To couple the ending conditions, all atomic skills but one
will remain on command list, after satisfying their individual ending conditions.
One of the atomic skills has to evaluate the combination of all individual ending
conditions and, in case they are all satisfied, remove the atomic skills altogether
from the command list.

—D( skill name 1
——D( skill name 2

Figure 4-17: Model of a composite skill composed of parallel, dependent atomic skills

Keeping an atomic skill on the command list can be realized by defining the
name of that particular atomic skill as its own end_event as explained earlier on
page 63. This way, an atomic skill will add its first state again to the command
list upon completion.

The evaluation of all ending conditions can be done in an extra procedure de-
fined for that particular purpose. The skill, that has the ending_condition_eval-
uation_procedure as one of the commands of its end_event removes the other



4.7 General Structure of Motor Programs 66

skills directly from the command list by using the rem_c procedure and will be
removed itself by returning “stop”.

proc composite_skillname { args } {
skillnamel args_S1 {skill_namel args_S1}
skillname2 args_S2 {skill_name2 args_S2}
skill_named args_S3 {
ending_condition_evaluation_procedure
remc {skill_namel*}
remc {skillname2+}

}

return

3. Sequentially:
Feeding another skill_name2 as end_event to a skill_namel will link those two
skills to execute sequentially.

proc composite_skill_name { args } {
skill_namel args_S1 {
skill_name?2 args_S2 {}
}

return

IK skill 7

Figure 4-18: Model of a composite skill composed of a network of atomic skills

A more complex network of atomic skills making up a composite skill is shown in
figure 4-18. The implementation follows:



4.7 General Structure of Motor Programs 67

proc composite_skill_name { args } {
skill_namel args_S1 {
skill_name?2 args_S2 {}
IK _skill.name3 args_-S3 time_opt timesteps {
skill_name4 args_S4 {
skill_name5 args_S5 {}
skill_name6 args_S6 {}
IK skill_name? args_S7 time_opt timesteps {}

}
}

return

Note that the end event can consist of a list of commands. In this way it is possible
to start several atomic skills parallel, upon completion of a previous skill. The skills
that should execute sequentially are nested as each other’s end events.

In this section it has been shown how to generalize the generation of motor programs
using finite state machines. Every motor program consists of a compound of tcl
procedures, i.e. one for each state and a main motor program procedure that checks
the initial conditions. The definition of each state consists mainly of the identification
of local motor programs and a definition of the ending conditions for that particular
state. Local motor programs define the action of a state and the ending conditions
define what conditions have to be satisfied in order to proceed to the next state.

A distinction has been made between forward and inverse kinematics skills. It has
been demonstrated how to compose more complex skills from atomic skills in a parallel
or sequential manner, or a combination of both.

During the development of the general structure of motor programs it became clear
that there is a variety of arguments that might have to be passed to specific skills and
a few arguments that are always the same, e.g. the end_event has to be specified for
every skill. Other arguments might be the goal_point, i.e. the final position the end
effector should reach in a skill move_arm to_goal (as will be shown in section 5.2.1).

The next section will explain more about condition procedures that can check initial,
as well as ending, conditions and introduce some of them.

Chapter 5 will discuss the implementation of different kinds of skills represented by
motor programs according to the generalization worked out in this section.



4.8 Condition Procedures 68

4.8 Condition Procedures

Condition procedures are boolean procedures that check whether certain conditions
are fulfilled or not and return either “1” or “0” accordingly.

Those procedures can be called to either check the initial conditions for a skill or to
check the ending conditions of a state in a skill in order to decide when to go on to
the next state and which state should be executed next (refer to the discussion of
the motor program design in chapter 3.4.2). In general, the same procedures that
function as ending conditions can also function as initial conditions. However, it has
not yet been attempted to explore initial conditions specifically since this will later
be the task of the skill network. A skill will then only be invoked by the skill network
if the initial conditions specified in the skill template prove to be given. For now it
will be taken for granted that the initial conditions for a skill are satisfied.

4.8.1 Classification of Condition Procedures

There is a great variety of ending conditions. Most of them can be classified in the
following way, where conditions 1. - 8. represent geometric conditions and 9. and 10.
conditions that do not imply a geometric calculation® :

1. Geometric relationships between a joint and an object
Comparing the location of a joint with the bounding box of an object.

(a) Zjoins greater than Zmas obj, Yjoint greater than Ymaz obi, OT Zjoin; greater
than Zmez_ob;-

(b) Zjoint less than Tmin_obj, Yjeins less than Ymin_objs OT Zjoint 1€8s than Zmin_ob;-

(c) Joint within specified distance from object.
E.g. “Is the wrist under the table, above the table or in front of it?”

2. Geometric relationships between a body part and an object
Comparing the bounding boxes of a body part and an object.

1The following notion will be used:

bounding box of an object = (ﬁmin_obj, Ymin_obj; Zmin_obj, Tmaz_obj, Ymaz_obj, Zmax_obj),
bounding box of a body part = (-'L'min_bpa Ymin_bp, Zmin_bpy Tmaz_bp; Ymaz_bp, Zma:c_bp)a
joint position = (mjoint; Yjoint, zjoint)y and

target position = (-Ttarget; Ytarget, ztarget)



4.8 Condition Procedures 69

(2) Tmin_bp greater than Tmaz_obj, Ymin_bp greater than Ymaz obj, OF Zmin_p greater
than zmaz _obj-

(b) ZTmazbp less than Tmin_obj, Ymazbp less than Ymin_obj, OF Zmaessp less than
Zmin_obj+

E.g. “Is the glass located to the right or to the left of the forearm?”

3. Geometric relationship between joints
Comparing the location of two joints.
(a) T jointl equa'l Tjoint2y Yjointl equa'l Yjoint2 OT Zjoint1 equa'l Zjoint2-
(b) Zjoins1 less than Zjoint2, Yjoint1 less than Yjoinsz, OF Zjsins1 less than zjoins.
(¢) Zjoint1 greater than jsint2, Yjoins1 greater than yjoins2, Or Zjoinn greater than
Zjoint2-
E.g. “Is the wrist located below or above the elbow?” or “Is the elbow posi-

tioned to the right or to the left of the shoulder joint?”

4. Location of a joint
Comparing the location of a joint with a target position.
(a) Tjoint equa'l Ztargety Yjoint equa'l Ytargety; OF Zjoint equa'l Ztarget-
(b) Zjoint less than Tigrget, Yjoint l€ss than Yiarget, OF Zjoins less than zigrger.

(€) Tjoint greater than Tigrget, Yjoint greater than Yiarget, OF Zjoint greater than

zta'rget-
(d) Joint position (xjointa Yjoint, zjoint) equal tal‘get (xtargeta Ytarget, Ztarget)'
(e) Joint position within specified distance of object.

E.g. “Is the wrist positioned at a height of z=75 ?” or “Is the end effector
positioned at a specified goal point?”

5. Orientation of a body part
Measuring the angle a body part axis includes with a target axis.

(a) Body part orientation equal target orientation

(b) Body part orientation aligned with a specified axis of an object

E.g. “Does the forearm point in the target direction?” or “Is the thumb vector
aligned with the longitudinal axis of the glass?”



4.8 Condition Procedures 70

6. Angular constraints
Comparing a joint angle with a target angle.

(a) Joint angle equal target angle
(b)
(c) Joint angle less than target angle

Joint angle greater than target angle

(d) Configuration of joint angles of a limb equal target configuration

E.g. “Is the elbow angle less than 130 degrees?” or “Is the arm positioned in
the target configuration?”

7. Contact between a body part and an object
Checking for any collision between a body part and an object.
E.g. “Do the fingers touch the table?” or “Does the left toe touch the ground?”

8. Contact between body parts
E.g. “Does the palm touch the lower body?” or “Do the upper right and the
upper left leg touch each other?”

9. Change in one of the global variables of the SkillBuilder
Checking, for example, whether the arm_pose_parameter changed since the last
timestep.

10. Ending condition of another skill currently being executed is satisfied

The condition mentioned last can be used for composite skills composed of parallel
dependent atomic skills (refer to section 4.7.3).

In many cases, a condition procedure is very general and is made suitable for a
specific skill state by passing the appropriate arguments to the procedure. However,
sometimes condition procedures have to be generated that are very specific for one
skill. Those procedures can be of any of the above mentioned kinds and will have
to be developed at an ad hoc basis when defining new skill states. An example is
given for the 2. kind of condition procedures on page 71 that is specifically for the
reach_ceiling skill.

4.8.2 Implemented Condition Procedures

So far, only condition procedures needed for the skills introduced in this thesis have
been implemented.



4.8 Condition Procedures 71

Condition 1:

Very general is the procedure

joint_in_box joint object option

for which the option parameter can be specified as “in”, “x_plus_in”, “y_plus_in”,
“z_plusdn”, “x_plus”, “y_plus”, “z_plus”, “x_minus.n”, “y_minusin”, “z_minusin”,
“x_minus”, “y_minus”, “z_minus”. If, for example, the option is set to “z_plus_in”
(see figure 4-19), the procedure checks, whether the joint is located above the object,
but inside the horizontal bounding square of the object, so that a call joint_in_box
wrist table z_plus_in is only true, if the wrist is located above the table plane.
If it only plays a role, whether the wrist is located at a point higher than the table
plane, option “z_plus” should be used. Option “in” tests, whether a joint is located
inside the bounding box of an object.

“z_plus_in"

— object bounding box
z

L,

Figure 4-19: Option “z_plus_in” for the joint_in_box condition procedure

Condition 2:

The condition procedure
hand on_ceiling ceiling object

is true when the highest point of the hand is located above the lowest point of an
object modeling the ceiling. This condition procedure is already quite specific since
the body part in question, i.e. the hand, is hardcoded. In the case of the hand this
1s necessary because the compound of all bounding boxes of all fingers and the palm
should be taken into account.



4.8 Condition Procedures 72

Conditions 4:

The following condition is true when the end effector (or in case gp-opt is set to
“wrist” the wrist) coincides with a given goal point within the goal _point_precision:

goal reached goal point gp_opt

The goal point_precision is a global variable that can be changed any time using
procedure gpp.

If the distance between a goal point or the centroid of an object and the end effector
(or in case gp_opt is set to “wrist” the wrist) is less than the length of the stretched
out arm, the following conditions are satisfied:

goal_in reaching distance goal_point gp_-opt
object_in reaching distance object gp_opt

Conditions 5:

Comparing the orientation of a body part with a target orientation is done by the
procedures

test_hand direction axis_ opt target_axis
test forearm direction target_axis
test upper arm direction axis_ opt target_axis

For the hand, the possible axis_opts are “point”, “palm”, and “thumb”, specifying
which of the hand axes is the one in question. The upper arm will generally be
used with an axis_opt “main”, specifying the axis from the shoulder joint to the
elbow. However, a possibility to specify “perp” is given, where “perp” denotes an
axis perpendicular to the upper arm’s main axis in the plane defined by the upper
arm’s and the forearm’s axes.

Conditions 6:

The following condition procedures check whether a specified joint angle configuration
for the arm, a finger, or the thumb are reached by comparing the sum of the deviations
of the current configuration from the target configuration with the global variable
angle precision:



4.8 Condition Procedures 73

arm_config reached config
finger config reached finger config
thumb_config reached config

The target configurations are passed to the procedures as n dimensional vectors, with
n = 9 for the arm, n=3 for a finger and n=>5 for the thumb. Procedure
arm_joint_angle reached joint name target_angle

serves to check whether a target angle for a specific arm joint is reached.

Conditions 7:

The contact between a body part and an object is detected when a collision takes
place. Since there was no collision at the previous timestep and the stepsize by which
the body parts move are very small, the collision depth is also very small. This way it
is allowed to define the “collision” as contact between the body part and the object.
The following procedures have been provided:

collision fingers object
collision lower_arm object

collision fingertip finger object
collision_hand object

The procedure collision fingers tests for collision of each link of all fingers with
the object. The collision hand procedure checks only for collision of the hand palm
with an object.

Conditions 9:

Procedure
same_posture
checks whether the arm pose_parameter changed since the last timestep and

reaching problems



4.8 Condition Procedures 74

returns the boolean value of the global variable with the same name. This variable
might have been set to “1” during the execution of inverse kinematics calculation
procedures to indicate that the specified goal point cannot be reached.

4.8.3 Linking several Condition Procedures

An ending condition can be composed of any number of condition procedures by
connecting them logically.

For example, if a state should only branch to state X, if condition 1 and condition 2
and (condition 3 or condition 4) are true, its ending condition might look as follows:

set condition_X [list [condition_procedure_1i] & [condition_procedure_2] & \
[list [condition_procedure_3] | [condition_procedure_4] ] ]



Chapter 5

Visually Guided Motion

5.1 Orienting a Body Part

All motor programs for skills to orient a body part, e.g. pointing with the forearm
in a specified direction or aligning the thumb axis with an object axis are based on
one of the inverse-kinematics-calculation-procedures introduced in chapter 4.5. They
belong to the category of motor programs for atomic inverse kinematics skills (see
section 4.7.2).

In how many timesteps the target orientation will be reached by a body part depends
on the value of the global variable angle_per_timestep if the time_opt parameter
to the orient-body-part skill is set to “0”. A time_opt parameter “0” means that
the number of timesteps should be calculated by a timesteps-calculation-procedure
such as calc_angle timesteps (appendix A, page 108) in the case of orient-body-
part skills. If the time_opt parameter is set to “1” the procedure will read the
number of timesteps from the timesteps parameter instead of calculating it. The
angle per_timestep can be changed at any time by using the procedure aps (ap-
pendix A, page 106).

More complicated composite skills will often have one or more of the atomic orient-
body-part skills as their elements. The name of orient-body-part skills often starts with
direct_***. Anexample of how toincorporate the direct upper_arm,direct fore-
arm and direct_hand skills in a skill called wave_hand will be shown in section 5.6.

5.1.1 Orienting the Upper Arm

The atomic skill to orient the upper arm along a given vector is

75



5.1 Orienting a Body Part 76

direct_upper_arm main_axis perp-axis time_opt timesteps end_event

The main_axis has to be a 3 dimensional vector specifying a target orientation for
the upper arm. It does not necessarily have to be a unit vector since the inverse-
kinematics-calculation-procedure the motor program is based on (i.e. upper_arm_an-
gles_abs) will make it a unit vector. The perp_axis parameter is usually set to “no”,
meaning that no specific perpendicular axis has to be reached. With perpendicular
axis is an axis denoted that is perpendicular to the main axis and forms together
with the main axis the plane in which the forearm is located. In case a perp_axis is
specified, the procedure upper_arm_angles_abs returns not only an arm-Is and arm-1f
angle, but also an arm-turn angle. Those angles are the absolute angles needed to
reach the specified orientation. A procedure upper_arm_angles._rel will calculate all
differences between the current and the desired joint angles and divide them by the
number of timesteps to find the appropriate stepsize for every local motor program
called, i.e. the 1ift_arm_sideward, the 1ift_arm forward and, in case a perp_axis
is specified, the turn_arm procedures.

5.1.2 Orienting the Lower Arm
The orientation of the forearm can be changed by the atomic skill
direct forearm main_axis time_opt timesteps end_event

which is based on the forearm angles_abs procedure described in section 4.5.2
(page 50). The stepsizes for both local motor programs involved, i.e. turn_arm
and bend_hand, are synchronized in procedure forearm angles_rel.

5.1.3 Orienting the Hand Axes

For orienting the hand axes there are three different skills provided. They are:

direct_hand palm/point._axes palm_axis point_axis time_opt timesteps
end_event
direct_hand palm_towards object time_opt timesteps end_event
align hand thumb_axis with object object hand bend.angle time_opt
timesteps end_event

The direct hand _palm/point_axes skill has an option to specify both a target palm
axis and a target point axis, each consisting of three dimensional vectors. In case



5.2 Reaching 77

both axes are given, all three local motor programs for the hand, i.e. turn_hand,
bend hand, and twist_hand, will be activated. In case there is no point axis specified
(by setting the point_axis parameter to “no”), the current twist angle of the hand
will remain the same, since it does not influence the palm axis (see section 4.5.3,
page 55).

For orienting the palm axis towards an object the skill direct_hand_palm_ towards
is provided (see appendix, page 113). It is very similar to the previous one, but the
palm axis will be computed by subtracting the current end effector position from the
centroid of the specified object. No hand twisting will take place. This skill can e.g.
be used in order to “look at a picture” if the picture is placed in the hand parallel
to the palm, the palm is oriented towards the head and the head/eyes are oriented
towards the picture.

As mentioned earlier, it is useful for some grips to have the thumb axis aligned with
the longitudinal axis of an object. The skill align hand thumb_axis with object
therefore first calls a procedure that returns a vector specifying the longitudinal axis
of an object, given the object (see procedure object_1_axis included in appendix A,
page 127) . The hand-turn and the hand-twist angle are calculated by the procedure
aligned hand angles_abs discussed on page 53. The hand bend_angle is provided
as an input parameter to the skill.

5.2 Reaching

5.2.1 Simple Reaching

Like the orient-body-part skills, the simple reaching skills are atomic inverse kinematics
skills. The core of the motor programs for simple reaching consists of a call to the
goal _arm_angles_abs procedure, explained in detail in section 4.5.

By simple reaching it is meant that only positioning of the end effector (or wrist)
takes place without orienting the hand in a specific direction, and there is no collision
avoidance. The following motor program invokes simple reaching

move_arm to_goal goal point gp_opt time_opt timesteps end_event

(see appendix A, page 126), by changing the arm-ls, arm-If, arm-turn, and elbow joint
angles so as to position the end effector at the specified goal point.

The procedure

move_arm_to_object object gp_opt time opt timesteps end event



5.2 Reaching 78

is capable of adapting to a moving object. If the object is e.g. a ball, the orientation
of the hand in respect to the ball does not play a role. Thus, applying a simple
reaching procedure is sufficient. The end effector is moved to a fictitious point on
the palm vector such that the distance between the new end effector position and the
palm equals the radius of the object. This way, the centroid of the object is the point
the end effector should reach for in order to achieve proper contact between the palm
and the object. Every timestep, the move_arm_to_object_statel procedure sets the
goal_point to the current centroid of the ball that might have changed meanwhile.

The goal_arm_angles_abs also recomputes for every timestep the final angles neces-
sary to reach the current goal_point. If the object is moving faster than the distance
per timestep the end effector is supposed to travel, the end effector would always stay
behind the object. To avoid this effect, the global variable dist_per_timestep can
be set to a greater distance by using the procedure dps (included in appendix A,
page 115).

As for the orient-body-part skills, setting the time_opt to “0” will cause the number of
timesteps to be calculated by the appropriate timesteps-calculation-procedure which
is calc_dist_timesteps in that case.

5.2.2 Reaching for an Object with Alignment of the Hand

Theoretically, reaching for an object while aligning the hand along the objects lon-
gitudinal axis could be realized as a composite skill composed of the atomic skills
move_arm to_object and align hand_ thumb_axis with object executing in paral-
lel. When aligning the thumb axis with an object, the absolute hand angles needed
to bring the hand in the desired orientation are computed, based on the current co-
ordinate frame of the forearm, located at the wrist. To orient the hand in the same
way based on a different coordinate frame of the forearm, namely the one after the
goal point is reached would yield different hand angles. Since the hand angles would
be changed only by the amount of the current stepsizes and the inverse kinematics
algorithms are recomputed every timestep, the composite skill would eventually bring
the joints in the right position.

A better way to realize such a reaching skill is to integrate the calculation of the hand
angles with the calculation of the arm angles, so that the hand angles calculation can
be based on the final arm angles. As mentioned earlier in section 4.5.4, this is done
in procedure reach_angles_abs.

The atomic skill based on the reach angles

reach-object object gp_opt hand bend angle time opt timesteps end_event



5.2 Reaching 79

controls seven joint motions: arm lifting sideward, arm lifting forward, arm turning,
elbow bending, hand turning, hand bending and hand twisting, where the hand turn-
ing results from the target hand_bend_angle that was given as a parameter to the
skill.

5.2.3 Reaching for an Object along a Path

In order to avoid collision when reaching for an object, a collision free path has to be
generated using the procedure equidistant_path_points explained in section 4.6.
The distance between one point on the path and the following point will always be
the same and is determined by the value of the global variable dist_per_timestep.

The end effector will be guided through each of the path points except the last one, by
linking several atomic move_arm_to_goal skills sequentially. One of the equidistant
path points will be passed as input for the goal_point parameter to each of these
skills in order. To force the end effector to reach the goal point in one timestep the
time_opt has to be set to “1” and the number of timesteps to “1”. So far, the
hand will keep its original joint angles. To start reaching for the object, (involving
the alignment of the hand thumb vector with the object), a dummy object is placed
at the location of the last path point before the object is reached, and assigned the
matrix of the object so that the dummy object ends up in the same orientation as
the object to be reached.

Now, the atomic skill reach_object dummy will be defined as end event of the last
move_arm_to_goal skill, and reach object object as end event of reach object
dummy in order to execute all the named skills in sequence.

The sequential linking of the atomic skills will be done by the procedure write_-
reac111_'f ile that produces a file called reach_command at runtime which might look
as follows:

move_arm_to_goal new {7.87376884 -10.6772338 11.0305709} ee 1 1 {
move.arm to.goal new {9.19729096 -9.05777862 11.0674169} ee 1 1 {
move.arm_to.goal new {10.5208131 -7.43832343 11.104263} ee 1 1 {
move_arm to_goal new {11.8443352 -5.81886824 11.1411091} ee 1 1 {
move.arm.to_goal new {13.478763 ~5.40810519 11.2134024} ee 1 1 {
move_arm to_goal.new {15.4184204 -6.18396817 11.3204958} ee 1 1 {

gpp 2
reachobject dummy ee -10 1 {

gpp 0.4
reach object glas ee -10 1 {}

}



5.2 Reaching 80

Finally, calling the procedure
reach object_along path object hand_bend._angle end_event

will cause the path points to be generated, write the file reach_command (see procedure
write_reach file, appendix A, page 133) and source the reach_command file so as to
execute the composite skill. Figure 5-1 shows the hand while moving the end effector
along the posted path towards a glass on the table. Note that the end effector is set
to be a fictitious point 1 inch apart from the palm.

Figure 5-1: Virtual actor performing the reach_object_along_ path skill



5.3 Articulating the Fingers 81

5.3 Articulating the Fingers

5.3.1 Grasping

Grasping should only be invoked when the object to be grasped is reached. The
procedure

grasp-object object speed end_event
is implemented as a composite skill invoking the atomic skills

close finger finger object bendl step bend2 step end_event
close_thumb object bendl step bend2_step end event

for all fingers in parallel (see figure 5-2).

{ close_finger index $object
{ close_finger ringfinger $object
PC:Iose_finger middlefinger $object
DC:lose_finger littlefinger $object
DGlose_thumb $object

Figure 5-2: Composite skill grasp_object

‘(TTTT

proc grasp_object { object {speed 1} {end_event {return stop}} } {

set grasp_object_condition0 [object_reached $object]

set bendi_thumb_step $speed

set bend2_thumb_step [mult 2 $speed]

set bendl_step [mult 3 $bendi_thumb_step]

set bend2_step [mult 3 $bend2_thumb_step]

if $grasp_object_condition0 then {
close_finger index $object $bendi_step $bend2_step {}
close_finger middlefinger $object $bendi_step $bend2_step {}
close_finger ringfinger $object $bendl_step $bend2_step $end_event
close_finger littlefinger $object $bendi_step $bend2_step {}
close_thumb $object $bendl_thumb_step $bend2_thumb_step {}



5.3 Articulating the Fingers 82

} else {
echo Sorry, the initial conditions for executing this skill are not given!

}

return

The local motor program involved in the close_finger atomic skill is

bend_one finger by finger bend_anglel bend _angle2 timesteps renopt
and for the close_thumb atomic skill

bend_thumb_joint joint option angle timesteps renopt

Figure 5-3 shows the actor’s hand after grasping a glass.

5.3.2 Making a fist
Making a fist can be realized by defining the palm itself as the object “to be grasped”

and invoking the same atomic skills as for the grasp_object skill. The procedure for
that skill is

make fist speed end_event

5.3.3 Changing between Different Hand Postures

A hand posture is determined by a specific configuration of all finger and thumb joint
angles. There are several composite skills

bring.all fingers_ in *** _config timesteps end_event

where *** can stand for “rest”, “point”, or “open_grasp” that will change the hand-
posture in a specified number of timesteps into the corresponding configuration.
The point position is shown in figure 5-4.

The skills are composed of the atomic skills

bring finger_ in config finger configuration timesteps end_event
bring thumb.in_config configuration timesteps end_event



5.3 Articulating the Fingers

Figure 5-3: Hand of the virtual actor grasping a glass

83



5.3 Articulating the Fingers 84

Figure 5-4: Hand of the virtual actor in point position

that are to be executed in parallel as in the following composite skill:

proc bring_all_fingers_in_point-config {{timesteps 4} {end_event {3 {

set bring_all_fingers_in_point_config_conditionO [hand_free]

if $bring_a11_fingers_in_point_config_conditionO then {
bring_finger_ in_config index {0 2 4} $timesteps {}
bring_finger_in_config middlefinger {10 80 90} $timesteps $end_event
bring_finger_in_config ringfinger <{-5 90 90} $timesteps {}
bring_finger_in_config littlefinger {0 96 90} $timesteps {}
bring_thumb_in_config {-20 40 90 20 7} $timesteps {}

} else {
echo Sorry, the initial conditions for executing this skill \

are not given!
h

return

Since the number of timesteps for all atomic skills will be the same, the end_event
only has to be evaluated by one of them.

The atomic skills bring finger_ in_config invoke the following local motor pro-
grams:

bend one_finger by finger bend_anglel bend_angle2 timesteps renopt
spread finger finger option spread_angle timesteps renopt



5.4 Integrated Reaching and Grasping 85

whereas the atomic skill bring thumb_in_config invokes the local motor programs

spread finger thumb option spread.angle timesteps renopt
move_thumb_down option angle timesteps renopt

turn_thumb option angle timesteps renopt
bend_thumb_joint 1 option angle timesteps renopt
bend_thumb_joint 2 option angle timesteps renopt

5.4 Integrated Reaching and Grasping

Grasping can be easily integrated in the composite skill reach_object_along path
(see section 5.2.3) by adding the atomic skill bring.all fingers_in open grasp.-
config. The skill to open the fingers should start executing in parallel with one of the
move_arm_to_goal skills depending on how many timesteps the finger opening should
take. Defining the atomic skill grasp_object as end event will make the fingers grasp
the object after it has been approached.

5.5 Putting the Arm on the Table

The following skill is presented as an example of an atomic forward kinematics skill
modeled by a complex finite state machine, according to figure 5-5. If the wrist

initlal condition 1a:

condition: forearm touches table

wrist above condition 2:

table plane state1: state 2: fingers touch table
bend_elbow by -1 bend_hand by 1

’?r:d“b" 4a;
arm touchg, -
le

ton 19%  vie
r‘;\o‘:\:.\:‘ Louch 1ab

condition 3:
state 3: fingers do not touch tabie
bend_hand by -1

condition 4b:
finger touch table

state 4:

bend_hand by -1
bend_elbow by -1

Figure 5-5: Finite state machine for the atomic skill put_arm_on_table

is located above the table plane (which is the initial condition for that skill), then



5.6 Waving the Hand 86

extending the elbow - as will be done in state 1 of the finite state machine - will make
the hand approach the table plane. Depending on whether the forearm or one of the
fingers will first touch the table, it will be branched to either state 2 or state 3 of the
finite state machine. State 2 makes the hand bend until the fingers also touch the
table (this is the ending condition of the skill). In case the fingers touched the table
first, it will be branched to state 3, the hand will be bent outwards so as to take the
fingers away from the table until they no longer have contact. The elbow will then
extend further while the hand will still be bent outwards (state 4). If now the fingers
touch the table first, states 3 and 4 will be repeated until the condition for branching
to the final state 2 is fulfilled, namely that the forearm touches the table.

The put.-arm_on_table skill does not include any collision avoidance. There is no
visual controller that would guarantee that the elbow does not run into any other
body link or object in the virtual environment while performing the skill. Also, the
actor would not “realize” if there is an object placed on the table right where the
hand approaches the table plane.

All procedures defining the motor programs of the put_arm_on_table skill are included
in appendix A, page 127.

5.6 Waving the Hand

Another example of a composite skill is the
wave hand end_event

skill, composed mainly of orient-body-part skills (see figure 5-6). In this skill, the arm
first aims specific orientations for the upper arm and the forearm. Once the target
orientation for the upper arm is reached, the hand is oriented so that the palm axis
points forwards (viewed from the body). The target for the forearm orientation alters
between two orientations while the hand angles are constantly adjusted so as to keep
the specified palm orientation.

Hand waving is an oscillating skill. All oscillating skills need to add a control pro-
cedure to the command list (i.e. wave_hand control in this case) that constantly
checks, whether the skill should keep executing. The hand waving skill can be stopped
by typing stopwaving (in the Do Command once textfield). This will set the
global variable stop_waving to “1” so that the wave_hand control procedure will re-
move all atomic skills invoked by wave hand from the command list, including itself.
Furthermore, it will evaluate the end event of wave_hand.



5.7 Head/ Eye Controller 87

wave_hand control |

J

direct_upper_arm target_axig—b(direct_hand_palm/point_axis
direct_forearm target_axis1)—>Girect_forearm target_axis2

Figure 5-6: Composite skill wave_hand

T

KL

gl

This way it is possible, to bring the arm back in its original position by defining the
skill

move_arm_to_config config time opt timesteps end event

as end event of wave hand. The parameter config could be set to “Sorg” which is
the global variable in which the original arm configuration is stored. The call would
look as follows:

wave_hand {
global org
move_arm_to_config $org 0 0 {}

5.7 Head/ Eye Controller

A controller for the head and eye movements has been developed by Sunil Singh
and his student Dan Popa at Dartmouth College and has been integrated in the
SkillBuilder [9].

It is the task of the head-eye controller to track a target object moving in a 3-
dimensional space. The controller has been implemented as a manipulator written
in C, communicating with the tcl procedures of the SkillBuilder through a series of
ppread and ppwrite commands.

The head, represented by a model of a skull, is placed on the neck at joint 9 of
the dhchain of the spine and is capable of limited motion about three intersecting
coordinate axes, like a spherical wrist in robot manipulators. The eyes are represented
by two white balls. Two smaller blue balls inside the white balls represent the pupils.



5.7 Head/ Eye Controller 88

Singh and Popa make use of the fact that a target can be characterized by its coordi-
nates with respect to a fixed frame and by an angle a, which represents the angular
orientation of the object with respect to the rotated axis normal to the skull. They
determine the rotation matrix of the skull relative to the fixed frame by using the Eu-
ler formalism, and solve the formulated inverse kinematics equations for the rotation
angles around the fixed frame.

Since it is not intended to move the head towards a target at all times, but rather
move only the eyes or both, they make the following considerations:

e The fovea of both eyes can be independently directed to the object of interest
(vergence eye movements).

o If the object is “almost” in front of the eyes, the eyes move only in a quick,
gaze-shifting response, called a saccade.

e Both the skull and the eyes have a relative rotation range which cannot be
exceeded.

o If the object to be tracked is moving outside of the range for “comfortable” eye
movements, the head-eye motions must be carefully distributed between the
head and the eyes.

While the head control unit uses purely inverse kinematics, the eye control unit ex-
plicitly accounts for the dynamics of the object and the human system.

The SkillBuilder provides the following atomic skills to provoke head/eye motions:

head_track object end_event
head straight time_opt timesteps end_event
head move object time opt timesteps end event

Each of those skills will put the appropriate procedures on the command list and will
be executed only if the command loop is running. The head_move skill will cause the
head and eyes to move the focus towards the specified object in the given number
of timesteps and evaluate its end_event upon completion of the skill. The skill will
be able to adapt to a moving object.

Keeping the focus of the head and eyes on a moving object can be done by invoking
the head_track skill. It is useful to define head_track as end event of head_move,
in order to slowly move the focus towards an object before tracking it. head_track



5.7 Head/ Eye Controller 89

i1s a continuous skill which means it will only stop executing when it is explicitly
stopped by calling the procedure stop_head_track. Remember that while the com-
mand loop is running, interactions are only possible through the menus. This means
stop_head_track has to be typed in the Do Command Once text field.

The skill head_straight is nothing else but a call to the head move skill with a
dummy object placed at the point the head should look at.

Figure 5-7 shows the virtual actor with the skull looking at a ball in its hand.

Figure 5-7: Virtual actor looking at a ball in its hand



Chapter 6

Future Work

The presented state of the SkillBuilder is prototypical. In this chapter there will
be suggestions on how to extend the functionality of the SkillBuilder, improve the
performance and make it more user-friendly.

Extensions of the functionality of the SkillBuilder could be made by:

e Articulating the rest of the limbs

So far, the virtual actor has kinematic chains defined for the spine, the left arm,
all fingers and the thumb of the left hand, as well as for the left leg and its
foot. For skills involving both arms and/or legs, however, the model needs to
be extended to include kinematic chains for the right arm, all fingers and the
thumb of the right hand, as well as for the right leg and foot. The process of
finding the right Denavit-Hartenberg parameters might be a bit tricky, given
that the notation does not allow “mirroring”. But looking at the parameters of
the dhchain for the left limbs of the actor already provided, and using the limb
edit menu will be very helpful.

e Creating local motor programs for all articulated joints
Local motor programs exist only for the left arm and all fingers and the thumb
of the left hand. Creating local motor programs for all other joints will be trivial
given the templates from the implemented ones (see section 4.4.2).

¢ Extending the list of condition procedures
The classification of condition procedures given in section 4.8.1 suggests several
general conditions that have not yet been implemented. As the complexity and
variety of skills increases more condition procedures appropriate for those skills
will have to be generated.

90



6 Future Work 91

e Developing a range of representative motor skills
The range of representative motor skills should be extended to match the task
primitives mentioned in section 3.3.

¢ Creating of a more complex virtual world for the actor
The more complex the skills get the virtual actor should perform the more there
will be a need for different kinds of objects in the environment, e.g. a chair he
could sit on, a door he could open, different objects on the table he could pick
up and lift, and so on.

Improvements to the performance of the motor skills are possible by:

¢ Integrating a more general collision avoidance and collision detection
feature
There is much current research in finding the best collision free path through
a cluttered environment. Especially in robotics, many algorithms for a manip-
ulator with several links have been suggested. As the virtual environment for
the actor gets more and more complex, it will be important to integrate a more
general path finding algorithm and possibly extend it with a collision detection
feature. It will be necessary not only to guarantee a collision free path for the
end effector, i.e. the palm, but also all links of a moving limb.

¢ Including dynamics
As the fidelity requirements of the applications increase it will be necessary to
include dynamics in the simulation to make it look more realistic.

¢ Confirming the performance with experimental data
The movements of the actor performing a skill could be compared with experi-
mental data from human subjects performing the same tasks.

e Speeding up
By distributing computational processes over a network of machines the perfor-
mance could be made faster and made look more realistic.

Improvements of the user friendliness of the SkillBuilder could be achieved by:

e Developing an automated motor program builder
It would be nice if the skill designer would not have to write tcl source code.
Because the general structure of motor programs has been defined in this thesis,
it will easily be possible to generate a motor program builder for atomic as
well as composite skills. A motor program builder would prompt the user for



6 Future Work 92

all necessary information to create the source code, i.e. the motor programs,
automatically.

¢ Providing a graphical user interface

This is certainly one of the most important issues to make the SkillBuilder
easier to handle. Once the generation of motor programs has been automated,
a visual programming language for defining motor skills should be implemented
as described in section 3.4.3 (the ultimate SkillBuilder interface). Furthermore,
all available skills should be able to invoked by choosing an item from a graphical
list, taking its arguments from another graphical menu. The values of all global
parameters should be displayed and able to be changed by graphical means.



Chapter 7

Conclusion

This thesis describes the development of the SkillBuilder, a software system that can
function as a design tool for motor programs - the source code of skills a virtual actor
can perform. The implementation was done in the &d virtual environment simulation
system explained in the thesis.

A human figure model was generated consisting of rigid body parts that are linked
together as several kinematic chains using the Denavit-Hartenberg notation. Every
joint of the figure can be articulated by a corresponding local motor program.

A classification of skills into atomic and composite skills has been made where the
atomic skills were further classified into forward and inverse kinematics skills. Atomic
skills are modeled by finite state machines that define different states to be run
through during the execution of a skill, as well as their transition conditions. The
composition of more complex skills into composite skills has been demonstrated by
linking atomic skills in a parallel or sequential manner, or in a combination of both.

It has been shown how to generalize the generation of motor programs. Every motor
program consists of a compound of procedures, each defining one state of a finite state
machine. A state mainly consists of the identification of local motor programs (i.e.
the action to be taken during the execution of that particular state) and a definition
of the ending conditions (i.e. conditions that have to be satisfied in order to proceed
to the next state).

Ending conditions have been classified and a selection of condition procedures have
been implemented. In many cases, a condition procedure is very general and is
made suitable for a specific skill state by passing the appropriate arguments to the
procedure. However, sometimes condition procedures have to be generated that are
very specific for one skill. Those kind of procedures will have to be developed on an

93



7 Conclusion 94

ad hoc basis when defining new skills.

The problem of parallel execution of several motor programs has been addressed
by introducing the command loop: an endless loop that constantly evaluates all
procedures currently on the command list. Thus, every motor program currently
executing has an entry of one of its states in the command list.

The focus of the work was on visually guided reaching and grasping skills using the
left arm.

Reaching for an object involves inverse kinematics calculations. The algorithm for
positioning the palm at a specified point in space takes four joint angles into account:
the two angles of the spherical joint and the shoulder, the elbow angle and the arm-
turn angle. The first two of these angles determine the upper arm direction. The
arm-turn angle is the angle the forearm is turned about the upper arm axis. The
additional degree of freedom is used to influence the relative elbow position which
determines the rotation of the arm about the vector from the shoulder to the goal
point. It is guaranteed that the elbow always stays outside of the plane defined by
the upper arm and the forearm in the lowest possible elbow position, as viewed from
the center of the body. The three angles of the hand are calculated from a target
orientation the hand should finally reach. For the course of this thesis only a power
grip has been considered for which the thumb axis (i.e. an axis in the palm plane
pointing towards the thumb) needs to be aligned with the longitudinal axis of the
object to be grasped.

Adaptation to a moving object or a changing shoulder position (when lifting the
shoulder, when leaning forwards, or even when moving the whole body while reaching)
is achieved by recomputing the inverse kinematics calculations every timestep.

The global variable arm_pose_parameter contains a measurement for the relative
elbow position that can be changed at any time. Several other global parame-
ters like the dist_per_timestep, angle_per_timestep, goal point_precision and
angle precision have also been defined and can be changed any time during the
execution of the skills in order to alter the performance.

A collision avoidance algorithm specific to the left arm has been implemented that
guarantees that the hand will move from its current position to the object without
colliding with a specified collision object, i.e. the table. However, the algorithm does
not yet guarantee collision free moves of the other arm links, i.e. the upper arm and
the forearm. In order to avoid collisions of these arm links the relative elbow position
can be influenced appropriately by changing the arm_pose_parameter.

The reaching and grasping skills have been successfully demonstrated as real-time
response to a direct interaction between the virtual environment participant and the



7 Conclusion 95

virtual actor. A glass positioned on a table located right in front of the virtual
actor can be “picked up” and positioned anywhere else using a dataglove that has
been hooked up to the SkillBuilder. When “asking” the actor to grasp the glass, an
appropriate collision-free path is generated and, if desired, shown on the screen. The
actor starts forming an open grasp position with the fingers while reaching for the
glass along the collision free path. Once the glass has been reached the actor wraps
the fingers around the glass until a contact has been detected between each of the
fingers and the glass. When “picking up” the glass again, the actor may be “asked”
to hang on to it. The actor always adjusts the angles of the hand so that it keeps the
same orientation with respect to the glass. This way it is also possible to demonstrate
a drinking actor (see figure 7-1).

The focus was deliberately put on visually guided reaching and grasping skills, rather
than on the attempt to implement a range of behaviors. The exercise has led to a
better understanding of the issues involved in designing the needed software tools
that will serve to extend the SkillBuilder with a range of representative motor skills.

Validating the implemented motor programs with human clinical/experimental data
is left for future work.



7 Conclusion

Figure 7-1: Drinking actor

96



References

1]

[2]

8]

[4]

(5]

[6]

[7]

8]

“Research Directions in Virtual Environments,” Report of an NSF Invitational

Workshop, Computer Graphics, Volume 26, Number 3, August 1992, pp.153-177.

Calvert T., “Composition of Realistic Animation Sequences for Multiple Human
Figures,” in Making Them Move: Mechanics, Control and Animation of Artic-
ulated Figures, N. Badler, B. Barsky, and D. Zeltzer, 1991, Morgan Kaufmann:
San Mateo CA, pp. 35-50.

Badler N.I., “Human Modeling in Visualization,” in New Trends in Animation
and Visualization, N. Magnetnat Thalmann, D. Thalmann, 1991, John Wiley &
Sons: Chichester, England, pp. 209-228.

Bizzi E., “Central and Peripheral Mechanisms in Motor Control,” in Tutorials in
Motor Behavior, G.E. Stelmach and J.Requin, 1980, North-Holland Publishing
Company, pp. 131-143.

Brooks, R.A., “Planning Collision Free Motions for Pick-andPlace Operations,”
in The International Journal of Robotics Research, Vol.2, No.4, Winter 1983.

Brooks, R.A., “A Robot that Walks: Emergent Behavior from a Carefully
Evolved Network”, in Making Them Move: Mechanics, Control and Anima-
tion of Articulated Figures, N. Badler, B. Barsky, and D. Zeltzer, 1991, Morgan
Kaufmann: San Mateo CA, pp. 99-108.

Chen, D. and D. Zeltzer, “The 3d Virtual Environment and Dynamic Simula-
tion System,” Computer Graphics and Animation Group Technical Report, Mas-
sachusetts Institute of Technology, Media Lab, August 1992.

Chen, D., “Pump It Up: Computer Animation of a Biomechanically Based Model
of Muscle using the Finite Element Method,” Ph.D. Thesis, Massachusetts In-
stitute of Technology, 1991.

97



References 98

[9] Chen, D., S. Pieper, S. Singh, J. Rosen, and D. Zeltzer, “The Virtual Sailor:
An Implementation of Interactive Human Body Modeling,” Proc. 1993 Virtual
Reality Annual International Symposium, Seattle, WA, September, 1993.

[10] Croll, B.M., “Rendermatic: An Implementation of the Rendering Pipeline.” Mas-
ter’s Thesis, Massachusetts Institute of Technology, 1986.

[11] Crow, F.C., “A More Flexible Image Generation Environment,” in Proc. ACM
Siggraph 82, Boston, July 1982, pp. 9-18 .

[12] Girard, M., “Interactive design of 3D Computer-Animated Legged Animal Mo-
tion,” IEEE Computer Graphics and Applications, June 1987, 7(6), pp. 39-51.

[13] Johnson, M., “Build-a-Dude: Action Selection Networks for Computational Au-
tonomous Agents”, M.S. Thests, Massachusetts Institute of Technology, Febru-
ary 1991.

[14] Lozano-Perez, T., “Spatial Planning: a Configuration Approach,” in IEEE
Transactions on Computers, Vol. C-32, No.2, Februar 1982.

[15] Magnenat-Thalmann, N. and D. Thalmann, “Synthetic Actors in Computer-
Generated 3D Films”, Springer-Verlag, Berlin, 1990.

[16] Maiocchi, R. and B. Pernici, “Directing an Animated Scene with Autonomous
Actors,” in Computer Animation ’90, N. Magnenat-Thalmann and D. Thalmann,
Springer-Verlag, Tokyo, 1990, pp. 41-60.

[17] Ousterhout, J.K., “Tcl and the Tk Toolkit” Addison-Wesley, in press.

[18] Ousterhout, J.K., “Tcl: An embeddable command language,” 1990 Winter
USENIX Conference Proceedings, 1990.

[19] Paul, R., “Robot Manipulators: Mathematics, Programming, and Control,” MIT
Press, 1981.

[20] Phillips, C.B. and N.I. Badler, “Interactive Behaviors for Bipedal Articulated
Figures,” in Computer Graphics, Volume 25, Number 4, July 1991, pp. 359-362.

[21] Raibert, M., “Legged Robots that Balance”, Cambridge MA: MIT Press, 1986.

[22] Rijpkema, H. and M. Girard, “Computer Animation of Knowledge-Based Human
Grasping” in Computer Graphics, Volume 25, Number 4, July 1991, pp. 339-348.



References 99

[23] Schaffer, L.H., “Analysing Piano Performance: A Study of Concert Pianists,” in
Tutorials in Motor Behavior, G.E. Stelmach and J.Requin, 1980, North-Holland
Publishing Company, pp. 443-455.

[24] Schank, R.C., “Conceptual Information Processing,” American Elsevier Publish-
ing Company, New york, 1975.

[25] Schmidt, R.A., “More on Motor Programs,” in Human Motor Behavior, J.A.
Kelso, Lawrence Erlbaum Associates Publisher, London, 1982.

[26] Schwartz, M.F., E.S. Reed, M. Montgomery, C. Palmer, and N.H. Mayer, “The
Quantitative Description of Action Disorganization after Brain Damage: A Case
Study”, Cognitive Neuropsychology, 1991, 8(5), pp. 381-414.

[27] Young, D.A., “The X Window System Programming and Applications with Xt:
OSF/Motiv Edition”, Prentice-Hall, Inc., 1990.

[28] Wilhelms, J. “Using Dynamic Analysis for Realistic Animation of Articulated
Bodies”, IEEE Computer Graphics and Applications, June 1987, 7(6), pp. 12-27.

[29] Zeltzer, D., “Motor Control Techniques for Figure Animation,” IEEE Computer
Graphics and Applications, November 1982, 2(9), pp. 53-59.

[30] Zeltzer, D., “Knowledge-based Animation” in Proc. ACM SIGGRAPH/SIGART
Workshop on Motion, April 1983, pp. 187-192.

[31] Zeltzer, D., “Task Level Graphical Simulation: Abstraction, Representation and
Control,” in Making Them Move: Mechanics, Control and Animation of Artic-
ulated Figures, N. Badler, B. Barsky, and D. Zeltzer, 1991, Morgan Kaufmann:
San Mateo CA, pp. 3-33.

[32] Zeltzer, D. and M. Johnson, “Motor Planning: An Architecture for Specifying
and Controlling the Behavior of Virtual Actors,” Journal of visualization and
Computer Animation, April-June 1991, 2(2), pp. 74-80.

[33] Zeltzer, D., “Virtual Actors and Virtual Environments: Defining, Modeling and
Reasoning about Motor Skills,” Proc. Interacting with Images, British Computer
Society, London, February 16-18, 1993.

[34] Zeltzer, D. and M. Johnson, “Virtual Actors and Virtual Environments: Defin-
ing, Modeling and Reasoning about Motor Skills,” in Interacting with Virtual
Environments, L. MacDonald and J. Vince, 1993, John Wiley & Sons: Chich-
ester, England, in press.



References 100

[35] Zeltzer, D., “The Virtual Sailor II: Realtime Task Level Interaction with Syn-
thetic Humans,” A Proposal to the Office of Naval Research, Massachusetts In-
stitute of Technology, October 1993.



Appendix A

(General Structure of Inverse
Kinematics Skills

proc IK_skillname { args {time_opt 0} {timesteps 1} {end_event {}} } {
#
# Initial condition
#
set conditionO [list [condition_procedureA args] & \
[condition_procedureB args] & \
Lcondition_procedureN args]]
if $condition0 then {
global IK_skill name_end_event
set IK_skill name_end_event $end_event
global ic
set $end time [plus $ic $timesteps]
addc [list IK_skill name_statel args $time.opt $end time]
} else {
echo Sorry, the initial conditions for executing this skill are not given!
}

return

101



General Structure of Inverse Kinematics Skills 102

proc IK skill name_statel {args time_opt end time } {
#
# State ending condition
#
set conditionl [list [condition_procedureA args] & \
[condition_procedureB args] & \
Lcondition_procedureN args]]
if $conditioni then {
global IK_skill name_end_event
eval [set [K_skill name_end event]
return stop

if { $time opt == 0 } then {

set timesteps [{imesieps_calculation_procedure args]
else {

global ic

set timesteps [minus $end time $ic]

if [lesseq $timesteps 0] then {

set timesteps 1

}

}

set joint_angles [inverse_kinematics_calculation_procedure args $timesteps ]
set joint_angle0 [lindex $joint_angles 0]
set joint_angleN [lindex $joint_angles N]

if [greater [abs $joint_angle0] 0.001] then {
local_motor_program(@ by angle 1 noren
}

if [greater [abs $joint_angleN] 0.001] then {
local_motor_programN by angle 1 noren
}

return



Appendix B

Source Code Examples

* add._c

proc add_c {comm} {
global commandlist;
lappend commandlist $comm
return

FRATEFEAARERENE * FEIRAFERFFRRTRRRY L2

* align_hand.-angle_abs

proc aligned_hand_angles_abs { thumb_axis hand_bend_angle {M10 dh10} } {

set thumb_axis [div $thumb_axis [enorm $thumb_axis]]

if {[string compare $M10 "dh10"] == 0} then {
set M10 [dhmatrix 10 /1_arm/dhc]

}

Mset $M10

Minvert

Mele 3 0 0

Mele 3 1 0

Mele 3 2 0

set T [Mxform [mult -1 $thumb_axis]]

set TO [lindex $T 0]

set T1 [lindex $T 1]

set T2 [lindex $T 2]

#EERRE4ARE thetal3 is given in form of hand_bend_angle #EXENEREER

set thetal3 $hand_bend_angle
set s13 [sin $thetal3]
set c13 [cos $theta13]

p2222222222 ;] Calculation of thetal4 fiz 222 22222;3

set 814 [div [mult -1 $T2] $c13]



Source Code Examples

# asin yields in -90 <= thetal4 <= 90

# The other solution doesn’t have to be evaluated, since the
# allowed range for thetal3 is -40 to 40 degrees.

set thetal4 [asin $s14]

set c14 [cos $thetai4]

b222222222223 Calculation of thetall f22 2222222223

set s11  [expr {($T1#$c14 + $TO*$T24$s13/$c13) / ($TO*$TO + $T1%$T1)}]
# asin yields in -90 <= thetall <= 90

set thetalla [asin $s11]

if {$thetalla <= -80} then {set thetaiia [plus 360 $thetaiial}

# 90 <= thetall <= 270

set thetallb [minus 180 $thetaila]

¥ Find out, which one of the two solutions for thetall is the right one.

*
# case 1 (thetaiil) :
set M14 [calc_M14_from_M10_11_13_14 $M10 $thetalla $thetal3 $thetals]
set casel_thumb_axis [mult -1 [list [lindex $M14 4] \
[1index $M14 5] [lindex $M14 6]1]
set angle_diffi [abs [vangle2 $casei_thumb_axis $thumb_axis]]
if [less $angle_diff1 0.1] then {
set thetall $thetalla
} else {
# case 2 (thetall) :
set M14 [calc_M14_from_M10_11_13_14 $M10 $thetalib $thetal3 $thetais]
set case2_thumb_axis [mult -1 [list [lindex $M14 4] \
[lindex $M14 5] [lindex $M14 61]]
set angle_diff2 [abs [vangle2 $case2_thumb_axis $thumb_axis]]
if [less $angle_diff2 0.1] then {
set thetall $thetallb
} else {
# case 3 (thetall) :
# Take the best possible solution.
*
if {[less $angle_diffl $angle_diff2]} then {
set thetall $thetalia
} else {
set thetail $thetalid
}
}
}
set tla_angle [minus $thetail 90]
set bh_angle $thetal3
set th_angle [mult -1 $thetai4]

return [list $tla_angle $bh_angle $th_angle]

}
* align_hand_palm/point_axis
proc align_hand._palm/point_axis {palm_axis {point_axis no} \

{time_opt 0} {timesteps 4} {end_event {}} } {
*
# Check whether the initial conditions are fulfilled

104



Source Code Examples 105

# and put the command on the list
*
set conditionOa 1

if { $conditionOa} then {
global align_hand_palm/point_axis_end_event
set align_hand_palm/point_axis_end_event $end_event

global ic
set end_time [plus $ic $timesteps]

add_c [list align_hand_palm/point_axis_statel $palm_axis $point_axis $time_opt $end_time]
} else {
echo Sorry, the initial conditions for executing this skill are not given!

}
Com_Update._cb
return
}
* align_hand_palm/point_axis_statel

proc align_hand_palm/point_axis_statel {palm_axis point_axis time_opt end_time} {
#
# State ending condition
*
if {[1length $point_axis] == 3} then {
set align_hand_palm/point_axis_conditioni \
[1list [test_hand_direction point $point_axis] \
& [test_hand_direction palm $palm_axis]]
} else {
set align_hand_palm/point_axis_conditionl [test_hand_direction palm $palm_axis]
}
if ${align_hand_palm/point_axis_conditionl} then {
global align_hand_palm/point_axis_end_event
eval ${align_hand_palm/point_axis_end_event}
return stop
}
if {$time_opt == 0} then {
if {[1llength $point_axis] == 3} then {
set tsl [calc_angle_timesteps hand point $point_axis]
set ts2 [calc_angle_timesteps hand palm $palm_axis]
set timesteps [max $tsi ts2]
} else {
set timesteps [calc_angle_timesteps hand palm $palm_axis]
}
} else {
global ic
set timesteps [minus $end_time $ic]
if {[lesseq $timesteps 0]} then {
set timesteps 1
}
}
set hand_angles [hand_angles_rel $palm_axis $point_axis $timesteps]
if [equal $hand_angles 999] then {
echo Sorry, cannot position the hand_palm axis in desired direction.
return 999
}
set tla_angle [lindex $hand_angles 0]



Source Code Examples 106

set bh_angle [lindex $hand_angles 1]
set th_angle [lindex $hand_angles 2]

if [greater [abs $tla_angle] 0.0001] then {
turn_lower_arm by $tla_angle 1 noren

}

if [greater [abs $bh_angle] 0.0001] then {
bend_hand by $bh_angle 1 noren

}

if [greater [abs $th_angle] 0.0001] then {
twist_hand by $th_angle 1 noren

}

return

proc aps {{angle {}}} {
global angle_per_timestep

if {$angle == ""} then {

echo angle_per_timestep: $angle_per_timestep
} else {

set angle_per_timestep $angle

}

return $angle_per_timestep

* app

proc app {{para {}}} {

global arm_pose_parameter
global arm_pose_opt

if {$para == ""} then {
if {$arm_pose_opt == 0} then {
global arm_pose_default
echo arm_pose_parameter: $arm_pose_default (default value)
} else {
echo arm_pose_parameter: $arm_pose_parameter
}
} else {
if {$para == "default”} then {
global arm_pose_default
set arm_pose_opt 0
set arm_pose_parameter $arm_pose_default
echo arm_pose_parameter: $arm_pose_parameter
} else {
set arm_pose_opt 1
if {$para < 0} then {
echo Attention: trying to set an arm_pose_parameter < O
set arm_pose_parameter O
} else {



Source Code Examples 107

if {$para > 1} then {
echo Attention: trying to set an arm_pose_parameter > 1
set arm_pose_parameter 1

} else {
set arm_pose_parameter $para

}
}
}
}
return $arm_pose_parameter
}
* bend_a_finger_joint

proc bend_a_finger_joint { {finger index} {joint 1} {option by} {angle 10} \
{timesteps 2} {renopt ren} } {
if {$joint > 2} then {
echo Please specify either joint 1 or 2.
return

}

if {$finger == "thumb"} then {
bend_thumb_joint $joint $option $angle $timesteps $renopt
} else {
set limb /1_arm/$finger
set joint_nr [plus $joint 1]
move_a_joint $1imb $joint_nr $option $angle $timesteps range_anglei8 noren
if {$joint == 2} then {
incr joint_nr
set angle [mult 0.6667 $anglel
move_a_joint $1imb $joint_nr $option $angle $timesteps range_anglel8 noren
}

if {$renopt == "ren"} ren

* bend_elbow

proc bend_elbow { {option to} {angle 10} {timesteps 2} {renopt ren} } {

set limb /1_arm

set joint_nr 10

set min_angle [get_min_angle elbow]
set max_angle [get_max_angle elbow]

set restpos 10
set off 90
set direc 1

*

# Make sure given angle is inside allowed range

# If it is not, find an appropriate angle

*

set new_angle [in_range $limb $joint_nr $option $angle $min_angle \
$max_angle $restpos $off $direc Elbow bent]

if {($option == "by") & ($new_angle == 0)} {



Source Code Examples 108

# The joint was already at it’s limit
echo already at limit
return limit

}
*
* Transform angle into dhangle range ( 90 - 240 ), Restpos 100
*
* set new_angle [mult $new_angle $direc]
if {($option == "to") | ($option == "rest")} {
set dhangle [plus $new_angle $off]
} else {
set dhangle $new_angle
}

move_a_joint $1imb $joint_nr $option $dhangle $timesteps range_angle36 $renopt
m2ele 5 [get_elbow_angle] $1limb/angle.cur

if {$new_angle != $angle} {
# The joint has just reached it’s limit
echo limit just reached
return limit

}

return

#* bend_thumb_joint

proc bend_thumb_joint { {joint 2} {option by} {angle 10} {timesteps 2} {renopt ren} } {

set limb /1_arm/thumb
set joint_nr [plus $joint 4]

if {($joint_nr == 5) & ($option == "to")} {
set off -90
set angle [plus $angle $off]
}
move_a_joint $1imb $joint_nr $option $angle $timesteps range_anglel8 $renopt
}
] calc.angle_timesteps

proc calc_angle_timesteps {limb axis_opt target_axis} {

set angle diff [vangle2 [get_${limb}_direction $axis_opt] $target_axis]
global angle_per_timestep

set timesteps [int [div $angle_diff $angle_per_timestepl]
if {[less $timesteps 11} then {

set timesteps 1
}

return $timesteps



Source Code Examples

* calc_dist_timesteps

proc calc_dist_timesteps {goal_point gp_opt} {

if {$gp_opt == "wrist"} then {
set wrist_position [get_vrist_position]
set dist [enorm [minus $wrist_position $goal_point]]
} else {
if {$gp.opt == "ee"} then {
set dist [enorm [minus [get_ee] $goal_point]]
} else {
echo Wrong gp_opt ($gp_opt) in proc goal_reached.
echo Parameter has to be set to wrist or ee.
return 999
}
}
global dist_per_timestep

set timesteps [int [div $dist $dist_per_timestep]]
if {[less $timesteps 1]} then {

set timesteps 1
}

return $timesteps

* calc_elbow_wrist_vector

proc calc_elbow_wrist_vector {goal_position gp_opt sev} {

set shoulder_goal_vector [shoulder_goal_vector $goal_position]
if {$gp_opt == "wrist"} then {
set ewv [minus $shoulder_goal_vector $sev]
} else {
if {$gp_opt == “ee"} then {
set ewv [minus $shoulder_goal_vector [plus [wrist_ee_vector] $sevl]
} else {
echo Wrong gp_opt in proc calc_elbow_wrist_vector.
echo Parameter has to be set to wrist or ee.

return 999
}
}
return $ewv
}
* calec_M7

proc calc_M7 {als_angle alf_angle} {
*
# dhparameters 6 : {thetaé O 0 -90}
# dhparameters 7 : {theta7 0 0 90}
*
set theta6 $als_angle

109



Source Code Examples 110

set theta7 [minus 90 $alf_anglel
Mset [dhmatrix § /1_arm/dhc]

Mrot z $thetab
Mrot x -90

Mrot z $theta?
Mrot x 90

return [Mget]

* calec_M10

proc calc_M10 {als_angle alf_angle at_angle e_angle} {

dhparameters 6 : {theta6 O 0 -90}
dhparameters 7 : {theta7 0 0 90}
dhparameters 8 : {theta8 0 0 90}
dhparameters 9 : { 90 010 0}
dhparameters 10 : {thetai0 0 0 90}

LA B B B BN

set theta6 $als_angle

set theta7? [minus 90 $alf_angle]
set theta8 $at_angle

set thetalO [plus $e_angle 90]
Mset [dhmatrix 5 /1_arm/dhc]

Mrot z $theta6
Mrot x -90

Mrot z $theta?
Mrot x 90

Mrot z $theta8
Mrot x 90

Mrot z 90
Mtrans 10 0 O

Mrot z $thetall
Mrot x 90

return [Mget]

* calcshoulder_elbow_vector

proc calc_shoulder_elbow_vector { goal_ position gp_opt} {

set which_x max_x
set sgv [shoulder._goal_vector $goal_position]
set shoulder_goal_distance [enorm $sgv]



Source Code Examples 111

*
*# Calculate the angle between the shoulder_goal_vector and the
# shoulder_elbow_vector

*
if {$gp_opt == "wrist"} then {
set max_shoulder_goal_distance 18.6
if {$shoulder_goal_distance > $max_shoulder_goal_distance} {
echo Goal is not reachable without moving the body.
global reaching_problems
set reaching_problems 1
return 999
}
set sgv_sev_angle [gamma 10 $shoulder_goal_distance 8.6]
if {$sgv_sev_angle == 999} {return 999}
} else {
if {$gp.opt == “ee"} then {
set elbow_ee_distance [enorm [elbow_ee_vectorl]
set max_shoulder_goal_distance [plus 10 $elbow_ee_distance]
if {$shoulder_goal_distance > $max_shoulder_goal_distance} {
echo Goal is not reachable without moving the body.
global reaching_problems
set reaching_problems 1
return 999
}
set sgv_sev_angle [gamma 10 $shoulder_goal_distance $elbow_ee_distance]
if {$sgv_sev_angle == 999} {return 999}
} else {
echo Wrong gp_opt in proc calc_shoulder_elbow_vector.
echo Parameter has to be set to wrist or ee.
return 999
}
}
¥
# Calculate the minimal z_value possible for the shoulder_elbow_vector
*

set z_range [calc_z2_range $sgv 10 $sgv_sev_angle]
if {$z_range == 999} {return 999}

set z_min [lindex $z_range 0]

set z_max [lindex $z_range 1]

set sev_z $z_min

#

# Add a tiny amount to sev_z to make sure,

# calc_shoulder_elbow_vector_xy finds a solution for x.
*

set sev_z [plus $sev_z 0.0001]

global arm_pose_opt

global arm_pose_parameter

set new_z [plus $z_min [mult $arm_pose_parameter [minus $z_max $z_minl])
set sev_z $nevw_z

global change_arm_posture_parameter

set change_arm_posture_parameter $arm_pose_parameter

set sev [calc_shoulder_elbow_vector_xy $sgv $sev_z $sgv_sev_angle $which_x]
if {$sev == 999} {return 999}

return $sev



Source Code Examples

# calc_third_component

proc calc_third_component {vec_length y z} {
set 1s [mult $vec_length $vec_lengthl
set ys [mult $y $yl
set zs [mult $z $z]

set T [minus $1s [plus $ys $zsl]
return [sqrt $T]

% calc_x2

proc calc_x2 {vectorl vec2_length z2 angle} {

set veci_length [enorm $vectori]
set x1 [lindex $vectori 0]
set y1 [lindex $vectori 1]
set z1 [lindex $vectorl 2]

set T1 [mult [mult $veci_length $vec2_length] [cos $anglel]

set T2 [mult [mult -2 $T1] $x1]

set T3 [mult $z1 $z2]

set T4 [mult 2 [mult $T3 $x1]]

set T5 [mult $y1 $y1]

set T6 [plus $T5 [mult $x1 $x1]1]

set T7 [mult [mult -2 $T1] $T3]

set T8 [mult [mult $vec2_length $vaec2_length] $T5]
set T9 [mult $T5 [mult $z2 $z2]1]

set p [div [plus $T2 $T4] $T6]

set q [div [plus [minus [plus [plus [mult $T1 $T1] $T7] [mult $T3 $T3]] $T8] $T9] $T6]

set root_arg [minus [div [mult $p $p] 4] $ql
if {[less $root_arg 01} {
return 999
}
set x2_min [minus [div $p -2] [sqrt $root_argll
set x2_max [plus [div $p -2] [sqrt $root_argl]

return [list $x2_min $x2_max]

* calc_z2_range

proc calc_z2_range {vectorl vec2_length angle} {
set x1 [lindex $vectori 0]
set y1 [lindex $vectori 1]
set z1 [lindex $vectori 2]

set vecl_length [enorm $vectori]

set noglob 1

112



Source Code Examples 113

set terml [expr { $vec2_length*$vec2_length / ($vecl_length*$veci_length)}]

set p [expr { -2 * $z1 * $vec2_length / $veci_length * [cos $anglel}]

set q [expr { -1 * $terml * ($yi1x$yl + $xi4$x1 - \
($veci_length*$veci_length) * [cos $anglel*[cos $anglel)}]

set root_arg [expr { $p*$p / 4 - $q }]

if {[less $root_arg 0]} {

return 999
}
set z2_min [minus [div $p -2] [sqrt $root_arg]]
set z2_max [plus [div $p -2] [sqrt $root_arg]]
return [list $z2_min $z2_max]

* direct_hand_palm_towards

proc direct_hand_palm_towards {object {time_opt O} {timesteps 10}
{end_event {3} } {
*
# check whether the initial conditions are fulfilled
# and put the command on the list
*
set conditionOa 1

if { $conditionOa} then {

global direct_hand_palm_towards_end_event
set direct_hand_palm_towards_end_event $end_event

global ic
set end_time [plus $ic $timesteps]

add_c [list dirct_hand_palm_towards_statel $object $time_opt $end_time]
} else {
echo Sorry, the initial conditions for executing this skill are not given!

}
Com_Update_cb
return
}
* direct_hand_palm_towards_statel

proc direct_hand_palm_towards_statel {object time_opt end_time} {

set point [centroid $object]
set ee [get_ee]
set palm_axis [minus $point $ee]

*

# State ending condition

*

set direct_hand_palm_towards_conditionl [test_hand_direction palm $palm_axis]

if $direct_hand_palm_towards_conditionl then {
global direct_hand_palm_towards_end_event



Source Code Examples 114

eval $direct_hand_palm_towards_end_event
return stop

}

if {$time_opt == O} then {

set timesteps [calc_angle_timesteps hand palm $palm_axis]
} else {

global ic

set timesteps [minus $end_time $ic]

if {[lesseq $timesteps 0]} then {

set timesteps 1

}

}

set hand_angles [hand_angles_rel $palm_axis no $timesteps]

if [equal $hand_angles 999] then {
echo Sorry, cannot position the hand_palm axis in desired direction.
return 999

}

set tla_angle [lindex $hand_angles 0]
set bh_angle [lindex $hand_angles 1]
set th_angle [lindex $hand_angles 2]

if [greater [abs $tla_angle] 0.0001] then {
turn_lower_arm by $tla_angle 1 noren

}

if [greater [abs $bh_angle] 0.0001] then {
bend_hand by $bh_angle 1 noren

}

if [greater [abs $th_angle] 0.0001] then {
twist_hand by $th_angle 1 noren

}

return

# direct_upper.arm

proc direct_upper_arm {main_axis {perp_axis no} {time_opt 0} \
{timesteps 10} {end_event {return stop}} } {

set conditionI 1
*
# check which state needs to be put on the commandlist

set conditionOa {[string compare $perp_axis "no"]1}
set conditionOb {[equal [string compare $perp_axis "no"] 0]}

if !$conditionI then {
echo Sorry, the initial conditions for executing this skill are not given!
return

}

global direct_upper_arm_end_event
set direct_upper_arm_end_event $end_event

global ic
set end_time [plus $ic $timesteps]



Source Code Examples

if

}
if

}

$conditionOa then {

add_c [list direct_upper_arm_statel $main_axis $perp_axis $time_opt $end_time]

$conditionOb then {
add_c [list direct_upper_arm_state2 $main_axis $time_opt $end_time]

Com_Update_cb
return

*

dps

proc dps {{dist {}}} {

global dist_per_timestep

if {$dist == ""} then {
echo distance_per_timestep: $dist_per_timestep
} else {
set dist_per_timestep $dist
}
return $dist_per_timestep
}
* forearm_angles_abs

proc forearm_angles_abs { dvec {M7 dh7}} {

set

set
set

set

current_thetalO [dhtheta 10 /1_arm/dhc]
set current_theta8 [dhtheta 8 /1_arm/dhc]

dvec [div $dvec [enorm $dvec]]
d0 [lindex $dvec 0]
set di [lindex $dvec 1]
d2 [lindex $dvec 2]

if {[string compare $M7 "dh7"] == 0} then {
set M7 [dhmatrix 7 /1_arm/dhc]

}

set
set
set
set
set
set
set
set
set

set
set
set
set

[lindex $M7
[lindex $M7
[lindex $M7
[lindex $M7
[lindex $M7
[lindex $NM7
[1lindex $M7
[lindex $M7
[lindex $M7

N H-T0R HO QO

o]
4]
8]
11
5]
9]
2]
6]
10]

hi [expr { ($d1 * $a - $dO » $e) * ($b * $h - $i * $a) }]
h2 fexpr { ($d2 * $a - $d0 * $h) * ($f * $a - $b * $e) }]
h3 [expr { ($g * $a -~ $d * $e) * ($b * $h - $i * $a) }]
h4 [expr { ($k * $a - $d * $h) * ($f * $a - $b * $e) }]

115



Source Code Examples 116

if {[abs [plus $h3 $h4]] < 0.001} then {
echo Sorry, cannot calculate forearm direction angles \
because of the nature of matrix of the upper_arm (M7)
}
set 510 [expr { ($hi + $h2) / ($h3 + $h4) }]
# asin yields -90 <= thetal0 <= 90
set thetal0 [asin $s10]

if {[equal $thetalO 90]} then {
set arm_turn_angle [get_arm_turn_angle]
echo arm_turn_angle does not matter -> leave the current one
set elbow_angle O
return [list $arm_turn_angle $elbow_angle ]
}
if {[less $thetal0 90] | [greater $thetalO 240]} then {
set thetal0 [minus 180 $thetal0]
if {[less $thetal0 901 | [greater $thetalO 240]} then {
echo Sorry, the left lower arm cannot be positioned in the \
specified direction. (Elbow needed to bend to [minus $thetal0 90]).
echo => Elbow will only be bent to 150 degrees.
set thetalQ 240
}
}
set c10 [cos $thetall]
set hS [expr { ($d1 * $a - $d0 * $e) + ($d * $e - $g * $a) * $510 }]
set h6 [expr { ($f * $a - $b * $e) * $c10 }]
if {[abs $h6] < 0.001} then {
set h5 [expr { ($d2 * $a ~ $dO * $h) + ($d * $h - $k * $a) * $s10 }]
set h6 [expr { ($i * $a ~ $b * $h) * $c10 }]
}
set s8 [expr { $h5 / $h6 }]
set thetaB8a [asin $s8]
set theta8b [minus 180 $thetaBa])

dhtheta 10 $thetall /1_arm/dhc
*
# casel (theta8a)
*
dhtheta 8 $theta8a /1_arm/dhc
set M10 [calc_M10_from_M7_8_10 $M7 $theta8a $thetall]
set M1Ovec [list [lindex $M10 8] [lindex $M10 9] [lindex $M10 10]1]
set diffl [enorm [minus $dvec $MiOvec]] ; myecho 4 diffi $diffi1
if {$diff1 < 0.01} then {
set theta8 $theta8a
} else {
*
# case2 (theta8b) :
*
dhtheta 8 $theta8b /1_arm/dhc
set M10 [calc_MiO_from_M7_8_10 $M7 $theta8b $thetal0]
set M1Ovec [list [lindex $M10 8] [lindex $M10 9] [lindex $M10 10]]
set diff2 [enorm [minus $dvec $M10vec]l] ; myecho 4 diff2 $diff2
if {$diff2 < 0.01} then {
set theta8 $theta8b
} else {
*
# case3 (theta8) :
]
# In case thetalO was artificially set to 240 (cause it cannot
# reach any bigger angle) then no theta8 will satisfy the



Source Code Examples

# equations exactly. Take the better one of the theta8’s.

if {[less $diff1 $dif£2]} then {
set theta8 $thetaBa

} else {

set theta8 $thetadb

}
}
}

dhtheta 8 $current_theta8 /1_arm/dhc
dhtheta 10 $current_thetal0 /1_arm/dhc

set arm_turn_angle $theta8

set elbow_angle [minus $thetal0d 90]

return [list $arm_turn_angle $elbow_angle ]

* gamima

proc gamma { a b ¢ } {

set argument [div [minus [plus [mult $a $a] [mult $b $bl]
[mult $c $c]1] [mult [mult 2.0 $a] $b] 1

if [greater [abs $argument] 1] then {
echo The absolut argument for acos in proc gamma is greater than 1.

return 999
}
set gamma [acos $argument]
return $gamma

\

* get_elbow_angle

proc get_elbow_angle {} {

set limb /1_arm
set dhc $1imb/dhc
set joint_nr 10

set off 90
set direc 1

set angle [mult [minus [dhtheta $joint_nr $dhc] $off] $direc]

return $angle

* get_max_angle

proc get_max_angle { jointmotion } {

case $jointmotion in {

117



Source Code Examples 118

shoulder_fb {return 40}
shoulder_1d {return 45}

arm_ls {return 180}
arm_l1f {return 190}
arm_turn {return 175}
elbow {return 150}

hand_turn {return 190}
hand_bend {return 80}
hand_twist {return 35}

}
echo Invalid parameter option in get_max_angle
return

}

* get_min_angle

proc get_min_angle { jointmotion } {
case $jointmotion in {

shoulder_fb {return -20}
shoulder_1d {return -5}

arm_ls {return -180}
arm_1f {return -90}

arm_turn {return -170}
elbow {return 0}

hand_turn {return -40}
hand_bend {return -80}
hand_twist {return -35}

}
echo Invalid parameter option in get_max_angle
return

}

* get_shoulder_position

proc get_shoulder_position {} {

set m [dhmatrix 5 /1_arm/dhc]
return [list [lindex $m 12] [lindex $m 13] [lindex $m 14]]

* goal_arm_angles_abs

proc goal_arm_angles_abs {goal_position gp_opt} {

#

# Calculate the jointangles for the arm_ls, arm_l1f, arm_turn, and
# elbow joint

*

set sev [calc_shoulder_elbow_vector $goal_position $gp_opt]

if {$sev == 999} {return 999}



Source Code Examples 119

set upper_arm_angles [upper_arm_angles_abs $sev nol
if {$upper_arm_angles == 999} {return 999}
set nevw_arm_ls [lindex $upper_arm_angles 0]
set new_arm_1f [lindex $upper_arm_angles 1]

*
# Calculate the new 7. dhmatrix given the new upper_arm_angles
*
set M7 [calc_M7 $new_arm_ls $new_arm_1f]
if {$gp_opt == "ee"} then {
set forearm_angles [calc_at_e $M7 $goal_position]
if {$forearm_angles == 999} {return 999}
} else {
set ewv [calc_elbow_wrist_vector $goal_position $gp_opt $sev]
set forearm_angles [forearm_angles_abs $ewv $M7]
if {$forearm_angles == 999} {return 999}
}

return [list $new_arm_ls $new_arm_1f [lindex $forearm_angles 0] [lindex $forearm_angles 1]]

* hand_angles_rel

proc hand_angles_rel { palm_axis point_axis timesteps} {
set current_hand_turn_angle [get_hand_turn_angle]
set current_hand_bend_angle [get_hand_bend_anglel
set current_hand_twist_angle [get_hand_twist_angle]

if {[1length $point_axis] == 3} then {
set point_axis [div $point_axis [enorm $point_axis]]
set mO [lindex $point_axis 0]
set ml [lindex $point_axis 1]
set m2 [lindex $point_axis 2]
}
set palm_axis [div $palm_axis [enorm $palm_axis]]
set n0 [lindex $palm_axis 0]
set n1 [lindex $palm_axis 1]
set n2 [lindex $palm_axis 2]

set M10 [dhmatrix 10 /1_arm/dhc]

set a [lindex $M10 O]
set b [lindex $M10 4]
set d [lindex $M10 8]
set e [lindex $M10 1]
set £ [lindex $M10 5]
set g [lindex $M10 9]
set h [lindex $M10 2]
set i [lindex $M10 6]
set k [lindex $M10 10]

brz2z 22222 ] Calculation of thetal3 f2izz 222200

set hl [expr { ($e * $n0 - $a * $n1) * ($b » $h - $i * $a) }]
set h2 [expr { ($h * $nO - $a * $n2) * ($f » $a - $b * $e) }]
set h3 [expr { ($g * $a - $d * $e) * ($b * $h - $i * $a) }]
set h4 [expr { ($k * $a - $d * $h) * ($f = $a - $b * $e) }]

if {[abs [plus $h3 $h4]] < 0.001} then {



Source Code Examples 120

echo Sorry, cannot calculate hand direction angles \
because of the nature of matrix of the hand (Mi4)
}
set s13 [expr { ($h1 + $h2) / ($h3 + $h4) }]
set thetai3 [asin $s13]
# asin yields -90 <= thetal3 <= 90

Check, whether thetal3 is outside of it’s allowed range.
If this is the case, set it to it’s maximum/ minimum angle.

* N

if {[less $thetal3 -80] | [greater $thetal3 801} then {
echo Sorry, the left hand cannot be positioned pointing in the
echo specified direction. (Hand needed to bend to $thetal3).
# or [minus 180 $thetal3]
echo Therefore the hand will be bent as far as possible, to
if {[less $thetal3 -80]1} then {
echo -80 degrees.
set thetal3 -80
} else {
echo 80 degrees.
set thetal3 80
}
}
dhtheta 13 $thetal3 /1_arm/dhc

fz2z222222273 Calculation of thetall p222222222223

set c13 [cos $thetal3]

set h5 [expr { ($e * $n0 - $a * $n1) + ($d * $e - $g * $a) * $s13 }]

set h6 [expr { ($f * $a -~ $b * $e) * $c13 }]

if {[abs $h6] < 0.001} then {
set h5 [expr { ($h * $n0 - $a * $n2) - ($d * $h - $k * $a) * $513 }]
set h6 [expr { ($i * $a - $b * $h) * $c13 }]

}

set cii [expr { $h5 / $h6 }]

# acos yields in 0 <= thetall <= 180

set thetaila [acos $ci1]

# 180 <= thetallb <= 360

set thetalilb [minus 360 $thetallal

Find out, which one of the two solutions for thetall is the right one.

*
*
*
# BHote that the palm vector of the hand is not influenced
# by thetal4 (hand twisting angle), so that it does not
# matter for the following test, what thetal4 is.
*
# case 1 (thetall) :
dhtheta 11 $thetaila /1_arm/dhc
set angle_diffi [abs [vangle2 [get_hand_direction palm] $palm_axis]]
if [less $angle_diffl 0.1] then {

set thetall $thetalla
} else {

# case 2 (thetall) :

dhtheta 11 $thetallb /1_arm/dhc

set angle_diff2 [abs [vangle2 [get_hand_direction palm] $palm_axis]]

if [less angle_diff2 0.1] then {

set thetall $thetallb
} else {
*



Source Code Examples 121

# case 3 (thetail) :

# Take the best possible solution.

*

if {[less $angle_diffl $angle_diff2]} then {
set thetall $thetalla

} else {
set thetall $thetallb

}

How, check whether thetall is inside it’s allowed range
If not, set it to it’s maximal or minimal allowed angle.

set thetall_min [plus [get_min_angle hand_turn] 90]
set thetail_max [plus [get_max_angle hand_turn] 90]

> 50
> 280

L EE B B B BE B

if [less $thetail 50] then {
echo Sorry, the left hand cannot be positioned pointing in the specified direction.
echo The hand needed to be turned to [minus $thetail 90] \
but can only be turned to -40 degrees for physical reasons.
set thetall 50
}
if [greater $thetall 280] then {
echo Sorry, the left hand cannot be positioned pointing in the specified direction.
echo The hand needed to be turned to [minus $thetaii 901 \
but can only be turned to 190 degrees for physical reasons.
set thetall 280
}
dhtheta 11 $thetaill /1_arm/dhc

FERRRRRRRERR Calculation of thetal4 b2z 2222222 23
if {[1length $point_axis] == 3} then {

set hl [expr { ($a * $m2 - $h * $m0) * ($f * $a - $b * $e) }]
set h2 [expr { ($a * $ml ~ $e * $m0) * ($b * $h - $i * $a) }]
set h3 [expr { ($g * $a - $d * $e) * ($b * $h - $i » $a) }]

set h4 [expr { ($k * $a - $d * $h) * ($f * $a ~ $b * $e) }]

# FHNote: thetal3 can never be 90 or -90, so c13 will never be O

if {[abs [plus $h3 $h4]] < 0.001} then {
echo Sorry, cannot calculate hand direction angles \
because of the nature of matrix of the hand (Mi14)
}
set c14 [expr { ($h1 + $h2) / (($h3 + $h4) * $c13) }]
set thetald [acos $ci4]
set thetal4b [mult -1 $thetaid]

*¥ case 1 (thetalq) :
dhtheta 14 $thetald /1_arm/dhc
set angle_diffl [abs [vangle2 [get_hand_direction point] $point_axis]]
if [less $angle_diffil 0.1] then {
} else {
# case 2 (thetal4) :
dhtheta 14 $thetal4b /1_arm/dhc
set angle_diff2 [abs [vangle2 [get_hand_direction point] $point_axis]]
if [less $angle_diff2 0.1] then {
set thetal4 $thetaldb
} else {



Source Code Examples 122

*

# case 3 (thetald) :

# Take the best possible solution

*

if [greater $angle_diffi $angle_diff2] then {
set thetal4 $thetaisdd

}

Check, whether thetal4 is inside it’s allowed range.
If it is not, set it to it’s allowed maximum/ minumum.

IR B

if {[less $thetai4 -35] | [greater $thetai4 35]} then {
echo {}
echo Sorry, the left hand cannot be positioned pointing along \
the specified point axis.
echo (Hand needed to be twisted to [mult -1 $thetald])
echo But I will do the best I can !
echo Palm_axis might be as specified, but pointing_axis will not.
echo You could try to change my arm_turn angle or \
elbow_angle to reach the point_axis you specified!
echo (You have to find the direction of the change though.)
echo {}
if {[less $thetal4 -35]} then {
echo Hand is supposed to twist [plus $thetal4 35] degrees more, but it cannot!
set thetal4 -35
} else {
# (meaning, if [greater $thetail4 35])
echo Hand is supposed to twist [minus $thetai4 35] degrees more, but it cannot!
set thetald 35
}
}
} else {
set thetail4 O
}

# Set the joints back to the original angles

turn_lower_arm to $current_hand_turn_angle i noren
bend_hand to $current_hand_bend_angle 1 noren
twist_hand to $current_hand_twist_angle 1 noren

set tla_angle_diff [minus [minus $thetall 90] $current_hand_turn_angle]
set bh_angle diff [minus $thetal3 $current_hand_bend_angle]
set th_angle_diff [minus [mult -1 $thetal4] $current_hand_twist_angle]

*

# angle step vector = angle difference vector / new_times
*

set tla_angle_step [div $tla_angle_diff $timesteps]

set bh_angle_step [div $bh_angle_diff $timesteps]

set th_angle_step [div $th_angle diff $timesteps]

return [list $tla_angle_step $bh_angle_step $th_angle_step]



Source Code Examples

¥

in_range

proc in_range { limb joint_nr option angle min_angle max_angle restpos off direc part action } {

¥
# Make sure given angle is inside allowed range
*
case $option in {
to {
if {[less $angle $min_angle]} then {
echo {}
echo Given angle is outside of the allowed range.
echo Therefore, the $part will be $action to the minimum
echo position of $min_angle degrees.
set angle $min_angle
} else {
if [greater $angle $max_anglel {
echo {}
echo Given angle is outside of the allowed range.
echo Therefore, the $part will be $action to the maximum
aecho position of $max_angle degrees.
set angle $max_angle
}
}
}
by {
set dhc $1limb/dhc
set current_angle [mult [minus [dhtheta $joint_nr $dhc] $off] $direc ]
set test_pos_angle [plus $angle $current_angle]
if [less $test_pos_angle $min_angle] then {
set angle [minus $min_angle $current_angle]
echo $part would be $action to an angle outside of the allowed range.
echo Therefore, the $part will be $action by maximal $angle degrees.
} else {
if [greater $test_pos_angle $max_angle] {
set angle [minus $max_angle $current_anglel
echo The $part would be $action to an angle outside of the allowed
echo range. Therefore $part will be $action by maximal $angle degrees.
}
}
}
rest { set angle $restpos }
¥
return $angle
}
* insert_c

proc insert_c_list {list nr_next_command} {

global commandlist;

foreach comm $list {
set commandlist [linsert $commandlist $nr_next_command $comm]
incr nr_next_command

}

return

123



Source Code Examples

left-circle

proc left-circle {radius} {

echo ri
echo {}
echo 11
echo r2
echo {}
echo 12
echo r3
echo {}
echo 13
echo r4
echo {}
echo 14
echo r5
echo {}

[set

[set
[set

[set
[set

[set
[set

[set
[set

ri 0]

11 [mult $radius [minus 1 [cos 22.5]]]]
r2 [mult $radius [sin 22.5]1]]

12 [minus [mult $radius [minus 1 [cos 451]] $11]]
r3 [mult $radius [sin 45]]]

13 [minus [minus [mult $radius [minus 1 [cos 67.5]1]1] $12] $11] ]

r4 [mult $radius [sin 67.5]]]

14 [minus [minus [minus $radius $13] $12] $11]]

r5 $radius]

return [list $r1 $11 $r2 $12 $r3 $13 $ra $14 $r5 ]

make-bone

proc make-bone {name left_radius right_radius length {precision 15}} {

set one [left-circle $left_radius]
set two [right-circle $right_radius]

make-bone-data $name $precision 10 \

$length

[lindex $one
[1index $one
[lindex $one
[1lindex $two
[lindex $two
[lindex $two

o]
3]
6]
0]
3]
6]

[lindex $one
[1index $one
[lindex $one
[lindex $two
[lindex $two
[lindex $two

1]
4]
7]
1]
4]
7]

[lindex $one
[lindex $one
[1lindex $one
[lindex $two
[lindex $two
[lindex $two

21 \
5] \
8] \
2] \
51 \
8]

*

make-bone-data

proc make-bone-data {name precision nrrad ri 11
{12 1} {r3 1} {13 1} {r4 1}
{r6 1} {16 1} {r7 1} {17 1}
{19 1} {r10 1} {110 1} {ri1
{r13 1} {113 1} {r14 1} } {

if {$name == """} then {
set filename “/graphics/tcl/data/cylinder.asc

} else {

r2 \
{14 1} {r5 1} {15 1} \
{r8 1} {18 1} {r9 1} \

1} {111 1} {r12 1} {112 1} \

set filename ~/graphics/tcl/data/$name.asc

}
set file
set nopts

[open $filename w]

[mult $precision $nrrad]

124



Source Code Examples 125

set nrmantelpatches [mult $precision [minus $nrrad 1]]
set nopolys [plus $nrmantelpatches 2]

puts $file "$nopts $nopolys"

set step [expr 360.0/$precision]
set limit [expr 360.0-$step/2]
set count O

set nrlength [minus $nrrad 1]

set length O

for {set nrl 1} {$nrl <= $nrlength} {incr nrl} {
set length [plus $length [set 1$nrll]

}

set x [mult $length -1]

for {set nr 1} {$nr <= $nrrad} {incr nr} {
for {set angle 0.0} {$angle<$limit} {set angle [plus $angle $stepl} {
incr count
set z [mult [set r$nr] [cos $angle]]
set y [mult [set r$nr] [sin $anglel]

if {[abs $z] < 0.0001} {set z 0.0}
if {[abs $y] < 0.0001} {set y 0.0}
puts $file "$x $y $z"

}

set x [plus $x [set 1$nrl]

if {[abs $x] < 0.0001} {set x 0.0}

for {set k 1} {$k < $nrmantelpatches} {set k [plus $k $precision]} {
for {set i $k} {$i <= [plus $k [minus $precision 211} {incr i} {
set next [plus $i $precision]
puts $file “4 $i [plus $i 1] [plus $next 1] $next"

}

puts $file "4 $i $k [plus $k $precision] [plus $i $precision]”
}
set all {}

for {set n $precision} {$n >= 1} {set n [minus $n 11} {
append all " $n"

}

puts $file "$precision $all"

set all {}

for {set n [plus [minus $nopts $precision] 11} {$n <= $nopts} {incr n} {
append all " $n"

}

puts $file "$precision $all"

close $file

return "0SU file $filename successfully written"

# move_a_joint

proc move_a_joint {limb joint_nr option dhangle {timesteps 2} \
{range_angle range_angle18} {renopt ren}} {

set dhc $1limb/dhc



Source Code Examples 126

*
# Find out if limb and joint exist
*
if {($option == "to") | ($option == "rest")} then {
set dhtheta_current [dhtheta $joint_nr $dhcl
*
# Find out which angle the joint has to move to reach
# the specified angle (joint position)
*
set dhangle [minus $dhangle $dhtheta_current]
} else {
if {$option != "by"} {
echo Wrong option: You can either choose
echo "by" => bend joint by specified angle or
echo "to" => bend joint to specified angle
return
}
}
if [less [abs $dhangle] 0.1] then {
set timesteps 1
}
set step [div $dhangle $timesteps]
for {set i 1} {$i <= $timesteps} {incr i} {
set dhtheta_current [dhtheta $joint_nr $dhc]
¥
# Range the angles in case they get out of the range 0-360
*
set dhtheta_new [$range_angle [plus $dhtheta_current $step] ]
dhtheta $joint_nr $dhtheta_new $dhc
if {$renopt == "ren"} ren
}

return

* move_arm_to-goal

proc move_arm_to_goal {goal_point {gp_opt ee} {time_opt 0} {timesteps 1} {end_event {}}} {
#*
# check whether the initial conditions are fulfilled
# and put the command on the list
*
# set conditionOa [goal_in_reaching_distancel
set conditionOa 1

if { $conditionOa} then {

global move_arm_to_goal_end_event

set move_arm_to_goal_end_event $end_event

global ic

set end_time [plus $ic $timesteps]

add_c [list move_arm_to_goal_statel $goal_point $gp_opt $time_opt $end_time]
} else {

echo Sorry, the initial conditions for executing this skill are not given!
}
Com_Update_cb
return



Source Code Examples 127

* object_1_axis

proc object_1l_axis {object} {
set m [matrix $object]
return [list [lindex $m 8] [lindex $m 9] [lindex $m 10] ]

* put_arm._on_table

proc put_arm_on_table { {end_event {}} } {
# Check whether the initial conditions are fulfilled
# and put the command on the list
*
set conditionO [joint_in_box wrist table z_plus_in]

if $conditionO then {

global put_arm_on_table_end_event
set put_arm_on_table_end_event $end_event

add_c {put_arm_on_table_statel}

Com_Update_cb
} else {

echo Sorry, the initial conditions for executing this skill are not given!
}

return

% put-arm_on_table_statel

proc put_arm_on_table_statel {} {
*
# State ending condition
*
set conditionla [collision_lower_arm /table]
set conditionib [collisjon_finger /tablel

if $conditionia then {
add_c {put_arm_on_table_state2}
return stop

}

if $conditionib then {
add_c {put_arm_on_table_state3}
return stop

}

bend_elbow by -1 1 noren



Source Code Examples 128

* put_arm_on_table._state2

proc put_arm_on_table_state2 {} {
*
# State ending condition
set condition2 [collision_finger /table]

if {$condition2} then {
global put_arm_on_table_end_event
eval $put_arm_on_table_end_event
return stop

}

bend_hand by 1 1 noren

* put_arm._on_table_state3

proc put_arm_on_table_state3 {} {
*
# State ending condition
*
set condition3 [equal [collision_finger /table] 0]

if {$condition3} then {
add_c {put_arm_on_table_state4}
return stop

}

bend_hand by -1 1 noren

* put_arm_on_table_state4

proc put_arm_on_table_state4 {} {
*
# State ending condition
*
set conditionda [collision_lower_arm /table]
set condition4b [collision_finger /table]

if {$condition4a} then {
add_c {put_arm_on_table_state2}
return stop

}

if {$conditiondb} then {
add_c {put_arm_on_table_state3}
return stop

}

bend_elbow by -1 1 noren

bend_hand by -1 1 noren



Source Code Examples 129

* reach_angles_abs

proc reach_angles_abs {goal_point gp_opt thumb_axis hand_bend_angle} {

set arm_angles [goal_arm_angles_abs $goal_point $gp_opt]
if {$arm_angles == 999} {return 999}

set M10 [calc_M10 [lindex $arm_angles 0] [lindex $arm_angles 1] \

[lindex $arm_angles 2] [lindex $arm_angles 3]]
set hand_angles [aligned_hand_angles_abs $thumb_axis $hand_bend_angle $M10 ]
if {$hand_angles == 999} {return 999}

return [concat [get_shoulder_fb_angle] [get_shoulder_1ld_angle] $arm_angles $hand_angles]

proc rem_c { command } {
global commandlist;
set nr [lsearch $commandlist $command]
if {$nr !'= -1} {rem_nth $nr}

* rem.nth

proc rem_nth {n} {
global commandlist
set newlist {}
for {set i 0} {[less $i [llength $commandlist]]} {set i [plus $i 1]} {
if {![equal $n $il} {
lappend newlist [lindex $commandlist $i]
}
}

set commandlist $newlist

# right-circle

proc right-circle {radius} {

echo r6 = [set r6 $radius]

echo {}

echo 16 = [set 16 [mult $radius [cos 67.5]]1]

acho r7 = [set r7 [mult $radius [sin 67.5]1]]

echo {}

echo 17 = [set 17 [minus [mult $radius [cos 45]] $16]]

echo r8 = [set r8 [mult $radius [sin 45]]]

echo {}

echo 18 = [set 18 [minus [minus [mult $radius [cos 22.5]] $17] $16] ]
echo r9 = [set r9 [mult $radius [sin 22.5]1]]



Source Code Examples 130

echo {}

echo 19 = [set 19 [minus [minus [minus $radius $18] $17] $161]
echo r10 = [set r10 0]

echo {}

return [list $r6 $16 $r7 $17 $r8 $18 $r9 $19 $r10 ]

] server

proc server { {nr 1000000}} {
global commandlist;
global loop_in loop_abort;
global ic

if {$loop_in} return

set loop_in 1

global topcommands

set top [Toplevell

if {![nilp $topcommands]} {Toplevel $topcommands}

for {set i 0} {[less $i $nr]} {set i [plus $i 11} {

if {$loop_abort} break;
for {set c 0} {[1llength $commandlist] > $c} {set c [plus $c 11} {

set command [lindex $commandlist $c]

set returnvalue [eval $command]

if {($returnvalue == "limit") | ($returnvalue == "stop") | ($returnvalue == "target")} {
rem_c $command
if {![nilp $topcommands]} {Com_Update_cb}
set ¢ [minus $c 1]

}
}
execjobs
ren
incr ic
}
set loop_in O
return
}
* twist_hand

proc twist_hand { {option to} {angle 0} {timesteps 2} {renopt ren} } {

set limb /1_arm

set joint_nr 14

set min_angle [get_min_angle hand_twist]

set max_angle [get_max_angle hand_twist]

set restpos 0

set off 0

set direc -1

*

*# Make sure given angle is inside allowed range
# If it is not, find an appropriate angle



Source Code Examples 131

E
set angle [in_range $1limb $joint_nr $option $angle $min_angle \
$max_angle $restpos $off $direc Hand twisted]

Take into account that the original angle might be off
(because of the formation of the dhc) and that the direction might
be reversed

L B R 2

set angle [mult $angle $direc]
move_a_joint $1imb $joint_nr $option $angle $timesteps range_anglel8 $renopt

m2ele 8 [get_hand_twist_angle] $limb/angle.cur
return

# upper_arm_angles_abs

proc upper_arm_angles_abs {main_axis perp_axis} {

# It is important to make sure the specified axis is a unit vector
set main_axis [div $main_axis [enorm $main_axis]]

Mset [dhmatrix 5 /1_arm/dhc]
Minvert

Mele 3 00

Mele 31 0

Mele 3 2 0

set B [Mxform $main_axis]

set c7 [lindex $B 2]

set theta7? [acos $c7]

# acos yields O <= theta7 <= 180
set theta7b [mult -1 $theta?]

if {[greater $theta7 160]} then {
# if 160 < theta7
echo Sorry, the specified direction for the main axis
echo of the upper_arm is not reachable.
echo The upper_arm is supposed to be lifted forwards to $theta7a
echo degrees, but it will only be lifted to 160 degrees
set theta7 160

set s7 [sin $theta?]
set c6 [div [lindex $B 0] $s7]
set thetaé [acos $c6]
# do the best you can
if {[greater [abs [minus [sin $theta6] [div [lindex $B 1] $s711] \
[abs [minus [sin [mult -1 $theta6]] [div [lindex $B 1] $s71]11]
} then {
set theta6 [mult -1 $theta6]
}
} else {
if {[greater $theta7 901} then {
¥ if 90 < theta7 < 160
set s7 [sin $theta7]
set c6 [div [lindex $B 0] $s7]
set theta6 [acos $c6]
if {[greater [abs [minus [sin $theta6] \



Source Code Examples 132

[div [lindex $B 1] $s711] 0.01] } then {

set theta6 [mult -1 $thetas]

}

} else {

if {$theta7 == 0} then {
# theta6 doesn’t matter => leave current value
set theta6 [dhtheta 6 /1_arm/dhc]

} else {
# if O < theta7 < 90
# figure out whether theta7 or theta7b causes the
# arm to move the least joint angle distance sum
*
set 87 [sin $theta?]
set c6 [div [lindex $B 0] $s7]
set thetaBa [acos $c6]
if {[greater [abs [minus [sin $theta6a] [div [lindex $B 1] $s71]1] 0.01] } then {

set theta6a [mult -1 $thetabal
}
set s7 [sin $theta7b]
set c6 [div [lindex $B 0] $s7]
set theta6b [acos $c6]
if {[greater [abs [minus [sin $theta6b] [div [lindex $B 1] $s7]11]1 0.01] } then {
set theta6b [mult -1 $theta6b]

}
set theta6_current [dhtheta 6 /1_arm/dhc]
set theta7_current [dhtheta 7 /1_arm/dhc]

set suma [plus [abs [minus $theta6a $theta6_current]] \
[abs [minus $theta7 $theta7_current]]]
set sumb [plus [abs [minus $theta6b $thetab_current]] \
[abs [minus $theta7 $theta7_currentl]]
if {[greater $suma $sumb]} then {
set theta6 $thetabb
set theta7 $theta7b
} else {
set theta6 $thetaba
}

}
}

# perp_axis not yet accounted for

set theta8 [dhtheta 8 /1_arm/dhc]
set off7 90

set als_angle $thetab
set alf_angle [minus $off7 $theta’]
set at_angle $theta8

return [list $als_angle $alf_angle $at_angle]

* vangle2

proc vangle2 {p1 p2} {
set dot [dot $p1 $p2]
set arg [div $dot [mult [enorm $p1] [enorm $p2]11]
¥



Source Code Examples 133

# For the arc cos procedure the input needs to be 1 or less

# If arg happens to be just slightly greater than 1 set it to 1
# so the arc cos function will return 0.

t

if {[greater $arg 1] & [less $arg 1.001] | \
[less $arg -1] & [greater $arg -1.001]1} then {
echo #*x»xxksxxxxx arg was $arg, set to [sign $arg] sskssxrnss
set arg [sign $arg]

set angle [acos $arg]
return $angle

* write_reach_file

proc write_reach_file {sp {object glas} {hand_angle -10} {finger_timesteps 3} \
{end_event {return stop}} } {

set count [minus [llength $sp] 2]

if {$count < 6} then {
set finger_timesteps $count

}

set finger_count [minus $count $finger_timesteps]

if ![slfile dummy isobj] {io {} dummy}
matrix [matrix $object] dummy
topol [lindex $sp $count] dummy

set filename reach_command
set file [open $filename w]

echo finger_count $finger_count
if {$finger_count == 0} {
puts $file "bafiogp $finger_timesteps"
}
for {set i 1} {$i < [minus $count 1]} {incr i} {
if {$i == $finger_count} {
puts $file "bafiogp $finger_timesteps"
}
puts $file "move_arm_to_goal [list [lindex $sp $i]] ee 1 1 \{"
}
if {$i == $finger_count} {
puts $file "bafiogp $finger_timesteps"

puts $file "gpp 2"

puts $file "reach_object dummy ee $hand_angle 0 O \{"
puts $file “gpp 0.4"

puts $file '"reach_object glas ee $hand_angle 0 0 \{"
puts $file "$end_event"

for {set i 1} {$i <= $count} {incr i} {
puts $file "\}"

}

close $file

return "file $filename written"



Appendix C

User Manual

1 Running the SkillBuilder

Start up 3d. Invoke the SkillBuilder by typing
source SkillBuilder

at the 3d> prompt. A graphics window with the actor standing behind a high table
with a glass on top will appear as well as the 3d Menu, the Command Loop menu,
and the Views menu. The actors coordinate system is located in the centroid of the
pelvis. The x-axis points to the left side of the actor, the y-axis to the back, and the
z-axis points upward.

Besides the SkillBuilder commands you can use any #d build-in command a list of
which can be found in a technical report from the Computer Graphics and Animation
Group about “The 8d Virtual Environment and Dynamic Simulation System”, written
by Chen and Zeltzer in August 1992. The 3d build-in commands most often used in
a SkillBuilder session will also be explained in this manual.

User interaction is possible through one of the menus or, as long as the command
loop is not running, through typed input at the 3d> prompt. While the command
loop is running (see section 6.1 of this manual), commands can still be typed in the
Do Command Once text field of the Command Loop menu.

2 Changing the View

2.1 Using the Mouse inside the Graphics Window

In the 3d Menu, click the LookAt Cursor toggle button right below the Mouse
Handlers headline to enable the view changing by mouse click in the graphics win-

134



User Manual 135

dow.

Depending on which mouse button you press, the following actions will take place:

1. Right mouse button: Zooming in and out.
The higher you click in the graphics window above the centerline, the farther
you will zoom in with every click. Accordingly, you will zoom out by clicking
below the centerline. The lower you click inside the window, the more you will
zoom out.

2. Middle mouse button: Toggling the coordinate frame on and off and chang-
ing the current object.
The object the mouse pointer points at is made the current object. With every
mouse click, the coordinate frame is posted and unposted alternately at the
centroid of the current object.

3. Left mouse button: Changing the view.
If you click above the center, you will look at the scene from more above. In
contrast, clicking below the centerline will let you look from farther below. In
the same way, you will “walk around” the current object to the right side by
clicking in the right half of the window, or to the left side by clicking in the left
half.

2.2 Using the Views Menu

The text field at the bottom of the Views menu contains the name of a file in which
views are saved, or are to be saved. The views file name can be changed by typing
another name in that text field.

Clicking the Read button causes the views saved in that file to be read in, i.e. made
available to be called off. Their names will be displayed in as many fields next to the
numbered buttons as there were views saved in the file. To display one of the views,
the corresponding toggle button has to be clicked. The view in question is now the
current view. Clicking the Display button displays the chosen view.

To record a new view, the current view has to be changed (you may use the mouse
or the keyboard). Once the new view to be saved is found, one of the toggle buttons
next to an empty text field has to be chosen and the Record button has to be clicked.
The word “recorded” will appear in the text field and can be changed to name the
view. To save the new view for use in the next SkillBuilder session, click the Write
button so the current views file saves the new information.



User Manual 136

3 Changing the Virtual World

3.1 The Virtual World after Starting the SkillBuilder

The virtual world of the actor contains, besides the actor itself, a few objects in the
highest directory. These are: grid, table, glass, balll, and ball2. The grid is the floor
the actor stands on. The table is placed right in front of the actor and the glass is
positioned on the table. The balls are not posted, i.e. displayed, but can be posted
upon request.

You can get a list of available objects using the command
lo

3.2 Instancing Objects

To instance an object use the 3d build-in command
hio filename object

For some objects convenience routines have been provided that include (besides in-
stancing the object) coloring, scaling, positioning, and hardening of the object. Pro-
cedures of this kind are:

makeglas
makecup
makephone
makeroom
makegrid
makeceiling
maketable
makesoccerballs

3.3 Defining the Current Object

Clicking on the Current Object button in the 3d Menu will cause a pull down
menu listing all currently existing objects to appear. If one of those objects is chosen,
it will appear in the text field right below the Current Object button. The current
object can also be set by clicking on the object in question with the middle mouse
button, or by typing the name of the object in the text field.



User Manual 137

3.4 Displaying Objects

Every object can be posted, i.e. displayed, or unposted upon request by one of the
3d build-in commands

post  object
unpost object

The next time the image is rendered, the specified object will appear on or disappear
from the screen.

Objects can also be easily posted or unposted by chosing the option Post or Unpost
in the pull down menu which appears when clicking on Object in the upper left
corner of the 3d Menu. The object that will be posted or unposted is the current
object.

3.5 Finding the Location of an Object

An object’s location can be requested by the 8d build-in command

centroid object

3.6 Moving an Object

Objects can be move by the 3d build-in commands:

to z y z object
ro azis angle object

or by using the Object Edit menu that pops up after clicking Object in the upper
lefthand corner of the 3d Menu.

In the Object Edit menu toggle buttons are provided to choose the action to be taken
by the current object (whose name appears below the Current Object button in
the 3d Menu). The current object can be translated, rotated, scaled, or changed in
color. For the first three actions, the arrow buttons in the menu correspond to the
X, ¥, and z axis in this order, whereas when changing the color, those buttons control
the r, g, and b value in the rgb code. The + and the - buttons change all three
values at the same time by the same amount. Choosing “local” in the Transform
field makes the centroid of the object the reference frame. A different reference frame
can be chosen by typing its three coordinates in this text field instead of “local”.

To position an object on the upper horizontal plane of another object, the procedure



User Manual 138

position object plane nr_steps zyplane z y

can be called. object denotes the name of the object to be positioned, whereas plane
denotes the object, the former one is to be positioned on (e.g. “table”). The param-
eter nr_step determines in how many timesteps the animation (of the object moving
from its current position towards the new one) should be performed. If “specified” is
chosen for the zyplane parameter the values of the parameters z and y will be taken
into account. The object will then be positioned z inches in x direction and y inches
in y direction away from the centroid of the plane object at the maximum z value of
the bounding box of plane. For any other value of the zyplane parameter, the object
will be placed at the closest point on the plane from where it is currently located.

4 Getting Information about the Figure’s State

4.1 Checking the Current Joint Angles

The current joint angles of the 9 joints of the left arm can be retrieved one by one by
the following commands:

get_shoulder fb_angle
get_shoulder_ ld._angle
get_arm ls_angle
get.arm 1f_angle
get_arm turn_angle
get_elbow_angle
get_hand turn_angle
get hand bend_angle
get hand twist_angle

or all at once (in the order of the above procedures) by
get_all arm angles

The current joint angles of the finger joints can be retrieved by the following com-
mands

get finger spread.angle finger
get_finger bending.angle finger joint
get_thumb_down_angle
get_thumb_turn_angle

where the parameter finger can be specified as “thumb”, “index”, “middlefinger”,
“ringfinger”, or “littlefinger”. The joint should be set to either “1”, “2”, or “3”. All



User Manual 139

finger angles can be retrieved at once by

get_all finger_angles

4.2 Checking the Current Joint Positions

Joint positions for the left arm can be inquired by the commands

get_shoulder position
get_elbow_position
get wrist position

The end effector position of the left arm which is located on the palm vector will be
returned by

get_ee

4.3 Checking the Current Orientation of Body Parts

To check the orientation of the arm links, one of the following commands has to be
used:

get_upper_arm direction
get forearm direction
get_hand direction option

The option for the get_hand direction procedure can be set to “palm”, “point”, or

“thumb” specifying the axis of the hand that is in question.

5 Local Motor Programs

Local motor programs are procedures that cause a rotation about one of the joint
axes of the figure. They are not implemented as skills, so they should be invoked
outside of the command loop by typing the appropriate line at the 3d> prompt. For
the arm there are

move_shoulder option angle timesteps renopt
lift/drop_shoulder option angle timesteps renopt
lift_arm_sideward option angle timesteps renopt
lift_arm forward option angle timesteps renopt
turn_arm option angle timesteps renopt
bend_elbow option angle timesteps renopt



User Manual 140

turn_lower_arm option angle timesteps renopt
bend hand option angle timesteps renopt
twist_hand option angle timesteps renopt

Local motor programs to control the finger and thumb joints are

spread_finger finger option angle timesteps renopt
bend_a_finger_joint finger joint option angle timesteps renopt
move_thumb_outwards option angle timesteps renopt
turn_thumb option angle timesteps renopt

move_thumb_down option angle timesteps renopt
bend_thumb_joint joint option angle timesteps renopt

The parameters to a local motor program are the option, which specifies whether
the appropriate joint should be moved “by” the specified angle or “to” the specified
joint position, the joint angle (be it the absolute or relative one), the number of
timesteps in which the motion should be performed, and the renopt that can be set
to “ren” or “noren” depending on whether the image shall be updated on the screen,
i.e. rendered, with every timestep or not.

The spread finger and bend_a_finger_joint procedures have an additional pa-
rameter, finger, to specify the finger in question, including the thumb. The joint
parameter can take “1” or “2”. The third bending joint of a finger will automatically
be bent with the second one by 2/3 of the specified angle.

6 Invoking Skills

6.1 The Command Loop

The execution of a skill can be invoked by typing the skill’s name in the Do Com-
mand Once text field of the Command Loop menu if the command loop is already
running. Otherwise, the skill’s name can be typed at the 3d> prompt and the com-
mand loop can be started thereafter by clicking the Go button in the Command
Loop menu. All skills will add the necessary procedures for their execution to the
command list. The Command Loop menu shows the current command list and
has also buttons to stop the command loop and to step through the list. Access
procedures that are able to add, insert, or remove commands from the command list
are

add_c command
insert_c command nr_next_.command
rem_c command



User Manual 141

6.2 Timing and End Events

Every skill has a parameter end_event that is set to “{}” as a default. The end
event specifies what should happen when the execution of the skill is completed. For
example

wave_hand {
global org
move_arm_to_config $org 0 0 {}

}

will link the two skills (vave_hand and move_arm_to_config) sequentially which causes
the arm to return into its original position after the hand waving skill stops. In or-
der to keep the last state of a skill in the command list, end_event has to be set to
“return”.

Inverse kinematics skills all contain two parameters to control the velocity of the
skill: time_opt and timesteps. If the time_opt parameter is set to “1”, the target
number of timesteps is set to the number specified by the timesteps parameter. If
the time_opt parameter is set to “0”, the number of timesteps for the execution of
the skill is automatically calculated and the timesteps parameter has no effect. The
timesteps calculation for the inverse kinematics skills is based on the global parameters
dist_per_timestep. The configuration skills (see section 6.3), as well as the skills to
orient a body part (see section 6.4), rely on the global parameter angle_per_timestep
which can be set by the procedure

aps angle

If no angle is specified, the procedure returns the current value of angle_per_timestep
(in degrees). Similarly, the dist_per_timestep can be changed using the procedure

dps distance

and the value of the current dist_per_timestep (in inches) can be retrieved by calling
the dps procedure without an argument.

6.3 Configuration Skills

Bringing a limb into a specific configuration can be achieved by one of the the com-
mands

move_arm_to_config config time_opt timesteps end_event
bring finger_in_config finger config timesteps end_event
bring thumb_in_config config timesteps end_event



User Manual 142

The move_arm_to_config skill expects a 9 dimensional vector as input for its config
parameter specifying the following target angles: shoulder-fb angle, shoulder-1d angle,
arm-ls angle, arm-If angle, arm-turn angle, elbow angle, hand-turn angle, hand-bend
angle, and hand-twist angle.

For the bring finger_in_config skill, the parameter config has to be a three dimen-
sional vector specifying target angles for the following angles of the finger: spread
angle, bendl angle, and bend2 angle.

The configuration config for the thumb has to be a 5 dimensional vector specifying the
spread angle, down-angle, turn-angle, bendl angle, and bend2 angle for the thumb.

The following skills will change the hand into a specific posture:

bring all fingers_in rest_config ¢imesteps end_event
bring.all fingers_in_point_config timesteps end_event
bring-all fingers_in_open_grasp.config timesteps end_event

6.4 Body Part Orientation Skills

In order to change the orientation of a body part, one of the following skills can be
used for the upper arm, the forearm or the hand:

direct_upper_arm main_azis perp_azxis ttme_opt timesteps end_event

direct_forearm main_azis ttme_opt timesteps end_event

direct_hand_palm/point_axes palm_azis point_azis time_opt timesteps end_event

direct_hand_palm towards object time_opt timesteps end_event

align hand_thumb_axis with_object object hand_bend_angle time_opt timesteps
end_event

The main_axis in the direct_upper._arm and the direct_forearm skills has to be
a 3 dimensional vector specifying a target orientation for the axis of the upper arm
or the forearm respectively. It does not necessarily have to be a unit vector. The
perp-axis parameter in the direct_upper_arm skill is usually set to “no”, meaning
that no specific perpendicular axis has to be reached. With perpendicular axis is an
axis denoted that is perpendicular to the main axis and forms together with the main
axis the plane in which the forearm is located.

The direct_hand palm/point_axes skill has an option to specify both a target palm
axis and a target point axis, each consisting of three dimensional vectors. In case
both axes are given, all three hand angles will be influenced. In case there is no point
axis specified (by setting the point_axis parameter to “no”), the current twist angle
of the hand will remain the same, since it does not influence the palm axis.



User Manual 143

For orienting the palm axis towards an object the skill direct hand_palm_towards
is provided. It is very similar to the previous one when no point axis is specified:
no hand twisting will take place. This skill can e.g. be used in order to “look at a
picture” if the picture is placed in the hand parallel to the palm, the palm is oriented
towards the head and the head/eyes are oriented towards the picture.

Finally, the skill align hand_thumb_axis_with_object aligns the thumb axis with
the longitudinal axis of an object by changing the hand-twist and hand-turn angles.
The hand-bend angle does not play a role when aligning the thumb axis and can
therefore freely be chosen.

6.5 Reaching and Grasping Skills

There are the following reaching skills:

move_arm_to_goal goal_point gp_opt time_opt timesteps end_event
move_arm_to_object object gp_opt time_opt timesteps end_event

reach object object gp_opt hand_-bend_angle time_opt timesteps end_event
reach_object_along path object hand_bend_angle end_event

Positioning of the end effector at a specified goal_point takes place when calling the
procedure move_arm_to_goal with gp_opt set to “ee”. If the wrist is to be positioned
at the goal point, the parameter gp_opt should be set to “wrist”. The same applies for
the skill move_arm to_object, but in this case, the actor will reach for the centroid
of the object.

The skill reach_object incorporates an alignment of the hand along the longitudinal

axis of the given object. The final hand_bend_angle can freely be chosen and is set to
“-107.

In none of the skills, move_arm_to_goal, move_arm_to_object, or reach_object, will
possible collisions be avoided.

A collision free path is generated by the reach_object_along path skill and the end
effector of the actor is guided along that path. The skill includes forming an open
grasp position with the hand (shortly before the object is reached) and wrapping the
fingers around the object, once it is reached.

The grasping skill can also be invoked separately by the skill
grasp_object object speed end_event
where the speed should be a factor between 0.1 and 5. A fist can be made by

make fist speed end_event



User Manual 144

6.6 Oscillating Skills

An oscillating skill is
wave_hand end_event

The hand waving skill can be stopped by typing stop_waving in the Do Command
once textfield.

6.7 Head and Eye Control Skills

There are three skills to control the head and eye motions:

head_track object end_event
head_straight time_opt timesteps end_event
head_move object time_opt timesteps end_event

The head move skill will cause the head and eyes to move the focus towards the
specified object in the given number of timesteps and evaluate its end_event upon
completion of the skill. The skill will be able to adapt to a moving object.

Keeping the focus of the head and eyes on a moving object can be done by invoking
the head_track skill. It is useful to define head_track as end event of head_move,
in order to slowly move the focus towards an object before tracking it. head_track
is a continuous skill which means it will only stop executing when it is explicitly
stopped by calling the procedure stop_head track. Remember that while the com-
mand loop is running, interactions are only possible through the menus. This means
stop_-head_track has to be typed in the Do Command Once text field.

The skill head_straight brings the actor’s focus back to a point directly in front of
him at the level of the eyes much like the head move skill brings the focus towards
an object.

7 Exiting the SkillBuilder

Use exit instead of quit when exiting the program. Otherwise, the manipulators for
the head controller and/or the data glove might keep running.



