
Task Level Strategies for Robots

by

Sundar Narasimhan

B.Tech., Indian Institute of Technology, Madras, India (1983)
S.M., Massachusetts Institute of Technology (1988)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

@ Sundar Narasimhan, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

Mav 18, 1994

Certified by ?

Professor
n nj cThesis Supervisor

Accepted by
Frederic orgenthaler

Chairman, Dep- t 1 Committee on Graduate Students

LIB

Task Level Strategies for Robots

by

Sundar Narasimhan

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis addresses the problem of constructing strategies to solve robot tasks.
We use a planner along with a set of local task-level feedback controllers to create
strategies that are robust and have globally convergent behavior. The planner and the
local controllers can be interleaved during execution. The information gathered by the
local controllers enables the creation of more robust paths, and the path ensures that
the local controllers make progress globally. These local task-level feedback controllers
are automatically created and updated from simulation models or from empirical
trials. They handle the uncertainty and possibly time-varying dynamics that may be
present during task execution. We present implementations of this approach in the
planar pushing domain and in the non-holonomic planning and control domain.

Thesis Supervisor: Tomas Lozano-Perez
Title: Professor

Acknowledgements

This thesis has taken far longer than it should have, and it might have taken even

longer to complete without the consideration and help provided the people mentioned

below.

First and foremost, I'd like to thank my advisor Prof. Tomas Lozano-Perez. I'm

indeed fortunate to have had the opportunity to work with a scientist such as he

over the past few years. His wealth of knowledge and insight into robotics problems

is truly enormous. All of the good ideas in this thesis arose in conversations with

Tomas. I hope I will be able to retain the spirit that he has communicated to me

over the years and not turn away from the real hard problems.

I'm also fortunate to have been part of the Artificial Intelligence Laboratory,

where the attitude toward work and play has been nurtured in a very special way.

For contributing to this atmosphere I'd like to thank all the students, directors, faculty

and staff.

I'd also like to thank Jose Robles and Brian Eberman, colleagues whose work I

respect enormously. They have been a source of countless ideas and have unwedged

me so many times I've lost count. I'd like to thank them for the numerous discussions

we've had regarding the LCNP approach. They have taught me a lot in the past few

years. I would like to recommend that the reader peruse their theses in addition to

this document, in order to get a complete picture of the problems and solutions.

From amongst the motion planning group I'd like to thank Michael Erdmann,

Bruce Donald, and John Canny for the time they spent in trying to explain vari-

ous concepts to me. Another friend and colleague that deserves special mention is

David Siegel. Regardless of the task, be it working on robots, tinkering with send-

mail, or fixing bad blocks on disks, he has always been there to help. Joe Heel and

Barbara Moore have been tremendous office-mates. I'm grateful for their constant

encouragement.

The experimental work described in this thesis required considerable effort, and

could not have been performed without the help of David Siegel, who argued for and

set up the VxWorks system initially. I'd also like to thank .Jose Robles for poring

over Unimation documentation with me when some of the bugs seemed unfixable.

Pat O'Donnell and Joseph Lee Jones were always willing to share their technical

knowledge of the Puma, and Anthony Jules built the initial prototype of the Motorola

parallel port to DR11-C emulator. I'd also like to thank Prof. Eric Grimson, David

Beymer, and Sandy Wells for sharing their knowledge of vision algorithms with me.

I'd also like to thank Andrew Moore for helping me with his k-dtree code.

I would like to thank Prof. Matt Mason who took the time to explain the details

of his implementations and share his enormous insight into the pushing domain. I'd

also like to thank my committee members, Prof. Marc Raibert and Prof. Chris

Atkeson. My interactions with them have always been enjoyable and great learning

experiences.

I'd also like to gratefully acknowledge the help provided by Ron Wiken, Jonathan

Meyer, Laurel Simmons, and more recently Bruce Walton, who keep the lab's systems

running smoothly.

My parents and my sisters deserve special mention. Trying to communicate to

them what my research was all about, halfway across the globe, kept me honest and

humble.

Finally, I'd like to thank Marie. Her selfless help, love and faith in me have been

constant over the past years. I simply would not have been able to do this without

her.

Contents

1 Introduction

1.1 W hat are Strategies?

1.1.1 The Design and Analysis of Strategies

1.2 A Simplified Problem

1.2.1 Operator-Based Planning

1.2.2 The Pre-image Framework

1.2.3 Behaviors

1.2.4 The LCNP Approach

1.3 Results

1.4 Thesis Organization

2 Previous Work

2.1 Mathematical Control Theory

2.2 Robotics Research on Task-Level Planning

2.3 Behavior Based Robots

2.4 Previous Work on Pushing

2.5 Non-Holonomic Path Planning

2.6 Summary

3 The LCNP Approach

3.1 Description of LCNP

3.2 LCNP Components Needed For a Single Run

3.2.1 Finding a Nominal Path

3.2.2 Finding Contexts Associated with a Nominal Path

3.2.3 Models of Dynamics and Measurement

3.2.4 Building Local Controls

51

. 53

. 55

.... 57

... 59

... 6 1

... 62

63

64

66

69

70

75

77

3.2.5 Putting it All Together 81

3.3 Modifying the Nominal Path 83

3.3.1 Forward-Chaining Algorithm 84

3.3.2 Backchaining Algorithm 85

3.4 When Does This Work? 88

3.5 Sum m ary 94

4 Simulation of Pushing and Car Parking 95

4.1 Chapter Outline 95

4.2 Planar Pushing 96

4.2.1 The Simulator 96

4.2.2 Closed Loop Pushing with Simple Inversion 109

4.2.3 Collision Detection and Handling 115

4.2.4 The Planner 131

4.2.5 Multiple Controllers based on Local Context 140

4.2.6 Dynamic Aspects of the LCNP Approach 145

4.2.7 Improving Paths over Time 146

4.3 Car Parking Example 151

4.3.1 Extending LCNP to Action Histories 154

4.4 Summary 157

5 Experiments 159

5.1 Simple Pushing Experiments 159

5.2 Experimental Setup 160

5.3 Software 160

5.3.1 Controlling the Puma 162

5.3.2 Vision . 164

5.3.3 Interface to The Planner 170

5.4 Results .. . 171

5.5 Conclusion 175

8

6 Conclusion 179

6.1 Future W ork . 1s0

6.2 Differential Gam es 11

6.3 The State Estimation Problem 185

6.3.1 Ellipsoidal M odels 189

6.3.2 Polygonal Models 193

6.4 Estimating Context and DEDS Theory 194

6.5 Viability Theory 202

6.6 Sum m ary 206

A Models 207

References 211

List of Figures

1-1 Abstract Block Diagram of Robot Task

Peg-In-Hole Assembly by Pushing 19

Point Robot in a Simple Environment 22

Possible Variations in Geometry 2:3

First Step of the Pre-image Computation 29

Pre-images using Velocity Commands 30

Pre-images with Action Uncertainty 30

Two Simple Behaviors 33

Added Behavior 34

Pre-images for Simple Behaviors 36

A More Complicated Example 37

Execution around a Nominal Path 42

Local Configurations around Nominal Path 43

Free Space Controller 43

Local Controller for Case B. 44

Motivation for Local Context 45

Nominal Path with Local Controllers 47

Illustration of Two Nominal Paths 47

3-1 Simple Pseudo-code Description for Part of LCNP

3-2 Pseudo-code Description for First Step of LCNP

3-3 Pseudo-code Description For Building All Required Local Controllers

Context Computation at Run Time

Illustrations of Local Controllers

Building a Local Controller

Pseudo-code Description for Building A Local Controller

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

1-16

1-17

1-18

3-4

3-5

3-6

3-7

3-8 Pseudo-code to Illustrate Execution of a Path Segment

3-9 Block Diagram of the LCNP Approach

3-10 Description of Search...................

3-11 Effect of Backchaining with Longer Action Sequences

3-12 Local Controller Fails...................

3-13 Failure due to Sensor Uncertainty

3-14 Local Configuration during Execution

4-1 The Planar Pushing Task Domain

4-2 Choosing 3-Point Pressure Distributions

4-3 Mason's Sense of Rotation Result

4-4 Notational Conventions

4-5 Plot of x,(4)

4-6 Two types of x, (V)

4-7 Valid Portion of ICR Locus

4-8 Pseudo-Code for ICR Computation

4-9 Computation of Rotation Angle given ICR

4-10 Illustration for 60 Computation

4-11 Geometrical Control Rule

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

Performance Evaluation: Average Number of Steps . .

Performance Evaluation: Distance Travelled by Pusher

Two Execution Trails Produced by the Local Controller

Collision Detection in 2D..................

Sequential Approach to Handling Collision

Collision Detection

Contact Force Computation Notation

Illustration of Collision Detection and Handling . . .

Example Illustrating Trace Representation

Simple Convolution.....................

More Examples of Convolutions

. 82

........ 84

.87

90

91

92

96

99

. 102

103

........ 104

........ 105

........ 106

. 106

107

108

110

113

114

. 115

........ 122

.. 128

........ 128

. 130

. 130

134

1........ 35

136

4-23 Quantized Convolution Trace

4-24

4-25

4-26

4-27

4-28

4-29

4-30

4-31

4-32

4-33

4-34

4-35

4-36

4-37

4-38

4-39

4-40

4-41

4-42

Slice Approximation using SeedFill

Two Views of 2+1D C-Space

Paths Found by FindPath

Illustration of Local Similarity

High Level Pseudo-Code for Segment Level Control

Four Frames from Trial Run

Pictures from an Execution Trace

Three Tasks in Succession

New Contexts vs. Wall number

Illustration of Accessibility Relationship

Labelling Possible Trouble Segments Along a Path .

Replanning Around Trouble Spots

Replanning Doesn't Always Work

Simple Car Amidst Obstacles

Actions for Simple Car

Illustration of Different Paths for Different Values of

Holonomic Parking Path

Two Solutions to Parking

Examples Involving Turns

5-1 Data from Measurements

5-2 Block Diagram for Hardware Setup

5-3 Block Diagram for Software Setup

5-4 Gradient Angle vs. Frequency . .

5-5 Point Extraction

5-6 Positions of Model in Images

5-7 Translation Task With Triangle . .

5-8 Rotations: The quadrilateral in the

5-9 Pushing Along a Wall

• . . .

. . . .•

..............

.•.............

..............

center is being rotated. .
..............

137

138

139

141

142

143

144

145

146

147

149

150

151

152

153

155

156

157

157

160

161

162

166

166

169

172

173

174

Planar Peg-in-hole Assembly by Pushing

Planar Peg-in-hole Assembly by Pushing - Continued

Cones of Progress

Illustrating the Feature Graph .

Discrete Event Dynamic Systems

DEDS Failures

Modifying the Path

A-1 Models of few of the objects used in the simulations . .

A-2 Examples of four environments used in the simulations

5-10

5-11

6-1

6-2

6-3

6-4

6-5

176

177

182

195

198

200

201

208

209

...........

...........

...........

...........

...........

Chapter 1

Introduction

In this thesis, we examine task-level programming of robots. Our hope is to build

robot systems that can perform a task when told what to do, instead of requiring

detailed information on how to actually do it. In order to make this happen, our

robots will need to acquire and use many different strategies for accomplishing their

tasks.

In this introductory chapter, we introduce a new approach called LCNP (Local

Control around a Nominal Path) for the construction of task-level strategies for certain

robotic tasks. Our approach constructs strategies with two separate components:

1. A nominal plan for a task.

2. Local controllers that can handle contingencies that can arise while executing

this nominal plan.

The LCNP approach then iteratively improves each component. The initial nominal

plan may be constructed without taking into account any uncertainties. The local

controllers are constructed to operate around this given nominal plan. For a large

class of actual tasks that arise in practice, the hypothesis is that by interleaving the

construction of these two components with executions (in simulations or actual trials),

robust strategies result. The nominal plan changes to accomodate the uncertainties

involved, and the local controllers become simpler and execute the nominal plan with

less control effort. To examine the validity of this hypothesis, we implement and test

this approach on two physical domains. The first involves manipulating objects on

a planar surface by pushing, and the second involves non-holonomic planning and

control for car-like robots on a planar surface.

Chapter 1. Introduction

1.1 What are Strategies?

We use strategies for manipulating objects in our everyday life. While screwing

the cover onto a jar, we usually hold the jar with one hand and the cover with the

other. We may wiggle the cover if we detect that the jar's axis of symmetry is not

aligned with that of its cover, or if we think that the threads are not matching right.

Sometimes we even back up completely to the beginning, restarting the entire task

when it appears that wedging may be imminent. A similar process occurs when we

insert a key into a lock, or whenever we try to assemble two objects, one of which fits

into the other.

Figure 1-1: Abstract Block Diagram: Various components in a typical robotics task,
all interacting with one another. The arrows are meant to be illustrative. For example,
the robot could also interact with the environment.

Some strategies involve rigid objects while others may operate on flexible objects

like shoelaces or articles of clothing. Some, like the assemblies mentioned above, seem

to involve a constant and complicated monitoring of forces and positions. Others

work with less complex sensing. In fact, at one extreme, there are tasks where we use

strategies that seem to require no sensing at all.

Figure 1-1 shows an abstract depiction of a typical task. The agent in our view

can be a human brain or a computer process. This agent interacts with and controls

a plant - arms and legs in the former case, a robot manipulator in the latter. The

plant, in turn, is assumed to be in contact with some object which we are manipulating.

Finally, this object can interact with other objects in its environment. In the figure, we

have chosen to separate the object being manipulated from its environment. The tasks

Agent Plant Object Environment

1.1. What are Strategies?

we have chosen to study will be specified in terms of the object being manipulated.

The central question we attempt to answer in this thesis is: What is a strategy

for accomplishing a certain task, and how can such a strategy be constructed? For

now, let us loosely define the strategies we are interested in as patterns of activities

designed to affect the configuration of objects in our environment. Assuming we have

control only over the agent in the above diagram, how can we go about constructing

a pattern of activity for this agent, involving sensing and movement of the underlying

plant, that can successfully accomplish the task?

Somehow, humans seem to have patterns of activities at their disposal that per-

form such tasks in a robust fashion. By robust, we mean that our strategies seem to

work over a reasonably large set of shapes and materials, and over a large range of

positions of the manipulated objects. In contrast to the performance of most robots,

our strategies also seem to handle many different kinds of uncertainty. For example,

control uncertainty refers to the fact that our actions almost never have their precise

intended effect. Sensor uncertainty compounds our problems, since there is always

some error associated with information we get from querying sensors. Modeling error

denotes errors that may be present in our models of the world. This may involve

errors in the shape of manipulated objects and errors in our knowledge of how the

external world evolves in response to our actions. Our strategies for manipulating

external objects in the physical world surrounding us seem to be able to handle all

such sources of error and uncertainty.

The study of strategies can be enormously beneficial to the construction of more

flexible and autonomous robots. It can also help us understand our physical ability

to manipulate objects in our environment.

There are a number of questions we'd like to ask:

1. What is a strategy for accomplishing a given task?

2. Where do strategies come from (i.e., how can they be constructed)?

Chapter 1. Introduction

3. How can we compare two strategies for the same task?

4. Given a strategy for accomplishing a certain task, can we say anything about

how well it will actually perform (i.e., can we ascertain how correct or robust it

will be)?

5. Can we characterize the environments in which a given strategy will work?

These questions may seem too vague to be useful. Lacking a sense of what we mean

by a task one may justifiably wonder if our domain is the entire set of manipulation

tasks. Let us say a few words regarding the tasks that we address with the work

presented in this thesis. First and foremost, we are interested in tasks where the

geometry or shape of objects plays an essential role. Second, our interest lies in tasks

that involve intermittent or periodic contact of the manipulated object with other

objects in the environment. Third, we are interested in tasks where the effects of

phenomena like friction cannot be neglected.

However, there are many tasks this work does not address. Our focus will be on

physical tasks, where all the objects can be modeled as rigid, polygonal shapes. We

do not address flexible objects. In all our tasks we also require a well-specified set of

goal configurations. Furthermore, in the task domains considered in this thesis, the

manipulated object's dynamics plays less of a role compared to its shape. Although

it could be argued that many manipulation tasks involve dynamic interaction with

flexible objects, it is a matter of taking things one step at a time.

Figure 1-2 illustrates the kind of task addressed in this thesis. This figure shows

four frames from a sample run of a planar peg-in-hole assembly task accomplished

by pushing. The pictures were taken by a camera mounted underneath the planar

surface, and the peg is the small rectangle that appears to be moving. The robot is

not entirely visible in these frames. The goal in this task is to construct a strategy

that can push the peg into the hole. Our tasks are defined in terms of the objects

we are manipulating. We would like our strategies not to depend upon the particular

1.1. What are Strategies?

characteristics of the robot we use.

Frame 4 Frame 7

Frame 10 Frame 12

Figure 1-2: Peg-In-Hole Assembly by Pushing: Images of what the camera sees during
an actual run.

1.1.1 The Design and Analysis of Strategies

There are two aspects of strategies that are quite important. The first involves

the design of strategies to accomplish tasks in a given domain. The second involves

Chapter 1. Introduction

the analysis of a strategy to understand its scope and applicability.

Referring to Figure 1-1 again, the primary use of strategies is to handle problem

instances where the object being manipulated and the surrounding environment vary.

For example, the shape of the manipulated object may change. The environment

geometry may change between tasks. We would also like to handle tasks which

involve different initial positions of the same manipulated object. In some sense, it

is this variation that requires us to use a strategy, by which we mean an abstract,

generalized, parametrized description of what to do in order to accomplish a task.

There are many important components of how strategies can handle this variation, a

few of which we mention below.

1. Manipulation strategies rely on planning to predict the future outcome(s) of

an action. In task domains where models of the world, and models of the

interactions illustrated by the arrows in Figure 1-1 are accurate, planning could

play an important role.

2. Strategies also involve sensing variables that relate to accomplishing a given

task. If a strategy does not have access to accurate models which allow one to

predict what might happen when an action is executed, then it must rely on

sensing to find out. If one can sense such task relevant variables often enough,

and exercise actions to guide the evolution of the task in the right way, then

sensing can compensate for the lack of planning capability.

3. Strategies can also use task mechanics to accomplish a task successfully. Tasks

that can be executed in a purely sensorless fashion, and special-purpose mech-

anisms that are built to execute a single task passively, illustrate that task

mechanics can be exploited quite effectively in some cases.

4. Some strategies seem to rely on randomness to accomplish their goals in an

expected (or average) sense. In some tasks, such strategies execute (on the

1.2. A Simplified Problem

average) faster than other strategies that prepare for the worst case and seek

to produce guaranteed solutions.

To accomplish most tasks, we need to judiciously plan and sense, exploit task me-

chanics where possible, and rely on randomness when guaranteed approaches fail. It

is not a-priori clear, however, how to design strategies that involve trade-offs between

all of these components.

The analysis of strategies is a much more daunting task, especially when one

considers the variations that must be taken into account. There are many interesting

questions that can be asked regarding the scope and performance of a strategy. For

example, we might be interested in how well a strategy handles uncertainty. Does it

perform equally well in the face of small or large errors in control and sensing? Can

it be expected to perform well or not at all when the environment changes? Can we

construct examples of tasks (or environments) in the given domain that a particular

design procedure cannot handle?

1.2 A Simplified Problem

We begin with a highly simplified problem involving only translational motion.

Consider the scene shown in Figure 1-3. It shows a point robot (shown by the dark

circle) at some starting configuration ps. The cross-marks indicate where the robot

can be at any given instant. The task is to move the robot from the initial configu-

ration to the goal configuration shown at the bottom of the hole. We would like the

resultant strategy to be robust enough to handle shape variations like the ones shown

in Figure 1-4. We would also like the strategy to be robust to errors in the starting

configuration of the point robot and to errors in control.

There are many models of action and of sensing we could choose. At some high

level, if we had a primitive that accomplished the Move-Robot-Into-Hole task, we

would be done. What we envision, however, is that this primitive would need to be

implemented in terms of others. The critical question then, is what primitives we

Chapter 1. Introduction

+strt+
.++

+

±

I-

+

+

Model of
Actions

a

a4

a
5

a
6

a
2

a1

0a
oa7

Figure 1-3: Point Robot in a Simple Environment: Allowable actions are illustrated
by the 8-neighbor model shown at bottom-right. The task is to get the robot from
the start to any of the goal configurations shown.

choose and how these can be combined to accomplish the higher level task.

For example:

1. We could consider a model of actions that allows only 8-neighbor motions. This

means that the robot can choose an action from a point p = (PX,py), to move

to any of its neighbors q = (p, ± 1, py, 1). Under this model, an action such as

S+ +

+++

+ + +

1.2. A Simplified Problem

A in Figure 1-3 will not be allowed, whereas an action such as the one denoted

by B will be permitted. For brevity, we will denote this model of action as PM

(for Position-controlled Model).

2. We could also consider a velocity control model, where the robot picks one of 71

directions, causing it to continually move along that direction. We will denote

this model of action as VM (for Velocity-controlled Model).

Figure 1-4: Possible Variations in Geometry: (a),
tions. (d) illustrates a more drastic change.

(b) and (c) illustrate small varia-

Even though this problem looks highly artificial, it does have some motivation.

Typical peg-in-hole assembly problems have a somewhat similar structure when they

are expressed in the configuration space of the peg considering translation motions

alone (i.e., the peg is reduced to a point, and the environment is "blown up" by a

corresponding amount, often resulting in a picture that looks like Figure 1-3).

Similar to models of action, we also need models of sensors.

Chapter 1. Introduction

1. We may have perfect position sensing where the robot knows where it is all the

time.

2. We may have force sensors that can be used for guarded motion. When the

robot moves under velocity control, it may eventually hit one of the surfaces

in the environment. If we had a force sensor, we could monitor its output to

determine when this happened.

3. We may have a sensor that can detect the orientation of the surface normal

locally at a given point of contact with the environment.

In what follows, we will examine three approaches to solving this problem. Even

though this is a highly simplified, discretized version of a problem that is based on an

underlying continuous version, we hope that the following discussion will illuminate

the differences between the three approaches.

To keep the discussion clear we have not included citations to all the relevant

work in this chapter. The ideas discussed below have been worked on by a number

of people over a long period of time. In Chapter 2 we provide an overview of such

previous contributions.

1.2.1 Operator-Based Planning

Classical planning approaches in artificial intelligence research formulate the prob-

lem of solving for sequences of actions as a problem of search. In the absence of un-

certainty in sensing and control, such an approach works well. In the example shown

above, a search technique using PM might return the solution:

K = (a7, a7, a7 , a7, a6, a6, a6, a6)

Given a particular problem instance (i.e., particular values for the starting and goal

positions and an accurate model of the environment), solving the task is relatively

easy.

1.2. A Simplified Problem

Under the VM model, a similar search process can be envisioned if one couples

it with a sensor for guarded motions, or with absolute position sensing. Under such

a model we might get a simpler sequence of actions, where we use vi rather than ai

to indicate directions of motions along the direction given by ai.

K = (v7, v6)

Under the VM model, note that in addition to the command sequence, we also need

to specify how and when the command will terminate. Such strategies can work

only if actions (or operators) execute as assumed by the model. Let us consider how

this approach answers the questions we posed earlier. To construct a strategy for

accomplishing a task, we simply search for the right sequence of actions. If we have a

metric of comparison (like the length of this sequence), we can compare directly two

such strategies. What this approach does require is an accurate geometric model of

the environment. Note that this approach can handle variations in the environment

in two ways. First, variations that do not actually affect the path generated by the

above action sequence do not affect the task's outcome (for example, the first three

variations in Figure 1-4). Second, it could be argued that when the environment

changes in an observable way, this approach can be used to plan, starting from a

newly sensed global model.

What can we say about the scope of such strategies? We can expect the strate-

gies generated by such a technique to work in domains where there is relatively little

uncertainty, and where we can predict the outcome of actions accurately. The ro-

bustness of such strategies is limited to cases where the changes that occur in the

environment are limited.

1.2.2 The Pre-image Framework

It should be easy to see that the operator-based planning approach does not take

uncertainty into account, nor can it succeed when the environment model assumed

Chapter 1. Introduction

by the planner differs from the one that actually exists. For example, if there was a

small possibility that a7 may end up merely moving the robot down along the y-axis

and not along x, some of the executions of the strategy K computed above will fail,

if there is no sensing or re-planning involved.

The recognition that sensing and handling uncertainty are crucial for the execution

of robot tasks prompted a search for formalisms that incorporate models of sensing

and uncertainty. The pre-image backchaining approach is a conceptual framework

that provides such a formalism. It provides a principled way of taking the dynamics

and the uncertainties that can arise in sensing and control into consideration. Indeed,

this approach assumes that the uncertainties must be intrinsically taken into account

during the construction of strategies to solve a given task. A strategy is seen as a

sequence of commands, or more generally, as a tree of commands, that is guaranteed

to successfully accomplish the task under worst case uncertainties. Each command

is associated with a termination predicate that tells us precisely when that command

should be terminated. The idea behind this approach is to construct a region in

state-space, called the pre-image, of a given set G under an action that characterizes

precisely that set of states from which we can recognizably reach G, upon executing

that action. The construction of this pre-image takes into account worst-case sens-

ing and control uncertainties. Starting from the goal set, the pre-image approach

recursively backchains such sets until a point is reached where the set containing the

starting point is completely included in one pre-image. The chain of pre-images from

the goal to the start set provides the basis for constructing the sequence of actions.

If no such chain exists, then the pre-image approach simply fails. If this happens,

then there does not exist any strategy that can accomplish the given task under the

worst-case assumptions about sensing and control uncertainties.

In this section, we look at our example task using the pre-image framework as a

guide. The framework is intended as a way of thinking about the correctness of robot

strategies, and we will illustrate its use through an algorithm.

1.2. A Simplified Problem 27

The first step is to model the uncertainties in sensing and control, so that we

can take them into account while constructing our strategy. Let us ignore control

uncertainty initially. In our simple example, we may assume that our position sensor's

uncertainty is only in the x component, and that the y component is always perfectly

known. The actual position of the point robot is then given by the tuple (x,,, ± 1, y,,),

where the subscripted variable denotes the measured (or sensed) values of the variable.

This model of uncertainty may seem somewhat artificial, and there are certainly other

candidates, but we will defer the discussion of these alternatives to a later chapter.

For now, it suffices to note that we do not assume any a-priori probabilistic structure

on the uncertainty. The pre-image approach deals primarily with such set-theoretic

models of uncertainty.

We should also have a model of the termination predicates we would like to use.

Under the models of sensing we have outlined, we can choose to terminate an action

based on pure position sensing alone, or when the robot comes into contact with the

environment, or based on the values returned by our surface-normal sensor.

We first illustrate the pre-image backchaining approach operating on this example

using PM, under a model of perfect control. This means that executing an action

will always result in a single unique state, as predicted by the action-map shown in

Figure 1-3.

The pre-image relative to a particular command ai and goal set G is defined to be

a set of locations in state-space from where the execution of the action ai, given the

dynamics, will result in the point robot moving to the set G recognizably (i.e., not

only is the robot guaranteed to reach the set G, it will also know that it has reached

the set).

Given this definition, the pre-image algorithm's first step is illustrated in Figure 1-

5. To the left of each figure the action ai associated with that particular pre-image

is shown. There are two steps in this pre-image computation. First, the goal set G

is shrunk by the uncertainty in positions to a set G, (the precise way this should be

Chapter 1. Introduction

done is mentioned later). The second step involves the examination of the boundary

of G,; using the model of dynamics, we compute all the states that can reach this set

in one step, given the action ai. In our simple example, this can be done by applying

the negative of the action vector ai at each of the boundary states. To state this in

an abstract fashion, the computation can be expressed as1:

Gi+1 = BoundaryLi ft(Shrink(G1 , ,p), ai)

To complete the computation we need one further step. After the computation of Gi,

we check to see if the start state (or set of states) is completely contained within Gi.

Note that for the particular choice of discretization we have chosen, G2 is zero.

This means that for the particular values of uncertainty chosen, there are no actions

that can guarantee recognizable reachability to the states shown in the figure.

The power of the pre-image approach, however, is that it can handle other models

of action and sensing. For example, rather than using PM for our model of actions,

we could consider VM coupled with a termination predicate based on pure position

sensing.

Using such a model, and a finer tesselation (note that we are now using a tes-

selated goal set with five points instead of four), we see that the pre-image G 1 can

be backchained further (see Figure 1-6 that shows just one small portion of the pre-

image computation). As illustrated by this model, pre-images can sometimes result

in unbounded sets. However, the basic iteration should be clear. The action set

A = ai gives rise to a branching factor at each stage of the computation. Although

the interaction with environment geometry has been chosen to be particularly sim-

ple, one can see that the sets to keep track of, at each step of the iteration, can

grow with environment complexity. The output of the pre-image computation should

1BoundaryLift can only work with the simplified position-sensing termination predicate we are
using here. RegionLift would be a better name for the computation as laid out in the original
framework.

1.2. A Simplified Problem

+ + +-G-

a 4

±

+

a7 +
+

s

+

+

4.~il

Figure 1-5: First Step of the Pre-image Computation: The corresponding action to
each pre-image is shown to the left of each of the four figures. The circles shaded
lightly show the initial set. The dark-shaded ellipse contains the shrunken goal set,
and the hollow circles indicate the computed pre-image for a particular action. Note
that if the robot's state is contained in a set indicated by the hollow circles (G1) in
any of the four figures, executing the command shown to the left will result in the
robot moving to some state in the dark-shaded ellipse. Given our model of position
uncertainty, only one of the four light-shaded states can then be returned by our
sensor. Thus, we will know when we have reached the goal set. This figure illustrates
how the pre-image approach incorporates sensing (and possibly action) uncertainty
during the construction of strategies.

also be clear. When the n'th step of the computation signals success (recall this

happens when the start states are contained in G6), then we know that the task

can be accomplished, and we also have a precise path through the tree generated by

the backchaining process. Figure 1-6 indicates two solutions, both of which consist

of a sequence of two velocity commands that can successfully accomplish this task,

and Figure 1-7 indicates commands that take into account velocity uncertainty. In

both solutions, we simply execute the first velocity command and continually monitor

the position sensors until we enter the region from which we can execute the second

command that will take us to the goal set.

+++

$- ++

IC---~BPY^YI --C---

0

+ +
r

0,

rUGM778~5

Introduction

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 1-6: Pre-images using Velocity Commands: Motions are terminated using po-
sition sensing. The arrows indicate the associated nominal velocities. The two figures
indicate the two solutions that solve this given task. The darker region indicates the
first pre-image.

-6 -4 -2 0 2 4 6

Figure 1-7: Pre-images using Velocity Commands with Action Uncertanity: A given
nominal velocity may actually result in a cone of velocities about this nominal velocity,
and this uncertainty consequently reduces the size of the pre-images. This figure is
intended to illustrate this effect on the sequence of two nominal velocities shown.

It should be mentioned that the pre-image approach is a very general framework.

As mentioned above, the original framework constructs pre-images recursively. In our

simple example, because we used an extremely simple discretized and finite model of

actions, we could consider growing the i'th goal-set. One of the key contributions of

the pre-image approach compared to previous planning or search-based approaches is

I-

~-~---~---~---~~

Chapter 1.

1.2. A Simplified Problem

that it shifts the focus away from searching for sequences of actions to searching for

sets in state-space that could serve as sub-goals.

The pre-image approach is also flexible in its notion of termination-predicates.

Each action ai is assumed to execute until its corresponding termination predicate

ti signals termination. To do this, a termination predicate must be able to guaran-

tee that, given a particular action and a particular set of start states, all possible

state-space trajectories and histories of sensed values result in states that recogniz-

ably reach the pre-image of the next action. Termination predicates in the original

framework take sensed values, a history of sensed values, and even time into account.

In this example, we used a particularly simple form of the termination predicate (viz.

position sensing) and therefore did not consider termination predicates that act as

conditionals. The pre-image framework, as originally proposed, allows for conditional

termination predicates that result in the output being a tree of possible commands.

The geometry of the environment and its influence on the optimal sequence of actions

is considered from the very beginning.

What can we say about the scope and applicability of such strategies generated

by the pre-image framework? The pre-image approach relies on accurate models of

the environment geometry and on models of uncertainty. There are domains where

such models are available, and the pre-image approach can be expected to produce

strategies that accomplish tasks in those domains. However, when the pre-image

approach fails to return a strategy, it does not necessarily mean that no solution can

solve the given task. All it means is that there can be no guaranteed solution given

worst case assumptions about the uncertainties.

Any change in the geometry of the environment or of the object necessitates re-

invoking the pre-image computation. The pre-image computation may indeed return

the same strategy for many starting positions of the manipulated object. Such a

strategy would then be robust to those changes in starting positions. However, the

pre-image approach does not group or attempt to classify strategies in order to gen-

Chapter 1. Introduction

eralize. Changes in shape can, in principle, be incorporated into the framework by

the addition of more dimensions to the underlying state-space in which the pre-image

computation operates, but in general, this is not a viable solution to handling chang-

ing environments.

Furthermore, it could be argued that searching for sub-goals instead of sequences of

actions is intrinsically more computationally intensive, since it involves evaluating sets

of paths. Indeed most decision problems associated with planning under uncertainty

are exponential time hard or PSPACE-complete 2

The main point of the above discussion is to note that attempts to generalize

classical planning methods in order to incorporate worst-case models of uncertainty

usually result in intractable computations. However, they can produce strategies that

are guaranteed to work globally.

1.2.3 Behaviors

Another approach to programming robots that has recently become popular is

the behavior-based approach. We now illustrate how our example task can be solved

using such an approach that relies upon specifying a set of finite-state machines that

accomplish the given task. Even though behavior-based approaches are popular in

the robot navigation literature, they arose in direct response and opposition to the

classical planning approaches and can be used for other tasks as well.

Consider the behaviors illustrated in Figure 1-8. The behaviors MoveDown and

MoveRight are extremely simple and easy to specify. Since they are fairly short, and

presumed to be executing concurrently, their suitability for real-time implementation

is apparent. If we simulate these behaviors on the given starting configuration, we

can see that they do accomplish the given task. The radius of sensing required

by the above behaviors is very localized, spatially and temporally. The predicate

2 There has been a lot of work that addresses the computational complexity of algorithms that
are based on computing pre-images or approximations to pre-images. See Chapter 2 for a summary
of previous work.

1.2. A Simplified Problem

MoveDown
[PX, y] = Sense
if - Blocked (p, - 1)

Output (a6)
endif

End

MoveRight
[pT, py] = Sense
if Blocked (py - 1)

Output (ao)
endif

End

Figure 1-8: Two Simple Behaviors

Blocked can be defined in terms of the local surface normal (if one exists). Since

the behaviors do not retain the output of this predicate (either in terms of a saved

variable or through representations of state), we see that this behavior is localized in

time as well. In the above piece of code, we have finessed the issue of what Sensed

returns. In practice, it is sometimes unlikely that a sensor directly returns values in

configuration space or in the task-level state space.

Not only are these behaviors simple to specify, but they can also be easily modified

in some cases. For example, consider Figure 1-4a. If MoveRight causes the point robot

to become stuck in response to the action ao, then one could consider changing this

action to al. Then the resulting trajectory would bounce across the top surface,

and the strategy would work to handle this modified geometry as well. Figure 1-4b,

however, poses more of a problem. One way to handle this case is to use the newly

added MoveUpAndRight behavior (see Figure 1-9).

In the code for MoveUpAndRight, the first Output expression (denoted by

Output (Action, Time)) causes action a2 to be output for the specified length of

time3

3 The same effect of this so-called mono-stable could also be achieved using state variables, but
we are just illustrating a point here. We also note that such a state variable, within a program, is
quite different from the state variables in terms of which the task is defined. Neglecting to clearly

Chapter 1. Introduction

MoveUpAndRight
[pp, py] = Sense
if Blocked (py - 1) A Blocked (px + 1)

Output (a2 , 2)
Output(ao)

endif
End

Figure 1-9: Added Behavior

With this new behavior, the strategy is more robust relative to the geometry vari-

ations in the environment. The process of adding behaviors (although not precisely in

the manner we have illustrated), in an incremental and modular fashion to augment

existing behaviors, is usually mentioned as an advantage to this approach. In general

this process may not be quite so easy.

We have not said anything about how we resolve conflicts on actions. For example,

when we add the above-mentioned behavior, notice that there may be cases when both

MoveUpAndRight and MoveRight are active, and both may wish to output an action.

If these behaviors are running in a computer process that implements the agent, which

one actually gets to control the underlying plant? The behavior-based approach relies

on a prioritization scheme whereby behaviors can be excited or inhibited by other

behaviors. For example, we could have the MoveUpAndRight behavior inhibit the

MoveRight behavior, in order to avoid such a conflict.

In general, there are other ways in which conflict resolution can be implemented.

The scheme outlined above allows only one behavior, ultimately, to control an un-

derlying actuator. Other possibilities to combining behaviors, instead of using such a

switching mechanism, include using linear or non-linear combinations of their outputs,

or using another network (possibly with state) to control the time-varying behavior of

the combining function. Regardless of the mechanisms of conflict resolution actually

in use, a set of behaviors reduces to a simple set of feedback loops with state.

mention what one means by state has been the source of much confusion in the literature.

1.2. A Simplified Problem

The pre-image approach outlined in the previous section can be used to analyze

behaviors as well. In the above example, we have just two behaviors, MoveRight and

MoveDown. In general, if we have a set S of behaviors implemented, some subset of

these will be active at a given instant of time. Given a set of goal configurations G,

and a set Sk C S of behaviors, we can compute the pre-image of Sk using a process

very similar to the one considered above (see Figure 1-10 which shows the pre-image

of goal set G, assumed to be the bottom of the hole computed relative to behavior

S1 (MoveDown), and relative to both behaviors S 1, S2 (MoveDown, MoveRight)). The

important point is given a subset of behaviors, we can think of the pre-image of this

subset in a fashion very similar to that of the pre-image of an action in the previous

framework.

The fact that behaviors are sensor dependent, and that the set of behaviors active

at a given time is a function of state and sensor values, is not important. The point

is that given a subset Sk of behaviors, all possible execution paths stay within the

region we are interested in computing. In some limited cases, it is possible to compute

such regions without actually simulating the actual execution paths.

Given a particular geometry of the environment, if there does not exist such a

chain of pre-images from the goal configurations to the start configuration, as before,

we can say with confidence that the given combination of behaviors will never be able

to successfully complete the task.

It is also important to note that the pre-image for the given set of behaviors is

not the entire free-space. If the starting configuration is to the right hand side of this

hole, these two behaviors will not suffice. There are many possible ways to address

this problem, but all involve incorporating or acquiring the knowledge of the hole's

relative position.

In addition to specifying sensor to action maps, such behaviors may contain state

variables that can encode an arbitrary amount of history relating to execution. The

compositional properties of a set of behaviors can be hard to reason about. For

Chapter 1. Introduction

Figure 1-10: Pre-images for Simple Behaviors: a. MoveDown b. MoveDown,
MoveRight

example, with a more complicated model of environment geometry, (see Figure 1-11),

it is not a-priori clear how many behaviors like the ones given above are necessary

or how they ought to be combined. One could argue that what one needs is really

a maze-solving algorithm written as a behavior instead of the rules we started with

(i.e., the way to solve this example is not by adding more behaviors to our set, but to

understand the task description at an abstract level and write behaviors to solve it).

Indeed, in two dimensional environments it may be possible to express maze-solving

algorithms as simple local functions involving very little state. However, it is not

immediately apparent how one can do this in general, especially in state spaces of

higher dimension or for other tasks.

Consider how this approach answers our earlier questions regarding strategies. To

construct a strategy for a given task, one needs to construct a set of behaviors or

feedback loops with state. Correctness of such strategies can be discerned primarily

through simulation, statistically from a large number of actual trials, or through the

theory of differential inclusions in certain simple cases. The strength of this approach

lies in its simplicity.

The main point of the above discussion is to note that simple feedback loops with

fi

'M"-...........1
6 4 -2 0 2 4 - -4 -2 0 2 46

(a) (b)

1.2. A Simplified Problem

Figure 1-11: A More Complicated Example

state can have locally robust properties. They are usually easy to specify, and because

they use feedback, they can handle certain kinds of variations. However, getting a

combination of such local feedback loops to exhibit globally guaranteed behavior is

hard. Since each feedback loop is designed in isolation, it is not easy to identify when

and how it should be modified once it has been placed inside a larger network.

1.2.4 The LCNP Approach

To summarize the discussion above, classical planning approaches can be viewed as

algorithms that seek an open-loop solution to a given task. The more recent pre-image

planning work in robotics can be seen as a principled framework that wants to take

sensing into account. It considers models of uncertainty in sensing and control while

constructing the strategy for solving a particular task. Behavior-based approaches

rely on generating combinations of simple strategies for solving these tasks.

In this section we outline the LCNP (Local Control around a Nominal Path)

approach to constructing strategies for robotics manipulation tasks. We first provide

a high-level overview of the approach and an illustrative example using the task

Chapter 1. Introduction

mentioned above. The concepts presented here will be made precise in a later chapter

(see Chapter 3).

The novel idea behind this approach is to view a strategy as composed of two

different components: a nominal plan, and a set of local controls around that nominal

plan to handle contingencies that might arise while we execute that nominal plan.

In many cases, we can compute both the nominal plan and the contingencies that

might arise quite easily. Such a separation allows the LCNP approach to construct

these components independently and to improve them sequentially. While the local

controllers are designed and improved, we hold the nominal plan unchanged. Then,

by using these same local controllers we can attempt to improve the nominal plan.

This process can be iterated in order to improve both components over time.

The motivation for this approach comes from the observation that computation-

ally, it is easier to find a nominal plan in the absence of uncertainty. In many cases,

this computation will reduce to computing a path through configuration space. In

computing the nominal plan, LCNP relies on global geometric models similar to the

pre-image approach. The initial nominal plan essentially encodes our expectation of a

benign and ideal world. The LCNP approach also assumes that we have a sensor that

can provide a reasonably accurate estimate of the state of the robot and of objects

in its environment at some resolution.

Given a nominal plan, we can predict what kinds of local environments one might

encounter at run time given uncertainties in sensing and control. The LCNP approach

then computes controllers that can handle these local environments that may arise.

These controllers are simple feedback loops (very similar to behaviors) designed to

progress along the nominal path. Each feedback loop is specialized in order to handle

a particular situation that may arise upon execution, and each feedback loop is as-

sociated with a specification for a context that determines when it should be active.

There is only one feedback loop active at any given time. Moreover, each feedback

loop operates with knowledge of the nominal plan.

1.2. A Simplified Problem

Note that the feedback loops we construct and use are task-level feedback loops.

They need to sense and correct errors occurring at the task-level. Such feedback loops

may be independent of other feedback loops needed to control a physical robot while

it is moving. Throughout this thesis, when we use the terms control, controller, or

feedback controller, we refer to task-level feedback controllers. The implementation

of such task-level feedback controllers may involve using other feedback controllers

to implement underlying actions assumed as primitives by the task-level feedback

controller.

Another key idea in the LCNP approach is to derive such local controllers auto-

matically from models of physics and simulation, or through actual trials. Recognizing

the power of local sensor to action maps, our approach attempts to alleviate some of

the problems associated with programming such behaviors in certain task domains.

The hope is that by coupling such sensor-based feedback loops to a nominal plan that

takes into consideration the global connectivity of the state space, one can generate

strategies that can handle a large number of tasks that arise in practice. There are

many ways to think about how one would compute such controls. One possibility

would be to have just two behaviors, one to follow a nominal path, and another to

get back on the nominal path, when one strays sufficiently far away from it. Another

possibility, which we will use in this thesis, is to use a set of behaviors. Each behav-

ior or feedback loop is specialized to a particular local geometric configuration. We

would like to mention that the nominal path we compute is again at the task-level. It

will be specified in terms of a path to be followed by the manipulated object. Such a

path will usually be different from the path(s) followed by a robot while carrying out

the task. We mention this in order to highlight the differences between the problems

we are considering, and other approaches for solving problems in manipulator path

planning and trajectory control.

Once we have a nominal plan, and a set of feedback loops with their associated

context specifications, we can attempt to run this combination on an actual task.

Chapter 1. Introduction

During execution, because of uncertainty, these feedback loops may switch many

times depending upon the context. When the context is ambiguous, indicating many

controllers could possibly be applied, we choose one randomly from this set. Since

each one of these controllers is designed to make progress relative to the nominal

path, we hope to achieve the task globally. As each feedback loop executes, the

LCNP approach keeps track of performance metrics, or progress measures relative

to particular segments of the nominal plan. This information is used by LCNP in

three ways. First, we can improve the path by forward chaining, by locally modifying

the nominal plan in order to patch potential trouble spots. Second, we can use this

information to improve each of our local feedback loops. Third, each local controller

contains information regarding the local accessibility of states. By backchaining such

local controllers from the goal set, we compute sets of states from which we can use

these local controllers to get to the goal set. By incorporating such a computation in

an algorithm that attempts to find paths connecting the goal to the start set, we can

derive entirely new nominal paths. We expect such nominal paths to be more robust

since they use the information contained in the local controllers.

To summarize, LCNP relies on:

* Starting with an initial nominal plan. We use a path-planner to generate this

initially. The nominal plan will therefore be represented as a nominal path.

* Deriving (or learning) local rules very similar to behaviors that can handle

deviations about the nominal path. Such local rules control the robot to make

progress relative to the nominal path. Such local controllers are designed to

sense and correct errors at the task-level.

* Running the set of local controllers on the actual task either empirically or in

simulation.

* Using the information gathered from these runs, and the local feedback con-

trollers in a discretized search procedure, we in turn compute new paths. Such

1.2. A Simplified Problem

paths may not be better than our initial paths, but they will take into account

the constraints as reflected by the information in our feedback controllers.

Another important point to note is that the nominal path and the set of con-

trollers that we initially construct encode our assumptions about the world. What

happens when, upon execution, we run into a local context for which we do not have

a feedback loop already constructed? The LCNP approach reasons that if such a

situation occurs, our models about the world are probably incorrect. There are ba-

sically three alternatives at this point. If we can sense the state of the environment

globally, we can re-invoke the global planner again after such a sensing step, hoping

that a fresh nominal plan can be constructed starting from the current state. Lacking

such a global sensing capability, the second possibility would be to randomly choose

actions until the robot moves into a configuration which is recognizably in a context

we have planned for. The third is to attempt to construct a new feedback controller

for that context locally at run-time, hoping that'the changes that have occurred do

not affect global properties necessary for achieving the task. The LCNP approach we

have implemented uses vision as the global sensor and has a limited ability to con-

struct new feedback controllers at the task-level on demand. In our simulations and

experiments, we have not implemented the second alternative which involves random-

ization. Consequently, we will not discuss this option in much detail in this thesis.

However, it should be noted that this is an important alternative way of handling

new or ambiguous situations that can arise at run-time.

In what follows, we explain the LCNP approach in a little more detail. To begin,

we need a nominal path. We show one such path for the example task in Figure 1-12.

Possible execution trajectories are illustrated with dotted lines, as the robot attempts

to actually execute the shown nominal path.

It should be noted that if we could follow the nominal path with arbitrary accuracy,

then many of the trajectories will stay close to the nominal path, and most of our work

would be done. In general, however, this will not be the case. Owing to uncertainty,

Chapter 1. Introduction

Figure 1-12: Execution around a Nominal Path

trajectories about the nominal path will still encounter local pieces of geometry that

we will need to handle.

The first important observation is given a nominal path, the number of different

local configurations that can possibly arise during an actual execution about this

path is limited. Figure 1-13 illustrates local configurations that can possibly arise

during the execution of this particular path. These figures illustrate what a small

neighborhood of the current sensed configuration looks like. The idea is to use such

neighborhoods as indicators of which controller to execute. The motivation for this

comes from the observation that the local features in configuration space control

the dynamic behavior of the manipulated object. The LCNP approach therefore

1.2. A Simplified Problem 43

computes one feedback controller to operate in each such local neighborhood.

a b c d e

Figure 1-13: Local Configurations around Nominal Path: Shaded region indicates an
obstacle. The cross indicates the configuration at which the robot is located.

Most of the path will usually be through free-space, where we assume a simple

feedback loop based on positions will be enough to ensure progress (for example, see

Figure 1-14) 4.

ControlMap0
[px, py] = Sense

[exeY] = [PXdIP'Yd] - [PXPy]
k = ArcTan2Pi (e,, ex)
Output (a[(k+i/8)4/ij)

End

Figure 1-14: Free Space Controller

The actual representation that we will eventually use for local controllers will not

have such a stylized representation as a computer program. In fact, the controllers

we construct will be table driven and essentially consist of sets of vector associations

between controls and differential motions. Each local controller then performs a very

4The LCNP approach presently assumes that a single feedback controller will suffice for all motion
in free-space. For systems with complicated dynamics, this need not necessarily be true. In this
thesis, we focus on switching between our controllers only on and between constraint surfaces in
configuration space. More generally, one might envision using other constraint surfaces in phase
space. In such cases, free-space motion may entail operating multiple local controllers in different
portions of free-space.

I(T/ (4N 6)OK*00,00

Chapter 1. Introduction

simple task. Given a desired differential motion, it computes and exerts that action

that progresses maximally along the nominal path. We use such a representation

here mainly to illustrate its similarity to the behaviors considered above. There are a

couple of points about the above sensor-action map that are worth mentioning. The

variables p,,, PY encode the current desired configuration. These are the variables

through which the path information enters the local controller. The subscript used

for selecting the action may seem complicated, but it is a simplified form for selecting

one action from the given set of actions based on the angle made by the error vector

(the complicated notation is just to make sure that the right action gets selected).

A slightly more interesting case is the local controller corresponding to Figure 1-

13b, which is shown in Figure 1-15.

ControlMapB
[px, py] = Sense
[ex, e] = [P ,P7d J - [IPX PyI
if e, < 0

if e, > 0
Output (ao)

else
Output (a4)

else
k = ArcTanPi (e,, e,)
Output (aL(k+lr/8)4/rJ)

End

Figure 1-15: Local Controller for Case B.

In the above controller, if the current value for the error vector points into the

obstacle as sensed by the controller, then this sensor-action map will result in actions

that are along the obstacle. It should be clear that each such controller is a closed-loop

feedback system (albeit a simple one in this example).

The LCNP approach provides a way of automatically deriving such maps either

through the use of simulation using models of dynamics, or empirically through actual

trials. We ensure that only ONE such map will be active at any instant of time. This

1.2. A Simplified Problem

means that conflict resolution is handled in a uniform way using sensing informa-

tion without requiring the use of excitatory or inhibitory connections between local

controllers. Switching between controllers will be handled by another process that

attempts to differentiate or observe local configurations such as Figure 1-13a from

Figure 1-13b. We call this process the context-observation process to distinguish it

from the state-observation process. The context observation process uses a local prop-

erty in the configuration space of the manipulated object in order to select the local

controller to execute. We compute a tesselated representation of the configuration

space and use its occupancy to select the local feedback controller to execute.

Figure 1-16: Motivation for Local Context: When the local configuration space looks
the same (as in P and Q), the action that progresses along the nominal path is the
same.

Figure 1-16 provides the motivation for why we use local properties of configu-

7dlk

Chapter 1. Introduction

ration space to decide which feedback controller to execute. The idea is that when

the configuration space is similar, the action map that progresses along the nominal

path is likely to be similar, given that the local dynamics are probably similar. One

can think of this figure as illustrating the configuration space for a two-dimensional

translational task. The local neighborhood of locations marked by P and Q look

identical. Consequently, if the nominal path at these locations moves through the

apertures at these points, then the action to take will be the same in both cases. The

LCNP approach considers feedback controllers as maps from differential motions to

actions. It therefore uses the local features in a neighborhood of the current state in

configuration space in order to select the feedback controller to execute.

Figure 1-17 shows the performance of the LCNP approach with the local con-

trollers on the example task. To generate these figures we wrote the programs as

indicated by ControlMapO (to handle free-space motion), ControlMapA (to handle

motion along Figure 1-13a), ControlMapB (to handle motion along Figure 1-13b),

etc. The circles indicate the uncertainty in initial position. The position sensing

error is eight times the width of the hole. Error in context-observation was simulated

by using a spatially local model; for example, it is possible to get from Figure 1-13a to

1-13b, 1-13d, or free-space. To simulate error in detection of this local configuration,

we return any one of the four possible configurations with equal probability. For the

traces shown, a nominal path consisting of two segments was used. The first segment

is a straight-line to the center of the hole and the second is a segment pointing straight

down into the hole.

The important point here is not that we were able to solve this simple task. What

should be noted is the power of coupling a nominal path that incorporates knowledge

of global geometry to a set of local control or feedback laws that can take into account

uncertainty along this nominal path.

Now consider Figure 1-18a. This shows a nominal path that has two segments,

turning at the center of the hole. Given the positional uncertainty involved (as indi-

1.2. A Simplified Problem

Figure 1-17: Nominal Path with Local Controllers: These execution traces were
generated by simulating the LCNP approach on a simple nominal path. Position
sensing error in this example is eight times the width of the hole.

Figure 1-18: Illustration of Two Nominal Paths: Ellipses indicate the tube around
the nominal path where executions may stray (the drawings are approximate). In (a),
execution trajectories may hit the horizontal walls on either side of the hole, whereas
in (b) only the wall on the left is a possibility for the particular value of uncertainty
shown. This suggests that some paths can be better than others, although it does
not give an algorithm for finding such a better path (see Section 3.3).

Nominal Path

-4 ý

Chapter 1. Introduction

cated by the ellipse), it is quite likely that upon execution the robot is likely to hit the

horizontal walls on either side of the hole in this case. Now consider modifying the

nominal path to the one shown in Figure 1-18b. Given similar values for uncertainties

it is less likely that a similar situation will occur for this nominal path. What the

LCNP approach seeks to do, therefore, is to use the knowledge of uncertainties in

order to improve the nominal path in another stage of the computation. While this

example may seem simple and somewhat artificial, it nevertheless illustrates the im-

portance of being able to improve a nominal plan. However, to do this in a principled

way, we need to know how the uncertainty affects the task (the shape and parameters

of the ellipse in the figure). What the LCNP approach seeks to do, is to modify the

path in a way that takes the effect of such uncertainties into account.

An overall strategy for a task is therefore specified as arising from two inter-related

computations. The first computes the nominal path (without considering the effects

of uncertainty) and a set of local task-level feedback controllers to make progress

along it. The second computes how this path can be improved or changed using

information gathered from actual runs, using the local controllers. There are many

problems in deciding the correctness of such a strategy. One.needs to show that

each local controller can make progress along that piece of the nominal path that is

relevant to it. One also needs to consider the correctness of the estimators that sense

and switch between local controllers. Finally, it would be desirable to prove that the

nominal path eventually improves over time.

In summary, the LCNP approach essentially embodies particular choices regarding

the balance between planning, sensing, task mechanics and randomness. It chooses

paths in configuration-space as the component with which to plan (as opposed to

trajectories in state-space, for example). It relies on particular forms of feedback loops

to incorporate sensing. It then sequentially attempts to improve both the nominal

plan and the feedback controls using simulation models or actual trials. It also relies

fairly heavily on modeling task mechanics where possible, and uses randomness as a

1.3. Results

very last recourse. The hope is that these choices will still enable us to solve a wide

class of actual examples of tasks that arise in practice. In the following chapters,

we will present two example domains where such an approach has yielded more than

satisfactory results. While success in these two domains does not necessarily imply

that the LCNP approach is suitable for all manipulation tasks in general, we hope

that this evidence will encourage others to instantiate this approach in other task

domains.

1.3 Results

The main result of this thesis is the LCNP approach that has been presented

in a sketchy form above, that can be used to plan and execute task-level strategies.

We hope that by presenting such a constructive approach to actually solve robot

manipulation tasks, we encourage experimentation and engineering in tasks where the

computational upper-bounds look daunting. By interleaving planning and execution,

we hope to address tasks where, although there may not be any strategy that is

guaranteed to work in the worst case, there may be many strategies that work in

practice on the average. In the following chapters of this thesis, we instantiate the

framework on two different domains in order to make the main ideas clear.

We also present an approach for building task-level feedback controllers that op-

erate with only local information. This method relies upon empirically learning the

mapping between actions and outcomes, either through simulation (forward projec-

tion using a model of the dynamics), or through actual trials. In domains where

the task mechanics may be hard or impossible to model, this approach is simple and

efficient.

Another important contribution is a simple characterization of the context used

to select the current local controller. The LCNP approach uses a tesselated represen-

tation of configuration space and uses this to switch between the local controllers we

build.

Chapter 1. Introduction

We also present simulation results from two domains and experimental results

from the first of our two domains. The first task domain is planar pushing, where the

problem is to move polygonal objects in the plane. The second is a non-holonomic

control task (similar to parking a car), again in a planar domain.

1.4 Thesis Organization

Chapter 2 begins with a consideration of previous work. We summarize research in

control theory, artificial intelligence and robotics that is relevant to the work presented

in this thesis. We also provide a brief summary of known complexity results. These

sections are relatively domain independent. The last portions of this chapter provide

a description of domain-specific work that this thesis builds upon.

Chapter 3 presents the LCNP approach and explains the computations in some

detail.

Chapters 4 and 5 represent the bulk of the work that went into the thesis. These

two represent the domain specific portions of work that were carried out to verify

the intuitions behind the ideas presented here. Chapter 4 presents results from sim-

ulations carried out in the two chosen domains, while Chapter 5 summarizes the

experimental work.

The final chapter presents our conclusions and suggestions for future work. In

this chapter we provide a summary of other bodies of work that this thesis has strong

connections to. Coupled with the work presented in this thesis, we hope that these

connections will be exploited in the future to yield powerful results and sophisticated

robots.

Chapter 2

Previous Work

In this chapter, we attempt to provide an overview of the different lines of research

that address the problem of controlling autonomous1 systems to achieve task level

performance. The overview contains two parts. The first covers related work on

domain independent techniques for constructing strategies to solve tasks. The second

covers work specifically related to the two domains in which we chose to implement

and test our ideas.

The following is a rough classification of the main bodies of work:

1. Research on modeling and control of systems.

2. Research on robotics task-level planning.

3. Research on behavior-based robots.

4. Research on the physics of pushing.

5. Research on non-holonomic control.

The first area is perhaps the widest and the oldest of the four areas of research.

It is concerned with finding constructive solutions to the problems of designing con-

trollers for processes in the real world. These processes can be man-made or natural.

The principles of feedback control have been used in practice and studied for over a

hundred years. The mathematical theory of such processes is rich and sophisticated.

'The term autonomous is used in this chapter in its colloquial sense to indicate systems that
operate independently without outside control. In control theoretical literature, this term is used to
refer to time-invariant processes.

Chapter 2. Previous Work

Since this thesis is concerned with the problem of constructing robot programs that

exhibit task-level performance, we should expect to draw upon previous work in

mathematical control theory.

The second area that is relevant to this thesis is the more recent work done by

researchers in artificial intelligence. This work targets autonomous systems exclu-

sively. It focuses on the problems involved in building such systems, and getting

them to exhibit "intelligent" behavior. Our interest, in this thesis, is limited to those

autonomous systems that have to deal with uncertain and dynamic processes in the

real world.

Task level programming of robots has been an important and fertile area of re-

search. The basic idea is to endow robots with enough intrinsic capabilities so that

the effort involved in programming them can be reduced dramatically.

The last two areas summarize domain specific work related to this thesis. Both

these domains were picked to illustrate the somewhat special problems that arise when

one considers an object interacting with the environment. In spite of their apparent

simplicity, both domains conceal numerous interesting problems. Consequently, they

have been addressed by a number of researchers using a variety of tools, and in the

last sections of this chapter, we provide a brief summary of relevant research.

There are bodies of work that do not neatly fit into any of the above characteriza-

tions, and instead seem to straddle many areas. For example, hybrid approaches that

attempt to merge planners with real-time execution units utilize techniques borrowed

from task-level approaches and behavior-based approaches. Complexity theoretic as-

pects of algorithms, for example, have been examined in the areas of control, artificial

intelligence and in robotics. We have attempted to provide references to such work

where relevant.

2.1. Mathematical Control Theory

2.1 Mathematical Control Theory

Perhaps the oldest body of work having to do with our problems is the field of

control, that seeks to both model and then control physical processes that evolve over

time. Beginning with the work of Maxwell [1868], the field of feedback control boasts

a long and mature history. The mathematical study of control processes, however, is

much more recent. Early work in this area was called "system theory" (see Bellman

[1967] for an excellent introduction to the early work, Bellman and Kalaba [1964] for

a collection of historically important papers and Luenberger [1979] for a more recent

exposition).

Control theory addresses the problems involved in synthesizing controls to gov-

ern the behavior of uncertain dynamic systems, and analyzing the behavior of such

systems in combination with their controllers. The usual technique is to model a

system using differential equations, and then attempt to build a controller in order to

successfully accomplish a given task. Many of the classical techniques developed for

such systems, however, do not readily extend to manipulation or other robotics tasks

like mobile robot navigation. There are many reasons for this. Traditionally, con-

trol theory has not looked at problems wherein the geometry of interacting objects

plays a significant role, or where the environment can change drastically. Usually

the dynamics of such objects are highly non-linear and involve considerable uncer-

tainty. The interaction between objects is hard to model, and objective criteria for

the evaluation of the performance of such controllers are not easily formulated. The

processes involved in error detection and recovery also tend to be fairly complicated.

Thus, there are not many instances today wherein control theory has been directly

applicable to such problems. However, we expect this situation to change. There is

a growing realization in the fields of control theory and computer science that each

has much to learn from the other (see Dean and Wellman [1991]).

There are countless books that deal with classical control synthesis and estimation,

of which we shall mention only a few that we have found relevant to this work.

Chapter 2. Previous Work

Slotine and Li [1991] address non-linear systems, and Borrie [1986] presents a set of

design methods that can be applied in a variety of situations. Stengel [1986] contains

an excellent introduction to stochastic optimal control and a lucid explanation of

the separation theorem. Astr6m and Wittenmark [1989] provide an introduction to

adaptive control, while Narendra and Thathachar [1989] do the same for learning and

adaptive control systems.

Aubin and Frankowska [1990] and Aubin [1991] present set theoretic analyses of

control theoretic problems. Aubin [1991] explains a theory known as viability theory

that is particularly relevant to models of control that consider unknown-but-bounded

models of uncertainty. Such models of uncertainty could be extremely important in

manipulation tasks where the derivation of probabilistic models may be impossible.

Another off-shoot of control theory is the field of differential games (see Isaacs [1965])

which studies strategies that are guaranteed against worst-case adversarial behavior.

This theory has a strong mathematical connection to game theory, and considers

the interaction between two players. The computation of optimal strategies for one

player, given the capabilities of the other, are considered.

Dynamic programming is an important technique used in control theory to solve

problems that involve making a sequence of decisions. In discrete domains, task level

programming of robots can be formulated as such a problem and hence solved by

dynamic programming on certain knowledge sets. An excellent introduction to the

theory and practice of dynamic programming can be found in Bertsekas [1987]. See

Erdmann [1993a] who uses this technique for solving certain tasks formulated in a

discrete domain.

The theory of discrete event dynamic systems originates in the work of Ramadge

and his colleages (see Ramadge [1986], for example). This theory characterizes the

behavior of control systems in terms of a language that is generated by a certain class

of finite automata. Notions like stability and observability are quite well developed for

such discrete event systems. We use the theory of observability of such systems due

2.2. Robotics Research on Task-Level Planning

to Ozveren [1989] in our construction of observers for context switching controllers

(see also Ozveren and Willsky [1990]).

Lastly, the work by control theorists to characterize the complexity of control al-

gorithms is also particularly relevant to this thesis. Papadimitriou [1985] considers a

number of problems involved in decision-making under uncertainty and proves that

a number of those problems are PSPACE-hard or PSPACE-complete. A more recent

extension of this work is presented in Condon [1989). Papadimitriou and Tsitsiklis

[1986] study the classical (and still unsolved) problem in LQG control called Witsen-

hausen's problem and prove it to be NP-hard under a suitable discretization. Sontag

[1988] considers bilinear systems (which include the class of all linear systems), and

proves that the problem of accessibility can be decided in polynomial time for such

systems, whereas deciding controllability is NP-hard. Tsitsiklis [1987] studies the

control of discrete event dynamic systems as mentioned above and proves that the

problem of finding a supervisor implementable as a minimal finite state machine is

NP-hard.

2.2 Robotics Research on Task-Level Planning

Beginning with the work of Ernst [1961] robotics researchers have also been at-

tempting to construct robot programs that accomplish meaningful tasks. The prob-

lems of uncertainty and environment complexity have been attacked by a number of

approaches. In his doctoral dissertation, Taylor [1976] advocates the use of strategy

skeletons that can be instantiated on demand. Almost at the same time, Lozano-

P6rez [1976] presents one of the earliest attempts at a task level programming sys-

tem intended for mechanical assembly. The impact of errors in such systems is

analysed by Brooks [1982] by symbolic propagation of error values to the task co-

ordinate system. The basic idea in such systems is that a high level task specification

like Assemble(A,B) can be broken down into lower level primitives like Grasp(A),

Puton(A, B), etc. Each of these primitives takes as input a set of geometric parame-

Chapter 2. Previous Work

ters pertaining to a sub-task and executes a corresponding set of actions designed to

accomplish that sub-task. This view of the robotic task domain has prompted much

research. For a given task, what are the right primitives one should use? Can such

primitives be automatically synthesized? Is there any way to prove that one needs

only a finite set of such primitives to accomplish any task within a domain?

Even though these questions are quite hard to answer in general, a steady progress

has been made in terms of clarifying the issues surrounding such questions. One im-

portant by-product of such investigations has been the notion of configuration space.

This space, as introduced originally, is the space of variables which completely char-

acterize the locations of a robot. Obstacles in the environment and the constraints

they generate can be represented in such a space. The notion of configuration-space

has proved useful both in practice for constructing path-planners, and in theory for

providing a useful framework in which to pose questions related to task-level pro-

gramming (see Lozano-Perez [1981], Lozano-Perez [1983a]). This concept, coupled

with the model of generalized-damper control and models of uncertainty, forms the

basis of the pre-image framework first outlined in Lozano-Perez et al. [1984]. The

primary domain targeted by this framework is the set of fine-motion strategies that

arise as solutions to mechanical assembly tasks. This formalism, also known as the

LMT framework (after the names of its principal authors), has been an extremely

fruitful area of research. As mentioned in the introduction, this paper introduces a

number of important concepts. One of the important notions is the idea of termi-

nation predicates that can recognizably signal the completion of a particular action.

The recursive backchaining procedure introduced in this paper is based on the notion

of pre-images. Such a procedure takes into account all the knowledge available to pro-

duce plans guaranteed against worst case uncertainty. The work of Erdmann [1984]

separates and clarifies the notion of reachability from recognizability and provides

an algorithm for computing back-projections, which are an approximation to pre-

images, in low-dimensional spaces. The basic LMT framework has subsequently been

2.3. Behavior Based Robots

extended in a number of directions (see Donald [1987] who considers error detection

and recovery strategies and the effect of model error, Erdmann [1989] who studies

randomized strategies, Friedman [1991] who introduces a data structure called the

path-hull to solve various motion planning problems with uncertainty in the plane

and Lazanas and Latombe [1992] who look at navigating between landmarks that are

regions in state-space wherein one has perfect knowledge). Its connections with other

areas of computer science have also been explored (see de Rougemont and Dias-Frias

[1992] whose work relates planning under uncertainty and robustness to interactive

proof checkers).

The computational complexity associated with computing fine-motion plans has

been studied in Canny [1987]. Canny and Reif [1987] study the problem of compliant

motion planning and prove it to be NEXP-time hard. A more recent exposition of

these problems can be found in Latombe [1991].

There has been some work on synthesizing strategies for solving certain robotic

tasks in a purely sensorless fashion. Christiansen and Goldberg [1990] consider ran-

domized strategies to solve the problem of automatically planning tasks like tray-

tilting. Tray-tilting refers to a task where, usually, a single object is placed on a tray.

The robot's task is to figure out a sequence of tilting motions of the tray such that

the object ends up in a known configuration on the tray after the actions have been

performed. This task has been used to study sensorless manipulation by Erdmann

and Mason [1986]. Such techniques seem to be readily applicable to discrete task

domains.

2.3 Behavior Based Robots

The behavior-based approach provides an alternative to programming robots (see

Brooks [1986]). Such programs are also known as reactive programs in the literature

in order to characterize their ability to react quickly to changes in their environment.

The behavior-based technique was originally designed to address problems in robot

Chapter 2. Previous Work

navigation and has been extended by a number of researchers to address other tasks

(Brooks [1989], Mataric [1990], Connell [1990], Brooks [1991], Brock [199:3]).

As illustrated in the introduction, behaviors can be characterized as a network

of finite state machines, each of which specifies a tightly-coupled sensor to action

mapping. Initially, they were thought of as simple rules that were purely reactive

(Connell [1990]), but more recent efforts have emphasized their use of state and

their unique use of time. The word reactive has come to characterize approaches that

specify the action at a given time t as a function of only the current sensor values (i.e.,

a(t) = f(z(t)), where z(t) indicates the current measurements). The word behavior

is used nowadays to denote approaches that use state and mono-stables.

The word state as used in the behavior-based literature indicates only the state of

the computer process implementing the agent. It is consequently quite different from

the state referred to in the literature on task-level planning and in control theory. In

the latter, the word state is usually used to indicate task relevant variables, which

allow a complete characterization of the task and model how the task evolves over

time. Such variables might include, for example, the positions and velocities of all

objects in the environment.

In spite of their popularity, there have been very few efforts to model behaviors

or study their effectiveness related to a particular task domain. As we indicated in

the introduction, one could use the pre-image planning methodology to study the

effects of behaviors in a particular environment. However, to study the effect of

behaviors in a changing environment, there are very few tools available that can

yield meaningful results because of the high dimensionality of the resulting state

spaces. Brock [1993] has studied behaviors using multiple copies of configuration

space. The hierarchical mixture of experts architecture advocated by Jordan and

Jacobs [1993], the discrete event dynamic systems model introduced by Ozveren [1989]

or the algebraic theory of automata (Holcombe [1982]) can all be used to model and

study behavior-based controllers in limited domains. In order to do this, however, one

2.4. Previous Work on Pushing

would need to assume a mechanism of conflict-resolution (see Maes [1989]) and mnore

detailed knowledge of the scheduling algorithms implemented by the lower levels of

behavior-based algorithms.

Hybrid approaches that combine the advantages of behavior-based approaches

along with traditional planning methods popular in artificial intelligence have also

been investigated (Simmons [1990] investigates the interleaved execution of a plan-

ner and reactive component: Coste-Maniere, et al. [1992] specify a language called

ESTEREL for such hybrid approaches, Hanks and Firby [1990] study issues involved

in merging the reactive execution units with planners, and Kaelbling [1986], [1990]

investigate methods for learning and specifying such reactive agents).

2.4 Previous Work on Pushing

We now turn to the domain specific portions of our work. In this section, we

provide a short summary of previous work on the pushing task. In spite of its apparent

simplicity, the problem of planar pushing remains an important area of research.

Mason [1982] introduces the pushing operation as one of the basic skills that a robot

manipulator must have in order to solve a wide variety of manipulation problems. In

his thesis, he considers the problem of computing the motion of a workpiece resting on

a planar surface that is pushed by a robot fence whose motion is given. Although this

problem had been posed in quasi-static mechanics a century or so earlier, no solution

had been found. The problem is solvable when the pressure distribution supporting

the object is known, but in general, there is no good way of ascertaining what this

pressure distribution is. Mason deduces that the sense of rotation of a pushed object

in a way that is independent of the pressure distribution and hence can be determined

with geometric means.

Peshkin, et al. [1988] extends this seminal work by attempting to solve for the

motion of the workpiece completely. Their work involved empirical determination

of the locus of the center of friction for hundreds of thousands of random pressure

Chapter 2. Previous Work

distributions. By drawing a circle that circumscribes any given object (the circle

is drawn with its center at the object's center of mass, and its radius equal to the

distance of its most distant vertex from the center of mass), one need only compute

this locus for disks. Since any pressure distribution of the complex object can surely

be a pressure distribution for its circumscribing disk, the locus of the COF (center of

friction) of the disk must enclose the locus of the COF of the underlying object. He

then determines the actual location of the COF by applying the so-called minimum-

energy principle which states that the workpiece will rotate in a way that minimizes

the energy lost to rotational friction. This minimization is performed numerically.

Once the locus of the COF has been computed it can be used practically in the

design of parts orienting feeders (see Peshkin, et al. [1988]). The basic notion here is

that of a configuration-map (C-map) which is a function of two copies of configuration-

space onto logical values. A point in such a configuration map (0i, Of) caused by a

single fence (or pusher oriented at a fixed angle) is 1 if the workpiece entering in

configuration Oi can emerge with configuration Of after interaction with the fence.

For simple planar operations, (such as those of objects moving on conveyor belts)

one can consider two dimensional projections of the C-map. Peshkin, et al. [1988]

further takes advantage of the structure of rectangular regions or "bands" in the C-

map to define an algebra of operations on such regions which allow the results of

one operation be composed with those of another. The bands also allow symbolic

encoding of object configurations into states. A series of feeder fences can be seen to

successively reduce the possible configurations of the workpiece. Using the symbolic

encoding into object states, design of parts feeder systems can be reduced to a simple

search problem in the space of possible operations which are collisions with various

fences.

Brost [1988] uses similar ideas to formulate a concept defined as operation-space.

While C-maps are dependent only on the configurations of workpieces, operation-

spaces involve robot motions (or actions) as well. Brost considers the planning of

2.5. Non-Holonomic Path Planning

squeeze-grasps of polygonal objects with a two fingered gripper. Using Mason's result.

it can be seen that for a given moving fence and object, one can construct a push-

stability diagram which is a function from fence-orientation and motion direction to

stable configurations of the object along the fence. While the relative orientation of

the moving fence to the object depends on the initial configuration of the object, the

moving direction of the fence characterizes the action space of the robot. Regions in

this operation space that correspond to stable outcomes can be quite easily computed.

Dealing with uncertainty in the initial orientation of the object reduces to a simple

shrinking of the regions of the desired stable outcomes, while the problem involved

with two pushing surfaces can be dealt with by computing the intersection of the

regions in the push-stability diagrams for the two surfaces computed independently.

Other relevant work includes Akella and Mason [1992] who study the problem of

computing a set of intermediate poses of an object that are attainable by pushing

actions, and the more recent work by Lynch and Mason [1994] who studies a problem

identical to the one considered in this thesis. Lynch [1993] studies techniques for

estimating the friction parameters associated with a pushed object, and Christiansen,

et al. [1991] attempt to build models of actions and (consequently of strategies)

without using initial models but through a large number of empirical trials. Other

efforts to empirically learn the pushing action map include Zrimec and Mowforth

[1991].

2.5 Non-Holonomic Path Planning

Non-holonomic path planning involves finding paths between given starting and

ending configurations of a moving object amidst obstacles, in the presence of non-

holonomic constraints. Such constraints (usually on the velocity of the moving object)

cannot be removed by renaming the variables denoting the configuration space or by

changing the co-ordinate system.

Latombe [1991] contains an excellent introduction to relevant research on non-

Chapter 2. Previous Work

holonomic motion planning. A collection of more recent papers on this topic can be

found in Li and Canny [1993]. Murray and Sastry [1990] use sinusoids to solve non-

holonomic control problems, and Tilbury, et al. [1993] provide a more recent solution

to the n-trailer trajectory generation problem using Goursat normal forms.

2.6 Summary

In this chapter, we have introduced the various lines of work relevant to this

thesis in order to place it in context. We have provided a brief overview of research

on control theory, introduced task-level planning in robotics, and covered behavior-

based approaches. These fields are too large to be covered adequately within the

space of a few pages, but we hope that we have given enough of a flavor of the various

lines of research.

The overall goal is to construct reliable strategies for solving common manipulation

tasks that are reasonably well-specified. All of the above research has, in one way or

the other, attempted to solve this problem.

Chapter 3

The LCNP Approach

In this chapter, we present the Local Control around Nominal Path (LCNP) approach.

The basic idea is to construct a nominal path, a set of local controls, and a context

observer in order to solve a task. The path construction initially does not take control

or sensing uncertainties into account. The local controls are reactive feedback loops.

Their design is such that they attempt to progress along the nominal path. The

task of the context observer is to detect when to switch between such feedback loops.

Given a nominal path and a set of local controllers, one can execute this combination

on a given task either in simulation or using a real robot. The information gathered

during such executions can then be used to improve the nominal path.

The motivation for this approach stems from the observation that there may be

many strategies for solving a relatively large class of manipulation tasks. In such tasks,

at any given point, there may be quite a large set of controls that can successfully

accomplish the task. Rather than seeking a strategy that is guaranteed to work

despite worst-case uncertainty, the LCNP approach assumes that the environment is

benign in most cases. It therefore initially constructs nominal paths without taking

the uncertainties involved into consideration. Our tasks exhibit highly discontinous

dynamics, and the LCNP approach therefore uses a set of local controllers to handle

different portions of the state space.

We recognize that the initial nominal path may not be the best path for a given

task. Portions along it may be quite difficult to follow. The second stage of the LCNP

approach therefore modifies the path so that it can be followed more readily. Such

Chapter 3. The LCNP Approach

path modifications can occur real-time during execution, or off-line, after empirical

data-gathering runs. Modifications to the nominal path can occur by forward-chaining

algorithms (which we will use in the pushing domain) or by backchaining algorithms

(which we will use in the non-holonomic planning and control domain).

In this chapter we describe the component computations advocated by this ap-

proach, and in the following chapters provide some evidence as to its utility.

3.1 Description of LCNP

We will present the LCNP approach in two stages. First, we will outline all the

computations that are necessary to setup for an initial run. For this, we need a

path planner that can give us a nominal path assuming no uncertainties. Given a

nominal path, one can construct a set of local controllers to operate along this path.

Associated with each local controller is a precise characterization of the context in

which it (and no other local controller) is expected to operate. Once we have these

components, we can actually execute this set of local controllers and the nominal path

on an actual task. We can do this empirically or in simulation.

Second, we will present computations in the LCNP approach that attempt to

improve the nominal path. We show how this can be done using information present

in the local controllers, or with information gathered during actual runs. Finally, we

attempt to characterize those situations in which this approach can fail, and what we

do in order to address these failures.

[Pominal , {LCk}o] = SingleRunSetup(object, x,, Xf, ep, Eg)

Loop i from 1 to Length(Pomia,,l)

RunSegment(Pi, {LCk}j+')

[Pinoinal , { LCk}J+1] = ImprovePath(Pjomina , {LCk})

Figure 3-1: Simple Pseudo-code Description for Part of LCNP

3.1. Description of LCNP

In Figure 3-1 we present the above mentioned computation in high-level pseudo-

code. The first line computes the nominal path and a set of local controllers (ab-

breviated {LCk }). The next two lines actually run this path along with the given

controllers, and the last line improves the nominal path and the local controllers.

In what follows, we instantiate each one of these computations, in order to make

them clear. Note that some of these computations we present below, will call other

functions. For example, RunSegment may call SingleRunSetup to compute a new

path if failure occurs. Also note that as presented above, the computation continues

repeatedly after every trial. We have left the termination conditions for the overall

algorithm intentionally vague to suggest that this can be an on-going computation

over multiple trials.

In our simulations and actual experiments, we have run the nominal path im-

provement algorithm only after complete runs and have not interleaved the two com-

putations at run-time. We first present all the computations and then discuss the

ramifications of some of the choices we make. In particular, we consider three cases

upon execution:

1. Models assuming perfect sensing and perfect control.

2. Models with perfect sensing but errors in actions.

3. Errors in both sensing and action.

We show how the LCNP approach can fail when we add sensing and control error.

Some of these failures can be fixed by re-planning to produce better paths, and

others can be fixed by choosing an appropriate tesselation of the nominal path. Some

failures, however, cannot be fixed. These provide a characterization of the class of

environments and tasks in which LCNP can be applied.

Chapter 3. The LCNP Approach

3.2 LCNP Components Needed For a Single Run

For clarity of presentation, we first present the LCNP computations needed for a

single run.

SingleRunSetup(object, x,, x1 , Ep, Eg)

Environment = Sense

Pnominal = FindPath(object, x,, xf, Environment)

BuildLocalControls(A, Pnominal, Environment,Ep, E.)

End

Figure 3-2: Pseudo-code Description for First Step of LCNP

In Figure 3-2 we illustrate the relevant computations in abstract pseudo-code.

Note that the first step is a sensing step in order to build a model of the environment.

Even though this is often an expensive and time-consuming operation, our computa-

tions for finding a nominal path rely on the availability of such a model. Without this,

our path planner cannot guarantee connectivity between the start and the goal states,

and hence it would be impossible to say anything about the global properties of the

local controllers we build. The second step involves a traditional FindPath compu-

tation. The variable object denotes the object to be manipulated, while x, and x,

denote its starting and goal configurations. The third step builds local controllers

needed to execute the given nominal path, assuming a model of feedback controls as

given by Ep and ,. A denotes the set of actions in some (possibly continous) space.

EP characterizes the width of a tube around the nominal path in which all execution

trajectories must lie, and Eg refers to our position sensing uncertainty. In general,

the first of these numbers is larger than the second. In many cases it will be hard to

characterize these last two numbers accurately, and hence they may be merely crude,

conservative estimates of what we can expect from our feedback controllers.

We need a few definitions in order to clarify the computations outlined above.

Recall Figure 1-1 where we illustrated our task with an agent controlling a plant.

3.2. LCNP Components Needed For a Single Run 6iT

This plant in turn was manipulating an object that was possibly in contact with ani

environment. The first important question that we must ask is: what is the state of

such a process? Conventional definitions of state require it to capture all the relevant

variables of interest that are needed in order to predict the time-evolution of the

process uniquely. There are many possibilities:

1. The state of the computer process implementing the agent. Denote this by

sES.

2. The state of the plant. If this is a conventional revolute manipulator, then this

is characterized by a tuple Q = (q, il), where Q E Q is the vector denoting its

joint angles.

3. The state of the manipulated object M denoted by Xo = (xo, io), where we

use the subscript to denote the object we are interested in. The first element

of this tuple xo E C is an element of the configuration-space of the object, and

the second element specifies its velocity.

4. Finally, the state also includes variables for objects in the environment:

Xi = {(xi, i) I i = 1..N and i $ o}

where Xi E X2 .

The proper definition of state is important. For example, one could choose to

consider only the agent. Then it is certainly true that the agent's state evolves

according to the inputs it receives (usually from sensors associated with the plant).

One could indeed ignore everything else and concentrate on just how the agent evolves.

However, in doing so, we are quite likely to end up with only part of the entire picture.

This does not mean, however, that one must not exercise engineering judgement

when it comes to limiting one's scope. For a typical peg-in-hole task, one need only

Chapter 3. The LCNP Approach

consider the hole and other surfaces near the hole as part of the environment. Objects

that are miles away, or even in another room, can be safely ignored as being irrelevant

to the particular task at hand.

Definition 3.1 The full state of a task is an element of S x Q x Xo x X, x ... x XN

Clearly, this definition yields rather unwieldy elements in all but the simplest

of tasks. Consequently it is customary in the literature to ignore portions of this

tuple. Kaelbling [1986], [1990] focuses on the state of the agent, whereas Brock [1993]

chooses to focus on Q x X,. Other partitions are also certainly possible.

For the purposes of this thesis, as mentioned before, we will concentrate only

on the manipulated object. For all purposes, therefore, we restrict our definition of

state to include just elements in X,. A task, furthermore, will be specified in terms

of initial and final states. Even with this enormous simplification, the theory that

results is sufficiently rich and captures most of what we need in order to specify task-

level manipulation strategies. In what follows, therefore we will generally drop the

subscript since we are only talking about the manipulated object.

Consideration of velocities as separate from positions is also somewhat cumber-

some using the above notation. Consequently, from now on, we will use x to denote

the state of an object. In quasi-static models this will be an element of just the

configuration-space C (see Lozano-Perez [1983b]), but in dynamic models we will

need this to be an element of X.

Definition 3.2 The state of the task is an element of C for quasi-static models and

an element of X in general.

We will assume that a task is specified in terms of desired configurations of the

manipulated object. Let x, represent the starting configuration and xf denote the

final configuration of the manipulated object.

3.2. LCNP Components Needed For a Single Run

3.2.1 Finding a Nominal Path

To find a nominal path, we need to find a sequence of configurations connecting

x, to x1 such that no intermediate configuration collides with any obstacles in the

environment. Since we wish to include nominal paths that allow objects to contact

and slide on obstacles in the environment, we seek paths that either stay clear of

obstacles or move along the boundary of the configuration space obstacles.

The problem of finding a nominal path is a geometric problem and has attracted

considerable attention (see Lozano-Perez [1981], Canny [1987]). In quasi-static prob-

lems, since we are only interested in finding holonomic paths through configuration

space, many of these results apply directly. In the general case of polyhedral objects,

the complexity of solving the Mover's Problem is singly exponential in the degrees

of freedom of the moving object (see Canny [1987]). For the case of planar motion,
the lower bound is f(n 2) as demonstrated in O'Rourke [1985] and achieved by the

algorithm outlined in Vegter [1990].

The papers mentioned above describe exact and complete algorithms for solving

this problem (see Latombe [1991] for a comprehensive survey of this field). In the

simulations and experiments we have performed, we have restricted ourselves to ap-

proximation algorithms. Even when the dimensionality of the space is low (d = 3 in

our examples), path planning involves search, and this can be slow. Our implemen-

tations have been on serial computers, and even though they cannot be characterized

as real-time, the path planner is actually much faster than the algorithms involved in

perception and estimation.

Coupled with the notion of a nominal path is the hidden assumption that met-

rically accurate models of the environment are available. If models of the objects in

the environment cannot be built or estimated, then this computation is somewhat

meaningless. In some domains such models are available readily or can be obtained

through inexpensive means. In the domains addressed by this thesis, we use a vision

sensor to initially build such models.

Chapter 3. The LCNP Approach

It may seem that the initial sensing step requires costly object identification algo-

rithms to run at first. This thesis considers tasks where we are manipulating only one

single object M. Consequently, when we build models, we do not require precise iden-

tification of other objects in the environment. We do need to know what obstacles are

present and where they are located, but not precisely what each obstacle corresponds

to. Even though restricting our attention to a single manipulated object may seem

limited, there are two reasons why this is useful. First, most typical manipulation

tasks usually involve just a single object. Tasks where we handle multiple objects at

the same time are rare. Second, even when one is dealing with multiple objects, the

capability for moving a single one will be an important component.

We outline the actual computations needed to plan paths in Section 4.2.4. For

now, we will simply assume that a path Pnominal can be computed and is available as

a sequence of configurations:

Pnominal = X0, X1, ..., Xn

where xo = x, represents the starting configuration and x,, = x1 represents the final

configuration. Other parametric representations are also possible. We will assume

that even though the nominal path is represented discretely, the symbol Pnominal

denotes the set of all configurations along the given nominal path.

3.2.2 Finding Contexts Associated with a Nominal Path

Part of the motivation for the LCNP approach stems from the following obser-

vation. In any manipulation task there are two rather distinct components. First,

there is the problem of continously controlling the robot and the object that is being

manipulated through it. The object can be moving through free-space, or it can be

in various contact modes with other objects in the environment.

In addition to the continous control of object movement, there exists a rather

discontinous process whereby such objects make and break contact and even switch

3.2. LCNP Components Needed For a Single Run

between different contact modes. The dynamics of the manipulated object change

drastically in between such contact modes. The idea behind the LCNP approach is

to synthesize a set of local controllers that can be switched by a context estimator

(or observer). These controllers are synthesized to take into account the changing

dynamics, and to progress along a given nominal path that is constructed initially

without taking into account any of the uncertainties involved.

Given our model of phase space Xo, we can express the geometrical constraints

imposed by all other objects Xi in this space. Furthermore, we can also express other

constraints due to maximum velocity or acceleration in this space. Such constraints

cause phase space to be divided up into many regions. In each region, one might

require controllers that operate quite differently. The boundaries between such regions

are typically highly non-linear surfaces.

If we use models of quasi-static dynamics, such constraints can be expressed in

C-space C. From now on, we will assume such quasi-static models and use C instead

of ,X¥. Given such constraints, C can be partitioned into two disjoint sets sharing a

common boundary. The first is free-space T" that satisfies the set of given constraints,

wherein the manipulated object is not colliding or intersecting with any of the obsta-

cles in the environment. The second is the space that represents possible collisions

CO (for C-space Obstacles). The two sets share a boundary which is the union of

a number of manifolds. Each of these manifolds represent a particular set of active

constraints. For polygons, such constraints are created when the vertices or edges of

those polygons come into contact with other vertices and edges in the environment.

For any finite environment, there are only a finite number of such manifolds Mi. Let

each Ma be a node in a graph, and F represent all of free-space. We insert an arc

between Mi and Mj, if they are adjacent in the boundary of CO. This construction

results in a graph called the contact-graph CG. This graph has been observed before

by others (see Buckley [1987]).

Similar partitions of phase-space can also be performed, but one would need a

Chapter 3. The LCNP Approach

more precise definition of the surfaces characterizing the boundaries between which

such controllers operate (see Slotine and Li [1991] for a description of sliding-mode

control, which is based on a similar intuition). In our tasks, we use the constraint

surfaces generated by obstacles in configuration space.

It is important to characterize exactly where each local controller operates and

how one can detect situations where they ought to be switched.

Definition 3.3 If the current state of the manipulated object is x, we define the

current context to be the index i, where x E Mi.

Note that during execution, we will rarely have access to the state x. Usually, all

we will know is our estimate of this state, which is denoted by k^. The error caused

by our estimate of state will also affect our estimate of the current context.

We need one further definition in order to characterize the set of contexts that

can be associated with a nominal path. Define a tube around a nominal path to be:

Tube(Pomina, , ep) = {x 3y E Pominal s.t. JIx - yll < ep}

The set of contexts C associated with a given nominal path is therefore given by:

C(Pnominat) = {k I Tube(PominaI, p) CO E Mk

The k'th context is denoted Ck. Note that our definition of context is therefore a very

precise notion depending purely on the geometry of the configuration space obstacles.

To compute the set of manifolds associated with a nominal path, one needs to merely

draw a tube around the nominal path and find all the configuration manifolds that

this tube intersects. This tube is an approximation of the forward projection (which

we will define below) under a particular choice of controls. In our implementations to

be outlined in the next chapter, we will actually compute local controllers on demand.

For now, however, we assume that this intersection can be carried out using the same

3.2. LCNP Components Needed For a Single Run 73

configuration space that was used to find the nominal path in the first place.

BuildLocalControls(A, Pnominal, Environment, E, E9)

C(Pnominal) = DetermineContexts(Pnominal, Environment, EP)

NoSamples = DetermineSamplingParameters()
n = Length(C(Pnominal))

Loop i from 1 to n
BuildController(A, Ci, NoSamples)

EndLoop
End

Figure 3-3: Pseudo-code Description For Building All Required Local Controllers

Figure 3-3 indicates the overall process. The intersection operation given above

(and indicated by DetermineContexts) outlines how the set of contexts associated

with a given nominal path can be constructed at planning time. In Section 4.2.2 we

discuss how the sampling parameters are chosen using domain-specific performance

metrics. The basic idea is to build a set of local controllers for all the local contexts

we expect to encounter given a nominal path and associated uncertainties.

We have not said anything about how the current context is computed (the context

observation process) at run time. In practice, we use a tesselated representation of

configuration space obstacles, and use our state estimate to compute the context we

are in, by consulting this representation. Let X^ be the current estimate of the state x.

Let Cell(x) denote the rectangloid cell (under some given resolution r) that contains

x. We represent Cell(x) by the integral co-ordinates of its mid-point P, and each Cell

represents the set of points given by the ranges:

[[Pi - r, P, + r), [P2 - r, P2 + r), ... [P, - r, P, + r)]

where we have used subscripts to indicate the co-ordinates of m. To compute the

index i at run-time, we look at the neighbouring cells of m and compute a bit-vector

that indicates their occupancy. The value of this bit-vector is used as an index to

Chapter 3. The LCNP Approach

select the controller. This process is indicated in Figure 3-4 for n = 2. This figure

illustrates how the current sensed state can be used to estimate the context. In

general, one can use the action and sensor history to get a better estimate of this

context in order to identify Mk more precisely (see Eberman [1994]).

Figure 3-4: Context Computation at Run Time: P illustrates the cell containing the
current state. If the bits are encoded in North/West/East/South fashion, the cell
indices for these three examples would be 9, 0 and 4.

Once we have the set of contexts associated with a nominal path, we need to

construct a set of controllers to operate in each of those contexts. Even though the

number of manifolds Mk is finite, our approximate implementation through such a

tesselated representation of C-space results in a maximum of 22• possible contexts

where n is the dimension of the underlying C-space. This assumes that we use only

the nearest neighbor along orthogonal axes to encode the context. Clearly, the larger

this local neighborhood, the larger the set of local controllers. However, note that

many of these contexts clearly cannot arise in practice. For example, consider a

situation where the current state is completely enclosed on all sides. Such a context

is extremely unlikely to arise in practice, for it would mean that the robot cannot

move anywhere at the resolution given by the planner. Furthermore, note that even

though this number might appear large, for low dimensional C-spaces in practice, it

is manageable.

Another point to note is that contexts need not be defined only relative to the

Code=1001 Code=0000 Code=0100

I I

op

3.2. LCNP Components Needed For a Single Run

geometry of the configuration space obstacles. There may be tasks in which a more

abstract definition of contexts may be appropriate. Such definitions may use other

parameters beside geometry. The LCNP approach does not preclude such alternate

definitions.

3.2.3 Models of Dynamics and Measurement

Before we explain how local controllers are built, we need a few definitions re-

garding the dynamic equations on each of the specified manifolds. Our models for

local controllers are borrowed from control theory. Stated in an abstract form, the

objective of control theory is to model the physical process one is trying to control

as a set of difference or differential equations. In control theory, the system dynamics

equation is usually written as:

X = fk(X, U, t) (3.1)

where t denotes time (the index k is used throughout to indicate that we are on

manifold Mk). The above equation denotes the evolution of the state as a function

of the current state and the control input u. In many of the control systems studied

in the literature, u is usually written as a function g(x, t). When f does not depend

on time, the above equation can often be written more simply as:

:k = fk(X)

When fk is linear, the right hand side of this equation can be written as Akx, and

the resulting class of linear systems is perhaps the best studied (see Slotine and Li

[1991]).

Mathematical control theory seeks to study such differential equations. Properties

such as the controllability, observability, and stability of such systems are extremely

important. The analysis of these equations goes hand in hand with the process of

76 Chapter 3. The LCNP Approach

designing controls g.

In the above discussion, we have not said anything about the process involved in

sensing state x. To take into account measurement errors, Equation 3.1 is normally

re-written as:
S= fk(X,U,t) (3.2)
z = h(x, t)

where z refers to the observation. In this formulation, u is sought as a function

of z, the observed state, or as a function of z4, the observed state history between

time values 0 and t. In the above equation, we will refer to the first equation as the

dynamics equation and to the second as the measurement equation.

The information vector available at time t denotes the tuple:

It = (z4, u)

where the second variable ut denotes the set of control functions and the time at

which they were switched:

= { (uo, to), (u1 , ti)...(ut, tn)} where to = 0, and tl, t2, ... , t_ < t

Our model of sensors is simple. The sensor interpretation function is a map from a

measurement z to a set of states, SensorInterpretation(z), which consists of all the

states x that could have given rise to measurement z.

Note that it is customary to model the problems we are interested in as constrained

dynamic systems. This means one usually does not separate the function f as we have

done, but instead treats it as a single function that applies over all of state-space. If

such a notation is used, then we would drop the subscript k in all of the equations

above and just consider the solutions to Equation 3.2 while subject to:

J(x,t) < 0 (3.3)

3.2. LCNP Components Needed For a Single Run

where J captures the constraints on the state vector at a given time t. A mlor-e

specific version of the constraint equation would be in terms of the positions of the

objects in the environment.

3.2.4 Building Local Controls

In operator based planning, actions are usually modeled as deterministic transi-

tions between states. In such cases u(x) E X is a single state. In non-deterministic

models of actions, u(x) is modeled as a set of states. In probabilistic models, if

x E R7, actions can be modeled as elements of T = R"•x 1Z, where each element of

the transition matrix Tij specifies the probability of making the transition from xi to

xj. Let A denote the set of actions in some (possibly continous) space.

In the theory of differential inclusions, which we consider later on in Section 6.5

(see also Aubin and Cellina [1984] and Aubin [1991]):

u(t) E U(x(t))

where U is a set valued map from the space of states to the space of controls. A set

valued map for actions returns a set of actions, given a particular value of the state.

The theory of differential inclusions uses viability theory to then select a particular

control from amongst this set. The observation is that in large portions of the state-

space, viability is not affected by choice of controls. Hence one can simply leave this

to be constant in such portions of the state-space. In regions where viability can be

affected, one needs to search for that particular control which would allow viability

to be maintained in the future.

Our actions are simple feedback loops, but with a slight twist. We would like our

feedback maps u to actually return a set of feasible actions (or low-level controls), i.e.,

u is a function that maps a given state x into a set of controls u(x) C A. Once we

have this set, then we will use selection rules to actually select one particular control

at each time instant. A selection rule can be modeled as a map that takes a set and

Chapter 3. The LCNP Approach

returns a singleton as in R(u(x)) E A. In general, of course, the control-space need

not be of the same dimensionality as the state-space, but we will assume this for

simplicity of notation. Feedback loops that depend on observed values of state are

usually modeled as functions not of state, but as u(z).

The dynamics equation f, together with a choice of u, can be used to define the

following notions (our choice of control functions u will be time-varying because of

our trajectory controller which continually changes the goal position for the current

path segment):

1. We say a state y is reachable from another state x, if there exists some value

of time t, and a solution to the differential equation x(t) with starting state
uf

x(O) = x such that x(t) = y. We denote this by x -- y.

2. We define forward projections of a set X by:

ForwardProject(u, f, X) = {x 3y E X s.t. y - x

If we were interested in computing precisely the manifolds we would come into

contact with, we would have to use forward projections as indicated above, instead

of the tube around the nominal path as we had done earlier. However, the process of

computing forward projections is computationally quite expensive. Even for simplified

models of dynamics, deciding whether a point lies in the forward projection can be

an exponentially hard problem (Canny and Reif [1987]).

Ideally, there would be no uncertainty, and the path would execute without errors.

However, in any real situation, moving along the path segment xi, xi+1, new contacts

may occur, and the dynamics may switch to the equations dictated by Mk. The local

controllers considered by the LCNP approach essentially enforce particular types of

paths on Mk. This is illustrated in Figure 3-5.

At any given point in time, the local controllers we implement enforce the following

3.2. LCNP Components Needed For a Single Run

Figure 3-5: Illustrations of Local Controllers: Each local controller defines a simple
flow field on a particular manifold Mj. The one we use attempts to minimize a
certain norm from each given state x to the state indicated by xi+l through the
dynamic equations.

selection rule while executing path segment xi, xi+l:

u(t) = argminu,k,(t)) c AI x i+ 1 - (X(t) + fk(X(t), U)) i (3.4)

This selection rule (which we will call the min-norm controller) can be explained as

follows. At each value of the time instant t, we construct an estimate of the state

denoted X^. Using this and the control function that is active for a particular manifold

Mk (as indicated by the subscript on uk), we get a set of feasible actions that can

be exerted at that instant. From among all the actions available, we choose that

particular action that attempts to complete the currently active path segment as

much as possible by minimizing a norm as indicated above. In our implementations

the null action is always an element of the set of executable actions. If there does

not exist any action that progresses toward the current goal along the nominal path,

then the local controller will simply stop.

Note that this is not the only possibility. We could have chosen other controllers

xi

80 Chapter 3. The LCNP Approach

that operate considerably more efficiently. One could even derive optimal selection

rules in certain cases. Our purpose here, however, is to illustrate the main computa-

tion involved.

The important point about the above equation is that it will be very hard to even

compute fk in many cases. In our implementations we rely on stochastically sampling

uj (xc(t)) and picking the best resulting action using a simulator. This is illustrated

in Figures 3-6 and 3-7. The basic idea is to sample the action space and build up

a table of the forward map from actions to differential motions. We then use this

table to find the optimal action given a differential motion we seek. We pick sampling

parameters by using optimizing criteria that are domain specific (see Section 4.2.2).

U

Controller

Small

lew

Figure 3-6: Building a Local Controller: The Builder can use either the Environment

(using actual trials) or a Simulator to build up a controller table which is essentially
a map from controls to differential motions.

In the following sections, to illustrate LCNP, we will assume that we can do this

completely (i.e., be able to sample the action space at any arbitrary resolution and

apply the forward model for all actions).

We have now explained most of the computations involved in LCNP. During exe-

cution, the one remaining computation to be specified is the action of the trajectory

3.2. LCNP Components Needed For a Single Run

BuildController(A, Ck, NoSamples) BuildController
Loop i from 1 to NoSamples

Choose u E A
Get Ax = f(x, u)
Associate (Ck, U, AX)

EndLoop
End

Figure 3-7: Pseudo-code Description for Building A Local Controller

controller, which decides when a particular path segment has been completed. Cur-

rently, we use a simple termination based on position sensing alone. If ~, characterizes

our sensing uncertainty, we decide that the i'th segment is complete as soon as:

II Xi+ II <-E

RunSegment(Pi , { LCk})
Loop 1 from 1 to MaxTries

* = EstimateState()
if(Terminate(i, Pi)) SUCCESS
j = ContextFromState(i)
ExecuteControl(Pi , x, LCj)

EndLoop
FAIL

End

Figure 3-8: Pseudo-code to Illustrate Execution of a Path Segment

We will analyze the effect of such a simple trajectory controller below. Figure 3-8

includes the pseudo-code for simple path segment execution. We have included it

here for clarity of presentation.

3.2.5 Putting it All Together

A high level block diagram of the execution unit is shown in Figure 3-9. This

approach arose in concert with the approaches outlined in Eberman [1994] and Rob-

Chapter 3. The LCNP Approach

les [1994]. The former presents a more detailed look at the estimation problems and

outlines a sequential decision procedure for solving them, while the latter presents

an approach based on constructing and maintaining knowledge sets from contact in-

formation in order to solve robotic assembly problems. We hope that the present

discussion complements their work. In this thesis, we do not deal with the context

estimation problem in much detail. For the analysis in the sections below, we will as-

sume very simple estimators as outlined above. In Section 6.3 we provide an overview

of work that is relevant to this problem, and a rudimentary attempt at linking the

estimation work with the framework presented here.

Figure 3-9: Block Diagram of the LCNP Approach

The basic operation during execution, as illustrated in this figure, is quite simple.

As long as a particular context is active, the current local controller will continue to

operate, moving the robot along the nominal path. The trajectory controller will feed

the next configuration along the nominal path as each path segment is executed. If

during execution the context observer detects a change, it will cause the local control

to switch.

In some cases, one might encounter a context that one has not planned for. In such

I

I " I

3.3. Modifying the Nominal Path

cases, the only recourse is to fall back to the planner and re-plan a new path starting

from the current state (we can call SingleRunSetup again). In the next chapter, we

will see that since we build local controllers on-line, we also have a second option. We

could attempt to build a local controller on-line during execution. For now, however,

we will assume that we do not have this capability and must resort to re-planning

when such a situation occurs.

3.3 Modifying the Nominal Path

In this section, we outline the computations needed to improve the nominal path.

As mentioned earlier, the information contained in the local controllers is used to

perform this improvement. We have implemented two different algorithms with which

path improvement can be accomplished. In this section, we describe both algorithms.

We will describe both the algorithms as though they operated on single states.

First, we need to clarify what we mean by an improved path. In any task, when we

attempt to execute a nominal path given some set of local controllers, some segments

along the path may be hard to follow. The LCNP approach measures with domain-

specific performance metrics how well a set of local controllers performs along a

particular path. For example, in the planar pushing task, such measures could include

the distance travelled by the pusher or the average number of attempts it takes to

complete a path segment. In the non-holonomic planning and control task, examples

of such measures could be the total distance travelled or the number of times a

controller changes direction. Such performance metrics capture in a domain-specific

way how difficult a given task is relative to that nominal path. By an improved

path we mean one that has a lower value for these performance metrics. If we could

estimate what the value of this performance metric would be given any arbitrary path,

then we could use techniques like dynamic programming (see Bertsekas [1987]) or

differential dynamic programming (see Jacobson and Mayne [1970]) to incrementally

improve the path. Our forward-chaining algorithm closely parallels such techniques.

Chapter 3. The LCNP Approach

Our backchaining algorithm, however, is different in that it uses the accessibility

relationship encoded in the local controllers to search for entirely new paths.

3.3.1 Forward-Chaining Algorithm

The forward-chaining algorithm is easy to explain relative to an abstract descrip-

tion of a typical search procedure. Figure 3-10 describes such a procedure. In this

figure, we assume that we have already built the configuration space obstacles.

Search (x,, xf) Search
Fringe = x,
Loop while (x = First(Fringe)) $ xf

FreeNeighbors = ExpandAndCheck(x)
Add(Fringe, FreeNeighbors)

EndLoop
End

Figure 3-10: Description of Search

The algorithm operates by starting from the start state. It maintains a data-

structure called the Fringe to maintain the set of states from which we can continue

to search. At each step it chooses a state from the fringe, and if it has not reached

the goal, expands this state in order to find all the accessible states from the chosen

state. These states are then added to the fringe. The process is iterated until we

have reached the goal or all states have been visited. In practice, we will use a

tesselated representation of our configuration space to perform this search and use

an auxiliary data structure to keep track of the visited states, and the current path

to each state from the starting state x,. The key modification to this conventional

search algorithm is that one can change the semantics of ExpandAndCheck to actually

use the simulator to ascertain the difficulty of reaching a certain neighbor of x, given

a set of local controllers. To do this, we run the set of local controllers starting from a

set of states given the tesselated representation and keep track of the domain-specific

performance metrics as we attempt to execute that particular path segment. There

3.3. Modifying the Nominal Path

are two ways in which we can use the information thus gathered. One is to modify

the Add procedure to order the accessible neighbors in terms of increasing difficulty

as given by these metrics. This will ensure that paths through neighbors that are

more accessible will be found first. Another way to use this information is to consider

certain states with a metric above a certain threshold to be unreachable, and not

add them to the fringe at all. In Section 4.2.7 we implement the above algorithm in

the pushing task and indicate how this helps in creating better paths in some cases.

Note that this modification essentially provides a way to locally modify a given path,

and that we do not attempt to compute the performance metrics for entire paths.

The reason for this is that we use tesselated representations of configuration space in

order to deal with the high dimensionality of state-spaces we would eventually like to

handle. We also wish the path modification algorithm to be reasonably fast and not

be computationally much more intensive than the overall process of searching for a

path.

Another useful addition, in practice, is to augment the tables used by the local

controllers to maintain these performance metrics along with each action. This in-

formation can be used over time to choose from among different actions, all of which

can sometimes produce the same differential motion.

3.3.2 Backchaining Algorithm

The backchaining algorithm is also relatively straight-forward to explain. The

information contained in a controller table encodes a map from actions to differential

motions. Imagine that the robot is at the goal-state x1 . The presence of an entry:

uk --+ A

indicates that if action uk is applied from state xi = xf - Ax, then we would reach

the goal state if there were no uncertainties present. This assumes, of course, that

the set of feasible actions at xi includes uk. Such an assumption will not be true,

Chapter 3. The LCNP Approach

for example, if xi happened to be inside CO, the C-space obstacle. This process of

generating another state from which we can reach a given state can be iteratively

applied to xi. Starting from the goal set we can ascertain nearby states from which

we can access the goal set (given a particular set of local controllers). This process is

what we call the backchaining process. It is important to note that this process is quite

symmetric to the forward-chaining algorithm explained above. It is also important to

note that we do not keep track of the actual actions we execute during this process.

We merely use the accessibility relationship implied by the local controllers in order

to generate a path. Note that we also do not seek to enumerate all the states from

which we can reach the goal set for ONE controller (or a single action). This would

be more aligned with the spirit of pre-image computations, and in principle we could

compute such regions associated with a single local controller.

The backchaining algorithm uses the above process to recursively expand the goal-

set until it reaches the start state. It is important to realize that this algorithm can

fail if the set of all newly expanded states (by applying the process outlined above)

is null. This happens, for example, when all paths generated by the backchaining

process terminate inside C-space obstacles. When this happens, the LCNP approach

reasons that no path exists to the goal set given the set of local controllers at the

particular resolution chosen.

Also note that the process of backchaining explained above considers only a single

action at a time in order to compute the state xi. There is no reason why this cannot

be generalized to action histories, or entire sequence of actions. For example, we

could have local controllers maintain maps from sequences of actions to differential

motions. More specifically, define a k - 6-sequence of actions to be:

Uk = { uj I 0..k - 1 }

where each element of uj is held constant for the time period [tj tj+l) where tj is

given by to + 8 j. Each Uk can be used to integrate the equations of motion to yield a

3.3. Modifying the Nominal Path k7

specific value for the state change. One can build a forward map from such elements

much like before:

uk --* Ax

Given such a map, and a specification for a differential motion, we can look up an

entire sequence of actions, as indicated by the left hand side of the map, that produces

the given differential motion.

The motivation for extending maps to include action histories is to allow the in-

corporation of larger incremental motions within a local controller. Given each action

history, we can then monitor performance metrics much like before. For example, con-

sider the non-holonomic planning and control domain as illustrated in Figure 3-11.

Figure 3-11a shows the holonomic path for this task, which is infeasible. Figure 3-

1 lb shows paths that result if we only maintain action histories that are fairly short.

Finally, Figure 3-11c shows how a smoother path results if we increase the length of

our action histories.

(a) Holonomic Path (b) k = 3 (c) k = 15

Figure 3-11: Effect of Backchaining with Longer Action Sequences: (a) indicates the
holonomic path. (b) and (c) indicate how lengthening the sequence of actions results
in smoother paths.

This concludes our discussion of the LCNP approach. Thus far, we have outlined

all the major computations involved. We have described how we compute a nominal

path, the set of local controllers along the nominal path, and outlined two algorithms

Chapter 3. The LCNP Approach

to modify the nominal path.

3.4 When Does This Work?

In this section, we address the question: when does the approach outlined above

accomplish the given task? If we assume perfect sensing and control, execution paths

will stay on the nominal path. The strategies generated by the LCNP approach

will accomplish the task in this case, but so will other approaches. Let us therefore

consider control and sensing uncertainty.

Before we begin, we must convince ourselves that controllers like the one given

above in Equation 3.4 actually progress along the nominal path. This can be seen as

follows:

1. Under perfect sensing and control, this always works, because execution traces

do not deviate from the nominal path.

2. If we have uncertainty in action but not in sensing, then as long as the un-

certainty is not large enough to make the velocity of the system :R negative,

then progress toward the next point along the nominal path will always occur.

This can be seen by adding to the dynamics equation (Equation 3.1) a term1

characterizing the uncertainty, and determining whether or not it is negative.

3. A similar analysis can be done for sensing uncertainty by adding a term char-

acterizing the uncertainty to Equation 3.2.

Given that each local controller progresses along the nominal path, can the strategies

generated by the LCNP approach fail?

First, let us attempt to characterize how strategies can fail with control but not

sensing uncertainty. In the following analysis, we will assume that we are using the

particular form of local controller outlined above as the min-norm controller. There

1We elucidate this technique on an actual example in Section 6.2.

3.4. When Does This Work?

are other forms of local controllers that don't suffer from this particular form of

failure.

The first observation is that failure can occur if the local controller, at some given

manifold, does not output any action, as illustrated in Figure 3-12. Such a local

controller is said to be stuck. In this figure, the current state is given by x. The next

point along the nominal path is given by xi+l. Consider a point such as Q. Clearly

all the feasible controls available locally do not progress toward xi+l. What is worse

is that a point such as Q is an attractor. Points around it are attracted to it, and

once at Q no further motion occurs. If any trajectory starting from x moves below

the line marked L, then we can guarantee that execution is doomed given our simple

assumptions thus far. Such a failure can occur because of many different kinds of

errors. In the figure, we have illustrated action uncertainty to be high enough so that

some command from x causes this to happen. Sensor uncertainty, changes in the

positions of objects and unmodeled geometry can also cause such failures.

How do we address this problem? At execution time, a simplistic answer might

be to replan a path from a state like Q. However, for this to work in general, we must

be satisfied that we are recognizably in a state such as Q. For example, if we had

high control uncertainty but low sensing uncertainty, we could tell when a situation

like this occurs. Another cause for worry is that the new, re-planned path may also

fail in a similar fashion.

A more subtle answer would be to choose the tesselation of the nominal path such

that the possibility of such failures is made small. If we introduce an intermediate

point like R, note that this problem disappears. In Figure 3-12, we have shown in

thick black lines those manifolds that have viable controls defined on them. The

key idea is to eliminate the singularity in the local controller that causes the right

hand size of Equation 3.1 to become zero by perturbing the input from the trajectory

controller. With this intermediate point, note that a point like Q is no longer a

problem.

Chapter 3. The LCNP Approach

Action

L

Manifold

inal

QLUJF

Figure 3-12: Local Controller Fails: The min-norm controller becomes stuck at a
singularity. Note that all the feasible controls increase the distance to the next point
along the nominal path. We have chosen a simple example in terms of control and
path to illustrate the point.

Can we characterize when such a situation can occur? In this simplified example,

this condition is:

3 x .Mk S.t. ilk(X) (X - Xi+l) = 1

This equation expresses the fact that if there exists a point x on the manifold

such that the normal to the manifold at that point ink(x) is aligned with the vector

drawn to the point from the next point along the path, then the point x will be a

fixed point for the min-norm controller. If the Tube(P,,om,ina, 6,) around the nominal

path contains such states, then we can be sure that at run time such a problem might

occur. Let B(xi) denote the set of states we could be in, when the i'th segment is

considered complete, and:

Xi+1

3.4. When Does This Work?

FP(xi) = ForwardProject(u, f, B(xi))

denotes the forward projection from this set as we move toward xi+l. The condition

we seek is precisely:

3 x E FP(xi) s.t. ilk(X) - (x - Xi+) = 1

In this simple example, we could use normal to edges to characterize our failure

condition. In higher dimensional surfaces the same phenomenon can occur, but the

resulting condition is harder to characterize. For example, in three dimensions, the

normal to a 2-d manifold is similar to the case we have considered above. However,

local controls can get stuck on one-dimensional subsets as well. The condition given

above is still true, but one would have to generalize this notion to the plane orthogonal

to the curve.

Figure 3-13: Failure due to Sensor Uncertainty

Now let us consider the case with sensing uncertainty. As illustrated by Figure 3-

Error Ball

)minal Path

Chapter 3. The LCNP Approach

13, this can give rise to a similar problem that may not be that easy to fix. For

example, if the sensing uncertainty is given by the large circle shown in this figure,

then the trajectory controller may decide that the next point to shoot for is the point

given by T, soon after reaching a point such as P. The reason this happens is that

given the large sensing uncertainty, the trajectory controller may very quickly decide

that it has actually reached Q, R and S (eg being very large in this case). However,

the robot may in reality, have continued to remain above the obstacle shown. The

reason for this failure is the existence of geometric features in the environment that are

below the sensor resolution. The nominal path also contains turns and intermediate

points that are below the given sensor resolution. Both of these can be checked with

geometric computations.

Thus far we have discussed only the possibility of the robot becoming stuck at some

point during task execution. Another important possibility that one has to consider,

is how the LCNP approach deals with ambiguous situations. For this discussion, we

refer back to the task considered in Section 1.2 and illustrated in Figure 1-3. During

an actual run on this task, the situations shown in Figure 3-14 may occur.

(a) (b) (c)

Figure 3-14: Local Configuration during Execution

Consider Figure 3-14a. If we had a local estimator that indicated (p,, p, - 1) was

blocked, then we could be either in region A or B as illustrated. A small portion of

the current nominal path is also shown. Note that the important piece of information

I
I I

3.4. When Does This Work?

needed to select the next action is the position of the nominal path relative to the

current configuration. In region A, if we could sense that the nominal path was to

the right of us, we could output a0o, and likewise we would output a4 when we are in

region B. The key point here is that we do not require sensing absolute positions,

but only sensing relative to the current portion of the nominal path.

In Figure 3-14b, we have taken the m'th measurement q,,, and our current position

uncertainty is given by the ellipsoidal region indicated by ,e. In this case, given a

sensor value qm and a model of the sensing uncertainty, we can disambiguate between

regions A and B. Once again, the correct action to execute in this case, ao, can be

found. In many cases, such a simple disambiguation is actually possible.

In Figure 3-14c, the current measurement still does not allow us to unambiguously

tell A apart from B. There are many approaches to deal with such a case, and we have

illustrated how forward projections (or a knowledge of what the previous measurement

was) could be used for this. In the figure, the forward projection is illustrated by the

cone. The intersection of the cone with the sensor uncertainty ball in this case allows

us to find the optimal action.

However, there are cases in which even this method, and indeed the most sophisti-

cated estimator one can think of, will fail. In such cases, there is a genuine possibility

that A will be mistaken for B. When this happens one may choose a4 in A, and a0o

in B. However, this should not be cause for too much concern. The wrong action

will move the robot away from the nominal path. Even though it may not be always

possible to realize this immediately, eventually the robot will have moved sufficiently

far away for the local controllers to detect this and to begin correcting for it. The

LCNP approach could also appeal to randomization at this point. Such an approach

would ensure that the robot progresses toward the goal in an expected sense.

In the above discussion, we have not proved precisely where LCNP strategies

might work. However, we have characterized some features of environments and

uncertainty values that can possibly lead to failures. The absence of such features

Chapter 3. The LCNP Approach

quite obviously does not mean that successful execution is possible. We hope that

future work will elucidate necessary and sufficient conditions for such strategies and

more fully circumscribe the set of tasks they can handle.

3.5 Summary

In this chapter we have presented the LCNP framework for creating strategies for

solving typical robot tasks. The main idea behind this framework is to iteratively

improve a nominal plan along with a set of local controllers to solve a given task.

The nominal plan provides the global convergence properties we need, while the local

controllers handle the variations and uncertainty that may be present locally along

the nominal path. We have also outlined a procedure for constructing such local

controllers, and give a geometric characterization for when such controllers need to

be switched.

Chapter 4

Simulation of Pushing and Car Parking

In this chapter, we present the work performed to verify the applicability of the

theory presented in the last chapter using simulations. We consider two application

domains to test the LCNP approach in our simulation experiments. Results from

actual experiments will be presented in the next chapter.

4.1 Chapter Outline

We begin this chapter by introducing the problem of planar pushing in free-space

without any obstacles. Building upon the work done by Mason and his students we

describe a simulator that predicts how an object moves in response to pushing actions.

We then describe a simple feedback rule that uses tables built up the simulator. This

controller is surprisingly robust and indicates the power of using feedback rules to

handle this simple pushing task.

We then describe a more complicated domain where the environment is populated

with obstacles. We describe modifications to the simulator that are needed to both

detect and handle collisions with objects in the environment. We then describe a

path planner and the local controllers used by the LCNP approach to handle tasks

in this domain.

Finally, we look at simulations of the non-holonomic task of parking a planar

car-like robot in the plane and show results of the LCNP approach applied in this

domain.

Chapter 4. Simulation of Pushing and Car Parking

4.2 Planar Pushing

The first problem domain we consider involves planar pushing. In this domain.

polygonal objects rest on a planar surface. The robot is equipped with a rod which

can push these objects. Figure 4-1 shows two views of the simulation model of the

experimental setup. The problem is to push objects using this simple actuator to

desired configurations.

(a) Wire-frame model (b) Shaded Image

Figure 4-1: The Planar Pushing Task Domain: The Robot

4.2.1 The Simulator

The simulator's task is to predict what happens when the robot pushes the object.

If you recall Figure 1-1, the simulator plays the role of the box labelled the Environ-

ment. In order to do this, the simulator uses models of physics, detects collisions and

has a model for handling such collisions.

The simulator works with quasi-static models, as opposed to dynamic models

because:

1. Dynamic models require detailed modeling and instrumentation to measure pa-

rameters such as y, the co-efficient of friction between interacting surfaces, and

4.2. Planar Pushing

k, the co-efficient of restitution between impacting surfaces. Detailed models of

energy dissipation are also required to predict when a pushed object will come

to rest.

2. The solution of such dynamic equations is done with numerical techniques.

When multiple points of contact are introduced, the problem of simulation

involves finding interaction (or constraint) forces. This problem is NP-hard

(Baraff [1993]).

3. Integrating equations of motion subject to friction constraints, but neglecting

impact effects is a quadratic programming problem and can be solved using

linear complementarity techniques.

4. Methods that rely on simulating such phenomena using other approximation

techniques usually have many constants that need to be adjusted in order to

lead to behavior that agrees with our intuition.

The simulator can use either a randomly varying three-point pressure distribution,

or a uniform pressure distribution modeled by a support distribution at points on the

convex-hull of the given polygon. First, we discuss a few representational issues.

A polygon with holes P is given by a set of k loops:

P = , j = 1..k

where each loop is denoted by a sequence of vertices:

Pi = P i} , i= l..nj

Pt =
w r P3 diy

where nj denotes the number of vertices in loop j. The coordinates in this point-based

Chapter 4. Simulation of Pushing and Car Parking

representation are expressed relative to a chosen reference point. Usually we consider

the centroid of a polygon to be its reference point. We use di to denote the euclidean

distance of the i'th point from the reference point, and dm,, to denote the maximum

of such distances.

The configuration of a polygon will be denoted by three variables (x, y, 0). Of

these variables, x, y specify the location of its reference point relative to some global

reference frame, and 0 specifies the orientation of a frame fixed to the polygon relative

to this global reference frame. The input to the simulator is an actual robot motion

specifying how the tip of the pusher moves. This is indicated by a 4-tuple:

Ai = [x y dx dy]

where the first two components indicate the starting point of the pushing action

and the last two indicate the incremental motion performed by the pusher. Note

that the current location of the pusher does not appear in this specification, nor is

there any mention of how the robot is to get to the specified location. Also note

that when the robot actually executes such an action, it may end up moving entirely

through free space and hence cause nothing to change in the environment. Clearly,.

the simulator needs to check for actual intersection between a pusher trajectory and

an object before it attempts to perform the detailed computations outlined below. In

this section, we will assume that such a computation has already been performed and

an intersection indeed occurs. In what follows, therefore, we assume that the action

has been converted to a form:

A = [Xb yb dx' dy']

where the first two components specify a point on the boundary of the pushed object

and the last two specify the remaining translational pusher motion. The objective,

in this section, is to compute [Sx by S5], an incremental motion of the pushed object.

4.2. Planar Pushing

To implement a randomly varying pressure distribution, the simulator uses two

methods. The results from the simulations vary depending on which method is used,

but not by much. The first method is to draw a circle with radius less than d,,,,,

and choose three points such that the reference point is within the triangle formed by

the three points (Figure 4-2a indicates an invalid choice, while Figure 4-2b indicates

a valid choice). The second method is to consider support distributions at the n

vertices of the outermost loop of the polygon that form its convex hull.

(a) (b)

Figure 4-2: Choosing 3-Point Pressure Distributions: (a) Invalid choice for the 3

points. (b) Valid choice.

Let us denote the centroid of the polygon by Po = [zo yo]T and the three support

points by:

Pi = [zy]T i = 1..3

Let the support forces normal to the plane at

force and moment balance equations as:

fI + f2 + f3

xlfI + x2f 2 + x 3f 3

YIfi Y+ 2f2 + Y3f3

Pi be denoted by fi. We can write the

= mg

= XO 771 g

= yon g

(4.1)

~' 94

100 Chapter 4. Simulation of Pushing and Car Parking

After re-writing, we get:

- -1 -

fA xl X2 X3 X0

f2 - m9 Y1 Y2 Y3 Yo (4.2)

f3 1 1 1 1

The above equation provides a simple form whereby we can evaluate the support

forces at the three chosen points. Let f denote the support force vector (left hand

side of the above equation), and it should now be easy to see how to generalize this to

the case of n support points as well. For polygonal objects, the n points are chosen

to be vertices of the polygon on the convex-hull of the object.

X1 2 . Xn XO

f = mg Y1 Y2 Y n Yo (4.3)

1 1 1 1

where the super-script + is used to indicate the pseudo-inverse of the preceding ma-

trix.

Now that we have the support forces, the next step is to attempt deriving where.

and how the object moves. This requires a couple of additional assumptions. First,

we will assume a rough contact between the robot and the pushed object at the point

of contact. In general, there are three possibilities that have been considered in the

literature. If we denote the contact friction co-efficient by yp, then Uc, can be zero,

infinity or some value in-between. Alexander and Maddocks [1993] consider the first

two cases, and Peshkin and Sanderson [1988] consider bounded, non-zero values for

[C.

Our simulator follows the initial assumption made in Mason [1982]. The assump-

tion of a rough point contact implies that no moment is transmitted across the contact

4.2. Planar Pushing

point. This means that the total frictional moment about x,, the IC R.' (the instan-

taneous rotation center), is zero.

m1 (xr) = 0 (4.4)

We now consider the moment due to the frictional forces that arise during sliding

in the general case, and then specialize to the support distributions given above.

Consider an infinitesimally small region R about x, with area dA. Let p(x) be a

function that gives the scalar value of the pressure distribution at x. As the pushed

object slides, we can write the moment due to the frictional forces as:

m, = x0 Y v () dA (4.5)

where we have used 0 to indicate the vector cross product, v, to indicate the velocity

at x and Iv.I to indicate the magnitude of the velocity vector. Let k denote the unit

vector along the direction perpendicular to the plane. If we now use the fact that the

unit velocity vector at x can be written as:

=1 =sgn(O) (Ix-x)

where sgn is the signum function that gives the direction of the angular velocity, the

above equation simplifies to:

S X -- Xr
mf = - sgn() xI - Xr p(x)dA (4.6)

From this, one can also see that the sum of the frictional forces can be written as:

f = -sgn(O) k XI2" p(x)dA (4.7)

'The ICR is also referred to as the COR (Center of Rotation) in the literature.

10 1

102 Chapter 4. Simulation of Pushing and Car Parking

Figure 4-3: Mason's Sense of Rotation Result: The three rays Rp, R, and R, vote
regarding the direction of rotation, relative to the center of mass, COM. In this case,
clockwise rotation is indicated.

Now we can specialize this to the actual time-varying distributions the simulator uses.

Since we use a model of support at a finite set of points, we can write the moment

function as (we drop the vector notation and use m1 to denote the magnitude of the

moment directed along k):

n Xi - Xr
mf = - u sgn(O) xi *xx - Xj fi (4.8)

i= 1 lx - xI

In general, the above equation shows the functional dependence of the frictional

moment on the ICR (x,) which is two dimensional. What we seek are the roots of

this function. There are two ways of solving this. One is to use a false-position root-

finder as outlined by Mason [1982]. Below, we outline an approximation technique

that was suggested by examining the proof in Appendix II in Mason [1986]. Also note

that in the above equation, sgn(A) can be determined using Mason's voting rule (see

Figure 4-3). Three rays comprising the edges of the friction cone drawn at the point

of contact (RA and Rr) , and the velocity of the pushing direction (R,) vote regarding

the direction of rotation of the pushed object (see Figure 4-3). If two or more of these

rays lie on one side of the center of mass, then the object will rotate in the direction

R,

~

4.2. Planar Pushing I()

indicated by these two rays. In the case of a tie, pure translation occurs.

RFx

(b)

(b)

Figure 4-4: Notational Conventions

Referring to Figure 4-4a, RM is the ray of motion. This is the motion of the

contact point on the pushed object. In general, this is NOT the same as Rp, which is

the ray of pushing given by the motion of the contact point in the pusher (not shown

in figure). fi is the inward-pointing normal to the pushing edge.

Let V/ denote the angle made by the ray of motion with a global x-axis (denoted

by E^) less 7r/2. Given the ray of motion, note that the ICR must lie somewhere along

x'. If we express the moment function in this primed co-ordinate system, we note

that the moment function takes the following simple form:

mf = - sgn(O) fi (4.9)1 (x - Xr + yi

The value of Xr that we are interested in is given by the root of this function. The

simulator uses Brent's Method (see Press, et al. [1986]) to isolate the root of this

function. Clearly, as 0' varies, we can compute and plot x,(k) using polar co-ordinates

[x,(iV), /]. Figure 4-5 shows two views of such a plot constructed for the square object.

Unfortunately, in general, / may not be known. To address this, consider Figure 4-

4b. Here we show RF, the ray of force which arises from the interaction between the

X

(a)

I

Chapter 4. Simulation of Pushing and Car Parking

(a) (b)

Figure 4-5: Plot of x,($): (a) Locus shown for the square object. (b) Exploded view:
Friction cone indicates point of contact.

pusher and the pushed object. RI

force must lie. If the pusher slides

of force coincides with R, (or R1).

then RF takes a value in between.

half-angle of the friction cone and

and R, delimit the friction-cone within which this

along the object to the left (or right), then the ray

If the pusher does not slide relative to the object,

The angle between fi and R, or RI is given by the

is given by:

0, = arctan (Au)

Note that given a value for b, we can compute x,. Once we know this value we can

use Equation 4.7 to compute f f, the forces due to friction. From this, we can compute

y, the angle made by the frictional force relative to the x-axis (see Figure 4-4b). This

gives us the function y(b). Inverting this function gives (7y) (i.e., p as a function of

y). If the angle y, made by the ray of pushing Rp is outside the range given by [Y' TY],

then the ray of force RF can be immediately ascertained. 71 (7,) is the angle made

by RI (Rr) with the global x-axis. If this angle lies within this range then Rp and RF

...

.......... +

......+

+

.....

.....· ···..... ····.....'.· ···;'' ····.

+
+

+L

1-.
i

104

4.2. Planar Pushing

coincide, and no relative sliding occurs between the pusher and the pushed object.

In either case, y is known, and given 0i(7'), we can compute Vb and consequently x,.

Upon examining the ICR loci given by x,(4'), however, it is apparent that we can do

this quite efficiently. The ICR loci can appear in two basic forms. As illustrated by

Figure 4-6, the locus can consist of either a single piece (with or without the point at

infinity representing translational motion) or two pieces that connect at infinity.

(a) (b)

Figure 4-6: Two types of x,(b): (a) Only the locus chain on one side is valid. (b)
Locus chain on both sides is valid. The numbers indicate the angle - in degrees.

We exploit this basic fact in our algorithm. The first idea is to keep track of -y as

we sample V and record in two chains (possibly) the values of x,(4') (see Figure 4-8).

A chain is stored as a sequence of line segments. Then, given a value for -,Y, we

can immediately ascertain where it lies relative to these chains. If ,p is outside the

range, we choose the angle closest to this value and the value of x, suggested by it

(compare to the algorithm in Figure 5 in Mason [1986]). If it is within the range, then

we intersect ray of pushing R, with the chains to determine the exact value for x,.

Note that this approximation algorithm can be made exact (using binary subdivision

on the remaining angle range) quite easily. Also note that a further optimization

+
29

4---
24

19 +
14

9 .

'''+
14+

1ý

Chapter 4. Simulation of Pushing and Car Parking

arises if we perform the angle-inclusion test for y, within the loop that attempts to

compute the two chains. Figure 4-7 illustrates the output of such a computation on

an L-shaped polygon.

Figure 4-7: Valid Portion of ICR Locus

ComputeICR
7, = Angle made by ray of pushing
for 0 from f - 7r to ii by 60

Compute x,, 7
When 0 + 7r/2 Crosses OCOM

StartNewChain
if y in [y1 -r]

AddToChain
Compute Imin, Pmax of chains
Determine ICR from which range y7, lies

End

Figure 4-8: Pseudo-Code for ICR Computation

The above procedure yields the value for x,, the ICR. We still have to compute the

angle of rotation. We do this by a simple computation illustrated in Figure 4-9. If we

write the equation for the rotated line segment, and use the value for the co-ordinates

106

4.2. Planar Pushing

of the point we know (namely Q), we get an equation of the form:

Acos(O) + Bsin(O) + C = 0

where
A = (xo- XQ) + Y (YO- YQ)

B = (yo -) - , (Xo -XQ)

C = (xp -zo) + i, (YP -yo)

In the above equation, fi refers to the unit normal vector of the edge pi pjm+ before

rotation. This equation can be solved by the usual substitutions A = cos(q) and

B = sin(q), to yield two values for the resultant rotation 60.

Figure 4-9: Computation of Rotation Angle given ICR: po is the ICR. 7P indicates
the pushing motion.

The results of such computation are shown in Figure 4-10. In each of these figures,

the arrowhead illustrates where the pushing point is, and the center of the two drawn

circles illustrates possible resulting values for x,. Note that given a value for pusher

motion, the edge on which the pointer pusher acts has to move as shown in these

107

(4.10)

Chapter 4. Simulation of Pushing and Car Parking

figures. In general, if we ignored the rest of the object and just considered the pushed

edge, there are two solutions for this computation. This happens because we are

seeking to position the chord of a circle, with only the location of a single point having

been fixed. Of the two solutions, the simulator chooses that solution that minimizes

the turning angle from the .present configuration and respects the constraint that the

pushed object stay to the same side of a given edge.

Motion [20 20]

Figure 4-10: Illustration for S5 Computation

There are two issues we have glossed over:

1. The analysis above produces an instantaneous center of rotation. However, the

simulator must eventually output finite motions. One can handle this issue by

choosing a small step size and repeatedly invoking the computation above. This

is what the simulator does.

2. For finite motion, the angle of rotation must also check if the pusher slides off

the pushing edge for a given finite pushing action. This is determined by the

+

Motion [20 0]

108

4.2. Planar Pushing

computation of the angle of rotation. If slip-off occurs, we only need to perform

the motion until slip off. The assumption made by the simulator is that slip-off

occurs cleanly with no edge-catching phenomenon.

Note that using force and moment balance equations to compute the ICR as we

did above is not the only option. One can choose the ICR that minimizes the power

lost to frictional force (see Peshkin and Sanderson [1988], Alexander and Maddocks

[1993] and the more recent paper by Lynch and Mason [1994]). As mentioned in

Alexander and Maddocks [1993], these approaches are equivalent.

This concludes our discussion of the pushing simulator when there are no obstacles

involved.

4.2.2 Closed Loop Pushing with Simple Inversion

In this section, we attempt to derive a feedback controller that can push objects

around in an environment free from obstacles. While this may appear simple, such

a basic capability is essential. We will call the controller that pushes objects under

such an assumption as the free-space controller.

We have explored three alternatives for specifying local controllers in general. We

include a brief description of all three approaches here in order to be complete.

The first approach hand-codes specific behaviors intended to cause particular

object-relative motions. For example, we wrote behaviors to translate the object

along the path, and others to rotate the object clockwise or counter-clockwise. Al-

though some effort was spent on making these behaviors not be specific to the shape

of the moved object, we did not succeed in deriving a single set of robust behaviors

that could handle all of the polygonal shapes we were interested in (see Appendix A

for these models). The main reason is that the variation in geometry affects the action

selection rules in subtle and complicated ways.

The second approach applies the principles of traditional feedback control to the

problem. The idea can best be illustrated graphically. In Figure 4-11 we illustrate

109

Chapter 4. Simulation of Pushing and Car Parking

Figure 4-11: Geometrical Control Rule: Initial and final configurations are shown
further apart to make the figure clearer. To illustrate the first heuristic, we draw
01 opposite the line segment indicating the translational displacement of the object,
and choose the point R where it intersects the boundary of the object as the pushing
point.

the L-shaped object's initial and final configuration at some stage along the path.

A line 01 is drawn opposite the line segment connecting the positions occupied by

the center of mass of the object as it moves along the path. This line intersects

the line segments comprising the polygon in a number of places. The segment that

contains the furthest point from O is chosen as the segment on which the pushing

action will be applied. Since the direction of rotation desired is counter-clockwise,

we use Mason's rule (Mason [1986]) to find a point along the segment RQ, and use

a small incremental push dx, dy along the translation direction indicated. If no such

point can be found, then we choose another edge adjacent to PQ and retry.

This second approach was much more successful than the first in moving the

objects along specified paths, although it had real trouble with producing accurate

rotations with certain object shapes. This method, like the one before, could not

handle the entire set of object shapes because the geometric rule is quite sensitive to

\ /

110

11

4.2. Planar Pushing 111

the object shape and its configuration relative to the goal.

The third approach is based on inverting a forward map. This forward map can

be built using the simulator, or empirically from actual trials. The basic idea is to use

the simulator presented in Section 4.2.1 to build up a forward map from actions to

state changes by repeatedly executing the simulation procedure for various sampled

values of the action tuple. This yields a map 2:

Ax = fo (u)

To implement the local controller, we then invert this table using particular choices

for distance functions. Given a desired state change we look in the table to find the

action that produces the closest change we are looking for and then execute this

action. We have implemented two approaches: one that minimizes euclidean distance

in a normalized space and another which treats rotations differently from translations.

The tables are stored in two ways as suggested by memory-based learning ap-

proaches. For small table sizes we use an array, and for a large number of entries

(> 100) we use a three-dimensional k-dtree, which is a data structure that allows one

to perform point-queries and n-nearest neighbor queries. The input in this case is the

desired Ax, and the output is the n-nearest points ui (i = 1..n). This data structure

was first proposed in Bentley [1975]. See Bentley [1990] for a more recent exposition,

Moore [1991], Moore and Atkeson [1993] for applications of this data structure to

memory-based learning problems. Mehlhorn [1984] contains a good description of

related data structures for multi-dimensional searching.

It might seem strange that we are using the simulator to build a table which we

then run against a simulator, but two important points should be noted:

1. In our runs, we use a control error that is uniform but bounded in the range

[-10, 10] degrees in the direction of the push. The angular error in sensing is

2 We use 0 to indicate that this controller is expected to run in free-space.

Chapter 4. Simulation of Pushing and Car Parking

also of the same magnitude. A sensing error ball that has radius 1 cm is used

to simulate sensing error in [x y]. The fact that using a static table works at

all in this case should be taken as a strong indication that feedback control is

enormously helpful in this simple task.

2. The table lookup and inversion scheme has a strong connection to stochastic

approximation techniques where the form of the function f is assumed un-

known. The procedure whereby we build and use the table is, in fact, analogous

to the multi-dimensional extension of the Robbins-Munro [1951] algorithm for

stochastic approximation. Since our interest lies in building up such forward

maps empirically for more complicated examples, it is encouraging to note that

established techniques exist for such domains.

It should be noted that the last approach implements a feedback loop as well,

but relies on a model of the physics as predicted by the simulator. Upon examining

the tables produced by the forward model, the reasons for the failure of the first two

approaches become clear. The number of entries in such a table depends on sampling

size and varies considerably with object shape. The first approach is essentially

attempting to derive this table albeit in a somewhat limited way. It attempts to find

a single or a small set of functions that will account for large sets of possible outcomes

and express them succinctly as behaviors. The second approach uses fixed rules to

deal with geometry and consequently has trouble with objects whose geometrical

shapes do not satisfy its assumptions.

The last approach has proven to be robust in carrying out the required motions in

simulations and in actual experiments. In Figure 4-14 we illustrate the performance

of this controller in two different trials where the L-shaped object is moved from

(40, 40, 0.8) and (40, 40, 1.57) to (0, 0, 0).

We choose a particular sampling of the action space based on performance metrics

(see Figures 4-12 and 4-13). The parameters we attempt to choose are k, the number

of pushing points along an edge of the object, d, the length of the push, and 1, the

112

4.2. Planar Pushing

Average Iterations

113

Figure 4-12: Performance Evaluation of Local Controller: As the number of points
per edge and the number of orientations per point increase, the average number of
steps to accomplish sample tasks drops.

number of directions along which the pushing action is exerted. Values for these

parameters are chosen by measuring the performance of the controller on a set of

sample tasks. First a set of k equally spaced points are chosen along each edge of the

pushed object. This specifies the first two values x, y of the action tuple. To derive

values for the next two values, directions of pushes are sampled into 1 values in the

range [h + 0r,,, A - m,,,] about this point. Ai denotes the normal to the edge, and

9m,, was set to 60 degrees. The length of pushes d was held constant to 2 cm for

140

12(

1

Ptsj

Chapter 4. Simulation of Pushing and Car Parking

Distance Travelled

Figure 4-13: Performance Evaluation of Local Controller: A similar drop-off as before
in the distance travelled to accomplish sample tasks.

the purposes of these simulations. We will say more about varying this later on. By

considering the number of pushes, length travelled between pushes, and the ratio of

successful pushes to failures in a specified time period on a set of previously chosen

pushing tasks, the algorithm chose k = 4, and I = 5 in the examples shown below.

Even though choosing large values for these parameters may improve performance

according to these metrics, the practical issue involved in maintaining the large tables

that result also needs to be considered. The above values, for example, result in the

size of A being 120 in this case for the L-shaped object.

250

2C

114

4.2. Planar Pushing

Figure 4-14: Two Execution Trails Produced by the Local Controller

4.2.3 Collision Detection and Handling

The previous sections have demonstrated that we can handle the task of pushing

arbitrary polygonal objects in free-space. We have presented results from simulation

experiments, and the next chapter will present results from actual experiments. We

now deal with the more interesting domain where the environment is populated with

obstacles. These obstacles affect strategies in two interesting ways:

1. When a moving object collides with an obstacle, the dynamics of interaction

are no longer modeled by the simple equations given above. Furthermore, there

is now an additional force of interaction (at the collision point) that must be

accounted for.

2. Besides changing the assumed dynamic (or quasi-static) model, the presence of

obstacles also introduces the need for global knowledge. The simple feedback

controller based on error that worked so well in free-space simply will not suffice

for getting around obstacles.

In this section we first outline how the simulator detects and handles collisions.

Collision detection among moving obstacles is an extremely mature area of research in

115

Chapter 4. Simulation of Pushing and Car Parking

the field of robotics, and the literature on this problem is quite enormous (for example

see Canny [1986], Donald [1985], Lozano-Perez [1981]). We propose an alternate

parametrization of incremental motions that makes collisions among moving objects

easier to compute. The problem we consider is that of multiple moving polygons and

polyhedra, not necessarily convex. The problem of collision detection and handling

is important in robot simulation programs, and for programs that attempt to do

realistic animation with graphics.

It is important that collision detection and handling be extremely fast because

such computations happen in the innermost integration loop, impacting significantly

on real-time performance of the entire system. In fact, it has been commented that

80 percent of a simulator's running time can be devoted to such computations (see

Hahn [1988]).

To formalize the problem, let A and B denote the objects we are considering.

Let the configuration of A be denoted by c(A). In the plane, three parameters are

required to specify the configuration of an object, while in three dimensions a total

of six parameters would be required. Following Lozano-P&rez [1983b] and Canny

[1986] we assume that A denotes the moving object and B denotes some stationary

object in the environment. . This motion for A can be specified (as is usually done

within integrators) as an incremental change to the configuration parameters. Let

ci(A) denote the initial configuration of A and cf(A) denote the final configuration of

A after the motion is complete. In what follows, we assume that motions are finite

and NOT infinitesimal. Let t denote a parametrization of the motion such that the

configuration of A at t = 0 is given by ci(A), and at t = 1 is given by cf(A). The

particular form of parametrization chosen influences the trajectory of motion (or the

actual path taken) between the initial and final configurations, and we will see that

this is crucial to the performance of any collision detection algorithm.

The problem is to determine the smallest value of t wherein collision occurs be-

tween the moving object A and the stationary object B.

116

4.2. Planar Pushing 11

One important point to note is that collision detection is somewhat different from

the problem of interference detection where the result of the computation is usually

in the form of a boolean that indicates whether or not interference occurs between

two bodies. It is true that collision detection can be reduced to a series of interference

detection tests, but this is usually very expensive computationally. The output of the

collision detection algorithm will be the smallest value of the parameter t and the

surface features involved in the collision. Note that this is the format of the output

that is usually desired by integrators and animation programs.

As we mentioned earlier, a lot of research has been devoted to solving this problem.

Almost all of this work can be classified into three categories:

1. Approaches based on C-space: Lozano-Pirez [1983b] in a seminal paper, intro-

duced the notion of configuration space to solve path planning problems. Based

on this work, Canny [1986] reduced the collision-detection problem to one of

finding the roots of cubic polynomial equations. This approach characterizes

and computes exact solutions to the collision detection problem.

2. Distance computations: In these approaches, the distances between closest fea-

tures between two objects are maintained as the objects move relative to each

other. When there are n objects in the environment, O(n2) such distances and

pairs of closest features need to be maintained. When the distance between a

pair of tracked features is computed to be negative, a collision must have oc-

cured during motion (Gilbert, et al. [1987], Gilbert and Hong [1989], Lin and

Canny [1991]). Of these, the algorithm by Lin and Canny is notable for its

speed.

3. Repeated intersection computations: Even though we mentioned that this would

be a computationally expensive method for performing collision detection, this

is perhaps the easiest approach to implement.

Chapter 4. Simulation of Pushing and Car Parking

Of these approaches, only the first group of algorithms satisfies our requirement

for the collision detection problem as we have formulated it. In the other approaches,

since the output is usually boolean, the simulation or animation program will have

to perform a binary search on the parameter t, by proposing smaller and smaller

motions until collision no longer occurs (see Hahn [1988] where this is called backing-

up a simulator).

In two dimensions, the configuration of a rigid body can be described by three

parameters as mentioned before. Only type-A and type-B contacts arise in 2-D.

The former arises when a vertex of object B contacts an edge of A, and the latter

arises when an edge of B contacts a vertex of A. Configurations are given by [z, y, 0]

triples. It is advantageous to use a parametrization u = tan(0/2). The popular

method of parametrizing motions is to linearly interpolate between the starting and

final configurations using the time parameter t as follows:

u(t) = + t (uf-uo)
x(t) = X; + t(Xf - Xo) (4.11)

y(t) = y+ t (y - yo)

Such a parametrization proposes a straight line translational motion coupled with a

uniform rotation happening simultaneously. Even though the above equations only

denote the configuration variables in the plane, the same form essentially applies in

three dimensions as well (see Boyse [1979] and Canny [1986]). Let an edge of A

be represented by fiA, a unit normal vector to the edge, and dA, the perpendicular

distance of this edge from the origin. When this edge has been translated by x and

rotated by 8, a point y on the edge must satisfy:

(y - x) - Rot (iA, 0) - dA = 0

118

4.2. Planar Pushing 119

For type-A contact with a point PB, we replace y in the above equation to get:

(PB - x) - Rot (iA, 0) - dA = 0 (4.12)

For type-B contacts, a similar equation applies:

(Rot (PA,) +X) fiB - dB = 0 (4.13)

where ib and dB represent the outward normal and the distance from the origin to

the edge on B where the collision occurs and PA refers the vertex of A involved in the

collision. Simplifying Equation 4.12 using Equation 4.11, we get a cubic polynomial

in parameter t:

[B2 K] t3 + [B2(J + G) + 2B(AK + M)] t2+

[2AB(G + J) + BH - CDn, - EFnY + A 2K + 2AM + 2BL] t+ (4.14)

A2(G + J) + A(H + 2L) - Cn, - Eny + I = 0

where

= ui

= Ui- Xi

- (PBx nx + PBy ny + di)

SPBx n, + PBy ny - di

= Dnx + Fny

= Dny - Fn.,

= Uf -

=f - Xi

= Yf - Yi

= 2 (PBy n~ - PBx ny)

= Cn + Eny

=Cn - Enx

Chapter 4. Simulation of Pushing and Car Parking

The equation for type-B contacts, when simplified, has about the same number of

terms:

[B2(nD + nyF)] t 3 + [B2(nC + nyE - dj - PAn,) + 2AB(Dn, + Fny)] t 2+

[Dn. + Fn, + 2AB(nC + nyE - PAn. + dj) + A 2(nD + nyF)+

2B(PAny - PAynX)] t + Cn. - En, - dj + A 2 (nyE + n.C - dj)+

PAxnx(1 - A 2) - 2A(PAynx - PAn~y) + PAyny = 0

(4.15)

where

A = ui B = u - ui

C = xi D = Xf-Xi

E = y, F = y -Yi

and where we've attempted to use a few less intermediate variables. The above

equations illustrate the main steps behind a collision detection algorithm.

1. Using every vertex in B, we substitute the parameters in Equation 4.14 to get

a cubic polynomial in t.

2. Compute the zeros of this polynomial using a numerical technique (see Press,

et al. [1986]) to compute where collisions occur.

3. We then compute the smallest value of t in the range [0, 1], and use this to find

out the value of u(t), x(t) and y(t) where collision occurs.

4. There is one more step. The above equations (Equation 4.12, for example)

consider an edge to be an infinite line. In reality what we have is a line segment.

Hence one needs to use the above parameters to transform the end-points of the

segment to find out the segment's actual extension at time t computed above.

Then we substitute PB in another parametric form of the transformed segment

and ensure that its co-ordinates lie in the range [0, 1].

120

4.2. Planar Pushing

The simulator we implement uses a slightly different approach for collision detec-

tion. The motivation is to obtain a quick rejection test for most points, so that we do

not have to go through the entire process outlined above. While box tests are popular

and have been used by a number of the authors cited above, we believe that the ap-

proach outlined below is useful. It is hard, however, to compare this technique with

other collision detection approaches that are coupled with box tests, because the run-

times of the algorithms depend upon assumptions regarding environment complexity

and choices made for resolution, box size, etc. which are usually not cited.

The basic idea behind the approach is to use a different parametrization of the

incremental motion. Rather than treating translations and rotations separately, and

using essentially a straight line to interpolate between the initial and final configu-

rations, we use a screw motion. It is well known that any motion in the plane can

be accomplished by either a translation (correponding to the ICR being at infinity)

or a pure rotation (Chasles's theorem). The same is true in three dimensions where

any finite motion can be accomplished by a unique screw motion comprising of a

rotation and translation about a fixed axis in space (Euler's theorem). Using such a

parametrization, notice that the path taken by a vertex during an incremental mo-

tion is always a straight line or an arc of a circle, and the path taken by an edge

segment sweeps a parallelogram or a portion of the annulus of a circle. Handling the

translational case is done by line segment intersection tests that are fairly easy to do

efficiently.

Type-B contacts arise when a moving vertex of A contacts an edge of B. Since

vertices of A move through circular arcs, this reduces to an arc-segment intersection

computation. Type-A contacts can also be handled by the same identical computation

by noticing that rather than moving an edge of A forward by •9, we can instead move

the vertex of B by - 60. The vertex of B then traces out an arc of a circle and the

same computation results.

Chapter 4. Simulation of Pushing and Car Parking

Note that our earlier computation of motions involving pushed object A is actually

expressed in terms of an ICR. In cases where we have an incremental motion [Sx Sy SO]

we can compute the ICR using:

XlCR

YICR

Sx (versine(60)) - Sy (sin(60))

(versine(60)) 2 + (sin(0l)) 2

6x (sin(60)) + by (versine(60))

(versine(60)) 2 + (sin(S0)) 2

+B

/pi+
Pi

Type A Type B

(4.16)

Figure 4-15: Collision Detection in 2D: For both Type A and Type B contacts, the
computation reduces to intersecting an arc with a line segment.

Figure 4-15 illustrates the two cases, with type-A contacts and type-B contacts.

In the former, we can now do a very quick test to determine if PB is indeed in the

path of the line segment [pi pi+j]. If the ICR is denoted by Po, and the distance

between two points a and b by d(a, b), for collision to be possible the following must

hold:

d(p 0 , Pi) <= d(po, PB) <= d(p 0o, i+1)

122

4.2. Planar Pushing 123

We can even extend this test to:

MIN(d(po, pi)) <= d(po, PB) <= MAX(d(po, Pi+1))

where the MIN and MAX are taken over all points. This is essentially a sweep test,

but it turns out to be quite effective in rejecting a majority of the points. Those that

remain can be pruned further by using an angle inclusion test. A similarly effective

pruning technique applies in the case of type-B contacts as well.

Finally, if these tests indicate that there might be a collision, we perform the

following arc-segment intersection test, that not only yields the parameter t (the

minimum value of which can be used to find out the first point of collision), but also

the actual point of collision. The parametric form of the line segment is given by:

Pt = Pi + t (p+ 1 - Pi)

If PA moves in an arc of a circle of radius r (i.e., d(po0, PA) = r), we substitute the

above parametric form in the equation for a circle to get:

zi - x) 2 + (i+1 -)2] t2 +2 [x'(xi+ - xi) + y'(Yi+ - y) t1 + 2 + 2 ,2

(4.17)

where x' = xi- zo and y' = yi - yo. Note that this equation is quadratic in t, and can

have 0, 1 or 2 solutions. If there is a single value of t and if it lies in the range [0, 1],

then we may have a collision. We need to further verify that the motion made by the

arc is less than the angle 60 of the motion. If Pt is the point of collision, we use of

the dot and cross product (the former yields the angle of rotation and the latter the

sign) to compute this angle and check if a collision occurs.

The simulator uses these computations to detect collisions in 2-D and seems to

perform reasonably well even with environments of moderate to high complexity.

The idea behind using screw motions extends to three dimensions and yields fast

Chapter 4. Simulation of Pushing and Car Parking

computations for type-A and type-B contacts. The test to be performed in this case

involves the intersection of a helical curve with a plane.

Once collisions have been detected, the simulator creates a contact data-structure

that contains the following information:

1. Type of Contact.

2. Contact Vertex and containing polygon.

3. Contact Edge and containing polygon.

4. Contact Point co-ordinates.

This data structure is then attached to each object that is involved in the collision.

There is also a global contact graph that contains a list of all the contacts in the

environment. Even though this may appear to be a lot of redundant information, we

have found that since we need to support accessing and updating contact information

globally and through individual objects, these alternate routes to the same informa-

tion are quite useful. As the simulation progresses, the contact graph is consulted

to verify that each of the contact conditions still exists. When a contact point is no

longer within the edge corresponding to the contact, then this contact is deleted, and

the data structures updated.

Now that we have the ability to detect collisions, the simulator has to compute how

objects behave in response to such collisions. Given a pushing motion specification,

the simulator has to compute [Sx 6y 60], the incremental motion of the pushed object

subject to the constraint imposed by the colliding contact(s).

Collision and contact between moving objects is a surprisingly complex phe-

nomenon that is quite difficult to model even in a simple world comprising of just two

dimensional polygons. The need for modeling collisions arises in a variety of situa-

tions, and most of the work involved in simulating collisions has been performed in the

field of dynamic simulation, and more recently in graphics and animation programs.

124

4.2. Planar Pushing

In what follows, we outline the dynamic problem first, and very briefly indicate the

major approaches that have been used to attack this problem. We will then turn to

the quasi-static case and outline how our simulator implements collision and contact

handling.

Denoting the configuration of the polygon by q, consider the following governing

equation for the planar contact problem (following L6tstedt [1984]):

Mq = f(q, q, t) + G(q) A(t)

where M is the constant system mass matrix, and f contains the explicitly given

driving forces. The last term G(q) A(t) is used to denote the contribution from the

forces of constraint to the equations of motion. The problem is to integrate this

differential equation over time subject to the constraint

¢(q) > 0

For example, q may represent the distance between a colliding vertex and an edge

in the environment. Such kinematic constraints are uni-lateral and change the dy-

namics (i.e., the equations of motion when q(q) > 0 and when q(q) = 0 are quite

different). Assume Coulomb's model of static friction. If we let fNi denote the nor-

mal component of the reaction force at the i'th collision point, fi, fvi denote the

tangential components, and aNi, a•, ay denote the corresponding accelerations, then

the constraints can be expressed as:

fNi > 0
aNi > 0

fNi aNi = 0

f +f •I < (<lfNi)2

and:

125

Chapter 4. Simulation of Pushing and Car Parking

axi = ay = 0 o0

f +I = ([fNi)2 and

fxiai + f±iai, < 0

We have assumed that these equations have been expressed in a co-ordinate system

at the point of contact with the z-axis aligned along the contact normal. There are

two basic methods to solving this problem, both of which are beset with difficulties.

Baraff [1993] discusses the various issues involved and proves that the problem of

deciding frictional consistency and the problem of determining reaction forces are

NP-hard. The inconsistency of rigid body mechanics coupled with Coulomb's model

of friction has been noted previously by others (Erdmann [1984], Mason and Wang

[1988]).

The approximation method used to solve this problem is one that represents the

friction cone in the equations above by a frictional pyramid. This results in a quadratic

programming problem which can then be reduced to a LCP (linear complementarity

problem) and solved using Lemke's algorithm (see Zangwill and Garcia [1981] for

a lucid discussion of this reduction and algorithm). L6tstedt [1979a]-[1979d] first

outlined this method. Subsequent refinements can be found in Baraff [1993].

Another popular approach to collision handling uses penalty-functions. In this

approach, once a collision has been detected, a spring-damper system is inserted at

the point of collision and the dynamics of the coupled system then integrated over

time (see Moore and Wilhelms [1988]). Such an approach has been used by a number

of authors and is basically an ad-hoc approach where-in spring and damper constants

are adjusted until the system behaves correctly. It is equivalent to the Lagrange

multiplier methods but with fixed numerical constants attempting to compute the

GA terms using quick approximation schemes (see L5tstedt [1979a]).

Support friction is not explicitly considered in any of these publications. For ex-

ample, when a body is being pushed and collides with some object in the environment,

126

4.2. Planar Pushing

the above methods essentially would neglect the support forces. This assumption is

valid only when the effect of these support forces is negligible when compared to

the forces of interaction between the pusher and the pushed object and the forces of

collision (see Caine [1993] for a simulation of small parts on a part-feeder that uses

this assumption). The only work we are aware of that addresses support friction in

addition to contact friction between objects is Mason [1989]. Also note that in all of

the above-mentioned work the externally applied force is assumed to be known. In

our case, the input we have is a pusher motion not a pushing force.

The simulator currently implements two methods for collision handling. The first

method is one that relies on satisfying constraints sequentially, while the second is

essentially an adaptation of the penalty function method.

The first method is easy to explain (in the case of a single contact), and is also

simple to implement, but is not as accurate as the second. The idea is to:

1. Compute the motion of the polygon as though it were in free-space. This will

violate the constraint caused by the polygon it is colliding with (see Figure 4-16).

2. The edge in the environment is used to push-back the object using the same

computation.

Note that the sequential method can easily handle multiple contacts, and is equiv-

alent to assuming a particular contact mode, at the collision point. For example, if P

is assumed to be a sticking contact, then the ICR coincides with P. Given a partic-

ular pusher motion, the motion of the pushed object subject to the given kinematic

constraint is completely determined. Moreover, when there are many contact points,

the contact modes must be chosen so as to be consistent with each other. Another

disadvantage to this technique is that multiple answers are possible, and the partic-

ular value chosen will depend on the order in which the constraints are chosen to be

enforced.

Even though it might seem that satisfying one constraint might cause a constraint

that was satisfied earlier to be violated, this seems to occur rarely in practice. The

127

Chapter 4. Simulation of Pushing and Car Parking

I l I I I
9 I I
• •IP I I r- .. A

Pusher
motion

(a) (b)I I
(b) (c)

Figure 4-16: Sequential Approach
is pushed back because of pusher
to enforce constraint.

to Handling Collision: (a) to (b) Environment edge
motion. (b) to (c) Environment edge moves back

simulator checks for this and can iterate until all constraints are satisfied.

Ideal Path Actual Run

Figure 4-17: Illustration of Collision Detection and Handling:
the position of the center of mass of the L-shaped object.

The small circles show

In experiments performed with real objects, this sequential method of satisfying

constraints seems to work only for very smooth contacts or for very rough contacts

128

m
oT nment

-

"1"

4.2. Planar Pushing 129

when rotation about P occurs at the colliding point(s).

The second method to handle collisions with support friction is inspired by tech-

niques used in the rock mechanics literature (see Hart, et al. [1988] and Cundall

[1988]). The idea is essentially equivalent to a penalty-function based method that

introduces a force that is proportional to the amount of interpenetration between

objects. Our approach is to:

1. Compute the incipient motion vector of the pushed object.

2. Use this motion vector to compute contact forces according to the model given

below.

3. Incorporate these contact forces in the computation of the ICR as before.

Note that once the contact forces are given, Step 3 is a straightforward modification

of our previous computation. The critical question therefore is in Step 2, where we

need a model that can predict these forces of interaction accurately.

The simulator performs this computation in a two-step process. The contact data

structure outlined earlier is augmented to keep track of f,, the normal force and ft,
the tangential force at the points of contact.

The update equations for these forces are defined as follows:

fni+l = f, - I(f A•n lci (4.18)
fti+1 = fti- Kt Axt lci

where li is intended to model an area of contact, and K, and Kt represent the normal

and tangential stiffness constants (see Figure 4-18). Furthermore, if f, falls below

a certain threshold, then both f, and ft are set to zero. Ax, is computed as the

component of the velocity of the colliding point, given an ICR along the direction of

the normal to the edge involved in a collision, and Azt is computed as VAB - nA,-

To ensure that the Coulomb model is valid (since there is nothing in the above

update equations that limits the interaction force to lying within the friction cone),

Chapter 4. Simulation of Pushing and Car Parking

Figure 4-18: Contact Force Computation Notation: The amount of potential inter-
penetration and the area of penetration are computed using the parameters shown.

Figure 4-19: Illustration of Collision Detection and Handling

ICR
A

-4--Ic

I

I

- -- I

130

f t

4.2. Planar Pushing

we further compute a maximum value for ft as given by:

ft•nax = lciC + f,, a (4.19)

where the first term is intended to model a cohesion effect whereby objects that have a

larger area of contact seem to support a greater tangential force before sliding occurs.

In accordance with Coulomb's law, when the tangential component of the interaction

force exceeds this maximum value ft > ft,,ax we limit ft to ftmax. Once we have

an interaction force, the simulator treats it as just another support force in order to

compute the ICR as before.

The second approach shares the advantages and disadvantages of other penalty-

function methods. However, its coupling with the support friction computation in a

staged fashion enables the simulator to model the two dimensional polygonal world

quite effectively. See Figures 4-17 and 4-19 for pictures that illustrate the algorithm

working during an actual simulation run.

4.2.4 The Planner

We now develop a planner that builds an initial strategy for pushing an'object

under assumptions of little or no uncertainty. The input to the planner is the start

and goal configurations of a single polygon and a description of the objects in the

environment. The planner's goal is to output a nominal path. It is important that

the planner be fast since one may ultimately desire to run it concurrently with the

local controllers.

To find a collision-free path, we use the trace representation to build up the con-

figuration space obstacles. Traces were first used in Guibas, et al. [1983]. The de-

velopment outlined below follows their presentation. The use of configuration space

techniques in robotics path-planning has a long history with a rich literature starting

with the initial work of Lozano-Perez [1983b]. The more recent book by Latombe

[1991] contains detailed descriptions of a variety of issues related to path planning

Chapter 4. Simulation of Pushing and Car Parking

and introduces different techniques to solve path-planning problems. The basic idea

of using configuration space is to shrink the moving polygon to a point and blow-up

the obstacles by a related amount. Questions regarding paths for the moving polygon

can then be phrased in terms of paths for a point in the transformed configuration

space. The process of blowing up the obstacles involves computing Minkowski sums,

and this is where we use the trace representation.

Recall that a polygon is denoted by a set of loops (see Section 4.2.1). In what

follows, we omit j, the loop index, for a clearer presentation. However, the trace

representation and the algorithms that operate on it, can handle multiple loops. One

simple way to do this is to introduce inner edges that connect the outermost to the

inner loops. Thus we only have to consider P', the outermost loop. We also represent

polygons with their edges oriented counter-clockwise.

The trace of a polygon, denoted by Trace(P), consists of a sequence of n turns

and n moves. If you imagine a car travelling around a polygon, a turn represents the

angles its headlights would sweep, and a move represents its forward motion along

the edges of the polygon. Stated a little more precisely, a turn is represented as:

ti = (Pi, aj, Pj)

where

= tan-1 ('i-Pi-

= tan - pi+Ipi

and where the subscripts x and y indicate the co-ordinates of the denoted point in the

polygon, and angles have been normalized to lie in the range [0, 21r). We represent

the co-ordinates of the vertices of a moving polygon about its own reference frame.

The remaining polygons' vertices are assumed to be expressed relative to some global

reference frame3

3In experiments, if this frame is chosen to be the robot frame, calibration becomes necessary.

132

4.2. Planar Pushing 133

We also use the convention that all turns are left-hand turns (keeping with olur

convention of representing polygons by a counter-clockwise traversal of edges). A

turn is said to be convex if the angle made by the turn is less than 180 degrees; It is

said to be concave if this angle is greater than 180 degrees.

A move is represented as:

mi = (Pi, dxi, dyi)

where dxi = Pi+lx - Pix and dyi = Pi+1, - Pi,. In representing moves and turns we

use indexing mod n; i.e., P,,,+ = P1. The move-angle 7i of a move mi is the angle

made by the vector dxi, dy i , as given by:

yi = tan- 1 (dyi, dxi)

The negated version of a polygon P is denoted by -P, relative to its reference

point. Usually the reference point of a polygon is chosen to be its centroid for conve-

nience, but it could be any other point as well.

-P 3 = -P , i = .n

where the minus sign denotes that the co-ordinates of each vertex in P have been

negated in -P.

The moving polygon's trace is represented by the trace of its negated polygon. It

is convenient to represent the trace of the moving polygon indexed by its orientation

angle. Traceo(-P) therefore denotes the trace of the negated polygon P at orientation

0.

The boundary of the configuration space obstacle of a stationary polygon P, rel-

ative to a moving polygon M, can be computed from:

Chapter 4. Simulation of Pushing and Car Parking

CO M (P) = Convolve (Trace(P), Traceo(- M)) (4.20)

Figure 4-20: Example Illustrating Trace Representation

Figure 4-20 shows a sample illustrating polygons and their traces. Note that the

reference point of the moving polygon M is at the point indicated by 0.

Convolving traces is computationally simple. The following cases arise:

1. Move-Move - For our application, this is the null set.

2. Turn-Turn - Again for our application this is the null set, since we are only

dealing with polygonal tracings.

3. Move-Turn or Turn-Move - This is the only pairing we need to consider.

The convolution of a move mi, with a turn tj, is said to be valid if the move-angle

in between the range subtended by [ai, #i). If this valid test succeeds and the turn

is convex, then the convolution is a move whose parameters are given by:

Cij = (Pij, dxi, dyi)

y

A

134

4.2. Planar Pushing

where Pij is the vector sum of Pi

move whose parameters are given

and Pj. If tj is concave, then the convolution is a

by:

Cij = (Pj, -dxi, -dyi)

where

Pij3 = Pis + Pi• + dxi

Pijy = Piy+ Piy+ dyi

Claim 4.1 The computation of COM(P) is O(n 2) worst case.

Proof: From the construction of Cij it should be obvious that if M has n edges

and P has m edges, there can be at most nm pairings between turns of one polygon

and moves of the other.

Figure 4-21: Simple Convolution: The triangle is the moving object.

Figure 4-21 illustrates the computation on a simple example, where the triangle

is the moving polygon. Note that in our algorithm the output trace consists of

moves that are output in no particular order. However, in O(n ") time we can sort

135

AME

136 Chapter 4. Simulation of Pushing and Car Parking

this list such that the output is a trace that is a sequence of moves such that Pi+1

corresponding to the mi+1 always equals the vector sum of Pi and dxi, dyi. Once the

list is sorted, we can insert turns inbetween the moves in order to ensure that the

convolution operation is closed (i.e., it produces a trace that can be used as input to

further convolutions). Figure 4-22 shows more examples of convolutions.

0 = 0 0 = 0.8

Figure 4-22: More Examples of Convolutions: L-shaped object is the moving object

Thus far we have only considered the convolution, and consequently, the com-

putation, of the C-space obstacle at a particular orientation of the moving polygon.

There are two ways by which this procedure can be extended to compute the bound-

ary of the C-space obstacle in 2+1D. The first is a straight-forward extension based

on sampling.

The basic idea is to compute 2D convolutions at k slices, where k is a resolution

factor. We then discretize the outer-boundary (see Figure 4-23) and use a seed-fill

algorithm to fill in the inner regions. See Figure 4-24 which shows the first six slices

sampled at a resolution of six degrees between slices. Another approach suggested by

a common technique in computer graphics is to scan-convert the edges and then use

an active edge-table algorithm to perform the filling.

I

I

I

- r-
I
I

4.2. Planar Pushing

Figure 4-23: Quantized Convolution Trace

Note that if the x-y dimensions are sampled into r x r cells, the quantization can

be computed in O(n 2r) since a crude upper-bound to quantize each edge is 0(r).

Once the edges have been quantized, we can perform the seed-fill algorithm in 0(r),

using a simple linear sweep.

The accurate computation of the outer-boundary of the c-space obstacles using a

plane-sweep computation takes O(n2 logn) time, since there are at most O(n 2) edges

in the convolution (see Kaul, et al. [1991] for details of the proof).

The second approach is to use the trace representation to directly compute facets in

2+1D, which represent the surfaces wherein contact occurs between edges or vertices

of the moving polygon and the stationary polygons. Two views of the constructed

configuration space for the example in Figure 4-26b are shown in Figure 4-25.

Using such a representation in order to search for free paths is more difficult than

with the tesselated environment. This representation can be used to find paths in

certain simple cases where the configuration space obstacles are singly connected (see

Lumelsky et al. [1987]).

137

Chapter 4. Simulation of Pushing and Car Parking

I _ _ _ _ _ _ _ _ _

0=0

0 = 180 degrees

Figure 4-24: Slice Approximation using
slices are shown.

0 = 270 degrees

SeedFill: Resolution = 6 degrees. Only four

Figure 4-25: Two Views of 2+1D C-Space: (a) shows all facets. (b) shows closeup
view. Facets have been triangulated for rendering.

138

i i iI

4.2. Planar Pushing

For all the experiments in this thesis, we used the tesselated representation. The

facet representation is only used to make sure that the resolution k chosen was fine

enough so that no facet would be completely missed.

(a) (b)

Figure 4-26: Paths Found by FindPath

Once we have the configuration space obstacles built, finding paths that connect

initial to starting configurations is a simple process of search in the tesselated environ-

ment. To implement the search efficiently, we use a 3-bit representation of directions,

since from any configuration (xi, yi, Oi), it is possible to generate six neighboring con-

figurations. We implemented both breadth-first and best-first searches. Most of the

simulation examples and the experiments were run using breadth-first search.

In Figure 4-26 we illustrate two of the paths found by the planner. Note that once

we have the path in this representation it is easy to generate long segments along

it which have the same direction. Also note that as we have presented it, the path

planner does not use any knowledge of dynamics or uncertainty in generating the

path.

139

Chapter 4. Simulation of Pushing and Car Parking

4.2.5 Multiple Controllers based on Local Context

To summarize the presentation thus far, we have constructed a local controller that

performs well in free-space. We have presented how the simulator detects collisions

and handles them. Furthermore, we have presented a path planner which can generate

paths that stay clear of obstacles.

It is quite easy to modify the free-space controller to be a path-following controller.

When we attempt to execute the nominal path with such a modified free-space con-

troller, however, both in simulation and in reality, unexpected collisions occur between

the pushed object and obstacles in the environment. This causes failure of the nominal

execution strategy in two ways:

1. Actions are chosen that cause no effect in the configuration of the object or

its environment. This causes the pushed polygon to become stuck in certain

configurations.

2. The change in dynamics upon contacting surfaces in the environment causes

the free-space controller to loop (or limit-cycle).

One approach to handling this difficulty is to attempt to model the dynamics of

such interactions and include in the planner the ability to plan paths that take into

account these explicit models of dynamics.

However, we will describe an approach that we have implemented that seems to

work quite well. The approach is motivated by the observation that what really mat-

ters is the locally sensed geometry of the environment, since it is this geometry that

changes the dynamics of interaction. The basic idea is to generate a number of simple

controllers like the free-space controller, to handle each of these local configurations

much like the first level controller handles object motion in free-space.

To illustrate the idea, consider Figure 4-27. Here we show a 2-D representation

of a configuration space obstacle. The double lines indicate locations where the local

contact geometry is similar. The expanded view indicates how, if the robot is in

140

4.2. Planar Pushing

Figure 4-27: Illustration of Local Similarity: Context computation is handled by
looking up the state in the tesselated representation of configuration space.

a configuration cell marked x, its local view of the configuration space is identical

if four or eight neighboring cells are considered. The reason for defining locality in

configuration space should now be obvious. Since one can essentially view the pushed

object as having been reduced to a point in this space, tests for locality can be much

simpler even for objects of complicated shapes. If we use only orthogonal neighbors

in a tesselated representation of the configuration space to define locality, then in an

n-dimensional space we have 2 2n possible local configurations. For each one of these,

our approach attempts to learn a local control rule that applies, much like the first

level controller was learnt in free-space. It is this local configuration that we have

labelled context.

Thus we compute a set of maps:

Ax = f;(u) i = 1..2 2"n

Note that there is no real need to compute all of these maps. In fact, many of the

local configurations will almost never arise in practice; for example, the configuration

in which the robot is completely boxed in is highly improbable. Consequently, we

only compute the maps that we actually run into.

The planning, control and learning algorithm for the pushing task now looks like:

l 1-

Chapter 4. Simulation of Pushing and Car Parking

PushObject (object, segment)
context = SenseLocalContext
controller = FindControl (context)
if (controller = NIL)

LearnRule (context)
Execute (controller, object, segment)

End

Figure 4-28: High Level Pseudo-Code for Segment Level Control

The basic idea is to keep track of the current local context, and to be continually

executing the feedback loop associated with that context. The context is output from

a observer process that acts as a high-level sensor. On examining the pseudo-code it

might appear that the context can be directly sensed just like other state variables. In

reality, however, this is a much more complicated process. In essence, the task of this

observer is to distinguish and identify which portion of the configuration-space mani-

fold the current configuration belongs to. One can formulate this process abstractly as

being equivalent to the state-identification problem in a discrete-event dynamic sys-

tem. As mentioned earlier, this is equivalent to computing the best estimate of which

node in the contact graph the state is currently contained. For the pushing task, the

simulator takes the current sensed state and consults the constructed configuration-

space map to estimate the context. In cases where the sensed position lies completely

enclosed in a C-space obstacle, we take the nearest free configuration and use that

to compute the local context. The only difference between this approach and the ap-

proach presented in Chapter 3 is that the process of building local controllers occurs

on-line during execution here.

The local controllers for a particular context are computed as tables and inverted

using the same process as the one used for deriving such a map for the free-space

controller. Figure 4-30 shows pictures from execution traces of a run, and Figure 4-29

shows sample rendered frames from the run.

This completes the instantiation of almost all pieces of the LCNP approach to

142

4.2. Planar Pushing

Figure 4-29: Four Frames from Trial Run

executing tasks in the pushing domain. With the pieces outlined thus far, local

strategies and paths are generated and executed to solve all of the examples that our

earlier approaches had failed to solve. Our simulated examples use a library of 30

part shapes on 20 sample tasks, and thus far only the LCNP approach has been able

to solve these examples without significant limit cycling and chatter, under the error

models given above.

1 -3

Chapter 4. Simulation of Pushing and Car Parking

Path Portion of Execution

Execution trace further along the path

Figure 4-30: Pictures from an Execution Trace

144

-- -----------------

..

4.2. Planar Pushing

4.2.6 Dynamic Aspects of the LCNP Approach

In preparation for discussing the next domain we are to attack with the LCNP

approach, we outline two important auxiliary computations.

Figure 4-31: Three Tasks in Succession

Consider tasks as shown in Figure 4-31. We have shown the paths computed by

the path-planner to illustrate the starting and ending configurations of these tasks,

and the nominal path to be followed in between.

Note the similarity between the third and the first tasks, in terms of the nominal

path and the environment configuration. On executing the third task, we might

expect that the local configurations we run into are similar to the configurations we

would run into while executing the first task.

This does turn out to be the case. If we set up a sequence of walls as shown above,

and run the LCNP controller through the set of walls, then Figure 4-32 shows the

rate at which we run into new local configurations that we have not run into before.

Note that after having crossed about three walls, we have built controllers fo through

f37 and after that we do not run into any new configurations.

This is highly encouraging and forms one of reasons for our enthusiasm regarding

the LCNP approach. In all our simulation experiments the number of local contexts

encountered has rarely exceeded O(2n/2). While this is still exponential in the degrees

of freedom, note that we construct fi only once.

14 5

Chapter 4. Simulation of Pushing and Car Parking

30

N
e
W 20

C

n
t 10
e
x
t
S

O

2 3 4

Wall number

Figure 4-32: New Contexts vs. Wall number: Note that as the robot passes through
similar obstacles it runs into the same local contexts. The local controllers' tables
get filled, and consequently it can compute the right action to execute without much
simulation or learning.

4.2.7 Improving Paths over Time

Note that thus far our controllers specific to a context have been localized both

temporally and spatially (i.e., the values that each local controller uses do not involve

history). This has meant that all knowledge of state and of history is embodied in the

observer process that computes the current context. We have constructed such maps

from simulation models, but it should be easy to see how they could be constructed

empirically from actual trials as well. Thus far, we have also kept the nominal paths

constructed to solve the task constant.

It is natural therefore to ask:

1. If we introduce local controllers with state, does that increase the set of tasks

I I

I ,I I I I II I I

I I I I

146

I I

4.2. Planar Pushing 147

we are able to accomplish?

2. Can we use the knowledge gained from a simulation run (or an actual run) to

improve the path computation process?

The answer to both questions involves a more detailed look at how the nominal

path planner's knowledge of the world interacts with the knowledge embodied in the

local controllers. In the planar pushing domain, it would appear that the answer to

the first question is negative and the answer to the second affirmative.

Figure 4-33: Illustration of Accessibility Relationship: Paths taken through an actual
run impose an accessibility relationship between adjacent cells at the resolution used
by the planner.

Consider Figure 4-33. In the figure we have a two-dimensional grid sampled to

the resolution used by a planner. We have also illustrated two sample trajectories

that start at the center of the cell 0 (marked P) and end at two nearby cells. At each

step in the inner loop of the search process used by a planner, the currently visited

node is expanded. This is a process whereby cells accessible from this cell under some

2

0

PU

7

1

4

6

3

5

8

r

Chapter 4. Simulation of Pushing and Car Parking

feasible control are generated and added to the set of nodes being searched. The

planner explained above has no knowledge of the controllers, or accessibility. If it

uses a 4-neighbor model, it will have to assume that all of the cells 2,4, 5 and 7 are

indeed accessible from P. If it uses an 8-neigbour model (allowing diagonal moves)

all cells 1 through 8 will be assumed to be accessible. Hence in the inner loop all such

cells would be added to the list of paths currently being explored.

A result from Lynch and Mason [1994] (Theorem 9) applies to the accessibility

of nearby cells when motion is caused by a pusher, and the support distribution is

unknown.

Theorem 4.1 The configuration of any pushed object with a closed, piecewise smooth

curve of available pushing contact points, is small-time locally controllable by pushing

with point contact, unless the pushing contact is frictionless, and the curve is a circle

centered at the object's center of friction.

What this means is that for a control system E, if AE(T, q) is used to denote

the set of configurations reachable from q at time T using E, AE(< T, q) contains a

neighborhood of q for all T > 0. This theorem directly applies to the case of our free-

space controller (the control system used by Lynch and Mason [1994] is different), and

implies that there always exists a resolution r under which the accessibility relation

assumed by the planner between adjacent cells will be valid. Another way of stating

this is that if we assume feasibility (i.e., we can push from any point on the boundary

of the object) and small motions (i.e., that we can make pushing motions however

small), we can always find a path between two states in adjacent cells that stays

completely within the cells. The addition of state and more complicated controllers

need not necessarily help.

This fact is borne out both by our simulation and real experiments. This con-

trollability property is perhaps what makes the pushing domain easy. In the next

domain, which involves non-holonomic control of a car-like robot, we will see that

this property is not true. In the pushing domain, however, using the local controllers

148

4.2. Planar Pushing

in the planner to generate successive states does not buy us any additional power. In

the examples we have tried, adjacent states have always been accessible from P with

T<10.

(a) Segmented Nominal Path (b) Potential trouble spots

Figure 4-34: Labelling Possible Trouble Segments Along a Path

There is another way, however, that we can use the knowledge gained from exe-

cuting local controllers to improve paths. This is illustrated in Figure 4-34. The idea

is simple. We basically run the local controllers in simulation mode along with par-

ticular choices for error models along the segmented path, but keep track of deviation

from the nominal path and the time it takes to complete the segment. Using these

two numbers we can label those segments along the path that are tight. This gives

us a crude way of determining potential trouble spots. This information can be fed

back to the planner in three ways:

1. Label all cells intersecting trouble segments gray. The path planner searches

for paths as before, but only expands gray cells if no path exists through the

remaining cells. This approach treats collisions as bad.

2. Label all cells that contain a configuration-space obstacle and are near the

trouble segments gray. The path planner searches for paths as before, but

14!)

I

Chapter 4. Simulation of Pushing and Car Parking

now allows paths through gray cells. This approach treats collisions with the

environment as good.

3. Deform the path locally around such segments. This is, in general, harder to

do unless one uses path homotopy methods (see Zangwill and Garcia [1981]).

4. Increase the sampling size at which the planner operates around such segments.

Such multi-grid approaches are common, for example, in stochastic control (see

Chow and Tsitsiklis [1989]).

The simulator presently has support for implementing the first two somewhat

limited methods. In Figure 4-35 we show the results of running the verifier on the path

segments and then replanning with the knowledge that results. The modifications are

more visible in the closeup view.

(a) (b)

Figure 4-35: Replanning Around Trouble Spots: Closeup view (b) shows inserted
obstacle.

This approach does not always work in tight configurations. For example, Fig-

ures 4-36a and 4-36b show views of a replanned path. On verifying this path, however,

we find that other segments are now candidates for replanning (shown in 4-36c). In

150

4.3. Car Parking Example 151

this particular example, this process converges only when a completely different path

that does not seek to go through the gap is found. Even though such a path may be

executable with fewer errors, the overall path length is much longer.

(a) (b) (c)

Figure 4-36: Replanning Doesn't Always Work:
indicates new trouble spots.

(a),(b) show replanned path.

This concludes our presentation of results from simulation in the planar pushing

domain. We now turn to a domain where adjacent cells that are assumed to be

accessible by the planner may indeed turn out not to be in Ar(• T, q), even for large

values of T.

4.3 Car Parking Example

The second domain we consider in this thesis is the non-holonomic planning and

control problem for simple car-like robots in the plane. The reason for considering

this domain is primarily to delimit the scope of the LCNP approach. The question

we would like to ask is:

* Can the strategies generated by the LCNP approach handle non-holonomic

tasks?

The answer to this question appears to be a qualified yes. In this section, we

outline our modifications to the simulator to handle the non-holonomic car-parking

Chapter 4. Simulation of Pushing and Car Parking

problem. We illustrate how using the LCNP approach allows us to compute paths

that avoid obstacles in this domain, and how the local controllers handle uncertainty

and error in simulated examples. We will see that extending the local controllers sug-

gested by the LCNP approach to action histories enables the solution of the example

problems we have considered in this domain.

Non-holonomic path planning has attracted a lot of attention in recent years

(Latombe [1991] and Laumond [1987]).

Figure 4-37: Simple Car Amidst Obstacles

The model we use for our non-holonomic planning and control problem follows

Barraquand and Latombe [1989]. The action space A of a car-like robot illustrated

in Figure 4-37 is a two parameter space given by velocity v and a steering angle €.

The equations for the robot motion are given by:

V
= v cos0, = vsinO, and = - tan¢.

L

152

4.3. Car Parking Example 15:

where L represents the length of the car, and the configuration of the car is denoted

by q = [z, y, 0]. Such constraints between state variables are non-integrable and are

different from holonomic constraints. It is not possible to eliminate such constraints

with a change of variables or by choosing a different generalized co-ordinate system.

It is well known that in spite of non-holonomic constraints, this system remains

fully controllable. This is known to be true even for cars whose turning radius is

lower-bounded by a constraint of the form:

i2 + ý2 _ P2 " 0
- Pmin _>

(see Laumond [1986] and Latombe [1991]). The proofs rely on the construction of

so-called Dubins paths or Reeds-Shepp paths which are canonical trajectories with

which one can approximate a holonomic path closely (see Mirtich and Canny [1992]).

The LCNP approach to handling non-holonomic trajectories would be to plan

a completely holonomic path, and then let the local controllers deal with the non-

holonomic constraints. Such an approach resembles the techniques used by Laumond

[1986] and Mirtich and Canny [1992].

Figure 4-38: Actions for Simple Car: Simple-minded local controller thrashes.

LL-
4-

Chapter 4. Simulation of Pushing and Car Parking

Let us first consider if the LCNP approach will work unchanged. First, we sample

the action space v, ¢, and build up a table that indicated a map from action to

outcomes:

[vi Oi] - [dxi dyi dOi]

This map would essentially consist of the regions that can be covered by the car shown

in Figure 4-38. Now consider a path segment that requires the car to move to the

right as indicated. Thus far, local controllers have been pure sensor to action maps.

Consequently, the above map would be inverted and would result in trajectories like

the one shown in the figure.

4.3.1 Extending LCNP to Action Histories

In non-holonomic domains, the assumption made by a path planner that two

adjacent cells are connected by a simple path need no longer be true. There are many

ways one can define simplicity of paths (see for example, Mirtich and Canny [1992]).

For our purposes, a path with a small number of reversals will be considered simple.

In order to achieve this, we will now extend the tables used by the local controllers

to contain maps from action histories onto outputs.

More specifically, define a k - S-sequence of actions to be:

Ak = { (vij j) I j = O..k - 1 }

where each element of Ak is held constant for the time period [tj tj+1) where tj is

given by to + S j. Each Ak is specified by 2k parameters and can be used to integrate

the equations of motion to yield a specific value for the state change. If each control

parameter v and q is sampled to r values, then the number of possible k - 6 sequences

rk is very large. However, one can see that one can build a forward map from such

elements much like before:

Aki " [dxi dyi dOi]

154

4.3. Car Parking Example

Inverting such a table will result not in a single sequence of action, but in an entire

sequence of actions as indicated by the left hand side of the map.

Note that this is not the only way to build controllers in non-holonomic domains.

Other popular approaches to steering such systems between configurations include

using periodic functions like sinusoids (see Murray and Sastry [1990]), piecewise-

constant functions, and polynomials (see Tilbury, et al. [1993]).

To manage the size of the tables we generate, we use the same assumption used

first in Barraquand and Latombe [1989]. The control space is partitioned into:

[(vmnax, 0, -Vmax) X (×ma, 0, -Omax)]

Figure 4-39: Illustration of Different Paths for Different Values of Rm,,.

This sets the size of r to 6. We have tried finer tesselations, but the results

presented below do not change significantly. We also start with a value of k = 1

and increment it upward. The termination condition for k depends on the resolution

chosen for the planner, and on the value of 6, and on a user-configurable parameter

Chapter 4. Simulation of Pushing and Car Parking

R,,m that specifies the number of allowable reversals. This is illustrated in Figure 4-

:39. Given a particular resolution of the planner, if Rmax is low, a path like the one

labelled 2 will determine the values for k and 6 (i.e., you can implement such a path

with small k and large values of 6 or with high values of k and small values for 6). If

R,,,ax is high, then paths like 1 will determine these values.

Once the forward maps have been built, we can use them within the planner to

compute the accessibility relationship between neighboring cells. In all the examples,

a planner used a tesselated representation where each cell was 0.3m x 0.3m x 60.

Collision detection and handling in this domain is very straight-forward. Once

any collision occurs we assume that no further motion is permitted.

Figure 4-40: Holonomic Parking Path

We illustrate the computations through the following examples. Figure 4-40 il-

lustrates the result of a holonomic path computation. Running the local controllers

inside the path planner to produce paths that are more feasible results in runs that

are shown in Figures 4-41.

Two more examples are shown in Figure 4-42. The first illustrates the car turning

156

L ------------

4.4. Summary 1.57

Figure 4-41: Two Solutions to Parking

around, and the second illustrates a task where the car navigates around a corner.

Figure 4-42: Examples Involving Turns

4.4 Summary

In this chapter, we have presented simulated examples from two domains, and

have illustrated how the LCNP approach handles problems in both domains. We

r

158 Chapter 4. Simulation of Pushing and Car Parking

outlined how the simulator for the planar pushing domain was implemented and how

it was used to build the local controllers which the LCNP approach relies upon. We

also presented the trace representation and how it was used to build a planner that

computed a nominal path that served as a starting point for our solutions. Finally,

we also indicated a rudimentary path modification algorithm. In the non-holonomic

domain, using the knowledge gathered from the local controller allowed us to compute

paths that were more executable. We also investigated the extension of the LCNP

approach to action histories.

Chapter 5

Experiments

In this chapter, we describe experiments performed to verify the framework for gen-

erating strategies presented in the previous chapters. The results from these exper-

iments indicate that for a large class of simple tasks, local controllers implementing

task-level feedback loops around a nominal plan are sufficient and robust.

5.1 Simple Pushing Experiments

Simulations rarely provide useful insight if they are not verified by real experi-

ments. One of the first sets of experiments we conducted was to measure the models

used in the pushing simulations earlier. For example, in Section 4.2.1 we described

the assumption made in the simulator to use a three-point pressure distribution. Do

the trajectories of pushed objects under such an assumption match actual trajectories

of real objects?

To verify this we constructed a flat surface upon which we could push objects

using a linear pusher. Attached to the bottom surface of this table was graph paper

used to track the object as it moved along the top. We recorded a number of planar

straight line pushes in this fashion.

See Figure 5-1 which indicates the data for two of the objects. With the simula-

tor configured to using no error models, we could change the mass properties or the

constant pressure distribution under the simulated object until the output trajecto-

ries from the simulator matched the output we got with the real object for the two

reference pusher trajectories.

159

160 Chapter 5. Experiments

Figure 5-1: Measured Data: Circles indicate measured points. The corner vertices of
the object move through these measured points. The arrow indicates initial pushing
point and direction. Hatches indicate computed ICR samples.

5.2 Experimental Setup

Next we proceeded to implement the entire LCNP approach on a real robot. The

robot used for the experiments was a Puma 600 manipulator with six degrees of

freedom (see Figure 4-1). A machined plate was attached to this robot's last joint.

One could attach either an edge pusher or a rod that would serve as a point pusher

to this plate.

A table made of clear plexi-glass was constructed so a camera could be mounted

underneath. An 8-mm camera was used as the sensor through which pictures of

objects in the scene could be taken under computer control. Figure 5-6 shows a

representative image from this device. A block diagram of the mechanical setup used

in the experiments is shown in Figure 5-2.

5.3 Software

As indicated in the block diagram above, the manipulator is controlled by custom

built hardware obtained from the manufacturer. In order to get a finer level of access

5.3. Software

ot

Figure 5-2: Block Diagram for Hardware Setup

to the robot's actuators, a Motorola 68230 port device was hooked up to the master

control processor of the Unimation controller through its DR11-C interface. Software

was written to enable the Motorola parallel communication device to emulate a DR11-

C'. One Motorola 68040 processor board in the VME backplane was thus dedicated

to servoing the robot arm.

The camera was hooked up to a Datacube frame-grabber (a DigiMax/FrameStore

combination). Although this setup provides the ability to hook up to eight cameras,

we used only one channel for this experiment. Software was written to control these

devices with information provided by the board manufacturer. Another processor

was dedicated to managing the information coming from the camera. The Datacube

boards were plugged into the same VME backplane as the processor boards and the

parallel port device. Overall this resulted in quite a compact hardware configuration

at the lower levels of the system.

1Some of this work was performed with others in the laboratory. See the Acknowledgements for
details.

uamera

Chapter 5. Experiments

All the processor boards in the system run VxWorks, a popular real-time op-

erating system. Software written for an earlier version of our operating system (see

Narasimhan [1988], and Narasimhan, et al. [1989]) was ported to this system. This en-

abled multi-processor communication software and network level programs described

below to be developed on top of the underlying operating system.

Figure 5-3: Block Diagram for Software Setup

5.3.1 Controlling the Puma

A block diagram of the software developed for the experimental setup is shown

in Figure 5-3. At the lowest level, a trajectory controller is set to run at 35 Hz.

This trajectory controller accepts joint-space commands from other machines on the

network.

Three types of interpolation in joint space are provided at this level. They are all

fairly standard (for example see Craig [1986]).

1. Linear interpolation: If O and Oi+1 are two successive enqueued trajectory

Local
Controllers

fEthernet

Simulator,,, Trajectory Robot

VME

162

5.3. Software

vectors, joint space interpolation is performed as:

o(t) = Oi + t (9i+1 - Oi)

The scheme we use is a simple modification of the above scheme that allows a

user-specified maximum velocity. It also takes into account the fact that some

joints move very slowly compared to others.

2. QLQ trajectories: Quadratic Linear Quadratic trajectories.

3. Quintic interpolation: A fifth-order polynomial is fitted between successive

joint configurations fed to the low level trajectory controller.

This low-level controller also acts as an RPC server and responds to messages

over the network. A RPC interface is used by the local controllers running on a

Sun workstation to communicate actions to the robot. The controller takes in action

tuples (x, y, dx, dy) and uses the inverse kinematics of the Puma robot to generate

joint space commands. Each of these actions is implemented as four joint space

trajectories.

1. Move to x, y, zp + L + Imar with an orientation frame Tr where z, denotes the

height of the table in which the objects were placed (16.5"), L denotes the

length of the pusher plus a small tolerance, and Ima, denotes the height of the

tallest object.

2. Move to x, y, z, + L, with the same orientation frame.

3. Move to x + dx, y + dy, zp+ L.

4. Move to x + dx, y + dy, zp + L + I,,na,.

t6:3

Chapter 5. Experiments

5.3.2 Vision

For our pushing simulations earlier, we had assumed a model of a sensor that

reported the x,y,0 configuration of every object in the environment. Such a model

might be termed quite classical when compared to the more modern active vision

representations, but in order to connect perception to action, raw sensor values need

to be turned into identifiable objects at some level.

The field of computer/machine vision is a mature one with an enormous quantity

of published literature. What we needed for our experiments was a simple 2+1D

recognizer and localizer. Unfortunately, there was no off the shelf solution that we

could use. Consequently we built a modified version of the Hough transform to detect

and localize polygonal objects in the image.

In most 2-D recognition tasks some form of pre-processing is assumed, usually to

smooth and extract edges from the image. The problem of recognition then amounts

to recognizing a model comprised of edge segments in the image. Not only must the

recognizer identify the model, but it must also provide an estimation of the pose of

the object.

Both the processes of smoothing and edge-detection have been extremely well

studied in conventional machine vision literature (see for example Horn [1986] or

Grimson [1990]). Smoothing is usually performed by a Gaussian convolution.

5.3.2.1 Building a model

For our application, early experimentation with various lighting conditions indi-

cated that an intensity change detector that was quick and easy to compute would

be ideally suited for the first step rather than more sophisticated edge-detection tech-

niques. The model builder and detector both use a simple first difference calculation,

performed by the following 2x2 mask.

-1 1

-1 1

164

5.3. Software

See Horn [1986] for further discussion on such 2-D stencils. The magnitude and

slope of the intensity gradient array thus computed is used in both building and

detecting models in the following way: when a model is built, only a 100x100 pixel

neighborhood of a suitably chosen reference point is considered.

For all points in this neighborhood, if the gradient magnitude happens to be

significantly above the mean (we use 175 percent of the mean, which amounts roughly

to 25 units of gray-scale), then it is considered an interesting point.

For each interesting point, the distance to the reference point is computed in a

r, 0 scale.

A table is built which is indexed by gradient angle. Each entry in the table is a

list of such r, 0 pairs.

The table would be enormous if we considered every such point. For example, see

Figure 5-4, which shows that the total number of points using such a technique would

be 406. Also note the effect of noise which spreads out the peak. (The model used

is that of a square, and in the ideal case, the plot would have had just four entries,

each of whose frequency would be approximately equal assuming that the perimeter

was uniformly sampled).

To reduce the number of points in the model, we use two heuristics:

1. Instead of using a simple gradient threshold, we use a predicate that will not

consider a point to be interesting if an adjacent point has already been consid-

ered interesting using the following stencil.

1 0

0 0

(i.e., a pixel is considered interesting only if it is greater than a threshold and its

three neighbors are not each over the threshold). See Figure 5-5 for the output

of this rather simple and fast procedure.

16,5

Chapter 5. Experiments166

Gradiont-AnpeysFca c
i i '

.. ... --•.4 .. .-- ;.- 4 ,-----• •--.-- . ..

20

110

o0 : loO 200 30:: : :

Angle (in degrees)

Figure 5-4: Gradient Angle vs. Frequency

Figure 5-5: Point Extraction

5.3. Software

We did try other predicates - for example, one could consider using the sec-

ond differential in a manner that is a discrete approximation of the rotationally

symmetric Laplacian operator, or a more sophisticated ridge finder. However,

the added computation necessitated by such techniques often outweigh the re-

duction in number of points.

2. We also use a simple filter on the gradient histogram shown in Figure 5-4 which

enables us to consider points only on the edges of the objects and not points

that are near vertices where the gradient normal computation is subject to a

lot of noise. We use a simple scheme where a table entry in the gradient table

must have at least n > 3 entries to be considered. In most cases the savings

done by such a simple thresholding was considerable. For the model shown in

the figures below, 109 entries reduced to 27 after such a simple thresholding

operation.

5.3.2.2 Recognizing a model

In our problem we restrict the model library to consist only of a finite set of

objects. Note however, that since we build these models from images, it is relatively

easy and painless to add new models to the library. Given a library of models, the

recognizer attempts to find and localize each model in the library in the image.

The pose localization problem in this case is a 2+1D problem. We attempt to get

an estimate of x, y, 0 of each object to within one pixel in image space for translations

and to within one degree in rotation. The space requirements for such a table would

therefore be 512 x 512 x 360 equaling about 94 megabytes. Obviously since the table

is expected to be sparse, we hash x, y, 0 co-ordinates.

The recognition proceeds as follows. For each interesting point in the image

(using the same threshold and heuristic as was done in the model building phase), we

compute all the x, y, 0 points wherein the reference point may lie.

If we are interested only in translations (i.e., if the image consisted only of models

167

Chapter 5. Experiments

translated but not rotated), then we can use the gradient angle in the image to index

into the model table. If the current pixel co-ordinates are given by x, y, and if ri, 80

denote the r, 0 pairs found at this entry in the model table, then the location of the

center point could be at any one of:

x + ricos(Oi), y + risin(O)

If rotations are also of interest, then we are forced to consider every entry in the

model table, since any one of them suitably rotated can now cause the gradient angle

to match. If ck denotes the rotation, then the reference point can be at:

x + ricos(Oi + ak), y + risin(O9 + ±k), ak

Note that now we need three parameters to represent configurations. Some of the

commonly referenced papers on the Hough transform have this computation wrong.

The basic idea is to then compute the possible configuration as suggested by

each data point and increment a counter (using a hash table) corresponding to that

configuration. The maximal point will then indicate the configuration of the model

in the image.

5.3.2.3 Clustering

Once the previous steps have been completed, we have in the hash table a his-

togram of the possible configurations of the model. Ideally, we should expect the

pose of an object to be at the co-ordinates indicated by the maximal values in this

histogram. However, because of noise, quantization and occlusions, we have to look

for more than just the maximal value to avoid being misled. Therefore, we now find

clusters in this histogrammed space, and find the center of the maximal cluster. This

is done by processing the entire hash table and finding the cells with near maximal

values. The hash table is then probed around these cells to compute an estimate of

168

5.3. Software 6i!)

cluster density. In the implementation we use a uniform probe along all three of the

2, y, 0 dimensions.

The technique works quite well as can be seen from Figure 5-6. The algorithm

currently takes about 45-60 seconds to find a single model in a full-sized image.

(Note that the black overlay superposes a polygonal approximation to the model

overlaid at the computed configuration. A precise match not only indicates that the

matcher/finder worked, but also that the calibration matrix and its inverse, along

with the other parameters we mentioned earlier are reasonably accurate, since we use

the inverse of the calibration matrix to figure out where the image space co-ordinates

of the polygonal approximation are).

Figure 5-6: Positions of Model in Images

Our algorithm is not fool-proof. Since many of the objects we used had many

axes of symmetry, and since there was significant background noise in the images,

the cluster finder would at times find the model in a completely wrong pose, or have

trouble distinguishing between a set of candidate poses for an object. When the

data was completely wrong, we could use a simple thresholding scheme to detect and

ignore the bad data. In some cases, however, this was not possible.

To prevent damaging the robot and our hardware setup, we therefore used manual

Chapter 5. Experiments

intervention at the last step before each action was output. If the low level controller

chose an action that would have caused the pusher to come down squarely on one of

the objects, we essentially ignored that action.

5.3.2.4 Obvious optimizations

There are a few obvious optimizations that have also been implemented. The

first is to perform the search at reduced resolutions to improve the speed. We use

a pyramiding scheme where 512x484 images are first reduced to 256x242 and then

to 128x121 images. The recognizer works much faster on these smaller images. Its

localization capability decreases, however, owing to the decreased resolution.

Images are currently transmitted in full from the real-time system. We also im-

plemented a BCT (block coding technique) compression algorithm that guarantees a

compression ratio of 4:1, while preserving mean and first moment properties of an im-

age. Using this to transmit images reduces the time spent in communicating images

between the real-time system and the computer that processes them.

The gradient computation and the search currently process the entire image. If a

reasonable estimate of the locations of the objects has been initially obtained, then

subsequent searches could be sped up by biasing where the search starts and limiting

its extent suitably.

5.3.3 Interface to The Planner

Rather than write a single process that implements all our computations, we've

implemented the various components in a distributed fashion. We use the exact same

planner that is part of the simulator described in the previous chapter for the real

experiments as well. The interface from the lower level controllers to the planner is

quite simple.

1. The lower level controllers report to the planner the positions of objects and

their descriptions.

170

5.4. Results

2. The planner takes a description of a task and computes a nominal path.

3. Whenever it is queried, it returns a specification for the next segment along the

nominal path that the pushed object must move along.

This combination has worked quite well in all our experiments. The separation of

the planner and simulator from the real-time system enables each to be developed

independently. Some of our computations involved in perception and planning are

memory intensive. This separation allows us to run most of our components at

reasonably high resolutions.

5.4 Results

We performed three sets of experiments on the setup described above. The first

set of experiments involved testing the free-space controllers to perform translations

and rotations of selected objects. With vision sensing these tasks were quite easy to

perform (see Figure 5-7 and Figure 5-8).

The next set of experiments involved obstacles in the environment. Some of them

involved paths where the pushed object had to slide along a wall, and others involved

pushing an object in between others. The sliding experiments also worked quite

smoothly. The experiments where objects had to be pushed in between others also

worked, but the number of local controllers that arose in practice was higher than

what the simulator had run into while running the same examples. One reason for

this is probably that the visual data was highly quantized (each pixel in the quantized

images we were using represented a square 5 mm. on each side).

The last set of experiments involved simple planar peg-in-hole type assembly tasks.

This set of experiments was considerably more challenging when compared with the

previous two. There were critical segments along the path (especially near the entry

to the hole) that took a long time to complete. Of ten attempts at this task, we

stopped the experiment after a hundred pushing motions had all failed to successfully

Experiments

Frame 10 Frame 14

Frame 16 Frame 18

Frame 20 Frame 22

Figure 5-7: Translation Task With Triangle

Chapter 5.
172

5.4. Results IT:

Frame 5 Frame 7

Frame 9 Frame 13

Frame 15 Frame 16

Figure 5-8: Rotations: The quadrilateral in the center is being rotated.

Chapter 5. Experiments

Frame 2 Frame 4

Frame 8 Frame 10

Frame 12 Frame 14

Figure 5-9: Pushing Along a Wall

174

5.5. Conclusion IT5

complete these segments during three attempts. Pictures from sample runs where the

task actually completed are shown below.

5.5 Conclusion

In this chapter, we have presented the experiments performed to verify the frame-

work presented in the previous chapters. Although the entire hardware and software

setup looks formidable to actually use in practice, our point is mainly to illustrate

how these various components can be developed on a general-purpose robot. The ex-

periments were also performed to verify our simulation models. If one were to build

a robot to efficiently execute the pushing task in the plane, one would probably not

use a six degree of freedom robot like the Puma.

The experimental results show that the framework works as expected. It handles

tasks with considerable uncertainty in task level dynamics, and considerable error in

sensing and action. Our particular instantiation also illustrates how simulation and

planning components can be used effectively in conjunction with controllers that rely

on vision for providing feedback.

Chapter 5. Experiments

Frame 4 Frame 10

Frame 18 Frame 24

Frame 28 Frame 32

Figure 5-10: Planar Peg-in-hole Assembly by Pushing

176

5.5. Conclusion 177

Frame 36 Frame 38

Frame 40 Frame 42

Frame 44 Frame 46

Figure 5-11: Planar Peg-in-hole Assembly by Pushing - Continued

178 Chapter 5. Experiments

Chapter 6

Conclusion

In this chapter we indicate promising directions along which this work might be ex-

tended in the future. There are three branches of traditional control theory which we

describe briefly, in order to illustrate the connections this work has with traditional

branches of control and estimation theory. We have included these sections on differ-

ential games, discrete event dynamic systems and viability theory since they appear

to provide tools with which strategies created by our approach could be analyzed in

the future.

At this point, one could very well be wondering about the scope and applicability

of the concepts presented in this thesis. Our simulations and experiments have all

been in planar domains. One might argue that planar pushing and non-holonomic

path planning in such simple two-dimensional domains, even though they include

rotation, are somewhat easy tasks.

We would like to argue that even though these domains might appear simple, they

are actually more complicated. The uncertainty associated with such systems poses

challenging problems for modeling and control. The physics of such systems is not

easy to simulate. Consequently, there is continuing interest in the study of frictional

phenomena and non-holonomic control (see Mason [1982], Peshkin and Sanderson

[1988], Goyal [1989], Alexander and Maddocks [1993], Lynch and Mason [1994] for

work on planar pushing problems alone). We would also like to caution against imme-

diately tackling large and extremely complex environments without understanding the

physics of underlying interactions in relatively simple domains first. What we hope

to have demonstrated is that even a rudimentary investment in acquiring such knowl-

179

Chapter 6. Conclusion

edge can potentially have a huge payback in terms of our long-term understanding to

model and control such systems.

We would also like to argue that this thesis has presented a methodology by which

strategies can actually be designed using a relatively straight-forward procedure to

tackle tasks in such domains. We have also demonstrated that a simple path planner

can be run in conjunction with controllers that operate at the task-level. Such a

combination can perform relatively non-trivial tasks with considerable uncertainty.

The systems we have built can handle any polygonal shape and seems to perform

quite robustly over a wide range of situations.

The system and the LCNP approach do have limitations. By restricting our mod-

els of dynamics to be quasi-static we could implement our simulators and experiments

in configuration space, rather than deal with the complexities of phase space. Clearly,

there are task domains where taking into account the dynamics of movement and the

features of phase space might be crucial.

By generating a nominal path without considering uncertainties and then con-

structing a set of local feedback loops to take these uncertainties into account, the

LCNP approach appears to work quite well in simple domains. What this indicates

is that even though computational bounds might look challenging, the problems of

compliant motion planning and of mechanical assembly might actually have simple

solutions that work very well on the average, in typical task environments. By itera-

tively improving the nominal plan and the set of task-level feedback controls, we have

provided an alternative to worst-case planning approaches that attempt to account

for all the uncertainty initially.

6.1 Future Work

There are many directions in which this work might be extended. First and

foremost, we have not succeeded in completely characterizing the scope of strategies

that are generated by this framework. Consequently, we expect further work on the

180

6.2. Differential Games 181

computational complexity of some of the algorithms we outlined would be quite useful.

In particular, we would like to suggest that the computation of knowledge sets (see

below), and the path-modification algorithms be studied in more detail. Practical

techniques for modifying existing paths could be extremely useful.

Another plausible way of extending this work would be to apply it to domains of

higher dimension, and to tasks that do not quite satisfy the quasi-static assumptions.

In particular, this would force the techniques behind the LCNP approach to be applied

to tasks where the explicit consideration of phase-space would be necessary. We

expect that such efforts would also yield fruitful results.

In what follows, we provide thumbnail sketches of three different branches of

classical control and estimation theory that have strong connections to this work. We

hope that future work exploits these connections and can characterize the scope of

LCNP strategies adequately.

6.2 Differential Games

The theory of differential games has strong connections to the pre-image approach

and to the LCNP approach. We expect the application of differential game theory

to the problems we have considered to yield many useful results. In this section,

we illustrate how using differential games to study feedback systems with error can

provide simple results in some cases. The main power of this theory comes from the

fact that using differential equations can sometimes directly yield solutions without

complicated in-the-limit analyses. We illustrate this on an example problem described

by Erdmann [1989] who introduced the important concept of cones of progress.

Figure 6-1 shows a point robot seeking to move toward the origin. Let us consider

a nominal velocity vo = [-1 0]T and a control error given by ~, as before. Given this

nominal velocity, a cone-of-progress characterizes those states in the given state-space

from which executing this command is guaranteed to make differential progress (i.e.,

move toward the origin for an infinitesimally small amount of time). Erdmann used

182 Chapter 6. Conclusion

time-indexed pre-images' to solve this problem (see Erdmann [1992], [1993b]). The

slope of the lines characterizing the cones of progress was shown to be:

Slope =-

Figure 6-1: Cones of Progress

The same result can be derived directly using differential equations. Let x(t) denote

the configuration of the point robot at some instant t. If we use € to characterize the

control uncertainty, and vo to denote the commanded nominal velocity [-1 0]T , we

can express the differential motion as:

(6.1)c = v+ e, cos()
sin(€)

The above equation characterizes the velocity of the system and can be written in a

'The set of states from which one can recognizably reach the goal set G by executing a command
vo for a given time bt is called the time-indexed pre-image PG(vo, 6t).

Line delimiting

V0

x

X

6.2. Differential Games P:3

vector notation as:

x = f(x,04,) (6.2)

where 0 is the variable under our control and 0 is the variable under our opponent's

(the environment) control. Heuristically, the cone of progress is delimited by a barrier

surface. Barrier surfaces were introduced in the theory of differential games (see Isaacs

[1965]). Every point on this surface has the property that for any strategy chosen by

the robot, the environment has a corresponding strategy (in terms of an uncertainty

value) that it can use to keep the robot at bay. On one side of the barrier surface the

robot can ensure progress toward the goal regardless of the uncertainty, and on the

other side the environment can ensure that the robot cannot make such progress.

Formally, points on the barrier surface satisfy a min-max condition. What this

equation states is that the vector dot product of the system's velocity with the normal

vector of the barrier surface must equal zero under worst case assumptions about the

environmental uncertainty:

maxo mine, (n - f(x, 0,))= 0

where n is the normal to the barrier surface. In our simple example above, our control

is the constant vector [-1 0]T . Using our control law, we can see that the points on

the surface satisfy:

max€ (-n. + ne, cos(C) + ne, sin(o)) = 0 (6.3)

The maximum value of

Acos(¢) + Bsin(¢)

is attained at the value of .maz = arccos(A/v A 2 + B2) and is given by V/A2 + B2.

This can be seen if one considers the simple fact that the above expression is the same

as the dot product of a vector P = [A B]T with a unit vector making an angle 0 with

Chapter 6. Conclusion

the x-axis. The maximum value of the dot product is clearly when this unit vector is

aligned with P. Using this, one can see that the above equation simplifies to:

x

At any given point [x y]T, therefore, this equation specifies that the slope of the

barrier-surface is given by

arccos(EV) = -

which is the same result as derived by using time-indexed pre-images (see Erdmann

[1993b]). The concept of barrier-surface is not limited to be relative to particular

goal-sets, and indeed can be computed at any point in the state-space as illustrated

by the equation above. The min-max principle elucidated above for characterizing

barrier-surface first appeared in Isaacs [1965] (Ch. 8). The identification of control

uncertainty with an opponent's strategy has also been noticed by Taylor et al. [1987]

and used by Canny [1989] to prove the computability of certain fine-motion plans.

The clarification of the relationship between barrier-surfaces and cones of progress is

new. The theory of differential games has rich parallels to the pre-image planning

methodology. Both seek solutions that are guaranteed to work against worst-case

adversarial behavior by their opponents.

The theory of differential games is not directly applicable to much of the work

considered in this thesis. Notably lacking are considerations of geometry and of

sensor uncertainty. Isaacs [1965] hints at these problems in his prescient monograph

(see his description of the Princess and the Monster game where he characterizes

games with partial information) but the only solution he advocates is the use of

randomization. There have been few attempts at synthesizing strategies in problems

where the dimensionality of the state-space is large.

184

6.3. The State Estimation Problem

6.3 The State Estimation Problem

Estimation theory deals with problems associated with measuring parameters or

variables of interest in a controlled or uncontrolled dynamic system. In this thesis, we

have mostly ignored this problem. We have assumed that estimates of the task state X^

can be constructed from available measurements, using very simple computations. In

general, this may be a difficult problem to solve, especially given noisy measurements

and hidden state variables that one cannot measure directly. In this section, we would

like to look at this problem and provide a brief overview of some of the relevant results.

The problem of state estimation is also related to how we determine the particular

context associated with a given state. In the next section, we look at problems

associated with estimating the context.

There are two different ways in which error and uncertainty can be modeled and

analysed. Probabilistic models of uncertainty involve modeling uncertainty by ran-

dom variables and stochastic processes. Such models include Bayesian and Fisher

models. The latter are more general than Bayesian models and can include completely

unknown quantities. Bayesian and Fisher models are popular and the literature in

modeling and estimation using such models is vast (see Lyung and Soderstrom [1983]).

The power of such probabilistic models comes from the availability of sophisticated

estimation techniques that can exploit the knowledge of the probabilistic structure to

get very accurate estimates of state, even when the measurements are noisy. In what

follows, we will not discuss such models (for a more detailed exposition, see Eberman

[1994]).

The second way in which uncertainty and error can be modeled is to use set-

theoretic models, known as unknown-but-bounded (UBB) models (Schweppe [1973]).

Such models are used when no a-priori probabilistic structure can be imposed on the

knowledge of error. Pre-image approaches have modeled uncertainty by UBB models

primarily because of this reason.

To incorporate the effect of such uncertainties, Equation 3.2 is usually re-written

1815

Chapter 6. Conclusion

as:

ic = f(x,u,t,w)
(6.4)

z = h(x,t,v)

where w and v are used to denote models of uncertainty. In the stochastic case, such

variables are best thought of as probability distributions. In UBB models, they can

be given by ellipsoidal bounds as given by (see Section 6.3.1 for information regarding

why such models are useful):

nO = {xxT x < 1

n,() = {w I WTQ(t)w < 1} (6.5)

fn(t) = {vI vTR(t)v < 1}

The first equation denotes the uncertainty in initial state. The second denotes the

uncertainty in dynamics, while the third equation summarizes the error in observed

values. Note that UBB models characterize the uncertainties as lying within ellip-

soidal bounds and include models of uncertainty considered in the pre-image formal-

ism (see Lozano-Perez et al. [1983]). Another approach would be to approximate

such sets by convex polygons and represent them by the support functions of these

polygons.

The above equations characterize these ellipsoids as expressed about the origin.

In general, one would have to consider ellipsoids that are characterized by:

h2 = {xI [x - xo]Tr [x - xo] < 1}

where xo is the center of the given ellipsoid. It is possible to express the above

equation in the form required by Equation 6.5 if one uses homogenous co-ordinates.

The above UBB model of uncertainty is called an instantaneous model of uncer-

186

6.3. The State Estimation Problem

tainty because it constrains the uncertainty values at some given value of time t.

Other models of uncertainty are also possible. Bertsekas and Rhodes [1971] consider

a model wherein the uncertainty is governed by an integral energy constraint of the

form:

xoTxo + u(t)TQu() +(t) + v(t (Rt)dt < 1 (6.6)

The reason we mention this model is that the solution to such a form of uncertainty

exists and can be readily computed as the solution to a certain matrix Ricatti equa-

tion.

Besides these errors, there is also uncertainty in the parameters associated with

the system descriptions. For example, the kinematic and dynamic parameters in the

above equations could be subject to error. Also, the geometric shape of the objects

in the environment is known only with a certain amount of precision. See Donald

[1987] who introduces the notion of generalized configuration spaces in order to deal

with certain forms of such model errors.

The problem of estimation involves using the observable quantities (like z) to

compute properties (like x) of the actual system. As we also pointed out earlier, there

are two components to the estimation problem. First there are problems related to

measuring progress. This is captured, in what follows, as measurable properties of a

certain set Kt, known as the knowledge set. This set characterizes the certainty with

which we know where the current-state of the robot lies. Usually, it is expressed as a

subset of state-space. Depending on our models of uncertainty and error, this set Kt

can actually be computed in certain simple cases.

Besides the problem of estimating the current state, there is also the problem

of estimating switching points where we replace one local controller by another. To

solve this part of the estimation problem, we might use the theory of discrete event

dynamic systems to construct observers for such switching points.

Knowledge sets were introduced in Erdmann [1989] and used in Brock [1993]. The

knowledge state is usually defined as a subset of state space Kt C X', which represents

1,'.,7

Chapter 6. Conclusion

the knowledge of possible locations of the robot given the values of all observed

variables. As the above papers suggest (see also Robles [1994]), one computes the

knowledge state recursively as:

Kt+i = ForwardProject(u, f, Kt) f SensorInterpretation(z(t)) (6.7)

This equation suggests that the knowledge state at each time step is updated to

contain the intersection of the set of states reachable from the knowledge state at the

previous time step (computed by the ForwardProject operator) with the set of states

consistent with the measured value of the state (computed by the SensorInterpretation

operator). Note that depending upon the models of uncertainty and dynamics this

could be computationally expensive. Also note that in the above notation we consider

the forward projection only relative to a single specified control action u.

This computation expresses something fundamental. In a very real sense it cir-

cumscribes the best one can know, given particular models of dynamics, uncertainties,

and sensor models, at each time step. Computations involved in choosing the next

action, optimizing global or local metrics, or computing termination predicates all

have to fundamentally handle the limitations expressed by the above equation. Note

that as we have defined it, the knowledge of the history of control and sensory inputs

enters into the local controller through the knowledge sets Kt. In both our simu-

lations and actual trials, the LCNP approach has restricted these to be extremely

simple forms.

Another important fact about the knowledge-state is that it is a set. If this

computation were done at run-time, one really needs a specification (a selection) of

what to do next at each time step. Computing the knowledge set only solves half the

problem. We still have to choose an action based on the information it contains. In

our simulations and actual trials, we have used a direct mapping from z to x. We are

able to do this without going through the intermediate constructions because of the

simplifying assumptions we make.

188

6.3. The State Estimation Problem

Even though the above mentioned papers and others have outlined this equation,

there have been few attempts to actually implement the computations implied by

it (Robles [1994] is one of the exceptions). In what follows, we assume two differ-

ent models of uncertainty and outline the problems associated with computing the

knowledge set under each model.

6.3.1 Ellipsoidal Models

Borrowing from estimation literature, we can denote the estimation problem as

one of computing i(tlt). Even though the notation suggests some sort of probabilistic

structure, one can read the above as the best estimate of the state x at time t given

all the information up to time t. In this section we consider ellipsoidal models of

uncertainty.

There are two reasons for using ellipsoidal models. First, the separation theorem,

which is a theorem about optimality, (see for example Stengel [1986]) has recently

been extended to the case of linear dynamic models with ellipsoidal models of uncer-

tainty (see Kruglikov [1991]). The separation theorem, and a more general version

of it that outlines a sub-optimal approach called the certainty equivalence princi-

ple, essentially allow the separation of the dynamics equation from the measurement

equation contained in Equation 6.4. This theorem allows the problem of finding an

optimal control function u to be considered and solved separately from the problem of

finding the solution to the optimal estimation equation. Rather than considering the

two equations as coupled, the separation theorem allows for the optimal controller to

operate with observed values of the state ^, which is computed by solving the optimal

estimation equation separately. The separation theorem had been proved only for a

very limited class of systems (those with linear dynamics), with very special models of

error (those with normal Gaussian distributions) and of the objective function (those

with only integral quadratic terms involving the state variables). This recent exten-

sion is quite encouraging because it points out that practical recursive algorithms to

189

Chapter 6. Conclusion

estimating state may exist even for such set-theoretic models of uncertainty.

The second reason for using ellipsoidal models is a more practical one. One could

certainly compute the Minkowski sums and intersections outlined above with circular

or spherical regions. Ellipsoids retain many of the advantages of working with such

implicit equations, while providing the ability to model the actual geometric shape

more closely. Since the geometric complexity of such ellipsoids remains constant, such

an approximation method may be suitable for implementation.

Consider Equation 3.2. Estimation becomes much harder in the case of non-linear

dynamics, and hence in the following we specialize to linear systems:

x = Ax+Bu
(6.8)

z = Hx+v

In this simple case, it should be easy to convince oneself that if x E Kt and u E U, the

dynamics equation represents the vector sum of these sets linearly transformed by the

matrices A and B. We denote this set by Kd(t + dtjt). This is identical to the notions

of forward projection in the discrete-case and of time-indexed forward projections in

the continuous-case introduced by Erdmann [1989]. The vector sum we mentioned

characterizes exactly the set of velocities that the system can have, given that the

state started out as an element of Kt.

Now consider the second of the above equations. If v E V characterizes the set of

measurement errors, given a particular measurement Zt+dt, we denote by Km(XIZt+dt)

the set characterized by the equation:

Km(XIZt+dt) = {xI Zt - Hx E V} (6.9)

This set characterizes precisely the possible set of states that could have caused the

given measurement.

We now have two ways of characterizing the information set: first from pushing

190

6.3. The State Estimation Problem

forward the dynamics equations Kd(t + dtlt), and second from the characterization of

the set Kml(x zt+dt). The two characterizations can be joined with a conjunction to

characterize precisely the set of states Kt+dt:

Kt+dt = Kd(t + dtlt) f Km(XIZt+dt) (6.10)

This basically expresses the same computation as in Equation 6.7 but is specific to

linear systems, and is independent of any particular choice of actions. This should

also highlight the difficulty of performing such a computation with anything but linear

dynamics and linear measurement equations.

Consider the case where uncertainties (the quantities Kt, U, V etc. in the above

presentation) are expressed as ellipsoids. Equation 6.10 specifies we must compute

linear transforms of such sets, compute vector sums of the resulting sets, and compute

their intersections. Note that the vector sum of two ellipsoids is not an ellipsoid, nor

is the intersection of one ellipsoid with another. Consequently, approaches to set-

theoretic estimation must involve an approximation step wherein both the vector sum

and the intersection are bounded by ellipsoids, if a constant combinatoric complexity

is to be maintained. Schweppe [1973] gives equations for approximating the vector

sum using support functions of an ellipsoid involving simple matrix computations.

Pierce and Rust [1985] observe that if one writes the convex combination of two

ellipsoids as:

OAB = {x I a [X - XA]TKA [X - XAI + (1 - a) [x - XB] T KB[X - xB]}

where 0 < a < 1, then OAB is an ellipsoid that contains the intersection of the two

ellipsoids A and B. Minimizing the above equation can be solved by conventional

least squares methods. One can therefore obtain the approximation to a minimal

bounding ellipsoid characterizing the intersection of two ellipsoids in O(d3) where

d is the dimensionality of the state space (where we have assumed the matrix in-

191

Chapter 6. Conclusion

version associated with the least-squares method will be the dominant factor in the

computation).

The above method is a numerical one. When the constraints are not instantaneous

but are of the form given by Equation 6.6, the problem turns out to have a solution

in terms of a matrix Ricatti equation (see Bertsekas and Rhodes [1971]).

To use the output of such an estimator at run time, we could use a selection rule

that returned the centroid of the knowledge ellipsoid Kt as the optimal estimate of

x. Clearly, if an action selection algorithm could use a more complete knowledge of

the ellipsoid's parameters then the actual parameters of Kt must be returned.

Note, however, that we have not addressed the issues associated with environment

geometry in the above discussion. Sometimes the forward projection may intersect

an obstacle surface in the environment. At this point it would be convenient to split

the ellipsoidal representation into two pieces - one that represents the uncertainty in

state associated with free-space, and the other a lower-dimensional ellipsoidal region

representing the uncertainty in state associated with that particular surface. As time

evolves, one would have to keep track of, and update, all the current ellipsoidal regions

(possibly disconnected) wherein the current state could lie. In general, if one wanted

to take into account the effects of friction in such interactions, computing forward

projections is even more combinatorially complicated. This is because portions of the

resulting intersection may result in further sliding motions while others may terminate

on the geometric surfaces involved (see Erdmann [1989]).

If we exclude the above mentioned combinatorics associated with environmental

geometry, the complexity of representing uncertainties using ellipsoids and updating

them at each time-step to compute Kt is O(d3), where d is the dimension of the

underlying space.

192

6.3. The State Estimation Problem

6.3.2 Polygonal Models

We could have chosen to represent uncertainties by polygonal approximations. In

contrast to ellipsoid models, polygonal approximations allow one to approximate any

geometric object to an arbitrary accuracy. However, it is not possible to bound the

geometric complexity of such representations a-priori (see Robles [1994]).

The computation of the knowledge set Kt as a set of possibly disconnected poly-

hedra essentially follows the computations outlined above in the ellipsoidal case (i.e.,

we compute the sets Kd(t + dtlt) and Km(xlZt+dt) and then their intersection). Hny-

ilicza [1969] presents an approach to such estimation problems where uncertainties

are circumscribed by convex polyhedral regions. The dynamics equation is again

restricted to be linear. The intersection of two convex polyhedra is not necessarily

convex. Consequently, he approximates the result by the convex-hull of the resulting

intersection. His approach also uses an interesting ray representation of polyhedra

in R"' . The idea is to sample S" uniformly into a set of unit vectors and use the

distances along these unit vectors from the origin to the surfaces of the polyhedron

as the representation of the polyhedral object. This restricts the complexity of the

resulting algorithms to be low polynomials in k, the sampling size.

The vector sum of polygonal and polyhedral models is given by their Minkowski

sums, when the dynamics equations are linear (see Kaul et al. [1991] for the simple

2-D polygonal case, Kaul and Rossignac [1992] for 3-D convex polyhedra).

Intersections of polygons or polyhedra can be computed by line-sweep or plane-

sweep methods. For two and three-dimensional polyhedra such algorithms run in

O(nlogn) time. The combinatorial complexity of such polygons, however, can grow

without bound. One possibility would be to approximate the result of each inter-

section with its convex-hull. See Mehlhorn [1984] for an excellent description of

algorithms based on line or plane-sweep.

As mentioned earlier, these form only part of the computations. To compute

the entire knowledge set Kt, one would also have to consider forward projecting

193

Chapter 6. Conclusion

the dynamics equations across the surfaces of contact, and maintaining the different

combinatorial possibilities that arise (see Robles [1994]).

To use the output of such an estimator at run time, we need a selection rule as

before. 0(n) computations can be used to compute estimates like the centroid of Kt

as the optimal estimate of X^. One could also use a probabilistic model to compute

such optimal estimates. As before, if an action selection algorithm could use more

complete knowledge of the ellipsoid's parameters, then the actual parameters of Kt

must be returned.

6.4 Estimating Context and DEDS Theory

In this section, we present an attempt to formalize the notion of context. Our

discussion continues from the presentation of the contact graph CG presented in

Section 3.2.2. There we introduced the notion of a graph that captures the topological

adjacency relationships between different manifolds Mj in the configuration space.

There are two reasons why such a formalization could be important:

1. Robust and optimal estimators for context may result from such attempts.

2. We need such a formal model in order to characterize and study the switching

behavior between our controllers.

We can define a feature-graph FG using the notion of an underlying contact

graph CG, and a model of dynamics expressed by Equation 3.2. FG has the same

nodes as that of CG (namely the manifolds MA), but its edges are directed arcs that

represent possible transitions between nodes. While CG is intended to capture pure

geometric and topological notions of the manifolds Mj, FG is intended to capture the

directedness of the phase-flows induced by particular choices of the control functions,

under a given model of dynamic equations. To compute the FG, we would need the

ability to forward-integrate the dynamic equation under all possible controls. This

might seem quite hard to do in general. However, note that we only seek evidence of

194

6.4. Estimating Context and DEDS Theory

existence of a single control u such that a transition is possible between two nodes of

the contact graph CG. If ni E M 1 and n2 E M 2 are two nodes of FG, the directed

arc (ni, n2) is introduced if:

3 u,x E M 1 and y E M 2 s.t. y E ForwardProject(u,f,x)

Figure 6-2: Illustrating the Feature Graph

As an object moves around, it may collide with some manifold Mi. At any given

instant of time t, the state x of the robot can only be in one Mi. Associated with

each arc of the feature graph FG, we can therefore define the notion of input and

output events. The set of input events is defined as the set of control functions u(.)

that can cause the particular transition modeled by the arc to occur. The concept of

input events imposes directionality on the arcs of FG (see Figure 6-2). This figure

shows a block B near a surface El. On the right hand side of this figure a small

portion of the corresponding FG is illustrated. Note that if we assume a model of

actions that is similar to pushing, it is possible to go from free-space to a situation

where the edges el and E1 are in contact, but not vice-versa. To push the block into

free-space again, we would necessarily have to transition through one of the other

states vi, El or v2 , El.

195

Chapter 6. Conclusion

The notion of output event is more complicated and depends upon the observability

of the underlying transitions. The basic idea is to capture the possibility that a

transition might have occured given a change in sensor values. For such a notion, we

need a concept of sensors and what they are capable of observing in a very primitive

sense. In the figure shown above, we have labelled the arcs with the input event

followed by the output event. Our definition of the output event associated with

an arc relies on there being a measurable change in some sensor when the contact

transition associated with that arc is made. If there is a set of sensors, all of which

can indicate the change, we collect all of these into a single output event. Note that

our definition of output event is necessarily very local and simple, and is therefore

somewhat limited. We do not, for example, consider models of sensor error or sensor

failure in the above definition. Furthermore, note that a collection of sensors is often

more powerful than a single sensor alone. For example, if one measured the distance

of the block B from the edge as reported by position sensors and found it to be

negative, that might indicate the possibility that a transition has occurred from free-

space to the state where el and E1 are in contact. The presence of a force sensor that

confirms this would undoubtedly increase the confidence with which this assertion

can be made.

Unobservable transitions (examples could be breaking the vertex-edge contacts as

illustrated in Figure 6-2 that produce no change in any of the sensor readings) are

labelled with the empty output symbol c.

The estimate of the current state k^ is constructed using the knowledge state Kt,

and characterizes our knowledge of the current locations of the robot. Abstractly, it

can be defined as a function:

K, Q (Ko, z, u)

where Ko, characterizes our knowledge about the set of starting locations of the robot.

196

6.4. Estimating Context and DEDS Theory 17

The problem of estimating context is equivalent to constructing an observer for

the feature graph (FG) associated with a task and nominal path. To show this,

we will need some background from the theory of Discrete Event Dynamic Systems

from which the following is adapted (see Ozveren and Willsky [1990]). The basic

problem here is to determine the index that chooses a particular ui corresponding

to a manifold Mi. The way we do this is to construct an observer that takes sensor

values (and possibly the history of sensor values and control) and returns such an

index. Note that in our present implementations, we do not use the information

vector It to compute this value, but rather the measurement value z(t). For tasks

that are more complicated than the domains considered in this thesis, and perhaps

for tasks that have significantly more error, the structure inherent in It may need to

be exploited (see Eberman [1994]).

The FG can, in general, be thought of as a non-deterministic finite automaton

with intermittent event observations. Note that in this section when we use the word

state, we are referring to a node in the graph FG, and not to the system state x used

thus far. Such automata can be denoted by:

A = (X, E, r, f, d, h) (6.11)

where X is a finite set of states with n = IXI; E denotes the finite set of possible

events, and F C E is the set of observable events. f specifies the state transition

function that characterizes the dynamics of the system:

x[k + 1] E f(z[k],a[k + 1])

or[k+l] E d(x[k]) (6.12)

h(o) = o if a E F, e otherwise

where d : X -+ 2E is a set-valued function that maps each state to a set of events

possible at that state. h represents the output function and can be thought of as a

Chapter 6. Conclusion

map E* --+ *.

Figure 6-3: Discrete Event Dynamic Systems - Similar to finite automata with the
following addition: On each arc, the first symbol specifies the event denoting a state
transition, and the second denotes the corresponding output, possibly empty.

The above formalism is illustrated more vividly by Figure 6-3. The observability

of FG can be characterized by:

Definition 6.1 A feature graph FG is observable if there exists some integer no,

such that Vx E X, Vs E L(FG, x) such that IsI > no, there exists a prefix of s, p E

Lf(FG, x), such that Is/pI _ no, f(x,p) is single valued, and Vy E X,t E L1 (A,y) :

h(t) = h(p) => f(y, t) = f(x, p).

This is essentially the same as Definition 2.2. of Ozveren and Willsky [1990]. This

definition can be motivated as follows: For any string s, that can be generated from

a given state x, let p be a prefix such that p takes x to a unique state in a fashion

such that the length of the remaining suffix is bounded by some integer. For any

other string t, starting from y, such that t has the same output string as p, we require

that t takes y to the same unique state that p takes x to. This definition relaxes the

requirement of perfect reconstruction after every event that appeared in Ramadge

[1986].

W/ct

198

I

6.4. Estimating Context and DEDS Theory

Let Y denote the set of states x such that either there exists an observable tran-

sition defined from some state y to x, or x has no transitions defined to it. Let Z

denote the state-space of the observer process Z C 2'. The results of this theory

that we need are:

1. Observability can be tested in time O(q4), where q = IYI.

2. The size of state-space of the observer can be exponential 0(2q) .

3. Observers for such systems can be constructed as deterministic or

non-deterministic finite automata (for details of the construction see Ozveren

[1989]). The output of such an observer is the optimal estimate of the state xk

at some value of time k.

Now let us ask the question: Given a nominal path P, is the FG induced by P,

under a given dynamics and control characterized by f, ui, E, and eg, observable?

The answer can be negative for three reasons. If we do not restrict our choice

of control functions ui, then it is easy to set up infinite looping behavior with just

two nodes of the feature graph FG. Un-observable loops such as this violate basic

assumptions in the theory of discrete systems (see Figure 6-4a).

To see the second reason for failure, we need to know about E-stable systems.

Such systems have a set E C X such that for all x E X, every state reachable from

x has the property that all trajectories starting from that state pass through E in a

finite number of transitions. This notion is called E-stability. The observability of a

discrete event system such as the above relies on this fact that makes it impossible for

the system to generate arbitrarily long sequences of unobservable events. When E is

identified with the set D C X that has observable transitions defined on it, for a given

P, uncertainties e, and eg may be such that this requirement is violated. For example,

Figure 6-4b shows a situation where transitions between the two horizontal surfaces

on either side of the hole happen unobserved. This might happen, for example, if one

had access only to position and not force sensors.

199

Chapter 6. Conclusion

aWE I/ /E

(a) Control Failure (b) Sensor Failure (c) Geometry Failure
Trap Regions

Figure 6-4: DEDS Failures: (a) Control function defined so as to cause unobservable
loops. (b) Sensor cannot observably distinguish transitions between the two horizontal
surfaces. (c) Trap states in the environment wherein the applicable set of actions goes
to zero.

Lastly, observability may fail because of geometrical artifacts that render the

system dead. There exist states in the graph FG at which no further events are

possible, as are often caused by trap regions (see Figure 6-4c).

The three modes of context observer failure can be characterized as control failures,

sensor failures, and failures due to geometry. In this thesis, we have proposed changing

the nominal path P to address the first two modes of failure. The third mode of failure

we will address by restricting our analysis to only live systems where it is possible

to always transition out from every node (i.e., there are no trap states wherein the

actions available to the robot and to the environment are identically zero).

To motivate our proposal for changing P in order to address the first two failure

modes, consider Figure 6-5. In this figure, two paths are shown, both of which attempt

to accomplish the same task of moving a point robot into a hole. The first is a path

comprising of two segments, whereas the second consists of three segments. We have

shown a small portion of a simplified form of the FG associated with each nominal

200

6.4. Estimating context and DEDS Theory
201

Figure 6-5: Modifying the Path to Address Context Estimation Failures: The first
path has only two path segments but has a more complicated feature graph. The
second path has three segments, but the feature graph is less complicated.

path as computed by using particular values of ep, e,. The first path illustrates that

when the output is 7, the best we can do is to transition to the node that contains

both el, e5 in the observer graph. Note that the second nominal path exploits the

fact that sliding on a surface can simplify the induced FG, in addition to reducing

the size of the intermediate sets.

Note that the above discussion should be viewed only as a proposal for changing

the nominal path in order to take into account observability considerations. It is not

an actual algorithm. The question of whether one can construct path modification

algorithms that take into account factors regarding observability remains open.

Another interesting question involves existence. For a given environment, given a

model of dynamics, control and sensing uncertainty, does there exist a path such that

the induced graph of features is observable? Clearly, one can construct environments

where no such path exists, given a particular choice for control and sensing uncertain-

ties, by exploiting the three modes of failure outlined above. In certain simple cases

~ ·· ·· I I · ~-~-rrr ~·

Chapter 6. Conclusion

such a path indeed exists. The important question of characterizing precisely those

environments that admit such paths, and questions regarding algorithms required to

construct observable paths, remain unanswered. Many of the details regarding the

context estimation problem require further investigation, and there is scope for much

future work in this area (see Eberman [1994] for a sequential decision approach to

the contact sensing and estimation problem).

6.5 Viability Theory

Viability theory is a recent attempt at extending tools from set-theoretic analysis

to control systems. It is an important and growing field (see Aubin and Cellina

[1984], Aubin and Frankowska [1990] and Aubin [1991]), and it may be very relevant

to the field of manipulation strategies where UBB models of uncertainty dominate.

Even though the class of systems this theory applies to is somewhat limited at the

present moment, one can expect the situation to change as the tools become more

widely known and real experience is gathered from implementations based on such

techniques. In this section, we provide only a very basic exposition of the theory,

mainly in order to highlight its shortcomings.

Let us begin by assuming that we can completely ignore the measurement equa-

tion and all the complications associated with uncertainties. While this may seem

too restrictive, we will see that we do not need the complications associated with

observation maps to illustrate the basic concepts associated with differential inclu-

sions. Furthermore, we will assume that the set of controls is a set valued function

of state alone (i.e., u E U(x)). The theory does extend to other classes of systems

where, for example, the controls depend upon time and/or history. Our purpose, in

this section, is to explain the so-called regulation-map and its use in the selection of

feedback controls. The assumptions under which such selection procedures work is

somewhat restrictive, but just as one needs to be equipped with the tools of linear

system theory, it is important to know where we can construct the feedback con-

202

6.5. Viability Theory

trollers needed by the LCNP approach using fairly simple techniques. The basic idea

behind this theory is that as long as certain properties that one desires (viability and

invariance, which are defined below) are not threatened one can execute any control

from amongst the set of controls available at each state. Only when these properties

are threatened must we begin our search for the right control. The basic equation

considered in this theory is:

*(t) = f(x(t), u(t)) (6.13)

where the control u obeys a state-dependent constraint, and is characterized by the

following set:

u(t) E U(x(t)) (6.14)

If we define:

F(x) = {f(x, u) u e U(x)}

to get a set of state-dependent velocities, we can replace the differential equation in

Equation 6.13 with a differential inclusion:

J(t) E F(x(t)) (6.15)

Such differential inclusions include a wide class of systems including closed-loop con-

trol systems where u(t) E U(t,x(t)), implicit control systems which can be written

as:

f(t, x(t), I(t), u(t)) = 0

and systems with uncertainty. There are two concepts used in the theory of differential

inclusions: viability and invariance. We say that a set K C X of a finite-dimensional

vector space is viable for a given F (see Equation 6.15) if for every xo E K, there

exists a solution to the differential inclusion starting from xo such that for all time

t, x(t) remains in K. The invariance property requires that ALL solutions starting

from xo remain in K.

203

Chapter 6. Conclusion

To actually apply these concepts we need the concept of a selection, that relates

single-valued maps to set-valued maps. We need this concept to get a single-valued

u from a set U(x).

Definition 6.2 If F: X -- Y is a set valued map with non-empty images, a single-

valued map f : X -- Y is called a selection of F if for every x E X, f(x) E F(x).

A theorem known as Michael's theorem states that if F is a lower semi-continous

set-valued map with closed convex values from a compact metric space X to a Banach

space Y, then it has a continous selection. This theorem is an important one regarding

the existence of selections. It may appear to be quite general and of little value to

us, but one can actually construct various selections when it applies:

1. The minimal selection which is defined as:

m(F(x)) = {u E F(x)l Jul = minvyeF(x)yI}

2. The Steiner selection of a convex, compact set K using the Steiner point (or

the curvature centroid).

The next concept we need is that of a regulation map, which is defined as:

Vx E K, RK(X) = {u E U(x)f(X, U) E TK(X)}

where TK(x) refers to the tangent cone at x. This is the set-valued analog of the

regular tangent space and is the set of directions that start from x and point toward

K (for precise definitions and the complications that can arise, see Aubin and Cellina

[1984]). The above definition of a regulation map is hardly useful by itself but it can

be used to define heavy viable solutions. Such solutions are sought as the solution to

a differential inclusion on the controls:

u(t) E DRK(x(t), u(t))(x(t))

204

6.5. Viability Theory

where the symbol DRK is used to denote the contingent derivative of the set-valued

regulation map. Contingent derivatives have a rich calculus including important

properties like the chain rule. Note that this equation parallels others found in the

theory of dynamic programming, optimal control and differential games. Solutions

to the above inclusion attempt to find controls that provide minimal accelerations.

There are two ways in which one might try to apply all this theory, and unfortu-

nately both of them seem to work only in the simplest of systems. The two ways in

which we can attempt to apply differential inclusions are:

1. Construct a tube P around the nominal path and set the invariance domain

K(t) = P(t) as x(t) varies parametrically from the start to the goal config-

urations. Such a technique has been demonstrated in free-space for a simple

two-dimensional system (with four state-variables) in Kurzhanski and Valyi

[1991].

2. Use it purely for constructing local feedback controls for navigating on a partic-

ular manifold Mi. In this case, if the feedback map U is closed, f continuous,

if the velocity sets F(x) are convex, and if f and U have linear growth then

the resulting system is called a Marchaud system. The resulting process is also

called a convex process. Viability theorems that prove the existence of viable

domains and the existence of selections readily apply to such systems. This is

why we find the theory useful. Until now, we have talked about finding closed

loop controls without considering whether or not one could actually prove the

existence of any closed-loop control that will work given our initial assumptions

about set-theoretic models of uncertainty. The theory of differential inclusions

as it applies to Marchaud systems indicates that in the limited class of convex

processes characterized above, this is indeed possible.

Even though this theory is extremely attractive and holds much promise for the

synthesis of feedback controls in the future, it has several shortcomings:

205

Chapter 6. Conclusion

1. Although the concept of viability has attracted the attention of the mathemati-

cians, it is invariance that would be more useful to us.

2. Most of the theorems and constructions apply only to the case of convex set-

valued maps F. In practice, some of the most simple contact situations and

geometrical configurations give rise to non-convex regions as the result of ap-

plying the dynamics equations.

3. Although the selections yielded by the theory are easy to implement, one must

still search for the next control when viability (or invariance) is threatened (on

the boundary of the viability (or invariance) domains).

6.6 Summary

This chapter is provided mainly to indicate promising directions in which the

work presented in this thesis might possibly be extended. We have presented a brief

overview of differential games, estimation techniques with ellipsoidal and polygonal

models, the theory of discrete event dynamic systems and viability theory. All of these

theories have something to say about some important aspect of the LCNP approach.

Unfortunately, as they presently stand, they are not developed enough to be directly

applicable to some of the problems we are interested in. We can only hope that future

work will remedy this situation.

206

Appendix A

Models

Figure A indicates a few of the objects used in the simulations. Figure A shows a

few of the sample environments. Note that these two figures are not drawn to the

same scale. Each of the environments is about 18 inches on its side, whereas the long

rectangular object in the middle row is 1 inch by 6 inches. In each of the example

tasks, a few of the objects (typically four or five) shown in Figure A are placed in one

of the environments shown in Figure A. A task is to move a selected object from its

current configuration to a final configuration. The initial and final configurations of

the selected object can be arbitrary free configurations within the environment.

207

Appendix A. Models

Figure A-i: Models of few of the objects used in the simulations

]

208

0 E & _J- I
r7 GD 0 Cn 0 1

+ NW19 U

209')

Figure A-2: Models of four of the many environments used in the simulations

flnnn H

Ir,·T- j . -

210 Appendix A. Models

References

1. Alexander, J. C., and Maddocks, J. H., "Bounds on the Friction Domi-

nated Motion of a Pushed Object", Vol. 12, No. 3, pp. 231-248, 1993.

2. Akella, S., and Mason, M. T., "Posing Polygonal Objects in the Plane by

Pushing", Proc. IEEE Conference on Robotics and Automation, pp. 2255-

2262, 1992.

3. AstriSm, K. J., and Wittenmark, B., "Adaptive Control", Addison-

Wesley, 1989.

4. Aubin, J. P., and Cellina, A., "Differential Inclusions", Springer-Verlag,

1984.

5. Aubin, J. P., and Frankowska, H., "Set-Valued Analysis", Birkhauser,

Berlin, 1990.

6. Aubin, J. P., "Viability Theory", Birkhiuser, Berlin, 1991.

7. Baraff, D., "Issues in Computing Contact Forces for Non-Penetrating Rigid

Bodies", Algorithmica, Vol. 10, pp. 292-352, 1993.

8. Barraquand, J., and Latombe, J. C., "A Monte-Carlo Algorithm for Path

Planning with Many Degrees of Freedom", Proc. IEEE Conference on Robotics

and Automation, pp. 1712-1717, 1990.

9. Barraquand, J., and Latombe, J. C., "On Non-Holonomic Mobile Robots

and Optimal Maneuvering", Revue d'Intelligence Artificielle, Vol. 3, No. 3,

pp. 77-103, 1989.

211

Appendix A. Models

10. Bellman, R., and Kalaba, R., "Selected Papers on Mathematical Trends in

Control Theory", Dover, 1964.

11. Bellman, R., "Introduction the Mathematical Theory of Control Processes",

Vol. 1, Academic Press, New York and London, 1967.

12. Bentley, J. L., "Multidimensional binary search trees used for associative

searching", Communications of the ACM, Vol. 18, No. 9, pp. 509-517,

September, 1975.

13. Bentley, J. L., "K-d Trees for Semidynamic Point Sets", Proc. of ACM

Symposium on Computational Geometry, pp. 187-197, 1990.

14. Bertsekas, D. P., "Dynamic Programming: Deterministic and Stochastic

Models", Prentice-Hall, New-Jersey, 1987.

15. Bertsekas, D. P., and Rhodes, I. B., "Recursive Set Estimation for a Set-

Membership Description of Uncertainty", IEEE Transactions on Automatic

Control, Vol. AC-16, No. 2, pp. 117-128, April, 1971.

16. Borrie, John, A., "Modern Control Systems: A Manual of Design Methods",

Prentice-Hall, New Jersey, 1986.

17. Boyse, J. W., "Interference Detection Among Solids and Surfaces", Comm.

ACM, Vol. 22, No. 1, pp. 3-9, 1979.

18. Brock, D. L., "A Sensor Based Strategy for Automatic Robotic Grasping",

Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute

of Technology, 1993.

19. Brooks, R. A., "Symbolic Error Analysis and Robot Planning", International

Journal of Robotics Research, Vol. 1, No. 4, pp. 29-68, 1982.

212

2 3

20. Brooks, R. A., "A Robust Layered Control System for a Mobile Robot", IEEE

Journal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23, 1986.

21. Brooks, R. A., "A Robot that Walks; Emergent Behaviors from a Carefully

Evolved Network", Proc. IEEE Conference on Robotics and Automation, pp.

692-696, 1989.

22. Brooks, R. A., "Intelligence Without Reason", A. I. Memo 1293, Artifi-

cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

April, 1991.

23. Brooks, R. A., "Intelligence Without Reason", Proceedings, IJCAI-91, pp.

569-595, August, 1991.

24. Brost, R. C., "Automatic Grasp Planning in the Presence of Uncertainty",

International Journal of Robotics Research, Vol. 7, No. 1, pp. 3-18, 1988.

25. Buckley, S. J., "Planning and Teaching Compliant Motion Strategies", Ph.D.

Thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1987.

26. Caine, M. E., "The Design of Shape from Motion Constraints", AI-TR-1425,

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1993.

27. Canny, J. F., "Collision Detection for Moving Polyhedra", Pattern Analysis

and Machine Intelligence, Vol. 8, No. 2, 1986.

28. Canny, J. F., "The Complexity of Robot Motion Planning", Ph.D. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 1987.

29. Canny, J. F., and Reif, J., "New Lower Bound Techniques for Robot Motion

Planning Problems", 28'th Annual Symposium on the Foundations of Computer

Science, pp. 49-60, 1987.

·I---··~-3···s~·~·li·~·-~··~-L-·--YII--- .

Appendix A. Models

30. Canny, J. F., "On Computability of Fine Motion Plans", Proc. IEEE Con-

ference on Robotics and Automation, pp. 177-182, 1989.

31. Chow, C. S., and Tsitsiklis, J. N., "An Optimal Multigrid Algorithm

for Discrete-Time Stochastic Control", Center for Intelligent Control Systems,

Massachusetts Institute of Technology, 1989.

32. Christiansen, A. D., and Goldberg, K. Y., "Robotic Manipulation Plan-

ning with Stochastic Actions", Proc. of IEEE Workshop on Planning, Schedul-

ing and Control, pp. 3-8, 1990.

33. Christiansen, A. D., Mason, M. T., and Mitchell, T. M., "Learning

Reliable Manipulation Strategies Without Initial Physical Models", Robotics

and Autonomous Systems, Vol. 8, pp. 7-18, 1991.

34. Condon, A., "Computational Models of Games", MIT Press, Cambridge,

1989.

35. Connell, J., "A Colony Architecture for an Artificial Creature", MIT AI-TR-

1151, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

1990.

36. Coste-Maniere, E., Espiau, B., and Rutten, E., "A Task-Level Pro-

gramming Language and its Reactive Execution", Proc. IEEE Conference on

Robotics and Automation, pp. 2751-2756, 1992.

37. Craig, J. J., "Introduction to Robotics: Mechanics and Control", Addison-

Wesley, 1986.

38. Craig, J. J., Hsu, P., Sastry, S. S., "Adaptive Control of Mechanical

Manipulators", International Journal of Robotics Research, Vol. 6, No. 2,

pp. 16-28, 1987.

214

39. Cundall, P. A., "Formulation of a Three-dimensional Distinct Element Model

- Part I. A Scheme to Detect and Represent Contacts in a System Composed of

Many Polyhedral Blocks", Int. J. Rock Mech. Min. Sci. and Geornech. Abstr.,

Vol. 25, No. 3, pp. 107-116, 1988.

40. de Rougemont, M., and Dias-Frias, J. F., "A Theory of Robust Planning",

Proc. IEEE Conference on Robotics and Automation, Vol. 3, pp. 2453-2458,

1992.

41. Dean, T. L., and Wellman, M. P., "Planning and Control", Morgan

Kaufmann Publishers, 1991.

42. Dean, T. L., Kaelbling, L. P., Kirman, J., and Nicholson, A., "Planning

Under Time Constraints in Stochastic Domains", CS-93-55, Department of

Computer Science, Brown University, December, 1993.

43. Donald, B. R., "Motion Planning with Six Degrees of Freedom", A. I. Memo

791, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, 1985.

44. Donald, B. R., "Error Detection and Recovery for Robot Motion Planning

with Uncertainty", Ph.D. Thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, 1987.

45. Eberman, B., "Manipulation Contact Sensing: A Sequential Decision Ap-

proach to Observing Contact Features", Forthcoming Ph.D. Thesis, Depart-

ment of Mechanical Engineering, Massachusetts Institute Of Technology, 1994.

46. Erdmann, M. E., "On Motion Planning with Uncertainty", S. M. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 1984.

· _1 ~U_~

Appendix A. Models

47. Erdmann, M. E., and Mason, M. T., "An Exploration of Sensorless iMla-

nipulation", Proc. IEEE Conference on Robotics and Automation, pp. 1569-

1574, 1986.

48. Erdmann, M. E., "On Probabilistic Strategies for Robot Tasks", Ph.D.

Thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1989.

49. Erdmann, M. E., "Towards Task-Level Planning: Action-Based Sensor De-

sign", CMU-RI-TR-92-03, Robotics Institute, Carnegie Mellon University,

1992.

50. Erdmann, M. E., "Randomization for Robot Tasks: Using Dynamic Pro-

gramming in the Space of Knowledge States", Algorithmica, Vol. 10, pp.

248-291, 1993a.

51. Erdmann, M. E., "Action Subservient Sensing and Design", Proc. IEEE

Conference on Robotics and Automation, pp. 592-598, 1993b.

52. Ernst, H. A., "MH-1, A Computer Operated Mechanical Hand", Ph.D.

Thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, December, 1961.

53. Friedman, J., "Computational Aspects of Compliant Motion Planning", CS-

-91--1368, Department of Computer Science, Stanford University, June,

1991.

54. Gilbert, E. G., Johnson, D. W., and Keerthi, S. S., "A Fast Procedure

for Computing the Distance Between Complex Objects in Three Space", Proc.

IEEE Conference on Robotics and Automation, pp. 1883-1889, 1987.

55. Gilbert, E. G. and Hong, S. M., "A New Algorithm for Detecting the

Collision of Moving Objections", Proc. IEEE Conference on Robotics and

216

217

Automation, pp. 8-13, 1989.

56. Goyal, S., "Planar Sliding of a Rigid Body with Dry Friction: Limit Surfaces

and Dynamics of Motion", Ph.D. Thesis, Cornell University, 1989.

57. Grimson, W. E. L., "Object Recognition by Computer: The Role of Geometric

Constraints", MIT Press, Cambridge, 1990.

58. Guibas, L., Ramshaw, L., and Stolfi, J., "A Kinetic Framework for Com-

putational Geometry", Proc. of the 24'th Annual IEEE Conference on the

Foundations of Computer Science, pp. 100-111, 1983.

59. Hahn, J. H., "Realistic Animation of Rigid Bodies", Computer Graphics,

Vol. 22, No. 4, pp. 299-308, 1988.

60. Hanks, S., and Firby, J. R., "Issues and Architectures for Planning and

Execution", Proc. of Conf. on Innovative Approaches to Planning, Scheduling

and Control, San Diego, California, pp. 59-70, November, 1990.

61. Hart, R., Cundall, P. A., and Lemos, J., "Formulation of a Three-

Dimensional Distinct Element Model - Part II. Mechanical Calculations for

Motion and Interaction of a System Composed of Many Polyhedral Blocks",

Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 25, No. 3, pp.

117-125, 1988.

62. Holcombe, W. M. L., "Algebraic Automata Theory", Cambridge University

Press, 1982.

63. Horn, B. K. P., "Robot Vision", MIT Press, Cambridge, 1986.

64. Hnyilicza, E., "A Set-Theoretic Approach to State Estimation", S. M. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, June, 1969.

1~1

Appendix A. Models

65. Isaacs, R., "Differential Games", John Wiley and Sons, New York, 1965.

66. Jacobson, D. H., and Mayne, D. Q., "Differential Dynamic Programming",

American Elsevier Pub. Co., New York, 1970.

67. Jordan, M. I., and Jacobs, R. A., "Hierarchical Mixtures of Experts and the

EM Algorithm", AIM-1440, Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, 1993.

68. Kaelbling, L. P., "Architecture for Intelligent Reactive Systems", Proc. of

the 1986 Workshop on Reasoning about Actions and Plans, Morgan Kaufmann,

San Mateo, California, pp. 395-411, 1986.

69. Kaelbling, L. P., "Specifying Complex Behavior for Computer Agents", Proc.

of Conf. on Innovative Approaches to Planning, Scheduling and Control, San

Diego, California, pp. 433-438, November, 1990.

70. Kaul, A., O'Connor, M. A., and Srinivasan, V., "Computing Minkowski

Sums of Regular Polygons", Proc. 3'rd Canadian Conference on Computational

Geometry, pp. 74-77, 1991.

71. Kaul, A., and Rossignac, J. R., "Solid Interpolating Deformations - Con-

struction and Animations of PIPS", Computers and Graphics, Vol. 16, No.

1, pp. 107-115, 1992.

72. Kruglikov, S. V., "On the Separation Principle in Guaranteed Control",

Birkhiuser, Berlin, pp. 240-250, 1991.

73. Kurzhanski, A. B., and Valyi, B., "The Problem of Control Synthesis for

Uncertain Systems: Ellipsoidal Techniques", Birkhauser, Berlin, pp. 260-282,

1991.

74. Latombe, Jean-Claude., "Robot Motion Planning", Kluwer Academic Pub-

lishers, Norwell, Massachusetts, 1991.

218

219

75. Laumond, J. P., "Feasible Trajectories for Mobile Robots with Kinematic

and Environment Constraints", Proc. International Conference on Intelligent

Autonomous Systems, pp. 346-354, 1986.

76. Laumond, J. P., "Finding Collision-Free Smooth Trajectories for a Non-

Holonomic Mobile Robot", Proc. of the 10'th International Joint Conference

on Artificial Intelligence, pp. 1120-1123, 1987.

77. Lazanas, A., and Latombe, Jean-Claude., "Landmark-Based Robot Nav-

igation", CS-92-1428, Department of Computer Science, Stanford University,

May, 1992.

78. Li, Z., and Canny, J. F., "Nonholonomic Motion Planning", Kluwer Aca-

demic Publishers, 1993.

79. Lin, M. C., and Canny, J. F., "A Fast Algorithm for Incremental Distance

Calculation", Proc. IEEE Conference on Robotics and Automation, pp. 1008-

1014, 1991.

80. LiStstedt, Per., "Analysis of Some Difficulties Encountered in the Simula-

tion of Mechanical Systems with Constraints", TRITA-NA-7914, Department

of Numerical Analysis and Computing Science, Royal Institute of Technology,

Stockholm, Sweden, 1979a.

81. Liitstedt, Per., "On a Penalty Function Method for the Simulation of Mechan-

ical System subject to Constraints", TRITA-NA-7919, Department of Numeri-

cal Analysis and Computing Science, Royal Institute of Technology, Stockholm,

Sweden, 1979b.

82. Liitstedt, Per., "A Numerical Method for the Simulation of Mechanical Sys-

tems with Unilateral Constraints", TRITA-NA-7920, Department of Numeri-

cal Analysis and Computing Science, Royal Institute of Technology, Stockholm,

Sweden, 1979c.

Appendix A. Models

83. L-tstedt, Per., "Interactive Simulation of the Progressive Collapse of a Build-

ing, Revisited", TRITA-NA-7921, Department of Numerical Analysis and

Computing Science, Royal Institute of Technology, Stockholm, Sweden, 197.9d.

84. Litstedt, Per., "Numerical Simulation of Time-Dependent Contact and Fric-

tion Problems in Rigid Body Mechanics", SIAM J. Sci. Stat. Comput., Vol.

5, No. 2, pp. 370-393, 1984.

85. Lozano-Perez, T., "The Design of a Mechanical Assembly System", S. M.

Thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1976.

86. Lozano-PNrez, T., "Automatic Planning of Manipulator Transfer Move-

ments", IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-11,

pp. 681-698, 1981.

87. Lozano-P rez, T., "Robot Programming", Proceedings of the IEEE, Vol.

71, No. 7, pp. 821-841, 1983a.

88. Lozano-P4rez, T., "Spatial Planning: A Configuration Space Approach",

IEEE Transactions on Computers, Vol. C-32, No. 2, pp. 108-120, 1983b.

89. Lozano-P rez, T., Mason, M. T., and Taylor, R. H., "Automatic Syn-

thesis of Fine-Motion Strategies for Robots", International Journal of Robotics

Research, Vol. 3, No. 1, 1984.

90. Luenberger, D. G., "Introduction to Dynamic Systems: Theory, Models and

Applications", John Wiley and Sons, New York, 1979.

91. Lurnelsky, V. J., and Sun, K., "Gross Motion Planning for a Simple 3D

Articulated Robot Arm Moving Amidst Unknown Arbitrarily Shaped Obstacles",

Proc. IEEE Conference on Robotics and Automation, pp. 1929-1934, 1987.

220

221

92. Lynch, K., "Estimating the Friction Parameters of Pushed Objects", IEEE-

-RSJ International Conference on Intelligent Robots and Systems, pp. 186-

193, 1993.

93. Lynch, K., and Mason, M. T., "S5table Pushing: Mechanics, Controllability,

and Planning", Proc. Workshop on the Algorithmic Foundation of Robotics,

San Francisco, 1994.

94. Lyung L., and Soderstrom, T., "Theory and Practice of Recursive Identi-

fication", MIT Press, Cambridge, 1983.

95. Maes, P., "How To Do The Right Thing", AI Memo No. 1180, Artificial

Intelligence Laboratory, Massachusetts Institute Of Technology, 1989.

96. Mason, M. T., "Manipulator Grasping and Pushing Operations", Ph.D. The-

sis, Dept. of Electrical Engg. and Computer Science, Massachusetts Institute

of Technology, 1982.

97. Mason, M. T., "Mechanics and Planning of Manipulator Pushing Opera-

tions", International Journal of Robotics Research, Vol. 5, No. 3, pp. 53-71,

1986.

98. Mason, M. T., and Wang, Y., "On the inconsistency of rigid-body frictional

planar mechanics", Proc. IEEE Conference on Robotics and Automation, pp.

524-528, 1988.

99. Mason, M. T., "How to Push a Block Along a Wall", NASA Conference on

Space Telerobotics, Pasadena, CA, 1989.

100. Mataric, M., "A Distributed Model for Mobile Robot Environment Learn-

ing and Navigation", AI-TR-1228, MIT AI Lab, Massachusetts Institute Of

Technology, 1990.

Appendix A. Models

101. Maxwell, J. C., "On Governors", Proc. of the Royal Society of London,

Vol. 16, pp. 270-283, 1868.

102. Mehlhorn, K., "Data Structures and Algorithms 3: Multi-dimensional Search-

ing and Computational Geometry", Springer-Verlag, Berlin, 1984.

103. Mirtich, B., and Canny, J., "Using Skeletons for Nonholonomic Path Plan-

ning among Obstacles", Proc. IEEE Conference on Robotics and Automation,

pp. 2533-2540, 1992.

104. Moore, A. W., "Variable Resolution Dynamic Programming: Efficiently

Learning Action Maps in Multivariate Real-valued State-spaces", Proc. of the

Eighth International Workshop on Machine Learning, Morgan Kaufman, 1991.

105. Moore A. W., and Atkeson, C. G., "Memory-based Reinforcement Learn-

ing: Efficient Computation with Prioritized Sweeping", Advances in Neural

Information Processing Systems 5, Morgan Kaufmann, 1993.

106. Moore, M., and Wilhems, J., "Collision Detection and Response for Com-

puter Animation", Computer Graphics, Vol. 22, No. 4, pp. 289-298, 1988.

107. Murray, R. M., and Sastry, S. S., "Grasping and Manipulation using Multi-

Fingered Robot Hands", Robotics: Proc. of Symposia in Applied Mathematics,

Vol. 41, American Mathematical Society, pp. 91-128, 1990.

108. Narasimhan, S., "Dexterous Robotic Hands: Kinematics and Control", S.M.

Thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1988.

109. Narasimhan, S., Siegel, D. M., and Hollerbach, J. M., "Condor: Com-

putational architecture for controlling the Utah-MIT hand", IEEE Transactions

on Robotics and Automation, Vol. 5, No. 5, pp. 616-627, October, 1989.

222

223

110. Narendra, K., and Thathachar, M. A. L., "Learning Automata: An

Introduction", Prentice Hall, 1989.

111. O'Rourke, J., "A Lower Bound on Moving a Ladder", JHU-EECS-85/20,

Department of Computer Science, Johns-Hopkins University, Baltimore, 1985.

112. Ozveren, C. M., "Analysis and Control of Discrete Event Dynamic Systems:

A State-Space Approach", CICS-TH-157, Center for Intelligent Control Sys-

tems, Massachusetts Institute Of Technology, December, 1989.

113. Ozveren, C. M., and Willsky, A. S., "Observability of Discrete Event

Dynamic Systems", IEEE Transactions on Automatic Control, Vol. 35, No.

7, pp. 797-806, July, 1990.

114. Papadimitriou, C. H., "Games With Nature", Journal of Computer and

System Sciences, Vol. 31, pp. 288-301, 1985.

115. Papadimitriou, C. H., and Tsitsiklis, J. N., "Intractable Problems in

Control Theory", SIAM Journal on Control and Optimization, Vol. 24, No.

4, pp. 639-654, 1986.

116. Peshkin, M. A., and Sanderson, A. C., "The Motion of a Pushed, Sliding

Workpiece", IEEE Journal of Robotics and Automation, Vol. 4, No. 6, pp.

569-598, December, 1988.

117. Pierce, J. E., and Rust, B. W., "Constrained Least Squares Estimation",

SIAM J. Sci. Stat. Comput., Vol. 6, pp. 670-683, 1985.

118. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.,

"Numerical Recipes", Cambridge University Press, 1986.

119. Rajan, V. T., Burridge, R., and Schwartz, J. T., "Dynamics of a Rigid

Body in Frictional Contact with Rigid Walls", Proc. IEEE Conference on

Robotics and Automation, pp. 671-677, 1987.

__l__s~OlU4/0IC__UU___UI__I_-II~

Appendix A. Models

120. Ramadge, P. J., "Observability of Discrete Event Systems", Proc. CDC(,

Dec., 1986.

121. Robbins, H., and Munro, S., "A Stochastic Approximation Method", An-

nals of Mathematical Statistics, Vol. 22, pp. 400-407, 1951.

122. Robles, J. L., "Contact Interpretation and Randomized Strategies for Robotic

Assembly", Forthcoming Ph.D. Thesis, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, 1994.

123. Rust, B. W., and Burrus, W. R., "Suboptimal Methods for Solving Con-

strained Optimization Problems", Oak Ridge National Laboratory, Tennessee,

pp. 213-224, 1971.

124. Salisbury, J. K., and Craig, J. J., "Articulated hands: Force Control and

Kinematic Issues", International Journal of Robotics Research, Vol. 3, No.

4, pp. 4-17, 1982.

125. Schweppe, F. C., "Uncertain Dynamic Systems", Prentice-Hall, New Jersey,

1973.

126. Simmons, R., "An Architecture for Coordinating Planning, Sensing and Ac-

tion", Proc. of IEEE Workshop on Planning, Scheduling and Control, pp.

292-297, 1990.

127. Slotine, J. J., and Li, W., "Applied Nonlinear Control", Prentice-Hall,

New-Jersey, 1991.

128. Sontag, E. D., "Controllability is Harder to Decide than Accessibility", SIAM

Journal on Control and Optimization, Vol. 26, No. 5, pp. 1106-1118, 1988.

129. Stengel, R. F., "Stochastic Optimal Control: Theory and Application", John

Wiley and Sons, 1986.

224

130. Taylor, R. H., "Synthesis of Manipulator Control Programs from Task-Lcvel

Specifications", Ph.D. Thesis, Dept. of Computer Science, Stanford University,

1976.

131. Taylor, R. H., Mason, M. T., and Goldberg, K. Y., "Sensor-based Ma-

nipulation Planning as a Game with Nature", Fourth International Symposium

on Robotics Research, pp. 421-431, 1987.

132. Tilbury, D., Murray, R., and Sastry, S. S., "Trajectory Generation for the

N-trailer Problem using Goursat Normal Form", ERL Memorandum M93/12,

Department of Electrical Engineering and Computer Science, University of Cal-

ifornia, Berkeley, 1993.

133. Vegter, G., "The Visibility Diagram: A Data Structure for Visibility Prob-

lems and Motion Planning", Proc. 2nd Scandinavian Workshop on Algorithm

Theory, Vol. 447, Springer-Verlag, pp. 97-110, 1990.

134. Whitney, D. E., "Force Feedback Control of Manipulator Fine Motions",

Transactions of ASME, Journal of Dynamic Systems, Measurement and Control,

pp. 91-97, 1977.

135. Zangwill, W. I., and Garcia, C. B., "Pathways to Solutions, Fixed-Points

and Equilibria", Prentice-Hall, New Jersey, 1981.

136. Zrimec, T., and Mowforth, P., "Learning by an Autonomous Agent in the

Pushing Domain", Robotics and Autonomous Systems, Vol. 8, pp. 19-29,

1991.

_104·_______·_______I__

