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Abstract

Structural performance is often improved by developing designs with higher stiffness.
The drawback to this approach is that increasing stiffness without addressing structural
damping can result in poor dynamic performance. For example, alumina is now being
used in place of cast iron as a structural material in some applications because of the
superior stiffness (by a factor of two). However, the internal damping in alumina is much
lower than that of cast iron. To achieve world class dynamic performance in mechanical
structures (e.g., machine tools), the stiffness as well as damping of a design must be
considered. For example, the machine tool industry is slowly making the transition from
cast iron machine bases to steel weldments. Steel structures are stronger, lighter, and less
expensive, but are prone to excessive vibration. Structural vibration damping will be
critical to meet new challenges in manufacturing.

The fundamental contribution of this research is the development of a robust
damping mechanism capable of energy dissipation over a wide range of frequencies and
vibration amplitudes, and a cohesive theory that allows designers to readily predict
performance. Viscoelastic constrained layer damping is a known method of damping
thin, plate-like structures. This research makes it possible to use the same materials on
the inside of a structure with robustness and design theory accuracy. The damping
mechanism dissipates energy efficiently, and the proposed designs offer damping without
compromising the stiffness of a structure. The mechanism is well modeled by the finite
element method and an estimate of a structure's damping may be obtained without
building and testing a prototype.

The result of this research is the development of a new method of providing damping
in structures shown to give very high energy dissipation. This includes a mathematical
model of the damping mechanism, an understanding of optimal implementation, and a
number of case studies verifying the theory.

Thesis Supervisor: Alexander H. Slocum
Title: Associate Professor
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Chapter 1: Modern Structural Damping Techniques

1.1 Contributions of the Dissertation

This dissertation presents the results of research performed in the area of structural
damping. In the course of this research, a replicated in-place shear damping mechanism
capable of dissipating energy in a variety of structural geometries was developed.
Furthermore, a comprehensive analysis method was derived that allows the designer to
work with the shear dampers in an efficient manner. The shear damping mechanism has
been designed and built into full scale machine tool structures and providing very high
damping for both bending and other vibration modes. These excellent results illustrate
the tremendous impact that the shear damping mechanism will have on the machine tool
and other industries.

MIT has filed a patent application for the shear damping mechanism which will
allow the licensing of this technology to American industry.

1.2 Introduction

Structural vibration can result from energy sources such as floor noise, actuator activity,
cutting forces, and the movement of various components. These sources often generate
(relatively) wide band excitation that may excite one or more of the critical modes of
vibration in a structure. Designers faced with these operating environments use materials
such as cast iron for heavy structures and plastics or composites for light structures
because of their favorable internal damping. Hollow structures filled with other materials
such as hydraulic or polymer concrete may provide further vibration reduction. Isolation
mounts, tuned mass dampers, and constrained layer treatments can be installed if the
design still exhibits poor dynamic performance. While these approaches may be used to
improve the performance of many devices, there are disadvantages to each that make
them inappropriate for many applications. For example, tuned mass dampers may reduce
vibration, but only in a fairly narrow frequency bandwidth. Furthermore, tuned masses
can be physically large and difficult to build into an enclosure.

The damping mechanism developed in this dissertation offers a significant advantage
over many competing damping methods: its effect on structural performance may be
accurately estimated prior to prototype construction. The mechanism can be
straightforwardly modeled in finite elements because of its linear, velocity proportional
damping behavior.

The proposed damping mechanism shears a lossy material to dissipate energy, but
unlike traditional constrained layer treatments, the proposed shear medium can be a
viscous fluid or a viscoelastic solid. The mechanism provides damping over a wide range



of frequencies and bending amplitudes. The manufacturing of these damped structures is
simpler than traditional constrained layer treatments because they are built directly into
the inside of a structure with replicating epoxy.

For example, a thin layer of fluid placed between two smooth, simply-supported
beams is sheared as the beams bend relative to each other (because one face will be in
compression as the other is in tension). As the beams oscillate, energy is lost in shearing
the fluid. This energy dissipation is modeled analytically and found to be proportional to
the fluid viscosity and inversely proportional to the lossy layer thickness. Experimental
study of the performance of damped slender beams verifies the relationship between loss
factor and fluid layer thickness, but several new issues appear.

These issues include the behavior of the damping mechanism as the damping layer is
made progressively thinner. Eventually, as the damping layer becomes very thin, the
structure will not receive any damping because the layer has almost zero shear strain. In
this case, the structure will have increased stiffness, but very little damping.

The optimal damping layer thickness for a particular structure lies between the two
extremes of a thick layer with little damping and a very thin layer offering little damping.
In practical applications, it is reasonable to expect that either a viscous fluid or a
viscoelastic material is available that will provide the optimal damping. Viscous fluids
are best used to damp low modulus structural materials, while viscoelastic materials are
necessary to properly damp heavier metallic or ceramic structures.

1.3 Performance of Structural Damping Mechanisms

The motivation for structural damping research is the hope of finding a general strategy
of reducing vibration in structures of arbitrary geometry and materials. While some
industries, such as aerospace, have identified working solutions to specific vibration
problems, many other industries are only now addressing the need for structural damping.
The ever increasing structural stiffness of modern machine design dictates that the
importance of damping will increase.

In order to provide the reader with an indication of the dynamic response of a steel
structure, this section will demonstrate the behavior of a moderate aspect ratio steel beam
subjected to various damping treatments. The beam is a square steel tube with an outer
dimension of 10 cm and a wall thickness of 6 mm. The length of the tube is 0.8 m.

The dynamic response of the undamped beam is shown in Figure 1.1. Note that the
modal peaks are very high, indicating very low damping (the modal loss factor 1 is
around 0.002 for the various peaks). The dynamic response of the same beam filled with
water (not shown) also exhibits modal loss factors of about 0.002 for the first several
modes of vibration. The figure shows the dynamic response of a wet sand filled beam
(the dry sand results are similar). Note that many modes shown in the undamped beam
are not visible in the drive point mobility of the sand filled beam. The sand adds mass to



the structure, but only negligible stiffness. Friction between the grains of sand provides
damping; modes closely coupled to the sand are most effectively damped.
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0.01

Undamped beam
-——— Wet sand filled beam
0.001 | — - — Concrete filled beam
0.0001 |
0.00001
0.000001 - |
\
0.0000001 : | + i f } | | | |

0 200 400 600 800 1000 1200 1400 1600 13800 2000 Hz

Figure 1.1 Dynamic response of an undamped and filled steel beams.

The concrete filled beam response shown in Figure 1.1 shows a substantial
improvement over the undamped beam. Part of this improvement is due to the added
stiffness of the concrete, which lowers the drive point mobility. The improved damping
of the composite concrete and steel structure helps improve the response in the damping
controlled regions near the modal peaks (loss factors around 0.02).

The frequency response functions shown in Figure 1.2 show the much larger
improvement in dynamic performance of the shear damping mechanism developed for
this dissertation. The undamped beam is again shown for reference. While both damped
structures benefit from increased stiffness (the shear damped beam uses steel damping
inserts), the figure shows how the damping is dramatically improved. The viscous fluid
damped structure has modal loss factors of about 0.04, and the viscoelastically damped
structure has modal loss factors around 0.10, depending on the vibration mode.
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Figure 1.2 Dynamic response of undamped and damped steel beams.

Figure 1.3 shows the impulse responses of some of the same structures shown in

Figure 1.2. These responses were drive point measurements taken from the same location
on each of the four different structures.
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Figure 1.3 Time traces of structures shown in Figures 1.1 and 1.2.



The damping analysis presented in this dissertation will provide a complete set of
equations for the design of structures such as the steel beam shown in this example.
Methods of analytically investigating the damping in complex structures are traditionally
based on the analysis of a three layer plate. While providing valuable insight into the
damping problem, the three layer theory is not capable of handling arbitrary beam-like
structures. This dissertation seeks to first identify the current state of the art in damping
research and then extend it to more complicated applications with an improved damping
mechanism and structural analysis technique.

1.4 Background

In 1959, two papers published in the Journal of the Acoustical Society of America
sparked interest in the use of constrained laminates of lossy materials to reduce vibration
in plates and beams. The first paper, by E. Kerwin, presented a closed-form analysis of
the damping in a flat, three layer plate (plate, viscoelastic damping material, thin
constraining layer). The second paper, by G. Kurtze, discussed an analysis method for
estimating the damping that may be obtained by two parallel plates enclosing a viscous
fluid. Both papers cited the two layer plate (a plate and a viscoelastic damping material
layer) work done in the early 50's by H. Oberst and P. Liénard.

The seminal Kerwin paper has made a lasting impact on research on the constrained
layer damping problem. The results of a closed-form analysis and experimental
verification are presented in the paper, and virtually any work done in the field refers
back to this article. The Kurtze paper, which presents an interesting approach to solving
constrained fluid layer damping problems by analogy to electric circuit analysis, is of
lesser importance today because: 1) we are no longer interested in solving differential
equations with analog circuits, and 2) the fluid damping mechanism relies on the squeeze
film effects between two parallel plates (with fluid layer thicknesses in the range of 0.5 to
5 cm!).

In 1959, the ASME Applied Mechanics Division published a book of papers given at
the Structural Damping Colloquium. This book, edited by J. Ruzicka, contains a paper
by D. Ross and E. Ungar and Kerwin presenting a more general analysis of the three layer
beam damping problem (the constraining layer is no longer assumed to be thin with
respect to the base plate). Since this publication, literally dozens of papers have re-visited
the three layer damping analysis. These updates seek to expand the understanding and
generality of the original Kerwin and Ross-Ungar-Kerwin work. Table 1.1 summarizes
some of the important contributions.
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Table 1.1 Summary of several important papers in constrained layer damping theory.

Author Contribution to constrained layer theory

P. Liénard Work on extensional damping:
thin plate and damping layer, 1951.

H. Oberst Work on extensional damping:
thin plate and damping layer, 1952.

H. Plass Three layer flexural damping:
thin plate, damping layer, and thin constraining layer, 1957.

E. Kerwin Three layer damping:
arbitrary plate, damping layer, and thin constraining layer, 1959.
D. Ross, E. Ungar, & E. Kerwin Three layer damping:
arbitrary plate, damping layer, and arbitrary constraining layer,
1959.
R. DiTaranto & W. Blasingame Five layer beam damping, 1965.
R. Plunkett and C. Lee Use of discontinuous constraining layers, 1970.

M. Lalanne, M. Paulard, & P. Trumpette [ Finite element modeling of viscoelastic damped structures, 1970.

B. Nakra Review paper, 1975.

P. Torvik Review paper, 1980.

Although the references cited in Table 1.1 all contain interesting details about the
constrained layer damping problem, most of them use the fundamental approach taken by
Ross, Ungar, and Kerwin, if not the simpler (and less general) analysis of Kerwin's own
1959 paper. The Ross, Ungar, and Kerwin analysis outlined in the following section
explores this traditional analysis of constrained layer damping treatments.

1.5 RUK Constrained Layer Damping Theory

The following analysis is taken from Damping of Plate Flexural Vibrations by Means of
Viscoelastic Laminae, presented at the 1959 ASME Structural Damping Colloquium.
The analysis correctly predicts the stiffening of the undamped plate by the addition of the
two damping laminates (one viscoelastic, one elastic). Once the full RUK analysis is
summarized, two traditional beam configurations will be presented using simplifications
of the general case.

A number of assumptions are made to make the problem solvable in closed-form:

1. The beam has simply-supported boundary conditions (this leads to purely
sinusoidal mode shapes).

2. The beam is comprised of only three layers (other approximate techniques are
available to estimate the damping in multi-layer configurations).

11



3. The viscoelastomer is modeled by a complex shear stiffness G* = G(1 + i n)).

4. The elastic layers are maintained at constant spacing by the viscoelastic layer,
even though the viscoelastic layer typically has a much lower elastic
modulus.

The analysis is made possible by using a number of additional assumptions
frequently made in beam vibrations work:

5. The beam has a wavelength sufficiently larger than its thickness.

6. The deflections of the structure are small enough such that the slope of the
neutral axis is much less than unity.

The analysis begins by considering an element in the three layer plate. Figure 1.4
shows a close up detail of the three layers in bending. For our purposes, layer 1 is the
base plate, layer 2 is the viscoelastic layer, and layer 3 is the constraining layer. As will
be seen, any of the layers can have an arbitrary amount of damping; the analysis will
provide an estimate of the damping in the composite plate.

y
M /
M+ Sﬂ dx
oX
By
+ ¥ dx
v &x
Neutral plane
=¥ dx
X

Figure 1.4 Section of the three layer beam model (after Ross, Ungar, and Kerwin, 1959).

The angle ¢, as defined in the original RUK work, is the flexural angle of the base
plate. The angle y is the shear strain in the middle layer. Notice that the angle y is
defined in the opposite direction as the flexural angle. The neutral plane of the three layer

12



structure is displaced a distance D from the neutral plane of the base plate when the
damping layers are applied. Figure 1.5 shows D and the notation of the other dimensions.
Note that the thicknesses of the individual layers are H,.

77777777,
Z

Nnniihinininhiihiiimnnree
) &,

2
IWWWWWWD

s

0

T

Figure 1.5 Dimensions of the three layer beam (after Ross, Ungar, and Kerwin, 1959).

The RUK analysis proceeds by considering the total moment acting on the three
layer structure.

= —=2Mh‘ +iF;Hio
i=1

i=1 (1.1)
where:
3 2 2
ZAJH= 4, a¢+K (64) a\ll)+K3i_3_(k
P 12 & 12 \ox ox 12 ox
3
ZE =K\H,, 6¢ +K (Hzo @""I!_Q\li)“"Ks(Hao@'Hz 6_\|/)
= ox ox 2 ox ox ox (1.2)

K is defined as the extensional stiffness per unit width of the plate (X; = E; H,). The
forces are obtained by integrating the stress over each layer in the beam element shown in
Figures 1.4 and 1.5 (the stresses are continuous at each interface). The distance D is not
known a priori, but may be solved for since we know that the total extensional force on
the three layers must be zero. Setting the sum of the forces in the element to zero, we
obtain an expression for D.

K
K2H21 + K3H31 '(—22‘ + Ks)Hz %117

K +K,+K, (1.3)

D=

The remaining unknown is the ratio between spatial derivatives (Oy/0x)/(6¢/0x).
Considering the shear stress acting on the middle layer, the strain may be written as a
function of the shear modulus in the viscoelastic layer G, and the force on the upper face
of the viscoelastic layer.

13



1 OF,
Mreare
2 (1.4)
As a result of the sine wave mode shape assumption, the shear strain is related to its
own second derivative by the bending wave number k3.

a2
"‘l=_k32\|’

Ox? (1.5)

The ratio oy/o¢ is the same as the ratio between second derivatives because the three

layers are undergoing vibration of the same wavelength. Using the constitutive relation

for the shear strain, the previously stated expression for the force across the third layer,

and the relationship between the shear strain and its second derivative, we can solve for
the relationship oy/d¢:

oy / ox® _
H2§£=H2( Y 2)= H31GD
I CTYES BT
kB K3H2 (16)

The dimensionless quantity g (the shear parameter) gives an indication of the
magnitude of the shear stress in the viscoelastic layer relative to the extensional stress in
the beam.

G,

g=—5 2
ks K;H, (1.7)

We now have a complete closed-form expression for the flexural rigidity of the three
layer beam. The equations have become too arithmetically involved to be substituted into
one expression, so they are traditionally presented in the following format:

2 2 2
ElI =K A, + K, H, +K; 1, +K1D2 + K, (H21 “D)z +K3(H31 _D)2

12 12 12
H (H,-D K H,-D
- 2_2' —— _I:—E'(Hzl —D)+K3(H31 _D)] >
12\ l+g 2 l+g (1.8)
where:
_ K, (H21 - Hy, /2)+g(K2H21 +K3H31)
K +K,/12+K,+g(K, +K, +K,)
Hy = dl ;HS +H,
H + H.
H,, =—1_23
2 (1.9)
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These equations provide a framework for the design of three layer damping
treatments. Often, the elastic modulus of the damping layer is so small that it can be
assumed to be zero to reduce the complexity of the math.

1.6 Implementation of the RUK theory

The RUK equations are used by replacing the moduli of the three layers with complex
moduli. In the most general case, all three layers may exhibit lossy behavior.

g g(l+i’r]3)

E,— E(1+in,)

E, —)E2(1+in2)

E, - E,(1+in,)

E - E(1+in) (1.10)

Using the substitutions listed in Equation (1.10), and the closed-form analysis
results, the damping of a constrained layer damped structure of arbitrary geometry and
material properties can be determined. However, the equations are too cumbersome to
identify interesting trends without making some simplifying assumptions. Two cases will
be considered: 1) the case of extensional (two layer) damping (E; = H; = 0), and 2) the
case of a sandwich construction with a thin constraining layer.

1.6.1 Extensional damping (E;=H;=0)

Extensional damping, which is the principal means of energy dissipation in a two layer
structure (no constraining layer), was first investigated by Oberst and Liénard. This
special case can be studied with the general three layer equations by noting that the shear
parameter g goes to infinity as the height of the constraining layer goes to zero. This
leads to a tremendous simplification of the equations. The result is an equation relating
the bending stiffness of the composite two layer structure to the bending stiffness of the
base plate.

£=l+e2h23+3(1+h2)2i
where:
El
_H,
"=

(1.12)
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Replacing the viscoelastic modulus e, with the complex modulus e,(1 + i 1,) and the
composite modulus E with E(1 + i n), the dimensionless stiffness and damping can be
found. The dimensionless quantities are given by a ratio of polynomials.

EI _1+4eh +6e,h’ +4e,h’ +e,’*

E I 1+e,h,
N eh(3+6h+4n’ +2eh ve'h')
Ny (1+eh, )(1+4e,h, +6e,h,” +4e,h’ +e,°h") (113)

The dimensionless quantities give important insight into the extensional damping
problem. In the limit as 4, goes to zero, the dimensionless stiffness approaches unity and
the dimensionless damping approaches zero. In the case where A, goes to infinity, the
dimensionless loss factor approaches unity and the dimensionless stiffness approaches
infinity.

Considering an intermediate range of 4,, we can look at a typical viscoelastic
material data sheet and investigate the performance of an extensional damping treatment.
Using values from a Lord LD-400 material data sheet (taken at 200 Hz and 75 °C), the
stiffness and loss factor of an extensionally damped plate may be plotted as a function of
hy (e, = 0.004 and n, = 0.6).

Dimensionless stiffness and loss factor

10 | .
ELE, ],
1 | J

0.1}

0.01}

0.001 nn,

0.01 0.05 0.1 05 1 510
Hy/ H,

Figure 1.6 Dimensionless loss factor and bending stiffness of a 200 Hz beam and Lord
LD-400 damping material.

As seen in Figure 1.6, the loss factor of the composite beam is low except when the
viscoelastic layer is made very thick compared to the thickness of the base plate. In a real
design application this approach is rarely acceptable. As will be shown in the next

16



section, constrained layer damping is almost always more effective than extensional
(unconstrained) damping.

As a side note, the designer may notice that the simplified equations used to describe
the performance of the extensional damping method are still rather cumbersome.
Although the formulas are easily implemented with computer software, there is limited
intuitive understanding to be obtained by inspection of the equations.

1.6.2 Damping in a Three Layer Treatment

To further illustrate the damping prediction capability of the RUK analysis, a second
special case will be considered. In this case, the constraining layer is assumed to be
thinner and of lower elastic modulus than the first and third layers (K32 <<K;? and
E,=0). The results of this analysis correspond to the original Kerwin paper, where the
constraining layer was assumed to be too thin to carry a bending moment.

Upon simplification, the loss factor can again be written as a dimensionless quantity
using the loss factor of the viscoelastic material [Kerwin, 1959]:

2
n ( H,, ] K, g

m, \+K/K, g/(1+g)) EI(1+g) (1.14)
where:
El 1, My 8K /K
2
E I H® 1+g+gK,/ K, (1.15)

The shear parameter g involves two moduli. The first is the elastic modulus of the
constraining layer; the second is the shear modulus of the viscoelastic material. The
elastic modulus of the constraining layer is usually taken to have a loss factor of zero with
negligible error. Therefore, the imaginary part of the shear parameter g is driven solely
by the complex modulus of the shear in the viscoelastic layer.

A variety of manufacturers produce high loss viscoelastic materials and publish the
complex modulus as a function of temperature and frequency. As the temperature of a
viscoelastomer is lowered toward the material's glass transition temperature, the shear
modulus tends to go up and the loss factor decreases. Increasing the shear rate has
roughly the same effect; higher shear rates tend to stiffen the material and decrease the
loss factor. Sample data sheets are given in Figures 1.7, 1.8, and 1.9 for the properties of
3M ScotchDamp ISD-112 [Nashif, Jones, and Henderson, 1985].
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Figure 1.7 Shear modulus of 3M ISD-112 as a function of frequency and temperature.
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Figure 1.8 Loss factor of 3M ISD-112 as function of frequency and temperature.

The data shown in Figure 1.9 present the net damping capacity of the material, the
imaginary part of the complex modulus. As before, this quantity is temperature and
frequency dependent. Also plotted in Figure 1.9 is the damping capacity of a high
viscosity silicone fluid, GE Silicone's Viscasil 600,000. While the fluid has lower
damping capacity, it is relatively insensitive to temperature fluctuation.
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Figure 1.9 Imaginary part of the complex modulus of 3M ISD-112, Im[G* = G + i Gn].

In general, the designer will seek to maximize the amount of damping in a structure
by considering the shear modulus and loss factor of a material and the desired thickness
of the viscoelastic layer. The design formulas, while algebraically tedious, offer
flexibility to allow the designer to select an optimum configuration.

For example, the natural frequency of a simply-supported steel beam 1 meter long
and 4 cm thick is 93 Hz. Using the ScotchDamp data sheets shown above, we find that at
room temperature, the loss factor of the viscoelastomer is 0.7 and the shear modulus is
0.45 MPa. Using the thin constraining layer design formulas, the loss factor of the
damped plate may be plotted as a function of H, and Hj;, as shown in Figure 1.10.

Composite loss factor

H,=0.4 cm
0.050}
0.020
0.010¢
0.005¢t
0.002 | ¢ , . - -
0.001 0.005 0.01 0.05 0.1 05 1 Hj(cm)

Figure 1.10 Loss factor of a 1 meter beam as a function of constraining layer thickness.
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The loss factors predicted in Figure 1.10 show an important result of the RUK
analysis: the damping is maximized by increasing the constraining (third) layer thickness.
This effect is commonly referred to impedance matching. Simply stated, the effect of the
constraining layer is optimized if its impedance (a measure of dynamic stiffness) is close
to that of the base plate. In this example, we have assumed that the constraining layer is
thin to simplify the equations, an assumption that does not allow us to investigate thicker
constraining layers without appreciable loss of accuracy.

1.7 Comparison of RUK-Style Approach to the Proposed
Analysis

As mentioned above, the shear damping mechanism developed for this dissertation uses
the same viscoelastic materials to dissipate energy as the classic three layer damping
treatment. The contribution of this dissertation is: 1) to recognize that the classic RUK
constrained layer analysis is too specific to be used for typical structural damping
problems, and 2) to provide a completely integrated approach to structural damping in
complicated geometries. The three layer theory, while capable of rigorously modeling
the interaction between the arbitrarily thick layers in a plate, does not provide any means
of generalizing this capability to more complicated geometries.

The research outlined in this document considers the lessons learned from
constrained layer theory and places the damping layers inside mechanical structures for
improved robustness and ease of manufacture. An analysis is developed that can
accurately predict how the geometric and material properties of the structure effect the
total damping. Many case studies are presented highlighting the excellent performance of
the shear damping mechanism.

The design engineering will appreciate the new analysis method because it
accurately predicts the amount of damping without the complexity of the traditional
constrained layer theory. This simplification is a result of considering the vibrating beam
of arbitrary geometry: the interaction between the many components of the beam system
cannot be obtained in a closed-form solution. This requires the use of a modal strain
energy approach to the damping calculation. The resulting analysis accurately predicts
the amount of damping in a structure for thick damping layers and offers an accurate
empirical estimate of the optimal damping level (given geometric and material properties
of the beam structure).

Figure 1.11 outlines the difference between the traditional constrained layer damping
theory and the closed-form analysis developed for this dissertation.
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RUK Analysis Proposed approach
Mode shape pure sine wave arbitrary mode shape
Structure geometry 3 layers of uniform width arbitrary geometry
Optimal damping thickness explicitly modeled correction available

Figure 1.11 Comparison of classic RUK to the closed-form analysis developed herein.

An important note is that the finite element method can be used to accurately predict
the damping of a structure regardless of the structural geometry or materials.

1.8 Conclusion

This chapter has discussed the motivation for investigating structural damping
mechanisms. The need for damping in structures is ever-increasing, and research in this
area has an opportunity to make a lasting impact on mechanical design. Dynamic
responses of a steel beam were shown to highlight how traditional damping techniques
compare to the shear damping mechanism. As shown, the shear damped structure shows
a large improvement over other treatments without the typical high cost, weight, and
thermal penalty.

The original damping work in constrained layer theory, which is now 40 years old,
provides the foundation of this research. Recent work has shown that while multiple
constrained layer treatments are one method of further increasing the damping in a plate,
the effect of subsequent layers is much smaller because the viscoelastic layers added after
the first are subject to increasingly small shear strains. The net effect is that multiple
layer treatments are roughly equivalent to using a single, three layer system with the
constraining layer thickness equal to the total thickness of the constraining layers used in
a multi layer application [Nashif, Jones, and Henderson, 1985]. Examples of the RUK
analysis have been provided so that the reader can understand the classic three layer
damping theory.

In comparison, the shear damping mechanism of this dissertation is much more
convenient to design and manufacture with the added advantage that any beam-like
structure may be optimized with a simple closed-form solution. The remainder of this
work will include a detailed discussion of the shear damping mechanism and the closed-
form analysis. A finite element model of the damping mechanism is included for
investigation of the performance of structures other than beams. The manufacturing
issues of shear damped structures are also addressed and numerous analytical and
experimental examples are presented to verify the theory.
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Chapter 2: Development of Shear Damping Theory

2.1 Introduction

This section documents the development of a mathematical model of the shear damping
mechanism in flexural wave vibration. The model will be derived for an Euler beam with
arbitrary cross section, and many examples with simple geometries will be presented.

Several assumptions are necessary to arrive at a closed-form solution. The beam is
assumed to be sufficiently long and slender to neglect the shear and rotary inertia effects
included in the Timoshenko beam model. The resulting differential equation of motion
may be solved closed-form given various boundary conditions such as pin-pin, free-free,
and clamped-free (cantilever). The solution of the differential equation of motion
includes the bending mode shapes and undamped natural frequencies. These results will
be used in the development of the damping model. The sinusoidal mode shape of a
simply-supported beam will be used in the presentation of the closed-form solution, but
solutions for other beam boundary conditions are also summarized. The closed-form
analysis may be applied to estimate the loss factor of virtually any beam-like structure.

Like the damping model used in the Ross-Ungar-Kerwin analysis, the shear damping
mechanism uses a sandwich type construction to shear a lossy material. Viscous fluids
with approximately Newtonian behavior and viscoelastic materials with complex shear
moduli can be used in the analysis. Several manufacturers of highly viscous fluids
market materials that adhere very closely to the Newtonian model. These fluids have
been used in the experimental verification of the closed-form solution. Viscoelastic
materials are available in a wide range of shear moduli, but are highly frequency and
temperature sensitive. Furthermore, the complex shear modulus model for viscoelastic
materials is only an approximation of the actual behavior. For this reason, many of the
experiments in this dissertation are run with viscous fluids. In practice, the viscoelastic
materials will usually be preferred because of their superior lossiness.

The derivation predicts the first bending mode loss factor with negligible error when
compared to experimental results. The assumptions that have been made in the analysis
are considered to be reasonable given the excellent agreement with experimental
measurements.

Two vibrating beam geometries will be considered throughout the following
analysis. The first is the general case of an arbitrary beam vibrating with pin-pin
boundary conditions. Figure 2.1 shows a possible vibrating beam structure.
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Figure 2.1 Arbitrary beam used in damping analysis.

The specific case of two beams vibrating with a shear layer between them is also
used to simplify the geometry of the general analysis. Although the results of the specific
case are applicable to just one beam configuration, the results show several critical trends
that must be understood when designing structures with the shear damping mechanism.
Figure 2.2 shows the beam geometry used in the specific case.

Figure 2.2 Simple beam geometry used in specific beam examples.

Subsequent chapters will explore several advanced topics that concern the shear
damping mechanism, including:

1. Structural coupling between beam components when the damping layer is thin.
2. Optimal shear layer thickness.

3. Finite element modeling of the damping mechanism and correlation to
experimental results.

4. Performance of the damping mechanism in complex beam and plate structures.

2.2 The Euler Beam Model

Variational calculus will be used to arrive at the equations of motion for an Euler beam.
By neglecting the shear and rotary inertia effects, the derivation of the beam bending
equation will result in the Euler beam equation. This assumes that the beam has uniform
material properties and cross section, as well as a high aspect ratio.

This method requires the integral form of the potential energy and kinetic co-energy
in the beam as well as the work done by forces acting on it. In Equation (2.1), the kinetic
co-energy is represented by the integral 7* and the potential energy is V.

L 2 L 2. \2 L
e ﬁpA(ﬁ) d V= !%El(a—f) dx  Work = !fﬁydx

O @.1)
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These energy terms are substituted into the Variational Indicator, which leads to the
equation of motion for the dynamic system. The Variational Indicator may be written in
integral form [Crandall, 1968]:

V.= jz(ST‘ —8V + f8y)dt
b 2.2)

The following equation is obtained upon substituting the energy integrals of the
vibrating beam into the Variational Indicator.

V.= j!j 5{ pA(Z)Z-%E/(gi—{Jz}dHI ﬁydx}dt

The variational operator & works similarly to the differential operator with the
additional property represented in Equation (2.4).

5200

2.3)

The following equation results from taking the variations of the energy terms in the
indicator.

2 2
V.= jj{ A2 _ g 0y0 5y+f5y}dxdt

2 2
" ot ot ox~ Ox 2.5)

Equation (2.5) can be rewritten using integration by parts.
tH L
”{ y 12 y+f}8ydxdt jEI gxy aﬁyddo jEI Sy di|-
Ho

ox’ 2.6)

Setting the left hand side of the equation to zero and considering only geometrically
admissible motions of the system means that each term of Equation (2.6) must equal zero
to satisfy the Variational Indicator. The first integrand is the equation of motion of the
Euler beam:

2 4
pAa—2+EI§———f(x r)
ot 2.7

The second and third integrands are the boundary conditions of the beam.

8%y 85
y By 0= 5122 5!
ox® ox |y and x> o 2.8)

0=FEI—

Now that the equation of motion and boundary condition equations have been found,
- specific beam boundary conditions can be considered.
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2.2.1 Solution to the Pin-Pin Beam Equation of Motion

This analysis uses the Euler equation to solve for the transverse displacement of the beam
in bending vibration as a function of time and position. Considering a simply-supported
beam of known equivalent stiffness £/ and linear density p4, the equation of motion may
be written as:

0%y
A
P

: +EIZ Y=f(x1) where y(0)=y(L)=y"(0)=y"(L)=0
d x (2.9)

Such a beam is shown in Figure 2.3.

y(x,t)

T

[ —> x
LR

A\

Figure 2.3 Model of a simply-supported Euler beam.

The displacement y(x, f) can be considered as a product of two functions, one
displacement dependent and one time dependent. The solution to the eigenproblem posed
by this equation may be obtained by setting the force equal to zero and treating the time
dependent behavior as a function of the complex exponential e,

y(x,t) = Y(x)Y(t) = Y(x)e™ (2.10)
-0 ’pAY (x)+ EIY(x)" =0 2.11)

The mode shape Y(x) of the Euler beam takes the form of a fourth order differential
solution. The wave number kg represents the ratio of the beam parameters that result
from solving the differential equation for the mode shape Y(x) (kz is the mode number
dependent wave number).

Y(x) = A sin kyx + A, cos kyx + A, sinh kyx + A, cosh kyx (2.12)

where:
k,'= o’ £
p4 (2.13)

The A/s are a function of the beam boundary conditions. For a simply-supported
beam, the boundary conditions at x = 0 may be used to quickly find that 4, and 4, are 0.

Y(0)=0= 4, + 4,
Y"(O)=0=—A2+A4 (214)
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The boundary conditions at x = L may be used to find 4, and 4;. Note that the sine
function is periodic with 7, but that the sinh function is not.

Y(L)=0= 4 sinBL+ 4, sinhBL
Y"(L)=0=—A1 Sil’lBL+A3 SlIlhBL (215)

A3 must be 0 to satisfy both equations, but sin kgL will satisfy the equations
regardless of the value of 4,, provided that &z is a multiple of =.

kBL = nn (2.16)

The natural frequencies of the simply-supported beam may now be determined by

eliminating the wave number.
( nm )2 ’ EI
0,=|— _A
LJ\p 2.17)

The mode shape of simply-supported bending vibration is simply a sine function
(shown with an arbitrary scaling function 4,).

Y(x) = 4 sinkyx (2.18)

The magnitude of 4, is arbitrary, but is traditionally scaled so that the modes are
normalized to unit mass:

r dm=1,m=n
[PAX, (L) =8, 1
0 m =0 MER 2.19)

Evaluation of Equation (2.19) gives the normalized mode shape of a simply-

supported beam:
2 .
Y(x) = viA sin kyx
VpA (2.20)

The mode shape and natural frequencies of other boundary conditions may also be
determined using the same approach. The difficulty is that for other boundary conditions,
the sinh and cosh functions do not drop out, leaving more complicated equations.
Figure 2.4 summarizes the results for the first bending modes in pin-pin, free-free, and
clamped-free beams. Blevins' Formulas for ncy and Mode Shape contains
a longer list [Blevins, 1979].
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Figure 2.4 Mode shape and natural frequency of common beam boundary conditions.

2.3 Closed-Form Solution to Damping Factor

A closed-form solution to the loss factor of a shear damped structure may be developed
from an assumed mode shape of vibration. The mode shape of slender beams that were
determined in the previous section will be used in this analysis.

Two possible shear materials have been evaluated in this research: viscous fluids and
viscoelastic solids. Although these are decidedly different classes of materials with
different mathematical models, both allow closed-form estimation of the damping in a
structure (given a simple transformation in the model). The damping derivation shows
that viscous fluid shear layers are fully developed and laminar (resulting in a linear fluid
velocity profile). Viscoelastic materials are assumed to have a linear strain profile across
their cross section. The analysis proceeds assuming that the damping layer is a viscous
fluid. The transformation that allows consideration of viscoelastic materials is given at
the end.

The second assumption is that the damping layer is thick enough that it does not
dynamically stiffen the structure. As the layer becomes thinner, the damping medium
will begin to act as a solid, and in the limiting case of zero thickness, the structure is
integral with the shear members. In this case, there is no strain and therefore no damping
in the layer, not infinite damping as predicted by the solution. A correction for this
assumption will be presented in Chapter 3.

Figure 2.5 shows a sketch of how the shear mechanism works. As the beam vibrates,
the damping material undergoes a periodic reversal. The shearing action dissipates
energy at a rate proportional to the fluid viscosity and inversely proportional to the fluid
film thickness. The following derivation will calculate the total energy in a vibrating
beam as well as the energy dissipated per cycle in the shear layers to estimate the loss
factor of an arbitrary beam.
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Figure 2.5 Schematic of the damping layer profile in a shear damped beam.

Figure 2.6 shows a sample shear damped structural member. The structure is an
elastic element in bending vibration along its longest dimension. A structure of this sort
often has a hollow cross section to save material and weight which allows the shear
mechanism to be built into the structure.

Replicant Shear member

Viscous fluid
(thin film on :
shear member) 2

Structural member,

Figure 2.6 Possible shear damper configuration.

The displacement of the beam as a function of time and position (for the first
bending mode) was shown for the simply-supported beam to be:

y(x,t) = Ysin kyx (2.21)
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The modal amplitude Y is determined by the specific load case. In general, y(f) can
be written as a summation of many modes, each with its own amplitude. The value of the
Y, must be calculated to find the dynamic response of a beam to an arbitrary forcing
function. In our case, we are only considering the first mode of vibration. The fluid
damping loss factor derivation does not require that the Y be explicitly determined when
calculating the loss factor of a single mode. This means that the damping loss factor may
be conveniently estimated for any structure for which the mode shapes are known without
a precise knowledge of the loading. For most loading cases this is a safe assumption
because higher modes makes a relatively small contribution to the total displacement.

The damping factor analysis will proceed using the relationship between the total
energy and the energy dissipated in one cycle of vibration. First, the total energy of the
vibrating beam and then the energy dissipated in the damping layer will be derived. The
loss factor is found from their ratio:

v,

,n = diss
27V o (2.22)

The machine designer may be more comfortable with the quality factor O, which
gives the amplification at resonance. For a second order system, the quality factor is
simply the inverse of the loss factor.

2.3.1 Nomenclature

8(x) = longitudinal extension along beam
Y = amplitude of the first mode
o = natural frequency of first mode
p,, = density of the m" beam material
A, = cross sectional area of the m” beam member
E = modulus of beam material
L =length of beam
A, = cross sectional area of fluid film
I = area moment of inertia of beam
¢, = distance from neutral axis of i shear member
p, = cross sectional perimeter of i” shear member
p = dynamic viscosity of shear fluid
n = loss factor (n=2&, £= damping factor)
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2.3.2 Calculation of Total Energy in the Beam System

At resonance, the total energy in the beam system may be calculated as the maximum
amplitude of either the kinetic and potential energy.

2
p4,, f 8y o’y
L =] dx] = AL
2 -!(at 4 zm:p’" "

‘ (2.23)

total —

The summation is necessary because an arbitrary vibrating beam will have a total of
m vibrating components. These components include the structure, the shear members,
and any other vibrating element in the system.

2.3.3 Calculation of Energy Dissipated Per Cycle

The damping mechanism dissipates energy by shearing a Newtonian fluid. The fluid
flow between the structural members is similar to the classic Couette flow problem. The
solution is obtained by determining the longitudinal velocity of the shear members
relative to the structural members and using this to calculate the dissipated energy.

The mode shape of a structure gives the transverse displacement of the structure as a
function of time and position. The axial strain in the beam is related to the transverse
displacement by:

_ 08(x,1) . o*y(x,t)

€, 3
ox ox (2.24)

This differential equation may be integrated to yield the longitudinal displacement
8(x) at a distance ¢ from the bending neutral axis. The shear and structural members are
assumed to be free floating so that the relative displacement is zero at the midpoint of the
beam (at x = L/2). This configuration yields the least amount of damping in a given
beam. Other designs are possible to increase the loss factor by fixing the displacement at
one end.

Equation (2.25) shows the longitudinal displacement and its time derivative U at c.

8(x,t) =—Yck ,coskyx e

U(x,t) =—iY ock, coskyx e (2.25)

The net longitudinal deformation can be calculated by the superposition of the
individual deflections between the core beam and the shear members. The longitudinal
deflections at a structural/shear member interface will typically add because one face is in
tension and the other is in compression.

The two-dimensional Navier Stokes equation in Cartesian coordinates will be used to
find the velocity profile of the fluid between the shearing structural members using the
longitudinal displacements as boundary conditions [Potter and Foss, 1982].
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(2.26)

The continuity equation for two-dimensional flow is also used in the derivation.
% + _61 =0
ox Oy .27

A dimensional analysis of the Navier Stokes and continuity equations will allow
insignificant terms to be identified. In the x-direction, the characteristic length may be
taken to be the beam length L. The y-direction characteristic length is the fluid film
thickness 4. The characteristic velocity is U, the difference in velocity of the upper and
lower boundary conditions. Substituting these parameters into the Navier Stokes and the
continuity equations will highlight the most significant terms:

—+—=0
L h (2.28)

—U-+U£+Vg=—l—a£+v[—(]7+£2]
L h

The dimensional analysis shows that the velocity gradient in the y-direction is
critical (because the fluid film thickness is much smaller than the beam length).
Furthermore, the left hand side terms may be neglected provided that three conditions are
met (7 is the characteristic time constant: the period of vibration).

h K U’ dn
—<<1, —<<],and—=——<<1
L v Lv Lzv (2.30)

The first condition is easily met by a typical shear damping design; the fluid
thickness is on the order of microns and the length of the beam is on the order of meters.
The second condition is also satisfied because the kinematic viscosity is on the order of
one (SI units) for highly viscous silicone fluids. The time constant of vibration is small
since most structures have high natural frequencies; however, the square of the fluid film
thickness is much smaller, satisfying the condition.

The final condition results in the additional requirement that the amplitude of the
longitudinal displacement be less than the length of the beam, which is clearly satisfied.
In practice, the three dimensionless ratios are typically smaller than 1 part per million in a

typical beam design. This allows a large simplification of the Navier Stokes equation.
1op_ou

mox oy 231)
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The analysis will proceed by "flattening out" the vibrating beam into a one-
dimensional flow field. This is accomplished by considering the upper and lower
boundary conditions and ignoring their vertical component. This assumption is safely
made because we have already shown that the velocity profile is highly dependent on the
horizontal, not vertical component.

Because the beam is symmetric about its half-length L/2, there is no flow across the
midpoint. Figure 2.7 shows the setup of the boundary conditions in the first half of the
beam's length. The reference frame of the model is attached to the midpoint of the
structural member.

u(y=h)=U,

u(x.y,t) |

u(y=0=U;

x=L/2

Figure 2.7 Model of flow in the shear layer.

The velocity profile may be found be double integrating the Navier Stokes equation
and imposing the boundary conditions as shown in Figure 2.7. The velocity profile is
symmetric about the midpoint so it is only necessary to consider one half of the beam.

u(x,y,t) = La—p(y2 — yh) + —(U2 ~ Uy + U,

2p ox h (2.32)

The mass conservation law will now be invoked to solve for the unknown pressure

gradient dp/ox. Considering the "flattened" flow field, the most convenient control

volume is a deformable volume that starts at a given location on the upper and lower

surfaces and includes the beam midpoint at L/2. The fluid layer thickness is unchanging

with time or position, as will be shown in the next chapter. Figure 2.8 shows the
deformable control volume.

q=0
u(y=h)=U, /"
— - - = - =
qout - u(x’Y)t) -+> q=0
[‘__ S O 1
u(y=0)=U, i'
q:O x=L2

Figure 2.8 Deformable control volume used in fluid flow analysis.

Inspecting the two halves of a simply-supported beam, the flow across the midpoint
of the beam is seen to be zero by symmetry. The flow across the top and bottom is also
zero. Therefore, the net flow across the left hand side of the control volume must be
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offset by the change in size of the control volume. Integrating the flow u over the height
h of the fluid layer, the change in size of the control volume exactly equals the flow
across the boundary (resulting in a pressure gradient of zero).

3
P _H
Ox (2.33)

The fluid velocity profile may then be written as a function of the fluid film
thickness and the differential velocity between the upper and lower surfaces:

u(x,y,t) = w + U,
h (2.34)
where
U (x,t) = iod, = —Yc,k, cos kyx ive™
U,(x,t) = iod, = Yc,k, cos kyx ioe™ (2.35)

The power dissipated in the fluid is given by the integral form of the viscous energy
dissipation function [Ozisik, 1985]:

_ % ’ _ “LAI ™%
,, = p!(ay) dv =S ((cl +¢,)Y kyoe ) 236

The work dissipated per cycle can be determined by integrating the power dissipated
over the period of oscillation:

=11 z = Ao ((cl + cz)YkB)z

W .
) 2K (2.37)

diss

2.3.4 Calculation of Damping Factor

The damping factor of the beam system may now be calculated using the total and
dissipated energy. The contribution of the i damping members may be summed up to
determine the total damping in a structural design.

W/:iiss p'sz Z Pici2

) 2"tpp;aml B 0‘)2 pmAm i hi

n
(2.38)

This result shows several important trends with the shear damping mechanism. The
most obvious is the direct relationship between the fluid viscosity and the damping factor.
Another result is the inverse proportionality between the fluid film thickness and the
amount of damping. From this closed-form solution, the damping appears to be infinite
at zero fluid thickness. In practice, the fluid becomes so dynamically stiff at small
thicknesses that the damping reaches an optimal limit. When the layer is made thinner
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than this optimal limit, the damping decreases again as the relative displacement between
the shearing members decreases. This phenomenon is documented in the next chapter.

2.3.5 The Damping Factor of a Simple Beam

Now that a closed-form solution is available for the damping ratio in a shear damped
beam of arbitrary configuration, a simpler case will be considered to illustrate some
important trends. Figure 2.9 shows the design of the double beam used in this exercise.
The height of each beam is ¢, the width is b, and the length is L.

L

% t=2c¢

f b

Figure 2.9 Simple beam geometry used to show damping trends.

Each beam will vibrate with the same amplitude and in phase with the other beam.
The neutral axis of bending will be the centerline of each individual beam. Therefore, the
quantity ¢ =#/2+t/2=t. The first bending mode will be considered so » = 1. The
perimeter of the viscous area is one width of the two beams 5. Finally, the product of the
density and the area (lineal density) is 2pbt.

2

pk, “t

‘rl =
2pho, (2.39)

The natural frequency of a simply-supported beam is known and can be substituted
into the equation for n to yield a simple expression given this specific geometry:

0, = sz 24
Vo4 (2.40)

M = RE
h\Ep (2.41)

This result reveals several important issues to be considered when designing a simple
fluid damped system:

1. The amount of damping is not independent on the length of the system.

2. The dominant terms are the fluid viscosity and fluid layer thickness. The
more viscous the fluid and the thinner the layer, the higher the damping.

3. The damping factor also depends on the material properties of the structure.
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An aluminum structure will be better damped than a steel structure of the same
geometry (given a specific fluid layer film thickness). Similarly, a plastic structure will
be better damped than a aluminum structure. This result is analogous to the loss factor in
classic viscoelastic theory where the amount of damping is inversely proportional to the
stiffness of the structure [Kerwin, 1959].

2.3.6 Damping in Beams of Other Boundary Conditions

The preceding section outlined the analysis for the loss factor of a simply-supported
beam. This section will present the results for other beam boundary conditions, but will
not step through the lengthy mathematics used to arrive at these quantities.

The damping equation can be written for a beam of any mode shape that has
symmetric boundary conditions at the two ends. The mode shape ¢(x) can be calculated
directly, and also listed in the vibration literature for virtually any combination of beam

L/2

boundaries.
L 2
122 |a
K o 0%, Z Piciz

n= mnzpmAm ‘I[(Pde i hi
" 2 (2.42)

Using this equation and the mode shapes and natural frequencies of Figure 2.4, the
loss factor for any mode of any symmetrically supported beam can be computed.

A [EI
n= T2 a4l 4
L Yed (2.43)
Kpky' Z B¢’

n= mnzpmAm i hi
" (2.44)

Only the constant K changes from beam to beam, depending on the boundary
conditions. Figure 2.10 shows K for several beam support conditions. Note that the
factor K may be used without error in the general equation of the damping in a beam
defined above.

Clamped-free Pin-pin Free-free
8d=0atx=0 |d=0atx=L/2|3=0atx=L/2
1.32 1.00 2.21

Figure 2.10 Damping constant X as a function of beam boundary conditions.
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The way that the shear members are fixed relative to the structural members makes a
significant impact on the amount of damping in the structure. If the beams can be fixed at
one end, the damping will be three to five times greater than if the beams are free floating
(depending on the boundary conditions). This is because the overall relative shear is
much greater when the constraining layers are joined at one end, compared to when the
layers are joined at their mid length.

2.4 Effects of Shear Rate on Apparent Viscosity

The apparent viscosity of the family of silicone fluids shows highly rate dependent
behavior. At high rates of shear, the fluid viscosity rolls off by a significant amount.
While the shear rate dependence of the silicone fluids is non-Newtonian, it does not
invalidate the analysis because a given structure has a specific first bending mode
frequency. When estimating the damping in a structure, the fluid viscosity must be
corrected for the this frequency.

Figure 2.11 shows the roll-off for several moderate viscosity fluids. The roll-off
trend shows that as the nominal viscosity increases, the break point frequency decreases.
All of the fluids tend to converge on the same viscosity at very high shear rates.

1,000 e =
s00 | oo b =000 o,
- 30,000 cps
i '\§
g 12,500 cps \\
2. 100 E ~J
> s0F
K - 3,100 cps
a A
A |
§_ 10 ! 1,000 cps
o o
3 IR FUTE 2 o aluy 1
10 50 100 500 1,000 5,000 10,000

Rate of sheor, sec”’

Figure 2.11 Apparent viscosity of silicone fluids vs. shear rate [MacGregor, 1954].

The viscosity vs. shear rate curves for the highly viscous silicone fluids used in this
dissertation are not available from manufacturers such as GE Silicones and NuSil Corp.
For this reason, a viscometer was designed and built to accurately measure the viscosity
of the fluids used in the shear damper designs. Figure 2.12 shows the schematic of the
viscometer system. A shaker, two accelerometers, and a dynamic signal analyzer were
used to measure the behavior of the system at a range of frequencies. Two
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accelerometers are used to obtain an average value of the motion to compensate for any
rotation in the plate.

Plate

x(t) «<— l:— f(®)
AN NN Fluid

Ground

x(t) «— m
f{t) «—

c

Figure 2.12 Viscometer design and mathematical model.

The nonlinear behavior of the viscous fluid requires that the viscometer data be
considered one frequency at a time so that equilibrium can be reached with the effective
viscosity at that frequency. For this reason, a swept sine input was used with a 50 cycle
settling time and a 50 cycle measurement window. The signal analyzer used in these
experiments automated this process to evaluate a large number of points. The results
were used to calculate the effective viscosity at many different frequencies.

The experimentally measured amplitude of the transfer function x/f of the system can
be used with the math model to deduce the correct viscosity at each frequency. The
transfer function of the mathematical model may be obtained by considering the
differential equations of motion of the viscometer system.

X _ s

f(s) ms+c (2.45)

The experimentally measured amplitude of the transfer function may be used in the
following equation to estimate the damping factor.

R=0 -1——m2

G’ (2.46)

The damping constant R can be found by considering the area of the plate 4 over

which the fluid acts and the height % of the fluid film. The nominal viscosity is p,,,,.
The multiplier y gives the dimensionless shape of the viscosity profile.

R =AY oom
h (2.47)

The transfer function G is a complex number, therefore the effective magnitude of
the argument in the square root of Equation (2.46) must be used to obtain the following
estimate for the viscometer test results.
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_oh \Fl—mRe(G))z +m’ Im(G)>
A Re(G)? +Im(G)’ (2.48)

Figure 2.13 shows the viscosity of Dow Corning Viscasil 600,000 and NuSil Corp's
2,500,000 centiStoke fluid.

Viscosity (kg/m-s)
10000 —

1000

NusSil 2,500,000 cSt fluid
100
GE Viscasil 600,000 cSt fluid

10 . t —  Hz
1 10 100 1000

Figure 2.13 Viscosity of silicone fluids as a function of frequency.

The experimental data shown in Figure 2.13 were curve fit so that a viscosity
estimate could easily be made for a given frequency (measured in Hz). Note that in the
range of frequencies above 10 Hz, the two fluids are essentially the same, despite their
large difference in nominal viscosity. This result is expected given the viscosity
dependence of the frequency break point (the higher the nominal viscosity, the lower the
break point frequency at which the effective viscosity rolls off).

w(f)=1300 f[Hz]*" (2.49)

2.5 Generalization of the Derivation to Viscoelastic Materials

The fluid flow profile in a sheared fluid was shown to have a linear profile. This profile
leads to a shear stress in the fluid that is constant throughout the fluid, but dependent on
the position x.

T= piu(x,y,t) = p.imﬂ

ot h (2.50)

The velocity boundary conditions U, are obtained directly from the mode shape of

the beam and go with cos kgx. The viscous fluid mechanism is therefore well modeled

with velocity proportional damping. Considering a second order system, the viscous term
may be easily included as the constant R.

mx + Rx + kx = f(1) (2.51)
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Viscoelastic materials are conveniently modeled as having complex modulus
(stiffness) proportional to displacement, not velocity.

mi+k(1+im)x=f(¢) (2.52)

A comparison between the two damping models may be obtained by Laplace
transforming the differential equations of motion. The classic viscous damping model
has the following roots in the Laplace domain:

S=—C(Dnii(0n l_c2 (253)

The structural damping roots are similar when the damping is small, but become
increasingly different as the loss factor is made larger.

S=ii(0n l+lT] (254)

When the damping is relatively low, we see that the two models yield very similar
results given the approximation that the loss factor n is twice the damping factor C.
Using this approach, the loss factor derivation can be easily modified to accommodate the
viscoelastic materials using the structural damping formulation. The shear modulus of a
viscoelastic material G* = G(1 +in) is related to the shear stress in the layer by the
constitutive relation for a solid:

‘C‘ =G"Y =Gt 82 _61

h (2.55)

The shear stresses in the viscous fluid and viscoelastic models may be equated to

find the relationship between material properties. Noting that only the imaginary part of

the complex modulus dissipates energy, the relationship may be simply written as
follows:

Sy (2.56)

The loss factor for a shear damped beam may now be expressed as a function of the
lossiness of the damping layer.

Gy Z Pg/’

= mzzpmAm i hl
- 2.57)

where:
G’ =po for viscous fluids

G’ =Gn for viscoelastic materials
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2.6 Conclusion

This chapter outlined the analysis of the loss factor of a shear damped beam with
arbitrary cross section and any number of shear damping sections. A simpler geometry
was considered to show the importance of fluid film thickness and fluid viscosity. Other
parameters, such as beam length, were shown to be unimportant (assuming the beam is
sufficiently slender).

Through a dimensional analysis, the assumptions made of the fluid flow in the beam
were shown to be valid. Experimental measurements show excellent agreement with the
derivation provided in this chapter. The shear rate dependency of the silicone fluid was
discussed to provide a complete understanding of the shear damping mechanism.
Silicone fluids have desirable material properties including extremely high viscosity and
only very slight temperature dependence. Viscoelastic materials have a greater modulus
loss factor resulting in correspondingly higher damping for a given design. As will be
shown, there is a practical limit to the amount of damping that may be built into a given
design. Therefore the choice of using silicone fluids or viscoelastic materials for the
damping medium will be dictated by the geometry and materials of the undamped
structure.
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Chapter Three: Derivation of Dimensionless Beam
Coupling Indicator

3.1 Introduction

The loss factor analysis of Chapter 2 made one assumption that requires further
investigation: the damping material thickness was assumed sufficient to prevent coupling
of the different components of the structure. This means that the shear force exerted by
the damping material does not have a significant effect on the behavior of the bending
beams. This is clearly not true for the limiting case of zero damping material thickness.
As the layer thickness goes to zero, the adjacent structures begin to act as a homogenous
structure. Correspondingly, the natural frequency of the structure will increase and the
damping goes to zero (because there is no shear strain across the damping layer).

If the damping material is a viscous fluid, the layer thickness necessary to achieve
structural coupling between layers is extremely thin for stiff materials such as aluminum,
steel, and ceramic. Experiments show that physically realizable fluid film thicknesses are
too large to generate substantial component coupling. Plastic beams, on the other hand,
can be constructed that show experimentally component coupling. When using
viscoelastic materials, the layer thickness is much more important. In general, the high
shear modulus of viscoelastic damping materials means that the damping layer can
readily couple with the vibrating elastic structure (coupling is inevitable when the
damping layer thickness is near the optimal value, the goal is to avoid making the layer
too thin).

A rigorous closed-form solution that explicitly considers the stress distribution
between components in a beam is not available because of the complexity of the problem.
That is why the original Ross-Ungar-Kerwin analysis considered a special three layer
geometry. The work done in this dissertation has approached the problem from another
direction: find an expression for the damping in any beam geometry assuming minimal
coupling between layers. Using this approach, analysis has shown that a figure of merit
can be developed to evaluate the likelihood of dynamic coupling effects. This
dimensionless quantity can be used as an indicator of when the coupling effects are
significant.

The results shown in this chapter were made possible with finite element analysis. A
finite element model of the shear damping mechanism was developed so that different
beam geometries could be efficiently investigated. In fact, the high accuracy with which
the finite element method can find the damping in a beam design is one of the many
advantages of the shear damping concept; experimental and finite element results show
very close agreement.
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The chapter will begin with a thorough explanation and verification of a finite
element model of the damping mechanism, followed by an investigation of the coupling
effect found in beams with very thin damping layers. The case of a fluid damped
structure will be used without loss of generality; the relationship between the fluid
damping model and the viscoelastic model was shown in the previous chapter.

3.2 Finite Element Modeling of a Shear Damped Beam

The finite element method may be used to model the coupling effect and determine at
what damping layer thickness it becomes important. For this discussion, the damping
model is taken to be two fluid damped beams constraining a high viscosity fluid between
two flat, smooth surfaces.

3.2.1 The Model

The finite element model of the shear damping mechanism is based on two-dimensional
spring and dashpot elements, as shown in Figure 3.1.

Figure 3.1 Finite elements used to model the shear damping mechanism.

The finite element model should be set up so that the nodes of each beam line up
with each other in the vertical direction. This allows the use of two different types of
spring/dashpot elements between adjacent structural members. The vertically acting
elements in A model squeeze film and fluid compressibility effects (or vertical stiffness
in the case of a viscoelastic damping material). The horizontally acting element B
models the shear stiffness and damping effects. Note that both types of spring/dashpot
elements (A and B) are used at each node pair along the structure/damping
material/structure interface.

3.2.1.1 Squeeze Film/Compressibility Element (A)

Spring and dashpot elements in A model the effect of the squeeze film damping as well as
the slight compressibility of the damping material. The spring is used to model the
compressibility of the damping material and the dashpot models the squeeze film
damping in thin fluid films. Note that the squeeze film effect only occurs in damper
designs using viscous fluids.
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The compressibility can be estimated by using the (bulk) modulus of the damping
material. The family of silicone fluids used in the proposed damper designs are not
measured directly by the manufacturer for bulk modulus; however, the literature contains
the results of compressibility studies performed on silicone fluids. Experimental data
indicate that silicone fluids have approximately 4.5% compression at 7100 psi
[Bridgman, 1949]. This corresponds to a bulk modulus of 2.3 MN/m?2 which is similar to
water or oil. Viscoelastic materials will have a modulus that can be used directly from
manufacturer data sheets (the modulus is typically a small fraction of the modulus of steel
or aluminum).

The damping associated with the squeeze film effect can be determined using the
two-dimensional Navier Stokes equations to determine the fluid flow profile. The
assumptions used in the derivation of the loss factor in Chapter 2 will again simplify the
equations (fully developed flow). Figure 3.2 shows a cross sectional view of the squeeze
film model. Note that the fluid flow profile is shown across the width of a shear member
(there will be virtually zero flow into the page).

1op_o%
T A2
hox Oy 3.1)
lF(t)
Member of width b
y =h() C =gl
Control | ‘
volume iy ‘
y=0 W' 7

Figure 3.2 Model of squeeze film damping in the fluid layer.

The velocity profile may be found by double integrating the simplified Navier
Stokes equations. The boundary conditions for the flow indicate that the velocity is zero
at both structural surfaces.

10

v(y) = Eﬁ_a_f(yz — yh)

(3.2)

A control volume drawn around the fluid between the two plates will relate the
relative motion of the top plate to the flow out the sides. This relation allows calculation
of the pressure gradient. Integration of the pressure gradient yields the equation for the
pressure on the structural surfaces.

(3.3)
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By balancing the applied force per unit length of the structure (into the page), an
equation relating the force to upper plate velocity may be found. The width of the plate is

b and the fluid viscosity is p.
F ( b)’ dh
—_—= u _— —_—

L h) dt (3.4)

The damping constant is simply the relationship between the total force and the
relative velocity between the two plates.

b 3
h (3.5)

The viscous fluid damping mechanism has been shown to work best with relatively
thin fluid films. At these layer thicknesses, the cubic relation between the damping and
the fluid film thickness results in tremendous dynamic stiffness across the dashpot
(resulting in essentially zero relative motion). As a result, no energy is dissipated by the
squeeze film effect. Kurtze's 1959 paper documents the use of viscous fluids as a
damping medium, but in his application the fluid films were so thick that relative motion
could occur in the vertical direction (with appreciable squeeze film losses) [Kurtze,
1959].

The damping layer compressibility, which acts in series with the squeeze film
damping, has a lower dynamic stiffness than the squeeze film. However, in the range of
damping layer thicknesses that are suitable for efficient shear damping, the vertical
compressibility is sufficiently stiff to prevent relative motion. The amount of stiffness in
element A is based on the modulus of the layer and the area of the finite element.

k=82

h (3.6)

The quantity bL is the area over which the element acts, B is the modulus of the layer

material (the bulk modulus in the case of fluid damping), 4 is the fluid film thickness.

The high stiffness of the spring and the dashpot means that, in general, the element A

may be safely removed from the finite element model. A constraint may be applied in its
place to keep the vertically adjacent nodes equally spaced in the vertical direction.

3.2.1.2 Viscous Damper Element (B)

The spring/dashpot element B is a horizontally oriented parallel spring and dashpot that
models the shear damping effect. In the case of fluid damping the spring has zero
stiffness because the fluid is assumed to be Newtonian. As shown in Chapter 2, the shear
strain profile across the damping layer is linear for both viscous fluid and viscoelastic
materials. The damping constant R and the spring constant k£ can be estimated by
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considering the stress on the surface of the beam imparted by the sheared damping
material.

R=BL ImG
oh
k=bLReG

(.7)

The area product bL is the area of a single constraining surface element. As with any
finite element solution, using more elements typically gives higher accuracy. In practice,
element types A and B are efficient enough that 20 of each distributed down the length of
a two-dimensional beam gives good results.

The shear damping mechanism acts in every direction tangent to the surfaces of the
structure. For example, a two degree of freedom beam problem will have one element
modeling the fluid compressibility and one element modeling the shear damping between
every facing node on the solid/fluid/solid interface. A plate will require one element for
compressibility and two elements for the viscous damping between every pair of facing
nodes.

3.2.2 Selection of Appropriate Element Types

The shear damping mechanism allows flexibility in the mesh design, but a few guidelines
have been established. In the case of a two-dimensional structure, the natural element
choices are high order beam elements and various 4, 8, or 9-node isoparametric elements
[Bathe, 1982]. A fully three-dimensional structure typically requires 8 or more node
brick type elements. If the three-dimensional structure is thin, shell elements may be
used to model the structure.

Consideration of the shear mechanism introduces a constraint on the element type
that may be used to model the damping in a structure. The element must have nodes
modeling thickness. Shell and beam type elements require the calculation of quantities
that include thickness; however, there is only a single element across the height of these
element types. Planar or solid elements model the thickness of the structure and in doing
so, model the longitudinal compression and tension of the material away from the neutral
axis. This effect is shown in Figure 3.3.
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Figure 3.3 Contrast of element bending problem: isoparametric vs. beam element types.

In the case of the beam or shell element model, the nodes are assumed to be along
the neutral axis so the nodes do not model longitudinal displacement when undergoing
bending vibration. As a result, a model made with this approach would show zero
damping because there is no relative motion across the horizontal damping element.
Figure 3.4 shows elements that may be used to properly model the damping effect.

o= []

3-D brick 2-D isoparametric
Figure 3.4 Suitable structural element choices for shear damping models.

Another issue that must be considered when meshing a shear damped structure is the
number of elements across the thickness of the structure. The numerous finite element
simulations made in preparation for this dissertation show the importance of having
multiple elements across the thickness of the structure. As the damping layer thickness is
made thinner, the shear stress that the fluid imparts to the elastic structure becomes
important. This high level of shear cannot be accurately modeled with a single layer of
elements across the thickness of the structure. Multiple layers of elements must be used
to properly model the behavior of the structure (such as a flat plate or beam) when the
shear stresses become high.

Trial finite element simulations did show that in the interest of saving computer
time, reduced density meshes across the thickness of the structure can be used when the
shear stresses are low (at damping layer thicknesses that provide minimal coupling
between the adjacent structures). Figure 3.5 summarizes this phenomenon.
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Figure 3.5 Minimum number of elements required to model a structure.

In general, the film thicknesses that result in coupling of structural components are
not physically realizable with viscous fluids, therefore simplified finite element meshes
may be safely used. This is an important feature of the damping method; the damping
may be accurately modeled with minimal computational effort. Viscoelastic materials, as
a result of their higher stiffness, may require finer mesh densities even when the damping
layer is comparatively thick.

3.2.2 Model Verification

The finite element model of the squeeze film and shear damping phenomena was verified
in a study of the dynamic performance of a damped structure. The structure has two
identical beams constraining a thin fluid film. Each beam is 30 cm long, 2.5 cm wide and
1 cm thick. The material is steel and fluid film thicknesses between 25 and 250 microns
were tested. Figure 3.6 shows a typical drive point comparison between experimental
and finite element results. In this example, the viscosity is corrected for the first bending
mode at 750 Hz.

0.00001 ANSYS
0.000001 | Measured
g 1E-07 |
g 1E-08 .
1E-09 |
1E-10 ; ; - ,
100 1100 2100 3100 4100

f(Hz)

Figure 3.6 Measured and finite element drive point frequency response functions (n
corrected for 750 Hz).
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The figure shows close agreement in the first and second bending modes. The third
mode is not quite as well predicted by the finite element analysis. This is an inevitable
result of using a viscosity corrected for a particular frequency (both viscous fluids and
viscoelastomers will show this behavior). The viscosity correction factor at 3500 Hz is
much lower than it is at 750 Hz, which is why the finite element results overestimate the
damping.

Numerous plots such as Figure 3.6 were made in the process of correlating the finite
element model to experimental data. Other beam geometries, materials, and boundary
conditions were also tested. The results indicate that the finite element model accurately
captures the dynamics of the shear damped beam. This model may be confidently used to
explore alternative geometries to hasten the design process.

Figure 3.7 shows the first three bending mode shapes of a free-free beam obtained
experimentally and by finite element analysis.

Figure 3.7 First, second, and third mode shapes of a free-free damped beam.

Note how the figure shows the node of the first mode at around 22 percent of the
length of the beam (a classic result for free-free Euler beams). The plots shown in
Figure 3.7 came from experimental data, explaining the slight jaggedness of the mode
shape curves (30 points were tested along the length of the beam).

The close agreement of the modal parameters (natural frequency and damping), and
the similarity of the predicted and experimental drive point frequency response functions
verifies the validity of the two element types used to model the fluid damping
mechanism. The next section will use this finite element model to investigate the
behavior of the beams given very thin fluid film thicknesses (a case which is not well
modeled by the closed-form solution).

3.3 Component Coupling from Thin Damping Layers

The results of finite element runs made with decreasing fluid film thickness show the
point at which the closed-form solution ceases to accurately predict the damping in the
beam. In the case of the double beam geometry, the assemblage begins to act as a
homogenous structure as the damping layer is made thinner. Figure 3.8 shows results
from a series of ANSYS runs made with a twin beam assemblage of steel strips. As the
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damping thickness is made thinner and thinner, the natural frequency climbs until it
reaches that of a solid beam.
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Figure 3.8 Finite element drive point frequency response function of a beam structure (p
corrected for 750 Hz).

Although the closed-form solution to this limiting case is not available, a
dimensionless parameter has been derived that will predict the film thicknesses at which
the shear stresses will become important.

3.3.1 Evidence of Coupling by Modal Analysis

The component coupling effect was first observed experimentally with a high density
polyethylene beam. HDPE has a much lower density and elastic modulus so the beam
showed coupling with relatively thick fluid films. The beams were also modeled in
ANSYS to investigate the changes in mode shape of the beams as the fluid layer is made
progressively thinner. Figure 3.9 shows ANSYS results for three different film
thicknesses (experimentally verified results).

Fluid thickness (microns) | Natural Frequency (®) | Damping Factor ()
250 234 Hz 0.50
85 386 Hz 0.64
25 428 Hz 0.24

Figure 3.9 First mode results from HDPE beams simulated in ANSYS.

When the fluid layer is fairly thick, the amount of damping in the beam is very well
predicted by the equations presented in Chapter 2. The mode shape of the beam is that of
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the classic Euler solution, and the natural frequency of the assemblage is equal to that of
the two identical (uncoupled) shear members. Figure 3.10 shows the x-direction shear
strain obtained by finite element analysis with a thick fluid layer (no coupling between
the two beams). Although the two beams are connected by the fluid layer, they act
independently. The strain distribution in the beams is symmetric about each beams'
neutral axis.

Figure 3.10 Horizontal strain on the left hand side of a free-free beam with a thick fluid
layer (250 microns).

When the damping layer is made thinner, the mode shape of the beam deviates from
the expected Euler solution, and the natural frequencies are in a transition between the
uncoupled and coupled beam. Figure 3.11 shows the same beam with an intermediate
thickness damping layer. The fluid layer is thin enough to result in some coupling
between the two individual beams, and the mode shape is significantly different than the
classic free-free beam solution (the ends are nearly straight).

Figure 3.11 Horizontal strain on the left hand side of a free-free beam with a
intermediate fluid layer (85 microns).

Figure 3.12 shows the structure with a thin damping layer. In this case, the two
beams are bending as one, and the natural frequency of the assemblage has doubled. The
strain distribution is that of a solid beam with virtually no strain in the region of the fluid
film. There is very little damping in this case because the strain across the damping layer
is so low.

51



Figure 3.12 Horizontal strain on the left hand side of a free-free beam with a thin fluid
layer (25 microns).

The mode shape is altered when the damping layer thickness is in the intermediate
range. The mode shape of a simply-supported beam, for example, is changed from a pure
sine wave to a sine wave with flattened out ends. If the fluid layer is very thin, the mode
shape returns to a pure sine wave. The best way to visualize this mode shape distortion is
by looking at the slope of the mode shapes of a beam of various film thicknesses, as
shown in Figure 3.13 for the three film thicknesses (only the left hand side of the beam is
shown).

Slope (d ¢/dx)
35
T ——u— Predicted
30
——e&— t =250 microns
251
L o —e— t = 85 microns
201
—a— t = 25 microns
154
104
51
0 ' ' ' i * ’ i ' Position (m)
5 0.02 004 0.06 008 0.10 012 0.14 \0.16

Figure 3.13 Stiffening of a beam resulting in an altered mode shape slope.

Figure 3.14 shows the changes in natural frequency and damping as a function of
damping layer thickness in the parallel steel beams.
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Figure 3.14 Natural frequency and damping factor as a function of fluid film thickness.

The finite element model was used to test many beam materials, damping layer
materials, and geometries to gain further understanding in the trends in stiffening
behavior. This approach was used because a closed-form solution to the stiffening effect
is not available. The goal was therefore to find a dimensionless quantity that could be
used as an indicator to determine if coupling effects are important in a given beam design.

3.3.3 Analysis of Structural Coupling Effect

The key to understanding the coupling phenomenon is the ratio between the shear strain
in the damping layer and the spatial derivative of the mode shape. This ratio was derived
in the RUK analysis presented in Chapter 1 [Ross, Ungar, and Kerwin, 1959].

H, 6_\|;_ H,-D
6¢ 1+__2_(;_2___
ky” Ko H, (1.6)
where:
G2
e ——
ky K3 H, 1.7

The dimensionless parameter g is important because its magnitude controls the filter-
like shape of the ratio.

Note that this equation was derived for the case of a three layer plate in the RUK
analysis. We may adapt it to our arbitrary beam geometry by treating the first layer
(denoted by subscript 1) as the core structural member of the beam, the third layer as a
particular shear member (subscript 3), and the second layer as a damping material
between them (subscript 2).
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The damping layer thickness at which shear effects becomes important is the
thickness at which the damping layer stops shearing and the shear member starts
stretching. This layer thickness corresponds to the point of optimal damping in the
structure. The ratio between the shear force at the wall (from the fluid) and the
extensional stress in the shear member will help determine the critical damping layer
thickness. For the purpose of example, the simply-supported beam mode shape is used.

y(x)=Ysink,xsinot (3.8)

Considering the first mode of vibration, the extensional stress in the shear member,
Oext» 1S given by:

oy

ox®

=YE, HsHsokB3

ext

|= E,H,H,,

o
3.9)
The shear stress 1 that the damping layer imparts on the surface of the adjacent shear

member is calculated from the relative displacement across the damping layer. The fluid

velocity profile was calculated in Chapter 2 and is used again here.
e s
H, H, (3.10)

The ratio of the shear stress at the wall and the extensional stress can be calculated to
obtain a measure of when the shear effects become important:

Tw _ G2
0-max x.! szE3 H3H2

Note that the spatially-averaged stresses from Equations 3.8 and 3.9 are used to find
the ratio. This is because the bending stress goes to zero at the ends of the beam (which
would make the stress ratio go to infinity). The distribution of the stresses along a beam
is shown in Figure 3.15.

(3.11)

Bending stress

0 L
Fluid shear stress

Figure 3.15 Shear and bending stresses along a simply-supported beam.

The ratio between the shear and extensional stress yields the same dimensionless
parameter as the shear parameter g from the RUK analysis. The finite element method
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used in the next section explores the validity of this dimensionless parameter as an
indicator of coupling effects in a shear damped beam.

3.3.4 Dimensional Analysis of the Structural Coupling Problem

Figure 3.16 shows a sample beam that was used to develop a large database of finite
element results to test the dimensionless parameter.

N
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Figure 3.16 Schematic of a five layer shear damped beam (core beam, two shear
members, and two damping layers).

Eight parameters effect the behavior of the five layer beam assemblage shown in
Figure 3.16. These parameters will dictate both the natural frequency of the beam
assemblage as well as the loss factor in the composite beam. The term d is an
intermediate result (dubbed the effective radius of gyration) which is used to quantify the
effective off-axis distance between the shear members and the structural (center) beam.
For example, when the fluid layer is thick, the three separate beams are uncoupled and
vibrate about their individual neutral axes (d = 0.5 [h; + A;]). When the fluid layer is very
thin, the beams all bend as a unit so d approaches 0. Ultimately, determining the
damping in a given beam configuration will depend on accurately estimating the distance
d as a function of damping layer thickness.

Units Variable

E kg/m-s2 | beam modulus
p kg/m®> | beam density
u kg/m-s | fluid viscosity
L

m length
hy m inner beam thickness
hy m fluid layer thickness
hy m shear member thickness
A - boundary condition constant
d m effective neutral axis term
d=f(E,p,u,L,h,,hz,h3,l) (3.12)

Dimensional analysis of the eight parameters yields the following reduced set of
independent dimensionless variables for the distance d.
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The distance 4" is a function of five dimensionless variables. Four complete sets of
finite element runs were made to determine the relationship between d* and the other
variables. This testing was done in a Factorial-style matrix with one variable changed at
atime. Figure 3.17 shows the table of dimensionless parameters used in the test matrix.

Set n L ) A 7,
hyeE | h by 2
One c1 cy 4.730 ten trials | four trials
Two cq () m ten trials | four trials
Three c] 1.333¢c, | 4.730 ten trials | four trials
Four 0.5cg cy 4.730 ten trials | four trials

Figure 3.17 Test matrix used in the dimensional analysis.

Completing the test matrix required 160 finite element modal analyses in ANSYS.
The natural frequency and damping of the first bending mode for each finite element run
was recorded. The results were then tabulated creating a database of loss factors as a
function of the five dimensionless parameters. A solution to the equation was then found
by exploring the relationships between all the data points. After exhaustive investigation,
several trends became apparent:

1. The effective radius of gyration d* acts as a high pass filter with respect to the
damping layer thickness. Figure 3.18 shows how the distance d* corrects the
loss factor for thin damping layers.

Loss factor

Exact solution ~1/h
1.000 -

Effective radius of gyration

0.100 |

0.010 |

0.001
2.54

254 254
Fluid film thickness (microns)

2540

Figure 3.18 Relationship between effective radius of gyration d and damping factor.
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2. The general trend of a high pass filter can be achieved by using an
exponential function:

f()=1-exp”© (3.14)
3. The function f' goes with the ratio between A, and 4;.
4. The function 1" goes with the square of the boundary condition parameter A.
5. The function f"' does not depend on the length of the beam L.
The five observations were used to develop an expression for /' that satisfied all 160
finite element results, as well as countless simulations. This function takes the

dimensionless quantity /' and multiplies it by the characteristic length 0.5 (k, + h;), as
shown below.

S
2 g (3.15)
KG'ky
Zp’”A’” (3.16)

where:
K =1 for pin— pin beams
K =2.21 for free — free beams
K =1.32 for cantilever beams (3.17)

This equation is useful for any beam judged to have a damping layer thin enough to
be near the theoretical maximum for a given beam geometry. Figure 3.19 shows a
sample of the ANSYS results, and the corresponding empirical formula results.
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Figure 3.19 ANSYS and empirical results showing the effective radius of gyration
correction factor.

The results shown in Figure 3.19 are typical of the corrected damping factors
predicted by the equations above.

3.4 Maximum Loss Factor in Beams with Complex
Geometries

The designer who understands the fundamentals of the shear damping mechanism will
desire an equation estimating the maximum loss factor that can be obtained for an
arbitrarily complex structure. Such an estimate was found by examining the huge
database that was created during this research. While only an empirical estimate, the
equation is not sensitive to boundary condition or beam length.

n=0.4 EL, -1
El,
EIL, is the bending stiffness of the beam if damping material is assumed to be
infinitely stiff (i.e., the damped beam is solid). The quantity EI, is the bending stiffness
of the beam if the damping material has no stiffness (i.e., the structural components are

completely uncoupled). This equation may be readily applied to optimize a shear damper
design.

(3.18)

3.5 Conclusion

Chapters 2 and 3 have presented the complete analysis of the shear damped beam in
bending. Provided the shear layers are thick enough to prevent a high degree of coupling
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between components, the damping in a beam of arbitrary cross section may be estimated
by:

n= KG'k,’ ¥ Pc}
(‘02 Z pmAm i hi
m (2.44) and (2.57)

where:
G’ =pw for viscous fluids
G’ = Gn for viscoelastic materials
K =1 for pin— pin beams
K =2.21 for free — free beams
K =1.32 for cantilever beams

The maximum amount of damping that may be built into a structure can be predicted
by a convenient empirical formula:
n=0.4 El, _ 1
El,

In the case of a five layer configuration (as well as other similar geometries), the
damping in a shear damped structure may be accurately written as a function of the shear
parameter g and the effective radius of gyration d:

n= KG'ky’ y Pd;}
C')nzmeAm i h'

(3.18)

(3.16)
where:
G2
E§=—F """
kB E3H3H2 (311)
d = M{l_exp(:ﬂj}
2 g (3.15)
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Chapter 4: Implementation of the Shear Damping
Mechanism in Finite Elements

4,1 Introduction

This chapter documents the use of the closed-form theory and finite element model to
estimate the damping in a variety of shear damped structures. Results from a large flat
plate and a multilayer beam are presented with experimental verification.

Finite element modeling of a shear damped beam gives accurate results when used to
estimate the loss factor of bending vibration modes. The finite element and
experimentally measured modal loss factors are in close agreement, a result of the well
modeled behavior of the damping mechanism. This ability to accurately predict the
damping of a structure without building a prototype is a tremendous advantage over other
damping treatments. Furthermore, the optimal structural design for stiffness and damping
may be determined from a finite element approach to the problem.

4.2 Experimental and Finite Element Correlation of a Shear
Damped Flat Plate

A flat plate with free boundary conditions cannot be modeled closed-form for lack of a
analytical mode shape solution (note that only the simply-supported plate can be solved
analytically). The finite element method allows calculation of its modal frequencies,
damping, and mode shapes which are in close agreement with experimental results.

The example will proceed by first verifying the finite element model of the flat plate
without added shear damping. Verification is carried out by comparing analytical and
experimental modal analysis results from the plate. Once verified, the finite element
model will be used to estimate the damping of two similar plates with a thin layer of
viscous fluid between them. A second experimental modal analysis is performed of the
damped structure to compare to finite element results.

4.2.1 Single Plate Finite Element/Experimental Analysis Correlation

The plate used in this case study is an acrylic sheet 41 cm wide, 51 cm long, and 5.4 mm
thick. Acrylic was chosen because, as seen in Chapter 2, materials with low modulus and
density give greater loss factors with thicker fluid films than stiffer materials such as
aluminum and steel. Figure 4.1 summarizes the material properties used in the finite
element model. Poisson's ratio of acrylic was not directly available, but a value of
v=0.25 was chosen based on data taken on similar materials [McClintock and Argon,
1966].
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Plate width 41 cm

Plate length 51 cm

Plate thickness 5.4 mm

Plate density 1200 kg/m3
Plate modulus 4.25 GPa
Plate Poisson's ratio 0.25

Nominal 8-node brick element size 2x2x0.5cm

Figure 4.1 Single sheet plate configuration.

The following sections will show the close agreement between the finite element and
experimental modal analysis results of the single acrylic sheet.

4.2.1.1 Finite Element Analysis

The acrylic plate was modeled with 8-node elastic solid elements. These elements offer
three degrees of freedom at each node (displacements in the x, y, and z-directions).
Meshes of various densities were tested to find a suitable model. A comparison of results
obtained from shell elements was made as a final accuracy check. Figure 4.2 shows the
mesh density of the converged model.

Figure 4.2 Finite element model of the acrylic sheet.

The mode shapes of the plate were obtained through the use of the complex
eigensolver available in ANSYS. Figure 4.3 shows the five bending modes that occur
below 100 Hz.

on=32.8 Hz
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on="78.4 Hz

Figure 4.3 First five mode shapes of a flat plate (obtained from ANSYS).

Once this step was completed, an experimental modal analysis of the single acrylic
plate was performed.

4.2.1.2 Experimental Modal Analysis

The acrylic plate experimental analysis was performed with a force shaker, a low mass
force transducer, and a very low mass accelerometer. The use of low weight transducers
is important during the testing of structures because mass loading effects can distort the
measurements. Measurement point locations such as the corners of the plate undergo a
large deflection, a result of the relatively low stiffness associated with these regions. The
mass of an accelerometer can alter the natural frequency of the plate when placed in these
low stiffness regions. As a result, the collection of frequency responses for the plate
would have discrepancies as the accelerometer is roved around the plate. The use of low
weight transducers minimizes this effect at the expense of some low frequency resolution.
The first mode of the acrylic plate is around 30 Hz, safely within the region that can be
accurately measured with low weight piezoelectric transducers.

Figure 4.4 shows the plate, its compliant supports (which provide a close
approximation of free boundaries), and the location of the test points. The solid dot
indicates the location of the shaker, which was left constant throughout the modal testing.
A single accelerometer was roved around the plate at the locations indicated by the
hollow dots.
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Figure 4.4 Schematic of experimental modal analysis measurement points.

The data collection proceeded by optimizing the setup parameters on a signal
analyzer to give frequency response functions with very high coherence (greater than
0.99). A zoom frequency range was used to avoid the low frequencies where low
transducer output leads to poor coherence. Data filtering (e.g., Hanning or flat top
windows which smooth the data) was not required because the compliant plate supports
effectively isolated the plate from external noise sources. Figure 4.5 shows the setup of
the analyzer used to collect the response functions.

Frequency span 15to 115 Hz

Frequency resolution 0.125 Hz (8 second sample time)
Excitation waveform Burst random (90 percent duration)
Windowing Uniform (none)

Number of averages 25

Curve fitting technique Polyreference (frequency domain)

Figure 4.5 Data collection and modal analysis parameters.

The data collected in the experimental modal analysis are summarized in Figure 4.6.
Although the first two modes of vibration are of primary interest, higher modes are
included for completeness. The natural frequencies of the modes given by the ANSYS
simulations are also listed for comparison. In general, the experimental and finite
element data are in close agreement.
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Mode Experimental ANSYS nat. No. of 1/2 No. of 172

no. nat. freq. (Hz) freq. (Hz) wavelengths wavelengths
on short side on long side

1 33.1 32.8 1 1

2 41.5 40.9 0 2

3 66.0 65.9 2 0

4 78.2 78.4 1 2

5 91.4 91.8 2 1

Figure 4.6 Summary of the first five plate bending modes.

Figure 4.7 shows the first five bending modes of the flat plate measured
experimentally and processed in the STARModal analysis software. The 30 test locations
were not centered exactly on the plate, so the mode shapes are not quite symmetrical on
the wireframe model. The data are of excellent quality, and show the correct second

order bending of the plate in modes 2 and 3.
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Figure 4.7 First five bending modes of the plate from experimental modal analysis.

Based on the close agreement of the ANSYS results and experimental modal data,
the model is considered to be accurate and the viscous fluid damped plate may now be
considered.

4.2.2 Viscous Fluid Damped (Double Plate) Analysis

The analysis of the fluid damped plate will proceed by first considering the finite element
model and then the experimental results. As will be shown, the finite element model is
very effective at predicting the amount of damping available in a fluid damped plate. The
plate configuration used for the comparison is the same as the single plate tests, except
now two plates are used with a thin fluid layer between them.

Thin plates require large numbers of brick elements to keep the element aspect ratio
reasonably low. The wavefront of such a model can become large enough that a PC
cannot quickly solve the problem because of time and hardware constraints. In order to
simulate the performance of a thin plate assemblage with very thin fluid film thicknesses,
a finer mesh is required. In practice, the fluid damping mechanism does not introduce
high shear stresses for realizable film thicknesses. As a result, the mesh density
requirements are greatly reduced and a PC can easily compute the amount of damping
that may be obtained from a shear damped plate.

4.2.2.1 Finite Element Analysis

The finite element analysis of the fluid damped plate was made with a model containing
the parameters listed in Figure 4.8. Note the correction factor that is needed to account
for the slight decrease in the apparent viscosity of the fluid at higher shear rates. The
plate modes encountered in this study were in the range of 30 to 100 Hz. The apparent
viscosity at 50 Hz is 80 percent of the nominal viscosity.
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Plate width 41 cm

Plate length 51 cm

Plate thickness 0.5 mm

Plate density 1200 kg/m3
Plate modulus 4.25 GPa
Plate Poisson's ratio 0.25

Fluid thickness 500 microns
Fluid viscosity 100 kg/m-s
Fluid frequency dependence correction factor 80 %
Nominal 8-node brick element size 2x2x0.5cm

Figure 4.8 Fluid damped plate geometry and materials.

The finite element simulations of the fluid damped plate show two important results.
The first is that the mode shapes are essentially identical between the single plate and the
fluid damped, double plate. The second result is that the amount of damping available
from a plate design shows the same linear behavior as the fluid damped beams. As
expected, if the fluid film thickness is halved, then the amount of damping is doubled.
The loss factors obtained from the finite element analysis will be shown in the next
section for comparison with the experimental measurements.

4.2.2.2 Experimental Modal Analysis of the Damped Plate

The shear damped, double plate was tested experimentally using the same modal analysis
setup as the single plate testing. Data were taken on both plates to investigate the
compliance of the fluid layer in the transverse (vertical) direction. Figure 4.9 shows the
setup used in the data collection and modal analysis.

Frequency span 15t0o 115 Hz

Frequency resolution 0.125 Hz

Excitation waveform Burst random (90 percent duration)
Windowing Uniform (none)

Number of averages 25

Curve fit Polyreference (frequency domain)

Figure 4.9 Data collection and modal analysis parameters.

Figure 4.10 shows the results of the experimental tests alongside the results from the
finite elements analysis.
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Mode ANSYS nat. ANSYS Experimental Experimental
no. freq. (Hz) damping nat. freq. (Hz) damping
1 32.8 10.2% 35 11%
2 41.0 15.4% 45 15%
3 66.2 14.1% 66 10%
4 78.7 10.3% 81 10%

Figure 4.10 Summary of finite element and experimental damped plate analysis.

As can be seen in Figure 4.10, the finite element results are in reasonable agreement
with the experimental measurements. The slight error in the higher modes is due to the
viscosity correction used in the finite element model. Therefore, the reported
experimental natural frequencies and modal damping factors are less accurate for modes
away from the corrected frequency.

In general, the modal damping is very high (first mode damping factor of 0.1, loss
factor of 0.2). Additional measurements were made with other film thicknesses in an
effort to achieve even higher levels of damping. Figure 4.11 shows a sample frequency
response from these tests. In this case, all of the modal damping factors exceed 0.15 (a
loss factor of 0.3). The mode numbers are shown for reference with the modes
documented in the previous sections (note that the modal frequencies have increased).

Mag A/F (g/N) in dB
100 T 3 4 6
1 5
2
10 +
1 — — } —+ } — Hz
20 40 60 80 100 120 140

Figure 4.11 Drive point frequency response function of a well damped plate.

4.3 Experimental and Finite Element Correlation of Fluid
Damping in a Slender Beam

A one meter beam was studied to find the optimal viscous fluid shear damper design.

Two design questions were investigated during the optimization: 1) how does the low

stiffness epoxy effect the amount of damping that may be obtained, and 2) what is the
importance of the shear member thickness. The finite element method was used to
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efficiently collect a large database of information, the results of which are shown on the
following pages. Figure 4.12 shows the geometry of the beam studied in this
optimization procedure.

VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Shear member

\\\\\‘
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Figure 4.12 Schematic of the one meter beam optimization parameters.

The composite beam studied in this example closely models an actual structure with
viscous fluid damping. As shown in the schematic, there is a large core section and two
shear members. In the real implementation, low stiffness epoxy layers are used to
replicate the shear members into the main structure. The analyses performed in this
optimization includes the lower stiffness of the epoxy layers to obtain results closely
simulating actual structures.

The seven layer beam was optimized by first developing a very large database of
dynamic performance results in ANSYS and then drawing conclusions from the results.
Figure 4.13 shows the parameters investigated in the optimization.

Beam length Im

Beam width 75 mm

Boundary conditions free

Nominal natural frequency 500 Hz

Nominal fluid viscosity 15 kg/m-s

Core height 75 mm

Fluid heights tested octaves from 2.5 to
5000 microns

Shear member heights tested 3,6, and 12 mm

Epoxy heights tested 0, 3, and 6 mm

Beam materials tested aluminum, steel

Shear member materials tested aluminum, steel

Figure 4.13 Seven layer beam parameters and variables.

A five variable test matrix was set up for the optimization problem: beam material,
shear member material, fluid layer thickness, shear member height, and epoxy layer
thickness. 400 finite element runs were performed (one for each combination of
variables) and the natural frequency and damping factor of the first bending mode was
recorded for each. The following four figures show the loss factor as a function of the
other four variables.
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Figure 4.14 shows the dynamic performance of an aluminum beam damped with
steel shear members. This is the most logical combination of materials for achieving the
maximum damping because the impedances of the beam core and shear members are the
most favorable.

Loss factor (n )
1

01 +
Hshear = 12 mm &

Hshear=6 mm =
—3— Hepoxy =0 mm
—a—— Hepoxy =3 mm
—=u—— Hepoxy =6 mm

Hshear =3 mm »

0.01

T

0.001 — % = : +
0.0000001 0.000001 0.00001 0.0001 0.001
Fluid layer thickness (m)

Figure 4.14 Loss factor as a function of fluid film thickness for an aluminum beam with
steel shear members.

As shown in Figure 4.14, the damping in beams with fluid layer thicknesses above
the critical thickness are not strongly affected by the shear member thickness. The
performance of beams with thinner films shows greater dependence on the shear member
height. Also shown is the minimal importance of the epoxy layer thickness, even below
the critical film thickness.

Figure 4.15 shows the same plot made for a steel beam damped with steel shear
members. The trends are similar to those shown in Figure 4.14, but the maximum
damping levels are slightly lower.

70



Loss factor (n )
1 -

-
01 —
Hshear =12 mm
Hshear=6 mm &
—o— Hepoxy =0 mm
001 - —a— Hepoxy = 3 mm
Hshear=3mm @& —=a— Hepoxy =6 mm
0.001 —+— +— f } %

0.0000001 0.000001 0.00001 0.0001 0.001
Fluid layer thickness (m)

Figure 4.15 Loss factor as a function of fluid film thickness for a steel beam with steel
shear members.

Figure 4.16 shows the damping results of a steel beam damped with aluminum shear
members. This combination is the least favorable from the standpoint of impedance
matching. Note that the maximum loss factor is less than 0.2 and that the critical film
thicknesses occur at much higher levels than in the aluminum beam with steel shear
members.
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Figure 4.16 Loss factor as a function of fluid film thickness for a steel beam with
aluminum shear members.

Figure 4.17 shows the final beam/shear member material combination (an aluminum
core with aluminum shear members). Note that the all-aluminum beam performs very
similarly to the all-steel beam in Figure 4.15.
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Figure 4.17 Loss factor as a function of fluid film thickness for an aluminum beam with
aluminum shear members.

Investigation of the database revealed some important results concerning the
performance of a multilayer beam:

1. The amount of damping that can be built into a typical structure is not
significantly affected by thin layers of low stiffness epoxy. In general, the
epoxy layer thickness is not important on either side of the critical fluid film
thickness because the epoxy has a stiffness higher than the damping material.

2. The thickness of the shear members is important below the critical damping
layer thickness. The thicker the shear member, the thinner the fluid layer
must be to reach the critical thickness. Larger shear members are beneficial
above the critical thickness because they offer a larger effective radius of
gyration, below critical they resist elongation better than thin shear members.

3. The critical film thickness is typically far below the limit of the current
manufacturing technology (for viscous fluids). For this reason, the behavior
of a physically realizable beam will be adequately predicted by the general
damping formula, which is valid for a structure of any number of layers.
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Figure 4.18 shows the finite element results of a seven layer, fluid damped beam
with an epoxy layer. Also plotted are the values obtained by the five layer beam analysis
developed in Chapter 3.

Loss factor (n )
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Fluid layer thickness (in)

Figure 4.18 Predicted and actual loss factors as a function of the fluid thickness (an
aluminum beam with aluminum shear members).

The five layer beam equation, when applied to the seven layer beams used in this
study, works reasonably well. The five layer equation accurately predicts the critical
thickness, and exactly matches the damping values for film thicknesses above critical.
The damping in beams with fluid films thinner than the critical thickness are less
accurately predicted, but the overall trend is still apparent.

4.3.1 Investigation of Quadruple Shear Member Design

A quadruple strip shear damper design was studied to investigate the effects of multiple
damping layers in a structure. The one meter long geometry was kept, including the 75
mm core beam height. Figure 4.19 shows the two-dimensional model of the quadruple
strip shear damper design.
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Figure 4.19 Schematic of the quadruple shear member beam.

The study was performed in the same manner as the seven layer shear damping
investigation outlined in the previous section; however, the epoxy layer thickness was
kept at a constant 6 mm. This simplification was made because the results from the
double strip damper designs indicate that the epoxy layer thickness is less important than
other factors. The shear member thickness was also fixed at 6 mm.

As before, the beams were simulated in finite elements with both aluminum and steel
cores. As expected, the aluminum core beams showed more damping than the steel core
beams (by approximately a factor of three, the ratio between Egeel/Equm). Figure 4.20
shows the results for aluminum core beams with double and quadruple aluminum
damping strips.

Loss factor (1 )
1.

l

0.1 4

4
steel strips <
2
4 y
0.01 L alum. strips < /
2

.

0.000001 0.00001 0.0001 0.001
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Figure 4.20 Damping factor of aluminum beam with 2 and 4 damping strips.

The interesting result of the quadruple damping member testing is that there is no
benefit to having multiple layers of damping shear members above the critical damping
layer thicknesses. Current manufacturing technology allows production of fluid films in
the neighborhood of 25 microns thick, which is above critical for most materials.
Viscoelastic materials are available that allow a particular design to reach or exceed the
optimal damping layer thickness. As a result, using more than one damping layer only
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adds damping in some viscoelastic designs. This simplifies the design of fluid damped
structures.

4,4 Conclusion

The shear damping theory that has been presented in this dissertation has provided a
closed-form equation for the loss factor that may be obtained in a given structure. The
theory developed in Chapter 2 accurately predicts the amount of damping in a beam for
any combination of beam materials and laminates. This theory is valid whenever the
shear layer thickness is above the critical thickness (which is often only 10 microns for
fluid damping applications). Chapter 3 provides an investigation of the stiffening effects
for a five layer beam. This work generalizes the damping calculation for any damping
layer thickness; however, the beam is assumed to be of a single material and constructed
of five components of equal width (one main beam, two damping layers, and two
symmetric shear members). This theory, while based on several specific assumptions, is
useful because it provides an understanding of the coupling in a beam with very thin
damping layers. Furthermore, the theory works very well even for beams that do not
exactly fit the five layer model. For example, the seven layer beam shown in Figure 4.12
can be reasonably well predicted by the structural coupling model.

The results presented in this chapter illustrate the relative ease with which the shear
damping mechanism can be modeled using finite elements. The close agreement between
the finite element and analytical results further validate the analytical model of the
damping mechanism. More importantly, the damping available in viscous fluid damped
structures has been shown to be fully predictable without the burden of building and
measuring a prototype.

4.5 References

McClintock, Frank, and Ali Argon, Mechanical Behavior of Materials, Addison-Wesley
Publishing Co., Reading, MA, 1966.

4.6 Sample of ANSYS Finite Element Simulations

The ANSYS code that was used to make the plate and beam models has been included in
this section so that the analysis technique is readily available to the designer.

4.6.1 Single Plate Model

Wl=.61 ! Plate width

W2=.51 ! Plate depth

T1l=.0054 ! Brick thickness

D1=.02 ! Element size

/PREP7 ! Enter the preprocessor
/VIEW,,-1,.25,.9

ET,1,45
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MP,EX,1,4.5E9 ! Define material properties
MP,DENS,1,1190

MP,NUXY, 1, .25

K,1,0,0 ! Generate the plate volume
K,2,W1

W1, W2

, W2

,T1

K,3
K, 4,,
K,5,0
L,1,5
A, 1,2

’

’

’
, 3,4

VDRAG,1,,,,.,,1

ESIZE,D1

VMESH, ALL ! Mesh the volume
SAVE

FINISH

7

/SOLU ! Enter the solver
ANTYPE, MODAL

MODOPT, SUBSP, 10,5

SAVE

SOLVE

FINISH

/SOLU ! Expand the mode shapes
EXPASS,ON

MXPAND, 10

SOLVE

FINISH

4.6.2 Damped Double Plate ANSYS Model

W1=20.2%*.0254 ! Plate width

W2=16.2%*.0254 ! Plate depth

T1=.0054 ! Plate thickness

GAP=.010%*.0254 ! Fluid thickness

D1=.06 ! Element size

FAC=.20 ! Damping factor

EL1=NINT (W1/D1) ! Number of elements along side 1
EL2=NINT (W2/D1) ! Number of elements along side 2
NNUM= (EL1+1) * (EL2+1) ! Number of nodes in one plate surface
C1=FAC*600* (W1*W2/ (EL1*EL2) ) /GAP ! Damping coefficient

/PREP7 ! Enter the preprocessor
/VIEW,,-1,.25,.9

ET, 1,45

ET,2,14,,1 ! Damper x-dir element

ET,3,14,,3 ! Damper z-dir element

ET,4,14,,2 ! Compressibility spring element
R,2,0,C1

R,3,0,C1

R,4,1E5

MP,EX,1,4.5E9 ! Define material properties

MP,DENS,1,1180
MP,NUXY, 1, .25

K,1,0,0 ! Generate the plate volume
KGEN,EL1+1,1,,,W1/EL1

KGEN, EL2+1,ALL,,,, ,W2/EL2

KGEN, 2,ALL,,,,GAP
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*DO, INCR, 1, NNUM
L, INCR, NNUM+INCR
*ENDDO

TYPE, 2 S$REAL,2
LESIZE, ALL,GAP
LMESH, ALL

LGEN, 3,1,NNUM,1,0,,,,1

*DO, INC2, 1, NNUM

L, 2*NNUM+ (2* INC2-1) , 2*NNUM+ (2*INC2)
*ENDDO

LSEL, S, LINE, ,NNUM+1, 2 *NNUM
LESIZE,ALL,GAP

TYPE,3 $REAL,3

LMESH, ALL

*DO, INC3, 1, NNUM

L, 4*NNUM+ (2*INC3-1) , 4*NNUM+ (2* INC3)
*ENDDO

LSEL, S, LINE, , 2*NNUM+1, 3 *NNUM
LESIZE,ALL, GAP

TYPE, 4 S$REAL,4

LMESH, ALL

A,1,EL1+1,NNUM, NNUM-EL1

! Generate the x-direction dampers

! Generate the z-direction dampers

! Generate the y-direction springs

! Mesh the two plates

A, 1+NNUM, EL1+1+NNUM, NNUM+NNUM, NNUM-EL1+NNUM

LSEL, S, LINE, , 3*NNUM+1, 3 *NNUM+7, 2
LESIZE,ALL,,,EL1

LSEL, S, LINE, , 3*NNUM+2, 3 *NNUM+8, 2
LESIZE,ALL, ,,EL2

K,10000,0,-T1

K,10001,0,GAP+T1

L,1,10000

L, 1+NNUM, 10001

LSEL, S,LINE, , 3*NNUM+9, 3*NNUM+10, 1
LESIZE,ALL, T1

ALLSEL

VDRAG,1,,,,,,3*NNUM+8+1

VDRAG, 2, ,,,,,3*NNUM+8+2

TYPE, 1

VMESH, ALL

NUMMRG, NODE
wsort,all
SAVE

FINISH

/SOLU

ANTYPE, MODAL
MODOPT,DAMP, 16,5
SAVE

SOLVE

FINISH

/SOLU
EXPASS, ON
MXPAND, 16
SOLVE
FINISH

! Enter the solver

! Expand the mode shapes
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4.6.3 Replicated Beam ANSYS Model

C1=15*B1*L1/ (GAP*LNUM)
K1=BULK*B1*L1/ (GAP*LNUM)

H1=3%*,0254 !
Ll=1 !
GAP=.001*.0254 !
HMOG=.25%*.0254 !
HCON=.25%*,0254 !
Bl=3*.0254 !
BULK=2.2E9 !
LNUM=20 !
LNOD=LNUM+1 !

!

!

/PREP7
ET,1,42,,,3
ET,2,14,,1
ET,3,14,,2
ET, 4,14,,,2
R,1,B1
R,2,0,C1
R,3,K1

R, 4,250
MP,EX,1, 70E9 !
MP,DENS, 1,2700

MP,NUXY, 1, .3

MP,EX,2, .69E9

MP, DENS, 2,1200

MP,NUXY, 2, .3

MP,EX, 3, 205E9

MP,DENS, 3, 7850

MP,NUXY, 3, .25

K,1,0,0 !

, HCON+GAP+HMOG +H1+HMOG
, HCON+GAP +HMOG +H1+HMOG+GAP

, 0, HCON+GAP+HMOG+H1 +HMOG+GAP +HCON
EN,2,1,8,1,L1

N,1,0,HCON !
N, 2,0, HCON+GAP

NGEN, LNOD, 2,1,2,1,L1/LNUM

N, 2*LNOD+1, 0, HCON+GAP+HMOG+H1 +HMOG

N, 2*LNOD+2, 0, HCON+GAP+HMOG+H1 +HMOG+GAP
NGEN, LNOD, 2, 2*LNOD+1, 2*LNOD+2, 1, L1 /LNUM
N, 4*LNOD+1, 0, 5*H1

N, 4*LNOD+2, L1, 5%H1

TYPE, 2

REAL, 2

E,1,2

EGEN, 2*LNOD, 2, 1

TYPE, 3

REAL, 3

E, 1,2

EGEN, 2*LNOD, 2, 2*LNOD+1

TYPE, 4

REAL, 4

K,2,0
K,3,0
K,4,0
K,5, 0, HCON+GAP+HMOG+H1
K,6,0
K,7,0
K,8,0
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E, 2*LNOD+2, 4*LNOD+1
E, 4*LNOD, 4 *LNOD+2
A,1,9,10,2
A,4,12,13,5
A,7,15,16,8
A,3,11,12,4
A,5,13,14,6
LESIZE,ALL,L1/LNUM
TYPE, 1

REAL, 1

MAT, 1

AMESH, 2

TYPE, 1

REAL, 1

MAT, 3

AMESH, 1,3,2

TYPE, 1

REAL,1

MAT, 2

AMESH, 4,5,1
D,4*LNOD+1,UX,0,,4*LNOD+2,1,UY
NUMMRG, NODE, 1E-7
WSORT, all
/pbc,all,1

EPLOT

SAVE

FINISH

/SOLU

ANTYPE, MODAL
MODOPT, DAMP, 6,200
SOLVE

FINISH

/SOLU
EXPASS,ON
MXPAND, 6
SOLVE
FINISH
/CLEAR
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Chapter S: Use of the Shear Damping Mechanism to
Control Boring Bar Chatter

5.1 Introduction

The shear damping mechanism was used to address the problem of boring bar chatter. A
critical issue in boring bar design is the amount of overhang that may be safely used
without inducing chatter in the tool. The overhang of a boring bar, the ratio between the
length of the bar extending beyond the fixture and the bar diameter, is the dimensionless
parameter used to decide which boring bar design is the most appropriate for a given task.
Steel shank bars may be used with overhang ratios up to about 3:1 or 4:1 without chatter
in a material such as medium steel. Much costlier tungsten carbide boring bars may be
used with overhang ratios of 8:1. The high cost of the carbide bars has led to a great deal
of work with passive damping treatments in steel shank bars. Historically, these
innovations have met with varying success, usually at a significant added expense [Alev,
1969; Peter and VanHerck, 1969; New and Au, 1980; Rao, Rao, and Rao, 1988; Rivin
and Kang, 1989].

In practice, chatter results from instability in boring bars performing boring/profiling
operations. Compliant fixturing, incorrect machine spindle speed, improper feed rate,
etc., can all result in excessive chatter and unacceptable surface finishes. A boring bar
capable of precision turning at higher overhang ratios would be useful in one pass
machining of parts such as journal bearing lands in engine blocks and deep profiles in
long cylinders.

This effort was undertaken fairly early on in the shear damping research; the boring
bar problem was an ambitious project, but the program has resulted in some important
progress. At present, boring bars have been made with first bending mode loss factors of
0.3 in free-free vibration.

5.2 Background

The vibration mode which plagues deep boring operations is not the more common
forced vibration that results from sources like spindle imbalance, but rather self-excited
vibration. The forces which result in self-excited vibration originate from the cutting
process itself, not an external source. This type of regenerative instability can occur
when the tool encounters a small imperfection in the work piece. When the workpiece
rotates 360 degrees in the lathe, the tool may not feed all the way past the imperfection so
the tool will encounter what amounts to a slightly larger imperfection. This instability
will continue until the tool leaves large chatter marks on the turned work (nonlinearity in
the boring bar will eventually limit its maximum displacement).
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This type of chatter represents a type of unstable closed-loop feedback between the
work and the tool. An error is sent to the tool by the work and is fed back to the work by
the tool. There are several known solutions to reduce the instability problem.

1. The most common method is to adjust the spindle speed so that natural
frequencies of the boring bar are avoided. This will increase the dynamic
stiffness of the boring bar, thereby reducing the tendency to chatter.

2. Adjusting the machine feed rate may also reduce chatter. In some cases, the
boring bar can be effectively preloaded by increasing the feed rate of the
machine axes, and actually reduce chatter. In other cases, the feed can be
decreased to result in a smaller cutting force which can also decrease chatter.

3. The tool geometry can be adjusted to reduce the cutting forces, possibly at
the expense of surface finish.

As the list indicates, tool chatter is a difficult problem to analyze and in many cases,
there are no convenient solutions to real world problems. The motivation for applying
the shear damping mechanism was to increase the dynamic stability of the boring bar so
that tool chatter could be reduced for a variety of machining conditions.

5.3 Development of the Shear Damped Boring Bar

The shear damping concept has been shown to be an effective means of damping a
structure undergoing bending vibration. Because a chattering boring bar shows bending
vibration (as well as some torsional vibration), the damping mechanism was implemented
in a number of boring bar designs to find the optimal shear damped configuration.

The finite element solutions outlined in the previous sections were unavailable at the
time of the testing (the appropriate three-dimensional meshes were too large for PC finite
element codes). Therefore, numerical analyses and some engineering judgment were
used to develop a number of potential designs. The boring bars selected for this study are
35 cm long, 3.8 cm in diameter, and made of low carbon steel.

5.3.1 Design of the Shear Damped Boring Bar

The design constraints were determined by considering the static strength of the boring
bar. Because the damping mechanism is placed on the inside of the hollow shanks, the
maximum allowable core size is calculated. Figure 5.1 shows the natural frequency and
stiffness of a steel shank as a function of the ratio of wall thickness to outside diameter.
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Figure 5.1 Dynamic performance of a steel boring bar shank as a function of wall
thickness.

A convenient choice for the inside diameter of a 3.8 cm diameter steel shank is
2.54 cm. This corresponds to a wall thickness to outer diameter ratio of 0.167. The
stiffness of the hollow shank is only 10 percent less than the stiffness of a solid bar and a
reasonable amount of space is left inside the boring bar shank for the shear damping
components. The strength to weight ratio of the hollow bar is greater than the solid bar,
so the natural frequency is about 20 percent higher.

Many shear tube configurations were cast into the boring bars to find the best
configuration. Shear members were designed and cast into the bars with replicating
material filling the annulus between the shear members and the steel shank. Figure 5.2
shows three boring bar designs that were manufactured and tested in the lathe. Designs
(a), (b), and (c) were tested with viscous fluid layers and designs (a) and (c) were tested
with viscoelastic damping layers.

®

Figure 5.2 Boring bar designs using the viscous shear damping concept.

The quality of each boring bar design was assessed by two methods. The first
method was a measurement of the damping in free-free bending vibration. The second
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method was to run cutting tests in a NC lathe and examine the surface finish of the cut
metal samples.

The free-free bending vibration performance indicated the amount of damping
obtained from a particular shear member configuration. This testing was performed using
experimental modal analysis. These tests ignored the effects of boring bar/lathe
interaction and served as a good preliminary indication of the damping of each design.
The performance of each bar was measured using an impulse hammer and an
accelerometer.

The damped boring bars showed much better free vibration characteristics than the
solid boring bars. Figure 5.3 shows a time response of a solid bar, as obtained from the
manufacturer. As shown, the bar has very light damping (n = 0.0004). Figure 5.3 also
shows a typical damped boring bar design, the second bar shown in Figure 5.2(a) (n =
0.3). The loss factor in the damped boring bar is almost 1000 times greater than the
undamped bar.
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Figure 5.3 Vibration time history of a damped and undamped (solid) boring bar (in
seconds).

The second part of the evaluative testing, the lathe cutting tests, were performed on
hot-rolled 4140, 10 cm round stock. Two sets of tests were made on the 4140 steel
samples for each bar: a heavy roughing cut and a light finishing cut. Figure 5.4 outlines
the parameters of the cutting tests.

Roughing cut Finishing cut
Depth of cut 2.54 mm 0.64 mm
Spindle speed 350 fpm 350 fpm
Feed per revolution 125 microns 12.5 microns
Insert type Valenite general purpose Kennametal finishing ceramic
uncoated carbide (VC5) /metal binder (KT175)

Figure 5.4 Lathe test cutting parameters.
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All of the cutting tests were run with an overhang ratio of 8:1, regardless of the
boring bar that was being tested (solid steel, damped steel, or tungsten carbide). In
general, the carbide shank boring bars offer the best performance; however, in some cases
the shear damped boring bars offer very good performance.

Figure 5.5 summarizes some typical results from cutting tests. The solid boring bar
chattered in heavy cutting and produced unacceptable surface finishes. The shear damped
designs sometimes gave excellent surface finishes under heavy cutting conditions
(although the shear damped designs also showed heavy chatter in other trials). In
finishing cut testing, the shear damped designs out-performed the solid bars (although the
difference in performance is less pronounced). The surface finishes obtained in the
finishing cut tests were not as good as the heavy cut tests.

Roughing cut Finishing cut
Solid bar fair/poor fair/poor
Cluster design Fig 5.2(b) excellent/poor good/poor
Slice design Fig 5.2(a) excellent/poor good/poor

Figure 5.5 Typical lathe test resuits.

Figure 5.5 shows two ratings for the shear damped boring bar designs
(excellent/poor and good/poor). This is because the boring bars gave surface finishes that
varied as the cutting inserts were worn in. During the cutting testing, it was found that
the carbide inserts worked best if they were worn so that the cutting edge took on a honed
surface. Both the solid and shear damped boring bars produced significantly better
surfaces once the inserts had been worn in. Valenite and Kennametal confirmed that this
is a common observation.

Neither the shear damped nor the solid steel boring bars were capable of repeatably
producing chatter-free cuts with fresh inserts. When the inserts were worn in, both
designs had an increased probability of producing good surface finish cuts (the difference
being that even with a honed tool, the solid bars were difficult to tune for chatter-free
performance). The shear damped boring bars had enough added stability to give much
more predictable performance when the tool was worn in.

The result of this testing is that under certain conditions, the shear damped boring
bars were found to produce excellent quality surface finishes, even in very heavy cuts
(2.5 mm). This is a substantial improvement over conventional solid shank boring bars
because the window of lathe operating conditions giving satisfactory cutting performance
is larger. The difficulty is that the insert wear that is necessary to achieve these good
results is not easily quantified, and somewhat tricky to achieve.
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5.3.2 [Evaluative Testing Using 5 cm Boring Bars

The results of the first round of lathe cutting tests suggests that the shear damped boring
bar designs help increase the operating window in which cuts can be made without
chatter. To further investigate the feasibility of using the damping mechanism in boring
bars, a second round of cutting tests was performed with 5 cm diameter boring bars
(loaned to the project by Kennametal).

The cutting tests with the 5 cm boring bars included a comparison of shear damped
boring bars to commercially available bars such as tungsten carbide designs with impact
dampers built into the shank. Figure 5.6 summarizes the size and construction of the
three bars tested.

Bar 1 Bar 2 Bar 3
Shank construction solid steel shank tungsten carbide on | hollow steel with shear
material steel core damping components
Length 40 cm 50 cm 50 cm
Approx. Cost $350 $3600 $700
Overhang ratio 3:1to 4:1 6:1to 8:1 77?7

Figure 5.6 Construction and geometry of 5 cm boring bars.

Figure 5.7 shows the shear damper design used in the modified boring bar. Note that
this design is adapted from the 3.8 cm boring bar design that gave the best results in the
first round vibration and cutting tests.

5 cm O.D. shank (4.2 cm L.D.)

76 fluid-covered square rods (1.6 mm by 1.6 mm)

Moglice replicating epoxy

X NN A

) -

Figure 5.7 Cross section of 5 cm damped boring bar design.

A 3 x3 x3 cutting test matrix was constructed to evaluate the three boring bars'
performance (this matrix is identical to the test procedure used by Kennametal's tooling
engineers). The test matrix variables are cutting speed (in feet per minute), tool feed rate
(in inches per revolution), and depth of cut (inches). The inserts used in the cutting tests
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were identical and changed for each new boring bar. This means that each insert face was
used for less than three minutes of actual cutting (the inserts were not used long enough
to reach the honed state that was found to be desirable in the earlier testing).

Every effort was made to keep the cutting conditions consistent between tests with
each bar. The boring bar designs featured an interchangeable head design so the same
tool head was used with each bar. The repeatability of the cutting results was also
investigated by completely disassembling the boring bar and insert holder and then
reinstalling and repeating the cutting matrix with a fresh insert. The repeatability of the
cutting tests was very good. All tests were run with coolant. The cutting material was
hot rolled 4140 steel with a nominal diameter of 10 cm. The overhang ratio for the
testing was 6.5:1.

An informal evaluation scheme was developed to quantify the quality of each cut
surface. Figure 5.8 shows the scheme used in the testing. In general, any part with a
surface finish rating of an A or B would be acceptable for many applications. Grades of
D or better would be required for parts that would be finished with a final grinding
operation. Machined parts receiving a grade of F generally had very poor surface
finishes.

Grade
Excellent, mirror-like finish A
Very good, near mirror-like finish B
Good, smooth finish with light scratches C
Poor, fairly rough finish or smooth with light chatter D
Chatter, unacceptable finish F

Figure 5.8 Evaluation scheme used in round two cutting tests.

Figure 5.9 shows the test matrix results of the solid 5 cm boring bar. Note that most
of the surface finishes received a D rating, indicating that the machined part was fairly
rough.

Speed (fpm) 315 450 540

Feed (ipr) || 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008
DOC: 0.020" | D+ D D D D+ C D C B
DOC: 0.030"}| D D D D D+ C D C B
DOC: 0.050" D D D D C- C D C B
DOC: 0.100" | D+ D C- C F B+ B F B

Figure 5.9 Results of cutting tests with 6.5:1 overhang ratio (solid boring bar).
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Figure 5.10 shows the results of the cutting test matrix with the shear damped boring
bar. On the average, the results are very similar to the solid boring bar. These results
verify the conclusions of the testing performed on the 3.8 cm boring bars; the fresh inserts
do not work well with either the solid or the shear damped boring bar.

Speed (fpm) 315 450 540

Feed (ipr) | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008
DOC: 0.020" D D D D D- D D D C-
DOC: 0.030" D D D D D- D+ D D C-
DOC: 0.050" || C- D+ D+ C D- C- Cc+ D- C
DOC: 0.100" || D- F C B F F A D F

Figure 5.10 Results of cutting tests with 6.5:1 overhang ratio (shear damped boring bar).

Figure 5.11 shows the results of the cutting tests run on the tungsten carbide boring
bar. With the exception of the tests run at the slowest spindle speed, at least one axis feed
rate gave very good results for each depth of cut.

Speed (fpm) 315 450 540

Feed (ipr) | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008 { 0.002 | 0.004 | 0.008
DOC: 0.020" D D D+ A- C C+ A B+ B-
DOC: 0.030" D C- C C+ C+ B- A A B
DOC: 0.050" | D- C- C+ A- A- B+ A A A-
DOC: 0.100" A B+ B- B A B+ B A A-

Figure 5.11 Results of cutting tests with 6.5:1 overhang ratio (carbide boring bar).

This round of testing confirmed the findings of the earlier testing: the fresh cutting
inserts gave poor results for the solid shank and shear damped boring bars. The carbide
bars performed much better, but also had to be run within a certain operating window
(that may not be known a priori).

5.3.3 Further Testing Using S cm Boring Bars

As a final investigation of the performance of the shear damped boring bars, the overhang
ratio was extended to 8.5:1 and the shear damped boring bar and the tungsten carbide
boring bar were re-run through the 3 x 3 x 3 cutting test matrix. This time, the shear
damped boring bar was run with a fresh insert, as well as a "honed" insert for comparison.
Figure 5.12 shows the shear damped boring bar results using fresh inserts.
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Speed (fpm) 315 450 540

Feed (ipr) 1 0.002 { 0.004 | 0.008 | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008
DOC: 0.020" F F F F F F F F F
DOC: 0.030" F F F F F F F F F
DOC: 0.050" F F F F F F F F F
DOC: 0.100" F F F F F F F F F

Figure 5.12 Results of tests with 8.5:1 overhang ratio (shear damped, new inserts).

Clearly the shear damped boring bar performed unacceptably when subjected to
extreme cutting conditions. Figure 5.13 shows the results of the same boring bar run with
the honed inserts.

Speed (fpm) 315 450 540
Feed (ipr) || 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008
DOC: 0.020" [ D D D D D | D+ [ D D C
DOC: 0.030" | D D p | p+ | D | D+ [ Dr | D C
Doc:0050"] D | D+ | D+ | D C- C B B+ B
DOC: 0.100" | B c+ | ¢+ [ A | B+ B B B A-

Figure 5.13 Results of tests with 8.5:1 overhang ratio (shear damped, worn in inserts).

With the very high overhang ratio, the honed inserts still gave some chatter, but in
comparison to Figure 5.14, the shear damped boring bar with honed inserts showed
performance similar to that of the carbide boring bar.

Speed (fpm) 315 450 540
Feed (ipr) | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008 | 0.002 | 0.004 | 0.008
DOC: 0.020" || B- D | D+ | B- A B C B B
DOC:0.030" | B- | B- C B- A B F B A-
DOC: 0.050" | C B C+ B A B+ C A A-
poc:0.100"] D | B+ | B D F B+ F A A-

Figure S.14 Results of tests with 8.5:1 overhang ratio (carbide boring bar).

The conclusion to be drawn from the extensive testing of the lathe boring bars (much
of which is not documented here for brevity) is that the shear damped boring bar shows
promise, but could not be made to make reliably good cuts without paying special
attention to the cutting inserts. When the inserts were worn in, the performance of the
shear damped boring bar approached that of the carbide bar. This promising result is
important given the extreme expense of carbide tools.
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5.4 Conclusion

The shear damping mechanism has been shown to effectively reduce vibration in boring
bars and structural members such as laminated beams. However, the damped boring bars
did not make a decisive improvement in the turning capabilities of the NC lathe. Several
factors have come to light which explain this outcome. The first is that undamped boring
bars, despite their inherently low internal damping, have reasonably high damping when
fixtured in the lathe. This fact became apparent when a modal analysis was performed on
the undamped boring bar side by side with the damped bar in the lathe turret.

The two bars (shear damped and solid) have virtually indistinguishable dynamic
performance once fixtured in the lathe, as shown in Figure 5.15. The plotted quantity is
the accelerance at the toolpoint of the boring bar as a function of frequency. The
excitation was also applied at the toolpoint, making the plot a drive point measurement.

Mag (A/F) (¢/N)

— - — Slice design (a)
10 -
| ———— Squares design (b)
— - — Undamped bar
1 . 4 Hz
500 600 700 800
= M

0.1 +

0.01 L

Figure 5.15 Frequency response of boring bars in NC lathe.

The results indicate that the total damping available in the fixtured boring bars is
dominated by damping other than in the bar itself. In the case of the undamped bar, the
damping of the bar is low, but the lathe damping is reasonably high, therefore the lathe
damping dominates and the low damping of the bar is not apparent. Similarly, the
damped boring bar, while offering a reasonable amount of damping, does not exceed the
damping in the machine, so again the lathe damping dominates.

S5.4.1 Next Generation Boring Bar

A second generation boring bar was developed near the close of this research. This
boring bar benefited from a much improved understanding of the damping process and a
better knowledge of potential damping materials.
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Unlike the round one and two boring bars, which were made with silicone fluid
damping material, the next generation boring bar was made with a thin viscoelastic layer
in the configuration shown in Figure 5.16. As shown previously, the viscoelastic material
is a much more effective energy dissipater.

Figure 5.16 Boring bar design using viscoelastic damping.

When constructed with a 125 micron thick layer of 3M ScotchDamp ISD-112, this
boring bar design gave a first bending mode loss factor of 0.25. However, lathe testing
indicated an important issue in the design of this bar: although the free-free boundary
condition testing of the bar gave an exceptionally high loss factor, the cantilever mode
was not nearly as high. This is a result of the way the damping shear members are left
free-floating in the steel shank. The shear members need to be attached at the end of the
boring bar to maximize the shearing of the damping material down the length of the bar.

At the time of writing, a new boring bar with provisions to attach the shear members
at the clamped end of the cantilever is being built.
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Chapter 6: Manufacturing with the Shear Damping
Mechanism

6.1 Introduction

This chapter outlines several issues that must be addressed when manufacturing
structures with the shear damping mechanism. These observations are the result of
designing and building literally dozens of structures of various geometry during the
course of this research:

1. If a viscous fluid is used as the damping medium, the layer should be of
uniform thickness over the shear member. This is necessary to achieve the
expected amount of damping. Several methods of applying a uniform fluid
layer have been developed.

2. The replicating epoxy must be pourable into the structure. Vacuum and
positive pressure assisted methods of forcing the epoxy into the structure
were developed.

3. Sharp edges on the shear members must be protected so that the viscous fluid
is not displaced during curing of the epoxy. Edge guards were developed to
keep the fluid distributed over the shear members.

These manufacturing techniques will be discussed in the following chapter so that
the shear damping mechanism may be fully understood by the reader.

6.2 Achieving a Uniform Fluid Coating on Shear Members

The fluid layer must have a smooth uniform thickness and coat all of the shear members
prior to casting into a structure. The viscous behavior of the silicone family of fluids
makes it easy to achieve a smooth layer given sufficient time, but the thickness of the
film is harder to control. Over a period of days, a highly viscous film of fluid will flow
down a vertically oriented shear member (before it is cast into the structure) so that a
sufficiently thin layer is obtained; however, this process may be too slow for practical
structural construction.

The Navier Stokes equations can be used to estimate the time to reach a given film
thickness as a function of the fluid viscosity and the geometry of the shear member. In
the case of beams that are being built up in laminates, the beams can be pre-assembled
and pressed together to squeeze out excess fluid. This speeds up the process
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considerably, and a solution is available to estimate the time required. Of course, a
laminated beam may be checked with a micrometer to determine the exact fluid
thickness.

During the development of the fluid damping mechanism, a third method of
generating smooth, thin fluid films was invented. Provided that the shear member is of
uniform cross section along its length, a tight fitting sleeve can be used to apply a thin
film of fluid. The sleeves may be weighted so that they travel relatively quickly down the
length. For example, a meter long shear member can be coated with a 125 micron fluid
layer in about 30 minutes with a 2 kg sleeve. Many half meter shear members were also
coated in times ranging from 5 to 15 minutes with various fluid film thicknesses and
sleeve weights.

This method results in the most uniform fluid layers as well as the quickest
application times. It is also the messiest method of applying the viscous fluid. At the
time of the writing of this dissertation, applicator sleeves were being used exclusively for
applying silicone fluids to shear members. Figure 6.1 shows a round shear member and a
cylindrical applicator sleeve.

Shear member
Fluid film

Applicator sleeve

Figure 6.1 Fluid applicator on a round shear member.

The time to travel the length of a shear member can be found by considering the two
forces acting on the applicator sleeve. The downward force is due to the weight of the
sleeve; the upward force is a result of the shearing viscous fluid.

pAv —mg
h 6.1)
The velocity is essentially uniform down the length of the shear member and can be
approximated as the length of the tube divided by the total time. The solution of this

equation for time yields a function of the viscosity and the dimensions of the shear
member.

_pdL
mgh (6.2)
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The quantity mg can be augmented to speed up the application process. If too much
weight is added, the viscous fluid tends to tear, but this condition is easily avoided.

The applicators that were made during this research had small pockets that were
milled to contain the excess fluid. The pocketed applicators were found to be self-
centering on the shear members, yielding fluid films of constant thicknesses.

6.3 Casting Shear Members into Structures

A variety of structures were built in the course of this research. One of the goals of
building so many structures was to ensure that virtually any design can be accommodated
with the fluid damping mechanism. The use of replicating epoxy is a well known
procedure in the literature, but a few items specific to the shear damping technique should
be mentioned. The first is that epoxy has a limited work time (typically less than 30
minutes) so the structure should be prepared in advance with access holes and pouring
funnels. Furthermore, an estimate should be made of how much epoxy is needed to fill
the structure.

Several two component epoxies were used in this research. All had fairly thick
consistencies, so thin crevices were difficult to fill. Gaps of about 6 mm were easily
filled with epoxy, but gaps less than 4 mm did not fill properly. Long, horizontal
structures do not fill under the force of gravity, but vacuum assisted pours can be made
(even through annuli of 6 mm). Figure 6.2 shows a horizontal machine base structure
that was filled under vacuum assist.

Vacuum access hole
Epoxy path

Epoxy fill holes /

(L
@

Figure 6.2 Epoxy filling technique for a horizontal structure.

(A

The structure shown in Figure 6.2 was over a meter long, and a vacuum was applied
to quickly fill it with epoxy. Larger structures are readily castable with similar or larger
pumps (the largest structure tested was three meters long and was filled with a grout

pump).



In the course of designing and building the fluid damped sample structures, a number
of epoxy/silicone fluid combinations were evaluated. As shown in Chapter 2, silicone
fluids of a wide range of viscosities converge to a similar reduced effective viscosity at
high shear rates. Silicone fluids donated from GE Silicones of viscosities from 30,000 to
600,000 centiStokes were used. NuSil Corp. makes a 2,500,000 centiStokes fluid that
was evaluated, but this costly specialty fluid is indistinguishable from the GE Viscasil
600,000 silicone above shear rates of 10 Hz.

A variety of manufacturers make viscoelastic materials that offer self-adhesive
coatings for easy installation. Products from 3M and Soundcoat were used in this
research with excellent results.

Chockfast Orange, made by ITW Philadelphia Resins, was found to be a cost
effective epoxy to replicate shear tubes into the test structures. Of the epoxies tested, the
Ch