
Modeling, Control, and Experimentation of a
Scanning Tunneling Microscope

by

Jungmok Bae

B.S., Mechanical Engineering (1992)

Seoul National University

Submitted to the Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the degree of

Master of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology
May, 1994

@Jungmok Bae 1994
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of Author

Department of Mechanical Engineering
May 6, 1994

Certified by

Accepted by

Dr. Kamal Youcef-Toumi
Associate Professor

Thesis Supervisor

. Dr. Ain A. Sonin
Chairman, Drpartment Gonttee n Graduate Students

i i i • DJ
¸

L I• I I

Modeling, Control, and Experimentation of a Scanning Tunneling Microscope

by

Jungmok Bae

Submitted to the Department of Mechanical Engineering
on May 6, 1994 in partial fulfillment of the

requirements for the degree of Master of Science in
Mechanical Engineering

ABSTRACT

The purpose of this thesis work is to integrate the high performance digital control
system to the scanning tunneling microscope that has been built in the Laboratory of
Manufacturing and Productivity at MIT. In the proposed control system, the 80486
personal computer was used to handle the user interface and the ADSP21000 family
digital signal processor embedded in a slave board was used to implement the real-
time controls. The new control system can execute 100 instruction control code in 3
/psec. The system is also capable of 14 bit data acquistion at a 1 MHz rate and a 16
bit output resolution. The experiments of taking atom image in both the constant
height mode and the constant current mode are performed and the results are evalu-
ated. The model of the PID feedback loop control implemented in constant current
mode is built and tested. The derived model is used to identify each component's
effect on the overall system's response.

Thesis Supervisor: Dr. Kamal Youcef-Toumi

Associate Professor of Mechanical EngineeringTitle:

iii

Acknowledgement

I would first like to thank my research advisor Prof. Youcef-Toumi for his generous

guidance and support. Without him, I would have never learned so many things as I

did here.

I also want to thank Tetsuo for giving me this great opportunity of working on

such exciting topics and supporting me in many ways through the end of the thesis

work. I really appreciate such invaluable help he gave to me. I also thank his wife,

Renee for transfering the good quality atom iamges.

I also want to thank T.J. on his generous advices. I really appreciate that he was

never been busy when I had the questions. I enjoyed and will enjoy working in the

same lab with him.

I want to thank also other lab members Jason (Yong-jun), Tarzen, Woosok,

Shigeru, Francis, and Doug. I appreciate the help of Doug and David in finishing the

2.171 course safely. I also appreciate the help of Jim Gort in learning the DSP.

I would like to thank Prof. Chun and Prof. Suh for the help of my settlement

here at MIT.

I thank Geehun for making my life a lot enjoyable at the MIT campus. That goes

to all my friends I made here at Boston.

I want to thank also my little brother and sister who always have been cheerful

to me.

Lastly and most importantly, I would like to thank my parents who gave their

continued love, cheers, and support.

Contents

Introduction 1

1.1 M otivation 1

1.2 Contents of Thesis 2

2 STM Operations 3

2.1 Introduction 3

2.2 Description of STM system 3

2.3 Piezoelectric Scanner 5

2.3.1 Piezoelectric Tube Transducer 6

2.3.2 Piezoelectric Tube Driver Circuit 11

2.4 Output Amplifier Circuit 15

2.4.1 Pre-amplifier 15

2.4.2 Filters .. . 16

2.5 Log Converter 19

2.6 Tip Preparation 20

2.7 Atomic Image Acquisition Process 22

2.7.1 Gap and Tunneling Current 23

2.7.2 Approach Method 26

2.7.3 Scanning 29

3 System Modeling 32

3.1 Introduction 32

3.2 Piezoelectric Tube Modeling 32

CONTENTS v

3.2.1 Background Physics 33

3.2.2 Frequency Response Measurement 34

3.2.3 Bond Graph Model. 37

3.2.4 State Space Representation 38

3.3 Construction of Block Diagram Model 40

3.3.1 Piezoelectric Tube 41

3.3.2 Low-pass Filter 43

3.3.3 Notch Filter . 43

3.3.4 Piezoelectric Driver 45

3.3.5 Pre-Amplifier 47

3.3.6 Tunneling Junction and Digital Log Converter 47

3.3.7 A/D Converter and D/A Converter 47

3.4 D iscussion .. . 48

3.4.1 Frequency Response 48

3.4.2 Step Response 49

4 High Level Software for System Operation 52

4.1 Introduction .. . 52

4.1.1 Replacement of the STM Control Scheme 52

4.2 Functionality Overview 54

4.2.1 Program Structure 57

4.3 Application Software Development 60

4.3.1 Development Procedure 60

4.3.2 Digital Signal Processor Interface 61

4.3.3 Grey Scale Display 64

CONTENTS

5 Low Level Software for Control and Identification

5.1

5.2

5.3

5.4

5.5

5.6

Introduction

Software Overview

Initial Approach

5.3.1 Coarse Positioning

5.3.2 Fine Positioning

PID Feedback

PID Gain Tuning

Software for Real Time Scanning

5.6.1 Constant Height Mode

5.6.2 Constant Current Mode

66

66

67

71

71

72

73

76

79

80

. 81

6 Experiments

6.1 Introduction .

6.2 The Structure of Highly Oriented Pyrolytic Graphite

6.3 Constant Height Mode Scanning

6.4 Constant Current Mode Scanning .

7 Conclusion

A Resources

B DSP Code

B.1 Architecture File

B .2 .A SM Files .

C PC Code

C.1 Header File .

84

84

84

86

91

93

98

98

99

139

139

......... o.

.

........ e.

.

.

. o

.

CONTENTS vii

C.2 M ain Function 141

C.3 The STM Control Support Subroutines 142

C.4 The Atomic Image Display Subroutines 147

C.5 Constant Height Mode Module 151

C.6 Constant Current Mode Module 158

C.7 Data Interpretation Mode 168

C.8 DSP Board Interface Subroutines 169

C.9 Programming Support Subroutines 182

Overall STM Configuration

a) Piezo Tube b) Piezo Tube Voltage Connection

The Atom Image Used in the Calibration of the Piezo Tube

a) The Experiment Setups for the Measurement of the Piezotube's

Natural Frequency b) The Current Amplifier Circuit Diagram

The Frequency Response of the Piezo Tube .

The Piezo Tube Driver Circuit

The Frequency Response of Vxo/Vxi

The Frequency Response of V-xo/Vxi

The Frequency Response of Vyo/Vyi

The Frequency Response of V-yo/Vyi

The Frequency Response of Vzo/Vzi

The Pre-amplifier and the filters

The Location of the Pre-amplifier

The Noise Level of the Amplifier Circuit a)

. 11

. 12

. 13

. 13

. 13

. 14

. 14

. 15

. 16

FFT plot of the voltage

source b) FFT plot of the signal before the filters c) FFT plot of the

signal after the filters............................

The Frequency Response of the Amplifier Circuit

The Log Conversion

The Setups for the Etching of the Tip

The Relationship between the Gap and the Output Voltage from the

Pre-A m p .

V111iii

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

LIST OF FIGURES

2.19 The Relationship between the Gap and the Output Voltage after Log

Conversion 25

2.20 The Placement of the Inchworm Motor 27

2.21 The Fine Positioning Mechanism 28

2.22 a) Constant Current Scanning b) Constant Height Scanning 29

3.1 The Bond Graph Representation of Fundamental Piezoeletricity Relation 33

3.2 The Experiment Setup for the Frequency Response Measurement of

the Piezoelectric Tube in Longitudinal Direction 34

3.3 The Frequency Response of the Charge Amplifier (Experimental Result) 35

3.4 The Frequency Response of the Piezoelectric Tube in Longitudinal Di-

rection (Experimental Result) 36

3.5 The Bond Graph Model of the Piezoelectric Tube Frequency Response

Measurement 37

3.6 The Simplified Bond Graph Model 38

3.7 The Block Diagram of the PID Feedback Loop 41

3.8 The Frequency Response of the Piezoelectric Tube in Longitudinal Di-

rection(Curve Fitting Result) : Experiment - , Curve Fit - - - . . . 42

3.9 The Frequency Response of the Low-Pass Filter (Curve Fitting Result) 44

3.10 The Frequency Response of the Notch Filter (Curve Fitting Result) 45

3.11 The Frequency Response of the Piezoelectric Tube Driver(Curve Fit-

ting Result) 46

3.12 The Frequency Response of the Open Loop System (Simulation Result) 48

3.13 The Step Response of the Closed Loop System (Simulation Result) . 50

3.14 The Step Response of the Closed Loop System (Experimental Result) 50

LIST OF FIGURES

3.15 (a) The Step Response of the Piezoelectric Tube Driver (b) The Step

Response of the Low Pass Filter (c) The Step Response of the Notch

Filter (d) The Step Response of the Piezoelectric Tube

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

6.1

6.2

6.3

6.4

6.5

a) Initial Configuration b) Enhanced Configuration . .

The Constant Height Mode

The Constant Current Mode................

The Step Response Plot of PID Gain Tuning Function

The Main Menu.......................

The Grey Scale Scheme...................

The Structure of Main Routine

The Structure of Interrupt Service Routine

53

55

56

58

61

65

69

70

The Output Signal to the Inchworm Motor and the Piezoelectric Tube

The Saturation

Fs=10 kHz, K=0.00065, Ti=0.065, Td=0.016 (unit) 100 microsec
sample

Fs=10 kHz, K=0.00065, Ti=0.03, Td=0.016 (unit) 100 mcrosec.
sample

Fs=10 kHz, K=0.00065, Ti=0.065, Td=0.04 (unit) 100 microsec
I "sample

Fs=20 kHz, K=0.00065, Ti=0.065, Td=0.016 (unit) 50 m'cro"c
sample

Fs=20 kHz, K=0.00065, Ti=0.065, Td=0.002 (unit) 50 microsec
sample

The Structure of Constant Current Scanning Routine

The Structure of a Highly Oriented Pyrolytic Graphite Surface

The Grey Scale Image of HOPG Surface(10 A x 16 A)

The Grey Scale Image of HOPG Surface(8 A x 6 A)

The X-Z Plane View of the Atom Surface

The Grey Scale Image of HOPG Surface(16A1 x 10 A)

LIST OF FIGURES ii

6.6 The Grey Scale Image of HOPG Surface(9A x 6.5A) 92

Chapter 1

Introduction

1.1 Motivation

The project of developing the high precision system based on the scanning tunneling

microscope technology is being currently underway at the Laboratory for Manufactur-

ing and Productivity at Massachusetts Institute of Technology. Prior to the applica-

tion development, the prototype of low cost in-house scanning tunneling microscope

was built and tested in order to acquire the related technology and to investigate

other possible areas of applications. Within this scope, the object of this thesis was

to enhance the performance of the previous built prototype by integrating the digital

signal processor based control system.

Recently, as digital signal processor technology has grown very fast, direct emula-

tion of analog circuits using digital signal processing has become possible.[10,11,12,13]

Such DSP-based system provides greater flexibility in the choice of the system pa-

rameters and control algorithms. Thinking that DSP based STM control system will

facilitate the development of such complicated applications that are being planned in

the project, our group laid out and initiated the work done in this thesis. The DSP

hardware provided by JRG is based on the modified Harvard architecture of the im-

plemented digital signal processor. The board features the on-board RAM memory,

the digital I/O port, the A/D and D/A converters, and the communication paths

between the host computer and the DSP. The board is one of the fastest version of

data conversions and the computations among the commercially available products

CHAPTER 1. INTRODUCTION

present.

1.2 Contents of Thesis

This thesis is organized as follows. Chapter 2 lists all the neccessary information

in running the instrument. The detailed explanation is given for the hardware of

the STM built by Ohara. After a brief introduction to the STM fundamentals, the

procedure of atom surface scanning is described.

Chapter 3 provides a mathematical model of the scanning tunneling microscope

control system, especially focused on the PID feedback loop performed during con-

stant current scanning. The model was derived by matching the frequency response.

The derived model is assessed by comparing its step responses with the system's real

responses.

In Chapter 4, the algorithms and the functions of the high-level softwares are

described. The currently developed control software implemented in the host PC

computer is explained in depth. The steps neccessary for developing the application

software is also explained.

In Chapter 5, the algorithms and the roles of each modules of low-level software

are described. The descibed module includes the real-time control software such as

coarse positioning, PID control of the z-axis, and scanning. In this chapter, the line

by line description of the software is avoided. Instead, the design considerations and

some related techniques used in software implementation are discussed. The detailed

description of the software is again given in the appendix B and C.

In Chapter 6, the results of the scanning experiments are presented. The descrip-

tion of the graphite atom structure is given in order to give better understanding of

the atomic image we have taken.

Finally, the conclusion is provided in the last chapter.

Chapter 2

STM Operations

2.1 Introduction

This chapter provides a basic understanding of a scanning tunneling microscope that

has been built in the laboratory of flexible automation at Massachusetts Institute

of Technology. In the first section, the overall description of the scanning tunneling

microscope is given. The second section discusses the piezoelectric tip positioner.

This section is divided into two subsections which explain the characteristics of the

mechanical part and the electrical part of the piezo scanner. In the third section, the

pre-amplifier and filters are described. Data is provided to show the circuit's ability in

rejecting noise. The next section discusses the log conversion of the tunneling voltage

data and the following section describes how the tip is prepared. In the last section,

the procedure of atom surface scanning is explained.

2.2 Description of STM system

The scanning tunneling microscopes that are currently in use in various laboratories

and other research areas have been designed to meet specific purposes. Different

technologies and ideas are put into each one of them. However, the author found

out that their overall structures are quite similar and can easily be described with a

general terminology. The following paragraphs provide the definition of such terms

and explain how they can be fit to our scanning tunneling microscope.

The system can be divided into four units. These are the system control unit,

CHAPTER 2. STM OPERATIONS

Pie2
Tub

AuxiiLLary unlt.

Figure 2.1: Overall STM Configuration

the data acquisition unit, the data processing unit, and the auxiliary units. These

are shown schematically in the figure 2.1. The system control unit controls the tip

position. In our system. the digital signal processor(DSP in short), the piezoelectric

tube and its driver circuit fall into this category. When the user inputs the x, y,

z voltages of the piezoelectric tube, the digital signal processor produces the corre-

sponding control voltages and sends the voltages through the D/A port to a circuit

called a piezoelectric tube driver where, again, the five output voltages, -x, x, -y,

y, z are produced. Each output voltage is directly applied to the electrodes on the

piezoelectric tube. This voltage causes the piezo tube to expand, contract, or bend.

The detailed descriptions are given in section 2.3.1.

The data acquisition unit collects the atom image data and transfers it to the

computer for analysis. Generally, the unit consists of the tip, the sample, the ampli-

CHAPTER 2. STM OPERATIONS 5

fiers, and the filter circuits. During the scanning process, the tunneling current flows

through the sample from the tip. Then, the signal corresponding to the tunneling

current, is amplified by a pre-amplifier up to a level appropriate for the DSP board.

The signal is filtered again before input to the DSP. A notch filter at 60 Hz and a 4th

order low pass filter cutoff frequency at 1 kHz are used in our system. Section 2.4.2

presents an in depth discussion of the characteristics of the filters.

The data processing unit analyzes and displays data. The unit is mainly the

computer. During scanning, the acquired data are stored temporarily in the DSP's

memory. When the scanning is completed, the data is immediately transferred to the

personal computer. Then, the computer analyzes the data, displays it to the user,

and stores the result into the disc. Chapter 5 is devoted to the computer program

written for such purposes.

The auxiliary unit conducts the coarse positioning of the tip and the sample. In

our case, it corresponds to the inchworm motor. The motor has its own controller

which takes commands from the DSP and sends the corresponding control current to

the inchworm motor. The reader should refer to section 2.7.2 and the manufacturer's

note for more descriptions of the inchworm motor control.

Each unit has to be carefully considered in order to produce good outputs. Al-

though the structural design is a critical factor in producing high quality output, it

is not taken into account in this diagram.

2.3 Piezoelectric Scanner

This section is devoted to the piezoelectric scanner used for the tip positioning. In

the first part of the section, the piezoelectric tube is described. The sensitivity of the

tube was calculated from the experimental data. Likewise, the natural frequency of

the piezoelectric tube was also measured experimentally. The detailed descriptions

CHAPTER 2. STM OPERATIONS

of the experimental procedures are provided.

The second part of the section describes the piezoelectric tube drive circuitry.

The charcterization of the circuit has been done in this part through the frequency

response plot of each input and output.

2.3.1 Piezoelectric Tube Transducer

The most widely used form of piezoelectric tip positioner in a scanning tunneling

microscope is the tube. This is because the tube has a higher resonant frequency,

greater range, and greater thermal resistance than other form of piezoelectric actua-

tors. Note that the high resonant frequency allows fast scanning speed and greater

rejection of ambient vibration.[9] The piezoelecrtic tube used in the experiment is

manufactured by Stavely Sensors, Inc. The length of the tube is 1 inch with outer

diameter of 0.25 inches, and thickness of 0.02 inches. The piezoeletric material inside

the tube is the EBL#2 version of PZT.

As shown in figure 2.2 a), the outer surface and the inner surface are surrounded by

the electrodes while the inside is filled with piezoelectric material. When the voltage

is applied to the inner and outer electrodes, the piezoelectric material expands to the

longitudinal direction of the tube.

The outer electrode of the piezo tube is sectioned into four quadrants. Each

quadrant is connected to one of the voltage sources from the driver circuit as shown

in figure 2.2 b). Two voltage outputs, Vxo and V-xo, are connected to the opposite

quadrants while Vyo and V-yo are connected to the remaining two. This configuration

of the voltage connections is to improve the linearity.[15] The Vxo and V-xo, when

applied, cause the bending motion of the tube in x-direction and, Vyo and Y-yo cause

the bending motion in the direction perpendicular. The Vzo is connected to the inner

quadrants. The Vzo is held constant except when the piezoelectric tube is to expand

CHAPTER 2. STM OPERATIONS

Figure 2.2: a) Piezo Tube b) Piezo Tube Voltage Connection

in the longitudinal direction.

In positioning the tip to the precise location, it is important to know the accurate

relationships between the applied voltage and the displacement of the piezoeletric tube

in x, y, z direction. The relationships was found by conducting the experiments and

calculating from the equations provided by the manufacturer. A detailed explantion

is given below.

X and y direction sensitivity

The x and the y direction sensitivities were calibrated from the atom image that the

piezoeletric tube had produced. The atom image used in the calibration is shown in

figure 2.3. From the figure, the distance from the apex to nearest apex were measured.

The distance was measured to be 27.6 mm. The figure 2.3 a) shows the data that

CHAPTER 2. STM OPERATIONS

has been measured and averaged. Next, the ratio between the atomic image of figure

2.3 and the real atomic dimension were derived. The real dimension of the distance

between the apex is known to be 2.46 A.[21] The ratio was calculated by just dividing

this value by the measured value. The result was as follows.

Real World Dimension
= 8.6956 x 10- 9. (2.1)

Diagram Dimension

The next step was the calculation of the total x direction and y direction displace-

ment. First the x direction length of the figure 2.3 was measured. The measured

value was 95 mm. Then, using the ratio caluculated above, the real dimension of

the x displacement was derived. The calculated total x direction displacement in real

world dimension was 8.26 A. During the calculation process, it was assumed that the

angle between the x direction and the line connecting the apex of the atom were neg-

ligible. Finally, the x direction sensitivity was calculated by dividing the x direction

displacement by the applied voltage which was known. The net voltage applied by

the DSP was, read from the scanning program. The applied voltages were 15.57 mV

for the x direction and 14.04 mV for the y direction. The calculated sensitivity in the

x direction was
Total x Direction Displacement nm (2.2)

Net Applied Voltage V

By following the same procedure, the y direction sensitivity was at

Total y Direction Displacement = 50.14nm
Net Applied Voltage V

The averaged sensitivity of the piezoelectric tube was calculate at

Displacement = 51.62nm (2.4)

Applied Voltage V

STM OPERATIONS

a) b)

Figure 2.3: The Atom Image Used in the Calibration of the Piezo Tube

Z direction sensitivity

For the z direction sensitivity,. the equation provided by the manufacturer was used.

The equation is as follows.

2d 31 VL
OD - ID

(2.5)

The manuafacturer also provided the following material constants and the dimensions.

d31 = -173 x 10- 12 m eter
Lolt

L = 25.4mm.

OD - ID = 1.016rnm.

Substituting these known values to equation (2.5), we got the relationship between

the applying voltage and the expanded length described as follows.

AL(meter) = 8.7 x 10- 9 L

Data The Measurement

1. 26.5 mm

2. 29 mm

3. 28 mm

4. 27 mm

5. 27.5 mm

6. 26.5 mm

7. 28.5 mm

Average 27.6mm
I

CHAPTER 2.

(2.6)

CHAPTER 2. STM OPERATIONS

Inpi
utput

-15V

b)

Figure 2.4: a) The Experiment Setups for the Measurement of the Piezotube's Natural
Frequency b) The Current Amplifier Circuit Diagram

From the above equation, the z direction sensitivity was found to be 8.7 nm/volt.

Natural frequency

The resonant frequency of the piezo tube in longitudinal direction was also measured

by conducting a simple experiment. Figure 2.4 a) shows the experiment set up for

the measurement of the piezo tube's natural frequency. A sinusoidal signal was ap-

plied to the y electrodes using the function generator while the amount of the current

generated in the x electrodes were measured. Because only a small amount of current

is generated, usually the order of 10nA, the signal was amplified before the mea-

CHAPTER 2. STM OPERATIONS 11

102

102 103 104 105surement. The current amplifier whose multiplying factor is 1 million, is shown in....
. ,..... . .. , -'.-; "

oscilloscope while the frequency of the input is varied. The result was the frequencyThe frequency in HzFigure 2.5: The Frequency Response of the Piezo Tube

when the input frequency moved close to the resonant frequency.

2.3.2 Piezoelectric Tube Driver Circuit

The circuit diagram is shown in figure 2.6. The diagram shows that the circuit

has three inputs and five outputs. The two inputs, Vxi and Vyi are divided, inverted

CHAPTER 2. STM OPERATIONS 12

-+V) V

-40V

Figure 2.6: The Piezo Tube Driver Circuit

Vxi

Vxo

Vzo

CHAPTER 2. STM OPERATIONS

v
do

-10

-20-

-30

-40

-50

-60

-70
-8%

Frequency(Hz)

15

-100

1
-I

Frequency(Hz)

Figure 2.7: The Frequency Response of Vxo/Vxi

0I.

10 -

20- ,..

40 -- -

50

60-

lb2

150I

100

50-

-o
-50-

-100

-150

10

Frequency(Hz)

.. ::: '......... .

..........~if~.......................

Frequency(Hz)

Figure 2.8: The Frequency Response of V-xo/Vxi

Frequency(Hz) Frequency(Hz)

Figure 2.9: The Frequency Response of Vyo/Vyi

_

. . . - ·. .T---...·- -.

.

.--- . .- :-: -: -: . `-- - - - -
.. ...- --i --- --....? --i --- ----....-----

.

. ..- " "
o

" ""- - i • • . . " " " " " i • i . . . ". ' • "' " -i -i

.... I.... •.. :.. •: I'.

...

----• -...... -.. ...-..

.-. %Q.

Ut

-10

-20

-30

-40

-50

-60

-70

-oft

.4.-..

''- - ' N
.... i.!i i ·.. J.. .. .!.,S- --- - --- -- -' --'

.- .

50
: : : : : :

0

150

1 ncii

C

_ _ · ___·_---

ii i~ ii ii iiil ii ii i ilii ; iiii: ! i !

'~~ ~ ~ ~ . . .'

)2 R

I

.

2

0mr

"n2

2

-I

-I

-2

-

2

104

Frequency(Hz)

150

100

50

0

-50

-100

-150

10

Figure 2.10: The Frequency Response of V-yo/Vyi

150

100

5C

-50
-10

-15

102

Frequency(Hz)

Figure 2.11: The Frequency Response of Vzo/Vzi

and amplified in the circuit. The result is the four outputs, Vxo, V-xo, Vyo, V-yo.

Note that the voltages are amplified by a factor of 2. The Vzo is not inverted or

divided, but it is also amplified by a factor of 2.

The frequency response of the piezoelectric driver circuit was measured for its

characterization. The measured frequency responses of the five outputs, Vxo, V-xo,

Vyo, V-yo, and Vz are shown in figures, 2.7 to 2.11. The average cut-off frequencies

of the responses was measured at 1 kHz where the corresponding phase shift was 35

degree.

CHAPTER 2. STM OPERATIONS

7i i i .i. .

.... ...:"":" "" ': " .. :.. i

. i
. , , , ,

... ,

............§KQ---·--

~ -------- .--

.>44 '""

Frequency(Hz)

0o
-10

-20

-30o

-40

-50

-60

....... . .

... . I-....

.- ...i , " : : "" "" "'..- ," ,- ----,;- -- ,

-'0

., , , , ,

.7........ . . , ,..... • .. : , : .:' . .• ... :" : : : : :::: : : , : ,-• • _' : : : :
... : " " : ,• ': :: .. . :' ""' · · ·", :: • -4 ·'_"": : ::'

.... ~ ~ ~ ~ ~ ~ ~ -: " ":'": :. . . . ' """ ' -- ---- ·: ::: .. ,"": "" ':7:
. .. . ' ,

Frequency(Hz)

--
2

2
I

CHAPTER 2. STM OPERATIONS

2.4 Output Amplifier Circuit

The amplifier circuit amplifies the tunneling current to a appropriate level so that

the A/D converter can recognize the current's change. The tunneling current, usually

generated in a range of 0.1 nA to 100 nA, is amplified up to a range of 10 mV to 10

V by the pre-amplifier in the circuit. Because such a small current is amplified, the

outside noise has large effect on the signal. The low-pass filter is used to filter out

the high frequency part of noise and the notch filter is used to remove the noise at 60

Hz. The first subsection is devoted to this pre-amlifier and the next section discusses

the filters.

2.4.1 Pre-amplifier

The circuit diagram of the preamp is shown in figure 2.12. The preamp amplifies the

input current by a gain of 100 million. The resulting output voltage is in the range

of 10 mV to 10 V which is a reasonable voltage level for the A/D converter.

In order to reduce the noise while the small current flows through the circuit the

path between the sample and the preamp is reduced to the smallest distance. The

100 MK

It

-15V

Figure 2.12: The Pre-amplifier and the filters

CHAPTER 2. STM OPERATIONS

--amplifier Circuit

Figure 2.13: The Location of the Pre-amplifier

diagram 2.13 shows the location of the preamp in the scanning tunneling microscope.

2.4.2 Filters

The low pass filter used in the circuit is a 6th order filter. The filter has a cutoff

frequency at 1 kHz and shows a significant phase delay at the frequency of 200 Hz.

The phase delay of the low pass filter shows that the speed is low compared to other

part of the circuit. From the information provided in the previous section, one can

point out that the response is even slower than the response of the piezoelectric tube

whose lowest natural frequency is at several kHz. The speed can be increased by

simply replacing a resistor but at the cost of amplifying noise in the high frequency

range. Thus, there exists a trade off between the speed and the filter's performance.

The twin-T type notch filter is used for removing the noise at 60 Hz. Filtering

out the 60 Hz noise is important because the signal representing the atomic image

usually comes in at the same order of frequency.

CHAPTER 2. STM OPERATIONS 17

a)

b)

d

V

c)

Figure 2.14: The Noise Level of the Amplifier Circuit a) FFT plot of the voltage

source b) FFT plot of the signal before the filters c) FFT plot of the signal after the
filters

I

CHAPTER 2. STM OPERATIONS

In order to see the filters' performances, the FFT of the input signal before the

filter and after the filter were measured. Figure 2.14 a) shows the noise level of the

DC source input from the function generator. Figure 2.14 b) shows the noise level just

after the current is amplified. In the figure, the noise of the input signal in harmonic

form can be seen. The noise contains the frequency, and multiples of 120 Hz starting

from 60 Hz. (The noise at 60 Hz is usually present in every circuits due to a nearest

power supply). Notice that the noise components are completely eliminated in the

output signal of the filter as seen in the FFT plot c).

As mentioned before, the low pass filter turns out to be the dominant component

which determines the characteristics of the frequency response of the overall amplifier

circuit. The actual measurement of the frequency response is shown in figure 2.15. It

FREG RESP
4U0. U

dB

-40.0

Fxd Y

FREQ
80.0

Phase

Deg

-560

I I
I I I I II

I I I l I I I

I I I I I I I I

10 I I I III

I I I II
I I I II

fI~ I I

Ov 1&2
I I II lli
I I II ilt
I I I t ill

I I I I I Ii l
I 1 I I I_ III

I I 1 1 Il iI

I I 1 I I III

10 Log Hz 10k

RESP Ov 1&2
I I I T 1Ill
SI I Ii III
I I I I I III

II 1 i l iii
I I I I lI I I

I I I I 1 I I II I I 1111r7

I I
I I I II1

10kLog Hz

Figure 2.15: The Frequency Response of the Amplifier Circuit

SI I I 1111 I I I 11111I
I I ~I I II j I I I1(1

1 1 I Ii I I I IlIIi

SI I 1 I 111 I I I I l Ii

~~1I I 1111 1 I 1111

I I I 1 1 1 I 1 I I I

I I I I I I l I I I I II I Il l
I I i l t , l I I I I I I I
I I I 1 I 1 I (I I I II 1 1

___ __
_ -- i' -- . . . _

i

F

A-

I • .A : i -- - -I - -

r
I

I

CHAPTER 2. STM OPERATIONS

clearly shows the characteristic of the low pass filter and the notch filter. Note that

the phase has been shifted by 180 degrees up around the peak frequency of the notch

filter. The typical phase characteristic of the notch filter due to the second order

highly underdamped zeros in its transfer function.

2.5 Log Converter

The tunneling current and the gap are related by an exponential form. The detail

explanation of the relationship is given in section 2.7.1. In order to calculate the

gap distance from the measured tunneling voltage the logarithmic sheme is used to

compensate for the exponential relation between the tunneling current and the gap.

The log conversion is performed digitally in the digital signal processor. At the

very start of the program, the precalculated log table is downloaded to the specified

address of the memory residing in the DSP board. Whenever the input value needs

to be log converted, the matching value in the logtable is taken.

The address of each item in the log table represents the A/D converted value

of the input voltage. Because only the positive values in the range of 0 to 5 volt

are taken during the experiment, only the numerical values from 0 to 0x2000 are

considered to be log converted. The memory space from adrress 0x2000 to 0x4000 in

the data memory in the DSP board is used for the log table. Whenever data is to be

log-converted comes in, its numerical value is increased by 0x2000. The result is the

address which stores the corresponding log value.

The log converting equation implemented is based on the analog log-amplifier

circuit that is no longer used in the system. The equation given in the specification

of the chip is as follows.

V = K = [glo(VeRin)] Vn14, (2.7)1 Rref

CHAPTER 2. STM OPERATIONS 20
8

7
k = 2.766-

S5
S4

.3

2

1

0...

10-2 10-1 10 0 10 1

Vin (volts)

Figure 2.16: The Log Conversion

where K=2.76, Ri,/R,,f=2, and Vef= 5 V. These parameters were given from the cir-

cuit diagram of the analog amplifier.[16] The relationship between the output voltage

and the input voltage of the log conversion has been plotted in the figure 2.16.

2.6 Tip Preparation

Before using the etching method, the tip was produced by a mechanical cutting

method. The mechanical cutting of the tip was easy to implement but didn't provide

consistent tip shapes. Many times the tip generated a unstable tunneling current and

had to be replaced for the proper experiment.

The electrochemical etching method, which was adopted later, consistently pro-

duced a sharp tip. There are several articles[2,3,1] devoted to sharpening the tip by

etching. In figure 2.17, our setup for the etching is shown. The tip wire is connected

to the AC voltage from the function generator while the electrode is connected to the

ground. When an AC voltage is applied, a bubble stream soon appears and start to

form the tip shape. The bubble disappears after it finishes forming the tip shape.

During the etching process, there are several important parameters to consider.

CHAPTER 2. STM OPERATIONS

Acryl
Plate

Cable

Glue

Tungsten Tip Electrode
Wire

...............

.~.............
-.. o.--- --- ..~~..........

.. ----..~. ..---I.....-..~ ..-..... .. .

Function
Generator

Carbon
Rod

NaOH
+ H20

Figure 2.17: The Setups for the Etching of the Tip

The fllowing parameters, suggested by Mircea Fotino, are important in this proce-

dure: ac voltage and current size, wave shape, frequency, phase angle, number of

waves, depth of immersion, electrode shape, bubble dynamics, and concentration,

temperature, and viscosity of the electrolyte.[1] These parameters have a large effect

on the. final tip shape and should be considered carefully.

Two materials, tungsten and Pt-Ir were used in making the tips. The Pt-Ir wire

tip was produced by the former way of mechanical cutting. The wire was provided

by Omega Engineering Inc. The tungsten wire was produced by etching. A tungsten

wire of 0.27 mm in diameter was used. Before applying the AC voltage, the tungsten

wire and its counter electrode, a carbon rod, were immersed into the electrolyte.(The

electrolyte consists of 8 g of NaOH and 100 ml of H20.) The AC voltage ranged

from 6 to 7 V was applied between the tungsten wire and its counter electrode. The

bubble appeared immediately on the part of the tip immersed into the liquid and

le

CHAPTER 2. STM OPERATIONS

lasted about 1 to 2 minutes. The etching process was finished when the bubble

completely disappeared and the sharp edge of the tip was formed.

2.7 Atomic Image Acquisition Process

This section discusses the procedure of taking atomic image using the scanning tun-

neling microscope whose hardware description is given in the previous sections. This

section is to cover the general idea of the overall process of scanning and leave the

details of the software implentations in chapter 5 and chapter 6. Before going through

each step of the scanning procedure, a brief review is given below.

The procedure of scanning the atomic surface is summarized as follows.

1. Coarse positioning of the gap using the inchworm motor only.

2. Fine positioning of the gap using the inchworm motor and the piezo tube.

3. Initial scanning height positioning using PID control scheme.

4. Scanning.

5. Display of the data recorded.

The first step is the positioning of the tip and the sample. In this STM, the inchworm

motor is used to bring up the sample to the tip within the scanning range. There are

two modes that are used to accomplish the positioning. The first mode, called coarse

positioning, uses only the inchworm motor to reduce the gap. Using this positioning

method, the gap is reduced at a fast rate. The process continues until the tunneling

current is detected. The next mode, called the fine positioning, uses also the piezotube

with the inchworm motor for the gap reduction. Knowing the tunneling current is

detectable within closer range, the gap is reduced by a smaller step at a slower rate.

CHAPTER 2. STM OPERATIONS

As soon as the tunneling current is detected the fine positioning is stopped and the

tip is fixed to that position. In the next stage the tip is positioned to the specified

initial height and finally the system starts scanning the surface.

2.7.1 Gap and Tunneling Current

To understand the relationship between the gap and the tunneling current one needs

a broad knowledge of the field of solid state physics. Since such theories are not of our

main concern, only brief descriptions are given below. The interested reader should

refer to other detailed papers. [8,4,5]

The tunneling current equation starts from the model of the barrier Hamiltonian.

The first order equation of the barrier Hamiltonian model, formalized by Bardeen[5],

is given as follows.

2we
I = 2h f(E,)[1 - f(E,, + eV)]M.,, 1

26(E, - E,), (2.8)

where f(E) is the Fermi function, V is the applied voltage, JM1, is the tunneling matrix

element between states between the probe, ty, and the surface, L,. E, is the energy

of state 4,, for the tip in the absence of tunneling and E, is the energy of state 41,

for the surface in the absence of tunneling.

The above equation can be readily simplified if we assume that the voltage and

the temperature are small.[4] The result is

2we2 V
I = h V 1M,,V26(EE - EF)(E - EF). (2.9)

The M,, is the one which reveals the exponential relationship. In order to calculate

the M,,, the wave functions for both the surface and the tip are needed. It is assumed

that the the tunneling is one-dimensional planar in deriving the wave functions.[7,6]

The assumptions result in a much simpler tunneling equation,

IT P pTVTe - 2 (s (2.10)

CHAPTER 2. STM OPERATIONS

where,

IT Tunneling current.

s Gap between the tip and the surface of the material.

PT Tunneling conductance; the local density of electronic states at the Fermi level.

VT Bias voltage applied between the tip and the sample.

r Decay constant of a sample state near the Fermi level in the barrier region.

The parameter n again can be represented by the following expression.

ao= h(2.11)
h

= 0.51 (eV)A - 1' (2.12)

where m is the mass of an electron, h is Plank's constant, and €, is the work function.

The work function b, can be described as the minimum energy required to remove

an electron from the bulk to the vacuum level.

By using equation (2.10), we can find a relationship between the gap and the pre-

amplifier's output voltage. If we define M as a gain of the pre-amplifier, we get the

pre-amplifier's output voltage as a function of the gap distance as in the equation,

Vpre MpTVTe-VT 2 . (2.13)

The relationship between the pre-amp's output and the gap is plotted in figure

2.18. For the gain M the value, 108 is set as was stated in the section 2.4. Both

variables, PT and q are dependent to the gap distance. However, because the gap is

relatively small we assume this variable to be constant. The tunneling conductance,

PT is set to 30k f•- which is a rough approximation for a typical STM.[25] The

CHAPTER 2. STM OPERATIONS 25

71

>I

S 3!............

S --........... ----

01
11 11.5 12 12.5 13

The gap distance in Angstrom

Figure 2.18: The Relationship between the Gap and the Output Voltage from the
Pre-Amp

0

2
3
4

5 Vout (volts)
6
7
8
9
10

The Gap Size

Figure 2.19: The Relationship between the Gap and the Output Voltage after Log
Conversion

approximation has been made also for the work function ' to be 4.5 eV.[26] These

are the typical values for a constant bias voltage with the elements such as platinum,

tungsten, carbon, etc. The bias voltage, VT is set to 50 mV, the usual value used in

the experiment.

Next, the relationship between the gap and the output value after the log-conversion

CHAPTER 2. STM OPERATIONS

is derived. Equation (2.13) is substituted in the log-conversion equation (2.7). The

result is,

Vlog = K(1 - log(MpTVT) + 2nslog(e)) (2.14)

In order to prove that the above equation truly holds, the experiment results of

Pahng are used.[16] The experiment result is shown in figure 2.19. The slope of the

experiment data turned out to be steeper than the theoretical data. The main causing

factors can be the contaminations from surrounding air and the deformation of the

graphite surface.

2.7.2 Approach Method

Just after the user fixes the tip and the sample, there is a wide gap between the

tip and the sample. If the system is manually set by the user, the gap would be

reduced up to around 1 mm at best, which means that several hundreds of micron

have to be overcome before the atom scanning can be done. Because the piezo tube's

working range is usually limited to around 100 nm, it is alone not suitable for initial

positioning of the tip and the sample. Another means of reducing the gap is needed.

The inchworm motor is used to overcome this initial gap. The device has been

purchased from the Burleigh Instrument, Inc. By using the walking mechanism of

3 pieces of the piezo materials, the motor achieves high resolution and wide moving

range at the same time. The smallest single step is about 4 nm and the total range

of motion is 25 mm. It can move at the maximum speed around 2 "'*

In our system the inchworm motor is located under the working area facing upward

as shown in figure 2.20. The motor is moving in a vertical direction to bring the sample

up or down. The sample is fixed on top of the sample holder which is again glued at

the top of the moving part of the inchworm motor.

CHAPTER 2. STM OPERATIONS

hworm Motor

Figure 2.20: The Placement of the Inchworm Motor

Two modes, coarse positioning and fine positioning modes, are used for the gap

reduction. The reason for using two mode operation is to minimize the total ap-

proaching time. During the first mode, the gap is reduced at a very fast speed but

with low resolution. The motor usually operates at 2 " in this mode. (In another

words it takes approximately 8 minutes to move 1 mm.) The resolution at this mode

is 4 nm which is very low considering that the tunneling current is generated within

the range of less than 2 nm. During the positioning, the voltage output from the

pre amplifier is measured as the inchworm motor is moved up from the initially set

position. As soon as the tunneling current is detected, the inchworm motor stops its

upward motion and pulls itself back several steps. Such motion is needed because

otherwise the tip crashes to the sample. (It is observed that the tip crashes onto the

sample usually by amount of 60 nm.) The reason is that the inertia caused by the

constant forward motion may change the state in the piezo material inside the inch-

worm motor even though the voltage is held constant. Such change of the state may

CHAPTER 2. STM OPERATIONS

1. 2. 3. 4.

4-5 nnp

Inchworm
Motor

Figure 2.21: The Fine Positioning Mechanism

result in thermal expansions or plastic deformations. However the detail phenemena

of the piezo material is still unknown.

The next mode, the fine positioning, uses both the inchworm motor and the piezo

tube. This time, the gap is reduced with much slower rate but with higher resolution.

To provide a good understanding of the positioning mechanism, a diagram is given

in figure 2.21.

The first step of the fine positioning is to move the tip downward a little more than

a single step size of the inchworm motor, usually around 4 nm - 5 nm. During this

step, the downward motion is stopped whenever the tunneling current is detected.

Note that the resolution of the overall operation can be determined in this stage

of the fine positioning. Since the piezotube's resolution can be assumed as infinite,

the resolution is determined from the resolution of the D/A which applies the control

voltage. The resolution is found out to be 1.328 pm. The detailed information relevant

to the D/A's characteristics is provided in section 5.3.

The next step, step 2 and step 3 in the figure, is to stop the tip and pull back the

CHAPTER 2. STM OPERATIONS

,q)i
ii)

Figure 2.22: a) Constant Current Scanning b) Constant Height Scanning

tip to the original position knowing that the tunneling current is not detectable in

this range. Then in the last step which is step 4 in the figure, the sample is moved

up one step of the inchworm motor and the whole process is repeated.

2.7.3 Scanning

There are two common ways of scanning an atomic surface. One is called constant

height scanning and the other is called constant current scanning. Both ways are

adopted in our system for different purposes. In figure 2.22, the schematics for both

modes are shown.

The constant height mode fixes the tip in z-direction throughout the scanning

area. At the same time, the tunneling current generated is recorded. Later in the

computer, the records are interpreted as atomic image data. The computer uses the

logarithmic sheme of tunneling equation, discussed in section 2.7.1, to convert the

tunneling current data to a gap distance value. The converted value represents the

topology of the scanned surface and it is directly transfered to the display routine to

be shown on the computer screen.

I I- \
V/

06: 3 DOOO

CHAPTER 2. STM OPERATIONS

The constant height scanning allows a fast scanning speed which makes the system

having less chance of being interrupted by outside noise at low frequencies such as

thermal drifts. However, the scanning area of this scanning mode is limited up to

only a few nanometers. If one scans over the limit, there should be a good chance

of crashing the tip onto the sample. The fact that the data interpretation depends

on the over simplified equation can be also one of the disadvantages of the constant

height mode.

On the other hand, the constant current scanning isn't affected by such tunneling

equation's nonlinearity. The tunneling current is controlled constant instead of the

z-direction of the tip during the scanning. This time, the z-voltage applied to the

piezo tube is taken as the atomic image data. A PID feedback control sheme is used

to keep the tunneling current constant.

One of the advantages of the constant current scanning is that the scanning area

is not limited as in the constant height mode. The constant current mode is used

when the wide area needs to be scanned. However, overall scanning speed is slower

than the speed of the constant height mode so that it can cause the low frequency

noise disturbance. Also, the difficulty arises in the process of the control gain tuning

when the noise is prevalent in the system. The control gain has to be set in such a

way that the closed loop system well rejects the noises.

During scanning, the tip follows the path defined in the computer. There are nu-

merous choices of path shapes. The ramp pattern is the one usually used because of

its simpleness in software implementation while producing the satisfying result. How-

ever it is suspected that its sudden change of scanning direction causes the vibration

of the piezoelectric tube and generates the high frequency component of the noise in

the system. To solve the problem, triangular, circular, and even sinusoidal shapes are

adopted. Such patterns should provide a continuous tip motion. For scanning a wide

CHAPTER 2. STM OPERATIONS 31

area the ramp pattern is never used because of sudden back and forth motion could

damage the scanned sample.

Chapter 3

System Modeling

3.1 Introduction

This chapter deals with the modeling of the system and, especially the PID feedback

loop implemented in the constant current mode of scanning. The purpose of this

work is to allow more in depth analysis of the overall system's behavior, the system's

components' behavior and their contribution, and lastly the controller's performance.

The first section is devoted to the modeling of the piezoelectric tube dynamics.

The second section discusses the building of the block diagram for the feedback loop.

Here, each component in the loop is defined and identified by the frequency response

approximation. The last section assesses the model derived.

3.2 Piezoelectric Tube Modeling

Modeling of the piezoelectric tube is important in analyzing the system's character-

istics in that it is the only system's mechanical component whose dynamic behavior

is usually difficult to define. Furthermore, the mechanical components usually have a

slower response than the electrical components and therefore it has greater effect on

the system's transient state behavior. This section discusses the fundamentals, the

measurements, and the modeling of its dynamics.

CHAPTER 3. SYSTEM MODELING 33

V . F
0 - TF 1

C:Ce C:Cm

Figure 3.1: The Bond Graph Representation of Fundamental Piezoeletricity Relation

3.2.1 Background Physics

The piezoelectricity effect is understood to be an interaction between mechanical and

electrical system. It is considered here that this relation is one in which two different

variables in the system are linearly coupled. The linearly coupled system uniquely

determines the free energy which can be expressed as,

1 2 1
E(x,q) = -az a12xq + a22 2 . (3.1)2 2

Here, x is the displacement and q is the charge by the definition of piezoelectricity.

The exact differential of the above equation leads to the constitutive relation, given

by two linear equations as below.

F = allx + a12q (3.2)

V = a12x + a22q (3.3)

where F is force and V is voltage. For better understanding of this relationship,

the bond graph can be used to represent the system. The bond graph is shown in

figure 3.1. The graph shows a 2-port element, transformer, which converts the energy

from the electrical to the mechanical domain and vice versa. It also has two 1-port

capacitance at each domain connected by 0 junction and 1 junction respectively.

These elements represent the capacitance and elasticity of the piezoelectric material.

From this bond graph, the linearly coupled equations as we saw in the equations (3.2)

CHAPTER 3. SYSTEM MODELING

Inner Electrode

El

Charge Amplifier

Figure 3.2: The Experiment Setup for the Frequency Response Measurement of the
Piezoelectric Tube in Longitudinal Direction

and (3.3) can be derived.

1 n2 n
F = (+)x + (-)q (3.4)Cm Ce Ce

n 1V = -- x + q (3.5)
Ce Ce

3.2.2 Frequency Response Measurement

The frequency response of the piezoelectric tube was measured with a scheme similar

to the one used in section 2.3.1 for the purpose of modeling its dynamics. The charge

amplifer was used instead of the current-amplifier because of the known fact that the

charge is linearly coupled with the displacement of the piezotube while the current

is related to the speed with which the piezo tube is moving. The bond graph model

provided in section 3.2.1 should help in understanding of this relationship.

Figure 3.2 shows the experiment setup for the frequency measurement. Note the

connection of the piezo tube and the voltage source. The voltage source from the

signal analyzer is directly connected to two electrodes of the piezo tube. During the

CHAPTER 3. SYSTEM MODELING 35

40

30

20

a 10

0

-10

-20

-402 103 104 105
Frequency (Hz)

50150-........

100.............. -
-100.

100
-150

102 10 10 10

Frequency (Hz)

Figure 3.3: The Frequency Response of the Charge Amplifier (Experimental Result)

measurement process, the source increases the sine sweep to vary the frequency in

which it vibrates the piezo tube. The output voltage after the charge amplifer is

measured and the frequency response is plotted. We used an HP 3562A Dynamic

Signal Analyzer for the frequency response measurement.

The frequency response of the charge amplifier was measured in order to remove its

effect on the measured frequency response. Figure 3.3 shows the frequency response

of the charge amplifier. The result shows that its gain stays constant in the measured

1.-

............. ;-.-·--- ·-- ·- . - -.-;-
~--- ·- ··-·-- ~ ·· ·· · · · · ·--- ·--·- ·- ·- ·--- ·-·- -~

.............- l--: ·-:-i ,:-.........................- ;- :-.-

H ---!

CHAPTER 3. SYSTEM MODELING

Frequency(Hz)

I-

0.

5

Frequency(Hz)

Figure 3.4: The Frequency Response of the Piezoelectric Tube in Longitudinal Direc-
tion (Experimental Result)

frequency which ranges from 100 Hz to 100 kHz. However the phase delay appears

after 6 kHz and increases up to 300 at the maximum. Therefore its effect on the

measurement should be considered in this frequency range of 6 kHz to 100 kHz.

Figure 3.4 shows the result of frequency response measurement of the piezoelec-

tric tube from the experiment setup explained previously. The plot shows several

vibrating modes in the high frequency region represented by small and large peaks.

CHAPTER 3. SYSTEM MODELING

Actuator Electrode Sensor Electrode

R:R1 R:B1 I:M1 R:B2 I:M2

T N1 N2
Se 0 --- TF --- 1 1 TF I-----

C:Cel C:Cml C:Cm2
- - - ------------------ - - - - - - - - -

Figure 3.5: The Bond Graph Model of the Piezoelectric Tube Frequency
Measurement

R:R2

0 ~- Se

C:Ce2

Response

Although the vibration modes are frequent, the dominant peak located at around 20

kHz in the gain plot and the 1800 shift at the same frequency in the phase plot imply

that the system is 2nd order. Note how the phase at the high frequency region are

distorted towards the bottom. This comes from the charge amplifier's phase delay.

3.2.3 Bond Graph Model

Figure 3.5 shows the bond graph model of the piezoelectric tube of which the fre-

quency response is measured. The model comprises two main parts, the acutator

electrodes to which the swept sine voltage is applied and the sensor electrodes from

which the charge is measured. The applied voltage is represented as 1-port effort

source shown on the left hand side of the graph. The voltage source is applied to

the resistance and the capacitance connected in parallel represented as 0 junction.

The 2-port element transformer then converts the energy from the electrical domain

to the mechanical domain and thus affects the displacement of the piezo tube. In

the mechanical domain the tube is assumed to have compliance, damping, and mass

connected in parallel. The connection between the actuator part and the sensor part

CHAPTER 3. SYSTEM~ MODELING

R:R1 R:Beq C:Ceq R:R2

N1 x N2
Se Vs 0 TF - 1 1 TF 0 - - Se

C:Cel I:M1 I:M2 C:Ce2

Figure 3.6: The Simplified Bond Graph Model

is assumed to be rigid. In the bond graph, it is represented as 1 junction to 1 junction

connection .

From the sensor part of the electrodes, the variation of the charge is measured.

The model includes 1-port elements(capacitance, resistance, and inertia) same as the

actuator has. The 1-port effort source is inserted into the 0 junction of the electrical

domain and its effort value is set to zero. This represents the connection between

the sensor electrode and the virtual ground of the charge amplifer. In figure 3.2, this

ground is specified as G. This causes the effect of the resistance and the capacitance

of the sensor electrode to be removed and enables the charge to directly represent the

displacement.

3.2.4 State Space Representation

The figure 3.6 is a simplified form of the previous bond graph model. The two adjacent

1 junctions are reduced to a 1 junction with the equivalent 1-port elements, Beq and

Ceq defined as,

Beq = B1 + B2 (3.6)

CHAPTER 3. SYSTEM MODELING 39

Ce= 1 1 (3.7)1 +

Two state variables are chosen from the causality assignments shown in figure 3.6.

Those are the momentum P of the actuator electrode and the displacement X of the

piezoelectric tube that includes both electrodes as specified in the figure. The state

equations are derived and are shown below,

dX -= V (3.8)
dt

dP
S= F, (3.9)

where V is the velocity of the piezoelectric tube and F1 is the inertia force associated

with the mass of the actuator electrode. The first set of derivatives can be further

developed using constitutive relation of the inertia.

dX 1-= -P. (3.10)dt M,

The M1 is the mass of the actuator electrode. The second set can be also developed

with the 1 junction relations,

dP
= -F2 - F3 - F4 + F5 - F6. (3.11)

Here, F2 , F3 , F4 , F5, and F6 represent the inertia force of the sensor electrode, the

spring force, the damping force, the converted mechanical force from the voltage

source, and the applied force to the sensor electrode respectively. Again by using

the 1-port element relation for the inertia, the compliance and the damper defined as

F2 = JM 2 , F3 = X and F4 = BeqV, and the transformer's constitutive relations

defined as F5 = -V,, equation (3.9) can be written as,

dP dV 1 1dP 12 t - BeqV - X + AVl . (3.12)
dt dt Ce-q

CHAPTER 3. SYSTEM MODELING

F6 becomes zero since it is connected to the 0 junction with the ground input at the

other end. The constant N1 in the above equation is the transformer modulus of the

actuator electrode. Since we know that the 1 junction is a common flow junction, we

can replace V's with - P using the constitutive relation of inertia as shown below.

dP M 2 dP 1 1 1
=- _ Beq P- X+ V, (3.13)dt MM dt M - Ceq N,

The above equation can be reorganized in the explicit form as,

dP B, M, M1dP P - X + V8 (3.14)
dt M + M 2 (M + M2)Cq (M 1 + M 2)N

The state equations derived above can be put into matrix form,

d 0 1 (3.15)
d- P - + - P + +t' V (3.15)

(Ml+W2)Ceq M,+M2 (Mi+M 2)Ni

1 = 0) (3.16)

where the output Q is the charge being measured and constant N2 is the transformer

modulus of the sensor electrode. From the state equations, the transfer function

with the voltage source as an input and the charge as an output is formulated. The

resultant transfer function is,

Q 1 1
Q B1x 1 (3.17)

s (Mi + M2)NlN2 + 22 B (3.17)SM1+M2 (M1+M 2)Ceq

3.3 Construction of Block Diagram Model

Figure 3.7 shows the block diagram representing the PID feedback loop implemented

in the constant current scanning mode. In the block diagram, the system's compo-

nents of both the electrical and mechanical are defined. Here, each component in the

block diagram is modeled by measuring of its frequency response and approximating

with the transfer function of an appropriate order.

CHAPTER 3. SYSTEM MODELING 41

Discrete Domain i Continuous Domain
--- mo

oise

Figure 3.7: The Block Diagram of the PID Feedback Loop

3.3.1 Piezoelectric Tube

Based on the 2nd order model derived in section 3.2.4, the transfer function of the

piezo tube is found by curve fitting of the measured frequency response. In the block

diagram model, the input in this case is u, the control voltage from the piezo tube

driver circuit and the output is x which represents the z-direction displacement of the

piezo tube. The resultant transfer function turned out to be.

G,(s) = 2+ (3.18)s8+2(WnS + Wn'

where, K=14.96, w,=8.42x105 • and (=0.021. The coeffecients Kw~, 2(w,, and1ec n)

w correspond to 1 , B and of equation (3.17) respectively.

Both the frequency response of the approximated transfer function and the measured

frequency response are plotted in figure 3.8. In the plot, the derived 2nd order model

matches well with the highest peak in the low frequency region but leaves the high

frequency region peaks not identified.

SYSTEM MODELING

5

Frequency(Hz)

0

-50

-100

-150

-200

-31N
102 103 104 105

Frequency(Hz)

Figure 3.8: The Frequency Response of the Piezoelectric Tube in Longitudinal Direc-
tion(Curve Fitting Result) : Experiment - , Curve Fit - - -

CHAPTER 3. 42

CHAPTER 3. SYSTEM MODELING

One should note that this simulation is based on the model in which the actuation

of two electrodes during the PID feed back is assumed. In real case, the control

voltage is applied to all four electrodes of the piezo tube for the longitudinal expansion

or compression. This model assumption has been made because the corresponding

experiment is easier to implement. Although the model does not exactly represent

the real system, this should give some picture of the piezo tube's dynamics and its

contribution to overall system's response.

3.3.2 Low-pass Filter

The frequency response of the low pass filter of figure 2.15 is approximated with a

6th order system. The approximated transfer function with V1T as an input and VT'

as an output resulted in following equation,

63.1 x w2Gl(pfS)= (3.19)(Tjs + 1)(T2s + 1)3(S2+ 2+(ws + W2)

with w,=8800 'ad, (=0.3, T1= 1 se, and T2- 1 sec The bode plot of the
sec' 21x1400 rad. 2-x2500 rad"

above transfer function is drawn in figure 3.9. The model comprises two first order

components with the cutoff frequency at 1.4 kHz and 2.5 kHz.

3.3.3 Notch Filter

The following transfer function of the notch filter is the curve fitting result of the

frequency response previously shown in figure 2.15. The input of this component is

VJ7 which is the output of the low pass filter. The output is specified as VT" in the

block diagram.

CHAPTER 3. SYSTEM MODELING

40

30

20

10

0

-10

-20

-30

AIlr,

Frequency(Hz)

0

-100

-200

-300

-400

5n0C-ivv1u
Frequency(Hz)

Figure 3.9: The Frequency Response of the Low-Pass Filter (Curve Fitting Result)

Ww2 1w22 (s2 ± 2C3W, 3S + w 3)2

Gnfl4 f) (s 2 + 2Ciw)s +) 2 + 22wfL2s w 2)LW n3 (S
(3.20)

where, (1=0.23, 2=0.23, (3=0.09, w 1,=251 ra, w, 2=361 a, and wn3=302 rad The

figure 3.10 shows the frequency response of the transfer function found above.

....~... . ~·.....-.-· ··-------- l - '· · -'· '

........·...:

............

.....

. 1 A

..........

......~ -. i i-!-!-ii
,......... . ~ .. ~, .. i....~

_ _____. ____ ._____

1-

'

$- O +Pý

r-

I'

A-

10

SYSTEM MODELING

0

-20

-40

-60

80-uT
10

Frequency(Hz)

-200

-300

-400

-500

Frequency(Hz)

Figure 3.10: The Frequency Response of the Notch Filter (Curve Fitting Result)

3.3.4 Piezoelectric Driver

The frequency response plot of the piezoelectric driver circuit shown in figure 2.11 is

approximated. The input here is the controller's command voltage u, and the output

is V, sent to the piezo tube. The following transfer function which comprises two first

order system is the result of the curve fitting.

...

.~~ •

· · i ·

-- ---- ---11) -- .

..............·...I

............. '· '

.CHAPTER I

........ .

I
I

...... ...

CHAPTER 3. SYSTEM MODELING

-20

-30

-An

Frequency(Hz)

100

Frequency(Hz)

Figure 3.11: The Frequency Response of the Piezoelectric Tube Driver(Curve Fitting
Result)

2.2387

(Tis + 1)(T 2s + 1)
(3.21)

where, T 1000 sec and T2-r 1 sec
I 1 2X3000 rad 22x30000 rad

-N
-N.

,'~'-''-'- . : : :-:-::' -'-' : -:' -: -: : -:':-:-: -- :-:' -: -: :

.: . • . : . : -:-:-.- : - : - :-:.

...... -
} .. .::. . .:.-,...:. . .: .• .:. .;.:. :. -

y1-2

CHAPTER 3. SYSTEM MODELING

3.3.5 Pre-Amplifier

The pre-amplifier circuit diagram is shown in 2.12. Ideally the pre-amplifier should

amplify the input voltage by 100 milion times with no time delay. In real world,

there exists a stray capacitance and it causes some amount of the phase delay and

the magnitude attenuation. However, this effect is negligible compared with the

filters' and thus ignored here.

3.3.6 Tunneling Junction and Digital Log Converter

The time delay is caused by the capacitance and resistance effect in the tunneling

junction. This can be also ignored with the same reason stated above. The digital

converter also causes the time delay due to its computation time. However, this also

is negligible if compared with other components. The DC gain can be found from

figure 2.19. Here, the relationship between the gap and the output voltage can be

assumed to be linear in the measurement range from the fact that the tip varies the

gap by relatively small distance during the feedback loop.

3.3.7 A/D Converter and D/A Converter

The A/D Converter has 14 bit resolution and the 10 V overall voltage range. The

gain can be calcuated as,

214 counts
- = 1638 (3.22)
10 volts

With the same manner, the D/A Converter's gain with its 16 bit resolution and 10

V output range can be found as,

= 1.5259 x 10- 4 counts (3.23)
216 volts

CHAPTER 3. SYSTEM MODELING 48

500

-500
10 102 10 104 10s 10 10

Frequency (rad/sec)

360

0

CD)

-360-720

-720

101 102 103 104 105 106 107
Frequency (rad/sec)

Figure 3.12: The Frequency Response of the Open Loop System (Simulation Result)

3.4 Discussion

In this section, the model derived from the previous section is characterized with its

frequency response and is assessed by comparing the model's step responses and the

experimental step responses.

3.4.1 Frequency Response

The frequency response of the system's loop transimission transfer function is

shown in figure 3.12. The plot clearly shows the characteristics of the two filters,

the notch at 60 Hz and the cut off freguency at 1 kHz where the downward slope is

suddenly introduced. The plot also shows the small peak at the high frequency region

which probably accounts for the piezo tube's dynamics. It can be ensured by the 1800

phase shift at the same frequency in the phase plot of the frequency response. This

......

.. ;:I

CHAPTER 3. SYSTEM MODELING

implies that the effect of the piezoelectric tube dynamics is small compared to other

components.

3.4.2 Step Response

The step response of the simulated transfer function of the closed loop system of

the block diagram 3.7 and the experiment results are plotted in figure 3.13 and 3.14

respectively. The step input here is applied to Ref which is the reference and the

output is measured from VT which represents the tunneling voltage after the log

conversion. Both parameters are specified in the block diagram of figure 3.7. The

experiments result is from the PID gain tuning program described in section 5.5. As

one can see in the plots, two drawn figures are quite similar. Especially the two main

features are noticeable. First one is the initial peak that rises at ' sec. Both plot

shows this behavior of step response. The other one is the response after the first

rises. The response in that region shows typical underdamped response. Surpisingly

the shape of the curve of it in both plots matches very well. specifically if we compare

the number of oscillation, and the size of overshoot.

The experimental step response shows the high frequency oscillations which can

not be seen in simulated step response. This should an effect of high frequency noise

from the outside environment which we did not modeled in the simulation. The

oscillation has the constant frequency whose average value was measured at 500 Hz.

Note that the measured frequency was lower than the cutoff frequency of the low pass

filter at 1 kHz.

To determine what the main contributers to the characteristics of the step response

are, the open loop step responses for four major components in the block diagram

are drawn. Each step response is drawn in a same span of time except the piezo

tube's response. One can clearly see from the figure that the initial peak in the step

CHAPTER 3. SYSTEM MODELING

x 10.

2.

0.57

Figure 3.13: The Step Response of the Closed Loop System (Simulation Result)

Figure 3.14: The Step Response of the Closed Loop System (Experimental Result)

0 100 200 300 400 500 600 700 800 900 1000

Time(5/100000 sees)

CHAPTER 3. SYSTEM MODELING

b)

2-

IsI15

0 500 1000 1500 2000 2500SW 3000 3500 4000
Tvm 1/100000 secI

"0 500 1000 1500 2000 2500 300 3500 4000
Te(1/100000 scS)

d)

I

0 97i

o 06
0 n-

/

0 500 x000 i500 2000 500 3000 3500 4000

Figure 3.15: (a) The Step Response of the Piezoelectric Tube Driver (b) The Step
Response of the Low Pass Filter (c) The Step Response of the Notch Filter (d) The
Step Response of the Piezoelectric Tube

response matches with the low pass filter's response and the response that comes

after matches with the notch filter's response. Since most of the transient response

parameters are determined in the later part of the step response, this leads to the

conclusion the effect of the notch filter's characteristics are the most dominant in the

system's response.

t1

A- L

i · ·

--

Chapter 4

High Level Software for System
Operation

4.1 Introduction

The scanning tunneling microscope control software is implemented in two levels,

a high level and a low level. The high level software deals with the non-real-time

operations such as the user interfaces and the data analysis. The software runs in

the personal computer. The low level software operates the digital signal processor

to control the instrument in real time.

This chapter deals with the high level software. This chapter first discusses the

functions of the presently developed software. Only a brief description for each func-

tions is given. One can find more detailed information in the code listing in the

appendix B. The second part of this chapter addresses the environment provided for

further development of the application software. The basic concept and the procedure

of the development scheme are explained.

The C language is used in the development of this high-level software. The lan-

guage is chosen because it is widely used and the language itself provides a good

environment in developing such multi-task software.

4.1.1 Replacement of the STM Control Scheme

The initial scheme in controlling the scanning tunneling microscope has been changed

since this thesis work started. One goal of the thesis was to enhance the sytsem's

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

a)

Data b) -- Bl8'ii~,iii i~i~i~i~ii:-
SP21020

/8048
80486

1

Figure 4.1: a) Initial Configuration b) Enhanced Configuration

performance by replacing the old sheme with a new improved one. This section

discusses the changes that have been made to the system.

At the time the STM control software development was initiated on a 386 PC

which was the only host computing system. The separate A/D board and the D/A

board were attached to the PC via 16 bit ISA slot. For the A/D board, the DAT 2801

of Data Translation Inc. was used and for the D/A board, the DDA-06 of Metra Byte

corp. was used. The A/D converter and D/A converter had a same 12 bit resolution.

Also the A/D converter had the maximum sampling rate at less than 10 kHz. For

the display, the 386 PC is hooked up with a CGA monitor.

The above configuration gave a satisfying result initially in scanning sample sur-

faces. However, as more advanced applications are being planned, the capability of

the control system was limited because of the low conversion speed and the low com-

putational power. With that in mind, a new control hardware system was developed.

The two configurations of both old and new are shown in the figure 4.1.

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

The new configuration uses the two microprocessors, the ADSP 21020 digital sig-

nal processor of Analog Devices Inc. and the 80486 processor of Intel corp. Each

processors are dedicated to their independent assignments. The digital signal pro-

cessor is used for the real-time control part of the software, and the PC processor is

assigned to the user interface part.

The digital signal processor resides in a board plugged into a PC expansion slot.

The digital signal processor communicate with the user through this path. Its the

other end is directly connected to the controlled unit. The separate board for the A/D

and D/A conversion are also plugged into the PC next to the DSP board. This board

is controlled by the DSP board through the bus connection. The data transfering

speed between these boards is 60 nanosec per a 16 bit data. The board has the high

speed A/D converters that has the 14 bit resolution and the maximum sampling rate

at approximately 1.6 MHz. The board also has the D/A converter that has 16 bit

resolution. Both boards are designed and manufactured by JRG Corp.

The new control system provides higher computing power and higher conversion

speed than the previous system. The resolution of the D/A and A/D also became

higher than before. (Note that high resolution of the D/A means high resoluition of

the piezotube's movement.)

4.2 Functionality Overview

There are three major modes in the main menu of STM control software. Those

three modes are the constant height mode, constant current mode, and the data

interpretation mode.

Constant Height Mode

The hardcopy of the menu for the constant height mode is provided in figure 4.2. The

listed items in the menu are explained briefly below.

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

Figure 4.2: The Constant Height Mode

* Reset the STM. It resets the STM instrument by setting all the D/A chan-

nels equal to zero voltage except for the bias voltage channel. This command

becomes useful when the D/A voltage abruptly changes to an unexpected value.

* Inchworm Motor Control. This function allows the user to control the mo-

tor. The speed, the direction, and the moving distance of the motor are the

.controllable parameters.

* Manual Scanning Tools. This function prints another menu for the manual

scanning. The menu offers a step by step scanning. The user can perform

the fine positioning, the initial height control, and the scanning of a sample

separately.

* Scanning - Ramp Pattern. This module generates the ramp raster voltage dur-

ing the scanning. The function scans the surface and retrieves the result to a

specified array type variables. This should be used after the coarse positioning

approach has been completed.

Constant Height Mode

0. Reset the STM.
1. Inchworm Motor Control.
2. Manual Scanning Tools.
3. Scanning -- Ramp Pattern.
4. Scanning -- Triangular Pattern
5. Atomic Image Display.
6. End the session.

Enter your choice.

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

Figure 4.3: The Constant Current Mode

* Scanning - Triangular Pattern. This module is another version of the scan-

ning program which generates the triangular raster voltage during the scanning

process.

* Atomic Image Display. This function displays the scanned atom in grey scale

on the screen. The atomic images shown in chpater 6 are the work done by this

function.

Constant Current Mode

The menu of the constant current mode is shown in the figure 4.3. The mode enables

the user to perform the following tasks. (Note that the explanations of the repeated

items are omitted.)

* Fine Positioning. This function performs the fine positioning.

* Initial Height Control. This function initially controls the gap to a reference

before the constant current scanning is performed. Such action is to prevent the

Constant Current ModE

0. Reset the STM.
1. Inchworm Motor Control.
2. Fine Positioning.
3. Initial Height Control.
4. Scanning -- Ramp Pattern.
5. Scanning -- Triangular Pattern
6. PID Gain Tuning.
7. Atomic Image Display.
8. End the Session.

Enter your choice

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

tip from taking a large step at very beginning of the constant current scanning.

* Scanning - Ramp Pattern. This function performs the constant current mode

scanning with ramp pattern x-y raster input. The user can control the number

of control loops, the scanning speed, the PID controller gains, and the reference

voltage.

* Scanning - Triangular Pattern. This function performs the constant current

mode scanning with a triangular pattern x-y raster voltage.

* PID Gain Tuning. This function allows the user to adjust the proportional,

integral, derivative controller gain by displaying the step response of the closed

loop system. The user can input the desired reference value, the proportional

gain, integral gain, derivative gain. Two values, the data sampling rate and

the control loop updating rate, are also inputted. The control loop updating

rate is specified as multiples of the data sampling rate. This allows the user to

view data between the PID loop samples. The figure 4.4 is one example of the

step response plot it produces. In the plot, the inital voltage and the reference

voltage are shown by the dotted line.

The data interpretation mode is self explanatory and thus further explanations

are not given here. See appendix B.

4.2.1 Program Structure

The previously described functions related to the STM controls simply dump the

assembled DSP code to the DSP board's program memory leaves the work of real-

time controls and interactions with the instruments to the downloaded DSP code.

Those functions take the same steps in order to accomplish the downloading task.

The following summarizes the procedure it takes:

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

Fi

0 200 400 600 800 1000

gure 4.4: The Step Response Plot of PID Gain Tuning Function

1. Get user inputs.

2. Reset DSP.

3. Download the code.

4. Download the parameters.

5. Execute the program.

6. Check the status.

7. Upload the result and display.

The first part collects the user inputs. The one common input that the program

requests is the sampling rate. The user inputs the sampling rate in Hz or kHz units.

The program then translates the input value into the DSP compatible timer unit. In

the next step, the program resets the DSP board to stop all the current operation

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

of DSP. This operation is to prevent the DSP from doing undesired operations when

the new code is downloaded.

The downloading process comes next. The code and the user input parameter are

downloaded into the memory location in the DSP board specified in the architecture

file. The code should be compiled and linked with the architecture description file

prior to this step.

Up to this point being complete, the program on the DSP board is now ready to

be executed. The DSP starts executing the code when the run command is sent from

PC. The run command is actually done by setting the reset flag of the control register

to 1. Note that the flag has previously been pulled down to 0 by the reset command.

While the DSP board is running the code, the program checks the status of the

current DSP operations through the status register. The status register is useful

becuase it allows the host computer to check the DSP's condition without interrupting

its current operation. The three conditions that are the most commonly checked

through the status register. Those are,

1. Has DSP code started?

2. Is the sampling rate too fast?

3. has the DSP code finished?

Note that sequence of the status checking is important because all the status reports

are sent through the same channel. When the digital signal processor reports the

end of the required operation, the program uploads the results stored in the pre-

determined DSP memory location and presents the results to the user.

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

4.3 Application Software Development

The software is designed to provide a good basis for the development of advanced ap-

plications. The software offers two main features. First is the basic library subroutines

that will be commonly used in the applications development. The library includes

the basic STM control functions, the display routines, the DSP interface routines,

and other program support routines. Second one is the proramming environment in

which the developers can share the work they have done. The first section discusses

this programming environment. The following two sections provides the description

of the basic subroutines that should be useful in the software development.

4.3.1 Development Procedure

In using one's own written functions, the C language requires the prototype of the

functions at the beginning of a program. For the library subroutines, one can just use

the include statement to bring in the prototype. The prototypes of all the functions in

the STM control software are listed in one main header file seperately from the main

program file. If one have written the new functions, he should register the functions

in this header file by writting the prototype in. The idea of function registration is

also meant for a quick way to check the functions that others have written. One

should provide a good descriptions when registering the new functions in the header

file.

Next step is to include his sub menu in the provided main menu. Figure 4.5 is

the main menu which will be shown on the screen. Each item represents the mode in

which one's application is developed.

The last step is to add the content of one's application program to the main

porgram. One should notify the compiler of its new program to be compiled as a

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

Figure 4.5: The Main Menu

part of the main

their own style of

features.

The following

program. Each commercially available C or C++ compilers have

managing such projectwise programs. One should fully utilize those

is a summary of the procedure described above:

1. Register all the functions in the main header file.

2. Include the menu of the new module in the software's main menu.

3. Specify the new file name in the complier's option and compile.

4.3.2 Digital Signal Processor Interface

This section discusses the functions that the host PC uses to interface with the digital

signal processing board. Only the design consideration of the software has given here.

For the detail mechanism, one may refer to the user manual of this board. [20]

Main Ment

0. Reset the STM.
1. Coarse Approach.
2. Constant Height Mode.
3. Constant Current Mode.
4. Wide Scanning Mode.
5. Atomic Encoder Mode.
6. Data Interpretation Mode
7. Terminate the Session.

Enter your choice.

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

PC-DSP Handshaking

An effective communication method is critical in the real time operations of controlling

scanning tunneling microscope, especially when the PC has to respond to the sudden

malfunction of the controlled system. Such methods are machine dependent and

the optimal way of communication has to be found by its software developer. The

following is the discussion of the communication methods that can be implemented

in our configuration.

It is the usual case that the PC sends the command to the DSP to perform a certain

desired operation and the DSP sends the status of progress back to the PC. There are

three ways of sending a command to the DSP from the PC that are possible with the

current configuration. One way is to use the interrupt. The interrupt is triggered by

writing to the bit 2 of the control register. This bit is connected to the IRQ0O pin of

the ADSP 21020. When this pin is set low the provided interrupt routine in the DSP

code is executed while the current operation of DSP is hold. Unfortunately, other

IRQ pins are not connected and there are no means to trigger them from PC. Only

one DSP operation can be done using this method.

Another way of sending a command to the DSP is to directly download the pro-

gram which executes the desired operation. There exists a delay time between the

DSP programs while the new program is being downloaded. However, this method

gives many choices of what the DSP can do within one execution period. Most of the

DSP code written in this thesis is designed in this way. When this method is used,

the parameters that have to be shared between the DSP programs are transferred

through the PC. The PC uploads all the parameters that include the last updated

informations of the previous operation and downloads those parameters back with the

new DSP code for next operation. This scheme is used, in the STM control software

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

case, to transfer the last position of the tip to the next module.

The other way of interacting with the DSP is to write a command to a specific

memory location in the DSP while the DSP is in the loop of reading the same location.

When a certain number is written to such location, the DSP can be dispatched to

the corresponding part of the code.

The way of communicating to a PC from a DSP is well supported by the two

registers located in the DSP board. The main registers are the status register and the

timing register. 16 bit status register can be read by the PC without interrupting the

DSP's operation. This feature prevents the DSP's operations from being interrupted

while PC is in the loop of checking the its status. This is also hold for the 8 bit timing

register.

One can think of the real time scanning scheme of using this feature of DSP board.

Using the status register as the data transfering channel and the timing register as the

status channel that reports the availability of the data, the high speed data transfer

from DSP to PC can be achieved.[20] The DSP takes only 30 ns to hand over data to

the PC, which enables the scanned data to be transferred at even a real-time video

rate. However,the imaging rate will be limited by the time it takes for PC to read

the data and display the image on the screen.

DSP Code Download

The download function reads the compiled program and writes the results to a DSP

program memory. The subroutine reads only the .stk formatted code. The .stk file

is produced by the software development tool, the PROM splitter. One should, after

he compiled the original assembly file using the assembler and the linker to produce

the .exe file, input this .exe file as a command argument to the PROM splitter with

the proper options. [19]

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

DSP Memory Access

The functions to access a desired location in DSP memory are provided. The modules

are provided for the different data types. Those are int, long and float type. The data

should be divided into three 16 bit segments, high, middle, and low to be assigned to

the corresponding registers in the DSP board. For both the fixed point format and

the floating point format are compatible between the PC and the DSP and therefore

further data format changes are not neccessary.

DSP Control

The two functions are provided in controlling the digital signal processor. One is for

resetting the chip and the other is for initiating the chip. The chip reset can be done

by toggling the bit 0 of the control register and vice versa for the chip initiation.

4.3.3 Grey Scale Display

The acquired atomic image can be represented in many ways. One can show the

atoms graphically in a 3-dimensional graphics, the grey scale, and other 2-dimensional

representations. The grey scale shows the atoms in 2-dimensional plane with the

atom's height shown by the brightness of the point.

The grey scale is widely used because of its simpleness in algorithms. In figure

4.6, the scheme of implementing a grey scale into this software is shown. The 64 by

64 plane in the figure represents the scanned atom surface and the black dots show

the data points. Each data point has the information of the atom's height which is

then converted to a grey color according to its size. Note that the maximum number

of colors that can be assigned to each data point is limited because the VGA monitor

allows no more than 16 colors.

Because the 64 by 64 resolution didn't provide such. good quality display, the

CHAPTER 4. HIGH LEVEL SOFTWARE FOR SYSTEM OPERATION

(i+1,j+1)

'

)j1+i(10
Linear Interpolation
(10*10)

Figure 4.6: The Grey Scale Scheme

resolution was increased by the linear interpolation. The linear interpolation is done

for the 4 data points from each of the unit square in the data plane.

Chapter 5

Low Level Software for Control and
Identification

5.1 Introduction

The STM control software handles all of the machine's control functions such as

the PID feedback, XY raster generations, coarse approach, and data acquisitions.

Furthermore, the software provides the user interface and the display of the data.

As mentioned before, the architecture that are base on the DSP divides the task

in which the DSP handles the instrument control functions and the PC handles the

user interface and the display. This chapter discusses the control functions performed

by DSP. (The expression, low level software, is used to describe the real-time control

software implemented on the DSP board.) This software is written in assembly lan-

guage supported by the ADSP21020 processor. The chapter is intended for giving

only the design considerations. For the details of the software, one should refer to the

program sources listed in appendix B and the ADSP21000 family user manual.

The first section provides a brief review of the software. Some of the general

aspects of the software described in the section include the basic structure of the pro-

gram, the timing considerations, and other relevant points to software design. The

next four sections discuss each module of the STM control software. The modules de-

scribed in these sections include coarse approach, PID feedback, PID gain tuning, and

scanning. The underlying algorithms and the design considerations of each module

are described in depth.

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 67

5.2 Software Overview

Timing Considerations

Most real-time control functions require consistent and predictable timing for proper

operations. Likewise, the STM control software needs a known data sampling rate

to predict and control the effect of thermal drift, control feedback characteristics,

scanner's dynamics, and ambient noise.

The built-in timer in the DSP is used for consistent timing of the control functions.

The minimum timer period that can be set by the user is 30 ns. Every time the timer

expires, the DSP, for example in the case of constant current scanning, advances the

x and y raster, reads the A/D, performs the PID feedback, stores the atom image

data and waits for the next interrupt. The timer period should be determined by the

instrunction's length or the A/D conversion speed to be as short as possible because

the short timer period allows the faster scans and more number of data averaging for

a slow scans. It is the usual case that A/D conversion time sets the lower boundary

of the minimum possible timer period because most of the control code is less than

50 instructions.

Program's Structure

Figure 5.1 and figure 5.2 show two main parts of DSP code's structure in the STM

control software. First, the DSP program reports its initiation of the program execu-

tion to the host computer. Then it initializes the DSP environment and the analog

I/O environment. The initialization of the DSP includes the interrupt setups and the

assignment of initial value for the variables and the registers. The analog I/O ini-

tialization includes the assignment of the number of channels, the reset of the analog

board, and the first conversion of the A/D. The A/D conversion is done to provide

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 68

the data available in the FIFO before the first loop of the interrupt service routine

reads the A/D value.

In the next step, configuration and initialization of the DSP timer is performed.

Note that a multiple of the DSP's clock speed (33 M Hz) is used for the units instead

of other time units such as the second and Hertz.[17] The last step of the main routine

is to enable the timer and the interrupt and wait for the interrupt triggers. Every 3

ps the DSP timer triggers an interrupt which causes a jump to the interrupt service

routine.

In figure 5.2, the interrupt service routine, during one timer period, is shown.

Assuming that the A/D FIFO have the data available, the program reads the A/D

FIFO and temporarily stores in a register. Likewise, it writes the new data to the

D/A FIFO. Next the program checks the status of the analog board to ensure that

the data it read from the FIFO is the one newly updated. Then, the program pulls

the flag to start the next conversion. One should note that both the A/D and D/A

are activated at the same time due to the architecture of the provided hardware.

The main loop calculations are done in the next step. Because the acquired A/D

data is 14 bit wide, the data is sign-extended to 16 bit in order to perform the 16 bit

fixed point calculations. (The DSP provides the instruction, fext which performs just

that.) If floating point calculation is to be done on the A/D data, the data should

be sign-extended to 16 bit first and then converted to floating point format using

the float instruction. Also, because the actual reading of the A/D and the output

of D/A are biased by a significant amount of voltage offsets, the software needs to

compensate those offsets to get the true value.

At the end of the main loop computation, the final D/A data is converted from

the 2's complement format to the binary offset format. This is because the D/A

only supports the binary offset numbers. The numeric format is converted from a 2's

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 69

Main Routine

Figure 5.1: The Structure of Main Routine

complement to a binary offset by simply inverting the most significant bit of the 16

bit data.

When the main loop counter expires, the program disables the timer and the

interrupt, empties the FIFO for the next program to be executed and reports to the

host PC that it has finished the operation.

LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 70

Interrupt Service Routine

Read the A/D FIFO&
write to the D/A FIFO.

Did the Analog board No
finish the conversion?

Report that the sampling
is too fast.

Figure 5.2: The Structure of Interrupt Service Routine

CHAPTER 5.

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 71

The Number of Channels

Each module may need a different number of channels. For example, the fine posi-

tioning module needs only one A/D channel for the measurement of the tunneling

current and two D/A channels for the z-direction control of the piezo tube and the

bias voltage. On the other hand, the scanning module needs additional two more

D/A channels for the x and y direction control of the piezo tube. The DSP sets

the number of channels by writing to 0x40000002 of the data memory.(The memory

mapped port to the number of channel register in the analog board.)[20] Each module

defines only the number of channels it needs because the redundant channels reduce

the maximum possible sampling rate.

The order of writing the values to the D/A FIFO becomes important when more

than one channel are used. The first data written to the FIFO goes to the first channel.

When the flag 2 in ASTAT register of DSP is triggered, the D/A conversion for all

the channels are performed at the same time. No channel can perform conversion

at a different time. Also note that for each number of channels (from #1 to #4),

certain channels are selected by default. For example, if the number of channels is

set to one, the user can only use channel #1, not channel #2, channel #3, or channel

#4. In this case, one should use channel #1 for most frequently used output.

5.3 Initial Approach

5.3.1 Coarse Positioning

In a coarse positioning, the DSP uses the inchworm motor to reduce the gap. To

control the inchworm motor, the DSP writes a command to its 8 bit digital output

port which is then connected to the digital port of the inchworm motor controller.

The controllable inchworm motor parameters are the direction of the motor's

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 72

motion(either upward or downward), the speed, and the travel distance. The speed

and the travel distance of the motor is controlled through the clock signal input to

the controller. The speed is determined by the ring number of this clock while the

travel distance is determined by the number of the same clock signal. The inchworm

motor moves 4 nm on the rising edge of this clock signal. The DSP simply writes

0 and 1 alternately to the digital output port to generate the 5 V amplitude clock

signal.

During the coarse positioning, the software moves the motor at a average constant

speed of 2 jpm/s. The software samples the data at a slightly faster rate than the

motor speed to respond immediately to a detected tunneling current. In the software

point of view, this rate of data sampling is used as the fundamental timer clock and

every multiples of samples, the motor is moved by one step. When the software

detects the tunneling current, it jumps to the subroutine which stops the upward

motion of the inchworm motor and move it again in the opposite direction by 20

steps with 100 kHz clock frequency. This reverse motion, as mentioned before, is to

prevent the tip from crashing onto the sample.

5.3.2 Fine Positioning

In the fine positioning mode, the DSP uses both the inchworm motor and the piezo-

electric tube. The DSP uses two D/A channels to send the bias voltage and the

z-direction control voltage of the piezo tube. It also uses one A/D channel to mea-

sure the tunneling current.

The usual sampling rate is around 500 Hz. With that sampling rate, the motor

moves upward at a speed of 1.5 nm/sec with the resolution of 0.1 A. (The speed and

the resolution are calculated based on the z-direction sensitivity derived in section

2.3.1.) Figure 5.3 shows the command signals for the inchworm motor and the piezo

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 73

Inchworm
motor

5V

ov-

Piezo
tube

0.3V

0V

Delay

iI
t

II

t

Figure 5.3: The Output Signal to the Inchworm Motor and the Piezoelectric Tube

tube that the DSP produces. The DSP produces the square wave signal to move the

inchworm motor and a saw tooth shaped signal to control the piezo tube. The piezo

tube is move by 4.8 nm while the inchworm motor moves one step. Note that the

redundant 0.8 nm over the specified inchworm motor's resolution of 4 nm is a safety

factor. Also, in the software, a delay was introduced between the inchworm motor's

signal and the piezo tube's control signal. This is to avoid a crash as the inchworm

motor moves upward with the tip at the lowest position.

5.4 PID Feedback

The PID feedback is used to control the tunneling current to a constant level that the

user specifies. The computing power of the DSP enabled us to directly emulate the

analog feedback and provides an easier means of changing feedback parameters at the

same time. Also, the DSP's floating point architecture simplified the development of

the control algorithm especially when heavy computations were involved. By using

I

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 74

this advantages of the DSP, we could plan wide choice of control algorithms and other

features such as spectroscopy and digital modulation.

The S-domain transfer function of the proportional, integral, and derivative con-

troller is shown below.

D(s) = K, [l + TD] (5.1)

Since we are using the digital controller and have to consider the effect of sample

and hold operations, the Z-domain transfer function is derived as shown in the equa-

tion (5.2) below. The equation uses the backward Euler scheme in approximating

derivatives and integrals.

Tz TD(Z - 1)] (5.2)D(z) = IK, 1 + T(z- 1) + T(5.2)

where T is the sampling rate, TI is the integral time, TDo is the derivative time, and

the Kp is the proportional gain. The difference equation of command output u(k)

and the error signal e(k) is derived to be directly implemented in the software.

u(k) = Ax e(k) + B x e(k - 1) + Si(k - 1) (5.3)

SI(k) = C x e(k) + Si(k- 1) (5.4)

where,

T T
A = K,(1 ++ +) (5.5)

KPTDB TD (5.6)
T

C- KpT (5.7)
TI

In the software, the A, B, and C coefficients are calculated and downloaded from the

PC prior to the DSP code execution in order to reduce the computation time.

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 75

Figure 5.4: The Saturation

Figure 5.4 shows the software implemented saturation function. The x-axis rep-

resents the input voltage and the y-axis represents the output voltage. If a voltage of

more than 5 V is written to D/A, a saturated voltage of 5 V is assigned instead. This

operation is necessary in that the 16 bit D/A FIFO is written from the 32 MSB of

the 40 bit register. If the data is, for example, Ox10000, then the D/A FIFO will be

written with value of OxO. This causes the D/A output voltage to roll over between

positive 5 V and negative 5 V which can bring disaster to sensitive instruments.

Before computing the feedback parameters, the software converts the tunneling

current to its log value. The software directly emulates the analog logarithmic ampli-

fier previously employed in the STM instrument. See section 2.5 for the log conversion

equation. Because of the execution time considerations, the look-up table scheme is

used for the log conversion. The host PC computer calculates all the possible log

value and downloads to the data memory(0x2000 - Ox3fff) prior to the PID feedback

loop execution. During the feedback loop, the DSP generates the index to the look-up

table residing in its memory. The following equation is used to generate the index.

Index = ADCReading + 0x2000 (5.8)

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 76

ADC Reading is the digital value to which A/D converts the input voltage. In this

way, the address which corresponds to the log value can be uniquely determined from

the input value. The software uses only 5 instructions which corresponds to 150 nano

seconds to process the log conversion.

5.5 PID Gain Tuning

This module generates the step response curves for the purpose of tuning the PID

controller gains. Such step response plot provided us a good visual indicator of closed

loop response's rise time, noise level, settling time, overshoot, and other time domain

characteristics as well. By adjusting the PID gains, we could shape the step response

and find optimal values. This method provided a better means to adjust the PID

gains than tuning PID gains by the inspection of the image quality.

Two types of sampling rates are inputted by the user before the program execution.

The data sampling rate is the rate at which the DSP does the A/D conversions and

the control loop sampling rate is the rate at which the DSP updates the control

command output. This is to provide the user a means to view the data between the

feedback samples.

Figures 5.5 to 5.8 are the step response plots generated by this module. Figure 5.5

shows the step response with the PID gains we usually used in the constant current

mode scanning experiment. Figure 5.6 is the step response when the integral gain was

increased. The plot shows the typical behavior of integral control, larger overshoot

and more oscillations. Figure 5.7 is the result when the derivative gain was increased.

The plot clearly shows one of the derivative controller's effect, the amplification of the

noise. This frequency of the noise was measured at 450 Hz. Although its amplitude

changes, the frequency was observed to be the same when different sampling rates

and PID gains are used. The same phenomena happens when the sampling rate is

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 77

5400

5300

.5 5200

5100

5000

4900
200 400 600 800 1000

Samples

Figure 5.5: Fs=10 kHz, K=0.00065, Ti=0.065, Td=0.016 (unit) 100 microsec
nsample

19 rnA

5400;

5300-

5200

pP/ } d
/w J1

I'~
/ '.1 qA~~

~V
A'v4

5100 k

5000- /

4900

4800
200 400 600 800 1000

Samples

Figure 5.6: Fs=10 kHz, K=0.00065, Ti=0.03, Td=0.016 (unit) 100 microsec
sample

I A i
JJvv:

rj

~---

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 78

200 400 600 800 1000

Samples

Figure 5.7: Fs=10 kHz, K=0.00065, Ti=0.065, Td=0.04 (unit) 100 msicosec
sample

1Zf0•

200 400 600 800 1000

Samples

Figure 5.8: Fs=20 kHz, K=0.00065, Ti=0.065, Td=0.016 (unit) 50 mscrosec
sample

5800

5600

5400

5200

5000

4800

J'tUUKn

5300k

5200K

5100i

5000!

· · ··JJvvi I

790

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 79

33uu

5250

5200

5150

S5100

5050

5000

4950

4900
0 200 400 600 800 1000

Samples

Figure 5.9: Fs=20 kHz, K=0.00065, Ti=0.065, Td=0.002 (unit) 50 mcrosec
sample

increased as shown in figure 5.8. This time, the sampling rate of 20 kHz is used.

Notice that the amplitude of high frequency component of the response has increased

to almost the step size. In order to reduce the noise effect, the derivative gain was

decreased. The result is shown in figure 5.9. The plot shows the noise effect has been

reduced but still remained as a significant error.

5.6 Software for Real Time Scanning

The scanning can be done in two modes, constant height mode and constant current

mode. The constant height mode fixes the abosolute height of the tip during the

scanning and uses the tunneling current for the atomic image data. The constant

current mode on the other hand fixes the gap between the tip and the sample during

the scanning and uses the z-direction voltage applied to the piezo tube for the atomic

image data.

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 80

5.6.1 Constant Height Mode

The DSP uses four D/A channels to move the piezo tube in the x, y, z directions, and

to apply a bias voltage between the tip and the sample material. It uses one A/D

channel to measure the tunneling current.

The configuration of the hardware is carefully considered in this module. Since

the A/D and the D/A do conversion at the same trigger, as the data is read and

the control voltage is sent at the same sample, it is possible that tunneling current

is measured while the tip is on the way to the next measurement point. To prevent

this, the software implements an algorithm that alternates the A/D and D/A tasks

in two sample periods.

The sampling rate for this module is usually around 6.4 kHz. This value is chosen

to avoid the frequency region where the data signal is attenuated because of two filters

that are used. As shown in figure 2.15, the filters attenuates the frequencies around

60 Hz and the region higher than 1 kHz. The 6.4 kHz sampling rate came from the

consideration of the scanning speed. Here, the scanning speed of approximately 200

Hz(atoms/sec) is chosen which should be the reasonable value between 60 Hz and 1

kHz.

In the software, the scanning area can be changed using two macro variables.

One defines the distance between the measurement points and the other defines the

number of measurement points. In scanning experiments, we fequently used the 64x

64 measurement points and the 6 counts(; 2 A) between the measurement points as

scanning parameters. Note that the number of the measurement points is limited by

the amount of memory in DSP board. With each of 32,000 locations of data memory

and program memory, a total of no more than 64,000 locations of on board random

access memory can be used by DSP.

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 81

5.6.2 Constant Current Mode

Figure 5.10 shows the algorithm of the constant current mode module. The main

routine is responsible only for the initialization of the variables and wait for the timer

interrupt to be triggered. Every time an interrupt occurs, the program jumps to the

interrupt service routine.

The interrupt routine performs the PID feedback and the x, y direction raster

generation. The DSP updates the control command using PID feedback scheme and

sums the z-direction control voltage. When the control loop counter expires, the DSP

advances the tip in the x or y direction and records the average of the stored sum.

When the scanning is completed, the DSP reports its end to the host computer and

goes to an idling mode. Later, the PC uploads the averaged data and for process and

further analysis.

The user inputs the PID gains, the sampling rate, the number of wait loops, and

the number of control loops for the scanning parameters. The sampling rate, the

number of control loop, and the PID gains are all determining factor of the scanning

speed during this constant current mode. The faster sampling rate improves the

performance of rejecting the disturbance and following the sample surface, but if the

value is too high, the sensitivity of the noise will become larger as well. The number

of control loop depends on the performance of the implemented PID controller. If the

PID controller achieves a step response of the system which has the faster rise time

and the settling time, the period that the tip has to stay at each data point will be

reduced and the number of control loops can be set to a small value.

All the data taken throughout the PID feedback loop are summed and averaged

before recorded. Such data averaging operation is one of the effort to improve the

signal to noise ratio. (One can see in the step responses, such as the one shown in

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 82

Main Routine

Interrupt Service Routine

Figure 5.10: The Structure of Constant Current Scanning Routine

CHAPTER 5. LOW LEVEL SOFTWARE FOR CONTROL AND IDENTIFICATION 83

figure 5.8, that the significant errors are being caused by the high frequency noises.)

The wait loop is to introduce several sample delays between the XY advances

and the PID feedback. Such delay gives the piezo tube some time to settle down at

the new measurement location and therefore improves the performance of the PID

controller and the accuracy of the averaged data.

Chapter 6

Experiments

6.1 Introduction

This chapter presents the atomic images obtained from the STM instrument described

so far. We have scanned the highly oriented pyrolytic graphite (HOPG) in an air

environment. The first section discusses the known structure of the sample graphite

and its typical STM image. The following two sections describe the results of the two

modes that have been conducted in this thesis work. Those are the constant height

mode scanning and the constant current mode scanning.

6.2 The Structure of Highly Oriented Pyrolytic
Graphite

Highly oriented pyrolytic graphite soon became our choice for the experiment sample

because of its preparation convenience. Large, atomically flat surface could be easily

obtained by cleaving with an adhesive tapes. Furthermore, the HOPG was relatively

inert and little affected by contaminations or oxidizations from the surroundings and

therefore it could be imaged in an air environment.[22,23] In our scanning experi-

ments, we used the HOPG sample with the size of 6 mm x 6 mm x 1 mm provided

by Advanced Ceramics Corporation

Figure 6.1 shows the hexagonal AB stacking sequence structure of the graphite,

the most typical structure of the HOPG surface. The black dots in the diagram

represents the carbon atoms of the graphite. The diagram shows that each carbon

CHAPTER 6. EXPERIMENTS

B

c

2.46A

Figure 6.1: The Structure of a Highly Oriented Pyrolytic Graphite Surface

atom is located at either an A site or a B site. At site A the atoms in top layers

coincide with those in the underneath layer, whereas at site B the atom does not

have a corresponding atom in the underneath layer.[16,22] The distance between the

neighboring A site atoms is 2.46 A. The distance beween an A site atom and the

nearest B site atom is 1.42 A. At C site an atom exists in the underneath carbon

layer, but the space directly above is just hollow.

According to the calculations of Selloni et al.[24] the atom at an A site is located

slightly above the atoms at a site B by approximately 0.15 A. One can easily think

that the image of the surface should have the brightest point at the A site. However,

the real STM image of the atom shows the t site atom as the brightest region because

of the fact that the local electronic density of states of the B site region greatly affects

the images.[16] The typical STM image shows the brightest region in the B site, a

slightly less bright region in the A site, and a dark region for the C site.

CHAPTER 6. EXPERIMENTS

6.3 Constant Height Mode Scanning

The several experiments are conducted with different scanning parameters for the

constant height scanning. The results are shown in figure 6.2 and figure 6.3. The

first scan was conducted with the positive bias voltage 50 mV applied to the tip. The

average value of the tunneling current generated at this voltage was 7 nA. The 64 by

64 data points were taken on the 2-D atom plane where the distance between the data

points was 0.47A. The scanning speed along the x-axis line was 600 Hz (atoms/sec

Figure 6.2 shows the grey scale of the graphite image taken during the first scan

experiment. The image shown in the figure corresponds to an area of 10 A x 16 A.

Each bright region represents a B site while the dark region represents a C site which

is located at the center of a hexagon as shown before. The A site can be recognizable

if seen carefully. It forms a triangular shape positioned opposite to the B site triangle.

The C site should be at the center of this triangle.

The fact that the lower part of the image is brighter than the upper part shows

that the control of the thermal drift has not been succesful.

The second experiment imaged an area of 8 A x 6 A. The image was measured

with an average tunneling current of 8 nA and a bias voltage of 45 mV. This time,

the scanning speed was decreased to 200 Hz. The result is shown in figure 6.3. In the

figure, the pattern of the graphite layer structure is clearly evident. However, the A

site atoms forming a hexagonal pattern are barely recognizable because neighboring

B site and C site regions are too bright to reveal such pattern.

Figure 6.4 shows the X-Z plane view of the atom image taken during the second

experiment. From the figure, the amplitude of the atom signal was measured. The

amplitude was about 2 A which agreed well with other's results. [22]

CHAPTER 6 EXPERIMENTS

Figure 6.2: The Grey-scale Image of HOPG Surface (10A x 16A)

CHAPTER 6 EXPERIMENTS

Figure 6.3: The Grey-scale Image of HOPG Surface (8A x 6A)

CHAPTER 6. EXPERIMENTS

0

N

0 1.6 A 10 A
x direction

Figure 6.4: The X-Z Plane View of the Atom Surface

The grey scale image taken from another set of experiment is shown in figure

6.5. The data were taken with a tunneling current of 7 nA. The rest of the scanning

parameters were the same as the first experiment. The figure shows part of the

scanned image, an area of 16 • x 10 A. Although it shows the image similar to an

atomic structure evident in other experiment results, the atom structure shows rather

unusual pattern. It provides a good insight of how the shape of the scanning surface

is formed. The diagonally elongated atom shape pointing to the bottom suggest that

the scanned atom surface is curved towards the bottom.

89

CHAPTER 6 EXAPERIMENTS

Figure 6.5: The Grey-scale Image of HOPG Surface (16A x 10A)

CHAPTER 6. EXPERIMENTS

6.4 Constant Current Mode Scanning

The result of the constant current scanning experiment is shown in figure 6.6. This

constant current imaged area of 9 A x 6.5A, was measured with a tunneling current

of 10 nA and a bias voltage of 45 mV.

The PID feedback control system used a sampling rate of 10 kHz. The P, I,

D gains in the software were set to 0.00065, 0.065, 0.016 respectively. However, it

has been discovered that because of environmental changes, the PID gains should be

updated each time a new experiment is conducted. The figure shows the effect of

the D gain and the fast sampling time clearly. Although the hexagonal pattern of

the atom structure is evident in lower part of the figure, the image is much affected

by the surrounding noises. The effort to increase the scanning speed to reduce the

thermal drift resulted in amplifying the noise effect.

The minimum time between the data samples are set to be 5 milliseconds. At this

rate, the tip should advance in the x and y directions at a speed of 12 Hz (30.5 -).

CHAPTER 6 EXPERIvMENTS

Figure 6.6: The Grey-scale Image of HOPG Surface (9A x 6.5A)

Chapter 7

Conclusion

The purpose of this thesis work was to provide a supporting environment of the

application development for the scanning tunneling microscope, being underway in

the laboratory of manufacturing and productivity. The task has been accomplished

by implementing the digital signal processor based control system. The software is

written for both the digital signal processor and the host personal computer. The

DSP program is written in assembly language in order to minimize the program's

execution time. The software for the basic STM control operations, the user interface,

and the DSP interfaces are written for the high-level application developers. The steps

neccessary for developing the application software are suggested.

All the softwares written for the STM control are proved to be satisfactory, but still

need to be improved on several areas. First, the user interface should be improved.

The current menu driven user interface structure is aimed for higher quality user

interface routines such as Windows. Secondly, the software should support the wider

range of the user's selections of the scanning parameters. The future software should

provide the features such as a user control of number of measurement data points.

Thirdly, the possibility of software compensation of hardware error should be explored

more. The hardware errors such as the thermal drift, the electrical noise, and the

piezo's hysteresis showed some regular patterns which may be cured by the software

correction. Lastly the future applications software should take a full advantage of the

digital signal processors's features.

The images taken from both the constant height mode and the constant current

CHAPTER 7. CONCLUSION

mode experiment are presented. The result of constant current mode turned out to

be not as good as the result of constant height mode. The main reason should be

the improper adjustment of proportional, integral, and derivative gain value. The

PID gains with the low sensitivity to the ambient noise should be found. It would

be better to characterize the effect of an ambient noises when deriving the optimal

gain values. If one could come up with the mathematical model of the noises, he can

even perform the simulations using the provided block diagram model to see the noise

sensitivity.

Also in the thesis, the modeling of the PID feedback loop was performed. The

bond graph approach was adapted in deriving the 2nd order approximated model of

the piezoelectric tube. The simulation based on the derived model showed that the

outputs closely match the experimental results. The simulation result revealed the

fact that the notch filter we adopted greatly affects the overall system response and

thus determines the dynamics of controlled plants.

Again, the task of this thesis work to implant the new control system and to

provide an application development environment have been successful and only re-

maining is to proceed with the development with the provided software and hardware

tools.

Appendix A

Resources

The following companies were the supplier of the products we used in this project.

The complete address is given for each company for further references.

* Advanced Ceramic Technology

990F Enterprise St., Dept. TR

Orange, CA 92667

Tel) (714) 538-2524

Fax) (714) 538-2589

* Analog Devices, Inc.

DSP Division

One Technology Way, P.O. Box 9106

Norwood, Massachusetts 02062-9106

Tel) (617) 461-3672

Educational Support

Tel) (617) 329-4700

Fax) (617) 461-3010

* Burleigh Instrument, Inc.

Burleigh Park P.O. Box E

Fishers, NY 14453

Tel) (716) 924-9355

Fax) (716) 924-9072

APPENDIX A. RESOURCES

* JRG Signal Processing

Tel) (508) 655-9208

* NPC Computer Corp.

1320 Centre Street

Newton Centre, MA 02159

Tel) (617) 965-8325

Fax) (617) 965-3784

* Omega Engineering, Inc.

P.O. Box 4047

Stamford, CT 06907-0047

Tel) (203) 359-1660

Fax) (203) 359-7700

* The Math Work, Inc.

24 Prime Park Way

Natick, Massachusetts 01760

Tel) (508) 653-1415

* Microsoft Corp.

One Microsoft Way

Redmond, WA 98052-6399

Tel) (206) 454-2030

* Stavely Sensor, Inc.

91 Prestige Park

East Hartford, CT 06108

APPENDIX A. RESOURCES 97

Tel) (203) 289-5428

Fax) (203) 289-3189

Appendix B

DSP Code

B.1 Architecture File
.SYSTEM
.PROCESSOR =

KYT;
ADSP21020;

/BEGIN=0x000000
/BEGIN=0x000008
/BEGIN=0x000018
/BEGIN=0x000020
/BEGIN=0x000028
/BEGIN=0x000030
/BEGIN=0x000038
/BEGIN=0x000040
/BEGIN=0x000058
/BEGIN=0x000060
/BEGIN=0x000070
/BEGIN=0x000078
/BEGIN=0x000080
/BEGIN=0x000088
/BEGIN=0x000090
/BEGIN=0x0000CO
/BEGIN=0x0000C8
/BEGIN=0x0000DO
/BEGIN=0x0000D8
/BEGIN=0x0000EO
/BEGIN=0xO000E8
/BEGIN=0x0000FO
/BEGIN=0x0000F8

/END=0x000007
/END=0x00000F
/END=0x00001F
/END=0x000027
/END=0x00002F
/END=0x000037
/END=0x0003F
/END=0x000047
/END=0x00005F
/END=0x000067
/END=0x000077
/END=0x00007F
/END=0x000087
/END=0x00008F
/END=0x000097
/END=0x0000C7
/END=0x0000CF
/END=0x0000D7
/END=0x0000DF
/END=0x0000E7
/END=0x0000EF
/END=0x0000F7
/END=0x0000FF

.SEGMENT /RAM

.SEGMENT /RAM
/BEGIN=0x000100 /END=0x0007FF /PM pmcode;
/BEGIN=0x000800 /END=0x000FFF /PM pm-data;

.SEGMENT /PORT /BEGIN=0X800000 /END=0X800000 /PM pmportl;

.SEGMENT /PORT /BEGIN=0X800001 /END=0X800001 /PM pm-port2;

.SEGMENT /RAM /BEGIN=0x00000000 /END=0x0000000F /DM dmuserinput;

.SEGMENT /RAM /BEGIN=0x00000010 /END=0x0000002f /DM dmdata;

/BEGIN=0X20000000 /END=0X20000000
/BEGIN=0X20000002 /END=0X20000002
/BEGIN=0X40000000 /END=0X40000000
/BEGIN=0X40000001 /END=0X40000001
/BEGIN=0X40000002 /END=0X40000002

/DM dm portl;
/DM dm port2;
/DM dm port3;
/DM dm port4;
/DM dm port5;

.BANK /PMO /PGSIZE=256 /WTSTATES=0 /WTMODE=INTERNAL /BEGIN=OX000000;

.BANK /DMO /PGSIZE=256 /WTSTATES=0 /WTMODE=INTERNAL /BEGIN=OX00000000;

.BANK /DM1 /PGSIZE=256 /WTSTATES=1 /WTMODE=INTERNAL /BEGIN=0X40000000;

.ENDSYS;

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM

/PM
/PM
/ PM
/PM
/PM
/PM
/ PM
/PM
/PM
/PM
/PM
/PM
/ PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM

emusvc;
rst_svc;
sovfsvc;
tmzh_svc;
irq3_svc;
irq2_svc;
irqlsvc;
irq0_svc;
cb7_svc;
cbl5_svc;
tmzl_svc;
fix_svc;
fltosvc;
fltusvc;
flti_svc;
sftOsvc;
sftlsvc;
sft2_svc;
sft3_svc;
sft4_svc;
sft5_svc;
sft6_svc;
sft7_svc;

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

/PORT
/PORT
/PORT
/PORT
/PORT

B.2 .ASM Files
/**

init.asm--This program sets each D/A channels to preset value. The following
values are assigned to each channels.

D/A channel 1 - z-piezo ------ 0 DAC
channel 2 - bias voltage ------ O0x156d DAC(bias + offset)
channel 3 - x-piezo ------ 0 DAC
channel 4 - y-piezo ------ 0 DAC

There exist huge offset voltages in each D/A channels. The offset
voltage for DAC value 0 was measure at

D/A channel 1 -> -0.241 V - 0x626 DAC Value
channel 2 -> -0.237 V - Ox611 DAC Value
channel 3 -> -0.226 V - 0x5c9 DAC Value
channel 4 -> -0.248 V - 0x659 DAC Value.

The resistor pack for 13 kHz was used when the offsets are measured.

written by Jungmok Bae 2/11/94
Final revision 3/11/94

******** **

#define BIAS 0x156d

.segment /pm pmportl;

.var ADFifo;

.endseg;

.segment /pm pm_port2;

.var ANGBStatus;

.endseg;

.segment /dm dmportl;

.var StatusReg;

.endseg;

.segment /dm dm_port2;

.var DigitalIO;

.endseg;

.segment /dm dm_port3;

.var DAFifo;

.endseg;

.segment /dm dmport4;

.var ControlReg;

.endseg;

.segment /dm dmport5;

.var ChanNum;

.endseg;

.SEGMENT/PM rstsvc; { program starts at the reset vector }
PMWAIT=0x00A1; {/pms0=Ows, /pmsl=lws)
DMWAIT=0x9421; (/dms0=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

jump start;
.ENDSEG;

.segment/pm pm_code;
start:
lp: r4=0xl; { let pc know the scanning has started)

dm(StatusReg)=r4;

r9=0x8000;

bit set MODE2 0x20000; (flag 2 is an output }
bit clr ASTAT 0x200000; (set flag2 to low }
r4=0x0;
dm(ControlReg)=r4; {reset analog board)
nop;nop;nop;
r4=0x20; { 0 a/d channels & 4 d/a channels }
dm(ChanNum)=r4; { number of channels)
nop; nop; nop;
r4=0x80; { release ang reset & go mode=0 (go on flag2) }
dm(ControlReg)=r4; { control register)
nop; nop; nop;

(read the first a/d and write the initial d/a outputs }

wtl: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

rO=0;
rl=BIAS;

(wait for the fifo to finish its work.)

/*previous z-vol. in 14bit from pidcon.asm*/

rO=ASHIFT rO by 2;
rO=rO XOR r9;
rl=rl XOR r9;

dm(DAFifo)=rO;
dm(DAFifo)=rl;
dm(DAFifo)=rO;
dm(DAFifo)=rO;

(and invert MSB:due to binary offset format)

(send z-piezo sig-initial OV)
(apply bias voltage-initial 50mV}
{apply x-piezo vol.)
(apply y-piezo vol.)

bit set ASTAT 0x200000; { toggle flag2 to start first cony)
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

(wait for the first a/d to trash the)
{ whatever sits in the fifo with new data.)

r4=0x0;
dm(StatusReg)=r4; (let pc know the scanning has finished)

adflush:r4=pm(ANGBStatus); (make sure last conversion is done)
r8=0x3;
r4=r4 AND r8;
if ne jump adflush;
r4=pm(ADFifo); (flush 1 a/d result from fifo)

idle;
.ENDSEG;

/ **

moveiw.asm--This module controls the inchworm motor.

user input 0 - dm(0x0000)
sampling rate of a/d.

user input 1 - dm(0x0001)
Clock counter.

user input 2 - dm(0x0002)

100

flag : upward or downward
...... This program is compiled with aenvl.ach file.

written by Jungmok Bae 2/11/94

.segment /pm

.var ADFifo;

.endseg;

pmportl;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dmportl;

.var StatusReg;

.endseg;

.segment /dm dmport2;

.var DigitalIO;

.endseg;

.segment /dm

.var DAFifo;

.endseg;

dmport3;

.segment /dm dm port4;

.var ControlReg;

.endseg;

.segment /dm

.var ChanNum;

.endseg;

dmport5;

.segment /dm dm_data;

.var LoopCount;

.endseg;

.segment /pm rstsvc; { program starts at the reset vector }
PMWAIT=0x00A1; {/pms0=Ows, /pmsl=lws}
DMWAIT=Ox9421; (/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

.endseg;
jump start;

.segment/pm
start:

pm_code;
r4=0x0;

dm(ControlReg)=r4;
nop;nop;nop;
r4=0x0;
dm(ChanNum)=r4;
nop; nop; nop;

(reset analog board)

{ 0 a/d channels & 0 d/a channels I
{ number of channels }

call init_timer(db);
r4=0xl; { let pc know the coarse approach has started)
dm(StatusReg)=r4;

rO=0;
dm(LoopCount)=r0;

bit set MODE2 0x20; { enable timer }
bit set MODEl Oxl000; { enable interrupts }

intwt: idle;

101

jump intwt;

Sample: r0=dm(LoopCount);
rl=dm(0x0001);
r2=rl-r0;
if eq jump endofprog;

rl=dm(0x0002);
r6=rl+l; (the value of the clock : 1 }
dm(DigitallO)=r6; { send the clock through Digital I/O }
Icntr=0xc8, do hold until Ice;

hold: nop;

r6=rl; { the value of the clock : 0 }
dm(DigitalIl)=r6;{ send the clock through Digital I/O }

r0=dm(LoopCount);
r0=r0+1;
dm(LoopCount)=rO;

rti;

inittimer: bit clr MODE 0Ox1000;
bit set irptl 0;
bit set IMASK 0x12;

(disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

rl0=dm(0x0000);
TPERIOD=rlO;
TCOUNT=rlO;

{ sample period will be in dm(0xl011) }
{ set up the timer }

rts;

bit clr MODE2 0x20;
bit clr MODE1 Ox1000;

r4=0x0;
dm(StatusReg)=r4; { let

{disable timer}
{disable ints}

pc know the coarse approach has finished)

.ENDSEG;

.SEGMENT/PM
jump Sample;
idle;
.ENDSEG;

idle;

tmzhsvc;

/ ********* ***********************

coarsell.asm - This program executes the automatic coarse
approach.

Channel usage
D/A channel 1 - z voltage ---> rO (reserved reg.)

channel 2 - bias --- > rl (")
A/D channel 1 - tunneling current ---> r2 (")

User input
user input 0 - dm(0x0000)

sampling rate of a/d.
user input 1 - dm(0x0001)

ratio between a/d fs and IW's speed.

102

endofprog:

*+**************************tX ~~********+ ***

#define BIAS Oxf5c
#define TCLMT Oxccc
#define BACKSTEP Ox14

.segment /pm

.var ADFifo;

.endseg;

/* the bias voltage */
/* the tunneling voltage limit */
/* the # of back up step when it detects TC */

pm_portl;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dmportl;

.var StatusReg;

.endseg;

.segment /dm dmport2;

.var DigitalIO;

.endseg;

.segment /dm

.var DAFifo;

.endseg;

dm-port3;

.segment /dm dmport4;

.var ControlReg;

.endseg;

.segment /dm dmport5;

.var ChanNum;

.endseg;

.segment /dm dm_data;

.var Counter;

.endseg;

.segment /pm rst_svc; { program starts at the reset vector }
PMWAIT=0x00A1; (/pmsO=Ows, /pmsl=lws}
DMWAIT=Ox9421; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

.endseg;
jump start;

.segment/pm
start:

pm_code;
r4=0xl;

dm(StatusReg)=r4;
{ let pc know the coarse approach has started}

call init_analog(db);
r9=0x8000;
r4=0;

call init_timer(db);
dm(0xl010)=r4;
r5=dm(0x0001);

dm(Counter)=r5;

bit set MODE2 0x20;
bit set MODE1 Ox1000;

{ enable timer I
{ enable interrupts }

intwt: idle;
jump intwt;

103

dm(DAFifo)=rO;
rl2=pm(ADFifo);
dm(DAFifo)=rl;

(send z-piezo sig-initial OV)
(read tunneling current)

{send bias voltage-initial 100mV)

bit set ASTAT 0x200000; { toggle flag2 to start next convy
rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump tofast;
bit clr ASTAT 0x200000;
nop; nop; nop;

r2=fext r12 by 0:14(SE); (sign extension of a/d result!!!)

r5=0x186; (a/d offset vol. compensation)
r2=r2+r5;
r3=TCLMT; {TC : 2V in 14 bit resolution.)
r3=r3-r2; (checking the tunneling current if it goes above 4V)
if le jump backoff; {if TC is generated go to the end)

r5=dm(Counter);
r5=r5-1;
dm(Counter)=r5;
if eq call moveIW;

go: r0=0x0;
rl=BIAS;
r5=0x611;
rl=rl+r5;
rO=rO XOR r9;
rl=rl XOR r9;

(d/a offset compensation)

rti;

init_analog: bit set MODE2 0x20000; { flag 2 is an output }
bit clr ASTAT 0x200000; { set flag2 to low }
r4=0x0;
dm(ControlReg)=r4; (reset analog board)
nop;nop;nop;
r4=0xll; { 1 a/d channels & 2 d/a channels }
dm(ChanNum)=r4; { number of channels }
nop; nop; nop;
r4=0x80; (release ang reset & go mode=0 (go
dm(ControlReg)=r4; { control register }
nop; nop; nop;

{ read the first a/d and write the initial d/a outputs }
wtl: rlO=pm(ANGBStatus); (wait for the first a/d to trash the }

r8=0x3; { whatever sits in the fifo with new data.)
rl0=r10 AND r8;
if ne jump wtl;

r0=0x0;
rl=BIAS;
r5=0x611;
rl=rl+r5;
rO=r0 XOR r9;
rl=rl XOR r9;
dm(DAFifo)=rO;
dm(DAFifo)=rl;

(d/a offset compensation}

(send z-piezo sig-initial OV}
(apply bias voltage-initial 50mV}

bit set ASTAT 0x200000; { toggle flag2 to start first convy
nop; nop; nop; nop;
bit clr ASTAT 0x200000;

104

Sample:

on flag2) }

nop; nop; nop;

wt2: rl0=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

(wait for the first a/d to trash the I
{ whatever sits in the fifo with new data.)

rts;

inittimer: bit clr MODE1 Ox1000; { disable all the previous interrupts }
bit set irptl 0; (clear pending interrupt }
bit set IMASK 0x12; { enable timer int. }

rl0=dm(0x0000);
TPERIOD=rlO;
TCOUNT=r10;

(sample period will be in dm(0xl011) }
(set up the timer I

rts;

moveIW: r6=0xl; { the value of the clock : 1 }
dm(DigitalIO)=r6; (send the clock through Digital I/O }
Icntr=0xc8, do hold until ice;

hold: nop;

r6=0x0; (the value of the clock : 0 }
dm(DigitalIO)=r6;{ send the clock through Digital I/O }

r5=dm(0x0001); (update the ratio }
dm(Counter)=r5;
rts;

bit clr MODE2 0x20;
bit clr MODE1 0x1000;

(disable timer)
(disable ints)

adflush0: r4=pm(ANGBStatus); (make sure the z-piezo goes to OV pos.)
r8=0x3;
r4=r4 AND r8;
if ne jump adflush0;
r4=pm(ADFifo); (flush 1 a/d result from fifo}

r4=0x23;
dm(StatusReg)=r4;

jump endofprog;

bit clr MODE2 0x20;
bit clr MODE1 0x1000;

(send error to status I

(disable timer)
(disable ints)

adflushl: r4=pm(ANGBStatus); (make sure the z-piezo goes to -5V pos.)
r8=0x3;
r4=r4 AND r8;
if ne jump adflushl;
r4=pm(ADFifo); (flush 1 a/d result from fifo)

lcntr=BACKSTEP, do 1p2 until Ice; (backing off about 40 steps (100kHz

r6=0x5; (the value of the clock : 1 }
dm(DigitalIO)=r6; { send the clock through Digital I/O }
icntr=0x3e8, do tick until lce; (interval bet high & low)

tick: nop;

r6=0x4; (the value of the clock : 0 }
dm(DigitalIO)=r6; (send the clock through Digital I/O }
lcntr=0x3e8, do tock until ice; (interval bet low & high)

105

tofast:

backoff:

spd)

tock: nop;
1p2: nop;

r4=0x0;
dm(StatusReg)=r4; (let pc know the coarse approach has finished)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

/**

finel.asm--This program performs the automatic fine
approach. The module generaets the clock to control the inchworm motor
and also saw tooth voltage to control the piezo tube in z direction.

Channel usage:
D/A channel 1 - z-piezo

channel 2 - bias voltage
A/D channel 1 - tunneling current

reserved register:
rO : z-piezo
rl : Bias
r2 : Tunneling current

reserved data memory:
Ox0001 : z-piezo for next step
Ox0000 : sampling time

written by Jungmok Bae 1/13/94
Final revision 3/11/94

#define BIAS 0x156d /* bias voltage : 0.6V */

.segment /pm pm_portl;

.var ADFifo;

.endseg;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dm portl;

.var StatusReg;

.endseg;

.segment /dm dmport2;

.var DigitalIO;

.endseg;

.segment /dm dmport3;

.var DAFifo;

.endseg;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm dmport5;

106

.var ChanNum;

.endseg;

.segment /dm dm_data;

.var Interval;

.endseg;

.SEGMENT/PM rst_svc; { program starts at the reset vector }
r4=0x0;
dm(ControlReg)=r4; (reset analog board}

.ENDSEG;
jump start;

.segment/pm pm_code;
start: PMWAIT=0x00A1; (/pmsO=Ows, /pmsl=lws)

DMWAIT=0Ox9421; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

r4=0xl; (let pc know the coarse approach has started}
dm(StatusReg)=r4;

call init_analog(db);
r9=0x8000;
r2=0;

call init_timer(db);
r7=0;
dm(Interval)=r7;

dm(0x0001)=r7;

bit set MODE2 0x20;
bit set MODE1 Ox1000;

intwt: idle;
jump intwt;

Sample: r0=dm(0x0001);
rO=ASHIFT rO by 2;
r9=0x8000;
rO=rO XOR r9;

rl=BIAS;
rl=rl XOR r9;

dm(DAFifo)=rO;
rl2=pm(ADFifo);
dm(DAFifo)=rl;

{ enable timer)
{ enable interrupts }

{send z-piezo sig-initial OV}
(read tunneling current-initial OV}

(send bias voltage-initial 50mV}

bit set ASTAT 0x200000; { toggle flag2 to start next convy }

rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump errorl;

bit clr ASTAT 0x200000;
nop; nop; nop;

r2=fext r12 by 0:14(SE);

r3=0x186;
r2=r2+r3;

(sign extension of a/d result!!!}

{offset vol. compensation)

r3=0x666; (TC : IV }
r4=r3-r2; (if the TC is above iv}

107

if le jump endl; {if TC is generated go to the end)

r4=dm(0x0001);
r5=0xleb;

(z-piezo voltage)
/*0x7ae(1/2") maximum z-piezo vol : "1.2V"(safety factor 0.8nm)

r5=r4-r5; {checking if z-piezo vol is over the range }
if ge jump repeatl;

r7=dm(Interval);
r7=r7-1;
if eq jump repeatl; (wait till the D/A does its job.)

r7=dm(Interval);
r13=2;
r7=r7-r13;
if eq jump repeat2; (if the z-piezo went back to 0 then

(the inchworm motor. I
move }

r0=r4+1; (move the z-piezo by one step.)
dm(0x0001)=r0; { increase the counter. }

r5=0xf6;
r5=r4-r5; { checking if z-piezo vol. is over half the range)
if gt jump clkO; { jump to the clock 0)

r6=0xl; { the value of the clock : 1)
dm(DigitalIO)=r6; { send the clock through Digital I/O)
rti;

clkO: r6=0x0; { the value of the clock : 0 }
dm(DigitalIO)=r6;(send the clock through Digital I/O)
rti;

repeatl:r0=0; { z-piezo to the original pt.)
dm(0x0001)=r0;
r7=dm(Interval);
r7=r7+1;
dm(Interval)=r7;{ the status is increased by one. }
rti;

repeat2:rll=Oxl; (clkO -> clkl = move the inchworm motor)
dm(DigitalIO)=rll;
r7=0;
dm(Interval)=r7;
rti;

bit set MODE2 0x20000; { flag 2 is an output }
bit clr ASTAT 0x200000; { set flag2 to low I
r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0x11;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

(reset analog board)

{ 1 a/d channels & 2 d/a channels)
{ number of channels }

{ release ang reset & go mode=0 (go on flag2))
(control register)

(read the first a/d and write the initial d/a outputs)
wtl: rlO0=pm(ANGBStatus); {wait for the fifo to finish its work.)

r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

108

init_analog:

ro=oxO;
rl=BIAS;

rO=rO XOR r9;
rl=rl XOR r9;
dm(DAFifo)=rO; (send z-piezo sig-initial OV}
dm(DAFifo)=rl; {apply bias voltage-initial 50mV)

bit set ASTAT 0x200000; { toggle flag2 to start first cony }
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus); { wait for the first a/d to trash the }
r8=0x3; { whatever sits in the fifo with new data.}
rl0=rl0 AND r8;
if ne jump wt2;

rts;

inittimer: bit clr MODEl Oxl000;
bit set irptl 0;
bit set IMASK 0x12;

(disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

rl0=dm(0x0000);
TPERIOD=rl0;
TCOUNT=rlO;

{ sample period will be in dm(0x0000) }
{ set up the timer)

rts;

errorl: r4=0x23; (send sampling rate too fast error to status }
dm(StatusReg)=r4;
bit clr MODE2 0x20;
bit clr MODE1 Ox1000;
jump endofprog;

endl: bit clr MODE2 0x20; (disable timer}
bit clr MODE1 Ox1000; {disable ints)
adflush: rO=pm(ANGBStatus); (make sure last conversion is done)

r8=0x3;
rO=rO AND r8;
if ne jump adflush;
rO=pm(ADFifo); (flush 1 a/d result from fifo}

r4=0x0;
dm(StatusReg)=r4; (let pc know the coarse approach has finished)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

/ ***

pidcon.asm--This program sets initial gap distance by using the PID feedback
scheme.

Channel usage:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
A/D channel 1 - tunneling current -- r2

109

The memory usage:
Ox0000 ----- user defined sampling period.
Ox0006 ----- user defined ref. vol.(floating pt.)
0x0008 ----- user defined coef. - a(floating pt.)
0x0009 ----- user defined coef. - b(floating pt.)
Ox000b ----- user defined coef. - c(floating pt.)
Ox0001 ----- z piezo control signal update.

The reserved register:(Refer to chapter 5 for what a, b, and c mean.)
f5 ---- coefficient a
f6 ---- coefficient b
f7 ---- coefficient c
r9 ---- constant 0x8000
rl ---- bias voltage

written by Jungmok Bae 1/15/94
revised 1/24/94
Final revision 3/11/94

#define BIAS Ox156d /* bias voltage 4.5V */

.segment /pm pm_portl;

.var ADFifo;

.endseg;

.segment /pm pm_port2;

.var ANGBStatus;

.endseg;

.segment /dm dm_portl;

.var StatusReg;

.endseg;

.segment /dm dmport2;

.var DigitalIO;

.endseg;

.segment /dm dm_port3;

.var DAFifo;

.endseg;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm dm_port5;

.var ChanNum;

.endseg;

.segment /dm dmdata;

.var IntegSum, ConLoop, PreError; /*sum for the integral gain.S(k-l)(floating
pt)*/
.endseg;

.SEGMENT/PM rst_svc; { program starts at the reset vector }
PMWAIT=0x00AI; {/pmsO=Ows, /pmsl=lws)
DMWAIT=0x9421; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

jump start;
.ENDSEG;

.segment/pm pm_code;

start: r4=0xl; { let pc know the scanning has started}

110

dm(StatusReg)=r4;

call init_analog(db);
r2=0;
r9=0x8000;

call init_timer(db);
dm(ConLoop)=r2;
f3=0;

dm(IntegSum)=f3;
dm(PreError)=f3;
rl0=0;
f5=dm(0x0008);
f6=dm(0x0009);
f7=dm(0x000b);

bit set MODE2 0x20;
bit set MODEl Oxl000;

intwt: idle;
jump intwt;

{

Sample: dm(DAFifo)=rO;
r2=pm(ADFifo);
dm(DAFifo)=rl; {

{read coeff.
{read coeff.
(read coeff.

{ enable timer }
{ enable interrupts }

{ Check if the control loop counter has }
been expired. }

(send z-piezo sig-previous vol.}
tread tunneling current)

send bias voltage-initial 50mV}

bit set ASTAT 0x200000; { toggle flag2 to start next cony }
r3=pm(ANGBStatus); (checking the status)
r4=0x3;
r3=r4 AND r3;
if ne jump errorl;
bit clr ASTAT 0x200000;
nop; nop; nop;

r3=dm(ConLoop);
r4=0x7530;
r4=r4-r3;
if eq jump endl;
r3=r3+1;
dm(ConLoop)=r3;

(floating point calculation}
r2=fext r2 by 0:14(SE);

r3=0x186;
r2=r2+r3;

r3=0x2000;
r3=r2+r3;
i0=r3;
m0=0;
r2=dm(m0,i0);

fl0=float r2;

fll=dm(0x0006);
fl0=fl0-fll;
fl2=dm(PreError);
fl3=dm(IntegSum);

{a*e(k) + b*e(k-l) + S(k-l)}
f9=f5*fl0;
f3=f6*f12;
f8=f9+f3;

{control loop counter}
(maximum loop counter : 300000x7530}

{ the loop counter is expired }

(increase the loop counter by one}

(sign extension of a/d result)

(offset compensation)

{log table lookup)

{read the log table)

{convert to floating point format)

(user defined ref. vol.)
{error; tuneling cur. - refv. }
(previous error e(k-1) }
(sum for integral gain S(k-l))

111

f8=f8+f13;

(update the e(k-1) and S(k-l) }
dm(PreError)=fl0;
f3=f7*fl0;
f13=f13+f3;
dm(IntegSum)=fl3;

r3=fix f8;

r0=dm(0x0001);
r0=r0+r3;
dm(0x0001)=r0;

r4=0xlfff;
r3=r0-r4;
if ge r0=r4;

r4=PASS r4;
if It call VolLim;

rO=ASHIFT rO by 2;
r9=0x8000;
rO=rO XOR r9;

(e(k-l)=error)

(S(k-l)=c*error+S(k-2))

{ convert to fixed point value }

(z piezo voltge}
(adjust the z piezo vol. }
(update the z piezo vol.)

(over 5V?)
(difference bet. zpiezo and ref.)

(from 14 bit resolution to 16 bit)

(and invert MSB)

rti;

VolLim: r4=0x4000;
r4=r0 AND r4;
if eq jump errorl;

(Is PID out of control?)

r4=0x2000;
r3=0xe001;
r4=r0 AND r4;
if eq r0=r3;
rts;

(under -5V?)

bit set MODE2 0x20000; { flag 2 is an output
bit clr ASTAT 0x200000; { set flag2 to low)
r4=0x0;
dm(ControlReg)=r4; (reset analog board)
nop;nop;nop;
r4=0xll; (1 a/d channels & 2 d/a
dm(ChanNum)=r4; (number of channels }
nop; nop; nop;
r4=0x80; { release ang reset & go
dm(ControlReg)=r4; (control register }
nop; nop; nop;

channels }

mode=0 (go on flag2) }

(read the first a/d and write the initial d/a outputs }

wtl: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

r0=dm(0x0001);
rO=ASHIFT rO by 2;
rl=BIAS;

r9=0x8000;
rO=rO XOR r9;
rl=rl XOR r9;
dm(DAFifo)=r0;

{wait for the fifo to finish its work.)

(dm(0x0001) carries 14 bit information)
(shift up by 2 bits:14 bit data from fine.asm)

(and invert MSB

(send z-piezo sig-initial OV}

112

init_analog:

{apply bias voltage-initial 50mV)

bit set ASTAT 0x200000;
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

{ toggle flag2 to start first cony }

{ wait for the first a/d to trash the }
{ whatever sits in the fifo with new data.)

rts;

init_timer: bit clr MODEl Ox1000; { disable all the previous interrupts)
bit set irptl 0; { clear pending interrupt }
bit set IMASK 0x12; { enable timer int. }

rl0=dm(0x0000);
TPERIOD=rlO;
TCOUNT=rl0;

{ sample period will be in dm(0x0000) }
(set up the timer }

rts;

errorl: bit clr MODE2 0x20; (disable timer)
bit clr MODEl Ox1000; (disable ints)
r4=0x23;
dm(StatusReg)=r4; { let pc know the error occured)
adflush0: r4=pm(ANGBStatus); {make sure last conversion is done)

r8=0x3;
rO=rO AND r8;
if ne jump adflush0;
rO=pm(ADFifo); {flush 1 a/d result from fifo}

jump endofprog;

endl: bit clr MODE2 0x20; (disable timer)
bit clr MODEl Oxl000; (disable ints)
r4=0x0;
dm(StatusReg)=r4; { let pc know the pid control is finished)
adflush: r4=pm(ANGBStatus); {make sure last conversion is done}

r8=0x3;
rO=rO AND r8;
if ne jump adflush;
rO=pm(ADFifo); (flush 1 a/d result from fifo)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzhsvc;
jump Sample;
idle;
.ENDSEG;

/**

scanl.asm - This module performs the constant height scanning of the given
sample surface. The scanning parameters are controllable setting
diffrent value of Macro variables. During this module the tip
follows the ramp path in 2-D sample plane.

Channel usage:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
channel 3 - x-piezo ------ r2

113

dm(DAFifo)=rl;

channel 4 - y-piezo ------ r3
A/D channel 1 - tunneling current -- r12 -> r4

The memory usage:
Ox0000 ----- sampling period.
Ox100 ----- data will be stored here 64*64 4k bytes

The reserved register:
rO z-piezo vol.
rl bias vol.
r2 x-piezo vol.
r3 y-piezo vol.
i6 address for the data of the atomic image
m5 modifier register

written by Jungmok Bae 1/7/94
Final revision 3/11/94

#define BIAS 0x156d
#define XSTEP 0x3 (controls the x direction step size)
#define YSTEP 0x3 (controls the y direction step size)
#define XRNG Ox3f {controls the x direction number of data points)
#define YRNG 0x40 (controls the y direction number of data points)

.segment /pm pm_portl;

.var ADFifo;

.endseg;

.segment /pm pm_port2;

.var ANGBStatus;

.endseg;

.segment /dm dm_portl;

.var StatusReg;

.endseg;

.segment /dm dm_port2;

.var DigitalIO;

.endseg;

.segment /dm dm_port3;

.var DAFifo;

.endseg;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm dmport5;

.var ChanNum;

.endseg;

.segment /dm dmdata;

.var Flag, XPiezoVol, YPiezoVol, XCounter, YCounter;

.endseg;
/* xaxis counter, x-dir piezo vol, y-dir piezo vol, y-axis counter, flag */

.SEGMENT/PM rst_svc; (program starts at the reset vector)
PMWAIT=0x00A1; (/pmsO=Ows, /pmsl=lws)
DMWAIT=0x9421; {/dms0=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

{ DMBANK1=0x20000000--status & timing }
{ DMBANK2=0x40000000--analog board }
{ DMBANK3=0x80000000--not used }
jump start;

114

.ENDSEG;

.segment/pm
start:

ip:

pm_code;

bit set MODE2 0x20000;
bit clr ASTAT 0x200000;
bit clr MODEl Oxl000;
bit set irptl 0;
bit set IMASK 0x12;

r4=0xl;
dm(StatusReg)=r4;

call init_analog(c
i0=0xl00;
m0=1;

call init_timer(dI
r7=0;
dm(XCounter)=r7

dm(XPiezoVol)=r7;
dm(YPiezoVol)=r7;
dm(YCounter)=r7;
dm(Flag)=r7;
dm(0x0002)=r7;

bit set MODE2 Ox2C
bit set MODE1 OxlC

intwt: idle;
jump intwt;

Sample: dm(DAFifo)=rO;
rl2=pm(ADFifo);
dm(DAFifo)=rl;
dm(DAFifo)=r2;
dm(DAFifo)=r3;

(flag 2 is an output }
(set flag2 to low }
{ disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

{ let pc know the scanning has started}

db);
{data goes to dm starting at Oxl00}

b);

0; { enable timer }
)00; { enable interrupts }

{Wait for the interrupt }

{send z-piezo sig-initial previous position }
(???read tunneling current-initial OV}

(send bias voltage-initial 50mV)
(send x-piezo vol.-initial OV}
{send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next
rlO=pm(ANGBStatus); {checking the status)
r8=0x3;
rl0=rl0 AND r8;
if ne jump tofast;
bit clr ASTAT 0x200000;
nop; nop; nop;

rl3=dm(Flag);
r14=1;
r13=r13-r14;
if eq jump dtoa;

atod: r13=1;
dm(Flag)=rl3;
r4=fext r12 by 0:14(SE);

r5=0x186;
r4=r4+r5;

(set the flag to 0 }

(sign extension of a/d result!!!)
(sign conversion}

{offset vol. compensation)

dm(i0,m0)=r4;(Store TC result to specific memory place. }
jump ipend;

dtoa: r13=0; (set the flag to 1 }
dm(Flag) =r13;
rll=dm(YCounter); { previous y-counter }
r5=YRNG; (Maximum 64 points!!! on y-axis }

115

cony }

r5=r5-rll; (Checking if y-dist.is over the range }
if eq jump end;{ The scanning is done. }

rll=dm(XCounter); {previous x-counter)
r5=XRNG; (maximum 64 points!!! on x-axis }
r5=r5-rll; {checking if x-dist. is over the range)
if eq jump movey;

movex: rll=XSTEP;
r2=dm(XPiezoVol);
r2=r2+rll;
dm(XPiezoVol)=r2;
r9=0x8000;
r2=r2 XOR r9;

(x-step:1.4 angstrom)
{present x-position)

(increase the x-piezo by one
(store new x-piezo vol.)

rll=dm(XCounter);
rll=rll+l;
dm(XCounter)=rll;

{increase the x-counter}

jump ipend;

movey: r2=0; { x-piezo -> OV)
dm(XPiezoVol)=r2; {set x position to zero again}
dm(XCounter)=r2; (set x counter to zero again)
r9=0x8000;
r2=r2 XOR r9;

rll=YSTEP; (y-step:1.4 angstrom}
r3=dm(YPiezoVol); {present y-position}
r3=r3+rll; (increase the y-dir by one step)
dm(YPiezoVol)=r3;
r9=0x8000;
r3=r3 XOR r9;

rll=dm(YCounter); (previous y counter.)
rll=rll+l; (increase the y counter by one.)
dm(YCounter)=rll;

rl=BIAS;
r9=0x8000;
rl=rl XOR r9;

(100mV bias voltage--->50mV;done }

ipend: rti;

init_analog: r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0x21;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

(reset analog board)

(1 a/d channels & 4 d/a channels }
{ number of channels)

{ release ang reset & go mode=0 (go on flag2) }
(control register)

(read the first a/d and write the initial d/a outputs)

wtl: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

(wait for the fifo to finish its work.)

r0=dm(0x0001); (previous z-vol. in 14bit from pidcon.asm)
rO=ASHIFT rO by 2; { shift up by 2 bits because D/A is 16 bits }
rl=BIAS;

116

step vol. }

r2=0;
r3=0;

{x offset : 0)
(y offset : 0)

r9=0x8000;
rO=rO XOR r9; { and invert MSB:due to binary offset format)
rl=rl XOR r9;
r2=r2 XOR r9;
r3=r3 XOR r9;

dm(DAFifo)=rO; (send z-piezo sig-initial OV}
dm(DAFifo)=rl; (apply bias voltage-initial 50mV)
dm(DAFifo)=r2; (apply x-piezo vol.}
dm(DAFifo)=r3; {apply y-piezo vol.)

bit set ASTAT 0x200000; { toggle flag2 to start first cony)
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus); { wait for the first a/d to trash the }
r8=0x3; { whatever sits in the fifo with new data.}
rl0=rl0 AND r8;
if ne jump wt2;

rts;

init_timer: rl0=dm(Ox0000); (sample period will be in dm(0x0000) }
TPERIOD=r10; { set up the timer }
TCOUNT=rlO;

rts;

tofast: r4=0x23;
dm(StatusReg)=r4;
jump endofprog;

(send error to status }

end: bit clr MODE2 0x20; (disable timer)
bit clr MODE1 Oxl000; (disable ints)

{ pull up the z-piezo to OV position }
wt3: rlO=pm(ANGBStatus);

r8=0x3;
rl0=rl0 AND r8;
if ne jump wt3;

r0=1;
rl=BIAS;
r9=0x8000;
rO=rO XOR r9;
rl=rl XOR r9;
dm(DAFifo)=r0;
rl2=pm(ADFifo);
dm(DAFifo)=rl;
dm(DAFifo)=rO;
dm(DAFifo)=rO;

(set the tip position to (0,0,0))
(16 bit-> 5V=32763, 50mV=328=0x148 }

{ and invert MSB

(send z-piezo sig-initial OV}
(read tunneling current)

{send bias voltage-initial 50mV)
(send x-piezo vol.-initial OV}
(send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next cony }
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

r4=0x0;
dm(StatusReg)=r4; (let pc know the scanning has finished}
adflush: r4=pm(ANGBStatus); {make sure last conversion is done)

117

r8=0x3;
r4=r4 AND r8;
if ne jump adflush;
r4=pm(ADFifo); (flush 1 a/d result from fifo)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

/***

scan2.asm - This module performs the constant height mode scanning in
triangular pattern raster voltage.

Channel usage:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
channel 3 - x-piezo ------ r2
channel 4 - y-piezo ------ r3

A/D channel 1 - tunneling current -- r12 -> r4

The memory usage:
Ox0000 ----- sampling period.
Ox100 ----- data will be stored here 64*64 4k bytes

The reserved register:
rO z-piezo vol.
rl bias vol.
r2 x-piezo vol.
r3 y-piezo vol.
i6 address for the data of the atomic image
m5 modifier register

Note: The shape of the x raster is not ramp but triangular. Such scheme
provides the continuous motion of the tip and may reduce the
drift problem.

March 1, 1994
written by Jungmok Bae

#define BIAS Oxf5c
#define XSTEP 0x2
#define YSTEP 0x2
#define XRNG Ox3f
#define YRNG 0x40

.segment /pm pm_portl;

.var ADFifo;

.endseg;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dmportl;

.var StatusReg;

.endseg;

.segment /dm dm_port2;

.var DigitalIO;

118

.endseg;

.segment /dm

.var DAFifo;

.endseg;

dm_port3;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm

.var ChanNum;

.endseg;

dm_port5;

.segment /dm dm_data;

.var Flag, XPiezoVol, YPiezoVol, XCounter, YCounter, XStep;

.endseg;
/* xaxis counter, x-dir piezo vol, y-dir piezo vol, y-axis counter, flag */

.SEGMENT/PM rst_svc; (program starts at the reset vector }
PMWAIT=0x00Al; {/pmsO=Ows, /pmsl=lws}
DMWAIT=0x9421; (/dms0=0ws, /dmsl=Ows, /dms2=lws, /dms3=0ws}

.ENDSEG;
jump start;

.segment/pm
start:

pm_code;

bit set MODE2 0x20000;
bit clr ASTAT 0x200000;
bit clr MODEl Oxl000;
bit set irptl 0;
bit set IMASK 0x12;

{ flag 2 is an output }
(set flag2 to low }
(disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

lp: r4=0xl; (let pc know the scanning has started}
dm(StatusReg)=r4;

call initanalog(db);
i0=0xl00; (data goes to dm starting at Oxl00}
m0=1;

call init_timer(db);
r7=0;
dm(XCounter)=r7;

dm(XPiezoVol)=r7;
dm(YPiezoVol)=r7;
dm(YCounter)=r7;
dm(Flag)=r7;
r7=XSTEP;
dm(XStep)=r7;

bit set MODE2 0x20; { enable timer }
bit set MODEl Oxl000; (enable interrupts }

intwt: idle;
jump intwt; (Wait for the interrupt }

Sample: dm(DAFifo)=rO; (send z-piezo sig-initial previous position }
rl2=pm(ADFifo); (???read tunneling current-initial OV}
dm(DAFifo)=rl; (send bias voltage-initial 50mV}
dm(DAFifo)=r2; (send x-piezo vol.-initial OV}
dm(DAFifo)=r3; (send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next cony }
rlO=pm(ANGBStatus); (checking the status}

119

r8=0x3;
rl0=rl0 AND r8;
if ne jump tofast;
bit clr ASTAT 0x200000;
nop; nop; nop;

rl3=dm(Flag);
r14=1;
r13=r13-r14;
if eq jump dtoa;

atod: r13=1;
dm(Flag)=rl3;
r4=fext r12 by 0:14(SE);

r5=0x186;
r4=r4+r5;

{set the flag to 0)

{sign extension of a/d result!!!)
{sign conversion}

{offset vol. compensation}

dm(i0,m0)=r4;{ Store TC result to specific memory place. }
jump ipend;

dtoa: r13=0; (set the flag to 1 }
dm(Flag)=rl3;
rll=dm(YCounter); { previous y-counter }
r5=YRNG; { Maximum 64 points!!! on y-axis }
r5=r5-rll; { Checking if y-dist.is over the range }
if eq jump end;{ The scanning is done. }

rll=dm(XCounter); (previous x-counter)
r5=XRNG; (maximum 64 points!!! on x-axis }
r5=r5-rll; (checking if x-dist. is over the range }
if eq jump movey;

movex: rll=dm(XStep); (x-step:1.4 angstrom)
r2=dm(XPiezoVol); (present x-position)
r2=r2+rll; (increase the x-piezo by one
dm(XPiezoVol)=r2;
r9=0x8000;
r2=r2 XOR r9;

rll=dm(XCounter);
rll=rll+l;
dm(XCounter)=rll;

jump ipend;

movey: r9=dm(XStep);
r8=-r9;
dm(XStep) =r8;
r9=0x0;
dm(XCounter)=r9;

rl=YSTEP;
r3=dm(YPiezoVol);
r3=r3+rll;
dm(YPiezoVol)=r3;
r9=0x8000;
r3=r3 XOR r9;

rll=dm(YCounter);
rll=rll+l;
dm(YCounter)=rll;

rl=BIAS;

(store new x-piezo vol.)
step vol. }

(increase the x-counter}

(set x counter to zero again}

(y-step:1.4 angstrom}
(present y-position)

(increase the y-dir by one step)

(previous y counter.)
(increase the y counter by one.}

{ 100mV bias voltage--->50mV;done }

120

r9=0x611;
rl=rl+r9;
r9=0x8000;
rl=rl XOR r9;

{d/a offset compensation)

ipend: rti;

init_analog: r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0x21;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

(reset analog board)

{ 1 a/d channels & 4 d/a channels }
{ number of channels }

{ release ang reset & go mode=0 (go on flag2) }
{ control register }

{ read the first a/d and write the initial d/a outputs }

wtl: rl0=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

r0=dm(0x0001);
rO=ASHIFT rO by 2;
rl=BIAS;
r2=0;
r3=0;
r9=0x611;
rl=rl+r9;
r9=0x8000;
rO=rO XOR r9;
rl=rl XOR r9;
r2=r2 XOR r9;
r3=r3 XOR r9;

dm(DAFifo)=rO;
dm(DAFifo)=rl;
dm(DAFifo) =r2;
dm(DAFifo)=r3;

(wait for the fifo to finish its work.)

(previous z-vol. in 14bit from pidcon.asm}
{ shift up by 2 bits because D/A is 16 bits }

{x offset : 0)
(y offset : 0)

(and invert MSB:due to binary offset format)

{send z-piezo sig-initial OV}
(apply bias voltage-initial 50mV}
{apply x-piezo vol.)
{apply y-piezo vol.)

bit set ASTAT 0x200000; { toggle flag2 to start first cony }
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

(wait for the first a/d to trash the }
{ whatever sits in the fifo with new data.)

rts;

init_timer: rl0=dm(0x0000); { sample period will be in dm(0x0000) }
TPERIOD=rlO; { set up the timer }
TCOUNT=rlO;

rts;

tofast: r4=0x23;
dm(StatusReg)=r4;
jump endofprog;

(send error to status }

121

end: bit clr MODE2 0x20; (disable timer}
bit clr MODE1 Ox1000; {disable ints)

{ pull up the z-piezo to OV position }
wt3: rlO=pm(ANGBStatus);

r8=0x3;
rl0=r10 AND r8;
if ne jump wt3;

r0=l; {set the tip position to (0,0,0))
rl=BIAS; (16 bit-> 5V=32763, 50mV=328=0x148 }
r9=0x611; (d/a offset compensation}
rl=rl+r9;
r9=0x8000;
r0=r0 XOR r9; { and invert MSB }
rl=rl XOR r9;
dm(DAFifo)=rO; {send z-piezo sig-initial OV}
rl2=pm(ADFifo); {read tunneling current}
dm(DAFifo)=rl; {send bias voltage-initial 50mV}
dm(DAFifo)=rO; (send x-piezo vol.-initial OV}
dm(DAFifo)=rO; {send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next convy }
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

r4=0x0;
dm(StatusReg)=r4; (let pc know the scanning has finished)
adflush: r4=pm(ANGBStatus); {make sure last conversion is done}

r8=0x3;
r4=r4 AND r8;
if ne jump adflush;
r4=pm(ADFifo); {flush 1 a/d result from fifo)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

ccscanl.asm Constant current ramp raster mode.

Channel Usage:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
channel 3 - x-piezo ------ r2
channel 4 - y-piezo ------ r3

A/D channel 1 - tunneling current -- r4

The memory usage
Ox0000 ----- user defined sampling period.
0x0006 ----- user defined ref. vol.(floating pt.)
0x0008 ----- user defined coef. - a(floating pt.)
0x0009 ----- user defined coef. - b(floating pt.)
Ox000b ----- user defined coef. - c(floating pt.)
Ox0001 ----- z piezo control signal update.
Ox100 -> 0x1100

122

---- data will be stored here 64*64 4k bytes.
0x2000 -> 0x4000(program memory)

---- reserved for the log table.

Programmer's Note: Try to use the on-board memory instead of the registers.
This will prevent the confusion of the register's usage.
The case is not applicable for the PC inputs.

written by Jungmok Bae 12/16/93
revised 2/17/94
revised again 3/4/94

***/

#define BIAS 0x156d /* bias voltage 0.6V */
#define XSTEP 0x2
#define YSTEP 0x2
#define XRNG Ox3f
#define YRNG 0x40
#define CLOOP 0x32 { sets the number of the PID feedback for

each data sample points }

.segment /pm pm_portl;

.var ADFifo;

.endseg;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dm_portl;

.var StatusReg;

.endseg;

.segment /dm dm_port2;

.var DigitalIO;

.endseg;

.segment /dm dm_port3;

.var DAFifo;

.endseg;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm dmport5;

.var ChanNum;

.endseg;

.segment /dm dm_data;

.var IntegSum, ConLoop, PreError, DataAdr, XPiezoVol, YPiezoVol;

.var XCounter, YCounter, XStep, WaitLoop, WaitFlag,ZPiezoSum;

.endseg;

.SEGMENT/PM rst_svc; { program starts at the reset vector }
PMWAIT=0x00A5; (/pms0=Ows, /pmsl=lws)
DMWAIT=0x9425; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws)

jump start;
.ENDSEG;

.segment/pm pm_code;

start: bit set MODE2 0x20000; (flag 2 is an output }
bit clr ASTAT 0x200000; { set flag2 to low }

123

bit clr MODE1 Oxl000;
bit set irptl 0;
bit set IMASK 0x12;

{ disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

r4=0xl;
dm(StatusReg)=r4;

call init_analog(db);
r5=0;
dm(ConLoop)=r5;

call init_timer(db);
f4=0;
dm(IntegSum)=f4;

dm(PreError)=f4;
f5=dm(0x0008);
f6=dm(0x0009);
f7=dm(0x000b);
r4=0;
dm(XCounter)=r4;
dm(XPiezoVol)=r4;
dm(YPiezoVol)=r4;
dm(YCounter)=r4;
dm(WaitLoop)=r4;
dm(ZPiezoSum)=r4;
r4=XSTEP;
dm(XStep)=r4;
r4=0xl;
dm(WaitFlag)=r4;
m0=l;
i0=0xl00;

bit set MODE2 0x20;
bit set MODEl Ox1000;

intwt: idle;
jump intwt;

Sample: r5=0x8000;
r0=dm(0x0001);
rO=ASHIFT rO by 2;
rO=rO XOR r5;

rl=BIAS;
rl=rl XOR r5;

r2=dm(XPiezoVol);
r2=r2 XOR r5;

r3=dm(YPiezoVol);
r3=r3 XOR r5;

dm(DAFifo)=r0;
r4=pm(ADFifo);
dm(DAFifo)=rl;
dm(DAFifo)=r2;
dm(DAFifo)=r3;

(z-piezo vol.}
{ tunneling current signal)
{ bias vol. }
{ x-piezo vol.)
(y-piezo vol.)

bit set ASTAT 0x200000;
rl0=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump errorl;
bit clr ASTAT 0x200000;
nop; nop; nop;

124

rl0=dm(WaitFlag);
r8=0x0;
r8=r8-rl0;
if eq jump wait2;

rl0=dm(ConLoop);
r8=dm(0x0002);
r8=r8-rl0;
if eq jump MoveXY;
rl0=rl0+l;
dm(ConLoop)=rl0;

r4=fext r4 by 0:14(SE);
rl=0x186;
r4=r4+rl;
rl=0x2000;
rl=r4+rl;
i8=rl;
m8=0;
r4=pm(m8,i8);

fl0=float r4;
fll=dm(0x0006);
fl0=fl0-fll;
fl2=dm(PreError);
fl3=dm(IntegSum);

{ a*e(k) + b*e(k-l) + S(k-l) }
f5=dm(0x0008);
f6=dm(0x0009);
f9=f5*fl0;
f0=f6*fl2;
f8=f9+f0;
f8=f8+f13;

{ update the e(k-l) and S(k-l)
f7=dm(0x000b);
dm(PreError)=fl0;
f0=f7*fl0;
fl3=fl3+f0;
dm(IntegSum)=fl3;

rl=fix f8;

r0=dm(0x0001);
r0=rO+rl;

r4=0xlfff;
r3=r0-r4;
if ge r0=r4;

r4=PASS r4;
if It call limit;

dm(0x0001)=r0;

r2=dm(ZPiezoSum);
r2=r2+r0;
dm(ZPiezoSum)=r2;

rti;

limit: r4=0x4000;
r4=r0 AND r4;
if eq jump errorl;

{control loop counter}
{maximum loop counter : user input)

{set the flag equals to zero)

{increase the loop counter}

(sign extension of a/d result!!!)

(log conversion)

(user defined ref. vol.)

}

(over 5V?)

(minus voltage?)

(store minus voltage)

(Is PID out of control?}

125

r4=0x2000;
r3=0xe001;
r4=r0 AND r4;
if eq r0=r3;
rts;

MoveXY: r10=0;
dm(ConLoop)=rl0;
dm(WaitFlag)=rl0;
fl0=0;
dm(PreError)=fl0;
dm(IntegSum)=f10;

r3=dm(ZPiezoSum);
f4=float r3;
f5=dm(0x0003);
f4=f5*f4;
r3=fix f4;
dm(iO,mO)=r3;
r3=0x0;
dm(ZPiezoSum)=r3;

{ under -5V? }

(set control loop counter to zero)

(set integral gain sum to zero}

retrieve the zpiezovoltage sum}
data format conversion)
retrieve the recips of #control loop)
take the average)

(Store TC result to specific memory place. }

rll=dm(YCounter); { previous y-counter }
r8=YRNG; { Maximum 64 points!!! on y-axis }
r8=r8-rll; { Checking if y-dist.is over the range }
if eq jump end;{ The scanning is done. }

rll=dm(XCounter); (previous x-counter)
r8=XRNG; (maximum 64 points!!! on x-axis }
r8=r8-rll; {checking if x-dist. is over the range }
if eq jump movey;

movex: rll=XSTEP; (x-step:1.4 angstrom)
r2=dm(XPiezoVol); {present x-position}
r2=r2+rll; (increase the x-piezo by one step vol. }
dm(XPiezoVol)=r2; (store new x-piezo vol.)

rll=dm(XCounter);
rll=rll+l; {
dm(XCounter)=rll;

increase the x-counter)

jump ipend;

movey: r2=0; { x-piezo -> OV }
dm(XPiezoVol)=r2; (set x position to zero again}
dm(XCounter)=r2; {set x counter to zero again)

rll=YSTEP; {y-step:1.4 angstrom)
r3=dm(YPiezoVol); {present y-position}
r3=r3+rll; {increase the y-dir by one step}
dm(YPiezoVol)=r3;

rll=dm(YCounter); (previous y counter.}
rll=rll+l; {increase the y counter by one.}
dm(YCounter)=rll;

ipend: rti;

wait2: rl0=dm(WaitLoop);
rl0=rl0+1;
dm(WaitLoop)=r10;
r8=0x5;
r8=r8-rl0;

{control wait loop counter}

{increase the wait loop counter}
{maximum wait loop counter : 100}

126

if eq jump waitend;
rti;

waitend:r8=0x0;
dm(WaitLoop)=r8;
r8=0x1;
dm(WaitFlag)=r8;
rti;

(set the flag equals to other than zero)

init_analog: r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0x21;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

{reset analog board)

(1 a/d channels & 4 d/a channels }
{ number of channels }

(release ang reset & go mode=0 (go on flag2) }
{ control register }

(read the first a/d and write the initial d/a outputs }

wtl: rl0=pm(ANGBStatus);
r8=0x3;
rl0=r10 AND r8;
if ne jump wtl;

r0=dm(0x0001);
rO=ASHIFT rO by 2;
rl=BIAS;
r2=0;
r3=0;
r6=0x8000;
rO=r0 XOR r6;
rl=rl XOR r6;
r2=r2 XOR r6;
r3=r3 XOR r6;

dm(DAFifo)=r0;
dm(DAFifo)=rl;
dm(DAFifo)=r2;
dm(DAFifo)=r3;

bit set ASTAT 0x2000
nop; nop; nop; nop;
bit clr ASTAT 0x2000
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

{wait for the fifo to finish its work.)

(previous z-vol. in 14bit from pidcon.asm)
{ shift up by 2 bits because D/A is 16 bits }

{x offset : 0}
{y offset : 0)

{ and invert MSB:due to binary offset format)

(send z-piezo sig-initial OVI
{apply bias voltage-initial 50mV}
(apply x-piezo vol.)
(apply y-piezo vol.)

00; (toggle flag2 to start first cony)

00;

{ wait for the first a/d to trash the I
(whatever sits in the fifo with new data.)

rts;

init_timer: rl0=dm(0x0000); (sample period will be in dm(0x0000) }
TPERIOD=rlO; { set up the timer }
TCOUNT=rlO;

rts;

errorl: r0=0x23;
dm(StatusReg)=r0;
bit clr MODE2 0x20;
bit clr MODE1 Oxl000

(send error to status)

127

jump endofprog;

end: bit clr MODE2 0x20; (disable timer)
bit clr MODE1 Oxl000; (disable ints)

{ pull up the z-piezo to OV position }
wt3: rl0=pm(ANGBStatus);

r8=0x3;
rl0=rl0 AND r8;
if ne jump wt3;

r0=l;
rl=BIAS;
r9=0x8000;
rO=rO XOR r9;
rl=rl XOR r9;
dm(DAFifo)=rO;
rl2=pm(ADFifo);
dm(DAFifo)=rl;
dm(DAFifo)=rO;
dm(DAFifo)=rO;

(set the tip position to (0,0,0)}
{16 bit-> 5V=32763, 50mV=328=0x148 }

(and invert MSB

(send z-piezo sig-initial OV}
{read tunneling current)

(send bias voltage-initial 50mV}
(send x-piezo vol.-initial OV}
(send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next convy
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

r4=0x0;
dm(StatusReg)=r4; (let pc know the scanning has finished)
adflush: r4=pm(ANGBStatus); (make sure last conversion is done)

r8=0x3;
r4=r4 AND r8;
if ne jump adflush;
r4=pm(ADFifo); (flush 1 a/d result from fifo)

endofprog:
.ENDSEG;

idle;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

/**************************************

ccscan.asm Constant current triangular raster mode.

Channel usage:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
channel 3 - x-piezo ------ r2
channel 4 - y-piezo ------ r3

A/D channel 1 - tunneling current -- r4

The memory usage:
Ox0000-----
0x0006-
0x0008-
0x0009-
Ox000b -----
0x0001
0x0002-
0x0003-

user defined sampling period.
user defined ref. vol.(floating pt.)
user defined coef. - a(floating pt.)
user defined coef. - b(floating pt.)
user defined coef. - c(floating pt.)
z piezo control signal update.
the number of the control loop
the reciprocal of above value

128

Ox100 -> 0x1100
---- data will be stored here 64*64 4k bytes.

0x2000 -> 0x4000(program memory)
---- reserved for the log table.

written by Jungmok Bae 12/16/93
averaging added
revised for l"piezotube 3/9/94

#define BIAS 0xl56d /* bias voltage 0.6V + offset vol */
#define XSTEP 0x2
#define YSTEP 0x2
#define XRNG Ox3f
#define YRNG 0x40
#define CLOOP 0x32

.segment /pm pmportl;

.var ADFifo;

.endseg;

.segment /pm pm_port2;

.var ANGBStatus;

.endseg;

.segment /dm dm_portl;

.var StatusReg;

.endseg;

.segment /dm dm_port2;

.var DigitalIO;

.endseg;

.segment /dm dm_port3;

.var DAFifo;

.endseg;

.segment /dm dm_port4;

.var ControlReg;

.endseg;

.segment /dm dm_port5;

.var ChanNum;

.endseg;

.segment /dm dm_data;

.var IntegSum, ConLoop, PreError, DataAdr, XPiezoVol, YPiezoVol;

.var XCounter, YCounter, XStep, WaitFlag, WaitLoop, ZPiezoSum;

.endseg;

.SEGMENT/PM rst_svc; (program starts at the reset vector }
PMWAIT=0x00A5; {/pmsO=Ows, /pmsl=lws}
DMWAIT=0x9425; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws}

jump start;
.ENDSEG;

.segment/pm pm_code;

start: bit set MODE2 0x20000; { flag 2 is an output }
bit clr ASTAT 0x200000; { set flag2 to low }
bit clr MODE1 Ox1000; { disable all the previous interrupts }
bit set irptl 0; { clear pending interrupt }
bit set IMASK 0x12; { enable timer int. }

129

r4=0xl;
dm(StatusReg)=r4;

call init_analog(db);
r5=0;
dm(ConLoop)=r5;

call init_timer(db);
f4=0;
dm(IntegSum)= f4;

dm(PreError)=f4;
f5=dm(0x0008);
f6=dm(0x0009);
f7=dm(0x000b);
r4=0;
dm(XCounter)=r4;
dm(XPiezoVol)=r4;
dm(YPiezoVol)=r4;
dm (YCounter) =r4;
dm (WaitLoop) =r4;
dm(ZPiezoSum)=r4;
r4=XSTEP;
dm(XStep)=r4;
r4=0xl;
dm(WaitFlag)=r4;
m0=1;
i0=0xl00;

bit set MODE2 0x20;
bit set MODE1 Oxl000;

intwt: idle;
jump intwt;

Sample: r5=0x8000;
r0=dm(0x0001);
rO=ASHIFT rO by 2;
rO=rO XOR r5;

rl=BIAS;
rl=rl XOR r5;

r2=dm(XPiezoVol);
r2=r2 XOR r5;

r3=dm(YPiezoVol);
r3=r3 XOR r5;

dm(DAFifo)=rO; { z-piezo vol.)
r4=pm(ADFifo); { tunneling current signal }
dm(DAFifo)=rl; { bias vol. }
dm(DAFifo)=r2; (x-piezo vol.)
dm(DAFifo)=r3; { y-piezo vol.)

bit set ASTAT 0x200000;
rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump errorl;
bit clr ASTAT 0x200000;
nop; nop; nop;

rl0=dm(WaitFlag);
r8=0x0; /*never equal0x0 - debugging*/

130

r8=r8-rl0;
if eq jump wait2;

rl0=dm(ConLoop); (control loop counter)
r8=dm(0x0002); (user input maximum loop counter)/*dm(0x0002)*/
r8=r8-rl0;
if eq jump MoveXY; (set the flag equals to zero}
rl0=r10+l;
dm(ConLoop)=rl0; (increase the loop counter)

r4=fext r4 by 0:14(SE); (sign extension of a/d result!!!)
rl=0x186;
r4=r4+rl; {offset vol. compensation)
rl=0x2000; (log conversion)
rl=r4+rl;
i8=rl;
m8=0;
r4=pm(m8,i8);

fl0=float r4;
fll=dm(0x0006); (user defined ref. vol.)
fl0=fl0-fll;
fl2=dm(PreError);
fl3=dm(IntegSum);

{ a*e(k) + b*e(k-l) + S(k-l) }
f5=dm(0x0008);
f6=dm(0x0009);
f9=f5*fl0;
f0=f6*fl2;
f8=f9+f0;
f8=f8+f13;

{ update the e(k-l) and S(k-l) }
f7=dm(0x000b);
dm(PreError)=fl0;
f0=f7*fl0;
fl3=fl3+f0;
dm(IntegSum)=fl3;

rl=fix f8;

r0=dm(0x0001);
r0=rO+rl;

r4=0xlfff;
r3=r0-r4;
if ge r0=r4;

r4=PASS r4;
if It call limit;

dm(0x0001)=r0;

r2=dm(ZPiezoSum);
r2=r2+r0;
dm(ZPiezoSum)=r2;

rti;

limit: r4=0x4000;
r4=r0 AND r4;
if eq jump errorl;

r4=0x2000;
r3=0xe001;

{ over 5V? }

{ minus voltage?)

(store the final value)

(Is PID out of control?}

{ under -5V?)

131

r4=r0 AND r4;
if eq r0=r3;
rts;

MoveXY: rl0=0;
dm(ConLoop)=rl0;
dm(WaitFlag)=rl0;
f10=0;
dm(PreError)=fl0;
dm(IntegSum)=fl0;

r3=dm(ZPiezoSum);
f4=float r3;
f5=dm(0x0003);

loop)/*debuggingdm(0x0003)*/
f4=f5*f4;
r3=fix f4;
dm(iO,mO)=r3;
r3=0;
dm(ZPiezoSum)=r3;

(set control loop counter to zero)

(set integral gain sum to zero}

{ retrieve the zpiezovoltage sum)
{ data format conversion}
{ retrieve the recips of #control

(take the average)

{set the sum zero for next averaging)

rll=dm(YCounter); { previous y-counter)
r8=YRNG; { Maximum 64 points!!! on y-axis }
r8=r8-rll; { Checking if y-dist.is over the range }
if eq jump end;(The scanning is done. }

rll=dm(XCounter); (previous x-counter)
r8=XRNG; (maximum 64 points!!! on x-axis)
r8=r8-rll; (checking if x-dist. is over the range }
if eq jump movey;

movex: rll=dm(XStep); (x-step:1.4 angstrom)
r2=dm(XPiezoVol); (present x-position)
r2=r2+rll; (increase the x-piezo by one
dm(XPiezoVol)=r2; (store new x-piezo vol.)

rll=dm(XCounter);
rll=rll+l;
dm(XCounter)=rll;

step vol.)

(increase the x-counter)

jump ipend;

movey: r2=dm(XStep);
r3=-r2;
dm(XStep)=r3;
r2=0;
dm(XCounter)=r2; (set x counter to zero again)

rl=YSTEP; (y-step:1.4 angstrom)
r3=dm(YPiezoVol); (present y-position)
r3=r3+rll; (increase the y-dir by one step}
dm(YPiezoVol)=r3;

rll=dm(YCounter); (previous y counter.)
rll=rll+l; (increase the y counter by one.)
dm(YCounter)=rll;

ipend: rti;

wait2: rl0=dm(WaitLoop);
rl0=rl0+1;
dm(WaitLoop)=rl0;
r8=0x2;
r8=r8-rl0;

(control loop counter}

(increase the loop counter)
(maximum loop counter : 100}

132

if eq jump waitend;
rti;

waitend:r8=0x0;
dm(WaitLoop)=r8;
r8=0x1;
dm(WaitFlag)=r8;
rti;

(set the flag equals to other than zero)

init_analog: r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0x21;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

(reset analog board)

(1 a/d channels & 4 d/a channels }
{ number of channels }

{ release ang reset & go mode=0 (go on flag2) }
{ control register }

(read the first a/d and write the initial d/a outputs }

wtl: rl0=pm(ANGBStatus);
r8=0x3;
rl0=r10 AND r8;
if ne jump wtl;

r0=dm(0x0001);
rO=ASHIFT rO by
rl=BIAS;
r2=0;
r3=0;
r6=0x8000;
rO=rO XOR r6;
rl=rl XOR r6;
r2=r2 XOR r6;
r3=r3 XOR r6;

dm(DAFifo)=rO;
dm(DAFifo)=rl;
dm(DAFifo)=r2;
dm(DAFifo)=r3;

bit set ASTAT 0x2000
nop; nop; nop; nop;
bit clr ASTAT Ox2000
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wt2;

(wait for the fifo to finish its work.)

(previous z-vol. in 14bit from pidcon.asm}
{ shift up by 2 bits because D/A is 16 bits }

({x offset : 0)
(y offset : 0)

{ and invert MSB:due to binary offset format)

{send z-piezo sig-initial OV}
(apply bias voltage-initial 50mV}
{apply x-piezo vol.}
{apply y-piezo vol.)

)00; { toggle flag2 to start first convy

)00;

{ wait for the first a/d to trash the }
(whatever sits in the fifo with new data.)

rts;

init_timer: rl0=dm(0x0000); (sample period will be in dm(0x0000) }
TPERIOD=rlO; { set up the timer }
TCOUNT=rlO;

rts;

errorl: r0=0x23;
dm(StatusReg)=rO;
bit clr MODE2 0x20;
bit clr MODE1 Ox1000

(send error to status)

133

jump endofprog;

end: bit clr MODE2 0x20; (disable timer)
bit clr MODE1 Ox1000; (disable ints)

(pull up the z-piezo to OV position }
wt3: rlO=pm(ANGBStatus);

r8=0x3;
rl0=rl0 AND r8;
if ne jump wt3;

r0=l; {set the tip position to (0,0,0))
rl=BIAS; (16 bit-> 5V=32763, 50mV=328=0x148 }
r9=0x8000;
rO=rO XOR r9; { and invert MSB }
rl=rl XOR r9;
dm(DAFifo)=rO; (send z-piezo sig-initial OV}
rl2=pm(ADFifo); (read tunneling current)
dm(DAFifo)=rl; (send bias voltage-initial 50mV)
dm(DAFifo)=rO; {send x-piezo vol.-initial OV}
dm(DAFifo)=rO; (send y-piezo vol.-initial OV}

bit set ASTAT 0x200000; { toggle flag2 to start next cony)
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

r4=0x0;
dm(StatusReg)=r4; (let pc know the scanning has finished)
adflush: r4=pm(ANGBStatus); (make sure last conversion is done)

r8=0x3;
r4=r4 AND r8;
if ne jump adflush;
r4=pm(ADFifo); (flush 1 a/d result from fifo)

endofprog: idle;
.ENDSEG;

.SEGMENT/PM tmzh_svc;
jump Sample;
idle;
.ENDSEG;

/**************************************

pidtune.asm--This program is for tuning the PID gain.
The user inputs two sampling frequencies. The one is
for the pid control and the other is for the sampling
step response. The sampling rate for the step response is
usually set higher. The DSP changes the reference voltage,
measures the tunneling current response and transfers the data
to PC which displays it in nice graphic form.

Channel usages:
D/A channel 1 - z-piezo ------ rO

channel 2 - bias voltage ------ rl
A/D channel 1 - tunneling current -- r2

The memory usage
Ox0000 ----- user defined sampling period.
0x0006 ----- user defined ref. vol.(floating pt.)
0x0008 ----- user defined coef. - a(floating pt.)
0x0009 ----- user defined coef. - b(floating pt.)
Ox000b ----- user defined coef. - c(floating pt.)

134

Ox0001 ----- z piezo control signal update.
0x0002 ----- multiple of sampling rate.
0x800 -> Ox3fff -- the data goes here.

The reserved register
f5 ---- a
f6 ---- b
f7 ---- c
r15 --- 0x8000
rl ---- bias

written by Jungmok Bae 3/4/94

****************** **/

#define BIAS Ox156d /* bias voltage 4.5V */

.segment /pm pm-portl;

.var ADFifo;

.endseg;

.segment /pm pmport2;

.var ANGBStatus;

.endseg;

.segment /dm dm_portl;

.var StatusReg;

.endseg;

.segment /dm dmport2;

.var DigitalIO;

.endseg;

.segment /dm dmport3;

.var DAFifo;

.endseg;

.segment /dm dmport4;

.var ControlReg;

.endseg;

.segment /dm dm_port5;

.var ChanNum;

.endseg;

.segment /dm dm_data;

.var IntegSum, ConLoop, PreError,TNC,Counter; /*sum for the integral
gain.S(k-1)(floating pt)*/
.endseg;

.SEGMENT/PM rst_svc; (program starts at the reset vector }
PMWAIT=0x00Al; (/pms0=0ws, /pmsl=lws)
DMWAIT=0x9421; {/dmsO=Ows, /dmsl=Ows, /dms2=lws, /dms3=0ws)

jump start;
.ENDSEG;

.segment/pm pm_code;

start: r4=0xl; { let pc know the scanning has started)
dm(StatusReg)=r4;

call init_analog(db);
r2=0;
r9=0x8000;

call inittimer(db);

135

dm(ConLoop) =r2;
f3=0;

dm(IntegSum)=f3;
dm(PreError)=f3;
rl0=0;
dm(Counter) =r10;
f5=dm(0x0008);
f6=dm(0x0009);
f7=dm(0x000b);
i8=0x800;
m8=1;

bit set MODE2 0x20;
bit set MODE1 0x1000;

intwt: idle;
jump intwt;

{

Sample: dm(DAFifo)=rO;
r2=pm(ADFifo);
dm(DAFifo)=rl; {

(read coeff.
{read coeff.
(read coeff.

{ enable timer)
{ enable interrupts }

(Check if the control loop counter has }
been expired.)

{send z-piezo sig-previous vol.}
{read tunneling current)

send bias voltage-initial 50mV}

bit set ASTAT 0x200000; (toggle flag2 to start next convy
r3=pm(ANGBStatus); (checking the status)
r4=0x3;
r3=r4 AND r3;
if ne jump error;
bit clr ASTAT 0x200000;
nop; nop; nop;

r2=fext r2 by 0:14(SE);

r3=0x186;
r2=r2+r3;
r3=0x2000;
r3=r2+r3;
i0=r3;
m0=0;
r2=dm(m0,i0);

pm(i8,m8)=r2;
dm(TNC)=r2;

r3=dm(Counter);
r3=r3+1;
dm(Counter)=r3;
r4=dm(0x0002);
r4=r3-r4;
if eq jump PIDloop;

rti;

PIDloop:r3=dm(ConLoop);
r4=0x1000;
r4=r4-r3;
if eq jump endl;
r3=r3+1;
dm(ConLoop)=r3;

(floating point calculation)
r2=dm(TNC);
fl0=float r2;
fll=dm(0x0006);

(sign extension of a/d result!!!)
(sign conversion)

(offset vol. compensation)

{ convert to log)

{read the log table}

(store the data in the program memory)
(store the data for pid control}

(control loop counter)
(maximum loop counter : 0x1000)

{ the loop counter is expired }

(increase the loop counter by one)

{convert to floating point format}
{user defined ref. vol.}

136

fl0=f10-fll;
fl2=dm(PreError);
fl3=dm(IntegSum);

{a*e(k) + b*e(k-l) + S(k-l)}
f9=f5*fl0;
f3=f6*f12;
f8=f9+f3;
f8=f8+f13;

{update the e(k-l) and S(k-l) }
dm(PreError)=fl0;
f3=f7*fl0;
f13=f13+f3;
dm(IntegSum)=fl3;

r3=fix f8;

r0=dm(0x0001);
r0=r0+r3;
dm(0x0001)=r0;

rO=ASHIFT rO by 2;
r9=0x8000;
rO=rO XOR r9; { an

r3=0x0;
dm(Counter)=r3;

rti;

init_analog:

d i

(error; tuneling cur. - refv. }
(previous error e(k-l) }
(sum for integral gain S(k-l)}

(e(k-l)=error }

(S(k-l)=c*error+S(k-2))

{ convert to fixed point value }

(z piezo voltge}
(adjust the z piezo vol. }
(update the z piezo vol. }

(from 14 bits to 16 bits!!! }

nvert MSB }

bit set MODE2 0x20000; (flag 2 is an output
bit clr ASTAT 0x200000; (set flag2 to low }
r4=0x0;
dm(ControlReg)=r4;
nop;nop;nop;
r4=0xll;
dm(ChanNum)=r4;
nop; nop; nop;
r4=0x80;
dm(ControlReg)=r4;
nop; nop; nop;

(reset analog board)

(1 a/d channels & 2 d/a
{ number of channels }

(release ang reset & go
{ control register }

{ read the first a/d and write the initial d/a outputs }

wtl: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;
if ne jump wtl;

r0=dm(0x0001);
rO=ASHIFT rO by 2;
rl=BIAS;
rO=rO XOR r9;
rl=rl XOR r9;
dm(DAFifo)=rO;
dm(DAFifo)=rl;

(wait for the fifo to finish its work.)

{dm(0x0001) carries 14 bit information)
{ shift up by 2 bits:14 bit data from fine.asm I

{ and invert MSB

{send z-piezo sig-initial OV}
(apply bias voltage-initial 50mV}

bit set ASTAT 0x200000; { toggle flag2 to start first cony }
nop; nop; nop; nop;
bit clr ASTAT 0x200000;
nop; nop; nop;

wt2: rlO=pm(ANGBStatus);
r8=0x3;
rl0=rl0 AND r8;

{ wait for the first a/d to trash the }
{ whatever sits in the fifo with new data.)

137

channels }

mode=0 (go on flag2)

if ne jump wt2;

rts;

init_timer: bit clr MODEl 0xl000;
bit set irptl 0;
bit set IMASK 0x12;

{ disable all the previous interrupts }
{ clear pending interrupt }
{ enable timer int. }

rl0=dm(0x0000);
TPERIOD=rlO;
TCOUNT=rlO;

{ sample period will be in dm(0x0000) }
{ set up the timer }

rts;

error: r4=0x23; { send error to status }
dm(StatusReg)=r4;
jump endofprog;

endl: bit clr MODE2 0x20; (disable timer)
bit clr MODE1 Ox1000; {disable ints)
r4=0x0;
dm(StatusReg)=r4; { let pc know the scanning has finished)
adflush: r4=pm(ANGBStatus); {make sure last conversion is done)

r8=0x3;
rO=rO AND r8;
if ne jump adflush;
rO=pm(ADFifo); (flush 1 a/d result from fifo}

endofprog: idle;
.ENDSEG;

.SEGMENT/PM
jump Sample;
idle;
.ENDSEG;

tmzh_svc;

138

Appendix C

PC Code

C.1 Header File
/ **************** ******* ***********

The Scanning Tunneling Microscope Project

Laboratory for Manufacturing and Productivity
The Department of Mechanical Engineering
Massachusetts Institute of Technology

Header File
control.h

Description

This has the prototypes of the subroutines and the declarations of constant variables
for the address of the DSP board interface registers and the structures for the two
data types used in the DSP interface.

Written by Jungmok Mitchell Bae
4/17/94

** ** **,************* ******** ** **** ***

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

CNTL =
PMAD =
DMAD =
TMG =
STAT =
DMDL =
DMDM =
DMDH =
PMDL =
PMDM =
PMDH =
PMWR =
DMWR =
PMRD =
DMRD =

0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300
0x300

0x04;
Ox10;
0x12;
0x12;
Ox10;
OxlE;
OxlC;
OxIA;
0x18;
0x16;
0x14;
0x02;
0x00;
0x02;
0x00;

/* data type for 48-bit DSP
struct HEX48 (

unsigned int USW;
unsigned int MSW;
unsigned int LSW;
1;

program memory inst. */

/* data type for 40-bit unformatted values for DM or PM*/
struct HEX40 {

unsigned int USW;
unsigned int MSW;
unsigned char LSB;
1;

union f_l (
unsigned long 1;
float f; };

void run(void);
void reset(void);
void stat(void);

139

int statreg(void);
void timing(void);
int loadmemi(unsigned int start-adr, unsigned int num_words,

unsigned int *datarray, unsigned int bank);
int loadmemjl(unsigned int start adr, unsigned int num_words,

unsigned long *datarray, unsigned int bank);
int loadmempm(unsigned int start_adr, unsigned int num_words,

struct HEX48 *datarray, unsigned int bank);
int loadmemdm(unsigned int start_adr, unsigned int num_words,

struct HEX40 *datarray, unsigned int bank);
int loadmem f(unsigned int startadr, unsigned int num_words,

float *datarray, unsigned int bank);

int readmemi(unsigned int start-adr, unsigned int numwords,
unsigned int *datarray, unsigned int bank);

int readmemjl(unsigned int start_adr, unsigned int num_words,
unsigned long *datarray, unsigned int bank);

int readmem_dm(unsigned int startadr, unsigned int num_words,
struct HEX40 *datarray, unsigned int bank);

int readmem pm(unsigned int startadr, unsigned int num_words,
struct HEX48 *datarray, unsigned int bank);

int readmemf(unsigned int start_adr, unsigned int num_words,
float *datarray, unsigned int bank);

void down(char *file_name);

/***********************************

The Scanning Tunneling Microscope Project

Laboratory for Manufacturing and Productivity
The Department of Mechanical Engineering
Massachusetts Institute of Technology

Main Program
constm3.c

Description:

This program drives the scanning tunneling microscope. It communicate with the
digital signal processing board using the DSP interface subroutines such as
download function, run function, reset function, memory read and write function.
This program is divided into smaller modules. A user can control each step of
scanning process using these modules. The program also provides the user
interface functions and the display functions of the result.

The program uses the following header files.

control.h
constm.h

Written by Jungmok Mitchell Bae 4/17/94

#include "control.h"
#include "constm.h"

/**

* Define Macros

* RGB(r, g, b) : Color settings. (Refer to graph.h)
* TN_DAT(i, j) : 2-D array representation of 1-D array.
* MAX : Maximum number of data in each row.

140

*/

#define#define
#define
#define
#define
#define
*define

: Time delay routine.

RGB(r, g, b) (0x3F3F3FL & ((long) (b) << 16 1 (g) << 8 (r)))
TRUE 1
FALSE 0
TN_DAT(i, j) tn_dat[(64*(i)+(j))] /* You have to change this part */
MAX 100 /* in order to vary the resolution*/
WAIT for(i=O;i<1000;i++)

C.2 Main Function
/**

Declaration of Global Variable

dat[MAX)[MAX]
lpos

: Tunneling current data are stored here!
: The last position of the tip when the program is

finished.

unsigned
int
unsigned long
float

int dat[MAX][MAX];
resol=64, range;
lpos=0;
PreRef=0;

/* The last pos. is stored here. */

main()

while(mainmenu());

/ ***f**************+**************f*R**********************

int mainmenu(void)

Description:

* Return:

Note :

int mainmenu(void)

int

Print main menu, wait for the user input, and execute
the selection

0 = user terminates the session.
None = otherwise.

The menu for a new mode should be added here!!!

flag=l, n, ans;

while(flag != 0){
printf("Main Menu\n");
printf(" 0. Reset the STM\n");
printf(" 1. Coarse Approach\n");
printf(" 2. Constant Height Mode\n");
printf(" 3. Constant Current Mode\n");
printf(" 4. Wide Scanning Mode\n");
printf(" 5. Atomic Encoder Mode\n");
printf(" 6. New Mode???\n");
printf(" 7. Data Interpretation Mode\n");
printf(" 8. Termination of the session\n");
n = get_int("your choice", 0, 8);
switch(n){

case 0:
parameter_set();
break;

case 1:
coarse-approachl_atomsurf();
break;

case 2:
141

*

WAIT

constantheightmode();
break;

case 3:
constant_current_mode();
break;

case 4:
wide_scanning-mode();
break;

case 5:
atomic_encodermode();
break;

case 6:
break;

case 7:
data_interpret_mode();
break;

case 8:
ans=waitYN("Termination of the session -

sure?(Y/N/<Enter>)",'N');
if(ans==l)flag = 0;
break;

default:
printf("Wrong input.\n");
break;

}
return 0;

C.3 The STM Control Support Subroutines
/**

* void parameter_set(void)

* Description: Reset the scanning tunneling microscope.
* Set all d/a voltages to preset value.
* Refer to 'init.asm'.

* Return: None
*

void parameter_set(void
{

reset();
down("init.stk");
run();
reset();

/************************************
*

* void move_inchworm_motor(void)

* Description: Move the inchworm motor. The module controls the speed,
* the direction, and the moving range of inchworm motor.
* Refer to 'moveiw.asm'.

* Return: None
*

void move_inchworm_motor(void)

142

int
unsigned long
float

flagl;
loop, forb, tper;
tsamp;

/* user input1 - sampling rate */
printf("The IW speed selection\n");
printf(" 0. fast\n");
printf(" 1. medium\n");
printf(" 2. slow\n");
flagl = getint("the mode of the speed",0,2);
switch(flagl){

case 0:
tsamp = 1.0;
break;

case 1:
tsamp = 0.5;
break;

default:
tsamp = 0.2;
break;

tper = (unsigned long)(33300.0 / tsamp);

/* user input2 - the direction */
forb = get_long("Direction -> upward(0) or downward(l).", 0, 1);
if(forb)

forb = 0x4;
else

forb = OxO;
/* user input3 - the maximum clock cycle */

loop = get_long("the maximum clock cycle", 0, 100000);

reset();

down("moveiw.stk");

loadmem_l(Ox00000000, 1, &tper, 1);
loadmem_l(0x00000002, 1, &forb, 1);
loadmem_l(Ox00000001, 1, &loop, 1);

printf("Now starts if you want to stop hit any key now\n");
run();
getch();
reset();

}
/**

* void coarseapproachl_atomsurf(void)

Description:

* Return:

This program is for the coarse approach.
The speed has been set to a default value, 0.5kHz.
The program asks for the number of ADC reading in
multiple of 0.5kHz.
Refer to 'coarsell.asm'.

None

void coarse_approachl_atomsurf(void)

unsigned long
float

tper, rto;
tsamp;

/* user inputl - sampling rate */

143

tsamp = getfloat("sampling period in multiple of 0.5kHz", 0, 10);
rto=(unsigned long)tsamp/0.5;
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("coarsell.stk");
loadmeml(0x00000000, 1, &tper, 1);/* send sampling period to DSP */
loadmeml(0x00000001, 1, &rto, 1); /* send ratio of a/d & IW's speed*/

run();
while(statreg() != 1);

if(statreg() == 0x23){
printf("Input sampling rate is too fast.\n");
exit(l);

}
printf("The coarse approachl is now working!\n");
printf("Emergency stop:hit any key now!\n");
getch();
reset();
if(statreg() != 0) printf("The program was in progress...\n\n");

/ ***

* void fineapproach_atomsurf(void)

* Description: This is program is for the next approaching mode,
* fine approach.
* Refer to 'finel.asm'.

* Return: None
*

void fine_approach_atomsurf(void)
{

unsigned long tper, lastpos;
float tsamp;

/* user inputl - sampling rate */
tsamp = get_float("sampling period in kHz", 0, 10);
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("finel.stk");
loadmem_l(Ox0000, 1, &tper, 1);/* send sampling period to DSP */

run();
while(statreg() != 1);
if(statreg() == 0x23){

printf("Input sampling rate is too fast.\n");
exit(l);

}
printf("The fine approach is now working.\n");
printf("Emergency stop:hit any key now!\n");
getch();
reset();
readmem_l(Ox0001, 1, &lpos, 1); /* update the last position.*/

if(statreg() != 0)
printf("The program was in progress...\n\n");

else
printf("O.K.! it's done.\n");

144

/**

* void pidcontrol_atomsurf(void

* Description: PID control of the tunneling current to user input
* reference voltage.
* Refer to 'pidcon.asm'.

* Return: None
*

void pidcontrol_atomsurf(void
{

unsigned long tper, tempo;
float gaini, gainp, gaind, refv, fsamp, tsamp, a, b, c;

/* user inputl - sampling rate */
fsamp = get_float("sampling period in Hz", 0, 100000);
tper = (unsigned long)(33300000.0 / fsamp);

/* user input2 - reference voltage */
printf("Enter the reference voltage ");
scanf("%e", &refv);
refv=refv*8191.0/5.0;
/*calculation to 16bit resolution 10V range value...*/

/* user input3 - proportional gain */
printf("Enter proportional gain K ");
scanf("%e", &gainp);

/* user input4 - integral gain */
printf("Enter integral gain Ti");
scanf("%e", &gaini);

/* user input5 - derivative gain */
printf("Enter derivative gain Td");
scanf("%e", &gaind);

/* calculate the coefficients a, b, c */
tsamp=l.0/fsamp; /* T */
a=gainp*(1.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

reset();
down("pidcon.stk"); /* pidconl.asm is the version for

saturation+integral windup*/
loadmem_l(Ox0000, 1, &tper, 1);
loadmem_f(Ox0006, 1, &refv, 1);
loadmem_f(0x0008, 1, &a, 1);
loadmem_f(0x0009, 1, &b, 1);
loadmem_f(Ox000b, 1, &c, 1);
logtable_download();

/* pcinputl - last position of the tip */
loadmem_l(Ox0001, 1, &ipos, 1); /*load the previous position*/

run();
printf("The pidcontrol is now working.\n");
printf("Emergency stop:hit any key now!\n");
while(kbhit()==0){

if(statreg() == 0x23)(
printf("PID vol is out of limit\n");
exit(l);

}

readmem_l(Ox0001, 1, &ipos, 1);

145

reset () ;
if(statreg() != 0)

printf("Was in progress...\n\n");
else

printf("O.K.! it's done. \n\n");

/************************************

* void store_atomsurf(void)

* Description: Store the atomic image in user specified file.
* The module uses data stored in the global variable
* , dat[][].

* Return: None
*

void store_atomsurf(void)
{

char *fn;
FILE *fp;
int i, j;

fn = getstring("file name");
fp = fopen(fn, "w");
for(i = 0; i < 64; i++){

for(j = 0; j < 64; j++)
fprintf(fp, "%7d ", dat[i][j]);

fprintf(fp, "\n");
}
free(fn);
fclose(fp);

/ **

* void retrieve_atomsurf(void)

* Description: Retrieve the atomic image data from the user input
* file. The data goes to the globally defined dat[][].

* Return: None
*

void retrieve_atomsurf(void
{

char *fn;
FILE *fp;
int i, j, size;

fn = getstring("file name");
size = get_int("size of the data", 0, 100);
fp = fopen(fn, "r");
for(i = 0; i < size; i++){

for(j = 0; j< size; j++)
fscanf(fp, "%7d ", &dat[i]lj]);

fscanf(fp, "\n");
)
free(fn);
fclose(fp);

/146**
146

* void logtable_download(void)
*

* Description:

*

* Return:

This function downloads the log table to the DSP data memory
location from Ox0010 to 0x2000. The input voltage ranges
from 10mV - 5V.

None

*/void logtabledownload(void
void logtable_download(void)

int
long
double

*logval;
temp;

logval = (long*)malloc(9000*sizeof(long));
if(logval==NULL)(

printf("Allocation is not succesful.\n");
exit(1);

for(i=0; i<10; i++)
logval(i]=(long)(2.76*(1.0-logl0(10.0*5.0/8191.0))*1638.0);

for(i=10; i<9000; i++){
logval[i]=(long)(2.76*(1.0-log10((double)i*5.0/8191.0))*1638.0);

loadmeml(0x2000, 8192, logval, 1);
free(logval);

/ ****conver****************(**vo**id**

* void converttolog(void)

* Description:

* Return:

* Return:

Perfom the Log conversion of the scanned data.
The module uses the log conversion equation described in

section 5 in chapter 2.
None

void convertto_log(void)
{

int i, j;

/* convert the result into log */
for(i=0;i<64;i++){

for(j=0; j<64; j++){
if(dat[i][j] <10){

printf("The T.C. during scan
printf("%d\n", dat[i)[j]);
exit(1);

is out of range.%d, %d\n", i,j);

))*1638.0);

C.4The Atomic Image Display Subroutines
float elm[11l[11];
/**

* void display_atomsurf_f(void)

147

dat[i][j]=(int)(2.76*(1.0-logl0((double)dat[i)[j]/8191.0*5.0

* Description: Display the atomic image in grey scale.
* The moudule uses the floating point data which has been
* digitally filtered prior to
this operation.

* Return: None

*/
void display_atomsurf_f(void)
{

float *tn_dat;
float max, min, step;
int rowst, colst, i, j, k, 1;
long grey[16], col;
char *fn;
FILE *fp;
double col_ind, winsize;

/* dynamic memory allocation */
tn dat = (float*)malloc(resol*resol*sizeof(float));
if(tn_dat==NULL){

printf("Allocation is not succesful.\n");
exit(l);

/* retrieve the data */
fn = get_string("file name");
fp = fopen(fn, "r");
for(i = 0; i < resol; i++){

for(j = 0; j< resol; j++)
fscanf(fp, "%e ", &TNDAT(i,j));

fscanf(fp, "\n");

free(fn);
fclose(fp);

/* graphic initialization */
_setvideomode(_VRES16COLOR);
_setviewport(330, 90, 629, 389);

/*_settextwindow*/
winsize=(double)((resol-l)*10);
_setwindow(TRUE, 0.0, 0.0, winsize, winsize);

for(k=0; k<16; k++)
grey[k] = RGB(4*k, 4*k, 4*k);

_remapallpalette(grey);

/* find the maximum of the data */
for(i=0; i<resol; i++){

for(j=0; j<resol; j++)(
if(TNDAT(i,j) > max)

max=TN_DAT(i,j);

/* find the minimum of the data */
for(i=0; i<resol; i++){

for(j=0; j<resol; j++)(
if(TN_DAT(i,j) < min)

min=TN_DAT(i,j);

/* find the step size */
step=(max-min)/16.0;

148

/* set the color for each point 64*64 */
for(i=O; i<resol; i++)(

for(j=O; j<resol; j++)(
modf((double)((TNDAT(i,j)-min)/step), &col_ind);
/*TN_DAT(i,j)=(float)(16.0-col_ind) ;*/
TN_DAT(i,j)=(float)(colind);

)

/* draw the graph piece by piece */
for(i=O; i<(resol-l); i++){

for(j=O; j<(resol-l); j++){
linear_interpo(TNDAT(i,j), TN_DAT(i,j+1), TN_DAT(i+l,j+l),

TN_DAT(i+l,j));
rowst=10*i;
colst=10*j;
for(k=0;k<=10;k++){

for(l=0;1<=10;1++){
_setcolor((int)elm[k] [l]);
_setpixel_w((double)(colst+l), (double)(rowst+k)

free(tn_dat);

/********************************

* void display-atomsurf(void)

* Description: Display the atomic image data in grey scale.
* The module uses the fixed point data stored in the array
dat[] [1.

* Return: None
*

void display_atomsurf(void
{

float *tn_dat;
float max, min, step;
int rowst, colst, i, j, k, 1, temp, ans;
long grey[16], col;
double col_ind, winsize;

/* ask user if the data to be log converted */
ans=waitYN("Log convert? (Y/N/<Enter>)",'Y');
if(ans=l) convert_to_log();

/* dynamic memory allocation */
tn_dat = (float*)malloc(resol*resol*sizeof(float));
if(tn_dat==NULL)f

printf("Allocation is not succesful.\n");
exit(l);

}

/* retrieve the data */
for(i = 0; i < resol; i++)(

for(j = 0; j< resol; j++){
TN_DAT(i,j)=(float)dat[i] [j];

149

/* graphic initialization */
setvideomode(_VRES16COLOR);
_setviewport(330, 90, 629, 389);

/*_settextwindow*/
winsize=(double)((resol-1)*10);
_setwindow(TRUE, 0.0, 0.0, winsize, winsize);

for(k=0; k<16; k++)
grey[k] = RGB(4*k, 4*k, 4*k);

_remapallpalette(grey);

max=TN_DAT(0,0);
min=TN_DAT(0,0);

/* find the maximum of the data */
for(i=0; i<resol; i++){

for(j=0; j<resol; j++){
if(TN_DAT(i,j) > max)

max=TNDAT(i,j);

/* find the
for(

minimum of the data */
i=0; i<resol; i++){

for(j=0; j<resol; j++){
if(TN_DAT(i,j) < min)

min=TNDAT(i,j);

/* find the step size */
step=(max-min)/16.0;

/* set the color for each point 64*64 */
for(i=0; i<resol; i++)(

for(j=0; j<resol; j++){
modf((double) ((TN_DAT(i,j)-min)/step), &col_ind);
/*TN_DAT(i,j)=(float)(16.0-col_ind);*/
TN_DAT(i,j)=(float)(col_ind);

}

/* draw the graph piece by piece */
for(i=0; i<(resol-l); i++){

for(j=0; j<(resol-l); j++){
linear_interpo(TN_DAT(i,j), TNDAT(i,j+l), TN_DAT(i+l,j+1),

TNDAT(i+1,j));

I

rowst=10*i;
colst=10*j;
for(k=0;k<l0;k++)(

for(l=0;1<10;1++){
_setcolor((int)elm[k][l]);
_setpixelw((double)(colst+l), (double)(rowst+k)

free(tn-dat);

/ ******************************i****X**********************
*t

150

void linear_interpo(float argl, float arg2, float arg3, float arg4)

Description:

function performs the li

points. The resolution
*

*

Input:

Return:

This is the sub-function of displayatomsurf and
display_atomsurf_f. The

near
interpolation of given 4

is presetted 10 by 10.

The four points which form the smallest square in
the 2-D atom plane.

None

void linear_interpo(float cnl, float cn2, float cn3, float cn4
{

int i, j;

/* boundary value calculation */
for(i=0; i<=10; i++)

elm[0][i]=(cn2-cnl)/10.0*(float)(i)+cnl;
for(i=0; i<=10; i++)

elm[10][i]=(cn3-cn4)/10.0*(float)(i)+cn4;
/* inside boundary value calculation */

for(j=0; j<=10; j++){
for(i=l1; i<10; i++

elm[i][j]=(elm[10] [jl-elm[0] [j])/10.0*(float) (i)+elm[0][j];
}

}

C.5 Constant Height Mode Module

void constantheightmode(void)

Description:

Return:

Prn eu atfrte sript n xct

Print menu, wait for the user input, and execute
the selection

No return value.

void constantheight mode(void)

int flag, n, ans;

while(flag != 0){
printf("Constant Height Mode\n");
printf("
printf("
printf("
printf("

printf("
printf("

printf("

n = getint(
switch(n){

0.
1.
2.
3.
4.
5.
6.

" your

Reset the STM\n");
Inchworm Motor Control\n");
Manual Scanning Tools\n");
Scanning -- Ramp Pattern\n");
Scanning -- Triangular Pattern\n");
Atomic Image Display\n");
End the session\n");
choice", 0, 6);

case 0:
parameter_set();
break;

case 1:
move_inchworm_motor();
break;

151

Return:

case 2:
manual_scanningmode();
break;

case 3:
ramp_auto_scan_atomsurf();
break;

case 4:
tri_auto_scan_atomsurf();
break;

case 5:
display_atomsurf();
getch();
_clearscreen(_GCLEARSCREEN);
_setvideomode(_DEFAULTMODE);
break;

case 6:
ans=waitYN("Termination of the session -

sure?(Y/N/<Enter>)",'N');
if(ans=l)flag = 0;
break;

default:
printf("Wrong input.\n");
break;

/**

* void manual_scanning.mode(void)
*

Description:

Return:

Print sub menu for the manual scanning mode, wait for the

input, and execute the selection

No return value.

void manual_scanningmode(void)

int flag, n, ans;

while(flag != 0){
printf("Manual Scanning Mode\n");
printf("
printf("
printf("

printf("
printf("
printf("
printf("
printf("
n = get-int(
switch(n){

case 0:

case 1:

case 2:

0.
1.
2.
3.
4.
5.
6.
7.

'your

Reset the STM\n");
Inchworm Motor Control\n");
Fine Positioning\n");
Initial Height PID Control\n");
Scanning -- Ramp Pattern\n");
Scanning -- Triangular Pattern\n");
Atomic Image Display\n");
End the session\n");
choice", 0, 7);

parameter_set();
break;

nove_inchworm_motor();
break;

fine_approach_atomsurf();
break;

152

user

*

case 3:
pidcontrol_atomsurf();
break;

case 4:
rampscan_atomsurf();
break;

case 5:
tri_scan_atomsurf();
break;

case 6:
displayatomsurf();
getch();
_clearscreen(_GCLEARSCREEN);
_setvideomode(_DEFAULTMODE);
break;

case 7:
ans=waitYN("Termination of the session -

sure?(Y/N/<Enter>)",'N');
if(ans=l)flag = 0;
break;

default:
printf("Wrong input.\n");
break;

/ **********************i*t******+***************************

void rampautoscan_atomsurf(void)

* Description: This program is for fine positioning, pid controlling,
and constant height scanning in ramp pattern. The module

automatically sequencing
those three steps of scanning process.

* Return: None

void rampauto_scan_atomsurf(void)

unsigned long tper, lastpos;
float gaini, gainp, gaind, refv, fsamp,
int adr, i, j, flagl=0,ans;
unsigned int *datpt;

/********************** Fine Positioning
/* user inputl - sampling rate */

tsamp, a, b, c;

tsamp = 0.05;
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("finel.stk");
loadmeml(0x0000, 1, &tper, 1);/* send sampling period to DSP */

run();

printf("The fine approach is now working.\n");

while(statreg()!=0);
reset();
readmeml(Ox0001, 1, &lpos, 1); /* update the last position.*/

153

--

/* user inputl - sampling rate */
fsamp = 4000.0;
tper = (unsigned long)(33300000.0 / fsamp);

/* user input2 - reference voltage */
refv=3.0;
refv=refv*8191.0/5.0;

/* user input3 - proportional gain */
gainp=0.00065;

/* user input4 - integral gain */
gaini=0.065;

/* user input5 - derivative gain */
gaind=0.016;

/* calculate the coefficients a, b, c */
tsamp=l.0/fsamp; /* T */
a=gainp*(l.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

reset();
down("pidcon.stk");
loadmem_l(Ox0000, 1, &tper, 1);
loadmem_f(0x0006, 1, &refv, 1);
loadmem_f(Ox0008, 1, &a, 1);
loadmem_f(0x0009, 1, &b, 1);
loadmem_f(Ox000b, 1, &c, 1);
logtable_download();
loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/

run();

printf("The pidcontrol is now working.\n");
while(statreg()!=0){

if(statreg()==0x23){
printf("PID vol is out of limit\n");
exit(l);

}
}
reset();
readmem_l(Ox0001, 1, &ipos, 1);

/************************* Scanning *********************
/* user inputl - sampling rate */

tsamp = 6.4;
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("scanl.stk");

loadmem_l(Ox0000, 1, &tper, 1);
/* pcinputl - last position of the tip */

loadmem_l(Ox0001, 1, &ipos, 1);
run();
printf("scanning is now working.\n");
while(statreg() !=0);
reset();

/* collect the data from dsp */
adr = Oxl00;
for(i = 0; i < 64; i++){

for(j=0; j<64; j++){
readmem_i(adr, 1, &(dat[i][j]), 1);
adr++;

}
154

/**XX******~****X***~** PID Control

/* converting to log and display */
for(i=0; i<64; i++)

printf("dat %d = %d\n", i, dat[i][i]);
/* data save */
ans=waitYN("Save? (Y/N/<Enter>)",'Y');
if(ans=l) store_atomsurf();

/************** *****************

* void tri_auto_scan_atomsurf(void)

* Description: This program is for fine positioning, pid controlling,
* and constant height scanning in triangular pattern.

* Return: None
*

void tri_auto_scan_atomsurf(void)

unsigned long tper, lastpos;
float gaini, gainp, gaind, refv, fsamp, tsamp, a, b, c;
int adr, i, j, ans;
unsigned int *datpt;

/********************** Fine Positioning *******************/
/* user inputl - sampling rate */

tsamp = 0.2;
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("finel.stk");
loadmem_l(0x0000, 1, &tper, 1);/* send sampling period to DSP */

run();

printf("The fine approach is now working.\n");
while(statreg()!=0);

WAIT;
reset();
readmeml(Ox0001, 1, &lpos, 1); /* update the last position.*/

/*********************** PID Control **************************/
/* user inputl - sampling rate */

fsamp = 4000.0;
tper = (unsigned long)(33300000.0 / fsamp);

/* user input2 - reference voltage */
refv=3.0;
refv=refv*8191.0/5.0;

/* user input3 - proportional gain */
gainp=0.00065;

/* user input4 - integral gain */
gaini=0.065;

/* user input5 - derivative gain */
gaind=0.016;

/* calculate the coefficients a, b, c */
tsamp=l.0/fsamp; /* T */
a=gainp*(1.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

reset();

155

down("pidcon.stk");
loadmem_l(Ox0000, 1, &tper, 1);
loadmemf(0x0006, 1, &refv, 1);
loadmem_f(0x0008, 1, &a, 1);
loadmem_f(0x0009, 1, &b, 1);
loadmem_f(Ox000b, 1, &c, 1);
logtable_download();
loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/

run();

printf("The pidcontrol is now working.\n");
while(statreg() != 0)(

if(statreg()==0x23) {
printf("PID vol is out of limit\n");
exit(l);

reset();
readmem_l(Ox0001, 1, &ipos, 1);

/************************** Scanning **************************/
/* user inputl - sampling rate */

tsamp = 6.4;
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("scan2.stk");

loadmem_l(Ox0000, 1, &tper, 1);
/* pcinputl - last position of the tip */

loadmem_l(Ox0001, 1, &ipos, 1);
run();
printf("scanning is now working.\n");
while(statreg() != 0)

WAIT;
reset();

/* collect the data from dsp */
adr = Oxl00;
for(i = 0; i < 64; i++){

for(j=O; j<64; j++){
readmem_i(adr, 1, &(datli][j]), 1);
adr++;

}
i++;
for(j=63; j>=0; j--){

readmemi(adr, 1, &(dat[i][j]), 1);
adr++;

for(i=0; i<64; i++)
printf("dat %d = %d\n", i, dat[i]l[i);

/* data save */
ans=waitYN("Save? (Y/N/<Enter>)",'Y');
if(ans=l) storeatomsurf();

/************************************

* void ramp_scan_atomsurf(void)

* Description: The function performs the constant height scanning in ramp
pattern

156

It can be only used after
the initial height has been set.

Return: None

void ramp_scanatomsurf(void)
{

unsigned long
float
int
unsigned int

tper, tempo;
tsamp;
adr, i, j, ans;
*datpt;

/* user inputl - sampling rate */
tsamp = get_float("sampling period in kHz", 0, 50);
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("scanl.stk");

loadmem_l(Ox0000, 1, &tper, 1);
/* pcinputl - last position of the tip */

loadmem_l(Ox0001, i, &lpos, 1);
run();
printf("scanning is now working.\n");
printf("Emergency stop:hit any key now!\n");
getch();

/* collect the data from dsp */
adr = Oxl00;
for(i = 0; i < 64; i++){

for(j=0; j<64; j++){
readmem_i(adr, i, &(dat[i][j]), 1);
adr++;

for(i=0; i<64; i++)
printf("dat %d = %d\n", i, dat[i] [i);

reset();
if(statreg() != 0){

printf("The program was in progress...\n\n");

else{
/* data save */
ans=waitYN("Save? (Y/N/<Enter>)",'Y');
if(ans=l) store_atomsurf();

/************id *****t *******tm***

* void tri_scan_atomsurf(void)
*

* Description:
triangular pattern.

* Return:

The function performs the constant height scanning in

None

tri_scan_atomsurf(void)

unsigned long
float
int
unsigned int

tper, tempo;
tsamp;
adr, i, j, ans;
*datpt;

157

void
{

/* user inputl - sampling rate */
tsamp = get_float("sampling period in kHz", 0, 50);
tper = (unsigned long)(33300.0 / tsamp);

reset();
down("scan2.stk");

loadmem_l(Ox0000, 1, &tper, 1);
/* pcinputl - last position of the tip */

loadmem_l(Ox0001, 1, &ipos, 1);
run();
printf("scanning is now working.\n");
printf("Emergency stop:hit any key now!\n");
getch();

/* collect the data from dsp */
adr = 0x100;
for(i = 0; i < 64; i++){

for(j=0; j<64; j++){
readmem_i(adr, 1, &(dat[i][jl), 1);
adr++;

i++;
for(j=63; j>=0; j--){

readmem.i(adr, 1,
adr++;

}
for(i=0; i<64; i++)

printf("dat %d = %d\n",
reset();
if(statreg() != 0){

printf("The program was

else(

&(dat[i][j]), 1);

i, dat[i][i]);

in progress...\n\n");

/* data save */
ans=waitYN("Save? (Y/N/<Enter>)",'Y');
if(ans=l) store_atomsurf();

C.6 Constant Current Mode Module
/**

*

void constantcurrent-mode(void)

Description:

* Return:

Print the menu for the constant current mode, takes user
input value, and execute the selection.

None

*/
void constant_current_mode(void)

int flag, n;

while(flag !=
printf(
printf(
printf(
printf(
printf(

0){
"Constant Current Mode\n");
" 0. Reset the STM. \n");
" 1. Inchworm Motor Control. \n");

2. Fine Positioning. \n");
3. Initial Height Control. \n");

158

printf("
printf("
printf("
printf("
printf("
n = get_int(

switch(n){
case 0

case 1

case 2

case 3

case 4

case 5

case 6

case 7

case 8

4.
5.
6.
7.
8.

your

Scanning -- Ramp Pattern. \n");
Scanning -- Triangular Pattern.\n");
Atomic Image Display. \n");
PID Gain Tuning. \n");
End the Session. \n");
choice", 0, 8);

parameter_set();
break;

move_inchworm_motor();
break;

fine_approach_atomsurf();
break;

ccpidcontrol_atomsurf();
break;

cc_ramp_scan_atomsurf();
break;

cc_tri_scan_atomsurf();
break;

display_atomsurf();
getch();
_clearscreen(_GCLEARSCREEN);
_setvideomode(_DEFAULTMODE);
break;

manualpid_tuning();
break;

flag = 0;
break;

default:
printf("Wrong input.\n");
break;

/ **********+***********f+**********+**f*********************

void cc_pidcontrol_atomsurf(void)

* Description:

* Return:

The fn performs the initial height setting using PID scheme.
The preset reference voltage is 3V.

None

*/
void cc.pidcontrol_atomsurf(void

unsigned long tper, tempo;
float gaini, gainp, gaind, refv, fsamp, tsamp, a, b, c;

/* user inputl - sampling rate */
/*fsamp = getfloat("sampling period in Hz", 0, 100000);*/
fsamp=4000.0;

159

"

:

tper = (unsigned long)(33300000.0 / fsamp);
/* user input2 - reference voltage */

/*printf("Enter the reference voltage ");
scanf("%e", &refv);*/
refv=3.0;
refv=refv*8191.0/5.0;
/*calculation to 16bit resolution 10V range value...*/

/* user input3 - proportional gain */
/*printf("Enter proportional gain K ");
scanf("%e", &gainp);*/
gainp=0.00065;

/* user input4 - integral gain */
/*printf("Enter integral gain Ti");
scanf("%e", &gaini);*/
gaini=0.065;

/* user input5 - derivative gain */
/*printf("Enter derivative gain Td");
scanf("%e", &gaind);*/
gaind=0.016;

/* calculate the coefficients a, b, c */
tsamp=l.0/fsamp; /* T */
a=gainp*(l.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

reset();
down("pidcon.stk");

loadmem_l(0x0000,
loadmem_f(0x0006,
loadmem_f(Ox0008,
loadmem_f(0x0009,
loadmem_f(Ox000b,
logtable_download()

&tper,
&refv,
&a, 1)
&b, 1)
&c, 1

1);
1);

/* pcinputl - last position of the tip */
loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/

run();
printf("The picontrol is now working.\n");
printf("Emergency stop:hit any key now!\n");
while(kbhit()==0){

if(statreg() == 0x23){
printf("PID vol is out of limit\n");
exit(l);

}
readmem_l(Ox0001, 1, &lpos, 1);
reset();
if(statreg() != 0

printf("Was in progress...\n\n");
else

printf("O.K.! it's done. \n\n");

/**

void cc_ramp_scan_atomsurf(void)

Description: The function performs the constant current mode scanning in

pattern. The module assumes that all the prior steps are

160

ramp

done.

Refer section 7 in chapter

Return: None

void cc_ramp_scan_atomsurf(void)
{

unsigned long tper, tempo,ConNum;
float gaini, gainp, gaind, refv, fsamp, tsamp, a, b, c, RecConNum;
int adr, i, j;

/* user inputl - sampling rate */
fsamp = get_float("sampling period in kHz", 0, 500);
tper = (unsigned long)(33300.0 / fsamp);

/* user input2 - reference voltage */
printf("Enter the reference voltage ");
scanf("%e", &refv);
refv=refv*8191.0/5.0;
/*calculation to 16bit resolution 10V range value...*/

/* user input3 - proportional gain */
printf("Enter proportional gain K ");
scanf("%e", &gainp);

/* user input4 - integral gain */
printf("Enter integral gain Ti");
scanf("%e", &gaini);

/* user input5 - derivative gain */
printf("Enter derivative gain Td");
scanf("%e", &gaind);

/* user input6 - #conloop */
ConNum=getint("the number of control loop",0,100);

/* calculate the coefficients a, b, c */
tsamp=1.0/(fsamp*1000.0); /* T */
a=gainp*(1.0+tsamp/gaini+gaind/tsamp);
b=(-1.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

/* Calculate the reciprocal */
RecConNum=l.0/(float)ConNum;

reset();
down("ccscanl.stk");

loadmem_l(Ox0000, 1,
loadmem f(0x0006, 1,
loadmem.f(0x0008, 1,
loadmem.f(0x0009, 1,
loadmem_f(Ox000b, 1,
loadmem_l(0x0002, 1,
loadmem f(0x0003, 1,
logtable_download();

&tper, 1);
&refv, 1);
&a, 1);
&b, 1);
&c, 1);
&ConNum, 1);
&RecConNum, 1

/* pcinputl - last position of the tip */
loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/

run () ;
printf("The constant current mode is now working.\n");
printf("Emergency stop:hit any key now!\n");
while(statreg() !=0){

if(statreg() == 0x23)(
printf("PID vol is out of limit\n");
exit(1);

161

reset();

/* collect the data from dsp */
adr = 0x100;
for(i = 0; i < 64; i++){

for(j=0; j<64; j++)(
readmemi(adr, 1, &(dat[il [j]), 1);
adr++;

}
}
for(i=0; i<64; i++)

printf("dat %d = %d\n", i, dat[ill[i);
loadmem_l(Ox0001, 1, &ipos, 1); /*load the previous position*/
printf("The program is finished\n\n");

}

/****************************

* void cc_tri_scan_atomsurf(void)

* Description: The function performs the constant current mode scanning in
triangular
* pattern.
*

* Return: None
*

void cc_triscan_atomsurf(void)
{

unsigned long tper, tempo, ConNum;
float gaini, gainp, gaind, refv, fsamp, tsamp, a, b, c,RecConNum;
int adr, i, j;

/* user inputl - sampling rate */
fsamp = get float("sampling period in kHz", 0, 500);
tper = (unsigned long)(33300.0 / fsamp);

/* user input2 - reference voltage */
printf("Enter the reference voltage ");
scanf("%e", &refv);
refv=refv*8191.0/5.0;
/*calculation to 16bit resolution 10V range value...*/

/* user input3 - proportional gain */
printf("Enter proportional gain K ");
scanf("%e", &gainp);

/* user input4 - integral gain */
printf("Enter integral gain Ti");
scanf("%e", &gaini);

/* user input5 - derivative gain */
printf("Enter derivative gain Td");
scanf("%e", &gaind);

/* user input6 - #conloop */
ConNum=get_int("the number of control loop",0,100);

/* calculate the coefficients a, b, c */
tsamp=1.0/(fsamp*1000.0); /* T */
a=gainp*(l.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

/* Calculate the reciprocal */
RecConNum=l.0O/(float)ConNum;
reset();
down("ccscan.stk");

loadmeml(Ox0000, 1, &tper, 1);

162

loadmemf (0x0006, 1,
loadmemf(0x0008, 1,
loadmem,_f(0x0009, 1,
loadmemf(Ox000b, 1,
loadmem l(0x0002, 1,
loadmem f(0x0003, 1,
logtable_download();

&refv, 1);
&a, 1);
&b, 1);
&c, 1);
&ConNum, 1);
&RecConNum, 1);

/* pcinputl - last position of the tip */
loadmeml(Ox0001, 1, &lpos, 1); /*load the previous position*/

run();
printf("The constant current mode is now working.\n");
printf("Emergency stop:hit any key now!\n");
while(statreg()!=0){

if(statreg() == 0x23){
printf("PID vol is out of limit\n");
exit(l);

reset();

/* collect the data from dsp */
adr = Oxl00;
for(i = 0; i < 64; i++){

for(j=0; j<64; j++){
readmem_i(adr, 1, &(dat[i][j]), 1);
adr++;

i++;
for(j=63; j>=0; j--){

readmem_i(adr, 1, &(dat[il[j]), 1);
adr++;

for(i=O; i<64; i++)
printf("dat %d = %d\n", i, dat(i] [i);

loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/
printf("The program is done\n\n");

/**

* void manual pidtuning(void)

* Description:
step response

gain
Refer to idtune.asm

Refer to 'pidtune.asm'.

Return:

The function performs the pid gain tuning. It displays the

of the PID feedback C-L system. The user can tune P, I, and D

manually using this module.

None

void manualpidtuning(void)

unsigned long
float
float
int

tper, tperl, mult, *RespData;
gaini, gainp, gaind, refv, fsampl, fsamp2, tsamp, a, b, c;
gainil, gainpl, gaindl, refvl, fsamp3,tsampl,al,bl,cl;
adr,sord;

/* user inputl - sampling rate for the pid control */
fsampl = get_float("sampling period for pid control in Hz", 0, 100000);

163

/* user input2 - sampling rate for the response curve */
fsamp2 = get_float("sampling period for response curve in Hz", 0, 100000);
tper = (unsigned long)(33300000.0 / fsamp2);
mult=(unsigned long) (fsamp2/fsampl);

/* user input3 - reference voltage */
printf("Enter the reference voltage ");
scanf("%e", &refv);
refv=refv*8191.0/5.0;
/*calculation to 16bit resolution 10V range value...*/

/* user input4 - proportional gain */
printf("Enter proportional gain K ");
scanf("%e", &gainp);

/* user input5 - integral gain */
printf("Enter integral gain Ti");
scanf("%e", &gaini);

/* user input6 - derivative gain */
printf("Enter derivative gain Td");
scanf("%e", &gaind);

/* calculate the coefficients a, b, c */
tsamp=l.0/fsampl; /* T */
a=gainp*(1.0+tsamp/gaini+gaind/tsamp);
b=(-l.0)*gainp*gaind/tsamp;
c=gainp*tsamp/gaini;

/********************** PID Control ****************************/
/* user inputl - sampling rate */

fsamp3 = 4000.0;
tperl = (unsigned long)(33300000.0 / fsamp3);

/* user input2 - reference voltage */
refvl=3.0;
refvl=refvl*8191.0/5.0;

/* user input3 - proportional gain */
gainpl=0.00065;

/* user input4 - integral gain */
gainil=0.065;

/* user input5 - derivative gain */
gaindl=0.016;

/* calculate the coefficients a, b, c */
tsampl=l.0/fsamp3; /* T */
al=gainpl*(l.0+tsampl/gainil+gaindl/tsampl);
bl=(-l.0)*gainpl*gaindl/tsampl;
cl=gainpl*tsampl/gainil;

reset();
down("pidcon.stk");
loadmeml(Ox0000, 1, &tperl, 1);
loadmem_f(0x0006, 1, &refvl, 1);
loadmem_f(0x0008, 1, &al, 1);
loadmemf(0x0009, 1, &bl, 1);
loadmemf(Ox000b, 1, &cl, 1);
logtable_download();
loadmem.l(Ox0001, 1, &ipos, 1); /*load the previous position*/

run();

printf("The pidcontrol is now working.\n");
while(statreg() !=0);
reset();
readmeml(Ox0001, 1, &ipos, 1);
PreRef=refvl;

/******************************** PID Tuning ******************************/
reset();
down("pidtune.stk");

164

loadmem_l(Ox0000, 1, &tper, 1);
loadmem_1(0x0002, 1, &mult, 1);
loadmemf(0x0006, 1, &refv, 1);
loadmem_f(0x0008, 1, &a, 1);
loadmem_f(0x0009, 1, &b, 1);
loadmem_f(Ox000b, 1, &c, 1);
logtabledownload();

/* pcinputl - last position of the tip */
loadmem_l(Ox0001, 1, &lpos, 1); /*load the previous position*/

run();
printf("The pidtuning is now working.\n");
printf("Emergency stop:hit any key now!\n");
getch();
reset();
readmem_l(Ox0001, 1, &ipos, 1);

/* dynamic memory allocation */
RespData = (unsigned long*)malloc(1001*sizeof(unsigned long));
if(RespData==NULL){

printf("Allocation is not succesful.\n");
exit(l);

}
/* data retrieval */

adr=0x800;
readmeml(adr, 1001, RespData, 0);

/* graphic output */
graph_init();
plot(RespData, 1000, (int)fsamp2, refv, PreRef);
getch();
_clearscreen(_GCLEARSCREEN);
_setvideomode(_DEFAULTMODE);
sord=getint("save(0) or discard(l)", 0,1);
if(!sord)

store_stepresp(RespData);
PreRef=refv;
free(RespData);

int halfx, halfy, xwidth, yheight, cols, rows;
struct videoconfig screen;

/***

* void graph_init(void)

* Description: This module is sub-function of plot(). It sets the graphic
* environment according to the type of a screen adapter.

* Return: None
*

void graph_init(void)
{

_getvideoconfig(&screen);
switch(screen.adapter){

case _CGA:
case _OCGA:

setvideomode(_MRES4COLOR);
break;

case _EGA:
case _OEGA:

_setvideomode(_ERESCOLOR);

165

break;
case _VGA:
case _OVGA:

_setvideomode(_VRES16COLOR);
break;

default:
printf("This program requires a CGA, EGA, \
or VGA graphic card.\n");
exit(1);

_getvideoconfig(&screen);
_clearscreen(_GCLEARSCREEN);
xwidth = screen.numxpixels;
yheight = screen.numypixels;
halfx = xwidth/2;
halfy = yheight/2;
cols = screen.numtextcols;
rows = screen.numtextrows;

/*set view port and the coordinates */
_setviewport(70, 70, 570, 410);
_setwindow(TRUE, 0.0, -10.0, 200.0, 160.0);

/************************************

Description:
Input:

Return:

void plot(unsigned long argl, int arg2, int arg3, float arg4, float arg5)

Displays the plot the data stored in input array.
1. Data to be plotted.
2. Maximum number of data to be plotted.
3. The sampling rate.
4. Reference voltage.
5. Previous reference voltage.

None

plot(unsigned long *yval, int xrange, int tsamp, float ref, float prev)

int i;
unsigned long min, max;
double x, y, templ, temp2, xstep,
char txt[20];

max=yval[0];
min=yval[0];

/* find the maximum of the data */
for(i=0; i<1000; i++){

if(yval[i] > max)
max=yval[i] ;

/* find the minimum of the data */
for(i=0; i<1000; i++){

if(yval[i] < min)
min=yval[i];

xstep = 200.0 / (double)xrange;
ystep = 150.0 / (double)(max-min);

/* Boundary & Coordinate */

166

ystep, xin, pos;

void
{

_setcolor(1);
_rectangle_w(_GBORDER, 0.0, -10.0, 200.0, 160.0);
for(i=l; i<20; i++){

pos = 10.0*(double)i;
_moveto_w(pos, -10.0);
_lineto_w(pos, -8.0);

}
for(i=0; i<16; i++){

pos = 10.0*(int)i;
_moveto_w(0.0, pos);
_lineto_w(2.0, pos);

}

/* title for x axis */
_settextposition(16, 40);
_settextcolor(4);
sprintf(txt, "%3.lf", (float) (xrange/(tsamp*2.0)));
/*_outtext(txt);*/
_settextposition(16, 75);
_settextcolor(4);
sprintf(txt, "%3.1f", (float)(xrange/tsamp));
/*_outtext(txt); */
_settextposition(27, 70);
_settextcolor(7);
_outtext("time");

/* title for y axis */
_settextposition(4, 3);
_outtext("Magnitude");

/* main title */
_settextposition(4, 32);
_outtext("The step response");

/* draw the ref voltage & the previous voltage */
_setcolor(2);
_setlinestyle(Ox00ff);
_moveto w(0.0, ((double)ref-(double)min)*ystep);
_lineto_w(200.0, ((double)ref-(double)min)*ystep);
_moveto w(0.0, ((double)prev-(double)min)*ystep);
_linetow(200.0, ((double)prev-(double)min)*ystep);

/* real data graph */
_setcolor(5);
_setlinestyle(Oxffff);
for(i=0; i<1000; i++){

x=xstep*(double)i;
_movetow(x, ((double)(*yval)-(double)min)*ystep);
yval++;
x=xstep*(double)(i+l);
_linetow(x, ((double)(*yval)-(double)min)*ystep);

}

/**

* void store_stepresp(unsigned long *argl

* Description: Store the step response data in the user input file.

* Input: 1. The data to be stored.

* Return: None
*

void store_stepresp(unsigned long *RespData
{

167

char
FILE
int

*fn;
*fp;

i, j;

fn = get_string("file name");
fp = fopen(fn, "w");
for(i = 0; i < 1000; i++){

fprintf(fp, "%7d ",RespData[i]);
}
free(fn);
fclose(fp);

C.7 Data Interpretation Mode
/************ ***

void datainterpret-mode(void)

Description:

* Return:

Prints the menu for the data interpretation mode, takes
user input, and execute the selection.

None

data_interpret_mode(void)

int flag, n, ans;

while(flag != 0){
printf("Data
printf(
printf(
printf(
printf(

ing\n");
printf(
printf(
n = get_int(
switch(n){

case 0:

Interpretation Mode\n");
0. Data Retrieve\n");
1. Data Save\n");
2. Grey Scale Display\n");
3. Retrieve and Grey Scale Display of the Data after

4.
5.

'your

Log Conversion\n");
End the session\n");
choice", 0, 5);

retrieve_atomsurf();
break;

case 1:
storeatomsurf();
break;

case 2:
display_atomsurf();
getch();
_clearscreen(_GCLEARSCREEN
_setvideomode(_DEFAULTMODE
break;

case 3

case 4

case 5

displayatomsurf_f();
getch();
_clearscreen(_GCLEARSCREEN
_setvideomode(_DEFAULTMODE
break;

convertto log();
break;

168

*/
void
I

Filter:

:

ans=waitYN("Termination of the session -
sure?(Y/N/<Enter>)",'N');

if(ans=l)flag = 0;
break;

default:
printf("Wrong input.\n");
break;

C.8 DSP Board Interface Subroutines
/**************** ***************

* int ctohex(char argl)

* Description: Convert the charater value to hex value.

* Input: Input character value.

* Return: the converted hex value.
*

*/

static unsigned int sa;
static unsigned int nb;
static int memtype;

int ctohex (char c)
{

if ((c>='A') && (c<='F')) return (c-'A'+10);
else return c-48;

)

/ **

* unsigned int getword(FILE *fp)
*

* Description: Catch four chars. from the file and return the value.

* Input: File pointer(.stk file)

* Return: 16-bit unsigned int value
*

unsigned int getword (FILE *fp)
{

unsigned char dummy;
int temp;

dummy = getc(fp);
temp=ctohex(dummy)*256*16;
dummy = getc(fp);
temp=temp + ctohex(dummy)*256;
dummy = getc(fp);
temp=temp + ctohex(dummy)*16;
dummy = getc(fp);
temp=temp + ctohex(dummy);
return(temp);

I

169

/ **+******X******t********t~******t**************************

void dmget(FILE *argl, struct HEX40 *arg2)

* Description:

Input:

*

*/
void

Read the info. from the specified file and store in
HEX 40 structure variable.

1. File pointer for the file to be read
2. The HEX40 format, the place where data to be stored.

Return: None

dmget (FILE *fp, struct HEX40 *inst)

unsigned char dummy;
int temp;

inst->USW=getword(fp);
inst->MSW=getword(fp);
dummy = getc(fp);
temp=ctohex(dummy);
dummy = getc(fp);
inst->LSB=temp*16+ctohex(dummy);
dummy = getc(fp); /* reading newline char */

/**********oidmet(FILE***

* void pmget(FILE *argl, struct HEX48 *arg2)

Description:

*

Input:

* Return:

Read the info. from the specified file and store in
HEX 48 structure variable.

1. File pointer for the file to be read
2. The HEX48 format, the place where data to be stored.

None

*/
void pmget (FILE *fp, struct HEX48 *inst)

unsigned char dummy;

inst->USW = getword(fp);
inst->MSW = getword(fp);
inst->LSW = getword(fp);
dummy = getc(fp);

/ **t****************f**********+****************************

void getheader(FILE *argl)

Description:

Input:
Return:

Get header part in the .stk file. Store necessary info.

file to be read.
None.

void getheader (FILE *fp)

unsigned char dummy;
long temp;

170

int n;

dummy = getc(fp);
dummy = getc(fp);
dummy = getc(fp);
dummy = getc(fp);

/* width of address and length fields */

/* reserved */

dummy = getc(fp); /* get two bytes of memory type */
temp=ctohex(dummy)*16;
dummy = getc(fp);
memtype=(int)(temp)+ctohex(dummy);

dummy = getc(fp);
dummy = getc(fp);

/* user defined flags */

temp=0; /* the next 8 chars are the
for (n=7; n>=O; n--){

dummy = getc(fp);
temp=temp+((long)(ctohex(dummy)) << (4*n));

start adr*/

sa=temp;

temp=0; /* the last 8 chars are the # of bytes */
for (n=7; n>=0; n--){

dummy = getc(fp);
temp=temp+((long)ctohex(dummy) << (4*n));

nb=temp;
dummy = getc(fp); /* reading the newline char */

/ *i**X**t*** tt*********t************t**** ******************

void dnld(void)

* Description: This module is used to download a .STK file developed on the PC
* to the PM and DM scratch rams of the BDSP-801.
* See the 21020 software development manual for a description of
the .STK
* file content, which is the byte-stacked format.
*

Return:

void
{

None

dnld(void)

int n, i, count;
int err, dummy, dum;
char fname(40];
FILE *fp;
struct HEX40 dmarr[2000];
struct HEX48 pmarr[2000];

printf("enter file name: \n");
scanf("\n", &dum);
gets(fname);
fp = fopen(fname, "r");
if (!fp) {

printf("invalid file name....get some sleep and try again\n");
goto end;

}
for(i = 1; i < 3; i++){

lp: getheader(fp);
printf("The number of bytes = %d\n", nb);

171

if (nb==0) goto end;
if (memtype==0x00) {

for (n=0; n<(nb/5); n++)(
count++;
dmget(fp, dmarr+n);

}
err=loadmem_dm(sa,nb/5,dmarr,l);

}
if (memtype==0x80) {

for (n=0; n<(nb/6); n++){
count++;
pmget(fp, pmarr+n);

err=loadmem_pm(sa,nb/6,pmarr,0);
}
goto ip;

end:printf("line# = %d\n", count);
printf("The program has been downloaded....\n");

/***

* void down(char *argl)

* Description: This is another version of dnld in which user inputs
* the file name.

* Input: String(char*)

* Return: None
*

/* Maximum number of line it can get from the .stk file is 1000 */
void down(char *file_name)
{

int n, i, count;
int err, dummy, dum;
FILE *fp;
struct HEX40 dmarr[1000];
struct HEX48 pmarr[1000];

fp = fopen(filename, "r");
if (!fp) {

printf("error in reading data from the file %s\n", file_name);
exit(1);

for(i = 1; i < 3; i++){
lp: getheader(fp);

if (nb==0) goto end;
if (memtype==0x00) {

for (n=O; n<(nb/5); n++){
count++;
dmget(fp, dmarr+n);

err=loadmem_dm(sa,nb/5,dmarr,l);

if (memtype==0x80) {
for (n=0; n<(nb/6); n++){

count++;
pmget(fp, pmarr+n);

}
err=loadmempm(sa,nb/6,pmarr, 0);

172

goto ip;

fclose(fp);
end:;

/ ***

* void down(char *argl

* Description: This is another version of dnld in which user inputs

*/

void
{

lp:

the file pointer.

Input: FILE *

Return: None

downfp(FILE *fp)

int n, i, count;
int err, dummy, dum;
struct HEX40 dmarr(20001;
struct HEX48 pmarr[2000];

for(i = 1; i < 3; i++){
getheader(fp);

if (nb==O) goto end;
if (memtype==0x00) {

for (n=O; n<(nb/5); n++){
count++;
dmget(fp, dmarr+n);

err=loadmem_dm(sa,nb/5,dmarr, l);

if (memtype==0x80) {
for (n=O; n<(nb/6); n++){

count++;
pmget(fp, pmarr+n);

err=loadmem_pm(sa,nb/6,pmarr,0);

goto ip;

end:;

unsigned int cntlword=0x0;

/* routine to release reset on the bdsp-801 */

/ **

void run(void)

Description: Execute the DSP code downloaded in the program memory.
The code is executed from

memory location, OxO.
The module sets the ist bit

in control register of DSP board.

Return: None

173

*

*

*

*

the
*

Oxl

**
*

*/

void run (void) {
cntlword=cntlword Ox01;
outp(CNTL, cntlword);

}

/ **

* void reset(void)

* Description: Reset the DSP board. The module toggles the first bit of
control
* register to OxO to stop
DSP's current operation.

* Return: None
*

void reset (void)(
cntlword=cntlword & OxFE;
outp (CNTL,cntlword); }

/*************************************

* void stat(void)

* Description: Print the status register value on the screen.

* Return: None
*

void stat (void) {
int st;
st=inpw(STAT);
printf("The status word is: %x\n",st);}

/*********************** **

* int statreg(void)

* Description: Read the status register value and the return the value.

* Return: the status register value in 16 bit integer.
*

int statreg (void) {
int st;
st=inpw(STAT);
return(st); }

/***

* void timing(void)

* Description: Print the timing register value on the screen.

* Return: None
*

void timing (void) {
int tm;
tm=inpw(TMG);
printf("The timing register is: %x\n",tm);}

/**
174

* int loadmem_i(unsigned int argl, unsigned int arg2,
* unsigned int *arg3, unsigned int arg4)

* Description: This routine is used if the memory transfer is a write
* from an array of 16-bit fixed-point values, represented as
* unsigned integers.

* Input: 1. The starting address in DSP board where the data go to.
* 2. The number of the data.
* 3. The data array.
* 4. The bank number.(either Data Mem(1) or Program Mem(O)

* Return: err=1 if the error in bank input isn't correct.
* err=0 otherwise.
*

int loadmem_i(unsigned int start_adr, unsigned int numwords,
unsigned int * datarray, unsigned int bank)

{ int rw;
int k;
int err=0;
int reg;
int adreg;
int adr;
switch (bank) {

case 1: reg=DMDM; adreg=DMAD; rw=DMWR; break;
case 0: reg=PMDM; adreg=PMAD; rw=PMWR; break;
default : err=l;

goto done;}
adr=start_adr;
for (k=O; k<num_words; k++)
{

outpw(adreg,adr);
outpw(reg,datarray(k]);
outpw(rw,0x0);
adr++;

}
done: return(err);
}

/***************************** **

* int loadmem_l(unsigned int argl, unsigned int arg2,
* unsigned long *arg3, unsigned int arg4)

* Description: This routine is used if the memory transfer is a write
* from an array of 32 bit fixed-point values, represented as
* unsigned long.

* Input: 1. The starting address in DSP board where the data go to.
* 2. The number of the data.
* 3. The data array.
* 4. The bank number.(either Data Mem(l) or Program Mem(0))
*

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int loadmem_l(unsigned int start_adr, unsigned int num_words,
unsigned long * datarray, unsigned int bank)

{ int rw;
int k;
int err=0;

175

int regh;
int regl;
int adreg;
int adr;
switch (bank) {

case 1: regl=DMDM; regh=DMDH; adreg=DMAD; rw=DMWR; break;
case 0: regl=PMDM; regh=PMDH; adreg=PMAD; rw=PMWR; break;
default : err=l;

goto done;}
adr=start-adr;
for (k=O; k<num-words; k++)
{

outpw(adreg,adr);
outpw(regl,(int)(datarray[k] & OxFFFF));
outpw(regh,(int)((datarray[k] & OxFFFF0000)>>16));
outpw(rw, 0x0);
adr++;

}
done: return(err);
}

/**

* int loadmem_pm(unsigned int argl, unsigned int arg2,
* struct HEX48 *arg3, unsigned int arg4)

* Description: This routine is used if the memory transfer is a write
* from an array of 48-bit instruction values, represented as
* struct HEX48.

* Input: 1. The starting address in DSP board where the data go to.
* 2. The number of the data.
* 3. The 48 bit instruction value array.
* 4. The bank number.(either Data Mem(1) or Program Mem(0)

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int loadmempm(unsigned int start_adr, unsigned int numwords,
struct HEX48 *datarray, unsigned int bank)

{ int k;
int err=0;
int adr;
if (bank==0) {

adr=start_adr;
for (k=0; k<numwords; k++){

outpw(PMAD,adr);
outpw(PMDL,datarray[k].LSW);
outpw(PMDM,datarray[k].MSW);
outpw(PMDH,datarray[k].USW);
outpw(PMWR,0x00);
adr++;

}
goto done;

}
err=l;
done: return(err);

/ **

* int loadmem_dm(unsigned int argl, unsigned int arg2,
* struct HEX40 *arg3, unsigned int arg4)

176

* Description: This routine is used if the memory transfer is a write
* from an array of 40 bit DM values, represented as
* struct HEX40.

* Input: 1. The starting address in DSP board where the data go to.
* 2. The number of the data.
* 3. The 40 bit data value array.
* 4. The bank number.(either Data Mem(1) or Program Mem(0)

* Return: err=1 if the error in bank input isn't correct.
* err=0 otherwise.
*

int loadmem_dm(unsigned int start_adr, unsigned int num words,
struct HEX40 * datarray, unsigned int bank)

(int k;
int err=0;
int rw;
int hreg;
int mreg;
int lreg;
int adreg;
int adr;
switch (bank)

case 0: hreg=PMDH; mreg=PMDM; lreg=PMDL; rw=PMWR; adreg=PMAD; break;
case 1: hreg=DMDH; mreg=DMDM; Ireg=DMDL; rw=DMWR; adreg=DMAD; break;
default: err=l; goto done;

adr=startadr;
for (k=0; k<num_words; k++)(

outpw(adreg,adr);
outpw(lreg,datarray[k].LSB);
outpw(mreg,datarray[k].MSW);
outpw(hreg,datarray[k].USW);
outpw(rw,0x00);
adr++;

done: return(err);

/**

* int loadmem_f(unsigned int argl, unsigned int arg2,
* float *arg3, unsigned int arg4)

* Description: This routine is used if the memory transfer is a write
* from an array of 32-bit floating values, represented as
* float.

* Input: 1. The starting address in DSP board where the data go to.
* 2. The number of the data.
* 3. The floating point data array.
* 4. The bank number.(either Data Mem(l) or Program Mem(0)

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int loadmem_f(unsigned int startadr, unsigned int numwords,
float *datarray, unsigned int bank)

{ int k;
int err=0;
int rw;

177

int hreg;
int Ireg;
int adreg;
int adr;
union f_l temp;
unsigned int dh;
unsigned int dl;

switch (bank) {
case 0: hreg=PMDH; lreg=PMDM; rw=PMWR; adreg=PMAD; break;
case 1: hreg=DMDH; Ireg=DMDM; rw=DMWR; adreg=DMAD; break;
default: err=l; goto done;

}
adr=startadr;
for (k=O; k<num_words; k++){

temp.f=datarray(k];
dl = (int)(temp.l & Oxffff);
dh = (int)((temp.1 & Oxffff0000)>> 16);
outpw(adreg,adr);
outpw(lreg,dl);
outpw(hreg,dh);
outpw(rw,0x00);
adr++;

}
done: return(err);

/ ***

* int readmem_pm(unsigned int argl, unsigned int arg2,
* struct HEX48 *arg3, unsigned int arg4)

* Description This routine is used if the memory transfer is a read
* from the bdsp801 to an array of 48-bit DSP instruction
values,
* represented as the class HEX48.

* Input: 1. The starting address in DSP board where the data are read.
* 2. The number of the data.
* 3. The 48-bit instruction value array where the data is to be
stored.
* 4. The bank number.(either Data Mem(l) or Program Mem(0)

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int readmempm(unsigned int start_adr, unsigned int num_words,
struct HEX48 * datarray, unsigned int bank)

{ int k;
int err=0;
int adr;
int tmp;
if (bank==0) {

adr=start-adr;
for (k=0; k<num_words; k++){

outpw(PMAD,adr);
tmp=inpw(PMRD);
datarray[k].LSW=inpw(PMDL);
datarray[k].MSW=inpw(PMDM);
datarray[k].USW=inpw(PMDH);
adr++;

goto done;

178

err=l;
done: return(err);

/***

* int readmem_dm(unsigned int argl, unsigned int arg2,
* struct HEX40 *arg3, unsigned int arg4)

* Description This routine is used if the memory transfer is a read
* from the bdsp801 to an array of 40-bit DSP data,
* represented as the class HEX40.

* Input: 1. The starting address in DSP board where the data are read.
* 2. The number of the data.
* 3. The 40-bit data array where the data is to be stored.
* 4. The bank number.(either Data Mem(l) or Program Mem(0))

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int readmem_dm(unsigned int start_adr, unsigned int numwords,
struct HEX40 * datarray, unsigned int bank)

{ int k;
int err=0;
int rw;
int hreg;
int mreg;
int Ireg;
int adreg;
int adr;
int tmp;
switch (bank) {

case 0: hreg=PMDH; mreg=PMDM; Ireg=PMDL; rw=PMRD; adreg=PMAD; break;
case 1: hreg=DMDH; mreg=DMDM; Ireg=DMDL; rw=DMRD; adreg=DMAD; break;
default: err=l; goto done;

}
adr=start_adr;
for (k=0; k<num_words; k++)(

outpw(adreg,adr);
tmp=inpw(rw);
datarray[k].LSB=inpw(lreg);
datarray(k].MSW=inpw(mreg);
datarray[k].USW=inpw(hreg);
adr++;

done: return(err);

/***************** ***********************
*

* int readmeml(unsigned int argl, unsigned int arg2,
* unsigned long *arg3, unsigned int arg4)

* Description This routine is used if the memory transfer is a read
* from the bdsp801 to an array of 32-bit fixed point value,
* represented as the unsigned long.

* Input: 1. The starting address in DSP board where the data are read.
* 2. The number of the data.
* 3. The 32-bit fixed point data array where the data is
stored.

179

4. The bank number.(either Data Mem(l) or Program Mem(O))

* Return: err=1 if the error in bank input isn't correct.
* err=0 otherwise.
*

int readmem_l(unsigned int start_adr, unsigned int num_words,
unsigned long * datarray, unsigned int bank)

{ int k;
int err=0;
int rw;
int hreg;
int Ireg;
int adreg;
unsigned dh;
unsigned dl;
int adr;
int tmp;
switch (bank) {

case 0: hreg=PMDH; lreg=PMDM; rw=PMRD; adreg=PMAD; break;
case 1: hreg=DMDH; lreg=DMDM; rw=DMRD; adreg=DMAD; break;
default: err=l; goto done;

adr=start_adr;
for (k=0; k<num_words; k++) (

outpw(adreg,adr);
tmp=inpw(rw);
dl=inpw(lreg);
dh=inpw(hreg);
datarray[k]=((long)(dh)<<16) + dl;
adr++;

)
done: return(err);

/************************************

* int readmem_i(unsigned int argl, unsigned int arg2,
* unsigned int *arg3, unsigned int arg4)

* Description This routine is used if the memory transfer is a read
* from the bdsp801 to an array of 16-bit fixed point value,
* represented as the unsigned int.

* Input: 1. The starting address in DSP board where the data are read.
* 2. The number of the data.
* 3. The 16-bit fixed point data array where the data is
stored.
* 4. The bank number.(either Data Mem(1) or Program Mem(0))

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int readmem_i(unsigned int start_adr, unsigned int num_words,
unsigned int * datarray, unsigned int bank)

(int k;
int err=0;
int rw;
int reg;
int adreg;
unsigned dh;
unsigned dl;
int adr;

180

int tmp;
switch (bank) {

case 0: reg=PMDM; rw=PMRD; adreg=PMAD; break;
case 1: reg=DMDM; rw=DMRD; adreg=DMAD; break;
default: err=l; goto done;

adr=start.adr;
for (k=0O; k<num_words; k++){

outpw(adreg,adr);
tmp=inpw(rw);
datarray[k]=inpw(reg);
adr++;

done: return(err);

/**

* int readmem_f(unsigned int argl, unsigned int arg2,
* float *arg3, unsigned int arg4)

* Description This routine is used if the memory transfer is a read
* from the bdsp801 to an array of 32-bit floating point value,
* represented as the float.

* Input: 1. The starting address in DSP board where the data are read.
* 2. The number of the data.
* 3. The 32-bit floating point data array where the data is
stored.
* 4. The bank number.(either Data Mem(l) or Program Mem(0)

* Return: err=l if the error in bank input isn't correct.
* err=0 otherwise.
*

int readmem_f(unsigned int start_adr, unsigned int num_words,
float * datarray, unsigned int bank)

{ int k;
int err=0;
int rw;
int hreg;
int ireg;
int adreg;
int adr;
int tmp;
unsigned int dh;
unsigned int dl;
union f_1l dattmp;

switch (bank) {
case 0: hreg=PMDH; lreg=PMDM; rw=PMRD; adreg=PMAD; break;
case 1: hreg=DMDH; Ireg=DMDM; rw=DMRD; adreg=DMAD; break;
default: err=l; goto done; }

adr=start_adr;
for (k=O; k<num-words; k++) {

outpw(adreg,adr);
tmp=inpw(rw);
dl=inpw(lreg);
dh=inpw(hreg);
dattmp.l = ((long)dh << 16) +dl;
datarray(k] = dattmp.f;
adr++;

}

181

done: return(err);

C.9 Programming Support Routines
/**

* int waitYN(char *argl, char arg2)

* Description: Wait for the user to press Y or N.

* Input: 1. prompt
* 2. default value Y or N.

* Return: Selected value.
*

int waitYN(char *prompt, char defaultValue)
{

char key;

printf("%s", prompt);
do{

key=toupper(getch());
switch (key)(

case '\r': key=defaultValue; break;
case 'O': key='N'; break;
case '1': key='Y'; break;

}while(!((key=='Y') I (key=='N')));
printf("%c\n", key);
if(key=='Y')

return 1;
return 0;

/*******************************

* get_string - get string from user with prompt

* Return pointer to string of input text, prompts user with string passed
* by caller. Indicates error if string space could not be allocated. Limited
* to 80 char input.

* char* getstring(char* promptstring)

* prompt_string string to prompt user for input
*

char *get_string(char* title_string)
{

char* alpha;

alpha = (char*)malloc(80);
if(!alpha){

printf("\nString allocation error in get_string\n");
exit(1);

}
printf("\nEnter %s : ", title_string);
gets(alpha);

return(alpha);

182

/**

* get-int - get integer from user with prompt and range

* Return integer of input text, prompts user with prompt string and range of
* values (upper and lower limits) passed by caller.

* int get_int(char * title_string, int low_limit, int uplimit)

* title_string string to prompt user for input
* lowlimit lower limit of acceptable input (int)
* up_limit upper limit of acceptable input (int)
*

int get_int(char* title_string, int low_limit, int up_limit)

int i, error-flag;
char* getstring(char* input);
char *cp, *endcp;
char *stemp;

/* check for limit error, low may equal high but not greater */
if(low_limit > up_limit){

printf("\nLimit error, lower > upper\n");
exit(1);

stemp = (char*)malloc(strlen(titlestring) + 60);
if(!stemp)(

printf("\nString allocation error in get_int\n");
exit(1);

sprintf(stemp, "%s [%d...%d]", title_string, low limit, up_limit);
/* get the string and make sure i is in range and valid */

do{
cp = get_string(stemp);
i = (int)strtol(cp, &endcp, 10);
error_flag = (cp == endcp) I (*endcp != '\0'); /*detect errors */
free(cp);

I while(i < low_limit i > uplimit II error_flag);

/* free temp string and return result */
free(stemp);
return(i);

/***********************************

* getlong - get unsigned long from user with prompt and range

* Return integer of input text, prompts user with prompt string and range of
* values (upper and lower limits) passed by caller.

* int getlong(char * title_string, unsigned long lowlimit,
* unsinged long int uplimit

* title_string string to prompt user for input
* lowlimit lower limit of acceptable input (int)
* uplimit upper limit of acceptable input (int)
*

unsigned long get_long(char* title_string, unsigned long low_limit, unsigned long
up_limit)

183

unsigned long i, errorflag;
char* get_string(char* input);
char *cp, *endcp;
char *stemp;

/* check for limit error, low may equal high but not greater */
if(low_limit > up_limit)(

printf("\nLimit error, lower > upper\n");
exit(1);

stemp = (char*)malloc(strlen(title_string) + 60);
if(!stemp)(

printf("\nString allocation error in get int\n");
exit(1);

sprintf(stemp, "%s [%lu...%lu]", title_string, low_limit, up_limit);
/* get the string and make sure i is in range and valid */

do[
cp = get_string(stemp);
i = strtoul(cp, &endcp, 10);
error_flag = (cp == endcp) H (*endcp != '\0'); /*detect errors */
free(cp);

} while(i < low_limit 1I i > up_limit I1 error_flag);

/* free temp string and return result */
free(stemp);
return(i);

/************ ********** *******

* getfloat - get float from user with prompt and range

* Return integer of input text, prompts user with prompt string and range of
* values (upper and lower limits) passed by caller.

* int getint(char * titlestring, int low_limit, int up_limit)

* title_string string to prompt user for input
* low_limit lower limit of acceptable input (int)
* up_limit upper limit of acceptable input (int)
*

float getfloat(char* title_string, float low_limit, float up limit)
{

int error_flag;
char* get_string(char* input);
char *cp, *endcp;
char *stemp;
float f;

/* check for limit error, low may equal high but not greater */
if(low_limit > up_limit){

printf("\nLimit error, lower > upper\n");
exit(1);

stemp = (char*)malloc(strlen(title_string) + 60);
if(!stemp)(

printf("\nString allocation error in get float\n");
exit(1);

sprintf(stemp, "%s [%3.1f...%3.1f]", titlestring, lowlimit, up_limit);
/* get the string and make sure i is in range and valid */

do{

184

cp = get string(stemp);
f = atof(cp);
free(cp);

) while(f < low_limit Ij f > up_limit);

/* free temp string and return result */
free(stemp);
return(f);

}

/******************** **********

The Scanning Tunneling Microscope Project

Laboratory for Manufacturing and Productivity
The Department of Mechanical Engineering
Massachusetts Institute of Technology

Header File
constm.h

Description :

This has the prototypes of the subroutines used in the STM control program.
When you want to add the subroutine in the program, you should register
the function in this header file with a proper description.

Written by Jungmok Mitchell Bae
4/17/94

/* The Library functions provided by Microsoft Quick C */
#include <stdio.h>
#include <conio.h>
#include <graph.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <dos.h>

/* The menu functions */
int mainmenu(void);
void constantheight_mode(void);
void constant_currentmode(void);
void widescanningmode(void);
void atomic_encoder_mode(void);
void data_interpret_mode(void);
void manual_scanningmode(void);

/* The scanning tunneling microscope control functions */
void coarseapproachl_atomsurf(void);
void parameterset(void);
void move_inchworm_motor (void);
void fine_approach_atomsurf(void);
void pidcontrol_atomsurf(void);
void logtabledownload(void);

/* The constant height routines */
void ramp-scanatomsurf(void);
void tri_scan_atomsurf(void);
void ramp_auto_scan_atomsurf(void);
void tri_auto_scan_atomsurf(void);

/* The constant current routines */

185

void cc_pidcontrol_atomsurf(void);
void cc_tri_scan_atomsurf(void);
void cc_ramp_scan_atomsurf(void);
void manual_pid_tuning(void);
void graph_init(void);
void plot(unsigned long *yval, int xrange, int tsamp, float ref, float prev);
void store_stepresp(unsigned long *RespData);

/* The data presentation functions */
void display_atomsurf(void);
void display_atomsurf_f(void);
void linear_interpo(float cnl, float cn2, float cn3, float cn4);
void convert_to_log(void);

/* The data store & retrieve functions */
void store_atomsurf(void);
void retrieve_atomsurf(void);

/*support routines*/
int waitYN(char *prompt, char defaultValue);

186

Bibliography

[1] Mircea Fotino. "Tip Sharpening by Normal and Reverse Eletrochemical Etching"

Review of Scientific Instruments, 64(1), 159, January, 1993.

[2] I.H.Musselman. P.A. Peterson and P.E. Russell. "Fabrication of Tips with Con-

trolled Geometry for Scanning Tunneling Microscopy" Precision Engineering,

Vol. 12. No. 1. January. 1990.

[3] J.P.Ibe, P.P.Bev.Jr, S.S.Brandow, R.A.Brizzolara, N.A.Burnham, D.P.DiLella,

K.P.Lee. C.R.K.Marrian. and R.J.Colton. "On the Electrochemical Etching of

Tips for Scanning Tunneling Microscopy" J. Vac. Sci. Technol. Surf, Films (USA

), Vol. 8N. 8. No. 4. p. 3570-5, July-Aug, 1990.

[4] J.Tersoff and D.R.Hamann. "Theory of the Scanning Tunneling Microscope"

Physical Review B. Vol. 31 No. 2. 15, January, 1985.

[5] J.Bardeen. "-Tunneling from a Many-Particle Point of View" Physical Review

Letters. Vol. 6, 57(1961).

[6] N.Garcia, C.Ocal, and F.Flores. "Model Theory for Scanning Tunneling Mi-

croscopy: Application to Au(110)(1x2)" Physical Review Letters, Vol. 50, No.

25, 20. June, 1983.

[7] Y.Kuk and P.J.Silverman. "Scanning Tunneling Microscope Instrumentation"

Review of Scientific Instruments, 60(2), February, 1989.

[8] C.B.Duke. Tunneling in Solids Academic Press, New York, Vol. 10, 1969.

187

BIBLIOGRAPHY

[9] G.Binnig and D.P.E. Smith. "Single-Tube-Dimensional Scanner for Scanning

Tunneling Microscopy" Review of Scientific Instruments, 57(8), August, 1986.

[10] D.R.Baselt, S.M.Clark, M.G.Youngquist, C.F.Spence, and J.D.Baldeschwieler.

"Digital Signal Processor Control of Scanned Probe Microscopes" Review of

Scientific Instruments, 64(7), July, 1993.

[11] S.M.Clark. D.R.Baselt, C.F.Spence, M.G.Youngquist and J.D.Baldeschwieler.

"Hardware for Digitally Controlled Scanned Probe Microscope" Review of Sci-

entific Instruments, 63(10), October, 1992.

[12] B.A.Morgan and G.W.Stupian. "Digital Feedback Control Loop for Scanning

Tunneling Microscopes" Review of Scientific Instruments, 62(12), December,

1991.

[13] P.Heuell, M.A.Kulakov, and B.Bullemer. "An Adaptive Scan Generator for a

Scanning Tunneling Microsocpe" Review of Scientific Instruments, 65(1), Jan-

uary, 1994.

[14] R.D.Cutkosky. "Versatile Scan Generator and Data Collector for Scanning Tun-

neling Microscopes" Review of Scientific Instruments, 61(3), July, 1991.

[15] C.J.Chen. "Introduction to Scanning Tunneling Microscopy" Oxford University

Press, Inc., 1993.

[16] J.Y.Pahng. "Surface Modification with a scanning Tunneling Microscope" M.S.

Thesis, Massachusetts Institute of Technology, Cambridge, 1994, February.

[17] Analog Devices, Inc. ADSP-21000 Family User's Manual DSP Division, Nor-

wood, Massachusetts, 1991.

188

BIBLIOGRAPHY

[18] P.Horowitz, H.Winfield. The Art of Electronics Second Edition, Cambridge Uni-

versity Press, New York, 1989.

[19] Analog Devices, Inc. ADSP-21000 Family Assembler Tools and Simulator Man-

ual DSP Division, Norwood, Massachusetts, 1991.

[20] J.Gort. 21020 DSP Board UTser's Manual J.R.G Signal Processing, 1993.

[21] L.L.Soethout. J.W.Gerritsen. P.P.M.C.Groeneveld, B.J.Nelissen and H. Van

Kempen. "STM Measurement on Graphite Using Correlation Averaging of the

Data" Journal of Microscopy, Vol. 152, Pt. 1, pp. 251-258, October, 1988.

[22] S.Park. C.Quate. "Tunneling Microscopy of Graphite in Air"

Appl.Phys.Lett.48(2), 13. January, 1986.

[23] K.Kobayashi and M.Tsukada, "Effect of Microscopic Tip Electronic State on

STM Image of Graphite" Journal of the Physical Society of Japan, Vol. 58, No.

7., July, 1989. pp. 2238-2241.

[24] A.Selloni. P.Carnevali. E.Tosatti, and C.D.Chen, in Proceedings of the 17th In-

ternational Conference on the Physics of Semiconductors, edited by J.D.Chadi

and W.A.Harrison (Springer, New York, 1985), P.11.

[25] D.Pohl, R.Moller, "Tracking Tunneling Microscopy" Review of Scientific Instru-

ments, 59(6), 1988.

[26] R.Weast, Handbook of Chemistry and Physics 54th Edition, CRC Press, Cleve-

land, 1973.

189

