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Abstract

The standard Galerkin finite element method is unstable for the solution of high
Peclet/Reynolds number flows. Upwinding procedures have been proposed to stabilize
the method. This thesis attempts to identify the optimum upwinding scheme used
in the quadrilateral four-node finite element. We achieve this by comparing several
previously published upwinding techniques via testing their stability and accuracy in
two numerical convection-diffusion problems. Our experiment shows that for some of
the upwinding procedures, we can only find an exact nodal solution in one-dimensional
analysis, but not in two-dimensional analysis. With this limitation, we find that
the positive-coefficient upwinding scheme provides the best stability and accuracy
characteristics.
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Chapter 1

Introduction

The finite element method has been used extensively in simulating physical situations.

The main reason for this is that the finite element method is flexible to represent

complex geometric domains. Where analytical solutions are difficult or impossible to

obtain, the finite element method can provide good solutions in simulating physical

situations governed by well established mathematical equations. The finite element

method has been used abundantly in structural mechanics. Its development is still

being continued to extend its application in complex fluid mechanics as reflected in

research published during the recent years.

The finite element method for solving fluid mechanics problems is usually based

on the Eulerian formulation in which a fixed position control volume is used to derive

the governing equations. This leads to the governing equation to contain a convective

term that has first order spatial derivatives. Using the Galerkin finite element proce-

dure on the governing equation, the convective term creates a skew matrix which is

the source of nonphysical oscillations. These nonphysical oscillations therefore are a

result of the discretization of the first order spatial derivative in the convective term

when the convective term dominates the other terms in the governing equation.

Many methods have been proposed to circumvent the numerical oscillations. These

methods are called upwinding. The idea in upwinding is that the node in the up-

stream direction gives more weight to the solution than the node in the downstream

direction.



Research on upwinding procedures started in the 1950's. While the basic idea of

upwinding was already proposed by Courant et al. [9] in 1952, the techniques for more

general control volume type methods and for finite element procedures are still under

active development. Some important procedures have been proposed by Hughes et

al. [5, 12, 13, 14, 20], Zienkiewicz et al. [8], Donea et al. [11], Schneider et al. [22],

Patankar [21], etc. These methods are quite efficient in certain applications, with the

use of specific discretizations, but improvements and generalizations for finite element

analysis with optimal accuracy characteristics are still sought.

The basic upwinding technique applies the forward difference method, of first

order accuracy, to the convective term for stable calculation which replaces the central

difference method obtained from the Galerkin finite element procedure. However, it

turns out that by using the forward difference method, the numerical results are not

satisfactory since they are overly diffused. To improve accuracy, an adjusted variable,

which is a function of the Reynolds number or the Peclet number, is introduced

in upwinding methods. As a result, an exact nodal solution is obtained for one

dimensional analysis.

For two dimensional cases, the idea of upwinding can not be easily applied. Var-

ious methods have been proposed to implement the basic idea of upwinding to two

dimensional analyses. In this thesis, we shall discuss various upwinding methods

specifically with respect to their use in two dimensional analyses.

1.1 Thesis Organization

This thesis is divided into six chapters. Chapter 1 is an introduction to the topic

considered in this thesis. Chapter 2 summarizes the basic governing equation - the

heat transfer equation in fluid mechanics - which leads to the common convection-

diffusion equation. Derivation of the finite element method used for this equation,

along with an explanation of the assumptions made, is also presented in this chapter.

Chapter 3 discusses upwinding schemes used to solve the convection-diffusion

problems in one dimension. In this chapter, solutions to the convection-diffusion



problems for a domain that is subdivided into a uniform mesh obtained by using var-

ious upwinding schemes are compared. The schemes being discussed are the Galerkin

method, full upwinding scheme which applies the forward difference method, the ex-

ponential scheme, the Petrov-Galerkin, and the Galerkin least squares method. A

third order accuracy upwinding scheme is also discussed here.

Discussion on the upwinding schemes for the two dimensional analyses are explored

in chapter 4. Basic ideas of individual schemes will also be explained. The schemes

presented are basically extensions of the upwinding schemes discussed in chapter 3.

Comparisons among the schemes will be presented.

In chapter 5, we explain test problems used in measuring the accuracy and the

stability of the previously explained upwinding schemes. Explanation of the domain,

meshes, specified velocity fields, and the boundary conditions of the test problems is

given. The expected solutions to the test problems are described and compared to

the numerical results obtained by using the various upwinding schemes.

Chapter 6 presents the solutions to the test problems using the upwinding schemes

and conclusions. Discussion of the individual results is given. The results are also

compared to the ADINA-F solutions using the macro triangular four node elements

available in this general fluid flow finite element program.

Finally, chapter 7 presents the conclusions of the study.



Chapter 2

Basic Equation

Consider the general heat transfer equation in fluid mechanics

pc( +  , ) = (ar- ) + q (2.1)P t y84 82- Ozx

where p, c7, 9, v,, rI and qE are the fluid density, the heat capacity, temperature, the

velocity in the zx direction, the thermal conductivity and the heat source, respectively.

Assuming ri to be constant, rewriting equation 2.1 leads to the usual convection-

diffusion equation,

09 ,+ . VO = aV(O + q (2.2)

where (),t denotes differentiation with respect to time; V denotes spatial differenti-

ation, v, a and q are the velocity field, diffusivity (a = n) and the source term
PC,

B

(q = q ), respectively. In this model, a is assumed to be constant.
PC?

2.1 Finite Element Formulation

Consider a domain (R) which lies in R "'d space dimensions and x = {x,} where

i = 1,2,...,n , are the coordinate axes of the system in the R "' space. The time t

considered is in the interval ]0, T[, where T is a specified time. Let eqn. 2.2 be the

governing equation in the domain (12). The domain is discretized into n., subdomains



(W') where

nel

e=1

nel

e=1

The domain has a boundary (S) and is divided into S, and S,

S = S Us,
o = s.Ns,

where the essential boundary condition is applied on SU and the natural boundary

condition on S,.

In the element, the temperature (0) is described by nodal point temperatures and

its distribution across the element is defined using interpolation functions (v,). The

interpolation functions are in the solution function space (V,) defined as the following

V,= {Vh I V E (H )f"d ,Vh = ghon S.1

where H' is the Sobolev space and g, is the essential boundary condition that is

applied on S,.

Introducing the interpolation matrix H and the gradient matrix B that are used

to approximate the function and the gradient of 8 in a typical element,

o = HO (2.3)
VO = BO

where 9 is a vector of nodal value 8.

The weighting function (w) is in the weighting function space that is defined as

follows

Wh = {wh e (H l) " ,dw = 0 on S.}



The classical Galerkin procedure applied to the basic convection-diffusion equation

(eqn. 2.2) with any weighting function (w) gives

W (0, + w V. -y aV 29 - q) dVol = 0 (2.4)

Applying integration by parts and the divergence rule to eqn. 2.4, we obtain

fV w Ot dVol + fj w v -VO dVol + fVo VwaVO dVol

= f wq dVol + fS wq" dS. (2.5)

where q' is the natural boundary condition.

Equation 2.5 leads to the finite element matrix equation as follows

MO + KO + Kd = Rb + R (2.6)

where 0 is the nodal temperature vector, M, Ke, Kd, Rb, and R, are the mass

matrix, the stiffness matrix from the convective term, the stiffness matrix from the

diffusive term, the load vector from the source term and the load vector from the

boundary conditions, respectively. The finite element matrix equation must be solved

to obtain the numerical solution for the convection-diffusion problem with specified

boundary conditions.

In one dimensional analysis, a two-node element may be used with linear interpo-

lation functions. The interpolation functions for each node are defined as follows

h = (1 +r)

1h2 = -(1 - r)
2

where r is the local coordinate. The Jacobian scalar is required to relate the local

coordinate (r) to the global coordinate (x). Fig. 2-1 shows the linear interpolation

functions in the element.

The interpolation matrix H and the gradient matrix B for this element are defined



hi1

1 2

Figure 2-1: Interpolation function for two-node element

as follows

H = [h, hl (2.7)

B = [ h, -h,•z

For two dimensional analysis, a quadrilateral four-node element is considered.

The interpolation functions for this element are bilinear functions that are defined as

follows

hi = ¼(1-r)(1 + S)

h = (1 - r)(1 - s)

h = 1(1 + r)(1 - )

where r and s are the local coordinates in the element which are shown in fig. 2-2.

The local coordinate system is employed to generalize formulations for any shape of

quadrilateral elements obtained from the discretization process of a complex geometric

domain. As a consequence, Jacobian matrix is required to connect the local coordinate

system with the global coordinate system. Using the local coordinate system, any



1

r

3 4

Figure 2-2: Local coordinate r and s for four-node element.

shape of quadrilateral of elements can be treated as 2x2 square elements.

The interpolation matrix H and the gradient matrix B for two dimensional case

are defined as follows

H = h, h, h, h3 h4]

ah, ay, _a Ody
iay 19Y 49 By

2

I

1



Chapter 3

Various Upwinding Schemes in

One Dimensional Analysis

In this chapter, the one dimensional convection-diffusion equation is considered and

some upwinding schemes for one dimensional application are discussed. Consider the

convection-diffusion equation (eqn. 2.2) for one dimensional case, assuming steady

state condition and zero source term,

v0 = ao (3.1)

When the finite element method without upwinding schemes is applied to a simple

problem, which is governed by the equation above, oscillations in the numerical solu-

tion is observed; however when the numerical method is used with upwinding schemes,

the oscillation difficulty is eliminated. A uniform mesh domain to be considered with

the element length Ax and its linear interpolation functions is shown in fig 3-1.

3.1 Classical Galerkin method

The classical Galerkin method uses the weighting functions that are in the same

space as the interpolation functions. By applying the Galerkin method to eqn. 3.1,



1 Ax Ax

i-1 i i+1

Figure 3-1: Uniform mesh for i node and its interpolation functions.

we obtain the following equation,

dO d20 .

S d (v • - a(ý ) dVol = 0 (3.2)

Solving eqn. 3.2 leads to the following discrete form for the iz node (i within the

boundary) of a uniform mesh with element size Az,

-0. +0 , 0. - 20, + 0,v' - - a 2x +A AX
2  (3.3)2Aa: Az'

which can be simplified to obtain the following equation

Pe" Pe"(-1 - Pe)O-, + 20, + (-1 + -- ) +, = 0 (3.4)

where 0__, 09, and 0,,+ are the nodal values of 0 at stations i - 1, i, and i +1, respec-
v Ax

tively. PeC is the element peclet number , PeC =

It can be seen that the use of the Galerkin method gives the same result as of

the central difference method for the spatial derivatives. The coefficients of 9 from

the diffusive term (in the right hand side of eqn. 3.3) are symmetric with respect to

i and this gives a stable numerical solution. However, the coefficients of 0 from the

convective term (in the left hand side of eqn. 3.3) are anti-symmetric. When the

convective term dominates, this anti-symmetry coefficients create instability in the

finite element solution which is indicated by oscillations. For demonstration of the

oscillations, consider the following problem.



Sample Problem

A one dimensional domain with total lenght=1 is divided into 20 uniform elements.

Let the convection-diffusion equation (eqn.3.1) govern in the domain. The velocity

field is prescribed by v = 1 uniformly, and constant diffusivity is assumed, a = 10-2,

(The global Peclet number is 100). The boundary conditions are defined as follows

0 = 1at x = 0

0 = 0at x = 1

In one dimensional case, the boundary S,, where the natural boundary condition

9

-----

- exact
- - - -- Galerkin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-2:
method.

Solution of the convection-diffusion problem using the classical Galerkin

is applied, represents a nodal point instead of a surface. In the sample problem,

the essential boundary condition is applied to the left and right boundaries, so the

problem does not contain S,.

Fig. 3-2 shows the numerical result of the problem using the Galerkin method. In

the solution, oscillations occur near the boundary layer at x = 1.

u

`° ~··ib

i



3.2 Full Upwinding Scheme

To avoid the numerical oscillations in the finite element solution of convection-diffusion

problems when Peclet number is high, researchers have modified an upwinding method

that is available in the finite difference method for use in the finite element method.

Originally, the upwinding method was proposed by Courant et al. [9]. Using this

method, the central difference approximation that is obtained using the classical

Galerkin method for the first spatial derivatives in the convective term is replaced by

the forward difference approximation. Essentially, this method places more weight

on the coefficient of 0 for the node in the upstream direction and relaxes the weight

on the node in the downstream direction. For a uniform mesh with element length

Ax and v > 0, full upwinding scheme gives the following discrete equation for the i t

node

-,_, + ,_ - 20, + 0, (35)
v = a i-------- (3.5)AX Ax2

(-1 - Pe)9O,_, + (2 + Pee)O, - 0,+, = 0 (3.6)

When v < 0, full the upwinding scheme gives the following discrete equation for the

.th node

-0, + 0+, 0_ - 20, + 0+ (37)

- 0,_, + (2 - Pe)O, + (-1 + Pe")O,i, = 0 (3.8)

Using the full upwinding scheme, the sample problem defined in the end of Section 3.1

is solved and the result is shown in fig. 3-3.

The numerical solutions of the convection-diffusion problems are always stable

when the full upwinding scheme is used. However, the solutions are not satisfactory

because they are too diffusive. This is because the use of the full upwinding method

leads to the use of the forward difference approximation that has a lower accuracy

than the central difference approximation obtained by the Galerkin method. The

forward difference method has a first order of accuracy whereas the central difference

method has a second order accuracy. In order to improve the numerical results, other

upwinding schemes are proposed.
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Figure 3-3: Solution of the convection-diffusion problem using full upwinding method.

3.3 Exponential Upwinding Scheme

This upwinding scheme has been derived based on the control volume finite element

method (CVFEM) argument [21]. Originally, this method was proposed by Spalding

in [24]. In CVFEM, a domain is divided into a number of control volumes. In

every control volume, the governing equation is satisfied that leads to satisfying the

governing equation throughout the whole domain. Let the eqn. 3.1 be the governing

equation in a domain that is subdivided into control volumes uniformly. Consider

the i'
h node in the domain where the control volume is applied (see fig. 3-4). Rewrite

eqn. 3.1 in the following way

d- = 0 (3.9)dd

f = vO-a d

where f is the flux of convective and diffusive terms. In the control volume method,

the fluxes enter from the left and right boundaries. The boundaries are located



between nodes (see fig. 3-4). Integrating eqn. 3.9 over the control volume, we obtain

(3.10)/,+ - I,_ = 0

where fi+½ and f4_1 are the fluxes at the right and left boundaries.
2 2

i-I i+1

Figure 3-4: Control volume applied to the z node

The original

imate the value

control volume method uses linear interpolation functions to approx-

of 0 at the control volume boundaries (see fig. 3-5), so

0. + 0_ - 00f+1 a i+1

-2 Ax
0. + 0 0. - 0_,

f,_ =v -2 a A
2 As

(3.11)

(3.12)

By substituting eqn. 3.11 and 3.12 into eqn. 3.10, we obtain

(3.13)-8,_, + i+1 9i- - 20i + 8i+1- a -Ax0
2 As

If this equation is divided by Axz, it can be seen that the control volume method

using linear interpolation functions leads to a solution that is equivalent to solution

found by the central difference method for the convective and diffusive terms. It is

already discussed that the central difference approximation is not stable when the

convective term dominates the diffusive term. In order to make the solution stable,

the flux f at the control volume boundaries need to be evaluated in a different way.



08
i+1 .- -

i-1 i-1/2 i i+1/2 i+1

Figure 3-5: Linear interpolation function of 0 in the control volume method.

Instead of using linear interpolation functions, the exact solution of the convection-

diffusion equation (eqn. 3.1) is used to evaluate the value of 0 at the boundaries. The

exact value of 0 and its derivative with respect to x for the left boundary are

(0, - e._,)(exp(Pe) - 1)
e eel0_ ,_ + x (3.14)

d (O -( Pee exp( P Cd = _ 2 (3.15)
dx iexp(Pe") - 1

-I-

For the right boundary, the exact value of 0 and its derivative have similar form of

equations as the equations above, except that the subscript i - 1 and i need to be

replaced by i and i + 1. Inserting these equations into eqn. 3.9, we obtain

f = v 0 + ex(-P) 1 8(3.16)

Sv = [9+ ± e e- 01 (3.17)[ exp(Pe') - 1

Finally after inserting eqn. 3.16 and 3.17 into 3.10, this scheme gives the equation

for the node i,
e e

(-ePe )o,_1 + (1 + e )9, - O,+1 = 0 (3.18)



Using this scheme, an exact nodal solution is obtained. This is expected since the

exact solution of the governing equation is incorporated in the formulation. Note that

the coefficients of 0 in eqn. 3.18 are functions of the Peclet number which depends on

the value of the flow velocity, so the coefficient will vary depending on the velocity.

Fig. 3-6 depicts the solution of the problem considered in the end of section 3.1 using

the exponential upwinding scheme.
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Figure 3-6: Solution of the convection-diffusion problem using the exponential scheme.

3.4 Petrov- Galerkin Method

In contrast to the classical Galerkin method, the Petrov-Galerkin method uses a dif-

ferent weighting function which is not in the same space as the interpolation function.

This method was originally proposed by Christie et al. [8]. The weighting function in

this scheme is designed to include the upwinding effect. Its modification is based on

the idea of allowing more weight to the node in the upstream direction and reducing

the weight to the node in the downstream direction. The modified weighting function

is defined as follows

= w +p (3.19)



where W is the modified weighting function; w is the original weighting function

(which is the same as the interpolation function) and p is a perturbation function.

The perturbation function is defined as follows

Ax dh
2 dx (3.20)

- is a coefficient to control the magnitude of the perturbation function; Ax is the

element length and h is the interpolation function. The value of the coefficient is

between -1 to 1. Fig. 3-7 shows the modified weighting function for a typical linear

interpolation element.

' x i+l

Figure 3-7: The weighting function (i) and the related interpolation function (h).

Applying this weighting function to the governing equation (eqn. 3.1) while using

integration by parts and the divergence rule, we obtain

f f (vOn, - aO,..) dVol = 0
Vol

and hence

(3.21)
fvo , dVol + ,,a dVol = f q' dSf

Vol Vol S

where q' is the natural boundary condition. Note that in the second term of eqn. 3.21,

i a x



, = w,, for the following reason

,.3 = W,Z +p,M

P,. = (- 2h,) ,Ax h

2

Since a linear interpolation function is used, h,,. = 0 and therefore -w, = w,.

Consider the first term in eqn. 3.21,

J vO,,, dVol = (w + 7-- w,,) vO,, dVol
Vol Vol 2

SVol Vo Vol + & Vol

where & is an artificial diffusivity

Ax.

Rewriting eqn. 3.21

J W vO,, dVol + Jf w,'(a + &)0, dVol = T q' dS, (3.23)
Vol Vol Sf

gives the discrete equation for the iz' node (that does not have the S, boundary) in

a uniform mesh which is as follows

(-1 - (1 + ) ),_ + (2 +T Pe)8O ,+ (-1 + (1 - -)e ),+1 = 0 (3.24)

setting 7 as [8],
Pe' 2

7 = coth( e )e  P (3.25)

which is an adjustment to achieve the exact solution at the nodes; obtained by equat-

ing eqn. 3.24 with the exact solution of the governing equation (derivation of eqn. 3.25

is given in appendix A).



The result of the problem considered in section 3.1 using the Petrov-Galerkin

method is given in fig. 3-8.
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Figure 3-8: Solution
method.

to the convection-diffusion problem using the Petrov-Galerkin

3.5 Galerkin Least Squares Upwinding Scheme

In this upwinding scheme, least squares expressions [23] are included in the classical

Galerkin method with a selected weight coefficient, r, to control the magnitude of

the new expression. The least squares functions for eqn. 3.1 are

dh.
L2, [h,] = v '

dz

d=

d' h.
- ad

dX2

dX

(3.26)

where 0, is the finite element solution of the unknown variable 0 in the domain.

Since linear interpolation functions are used, the latter terms on the right hand side

of eqns. 3.26 are dropped.

After the Galerkin least squares method is applied to the governing equation, we

__ __1 ___ _ __

--



obtain
dO d28 0 dh dO

o ( -- ,) dVol + (v )(v) dVol = 0 (3.27)

The last term in the equation above is the least squares term and r is a variable to

be adjusted in order to obtain the nodal exact solution. Solving eqn. 3.27 leads to

the discrete equation for the i node,

Pe rv 2 Pe" Ty
2

(-1 - ),_, + (2 + 2-- )O, + (-1 + ),+, =2 a a 2 a

To obtain the nodal exact solution, the value of r is evaluated as follows [23] (see

appendix B for derivation)

h Pe a
r = - coth( ) 2

2v 2 v
(3.29)

Fig. 3-9 shows the solution to the problem considered in sec. 3.1 using the Galerkin

least squares method.
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Figure 3-9: Solution
squares method.

to the convection-diffusion problem using the Galerkin least

Having to calculate an adjusted variable, such as r in the Galerkin least squares

method or -y in the Petrov-Galerkin method, is quite cumbersome. Therefore the

following upwinding scheme is introduced.



3.6 Third Order Accuracy Upwinding Scheme

The third order accuracy upwinding scheme is similar to the Petrov-Galerkin method

(in which the weighting function is modified using a perturbation function to allow

more weight to the node in the upstream direction than the node in the downstream

direction) with the exception that it uses a different perturbation function from the

one used in the Petrov Galerkin method [16, 17, 18]. In this scheme, the perturbation

function contains higher order spatial derivatives,

w = w+p

1 2d 
2W 1 d3W

p = ~Ax, 2  3A3 sign(v) 3  (3.30)3 dz 12 da

where Ax, p and w are the element length, a variable to control the magnitude of

the upwinding effect, and the original weighting function respectively. It is seen that

this perturbation function is rather complicated. Therefore, for simplification, the

modified weighting function is only applied on the convective term [18]. We then

obtain

( + ) dVol - d dVol= 0 (3.31)

Substituting eqn. 3.30 and applying integration by parts and the divergence rule, we

have

(w , 2 - v0,- w_ AXW v .)dVol+ w, a dVol = wq'dSf
Vol3 ' 12Vol ' S

(3.32)
The weighting function contains third order spatial derivatives. Naturally, the

interpolation function in an element needs to be at least a cubical function to be able

to use the third order accuracy upwinding method. To apply this method to a linear

interpolation element, auxiliary variables are introduced,

Y = v w, (3.33)

A = AX 2 w , (3.34)



Hence, substituting eqn. 3.33 and eqn. 3.34 into eqn. 3.32, we obtain

f(w -oAv9, - A,./3AxjvjO,)dVol + w,,a, dVol = wq'dSf (3.35)

The classical Galerkin procedure is now applied to eqn. 3.33 and 3.34 weighted by

7 and A respectively,

fVo 1- dVol = fV vO, dVol (3.36)

AA dVol = - , A.X w, dVol + j Aq dS, (3.37)

where q" is the natural boundary condition for the auxiliary variable A. Since we do

not intend to calculate the solution of the auxiliary variable A, the q: is ignored and

can be assumed to be zero.

Considering the problem defined in sec. 3.1, where the essential boundary condi-

tion is applied to both sides, the last term in'eqn. 3.35 becomes zero since there is

no S, boundary. In this upwinding method, the auxiliary variables are interpolated

using the same interpolation functions used for the variable 0. Eqns. 3.35, 3.36 and

3.37 lead to the individual matrix equations

WTA r - A T 2 -A A3+W TK® = 0 (3.38)

Mr = A4® (3.39)

MoA = -A 5 W (3.40)

where W, r, A, and 0 are the vectors of the nodal values w, 7 , A, and 0 respectively.

The weighting function w is treated in the same way as the auxiliary variables and

its value is stored in the nodal values vector W. The matrices in eqn. 3.38, 3.39, and

3.40 are defined as follows

Al I= JHTHTH dVol

A2 = H -T vB dVol



A 3 = BoBT /AzB dVol

A 4  H= TvB dVol

A, = j BTAX2 B dVol

K = B aB dVol
Vol

where H and B are the interpolation and the gradient function matrices respectively.

M o is a "lumped matrix" because the boundary conditions and the solution of the

auxiliary variables are not intended to be found [17]. Using the "lumped matrix" will

also simplify calculations for this particular upwinding method.

Substituting eqns. 3.39 and 3.40 into 3.38 and simplifying the equation, we obtain

A'* + K'O = 0 (3.41)

where A* and K" are the convective and diffusive matrices which are defined as

follows

* -1 T -T T -T
A = AM1 A +A M A 2 + As Mo A (3.42)

K" = K (3.43)

The matrix multiplication defined in eqn. 3.42 must be done globally rather than

on the element level. It means that the global matrices A 1 , A2 A, A 4 , A 5 , K and

M o need to be assembled before matrix multiplication in eqn. 3.42 is performed.

The size of every matrix is the same as that of the stiffness matrix K in other up-

winding methods, such as the Petrov-Galerkin method. Thus, the computer memory

required to run a computer program that implements the third order accuracy up-

winding method is roughly 5 times larger than the memory required by a computer

program that implements all of the other upwinding methods. Computer programs

implementing these other upwinding methods, such as the Petrov-Galerkin method,

require less computer memory because they perform the matrix multiplication on the
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Figure 3-10: Solution of the convection-diffusion problem using the third order accu-
racy upwinding method.

element level.

Fig.3-10 shows the solution to the problem considered in section 3.1 using the

third order accuracy upwinding method with 3 = 1.5. The author of this upwinding

technique did not explain how to determine the value of 0. However, from our experi-

ence, when the Peclet number is very high, 3 = 1.5 gives a minimum overshoot error

at the boundary layer in the numerical solution. The boundary layer is characterized

by a high gradient of the variable 0 which occurs in the solution of the sample problem

at x = 1.

3.7 Comparison of Upwinding Schemes in One

Dimensional Analysis

The upwinding schemes that have been explained above will be compared in terms

of discrete equations for the i node in a uniform mesh and their results

The discrete equation from the Galerkin method is

Pe' Pe•e
(-1- 2 )0_, + 20, + (-1 + Pe )0,+ = 0 (3.44)2 2

I·



This equation generates oscillations in the solutions to the convection-diffusion prob-

lems when Peclet number is high, Pe' > 2.

The full upwinding scheme gives the discrete equation

(-1 - Pe-'),_, + (2 + PeC)O, - j,+, = 0 (3.45)

which gives overly diffusive numerical solutions of convection-diffusion problems.

The exponential scheme gives the discrete equation

(-Pe )O_, + (1 + Pe )O -0,e j = 0 (3.46)

The coefficients of the variable 0 contains exponential functions which are very expen-

sive to calculate. However, an exact nodal solution is obtained using this equation.

To compare the solution obtained from the Petrov-Galerkin method with those

obtained from the other methods, substitute eqn. 3.25 into eqn. 3.24 and then multiply
Pe

(e " -1)
the resulting equation by ( to get

Pe'

(-e ) ,_, + (1 + eP )O, - Oj,+ = 0 (3.47)

It turns out that this this equation is exactly the same as the discrete equation derived

using the exponential scheme. This is expected since the formulation of both schemes

include the exact solution of the convection-diffusion equation.

Derivations of the Petrov-Galerkin method and the exponential scheme are differ-

ent. For the Petrov-Galerkin method, the derivation is based on the modification of

the weighting function, while for the exponential scheme, the derivation is based on

the control volume argument.

To compare the discrete equation obtained using the Galerkin least squares method

with those obtained using the other upwinding schemes, insert eqn. 3.29 into eqn. 3.28



Table 3.1: Comparison of the exponential scheme, the Petrov-Galerkin method, the
Galerkin least squares method and the third order accuracy method for one dimen-
sional convection-diffusion problem with various source functions.

Source term Exponential P-G Gls TOA
Uniform 0 exact exact exact non-exact

mesh constant exact exact exact non-exact
linear non-exact exact exact non-exact

general non-exact Z non-exact = non-exact non-exact
Distorted 0 exact exact exact non-exact

mesh constant non-exact exact exact non-exact
linear non-exact 7 non-exact = non-exact non-exact

general non-exact $ non-exact = non-exact non-exact

(e 1)
and then multiply the resulting equation by Pe

SPe

(-ePe ),_9 + (1+ e )9, - 9,+, = 0 (3.48)

This equation is identical to those derived using the exponential scheme and the

Petrov-Galerkin method.

Finally, the discrete equation obtained using the third order accuracy method is

rather complicated and long. However, to put it briefly, Kondo [16, 17, 18] claims

that the order of accuracy of the convective term is 3, so oscillations in the numerical

solutions of the convection-diffusion problems can be reduced.

The solutions obtained using the exponential scheme, the Petrov-Galerkin scheme,

the Galerkin least squares method and the third order accuracy method were com-

pared in this work when the source term is non-zero. Calculations are performed for

various source term functions and the results are shown in table. 3.1, where P-G -

the Petrov-Galerkin method; Gls - the Galerkin least squares method; and TOA - the

third order accuracy method. Based on this data, the exponential scheme has a lower

accuracy compared to that of the Petrov-Galerkin and the Galerkin least squares

schemes when the source term is non-zero. In a uniform mesh, both the Petrov-

Galerkin and the Galerkin least squares methods give exact solutions to the problems

with a linear source function whereas the exponential scheme does not give an exact



solution. Similarly, in a distorted mesh, the former two produce exact solutions to

the problems with a constant source function while the exponential scheme does not.

The fact that the Petrov-Galerkin and Galerkin least squares schemes have similar

results is consistent with Hughes, Franca, and Hulbert's claim [12] that for linear

interpolation elements, the Petrov-Galerkin method is identical to the Galerkin least

squares method (see appendix C for the proof). However, for quadratic interpolation

elements, those upwinding methods are no longer identical.

For the third order accuracy procedure, exact solutions cannot be found for any

source function. This indicates that it has the lowest accuracy compared to the other

three methods.



Chapter 4

Various Upwinding Schemes in

Two Dimensional Analysis

In this chapter, the application of the upwinding schemes explained in Chapter 3 is

extended to two dimensions. The procedure of upwinding schemes for the two di-

mensional analysis is analogous to that for the one dimensional analysis. Oscillations

in numerical solutions to convection-diffusion problems for the two dimensional cases

are more complicated than for the one dimensional cases. In general, using numerical

methods to solve convection-diffusion problems in two dimensional cases cannot yield

exact solutions - as is done in one dimensional analysis - with any upwinding scheme.

In the two dimensional case, most of the upwinding schemes provide numerical solu-

tions that still contain oscillations and a defect that is usually called the crosswind

diffusion effect. This effect usually occurs when the velocity field is unaligned with

the grid lines. The crosswind diffusion in numerical solutions is a spurious diffusion

in the direction perpendicular to the streamline resulting in the deterioration of the

numerical results. Thus this chapter will discuss the application of some of the previ-

ously published upwinding schemes in two dimensions as well as their characteristics.

We restate that the governing equation for the convection-diffusion problem in two

dimensional analysis (eqn. 2.2) is as follows

0,t + v. V = aV 2 0 + q (4.1)



where 0, v, a, and q are the temperature, velocity field, diffusivity and the source

terms, respectively.

4.1 Streamline Upwind/Petrov- Galerkin (SUPG)

This scheme is a two dimensional extension of the Petrov Galerkin method explained

in chapter 3. Basically, an artificial diffusivity is introduced to reduce oscillations in

the numerical solutions. The artificial diffusivity only has an effect in the stream-

line direction. This is based on the argument that the oscillations in the numerical

solutions are generated by the high Peclet number in the streamline direction [5].

r

Figure 4-1: The average velocity vector in an element.

The method uses a directional Peclet number where the components of the total

Peclet number in the local axes directions are calculated independently and are then

added together to obtain the total Peclet number. In fig. 4-1, the velocity vector at



the origin of the element r and s local coordinates, is decomposed into v, and v, in

r and s directions (The origin contains the average the velocity in the element). 1,

and '1 are the average element lengths in r and s directions. Diffusivity is assumed

to be isotropic and constant. The element Peclet numbers in r and s directions can

be calculated as follows

v•,lPe,

vl
Pe=

Each direction can be treated the same as for a one dimensional case.

Ar = 7 11v

Pe 2
7, = coth( P

2 Per

211K11
Pe 2

7 = coth( p e ) -I2 Pe.

A, and A, are added to obtain the total A that corresponds to the original velocity

direction v as follows
V V

A =II A+II

Similar to the one dimensional case, perturbation function for the two dimensional

case is defined as follows

II II

where p and w are the perturbation function and the weighting function respectively.

The modified weighting function includes the perturbation function for this scheme



defined as follows
v Vtw

-= w + A I (4.2)

Applying the classical Galerkin procedure with the modified weighting function to

eqn. 4.1, we obtain

/ I~(9,t + v - Vs - aV 2 - q) dVol = 0
Vo0

After applying integration by parts and the divergence rule,

L, TlO, dVol + f v -v-" VO dVol + JV V--aVO dVol = fV iq dVol + j :q' dS1

(4.3)
The second term can be rewritten as

I v -VO dVol = , wv VO dVol + Vw 7 -v -VO dVol

So, the artificial diffusivity is
T

&--v _v-

This artificial diffusivity expression is similar to the one obtained using the Petrov-

Galerkin method in the one dimensional case. If the flow is in one dimension, this

artificial diffusivity reduces to that found by the Petrov-Galerkin method.

Comparable to the one dimensional case, V__. = Vw when a linear interpolation

function is considered in the element. Eqn. 4.3 gives the discrete equation at the node

(j, k) for a uniform two dimensional mesh shown in fig. 4-2 as follows

Pee Pe' - 2 2
{-2 R- 2+ 2- ( + v - 3vv)} Oj0 +

{-2 + 2Pe - (-2v + 4v2 )} j+1

Pe" Pe' -y + 3v{-2 + + I (-2 + -l + 3v vUX,)} O+lk +

{-2 - 2Pe 7 (4v: - 2v2)} 0 .j,k +
X a 11v T -



j+l,k+l

y j-1,k

j-1,k-1

V

j,k

l=2

j,k-1

j+ ,k

j+ ,k-I

:, A

Figure 4-2: Node (j, k) in a uniform two dimensional mesh.

{16+ . (8v+ 8v 2 0 ,, +
a 11 v11 0

{-2 + 2Pe - (4v, - 2v,)} j,+1,k +
S1II 1v +

Pee Pe' 'y 2{-2 2- 2- 11 (v+ v + 3vv,)} -1,k-1
2 -2 32, 2 +

{-2 - 2Pe I - (-2v: + 4v)} O,_k-1 +

Pee Pee ,,{-2 + 2 2 (V 2+ v2 -3vv,)} l+,k--l = 0

This equation is of a similar form to the one dimensional equation obtained using

the Petrov-Galerkin method (Eqn. 3.24). The equation is reduced to eqn. 3.24 for

one dimensional case (v0 = 0). This is done by canceling all the vl and Pe' terms

and collecting all coefficients of 0 with the same j index. Eqn. 4.3 then leads to the

finite element equation

MO + Kc9+ Kd b = Rb + R S  (4.4)

SUPG is a popular upwinding scheme. Many researchers have successfully ap-

1=2

j-l,k+ l j,k+l

AA .



plied this scheme to solve numerical problems in many fields, such as coupled heat

and fluid flows [1], transient incompressible flow with velocity-pressure variables [27],

transonic and supersonic flows [3], etc. SUPG has also been applied successfully to

the triangular three-node finite element [19, 20].

A numerical solution to a problem using a method that incorporates SUPG proce-

dure quite satisfactorily approximates a smooth function. However, when the function

contains a shock front in the interior of the domain or a boundary layer, the numerical

result contains overshoot and undershoot characteristics near the shock front or the

boundary layer. To improve the result, beyond streamline upwind/Petrov-Galerkin

upwinding scheme is introduced with an objective to smooth out the numerical result

near a shock front or a boundary layer.

4.2 Beyond Streamline Upwind/Petrov- Galerkin

(BSUPG)
A modification of SUPG, this scheme has an extra term called discontinuity-capturing

operator [14]. The extra term only affects the numerical solution in the direction of

the gradient of 8.

v is defined as follows { VO if V =A 0
v, = - 112 (4.5)

0 if V8 = 0

The vector v. is a projection of the velocity vector in the direction of the gradient 0

as shown in Fig. 4-3. The weighting function is modified to include the v term and

is defined as follows

f = w +-rv . SVw + ,v •- V._w

The last term in the equation above is the discontinuity-capturing term which creates

an artificial diffusivity in the gradient of 0 direction. Applying the Galerkin procedure



Ve

Figure 4-3: Projection of v in the direction of gradient 0 (vg)

to eqn. 4.1 with the new weighting function, we obtain

Jf (O,t + v o - aV29 - q) dVol = 0 (4.6)
Vol

Consider the weighting function Ui which interacts with the convective term in the

convection-diffusion equation,

I ~  (.... +v.V +...) dVol=... + owv - VO dVol
+ jwVoVol

+ j Vwvr v VOdVol

V+ wv -2. - VO dVol ... (4.7)
vol -9

In the expression above, the first term is the convective term obtained using the

classical Galerkin method; the second, the artificial diffusivity term obtained using the

original SUPG method; and the last, the extra term which is the artificial diffusivity

term in the gradient of 0 direction. For the last term, the relation of v -V0 = v -V=



is used. The artificial diffusivities are

C'2  = vr 2 VT

where di is acting in streamline direction originally from the SUPG scheme and d 2

is acting in the direction of gradient 0 to smooth out the numerical result around a

shock front or a boundary layer.

The determinations of r, and 7, are similar to those in the SUPG method except

that the calculation for the characteristic length of an element is defined differently.

Let

b' = (v )(

where (_ is the local coordinate system. Length of the vector be is defined using the

p-norm definition,

bel = (b: + b)" (4.8)

The characteristic length of an element is defined as follows

1 •1= 12 (4.9)

When p = 2, 1" in the eqn. 4.9 can be interpreted as stretching a unit vector

in the velocity direction on the global coordinate mapped onto the local coordinate

system. So basically eqn. 4.9 defines the length of element in the velocity direction.

Using this definition, the streamline factor r' can be calculated directly,

-yle

21v12
Pe' 2

7 = coth( -) -2 Pee

Pe =
at

VV 

Y



Similarly, r, is calculated as follows

b = (v -V)(

2 1V1¢ = II_,l1

9 a
Pe' 2y = coth( 2) -P--

-gg

When v = v, double artificial diffusivity effect occurs. To avoid the double effect,-g

the following condition is introduced

T2 = max(0, 7. -r ,)

Applying the modified weighting function to eqn. 4.1, we obtain

f (O,t + v vo - aV 2 0 - q) dVol = 0 (4.10)

After applying integration by parts and the divergence rule to eqn. 4.10, we obtain

f , dVol +j v.VO dVol +j VwaVO dVol = : q dVol + jTq' dS,
(4.11)

VTi_ = Vw because linear interpolation is considered. Eqn. 4.11 should yield a discrete

equation at the node (j, k) for a uniform two dimensional mesh similar to the one

obtained by SUPG procedure. However, the equation cannot be obtained because

the gradient of 0 is unknown. When this method is applied to the one dimensional

case, the equation produces the same result as that from the SUPG method given

the condition that r, = 0 when v9 = v. Eqn. 4.11 leads to the finite element matrix



equation

MO + KcO + KdO = Rb + R s  (4.12)

Hughes and Mallet [13] extended this method to a multidimensional system.

BSUPG scheme requires that the gradient of variable 0 in the above formulation

be calculated iteratively and hence this makes the scheme expensive in terms of the

CPU time.

Upwinding schemes have also been developed through the use of other finite el-

ement arguments such as control volume finite element method (CVFEM) with the

expectation that the scheme will give a better numerical result.

4.3 Upwinding Schemes in Control Volume Fi-

nite Element Method

This section explains extended applications 6f the exponential upwinding schemes

explained in section 3.3 to the two dimensional case. Three different upwinding

formulations will be discussed in this section.

4.3.1 Original Formulation of CVFEM

The original CVFEM uses linear interpolation functions for the 0 variable along the

x and y grid lines [21] (See fig. 4-4 for a control volume applied to point P in the two

dimensional case. W and E are nodes that lie in the same x-axis as point P where N

and S are in the y-axis.) Using the linear interpolation functions produces oscillations

in the numerical solutions to the convection-diffusion problems. Hence, an upwinding

scheme is required to eliminate these oscillations. The first upwinding scheme used in

the CVFEM formulation is a direct extension of the exponential upwinding scheme

applied along each grid line.

The fluxes entering the control volume at node P from sides e, w, n and s shown

in fig. 4-4 are defined using the exact solution to the one dimensional convection-
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Figure 4-4: A control volume applied to the point P

diffusion equation,

Pfe = V4+o -p 0

fl = vI +. ,w + cIfw -0=

fla = v.9o, + +
fl. = v, , + +

cy

(4.13)

(4.14)

(4.15)

(4.16)

where cz = exp(Pe:)- 1 and c = exp(Pe) - 1 (an alternative calculation of c.

and cy uses the power law scheme [21) because exponential functions are expensive to

calculate in terms of the CPU time.) Applying this upwinding formulation to eqn. 4.1

for the point P as shown fig. 4-4, we obtain

JJ(09,++. - aV9- q)dx dy 0 =

/ -I
,,///

/ ~ / /
/ P/ /~

//

, //
)/)///-1

SW SE
>.X
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AxAy(, - q) + f Ay - flf Ay + fil A - fI A = 0 (4.17)

Substituting eqn. 4.13 to eqn. 4.16, we obtain

AAy - AA 2v Ay 2v Ax v Ay
A~y , - Azy q +,(v Ay " + v A ) - BE(

C " CY C,

- 0w (V.Ay+ )-+O(Y )-A (vAX+ + )=0C C C CvAx v A

The above equation can be rewritten as

m,•, + aP,,P+ aE W 9 a N N + as B= (4.18)

where

rp = AxAy

2v Ay 2v Ax

C, CY

v Ay +
a B

Cz

v Ay
a w  = -v-Ay - AY

C

aN -- y
C v

a s  -vYAx - vYAX

r, = AxAyq

Applying the control volume to all other nodes in the domain, a complete matrix

equation can then be assembled. The control volume edges contain fluxes produced

by the boundary condition fluxes which contribute to the matrix R,, shown in the

following equation

MO + KO = Rb+RS (4.19)

where the matrix M is a diagonal matrix containing the area of the control volumes,

K, the stiffness matrix and Rb, the load vector.



This method guarantees the elimination of oscillations in numerical solutions

around a shock front or a boundary layer, but nevertheless, it has a significant cross-

wind diffusion defect. Furthermore, this method also gives a low accuracy for distorted

meshes. To improve the numerical solutions, the interpolation functions defined in

the finite element method within an element are used to interpolate 0 in the con-

trol volume method. With these interpolation functions, a new upwinding scheme is

required.

4.3.2 Positive Coefficient Upwinding Procedure for CVFEM

This upwinding scheme incorporated in the control volume method using the finite

element interpolation functions was proposed by Schneider and Raw [15, 22]. The

boundary of the control volume applied to the nodes is located at r = 0 and s = 0

of the element local coordinates as shown in fig 4-5. These boundaries divide every

element into four subcontrol volumes (SCV). Through the use of linear interpolation,

the average flux that enters through one side of the control volume boundary can

be approximated by multiplying the value of the flux at the midpoint of the bound-

ary surface with the boundary length. The convection-diffusion equation (eqn. 4.1)

applied to the subcontrol volume 1 is derived as follows

S(0,, + v . VO - aV2 0 - q)dVol = 0
SCV1

V1 (0, - q)dVol + Q2,1 + Q4,. + Qi,,1 + Qe,, = 0 (4.20)

where Qs are the fluxes that enter the subcontrol volume to be discussed later. The

mass matrix, from the transient term, is obtained by evaluating the area of the control

volume for every nodes, e.g. for node 1,

fV1 0,, dVol = Acy 1 9ý

where A.vw is the area of the control volume 1. The source term for subcontrol volume

SCV1 can be approximated by multiplying the midpoint value of the source function



3

Figure 4-5: Subcontrol volumes within an element

in the SCV1 with the area of the SCV1, i.e.,

q dVol = ql, ;j.,AscvI
SCV1 2 2

The Q,,, term is the flux from the subcontrol volume i to j. The flux contains two

parts, for example, for i = 1 and j = 2,

d,,, = + + Q

where Q2,1 and Q2,1 are diffusive and convective fluxes respectively that flow from

subcontrol volume 1 to subcontrol volume 2. Using the midpoint approximation

(point ipl as shown in fig. 4-5), the diffusive flux is calculated as follows

Q = -j aV -n dS

= : -,Ay, - a 41, Ax,) a (4.21)ax ay



Here, the function 0 is approximated using the interpolation function h. defined in

chapter 2 for a two dimensional case. The normal vector of surface sl for the sub-

control volume 1 shown in fig. 4-6 is defined using the counter clockwise convention,

i.e.

n = AyZ - Ax'ý

counter clockwise

d

Figure 4-6: Normal vector convention for subcontrol volume 1.

= (Y. - - (xr - xt )3'

Rc = -(yd - (Xd - X2)3

Similarly,

C
Q2,1 = (vO).ndS

=(v9)j, 1 Aly - (v1y9)ip 1 Ax (4.22)

in the convective fluxes, the value of v and 0 at the integration point are calculated

in such a way as to obtain upwinding effect.

When v. and vy at the integration point ipl are prescribed, as well as when we
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d

streamline at ipl

Figure 4-7: Streamline for the integration point ipl when ir,, < 0 (the flow is from
the left) and normal vector of the surface tc in the subcontrol volume 1.

consider the subcontrol volume SCV1 and rhi, < 0 (the flux is coming into SCV1 at

sl as shown in fig. 4-7), the value of Op,, is calculated as follows

0,, = (1 - f)0, + f ip,,

f= mbc and 0 <f<l
tc

where 02 and 0i2, are the values of 0 at node 2 and at integration point 2 respectively.

rin, and rhi, are mass fluxes passing through the line bc and tc in fig. 4-7 are calculated

using the following equations

m =be V,ip2 AYbe - ZVip 2 AXbe

itc = v,ipl Ay - Vy,ip• Axt

where v.,i,, and vy,pl, are values of v. and v. at the integration point ipl.

When ih,o > 0 ( the flux is going out from the subcontrol volume 1 at the surface

I



sl), 0, is calculated as follows

,, = (1 - f)9 1 + f9,4

where,

f = ro and 0<f •1

mcd = ZgiP4 A AYd - VO1 4 AX cd

0,i is connected to the other integration points and nodal values of 0 which need to

be condensed out.

Using this method, the appropiate upwinding scheme for the two dimensional case

can be obtained by giving more weight to the node in the upstream direction for every

flux that enters the control volume through its boundaries. Therefore, this method

implements the idea of the full upwinding scheme for the two dimensional case.

Other Q terms with subscript ei in eqn. 4.20 are treated similarly, except that

they are the given fluxes at the boundary conditions. These terms vanish for internal

nodes because the nodes receive the fluxes from adjacent control volumes that will

cancel each other as the fluxes come in pairs and in opposite directions.

The control volume method is applied to all the nodes in the domain so that the

global mass, stiffness and load matrices can be assembled. Therefore we obtain the

following matrix equation

S+ K = R

where the mass matrix M is an assemblage matrix that consists of areas of the control

volume for every node; the stiffness matrix K is obtained from a combination of the

fluxes of the nodes, and load matrix R is from the source term and the boundary

conditions.

This upwinding scheme is guaranteed to eliminate all of the oscillation difficulties,

but its numerical result contains a slight crosswind diffusion.



4.3.3 SUPG in the CVFEM

CVFEM can be obtained by modifying the weighting function in the finite element

method in such a way that a result identical to the one from the control volume

method applied to the nodes in the domain is obtained. For the Galerkin method,

the weighting function is the same as the interpolation function, but for CVFEM, the

weighting function is defined as follows

{ 1 in the Pth Control volume

0 elsewhere

The weighting function is equal to one within the control volume boundary and zero

elsewhere. Applying the Galerkin procedure on eqn. 4.1 using this weighting function

definition, and integrating the results across the nodal control volumes and then

summing the results for the whole domain, we obtain

J (,t + v. V9 - aV20 - q) dVol,, = 0 (4.23)
Vol c1,

Using integration by parts and the divergence rule to eqn. 4.23, we obtain

0,, dVolev + j (v f - aV8) nA dSc, +j q'dS, - E q dVol., = 0

(4.24)

This equation poses a numerical difficulty when the convective term dominates

the system as indicated by oscillations in the numerical result. To solve this difficulty,

the SUPG upwinding method in the finite element method is modified for the use of

the control volume method [25, 26]. The weighting function in the control volume is

modified to create the SUPG upwinding scheme effect,

ThW w-p=w- h, V-( (V w) = w - AV.A (v( w)2 11 -
Pee 2

y = coth( )2 Pe'
Pe = Peclet number = h

a



11_ = v/ + v is magnitude of the average element velocity

he = characteristic length of the element

In this equation, the perturbation function has a negative sign to correct the

direction for the artificial diffusion term for the control volume method. Using the

modified weighting function in eqn. 4.1, we obtain

0,, dVol., + (0 - aJO) A^ dSC. + q'dS,

- Z q dVolC - E A -A(0,, + I _ (K 0) - q)dS,, = 0 (4.25)

The perturbation function is not applied to the diffusion term because a linear inter-

polation function is used and the second derivative of linear function is zero. When

this equation is applied to the control volume around the node P in fig. 4-4, we obtain

1. 0, - q] dVol + j .] dS + ji• dS
+[similar contribution from the other elements around the node P]

+[boundary condition fluxes for the edge element] = 0

where j is the combination of the convective and diffusive fluxes, plus the perturba-

tion term

V= - _V0 - A [0,, +_V. (K0) - q] (4.26)

For the transient term, the lumped mass matrix is used to avoid oscillations that

appear when a consistent mass matrix is used [15]. The source term can be calculated

by evaluating the value of q at r = s = . which is the middle point of the subcontrol

volume and multiplied by the control volume area. The flux j can be approximated

by multiplying the value of j at the boundary surface midpoint with the length of

the surface. The value of j at the midpoint is obtained by evaluating eqn. 4.26 and

using the interpolating function for the 0 variables.

The same procedure is then applied to all the nodal control volumes and the



matrix equation obtained is

Mb + KO = R

4.4 Third Order Accuracy Upwinding in 2D

This is the extended application of the third order accuracy upwinding method that

has been explained in chapter 3. The weighting function is generalized by using indix

notation as follows

1 1 3
3 = w, 33jw., - '' " sign(v")w'dia (4.27)

The modified weighting function is applied only to the convective term. Applying the

weighting function to eqn. 4.1, we obtain

Sw,(,, - aV 2 O- q)dVol +1 .v - VO dVol = 0
Vol 

fVol

or, in indix notation,

J wj(09,, - aOI - q1)dVol + f Uiv,09dVol = 0 (4.28)
Vol Vol

Similar to the one dimensional case, auxiliary variables are introduced to fit this

formulation on bilinear interpolation functions. The following expression for the aux-

iliary variables are generalizations of eqn. 3.33 and 3.34,

7. = vj ,33ij (4.29)

•1  = ACWi.i• (4.30)

Substituting eqn. 4.29 and 4.30 into eqn. 4.27 and combining the result with eqn. 4.28,

we obtain

Jw (,,, - ae,,j - q,)dVol + j (w,7 - - 9~, 12 A'Ai, / vv, ii,) dVol = 0
v V l 3 (4.31

(4.31)



Applying the Galerkin procedure to the auxiliary variable equation as defined in

eqn. 4.29 and 4.30,

fJ -y dVol = fV1iV j, dVol
Vol Vol

AiA dVol = - A w,.Az ,w , dVol + .Az.•.wj dSf
V0ol Vol S1

Similar to the one dimensional case, the last term is assumed to be zero since we do

not intend to calculate the auxiliary variable solutions. The above equations lead to

the matrix equations

W TAr-A A TA - AT AS + W TK = 0 (4.32)

Mor = A40

MoA = -A 5 W

where the matrices are defined as follows

Al = jf HT H dVol

A 2 = H -VB dVol

A = B T-DB dVol
'Vo 12

A = jf- HT VB dVol

A5  = fjVBTD 2 BdVol

K = j B TaBdVol

V = [V v

0 1

where H and B are the interpolation and the gradient matrices respectively, that are

defined in chapter 2 for the two dimensional case.



The matrix equations (eqn. 4.32) can be simplified to

A'* +K'O = 0

where

A AM-1 T -T T -T
A = A 1 MA 4 +ATM A +ATM AT1A" 4 5 0 2 5 o  3

K" =K

4.5 Other Upwinding Schemes

Similar to the Beyond SUPG method, Carmo and Galeao [6] have developed a method

to improve SUPG numerical results. In this method, an algorithm is formulated to

locate oscillations in the numerical solution obtained using the SUPG method. In

iteration, more artificial diffusivity is applied .to this area to supress the oscillations

until an acceptable result is obtained. This method is not discussed in this thesis

because the method is expensive in calculations, and so it is not efficient to solve the

convection-diffusion problems.

Many upwinding methods have been developed to solve the convection-diffusion

equation for the transient case. Dick [10], Bouloutas and Celia [4] modified the

weighting function with a symmetric perturbation function. They proved that the

modification led to a higher accuracy. However, oscillations still occurred in the

numerical solution. Donea, Selmin and Quartapelle [11] used a method called the

Taylor-Galerkin method to improve the numerical accuracy for transient analyses.

The method used the Taylor expansion to approximate the first time derivative to sec-

ond order accuracy. To suppress the oscillations in the numerical result, the method

used the total variation diminishing (TVD) upwinding method. In TVD, a variable

was introduced to detect a shock front or a boundary layer in a domain. This vari-

able controlled the magnitude of artificial diffusivity required to avoid oscillations

at a shock front or a boundary layer. The variable was designed to depend on the



gradient of the unknown variable. The TVD method is not discussed in this thesis

because the method is similar to the BSUPG method because both methods use the

gradient of 0 in the formulations.

The Galerkin least squares method has been proven to be identical to the SUPG

method for a bilinear interpolation element [12], so discussion of this method is not

necessary.

The upwinding schemes explained in this thesis can also be expanded for appli-

cation in three dimensional analysis, assuming that the eight-node three dimensional

element would be used. To modify SUPG to a three dimensional application is simply

to introduce another directional Peclet number corresponding to the z-axis direction.

The calculation procedure applied to this added direction is similar to the calcula-

tions carried out for the other two directions. BSUPG can be modified in the way

as SUPG but noting that the gradient 0 is now a three dimensional vector. For the

positive-coefficient upwinding procedure, the expression for 0 at the integration point

can be modified for three dimensinal fluxes. The expression should be able to main-

tain the coefficients of 0 to be positive numbers. The third order accuracy upwinding

scheme is directly expandable to three dimensional analysis by allowing the indices i

and j to have values of 1, 2, and 3. The third index corresponds to the third axis in

the z-axis direction.



Chapter 5

Test Problem Descriptions

The test problems are designed to measure the stability and the accuracy of the

upwinding schemes that have been explained in chapter 4. The stability of these

schemes is very critical since unstable schemes would yield unrealistic results in high

Peclet number flow problems even though the schemes may be very accurate in solving

low Peclet number flow problems.

The main purpose of developing the finite element analysis is to help engineers to

simulate and solve practical problems. Therefore it is important that the test prob-

lems enable to gage how dependable the upwinding schemes are in solving practical

engineering problems.

To measure the stability of the upwinding schemes, both uniform and distorted

meshes are used. In engineering practice, uniform meshes are hardly used since engi-

neers commonly deal with complex geometries.

5.1 Test Problem 1

Test problem 1 has been studied by various researchers [5, 14, 19, 20, 22, 26]. The

main purpose of this test is to show the crosswind characteristics of the upwinding

schemes when a shock front is developed in the domain. The test problem is defined

as follows.

Consider a (one-by-one) domain which is subdivided into 20x20 elements. The



boundary conditions for this domain are shown in fig. 5-1. The essential boundary

conditions are applied to the left side and bottom side boundaries. The value of 0 is

fixed and is equal to 1 at the left and part of the bottom sides, while 0 is equal to 0

at the remaining part of the bottom side. At the right and upper sides, the natural

boundary conditions are applied. The diffusion fluxes at these sides are assigned to

0, see fig. 5-1.

fixed 0 = 1

diffusion flux = 0

diffusion flux = 0

fixed 0= 0

xv

Figure 5-1: Boundary condition for the test problem 1.

meshes

A uniform mesh and a distorted mesh are used for this test problem as shown in

fig. 5-2.

velocity field

In this problem, a uniform velocity field is prescribed with a different fluid velocity

direction for every run as shown in fig. 5-3. The direction of the velocity for every run



Figure 5-2: Meshes

(a)

used for

(b)

the test problem (a) Uniform mesh (b) distorted mesh.

(a) (b) (c) (d) (e)

x

Figure 5-3: Prescribed velocity vector for (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e)
run 5.
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can be decomposed into x and y velocity components. The coefficient of diffusivity

is constant, a = 10- 5 , so the velocity and the Peclet number components for every

run can be summarized as shown in table 5.1. V, and V, represent the velocity

components in z and y directions. Pe. and Pe, are the Peclet number components

in x and y directions. The Peclet number components are defined as

V LPe = LPe = VL

where L, = L, = 1. Graphical representation of the test problem is given in fig. 5-4.

Table 5.1: Summary of uniform velocity field and Peclet number components for
every run.

The expected solution of this test problem is simple. The shock front at the

boundary is carried by the fluid to the interior of the domain. Since the Peclet

number is very high the gradient of the temperature remains sharp. Fig. 5-5 shows

a sketch of the expected solution for the test problem 1. Similarly, for a different

prescribed velocity direction, the shock front is carried in the direction of the fluid

velocity. The discretization of the domain will cause discrepancy from the exact

solution, but reasonable solutions are still obtained using a good upwinding scheme.

Run number V' V, a Pe, Pe
1 1.0 0.0 10-  . 10 0.0
2 1.0 0.5 10-5  105  0.5 x 10i
3 1.0 1.0 10-  105  105

4 0.5 1.0 10-" 0.5 x 105  105

5 0.0 1.0 10- 0.0 10_



Vector representation of velocity direction
I.'

Prescribed E band

y

0 x

Figure 5-4: Summary of the test problem 1.

5.2 Test problem 2

In test problem 2, the uniform and distorted meshes defined in the test problem 1 are

used. For consistency, the same velocity directions defined in the test problem 1 for

run 1 through 5 are also used in this test problem. Boundary conditions are defined

as shown in fig. 5-6. The test problem 2 is given in the graphical representation as

shown in fig. 5-7.

The expected solution to this test problem is shown in fig. 5-8 for any prescribed

velocity direction.

r



0 x

Figure 5-5: A sketch of expected solution of the test problem 1 for high Peclet number.

fixed E = 0
diffusion flux = 0

I

diffusion flux = 0:/®=1

Figure 5-6: Boundary conditions for the test problem 2.

I



Vector representation of velocity direction

prescribed 0= 0

U
prescribed 0 = I

Figure 5-7: Summary of the test problem 2.

Figure 5-8: The sketch of expected solution to the test problem 2 for high Peclet
number.
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Chapter 6

Numerical Results

In this chapter, the numerical results of the upwinding schemes applied to the test

problems explained in chapter 5 are presented. Four upwinding schemes will be

discussed and compared, namely, the streamline-upwind/Petrov-Galerkin (SUPG),

the beyond streamline-upwind/Petrov-Galerkin (BSUPG), the positive-coefficient up-

winding procedure from the control volume finite element method, and the third order

accuracy upwinding scheme. To complete the comparison, a commercial finite element

method software, ADINA-F, is used to solve the test problems. Some conclusions are

drawn based on these results.

Note that the test problem 1 is not a sufficient test problem because the clas-

sical Galerkin method can still obtain reasonable results. It does not indicate the

necessity for developing any upwinding schemes. On the other hand, the test prob-

lem 2 shows the superiority of upwinding schemes compared to the Galerkin method.

The Galerkin method cannot solve this problem because oscillations are observed in

the solutions. The use of any upwinding scheme improves the results to this prob-

lem. Nevertheless, numerical solutions using many upwinding schemes show unstable

signs of small oscillations near the boundary layer. This is not acceptable, when the

schemes are applied to the Navier-Stokes equation, small oscillations will be amplified

when iteration is used to calculate the velocity.



Streamline-Upwind/Petrov- Galerkin (SUPG)

Unlike many other upwinding schemes, the results using SUPG shows little crosswind

diffusion. The solutions to both test problems using this method are shown in fig. 6-3

to 6-6. In the solutions to the test problem 1, the steepness of the shock front of

0 at the boundary can be maintained in the interior of the domain. However, the

solutions show small oscillations near the shock front. Test problem 1 run 1 shows the

extreme of this characteristic where unacceptable oscillations occurs with up to 26%

error at the shock front. The solutions to the test problem 2 display quite significant

oscillations near the shock front. This confirms the conclusion of SUPG's oscillation

characteristics.

Using distorted elements for the test problem 1 and 2, the accuracy of the numerical

results deteriorate, and oscillations in the solutions are amplified.

Beyond Streamline- Upwind/Petrov-Galerkin (BSUPG)

The results of this method to the test problems show improvements compared to

the results obtained using SUPG. The results are shown in fig. 6-7 to 6-10. In the

solution to the test problem 1, this method eliminates the overshoot and undershoot

characteristics near the shock front. However, in the solutions to the test problem 2,

this scheme only reduces the oscillations near the shock front, but cannot eliminate

them completely. On the other hand, a program that implements this method does

not guarantee convergence when the gradient of 0 is used in the iteration to obtain

the solutions. To solve the test problem 2, iteration cannot converge to a certain

limit, however, our experiments recommend the application of a maximum of three

iterations to have "good" results. For solving steady state problems, iteration process

is still required which makes this method expensive in computational time. Another

remark is that the extra artificial diffusivity which acts in the direction of the gradient

of 0 is not based on physical interpretation. This extra diffusivity can cause the

numerical results to depart from the exact solutions.

Similar to SUPG, the use of distorted elements deteriorates the accuracy of the nu-

merical results. The amplitudes of oscillations in the results are amplified near the



shock front and the boundary layer.

Positive-Coefficient Upwinding Procedure for CVFEM

The positive-coefficient upwinding scheme produces the best numerical results to solve

both test problems, see fig. 6-11 to 6-14. This method provides the exact solution

for the test problem 1 for runs 1, 3 and 5 on the uniform mesh. It surpasses other

upwinding schemes which give the exact solution for only run 5, and give poor results

for run 1 with high overshoot characteristic at the shock front, and give a crosswind

diffusion behavior for run 3. Using this method, oscillations in the solutions to both

test problems can be eliminated completely, which shows the stability of this method.

However, when the velocity field is between 00 - 45" or 45" - 900 to the mesh line, the

numerical results contain a slight crosswind diffusion. It is indicated by the decreasing

steepness of the shock front in the interior of the domain (see fig. 6-11 for run 2 and

run 4).

Using distorted meshes, the results are slightly worse, yet acceptable, than those

obtained using uniform meshes. The exact solutions of the test problem 1 for run 3

and 5 could not be obtained since the velocity directions are not aligned to the mesh

line anymore.

Another advantage of this method, over the other previous upwinding schemes, is

that it does not require calculating an adjusting variable, hence, it will save some

computational time and may be more general in application.

Third Order Accuracy Upwinding Scheme

Generally, the results using the third order accuracy upwinding scheme for solving

both test problems are not quite satisfactory. The results still contain oscillations

near the shock front or the boundary layer, see fig. 6-15 and 6-18. Even though the

amplitudes of the oscillations are less than SUPG's, the area affected by this behavior

is wider. For the test problem 2, the results contain significant oscillations near the

boundary layer for all runs.

A computer program that implements this method requires more memory space to



store global matrices than computer programs that implement other upwinding meth-

ods. Furthermore, multiplications performed on the global matrices consume a sub-

stantial amount of the CPU time, resulting in higher computational cost.

In this case, the use of distorted elements deteriorates the accuracy of the numerical

results. However, the degree of deterioration is reasonable in case of the test problem

1. On the other hand, the results of the test problem 2, for runs 1 and 5, are not

acceptable due to the occurence of a step-like 0 drop in the domain (see fig. 6-18).

This behavior does not take place in the solution when other upwinding methods are

used.

In this formulation, an adjusting variable, f, is introduced as mentioned in chapter 4.

The author of this method did not explain how to determine the value of this variable,

but based on our experiments, f = 1.5 for one dimensional case, and 3 = 3.0 for two

dimensional case will give the best numerical results for solving high Peclet number

problems.

ADINA

The results to the test problems using ADINA-F are shown in figures 6-19 to 6-22.

ADINA-F is proved to be very consistent based on the fact that oscillations in the

numerical results are completely eliminated from the solutions to both test problems.

However, the crosswind diffusion characteristics appear in the result of the test prob-

lem 1, run 5. In the uniform mesh, other upwinding schemes such as SUPG, BSUPG,

the positive-coefficient upwinding scheme, and the third order accuracy scheme give

the exact solutions for this run. This deficiency is due to the fact that in ADINA-F,

a triangular element is used in the discretization where each quadrilateral domain

is represented by four triangles. These triangles cannot capture the exact solution

because the velocity field is not aligned with the element coordinate axes. While

the use of triangular elements has this disadvantage, the triangular elements have

the advantage of direct use in unstructured and highly graded meshes, and also they

satisfy the inf-sup condition, see D. Chapelle and K.J. Bathe [7]. The four-node

quadrilateral element tested in this thesis with the various upwinding methods does



not satisfy the inf-sup condition and would have to be used with caution in actual

fluid flow analyses.
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Figure 6-1: Numerical results of the Galerkin method for solving the test problem 1
on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5
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Figure 6-2: Numerical results of the Galerkin method for solving the test problem 1
on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5
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Figure 6-3: Numerical results of the streamline-upwind/Petrov-Galerkin method for
solving the test problem 1 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-4: Numerical results of the streamline-upwind/Petrov-Galerkin method for

solving the test problem 1 on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4

(e) run 5
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Figure 6-5: Numerical results of the streamline-upwind/Petrov-Galerkin method for
solving the test problem 2 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-6: Numerical results of the streamline-upwind/Petrov-Galerkin method for
solving the test problem 2 on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-8: Numerical results of the beyond streamline-upwind/Petrov-Galerkin
method for solving the test problem 1 on distorted mesh. (a) run 1 (b) run 2 (c)
run 3 (d) run 4 (e) run 5
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Figure 6-9: Numerical results of the beyond streamline-upwind/Petrov-Galerkin
method for solving the test problem 2 on uniform mesh. (a) run 1 (b) run 2 (c)
run 3 (d) run 4 (e) run 5
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Figure 6-10: Numerical results of the beyond streamline-upwind/Petrov-Galerkin
method for solving the test problem 2 on distorted mesh. (a) run 1 (b) run 2 (c)
run 3 (d) run 4 (e) run 5
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Figure 6-11: Numerical results of the positive-coefficient upwinding procedure for

solving the test problem 1 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-13: Numerical results of the positive-coefficient upwinding procedure for
solving the test problem 2 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-14: Numerical results of the positive-coefficient upwinding procedure for
solving the test problem 2 on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-15: Numerical results of the third order accuracy upwinding method for

solving the test problem 1 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4

(e) run 5
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Figure 6-16: Numerical results of the third order accuracy upwinding method for
solving the test problem 1 on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-17: Numerical results of the third order accuracy upwinding method for
solving the test problem 2 on uniform mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5
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Figure 6-18: Numerical results of the third order accuracy upwinding method for
solving the test problem 2 on distorted mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4
(e) run 5

1

I

I



; 0 0.2

1(b)
(a) b

- 1) (d)

1.5

0.5

0
0

1 V

(e)

Figure 6-19: Numerical results of ADINA-F for solving
mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5
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Figure 6-20: Numerical results of ADINA-F for solving the test problem 1 on distorted
mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5
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Figure 6-21: Numerical results of ADINA-F for solving
mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5
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Figure 6-22: Numerical results of ADINA-F for solving the test problem 2 on distorted
mesh. (a) run 1 (b) run 2 (c) run 3 (d) run 4 (e) run 5



Chapter 7

Conclusions

Based on the results given in the previous chapter, we have the following conclusions:

1. The SUPG and BSUPG upwinding procedures are easy to implement, however

the results still contain small oscillations near shock fronts and boundary layers.

2. The third order accuracy upwinding scheme provides reasonable accuracy but is

considerably more expensive in terms of memory space as well as computational

time.

3. The ADINA-F upwinding method provides good stability. Since triangular

elements are used, the accuracy near the shock fronts and boundary layers is

less than that based on quadrilateral elements.

4. The overall best performing technique was the positive-coefficient upwinding

procedure.

Of course, the upwinding schemes considered in this thesis were only tested on

two analysis problems. For practical analyes, a discretization procedure must be

sufficiently general to model very complex domains and be applicable to low and

high Reynolds and Peclet number flows. It is then important that the discretization

scheme also satisfy the inf-sup condition (to have a stable procedure for low Reynolds

number flows) and this aspect was not addressed in this thesis.



Appendix A

Calculation of a control variable in

Petrov-Galerkin method

The equation of discrete form for the iz node in a uniform mesh for one dimensional

case using Petrov-Galerkin method (eqn. 3.24) is as follows

Pe"
(-1-(1+7) 2 + (2 + Pe)O, + (-1 + (1 -2

This equation can be rewritten as

a-_, - (a + b)8. + bO,, = 0

where a = (-1 - (1 + -) pe) and b (-1 + (1- 7) ), then manipulating this

equation

,a -4 / a

b*" bb ' -
b b
b=b

= (1 + r)o, - rtO_ 1

where r = . Set 0 =K and 0 = L thenb -10 1

Pe"

r 2>)~ 2 ,, =o

= _ O O.



for i = 0

, =- (+ r)L-rK

- L+r(L-K)

for i = 1

, = (1-+r)(L+T(L-K)) -rL

L + (r + r2 )(L - K)

for i - 2

0, = (1 + r)(L + (r + r2)(L - K)) - r(L + r(L - K))

SL+(r +r 2 +r )(L- K)

for i = n

= L+(r + r + r + ... + r+)(L - K)
n+1

= L + (- + k)(L- K)
k=O

Now consider,

- + r + .. + 2+l) (r +... + n+2)

and also,
n+1 n+1

k=O k=O

n+l

k=O

n+l

(1-r)E rk

k=O

1-r

n+l

r0
k=O

n+l

- =O
k=O

Sn+2
-- 1--



then, 0,,+ equation becomes

n+2
1-r

0, ,+ = -1 +

r T n+•
- r

1-r 1-r
= A, + Bir "

The exact solution for the convection-diffusion equation is

0R - O Pe'X
exp(Pe') - 1(exp( L

where OL is the given value of 9 at the left boundary and 0, at the right boundary.

This equation can be rewritten as

O0 - 0• 0h - 0• Pe' x
L = R + ( )(exp( )xexp(Pee) - 1 e x p(Pe ) - 1  L)(ex(

Comparing the equation above to that obtained from discretization using the Petrov-

Galerkin upwinding method, we obtain the relation that

A, = L - O- 1L
AB = 0 -

exp(Pe") - 1
9, -9R

BR L
exp(Pe') - 1

PeC= exp(- )

The equation for A1 and B 1 involve other variables, 0L and O,R which are given values

of 0 at the boundary conditions. The last equation is used to determine the value of

y. Substituting the variable r with the expression defined in the discretized equation

and assigning L = 1 since L is a non-dimensionalized length, we obtain

-1 - ( + ) = exp(Pe)
-1+ (1--7) P e

2



Manipulating the equation above, we obtain the equation for y

Pe 2
y = coth( ) -

2 Pe"

Therefore, eqn. 3.25 is proved.



Appendix B

Calculation of a control variable in

Galerkin least squares method

The equation in discrete form for the i node in a uniform mesh for one dimensional

case using the Galerkin least squares upwinding method (eqn. 3.28) is as follows

Pe rv 2 Pee 2v
(-1-- ), + (2 + 2 )O, + (-1 -+ - ) ,, = 0

2 a a 2 a

This equation can be rewritten as

aO1_, - (a + b) i, + bO,+ 1 = 0

e 2 e I 2

where a = (-1 - -P ") and b = (-1 + - - ). The discretized equation is

compared to the exact solution of the convection diffusion equation (refer to appendix

A for a similar explanation), we obtain.

Pe 2

2 e = exp(Pe')
-1 + Pee e-2

2 a

Manipulating the equation above, we obtain

h Pee a
r = -- coth( ) J2

2v 2 v*
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Therefore, eqn. 3.29 is proved.
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Appendix C

Comparison of the

Petrov-Galerkin method and the

Galerkin least squares method

The Petrov-Galerkin method has the following equation

fVol
T(O,t + v - VO - aV 20 - q) dVol = 0

where
v A Vw

11 V 1
Applying integration by parts and the divergence rule, we obtain

J w Ot dVolVol

Vw -v O, dVol
11 | 1

Vw v a V 20 dVol
-IFI -

+ I wv. VO dVol + VwaVOdVol
vol vol

+ Vw .v_ v -VO dVol

- V-w-v • q dVol

= jwqdVol+ f
Vol S

w q' dS,
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For a linear interpolation element, terms of the second order spatial derivatives vanish,

and so the above equation becomes

w 9t dVol + fvo,

+ Vw .v A•_, dVol
Vol 1 K 1

w v -V dVol + f
Vol

+ fVol vw
A v v - VO dVol --Ilvll-

Vw a VO dVol

Vw -v-i q dVolVol I II I
= w q dVol + s

Vol S

w q" dS,

On the other hand, the Galerkin least squares method has the following equation

w (0,, + v . V - aV20 - q) dVol +
Ivol o (L2. [w])7(L 2 [0]) dVol = 0

L2r [w] = v Vw - aV 2 w

L 2m [] = v.VO - aV2 0

Applying integration by parts and the divergence rule, we obtain

Jvow O,t dVol
Vol

+ f w v - VO dVol + Vw a VO dVol
fVol

Vw -vr 0,, dVol +

Vw vr q dVol -

+

l Vw. v r VO dVol - fVw v r a V 20 dVol

Vol

IVol

V2w a _ ,9 dVol

V 2w ar q dVol

SwqdVol+ w q' dS,

Similarly, for a linear interpolation element, terms of the second order spatial deriva-

tives vanish, and the above equation becomes

w 9 ,t dVol + fw v.VO dVol + fw 1 V a VdVolVol Vol/Vol

Vw -v r ,, dVol + f Vw.v-rv'.VdVol-f
Vol Vol

Vw • vr q dVol

103

'Vol

where

+ fy01

-V

+ V ar aV 0 dVol
Vol

- oV 2wa -r v VO dVol

+ fI,
Vol

ol

Vol



= w wqdVol+ wq' dS,

For the linear interpolation element, these two schemes are identical where 7 in

the equation obtained using the Galerkin least squares method is equivalent to

in the equation obtained using the Petrov-Galerkin method.

For the general element, these two schemes are not identical. The Galerkin least

squares method results into an equation that contains extra terms.

104



Bibliography

[1] J. Argyris, A. Laxander, and J. Szimmat. Petrov-Galerkin finite element ap-

proach to coupled heat and fluid flows. Comput. Methods Appl. Mech. Engrg,

94:181-200, 1992.

[2] K.J. Bathe. Finite Element Procedures. Prentice-Hall, in press.

[3] C.E. Baumann, M.A. Storti, and S.R. Idelsohn. A Petrov-Galerkin technique for

the solution of transonic and supersonic flows. Comput. Methods Appl. Mech.

Engrg, 95:49-70, 1992.

[4] E.T. Bouloutas, and M.A. Celia. An improved cubic Petrov-Galerkin method

for simulation of transient advection-diffusion processes in rectangularly decom-

posable domains. Comput. Methods Appl. Mech. Engrg, 92:289-308, 1991.

[5] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incompress-

ible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg, 32:199-259,

1982.

[6] E.G.D. Carmo and A.C. Galeao. Feedback Petrov-Galerkin methods for

convection-dominated problems. Comput. Methods Appl. Mech. Engrg, 88:1-16,

1991.

[7] D. Chapelle, and K.J. Bathe. The Inf-Sup test. Computers and Structures,

47:537-545, 1993.

105



[8] I. Christie, D.F. Griffiths, A.R. Mitchell, and O.C. Zienkiewicz. Finite element

methods for second order differential equations with significant first derivatives.

Internat. J. Numer. Methods Engrg., 10:1389-1396, 1976.

[9] R. Courant, E. Isaacson, and M. Rees. On the solution of nonlinear hyperbolic

differential equations by finite differences. Comm. on Pure and Applied Math.,

5:243-255, 1952.

[10] E. Dick. Accurate Petrov-Galerkin methods for transient convective diffusion

problems. Inter. J. Num. Methods in Engrg, 19:1425-1433, 1983.

[11] J. Donea, V. Selmin, and L. Quartapelle. Recent developments of the Taylor-

Galerkin method for the numerical solution of hyperbolic problems. In Numerical

Methods for Fluid Dynamics III, pages 171-185, New York, 1988. Oxford Univ.

Press.

[12] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new finite element formulation

for computational fluid dynamics: VIII. the Galerkin/least-squares method for

advective-diffusive equations. Comput. Methods Appl. Mech. Engrg., 73:173-189,

1989.

[13] T.J.R. Hughes and M. Mallet. A new finite element formulation for computa-

tional fluid dynamics : IV. a discontinuity-capturing operator for multidimen-

sional advective-diffusive systems. Comput. Methods Appl. Mech. Engrg, 58:329-

336, 1986.

[14] T.J.R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation

for computational fluid dynamics: II. beyond SUPG. Comput. Methods Appl.

Mech. Engrg, 54:341-355, 1986.

[15] G.E. Schneider. Elliptic Systems : Finite-Element Method I in W.J. Minkowycz

E.M. Sparrow R.H. Pletcher and G.E. Schneider (eds). Handbook of Numerical

Heat Transfer. Wiley, New York, 1988.

106



[16] N. Kondo, N. Tosaka, and T. Nishimura. Numerical simulation of viscous flows

by the third-order upwind finite element method. Theor. Appl. Mech., 39:237-

250, 1990.

[17] N. Kondo, N. Tosaka, and T. Nishimura. Third-order upwind finite element

formulations for incompressible viscous flow problems. Comput. Methods Appl.

Mech. Engrg., 93:169-187, 1991.

[18] N. Kondo, N. Tosaka, and T. Nishimura. Computation of incompressible vis-

cous flows by the third-order upwind finite element method. Inter. J. for Num.

Methods in Fluids, 15:1013-1024, 1992.

[19] A. Mizukami. An implementation of the streamline-upwind/Petrov-Galerkin

method for linear triangular elements. Comput. Methods Appl. Mech. Engrg,

49:357-364, 1985.

[20] A. Mizukami and T.J.R. Hughes. A Petrbv-Galerkin finite element method for

convection dominated flows: an accurate upwinding technique for satisfying the

maximum principle. Comput. Methods Appl. Mech. Engrg, 50:181-193, 1985.

[21] S.V. Patankar. Numerical Heat Transfer and Fluid Flows. McGraw-Hill, New

York, 1980.

[22] G.E. Schneider and M.J. Raw. A skewed positive influence coefficient upwinding

procedure for control-volume-based finite-element convection-diffusion computa-

tion. Numerical Heat Transfer, 9:1-26, 1986.

[23] F. Shakib. Finite element analysis of the compressible Euler and Navier-Stokes

equations. Ph.D. thesis, Stanford University, 1988.

[24] D. B. Spalding. A novel finite difference formulation for differential expressions

involving both first and second derivatives. Internat. J. Numer. Methods Engrg.,

4:551-559, 1972.

107



[25] C.R. Swaminathan and V.R. Voller. Streamline upwind scheme for control-

volume finite element, part I. Formulations. Numerical Heat Transfer, Part B,

22:95-107, 1992.

[26] C.R. Swaminathan and V.R. Voller. Streamline upwind scheme for control-

volume finite element, part II. Implementation and comparison with the SUPG

finite-element scheme. Numerical Heat Transfer, Part B, 22:109-124, 1992.

[27] T.E. Tezduyar, S. Mittal, and R. Shih. Time-accurate incompressible flow com-

putations with quadrilateral velocity-pressure element. Comput. Methods Appl.

Mech. Engrg, 87:363-384, 1991.

108


