
A Programming System
for the Dynamic Manipulation
of Temporally Sensitive Data

by

Christopher John Lindblad
M.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology
(1989)

B.S. Engineering and Applied Science
California Institute of Technology

(1981)

Submitted in Partial Fulfillment of the
Requirements of the Degree of

Doctor of Philosophy
in

Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
August 5, 1994

@Massachusetts Institute of Technology 1994

Signature of Author L

Department of Elejical Engineering and Computer Science
August 5, 1994

Certified by .-- -. .

David Tennenhouse
,--f) Thesis Supervisor

A terd-tA hbr

1 '- 9.

E y

A Programming System
for the Dynamic Manipulation
of Temporally Sensitive Data

by

Christopher John Lindblad

Submitted to the
Department of Electrical Engineering and

on August 5, 1994
in partial fulfillment of the requirements

Doctor of Philosophy in Electrical Engineering

Computer Science

for the Degree of
and Computer Science

In computer-participative multimedia applications, the computer not only manipulates
media, but also digests it and performs independent actions based on media content. In
this thesis I discuss an approach to the design of environments to support the development
of computer-participative multimedia applications and I describe the implementation of
the VuSystem, a computer-participative multimedia system built using this approach.
The system is unique in that it combines the programming techniques of visualization
systems and the temporal sensitivity of multimedia systems. I report measurements made
of the performance of the VuSystem, which demonstrate its practicality. I conclude with
a brief summary of users' experiences with the VuSystem, and suggests future directions
for research in this area.

Thesis Supervisor: David L. Tennenhouse
Title: Associate Professor of Computer Science and Engineering

3

Abstract

Contents

1 Introduction 11
1.1 Computer-Participative Multimedia 12
1.2 Some Computer-Participative Applications 12
1.3 The ViewStation 15
1.4 Statement Of Claims 16
1.5 This Thesis 17

2 Perspective 19
2.1 Commercial Multimedia Systems 19
2.2 Research Multimedia Systems 20
2.3 Visualization Systems 21
2.4 The Challenge 22

3 Approach 25
3.1 Multimedia Application Structure 25
3.2 Architecture Of The In-Band Partition 26
3.3 Architecture Of The Out-Of-Band Partition 29
3.4 The VuSystem Scheduler 30
3.5 Media Synchronization 32
3.6 Implementation 34
3.7 Review 36

4 The VuSystem Application Environment 37
4.1 The Tool Command Language 38
4.2 Manipulating Modules 39
4.3 The VuSystem Application Shell 41
4.4 Programming The Graphical User Interface 42
4.5 Application Scripts 43
4.6 Review 48

5 Module Programming In The VuSystem 51
5.1 The Module Data Protocol 51
5.2 Payloads 52
5.3 Sending Data To A Downstream Module 56
5.4 Receiving Data From An Upstream Module 57
5.5 A Simple Transparent Filter 58
5.6 Scheduling Computation Operations 58
5.7 Standard Filters 61
5.8 Scheduling File I/O Operations 61
5.9 Scheduling Time-Dependent Operations 64
5.10 Starting and Stopping 67
5.11 Constructors and Destructors 68

5.12 Module Linkage Within The Application Shell 69
5.13 Review 70

6 Communication Between In-Band And Out-Of-Band Partitions 73
6.1 Subcommands 74
6.2 Callbacks 75
6.3 Control Panels 77
6.4 Review 79

7 Performance 81
7.1 Payload-Passing Overhead 81
7.2 Scheduler Overhead 84
7.3 Processing Times Of Representative Filter Modules 85
7.4 Timeout Precision 88
7.5 Total System Throughput 89
7.6 System Throughput With Audio And Captions 91
7.7 Review 91

8 Conclusion 93
8.1 Primary Contributions 93
8.2 Additional Insights 94
8.3 Work in Progress on the VuSystem 97
8.4 Future Work 100
8.5 Towards Intelligent Multimedia Environments 101

A Predefined Modules In The VuSystem 103

B Tcl Support Provided By The VuSystem 159

C Support For Modules In The VuSystem 173

D Tcl Support For A Graphical User Interface 201

E The vspuzzle Example Application 249

List of Figures

1.1 The Room Monitor and the Whiteboard Recorder 13
1.2 The Sports Highlight Browser 14
1.3 The Broadcast television News Browser 15
1.4 ViewStation Architecture 16

3.1 VuSystem application structure 25
3.2 Module data protocol 28
3.3 VuSystem scheduler 32
3.4 Synchronized capture and retrieval 33
3.5 Example application 35
3.6 Tcl script example 35

4.1 VuSystem application structure 37
4.2 Puzzle application graphical user-interface 44
4.3 Puzzle application block diagram 45
4.4 Puzzle application main procedure 46
4.5 Puzzle module creation procedure 47
4.6 Puzzle modules 48

5.1 Module data protocol 51
5.2 Making a shallow copy 55
5.3 Making a deep copy 56
5.4 Idle example 57
5.5 Receive example 57
5.6 Simple transparent filter example 58
5.7 Work example 59
5.8 Standard filter exampl 60
5.9 Input example 62
5.10 Output example 63
5.11 Timeout example 65
5.12 Start and Stop examples 67
5.13 Constructor and destructor example 68
5.14 Creator, classSymbol, and InitInterp examples 69
5.15 main example 70

6.1 VuSystem application structure 73
6.2 Subcommand example 75
6.3 Callback example: C++ code 76
6.4 Callback example: Tcl code 76
6.5 Control panel example 77
6.6 VsLabeledPathname example 78
6.7 VsLabeledChoice example 78
6.8 VsLabeledChoice example 79

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2

Data-passing overhead measurement module
Data-passing overhead measurement setup
Data-passing overhead measurement results
Scheduler overhead measurement module
Scheduler overhead measurement setup
Scheduler overhead measurement results
Filter processing times measurement module
Filter processing times measurement setup
Filter processing times results
Timeout precision measurement setup
Timeout precision measurement results
System throughput measurement setup
System throughput with audio and captions setup .

The visual programming interface
The Media Gateway

. 82

. 82
. 83

. 84
.. 84

. 85
. 86

. 86
.. 87
....... 89

.. 89

.. 90
. 9 1

.. 98

.. 100

List of Tables

2.1 Quicktime component types 19
2.2 Quicktime managers 20
2.3 Summary of related work 23

4. 1 VuSystem sources 39
4.2 VuSystem sinks 40
4.3 VuSystem filters 41
4.4 Other VuSystem modules 42
4.5 VuSystem object commands 42
4.6 VuSystem callback conditions 43

5.1 Payload types 52
5.2 Descriptor components 53
5.3 Data payload components 54

7.1 Representative filter processing times 88
7.2 System throughput measurement results 90
7.3 System throughput with audio and captions results 92

Chapter 1

Introduction

This thesis describes the VuSystem, a programming system for the software-based pro-
cessing of temporally sensitive data. It runs on high performance computer systems not
specifically designed for the manipulation of digital media, such as audio and video. The
system is unique in that it combines the programming techniques of visualization systems
and the temporal sensitivity of multimedia systems.

VuSystem applications have two components: one which does traditional out-of-band
processing and one which does in-band processing. Out-of-band processing is the pro-
cessing that performs the event-driven functions of a program. In-band processing is
the processing performed on every video frame and audio fragment. In-band code is
more elaborate in the VuSystem than in traditional multimedia systems [12, 17] because
VuSystem applications perform sophisticated analysis of their input media data.

In the VuSystem, the in-band processing component is arranged into processing mod-
ules that pass dynamically-typed data payloads through input and output ports. The
out-of-band component of the VuSystem is programmed in the Tool Command Lan-
guage, or Tcl [26], an interpreted scripting language. Application code written in Tcl is
responsible for creating and controlling the network of in-band media-processing modules,
and controlling the graphical user-interface of the application.

The VuSystem is implemented on Unix workstations as a program that interprets
an extended version of Tcl. In-band modules are implemented as C++ classes and are
linked into this Tcl shell. Simple applications that use the default set of in-band modules
are written as Tcl scripts. More complicated applications leverage customized modules
that are linked into the shell.

VuSystem programs have a media-flow architecture: code that directly processes tem-
porally sensitive data is divided into processing modules arranged in data processing
pipelines. This architecture is similar to that of some visualization systems [29, 31], but
is unique in that all data is held in dynamically-typed time-stamped payloads, and pro-
grams can be reconfigured while they run. Timestamps allow for media synchronization,
and dynamic typing and reconfiguration allows programs to change their behavior based
on the data being fed into them.

The VuSystem's design makes it particularly well suited as an application toolkit
for distributed multimedia systems. In particular, the VuSystem is used as the applica-
tion environment for the ViewStation hardware platform, a set of computers and pro-
grammable digital video processing devices connected together by a personal local-area
network [4].

Because the VuSystem provides a rich environment of media processing modules linked
together with a high-level scripting language, it is a particularly good foundation for the
development of applications that require intelligent processing of media data. These
applications are best called computer-participative multimedia applications, because the
computer directly participates in the interpretation of the media data.

In rest of this introduction, I motivate the design of the VuSystem by describing
some computer-participative multimedia applications that have been written in it. I also
describe the ViewStation, the hardware and software platform for which the VuSystem
is designed. I conclude the chapter with a statement of claims, and provide a roadmap
of this thesis.

1.1 Computer-Participative Multimedia

The term multimedia generally refers to the capture, storage, retrieval and presentation
of audio and video data using computers. Typical multimedia applications include online
encyclopedias and video-conferencing systems. These applications are perhaps better
classified as computer-mediated multimedia applications. The computer acts as a medi-
ator between the application author and user in the case of the online encyclopedia, or
between two users in the case of the video-conferencing application.

In contrast, computer-participative multimedia applications also perform analysis on
their audio and video data input, and take actions based upon the analysis. For example,
a program that watches television news shows and maintains an online database of stories
organized by subject is a computer-participative multimedia application. The program
must analyze the content of its input to sort it into stories. The computer is an active
participant in the processing of audio and video data.

Current programming systems are inadequate for computer-participative multimedia
applications. Commercial multimedia systems generally support the efficient storage,
retrieval, and presentation, of pre-recorded video clips, but do not adequately support
the direct processing of live media. Some experimental multimedia systems for Unix
workstations have been developed, but provide only a limited range of operations on
media data. Visualization systems allow a wide variety of operations on images, but they
do not support temporally sensitive data.

1.2 Some Computer-Participative Applications

Several examples of computer-participative multimedia applications have been built with
the VuSystem. The Room Monitor and The Whiteboard Recorder applications, for exam-
ple, directly process live video. The News Browser, The Joke Browser, and The Sports
Browser applications perform retrieval of pre-recorded multimedia based on automati-
cally extracted content. Each application requires some sort of direct access to temporally
sensitive data.

1.2.1 Applications That Process Live Video

Use of the VuSystem has revealed it to be a good platform for the investigation of concrete
ways that computers may become more responsive to their human users. One user,
William Stasior, is developing a prototype "Computerized Office Multimedia Assistant"
(COMMA) with the VuSystem. COMMA assists its user by performing various tasks
that require the analysis of live video [8].

The Room Monitor

Stasior has written The Room Monitor, which processes continuous video from a station-
ary camera in a room. It processes the live video to determine if the room is occupied
or empty, and records video only when activity is detected above some threshold. It
produces a series of video clips that summarize the activity in the room. A video browser
(Figure 1.1) is used to view the segments. The video clips allow the user to check who
was in the room and when.

Figure 1.1: Browsers operating on the output of The Room Monitor and The Whiteboard
Recorder, two applications that directly process live video.

The Whiteboard Recorder

Stasior has also written The Whiteboard Recorder, an application that keeps a history of
changes to an office whiteboard. It works by taking continuous video from a stationary
camera aimed at the whiteboard and filtering it. By following a simple set of rules, the
filtering distills the video into a minimum set of images. A video browser can be used to
view the saved images.

The whiteboard recorder uses motion analysis to distinguish between the person writ-
ing on the board and the writing itself. Live video captured from a fixed camera is
processed so that transient image features are filtered out, and only relatively stationary
features are retained. It distinguishes changes to the whiteboard due to writing, from
changes due to erasing. The system saves away images that represent "peaks" in the
information written on the board.

1.2.2 Content-Based Processing Of Television Programs

The VuSystem has been used to explore the potential of media processing applications
to support content-based retrieval of pre-recorded television broadcasts. VuSystem users
have developed content-based media browsers that use textual annotations that represent
recognizable events in the video stream. These annotations are analyzed and processed to
create higher level representations that may be meaningful to a human user. Finally, these
representations are matched against user queries to generate an interactive presentation
in the form of a browsable set of relevant video clips.

Annotations are generated through the recognition of audio or video cues from the
media stream, or by the extraction of ancilliary information included in the stream, such
as closed captions. The Sports Browser, The News Browser, and The Joke Browser are
built on the processing of these annotations.

Figure 1.2: The Sports Highlight Browser, an application that supports content-based
retrieval of video segments from a television program using video analysis.

The Sports Highlight Browser

Stasior has developed The Sports Highlight Browser, which segments a recorded sporting
news telecast into a set of video clips, each of which represents highlights of a particular
sporting event. Video highlights of a particular game can be requested with a browser
(Figure 1.2).

The annotation analyzer is built with assumptions about the format of a sports tele-
cast. In particular, this analyzer depends on the news clichd of first an anchor person,
then a set of narrated video clips, and finally a scoreboard graphic. The analyzer groups
into a highlight the video sequence that falls between two scoreboard graphics. The
analyzer labels each highlight with the names of the teams that competed.

The Broadcast Television News Browser

The Broadcast Television News Browser provides interactive access to a simple database
of news articles. Live news programs such as CNN Headline News are automatically
captured to disk at regular intervals. The stories are viewed with a video browser program
(Figure 1.3).

News stories that are closed-captioned can be retrieved based on their content. Many
broadcast television programs are closed-captioned for the hearing-imparied. Closed-
captions provide a text translation of the audio component of the program - a significant
amount of information. Closed-caption capturing code runs in the Vidboard [9]. The
caption information is extracted from the digitized video signal and converted into a
common format so that modules capable of processing it can be constructed.

The news browser makes direct use of the closed-captioned annotations. A text search
specification supplied by the user causes the browser to jump to stories with captions
that match.

Figure 1.3: The Broadcast Television News Browser and The Joke Browser, two ap-
plications that support content-based retrieval of video segments from closed-captioned
television programs.

The Joke Browser

David Bacher has developed The Joke Browser, which further demonstrates the potential
of content-based media processing using closed-captions [3]. It records late-night talk
show monologues, and segments them into jokes by processing the closed-captioned text.
A special browser program (Figure 1.3), is queried to select all the jokes on a certain
topic that have been made in the last week.

The Joke Browser extracts information from a recorded monologue through the anal-
ysis of the closed-caption data. In addition to the text of the jokes, the closed-captions
contain hints to the presence of audience laughter and applause. A joke parsing module
groups captions into jokes. This module is program specific, as it uses knowledge of the
format of a particular program to make its grouping decisions.

1.3 The ViewStation

The ViewStation project [4] integrates the technologies of broadband networking and dis-
tributed computing with those of digital video to produce systems for video-intensive com-
puting. The ViewStation platform is composed of a set of computers and programmable
digital video processing devices connected together in a personal local-area network.

The purpose of the project is to build a local-area distributed multimedia system. It
takes a different approach towards multimedia devices, where these devices are treated
as general purpose peripherals, providing a uniform hardware interface to the network.
Thus the data generated from all such devices are treated by hosts in a homogeneous
manner.

The project focuses on getting real-time data such as voice and video from the network

7
Switch

/J

Workstation Link

/

Camera Television Receiver

Figure 1.4: The ViewStation Architecture.

all the way to the application. Since the ViewStation takes a software-intensive approach
to multimedia, the VuNet and custom multimedia hardware were designed to provide
efficient support for software-driven handling of multimedia streams.

ViewStation applications are built with the VuSystem. The VuSystem provides sim-
ple scheduling and resource management functions to allow intelligent media-processing
applications to run on workstations not specifically designed for multimedia. The VuSys-
tem is uniquely suited for rapid development of applications that perform intelligent
processing of live media on the ViewStation. It runs on Unix workstations connected to
the VuNet, and is used to build applications that use VuNet peripherals. In particular,
VuSystem applications make use of the Vidboard [9], a video capture device that resides
on the VuNet.

1.4 Statement Of Claims

I have identified a class of multimedia applications in which the computer performs tasks
requiring the direct processing of multimedia data, as well as the capture, storage, re-
trieval, and display tasks of traditional multimedia applications. Members of the class are
best called computer-participative multimedia applications, because in them the computer
directly participates in the interpretation of the multimedia data. These applications re-
quire more support than is provided by traditional multimedia toolkits.

Applications of this type have been implemented in the past. Bender and Chenais
have developed a system that digests television news broadcasts and annotates them

Switch

Switch
AA"Iti nr-oEEnr/ I~~l·~YI~V i~11

//
/

i

with newspaper articles [33]. Abramson and Bender have developed a system in which
self-aware multimedia objects alter their content to fit user preferences [15]. In this thesis
I build on this work by establishing a framework for investigating computer-participative
multimedia applications as a class.

To support the development of computer-participative multimedia applications, I de-
signed and built the VuSystem, a prototype software development environment for the
development of applications that directly manipulate temporally sensitive data. The sys-
tem provides simple scheduling and resource management functions to allow intelligent
media-processing applications to run on ordinary Unix workstations. It is uniquely suited
for rapid development of applications that perform intelligent processing of live media.

In the VuSystem, application code is split into two partitions: an out-of-band parti-
tion to handle user interfaces and other event-driven program functions; and an in-band
partition to perform the periodic media processing operations. The architecture for each
partition was designed separately: the in-band partition for high performance, and the
out-of-band partition for ease of programming. This arrangement enables the rapid de-
velopment of complex and intelligent media-processing applications.

Code in the in-band partition of the VuSystem is arranged into processing mod-
ules that logically pass dynamically-typed data payloads though input and output ports.
This structure provides for the modularity and extensibility necessary for the support
of computer-participative multimedia applications, but still retains a high degree of effi-
ciency and temporal sensitivity.

The out-of-band partition of the VuSystem has more relaxed performance constraints,
since it is designed to handle relatively infrequent events. An interpreted scripting lan-
guage, such as the Tool Command Language, or Tcl [26], is an appropriate programming
language for the out-of-band partition. Out-of-band VuSystem application code written
in Tcl is responsible for creating and controlling the network of in-band media-processing
modules, as well as controlling the graphical user-interface. Tcl provides a high-level
language interface to the VuSystem that encourages the rapid development of prototype
computer-participative multimedia applications.

Following the construction of the VuSystem prototype, the suitability of the system
was verified through the development of applications that use the environment. The
applications are based on an extensive library of primitive modules that I and others
have built. The Puzzle program, which displays a video picture scrambled into a 16-
square puzzle, is used as an example throughout this thesis. Other applications already
mentioned in this introduction include The Room Monitor, The Whiteboard Recorder,
The News Browser, The Joke Browser, and The Sports Browser. These applications
demonstrate the benefits of computer-participative multimedia.

Measured performance of VuSystem applications reveal my approach to be practi-
cal. The VuSystem run-time component operates with low overhead. Representative
VuSystem in-band processing modules are efficient. The VuSystem scheduler can cause
operations to occur at reasonably precise times. The system has enough thoughput to
support full-motion video. Measurements verify that the VuSystem meets perceptual-
time constraints sufficiently to support media-processing applications.

1.5 This Thesis

This thesis is divided into eight chapters. Chapter 1 is this introduction. Chapter 2
contains a summary of relevant previous work. In Chapter 3, I describe my design
approach. Chapter 4 describes the programming of VuSystem applications using an
interpreted scripting language. Chapter 5 describes the programming of VuSystem media
processing modules. Chapter 6 describes how the scripting language and the modules
interact. Chapter 7 shows how the VuSystem performs, and Chapter 8 presents the
conclusions.

The appendicies of this thesis provide reference documentation for the VuSystem. Ap-
pendix A documents the predefined modules in the VuSystem. Appendix B documents
application support in the VuSystem, Appendix C documents module programming sup-
port, and Appendix D documents graphical-user-interface programming in the VuSystem.
Appendix E shows sample application and module code for the Puzzle program, a simple
VuSystem application.

Chapter 2

Perspective

In this chapter I discuss previous work that is relevant to the design of systems for
the intelligent processing of live media data on ordinary computer workstations. Work
in this area is best divided into three areas: commercial multimedia systems, research
multimedia systems, and visualization systems. Work done in each of these areas is
applicable to the problem.

2.1 Commercial Multimedia Systems

Commercial multimedia systems exist primarily to support the timely storage, retrieval,
and presentation, of pre-recorded video clips. These systems are optimized for the efficient
display of pre-recorded video sequences. They do not adequately support the direct
processing of live video.

2.1.1 Apple Quicktime

Apple Computer has developed Quicktime, a tool kit for the manipulation of time-based
data within the Macintosh environment [12]. It is the most popular system for multimedia
applications today.

In Quicktime, time-based data is referred to as movies. Applications allow users to
display, edit, copy and paste movies and movie data. These applications manipulate
Quicktime components (Table 2.1) through managers (Table 2.2). Quicktime compo-
nents support defined sets of features and present specified functional interfaces to their
client applications, while Quicktime managers provide access to system facilities. Quick-
time defines time-coordinate systems that anchor movies and their media to a common

Component Type Function
Clock Provides timing signals for Quicktime applications.

Image compressor Compresses and de-compresses image data.
Movie controller Allows applications to play movies using a standard user

interface.
Sequence grabber Allows applications to obtain video and sound.

Sequence grabber channel Provides interfaces between a sequence grabber and the external
data source and writes the data into quicktime movies.

Video digitizer Allows applications to control an external device which
produces video.

Table 2.1: The predefined Quicktime component types.

Manager Function
Movie Toolbox Supports retrieval and manipulation of time-based media

stored in movies.
Image Compression Manager Provides an interface abstraction to compression

and decompression resources.
Component Manager Allows the developer to define and register code resources

and communicate with them using a standard interface.

Table 2.2: The Quicktime managers.

timescale, the number of time units per second.
Apple Quicktime deals with the scheduling and resource allocation issues of audio

and video delivery within the constraints of the Macintosh environment. Its component
architecture provides the extensibility necessary for direct media processing programs,
but it is poorly documented and only works within the Macintosh environment.

2.1.2 Microsoft Video For Windows

Microsoft Video For Windows enables users of Microsoft Windows to capture, edit and
play back video sequences without specialized hardware [17]. It provides efficient playback
of video sequences from hard disk or CD-ROM, regardless of the capabilities of the PC.

Video For Windows is based on the multimedia features of Windows 3.1. Media data
is stored in the resource interchange audio video interleaved file format, or AVI. The AVI
file player supports Microsoft's media control interface for digital video, DV-MCI.

Like Quicktime, Video For Windows is designed to be scalable. During video play-
back, it automatically takes advantage of all the capabilities of the system upon which
it is running, resulting in digital video with color and motion that improve with the per-
formance level of the machine. On slower computers, video playback degrades gracefully,
displaying as much information as possible and always maintaining audio continuity.

For the multimedia author, Video For Windows provides a set of tools for creating
software-only digital video sequences. The tools can be used by professional multimedia
title developers as well as individual users.

For the software developer, Video for Windows provides interfaces for the creation
of tools for capturing, editing, enhancing, and utilizing video sequences. The Video for
Windows architecture also provides hooks for adding video capture drivers, and video
codecs. The codecs can be software-only, hardware assisted, or hardware only.

Video For Windows is designed for the efficient capture, edit and playback of audio and
video data within the Windows environment on personal computers. It is not designed
as an architecture for the direct processing of live media. It is somewhat extensible, in
that video capture drivers and codecs can be added, but it does not effectively support
applications that perform extensive processing on their media input, nor does it modify
their behavior based on their input.

2.2 Research Multimedia Systems

Networked multitasking workstations running Unix have been found to be useful because
applications developed for them can run on a variety of platforms with a variety of
capabilities. It would be good if audio and video applications written for Unix could
retain the portability and scalability that has made Unix so useful. However, since audio
and video data are temporally sensitive, audio and video applications need guarantees
on the computational resources available so that the capture or playback of the data is
smooth and timely. These guarantees cannot be met by traditional Unix services.

2.2.1 Abstractions for Continuous Media

Anderson et al describe a set of Abstractions for Continuous Media (ACME) in [24]. The
ACME system provides shared network-transparent access to real-time audio and video
hardware. The system provides mechanisms for resource management and scheduling for
audio and video applications. In the ACME system, each workstation runs an ACME
server, in which all the processing of real-time data is performed.

The ACME system is not distributed, but instead works as one server on a worksta-
tion. Applications exist as out-of-band clients that make configuration requests of the
server, which performs all the in-band data processing. These applications communicate
to the server through a control protocol.

In ACME, since media data never leaves the server, there is no possibility of applica-
tions being able to directly process media data. ACME provides no in-band processing
extensibility. No new in-band data manipulations can be implemented by the application
programmer. Any new in-band functionality can only be introduced through modification
of an ACME server.

2.2.2 Comet

Anderson et al address some of the limitations of ACME with Comet [19]. Comet provides
a high-level distributed application programming interface to ACME. In Comet, applica-
tions exist as processing nodes interconnected by data streams. Comet maps the abstract
description of a processing network into a network with physical components. In Comet,
the processing components are implemented by ACME servers, and data communication
is performed by TCP streams.

Comet provides a distributed processing capability that ACME alone cannot provide,
but still suffers from the lack of in-band extensiblity. All the in-band functionality of
Comet is provided by ACME servers. New applications can provide new out-of-band
functionality, but no new in-band functionality. New in-band functionality can only be
introduced through an ACME server.

2.3 Visualization Systems

Visualization systems allow a wide variety of operations on sequences of images. They
provide a library of image processing modules that can be hooked together to transform a
sequence of source images stored in individual files to a sequence of result images. They
also provide a graphical programming system that can be used to combine processing
modules into programs.

2.3.1 The Animation Production Environment

The Animation Production Environment (apE) is a flexible integrated graphics environ-
ment for the production and manipulation of computer graphic images [34]. Built for
the Ohio Supercomputer Project, apE is designed for the manipulation of large scientific
data sets through visualization. The apE programming model is similar to Comet's -
applications are constructed through the assembling of processing modules with data and
control connections.

The Animation Production Environment is extensible because new processing mod-
ules can be defined by the programmer, but apE does not handle the temporal manipu-
lations of the data. The apE system operates without the anchoring of any component
to real time. Since it has no basis in real time, apE does not provide for any resource
scheduling based on real time.

2.3.2 Khoros

Developed at the University of New Mexico, Khoros is an integrated software development
environment for information processing and data visualization [29]. It includes extensive
data display and processing libraries, and a visual programming language. It runs on
Unix workstations.

Khoros includes extensive application specific data display and processing libraries,
providing support for image processing, digital signal processing, numerical analysis, data
and file conversion, graphics display, and image display.

Cantata, the visual programming language of Khoros, is a graphically expressed,
data-flow oriented language. With Cantata, scientists and engineers can assemble library
modules into visualization programs without writing any code.

Khoros has no support for temporally sensitive data. Khoros programs cannot easily
reconfigure themselves dynamically based upon their input. It is designed primarity for
data processing and visualization, not for media-based intelligence.

2.3.3 The Application Visualization System

The Application Visualization System (AVS) is a suite of tools for the visualization and
analysis of large computer-generated data sets [31]. AVS includes support for 2D plots
and graphs, image processing, and interactive 3D rendering and volume visualization. It
works on many major Unix workstations, supporting the full range of graphics hardware
available on these platforms.

AVS includes a collection of hundreds of modules, and a developer can include custom
code or link AVS to external applications. A module generator provides the developer
with an environment for rapidly creating and maintaining AVS module code in an object
oriented fashion. AVS also includes a visual programming environment where modules
can be graphically connected together to build a visualization network, which becomes a
customized application.

AVS includes an animation tool to assist in the generation of animated data visu-
alizations. It can be used to generate image sequences from simulation output, to be
displayed on a computer screen. This tool helps scientists and engineers visualize data
through animation.

AVS is not designed for the direct processing of live media. It only supports the
manipulation of visual data. It has no support for audio or other media. It has no notion
of temporal sensitivity of its input. It is designed primarily to make computer data more
understandable to scientists and engineers through visualization.

2.4 The Challenge

Commercial multimedia systems generally support the efficient storage, retrieval, and
presentation, of pre-recorded video clips, but do not adequately support the direct pro-
cessing of live media. Some experimental multimedia systems for Unix workstations have
been developed, but provide only a limited range of operations on media data. Visual-
ization systems allow a wide variety of operations on images, but they do not support
temporally sensitive data.

The challenge is build a system that can support computer-participative multimedia
applications. Like traditional multimedia systems, such a system should support tem-
porally sensitive data. Additionally, it should provide an extensive set of operators that
can be used to perform intelligent processing on the data. It also should be extensible,
in that it should allow developers that use the system to define new operators. Finally,
it should support elaborate control structures that intelligent multimedia applications
would require.

Table 2.3: Traditional multimedia systems provide good temporal sensitivity, but bad
in-band extensibility, while visualization systems provide good in-band extensibility but
bad temporal sensitivity.

In the next chapter I present the design approach I used for the VuSystem in response
to this problem. I also describe the implementation of the VuSystem, and demonstrate
that it is well suited to the development of computer-participative multimedia applica-
tions.

System In-band Temporal
Extensibility Sensitivity

Quicktime bad good
Video For Windows bad good

ACME bad good
apE good bad

Khoros good bad
AVS good bad

Chapter 3

Approach

In the VuSystem, application code is split into two partitions: an out-of-band partition to
handle user interfaces and other event-driven program functions; and an in-band partition
to perform the low-level media processing operations. The architecture for each partition
was designed separately: the in-band partition for high performance, and the out-of-band
partition for ease of programming. In this chapter, I describe this approach.

In-band code

Figure 3.1: The structure of VuSystem applications.

VuSystem programs have what can be called a media-flow architecture: code that di-
rectly processes temporally sensitive data is divided into processing modules arranged
in data processing pipelines. This architecture is similar to that of some visualization
systems [29, 31], but is unique in that all data is held in dynamically-typed time-stamped
payloads, and programs can be reconfigured while they run. Timestamps allow for me-
dia synchronization, and dynamic typing and reconfiguration allows programs to change
their behavior based on the data being fed into them.

3.1 Multimedia Application Structure

The code in multimedia applications can be split into two classes: that which does
traditional out-of-band processing and that which does in-band processing.

Out-of-band processing is that processing which performs the event-driven functions
of a program. Code that performs the out-of-band processing in an application is the
familiar event driven code typical of all interactive applications. This code awaits user

input and other events and performs actions based on the events. Much of the out-of-
band code rarely runs in a given session, because it is built to handle many possible
contingencies. Software that performs out-of-band processing need not be extremely
efficient, but should be easy to develop.

In-band processing is the processing performed on every video frame and audio frag-
ment. It is any processing performed continuously on a running audio or video sequence.
This code is characterized by repeated actions that occur many times a second. The
in-band code usually is a small part of the overall application code, but consumes most
of the time of an application run. Software that performs in-band processing should be
very efficient, since it is running most of the time.

In-band code is more elaborate in computer-participative multimedia applications
than in computer-mediated multimedia applications. A computer-mediated data capture
application might simply move data from camera to disk. A computer-participative data
capture application might analyze the data from the camera, and only save it on disk if a
person were in the picture. The in-band code in the computer-participative application
would be more elaborate, since it would need to analyze the video data to determine if a
person were in the picture.

Toolkits for computer-participative multimedia applications support more modularity
and extensibility in in-band processing than toolkits for computer-mediated multimedia
applications. It is impossible for the toolkit developer to predict all the possible in-
band operations that a computer-participative multimedia application might need, so
the application developer must be supplied with a mechanism to extend any in-band
processing capability.

In-band processing and out-of-band processing are best handled in separate partitions
instead of together, because then choices of language and architecture can be made for
each partition separately. For example, both in-band and out-of-band processing can
be handled together in a single monolithic program, but the result would be subopti-
mal. If the program were entirely written in a C-like low-level language designed for
efficiency, then the out-of-band processing would be too clumsy for rapid prototyping. If
the program were completely written in a high-level Lisp-like language designed for rapid
prototying, then the in-band processing would be inefficient.

3.2 Architecture Of The In-Band Partition

Since the in-band processing partition consumes more system resources and has tighter
timing constraints than the out-of-band partition, care was taken with its design. The
in-band architecture of the VuSystem is highly structured. Its design emphasizes effi-

ciency, modularity, and extensibility. In the VuSystem, the in-band processing partition
is arranged into processing modules which logically pass dynamically-typed data payloads

though input and output ports. The processing modules are assembled in pipelines, using
rigid rules of communication and composition.

The programming language used for the in-band partition was chosen to support
maximum efficiency, extensibilty, and portability. Since the in-band partition should run

with maximum efficiency, a programming language that compiles to efficient code should
be used. Examples of such programming languages include C, C++, Objective C, and
FORTRAN. Additionally, code in the in-band partition should be modular and extensible,
to provide for extensibility and dynamic reconfigurability. Object-oriented languages like

C++ and Objective C provide a good foundation for modularity and extensibility. The

VuSystem was designed to be portable, and there are more implementations of C++
than Objective C, therefore the language chosen for the in-band processing partition was

C++.

3.2.1 Modules

In-band VuSystem modules can be classified by the number of input and output ports
they possess. The most common module classifications are sources, sinks, and filters.

* Sources are modules that possess one output port. Usually, a source
module interfaces to an input device though the operating system. Mod-
ules that interface to video capture hardware are source modules.

* Sinks are modules that possess one input port. Usually, a sink module
interfaces to an output device though the operating system. A module
that interfaces to the window system presenting video frames on the
screen is a sink module.

* Filters are modules that possess one input port and one output port.
Usually, a filter module is used to perform any data conversion or con-
dition detection. Filters can be implemented completely in software, or
they can use special hardware to perform their function. A module that
takes in uncompressed video frames and produces JPEG compressed
video frames is a filter.

Modules with more than two ports can exist too. For example, a multiplexer module
might have two input ports and one output port. Modules with three or more ports
allow the construct of elaborate pipelines to perform complex tasks.

3.2.2 Payloads

VuSystem payloads are self-identifying, dynamically-typed objects that are logically
passed between modules via ports. Examples of payloads include VideoFrame payloads,
which contain a single uncompressed frame of video data, AudioFragment payloads, which
contain a sequence of audio samples, and Caption payloads, which contain closed-caption
text.

All in-band multimedia data in the VuSystem is represented as payloads to provide an
abstract yet efficient handling mechanism for large amounts of multimedia data. Compli-
cated implementation details such as shared-memory data regions and reference-counting
pointer schemes are hidden behind the payload abstraction so that the designer of in-
band processing modules needs only to know a few simple rules about payload handling.
For example, it is always clear when a module gains ownership of a payload, and when
it loses it.

Payloads are dynamically-typed in the VuSystem to provide for easy data-directed
processing. Any VuSystem module with an input port can receive payloads of any type,
and any module with an output port can send payloads of any type. This provides a
flexibility in the composition of modules into processing pipelines that a statically-typed
system cannot provide. For example, the standard VsFileSource composite module (page
108) includes in-line decompression modules that automatically convert compressed video
frame payloads into decompressed video frame payloads, but pass transparently other
payload types.

Each payload has two components: a descriptor and data. The descriptor compo-
nent holds information about the entire payload, while the data component holds type-
dependent media data. The descriptor component is implemented as a set of C++ class
member functions. The data component is implemented as an opaque block of memory,
whose precise representation is specified by the descriptor component.

A more detailed discussion of payloads can be found in Section 5.2, page 52.

upstream module downstream module

Idle output input
port port

C--

Receve

Figure 3.2: The VuSystem module data protocol.

3.2.3 The Module Data Protocol

The module data protocol is the mechanism used to transfer payload ownership between
an upstream module and a downstream module within an application. Its principle fea-
tures are:

* It does not require buffering between modules, which translates to re-
duced latency. Payloads are efficiently passed with one procedure call:
a downstream module's Receive C++ class member function is called
directly by an upstream output port's Send C++ class member function.

* It implements a ready/not-ready protocol that propagates timing con-
straints through back-pressure. By temporarily refusing a payload, a
downstream module automatically throttles back upstream processing.

* It provides a cheap non-blocking scheduling mechanism that does not
require multi-threading. If a downstream module has very little work to
do, it can perform all its work in its Receive member function, otherwise
it can schedule work to be done later.

Figure 3.2 shows the principle actors in the protocol and their relationships. A detailed
discussion of the module data protocol can be found in Section 5.1 on page 51.

To pass a payload, the upstream module calls the Send member function on its output
port, which calls the Receive member function of the downstream module. If the down-
stream module accepts the payload, it returns True from Receive, and the upstream
module receives True from Send.

The downstream module could indicate it is not ready for more data by returning
False from Receive. Upon receiving False from Send, the upstream module would stop
trying to send data. Later, when the downstream module would become ready for more
data, it would call the Idle member function on its input port, which would call the
Idle member function on the upstream module. Idle on the upstream module would
then send any waiting data to the downstream module.

3.2.4 Similarity to Streams

The architecture of the in-band partition is similar to that of the Unix Stream Input-
Output System [35]. Streams provide a mechanism where a process can dynamically
insert processing modules between processes and terminals or networks. Processing mod-
ules in streams are "pushed" onto a terminal or network, resulting in a conceptually
vertical stack of processing modules, with the process at the top and the terminal or
network at the bottom. Streams can also be used horizontally to provide a form of inter-
process communication - processes can also connect directly to other programs through
streams.

The VuSystem in-band processing partition is similar to streams in that both involve
modules connected in complex pipelines, and both use data-driven run-to-completion
scheduling of computation operations. The systems pass data and schedule operations dif-
ferently: VuSystem processing modules use direct calls when passing data, while streams
use data queues serviced by coroutines.

The most important difference between the VuSystem and streams is that VuSystem
processing modules always run in user mode in a process address space. In streams,
processing modules run in kernel mode in the kernel address space. In streams, privileged
processes can install new processing modules in the kernel, but these modules run with
maximum privileges and no memory protection. A bug in an in-band VuSystem module
can only crash the application, but a bug in a streams module can crash the entire
operating system. Streams modules are hard to debug, since their bugs have such severe
consequences. They also must always be trustworthy, since they run with maximum
privileges. VuSystem in-band processing modules can be debugged with ordinary user-
mode debuggers, and can be run with low privileges without the danger of wreaking
havoc on a computer system through system crashes. The VuSystem architecture is
therefore more extensible than the streams architecture, because with it, any application
can include special in-band processing modules that run safely in a user process.

3.3 Architecture Of The Out-Of-Band Partition

The nature of out-of-band processing is very different from in-band processing. For the
out-of-band code, a programming system can be chosen that can handle user interfaces
and other event-driven program functions well. When designing the out-of-band par-
tition, programmability is more important than performance. For maximum ease of
application development, the out-of-band partition of VuSystem is programmed in an
interpreted scripting language. Application code written in this scripting language is re-
sponsible for creating and controlling the network of in-band media-processing modules,
and controlling the graphical user-interface of the application.

3.3.1 The Scripting Language

The scripting language used in the VuSystem is the Tool Command Language, or Tcl
[26], developed by John Ousterhout at the University of California at Berkeley. Tcl is
designed as a simple but extensible command language. Its syntax is simple and concise
enough that simple Tcl commands can just be typed in, but it is programmable and
powerful enough that most of the control logic of a large application can be written in
it. It has a simple and efficient interpreter, and a simple interface to C.

I chose Tcl over Common Lisp [28] or Scheme [22] because Tcl has a better interface to
C and C++ and Tcl does not require a garbage collector. Tcl is designed from the start to
have a simple and efficient interface to C. Scheme-to-C [32] is designed to have an efficient
interface to C, but is not as good as Tcl in this respect. Through its interface to C, Tcl can
easily support graphical user interfaces such as TclXt and TclXaw. Both Common Lisp
and Scheme are still struggling to support standard graphical user interfaces. Finally,
I could not afford to use a scripting language that required a non-incremental garbage
collector. In-band processing is handled in the same thread as out-of-band processing,
therefore a long period of time spent garbage collecting, while performing no media
processing would be unacceptable.

The TclXt and TclXaw components of the VuSystem provide Tcl programming in-
terfaces to the Xt and Xaw libraries respectively. These components enable the Tcl pro-
grammer to construct graphical user interfaces based on the Xt toolkit and the Athena
widget set.

3.3.2 Communication Between In-Band and Out-Of-Band

Out-of-band Tcl scripts and in-band C++ modules communicate through object com-
mands and callbacks:

* Out-of-band code is able to create and destroy in-band modules, query
the state of in-band modules, and give commands to in-band modules,
all through special Tcl object commands defined for each in-band module
and port.

* In-band media-processing code signals out-of-band Tcl code whenever
an appropriate in-band event occurs through Tcl callbacks.

The relationship of in-band code, out-of-band code, object commands, and callbacks is
illustrated in Figure 3.1. A detailed discussion of object commands and callbacks can be
found in Chapter 6.

Object commands are always completed in the in-band partition synchronously with
the out-of-band requester: object commands execute immediately and completely when
called from out-of-band scripts. In contrast, because of the time-critical nature of in-
band code, it is unacceptable for in-band code to wait for a response from out-of-band
code. Tcl callbacks are executed in the out-of-band partition asynchronously with the in-
band partition: callbacks are only queued for execution when invoked from in-band code.
Later, the VuSystem scheduler actually executes them. Since out-of-band callbacks do
not execute immediately when they have been signalled by in-band code, they are only
used to signal events to the out-of-band code, and cannot return values to their in-band
signallers. Any in-band changes made by an out-of-band callback are performed through
object commands.

3.4 The VuSystem Scheduler

The VuSystem scheduler provides scheduling services to in-band processing modules and
the out-of-band script interpreter. It is designed to run all VuSystem code within one
single-threaded Unix process. The VuSystem scheduler performs no preemption: module
member functions called by the scheduler are run to completion before returning control
to the scheduler. This simplifies the implementation of modules, since no locking or
critical sections are required. No VuSystem code need be reentrant, so a variety of image
processing and compression libraries can be incorporated into the VuSystem without
qualification.

3.4.1 How Modules Interface to the VuSystem Scheduler

Modules interface to the VuSystem scheduler by arranging to have it call specific C++
class member functions at appropriate times:

* Work member functions are called to perform long computations.

* Input and Output member functions are called to perform input and
output using Unix file descriptors.

* Timeout member functions are called to perform time-sensitive opera-
tions.

If a module needs to run a long computation, then it provides a Work member function
that is occasionally called by the VuSystem scheduler. The module calls the StartWork
and StopWork VuSystem scheduler interface precedures to start and stop the occasional
calling of its Work member function. For example, the VsPuzzle module uses the Work

C++ class member function mechanism to do its scrambling of the video frame. A
detailed discussion of Work member functions can be found in Section 5.6, page 58.

If a module does input or output on a Unix file descriptor, it provides an Input
or Output member function that the system calls whenever the file descriptor is ready
for input or output. The module uses the VuSystem scheduler interface procedures
StartInput, StopInput, StartOutput, and StopOutput to control this service. For
example, a file source module provides an Input member function for reading data from
a file. A detailed discussion of Input and Output member functions can be found in
Section 5.8, page 61.

If a module performs actions at precise times, it provides a Timeout member func-
tion that is called by the VuSystem scheduler after a time specified by the module has
passed. The module schedules timeouts by calling the StartTimeout VuSystem scheduler
interface procedure and cancels them by calling the StopTimeout VuSystem scheduler
interface procedure. For example, a window sink module uses a timeout to present a
video frame on the screen at a precise time. A detailed discussion of Timeout member
functions can be found in Section 5.9, page 64.

Detailed discussions of VuSystem scheduler interface issues can be found throughout
Chapter 5.

3.4.2 The Role of Payloads in VuSystem Scheduling

In the VuSystem, the assignment of computational resources to in-band processing mod-
ules is directly related to the flow of payloads. Modules schedule themselves when they re-
ceive input payloads. Starving a downstream module of payloads will reduce the amount
of computational resources it will use. Similarly, a module that generates an output
payload does not reschedule itself until after its payload has been accepted by its down-
stream module. Applying back-pressure to an upstream module reduces the amount of
computational resources it will use.

Media payloads effectively act as scheduling tokens, automatically distributing com-
putational resources to modules that need them. Through this interaction of scheduling
and payload flow, VuSystem applications can automatically adapt to changing avail-
ability of computational resources. For example, a live video-processing application can
automatically decrease the frame rate at which it is processing, as the load on the system
increases and it gets a smaller fraction of the CPU time.

VuSystem source modules are designed to accept and adapt to back-pressure. For
example, modules that interface to video capture devices skip frames when downstream
modules refuse payloads. Similarly, sink modules are designed adapt to starvation. A
module that presents video in a window leaves a previous frame in the window if starved
for more frames.

I/O modules provide decoupling between the real world and internal processing mod-
ules through the conversion from open-loop protocols to the closed-loop module data
protocol. Video capture modules, for example, convert from open-loop free-running 30
frame per second video to a sequence of video frame payloads delivered through the
module data, protocol. The modules use a frame buffer for this purpose. The frame
buffer is filled on the open-loop side with a new video frame 30 times per second. On
the closed-loop side, a video frame is extracted from the frame buffer only after a down-
stream module has accepted a previous frame from the video capture module. Video
display modules use a similar approach to interface to display hardware: they update the
workstation display video frame buffer with new video frames as they receive them.

This decoupling approach has its limits. For some I/O modules, adaptation to back-
pressure and starvation is difficult or impossible to do well. For example, an audio
sink module must maintain a continuous conversion of digital data to analog signals, or
annoying audio pops and other distortions are introduced to the output. These modules
define the temporal critical paths of VuSystem applications.

In-band module Out-of-band
code (GUI) code

VuSystem Scheduler

X Window System Toolkit

Unix kernel

Figure 3.3: The VuSystem scheduler uses the X Window System Toolkit to provide
scheduling support to in-band code.

3.4.3 Communication with the Unix Scheduler

VuSystem scheduler services are largely supported through the user-mode application
scheduler provided by the X Window System Toolkit, or Xt [30] (Figure 3.3). The
Xt library includes all the algorithms, data structures, and interfaces for scheduling
input, output, timeout, and work procedures. The VuSystem scheduler gains leverage
by being based on the Xt application scheduler: much code is shared, and VuSystem
applications run with efficient combined scheduling of in-band media processing and out-
of-band graphical user interface event handling.

VuSystem applications and the Unix process scheduler ultimately communicate
through the select system call for BSD-based systems, and the poll system call for
SVR4-based systems. The select and poll system calls provide the means for the
VuSystem scheduler to specify the set of file descriptors for which it is waiting to become
ready, and a timeout parameter to specify when it wants to wake up. Input and Output
member functions are supported through the set of file descriptors, and Timeout mem-
ber functions are supported through the timeout parameter. Work member functions are
supported outside the select and poll system calls.

The scheduler was designed for maximum portability. It uses standard interfaces to
Unix, and uses no real-time or threads extensions. With additional work, the VuSys-
tem scheduler could be extended to make use of standard operating system interfaces
that support concurrency through multi-threaded applications, such as those specified
in POSIX.4 [14]. By using preemption and multiple threads of execution, the VuSystem
would allow the concurrent execution of Input, Output, Timeout and Work procedures
of different modules. Using this interface, VuSystem applications could make use of
emerging multiprocessor systems by having threads of execution running concurrently on
multiple processors.

3.5 Media Synchronization

Multimedia systems use some kind of synchronization mechanism to ensure that audio
and video data simultaneously captured can also be simultaneously played back. To
provide for the synchronous capture and playback of multimedia data in the VuSystem,
I developed a system of payload timestamps:

| lli

* Media capture modules record the time of day at which media samples
are captured in the StartingTime payload descriptor member of the
payloads they create.

* File storage and retrieval modules preserve payload descriptors as well as
data, so that timestamps are always available, even from stored payloads.

* A special VsReTime filter module (page 147) is used to perform opera-
tions on the StartingTime payload descriptor member of payloads.

* Media playback modules use the StartingTime payload descriptor mem-
ber as the time of day for presentation of their input.

By using this system of payload timestamps, the VuSystem relies on the synchronized
clocks of media capture and playback devices for synchronization during capture and
playback.

Audio
Source

Ordered File
Mux Sink

Video
Source

Audio
Sink

File Re De
Source Time Mux

Video
Sink

Figure 3.4: A network for synchronously capturing audio and video data and storing the
data in a disk file, and a second network retrieving the data from the file, updating it
with a re-timing filter, and synchronously playing it back.

Example

Figure 3.4 shows a network for synchronously capturing audio and video data, and storing
the data in a disk file. A second network retrieving the data from the file, updating it
with a re-timing filter, and synchronously playing it back is also shown.

During capture, the AudioSource and VideoSource modules record times of capture
of media data in the descriptors of payloads they generate. The OrderedMux module
merges the payload sequences into a single multiplexed sequence with ordered times-
tamps. Finally, the FileSink module saves payload descriptors and data in a disk file.

During retrieval, the FileSource module retrieves payload descriptors and data from
a disk file. A VsReTime (page 147) module updates the timestamps stored in the payload
desriptors, and a DeMux module restores the two sequences from the single multiplexed
sequence. Finally, an AudioSink and VideoSink module present the media data at the
times indicated by the updated timestamps in the payload descriptors.

3.5.1 The VsRetime Filter

The VsReTime filter module modifies the StartingTime payload descriptor member of
payloads that pass through it. By adding a fixed offset to every timestamp, the filter
allows the playback of media data at a time later than time of capture. The offset
corresponds to the time difference between the time of the start of playback of a sequence,
and the time of day of the start of capture of the sequence.

How It Works

Consider a sequence of media payloads, perhaps a sequence of video frames interleaved
with corresponding audio fragments. When each video frame and audio fragment was
captured by the VuSystem, the exact time of day of capture was recorded by the capturing
source module in the StartingTime payload descriptor member for the payload. When
the sequence is played back, the respective playback sink module presents the video
frame or audio fragment at the time indicated by the StartingTime payload descriptor
member. It is the job of the VsReTime module to change the StartingTime payload
descriptor members so that the payload sequence can be played back correctly. It does
so by keeping invariant the relative payload timestamps within the sequence:

TN,Playback - TO,Playback = TN,Capture - TO,Capture (3.1)

The VsReTime module assigns the current time, plus a small offset to allow for some
buffering before playback, to the StartingTime payload descriptor member for the first
payload of the sequence:

TO,Playback = CurrentTime + delay (3.2)

For the rest of the payloads, VsReTime uses the time assigned to the first payload in the
sequence and Equation 3.1:

TN,Playback = TN,Capture - TO,Capture + TO,Playback (3.3)

The VsRetime filter can also cause the playback of stored media data at a speed different
than its capture speed. To do this, the filter subtracts the timestamp of the first payload
of the sequence, scales the result, and then adds the time of day of the start of playback
of the sequence. Equation 3.1 can be rewritten to include a scale factor:

TN,Capture - TO,Capture
TN,Playback - TO,Playback T pe - T (3.4)

speed

Equation 3.3 can also be rewritten to include this scale factor:

TN,Playback T apture - T,apture + TO,Playback (3.5)
speed

3.6 Implementation

The VuSystem was implemented on Unix workstations because of their overall high per-
formance and ease of programming. Two specific workstation platforms were chosen:
The Sun SPARCstation 10/512 and the Digital DEC 3000/400. On the Sun SPARCsta-
tion, the Sun VideoPix was used for video capture, and a standard X server for video
output. Sun's audio hardware and software was used for audio input and output. On
the Digital DEC 3000/400, the Vidboard [9], a LAN-based video capture subsystem, was
used for video capture. The standard X server was used for video display, and DEC's
audio hardware and AudioFile [10] software was used for audio input and output.

The toolkit is implemented as a program that works as a command shell, interpreting
an extended version of the Tool Command Language (Tcl) [26]. Out-of-band code is
written in Tcl, and in-band code is written in C++.

The toolkit includes a Tcl interface to the X Window System Toolkit and the Athena
Widget Set for the graphical user-interface code. I chose to use the Xt intrinsics and the
Athena widget set over the Tk [18] widget set provided with the Tcl distribution. The
Xt intrinsics and Athena widget set were more robust and complete, and also had built-
in features for scheduling in large applications. It was through the scheduling interface
provided by the Xt intrinsics that I provided scheduling to the in-band modules.

m.source m.filter m.sink

Figure 3.5: Block diagram of a rudimentary example application.

VsSunVfcSource $m.source \
-scale $scale

VsPuzzle $m.puzzle \
-dimension $dimension \
-input "bind $m.source.output"

VsWindowSink $m.sink \
-widget $v.screen \
-input "bind $m.puzzle.output"

$m start

Figure 3.6: A fragment from the Tel script of a rudimentary example application

Example

A video version of a 16-square puzzle can be built out of a video source module, a video
sink module, and a filter module (Figure 3.5). This example application takes input from
a camera or other video source, scrambles it, and then presents the output on a window.
The Tel script fragment that configures the modules and starts them running is shown
in Figure 3.6. This fragment is not complete, but is meant to give an idea of what the
scripts look like.

This script first creates an instance of a VsSunVfcSource module and names it
m.source. The -scale parameter is provided to the module instance so that it will
know at what resolution to capture video frames.

Next, the script creates an instance of the VsPuzzle module and names it m.puzzle.
It passes a -dimension parameter to establish the number of rows and columns in the
puzzle. It also instructs this module instance that its input port should be connected
to the output port of the m. source module instance. The output port of m.source was
automatically named m. source. output.

Next, the script creates a VsWindowSink module, specifying with the -widget option,
that the widget named w. screen should be used to specify which window on the screen
to use. The input port of m. sink is also specified to be connected to the output port of
the m.puzzle module.

Finally the parent module instance named m, created before this script fragment was
run, is given the start command, causing all its child module instances (with name
m. whatever) to start.

3.7 Review

VuSystem applications are split into two partitions: one which does traditional out-of-
band processing and one which does in-band processing. Out-of-band processing is that
processing which performs the event-driven functions of a program. In-band processing is
the processing performed on every video frame and audio fragment. In-band code is more
elaborate in the VuSystem than in multimedia systems because VuSystem applications
perform more analysis of their input media data.

In the VuSystem, the in-band processing partition is arranged into processing modules
which logically pass dynamically-typed data payloads though input and output ports.
These in-band modules can be classified by the number of input and output ports they
possess. The most common module classifications are sources, with no input ports and
one output port; sinks, with one input port and no output ports; and filters with one or
more input ports and one or more output ports.

VuSystem payloads are self-identifying, dynamically-typed objects that are logically
passed between modules via ports. Each payload has two components: a descriptor and
data. The descriptor component holds information about the entire payload, while the
data component holds type-dependent media data. The VuSystem relies on timestamps
stored in payload descriptors and the synchronized clocks of media capture and playback
devices for synchronization during capture and playback.

A module data protocol is used to transfer payload ownership between an upstream
module and a downstream module within an application. It provides a ready/not-ready
protocol that propagates timing constraints through back-pressure, does not require
buffering between modules, and provides a cheap non-blocking scheduling mechanism
that does not require multi-threading.

The out-of-band partition of the VuSystem is programmed in the Tool Command
Language, or Tcl [26], an interpreted scripting language. Application code written in Tcl
is responsible for creating and controlling the network of in-band media-processing mod-
ules, and controlling the graphical user-interface of the application. In-band modules are
manipulated with object commands, and in-band events are handled with asynchronous
callbacks.

Chapter 4

The VuSystem Application
Environment

At the application level, the VuSystem is programmed in an interpreted scripting lan-
guage. Application code written in this scripting language creates and controls the net-
work of in-band media-processing modules, and controls the graphical user-interface of
the application.

In-band code

Figure 4.1: The structure of VuSystem applications.

Recall the VuSystem application structure diagram, shown again in Figure 4.1. The oval
at the top of the diagram, labeled "Out-of-band code," corresponds to the application
script, the "brains" of the program. This chapter describes this out-of-band partition.
Reference information describing in-band VuSystem modules that can be manipulated by
out-of-band code can be found in Appendix A, and general reference information useful
to VuSystem application programmers can be found in Appendix B.

The out-of-band partition of VuSystem applications is programmed in Tcl, a simple
but extensible interpreted scripting language. Tcl application scripts create and control
a network of in-band media processing modules through object commands. Application
scripts written in Tcl run in an application shell, creating the modules they need. They
control the graphical user-interface of the application through a powerful and complete
Tcl interface to the Xt intrinsics and the Athena widget set. By convention, application
scripts are written to contain a module creation procedure, which creates the media pro-
cessing and graphical user interface components; and a main procedure, which performs
initializations and runs the application event loop.

4.1 The Tool Command Language

The scripting language used in the VuSystem is the Tool Command Language, or Tcl
[26], developed by John Ousterhout at the University of California at Berkeley. It is an
excellent programming language for assembling modules into flexible applications. Tcl is
designed as a simple but extensible command language. Its syntax is simple and concise
enough that simple Tcl commands can just be typed in, but it is programmable and
powerful enough that most of the control logic of a large application can be written in
it. It has a simple and efficient interpreter, and a simple interface to C.

Tcl syntax is similar to that of Unix shells, but it has additional Lisp-like constructs:
Tcl uses curly braces to group elements, square brackets to invoke command substitution,
and dollar signs to invoke variable substitution.

4.1.1 Tcl Data Types

Tcl has one data type: strings. All commands and values are strings. There is no other
data type. It has no native representation of numbers or lists. All data is in the form of
character strings. Even Tcl commands themselves are strings.

Since all data in the Tcl interpreter are strings, the embedding interface is simplified.
It is easy to pass data between the Tcl interpreter and C code in an application. The
C code need only be able to convert internal objects to and from strings. No library of
converters between multiple representations is required.

Data types that can be easily represented in string form are quite natural to use
within Tcl. For example, numbers can be easily converted to and from strings using
standard mechanisms, and lists can be easily represented as strings, using curly braces
for grouping. Data types too complex to be efficiently converted to and from strings can
be represented in Tcl with handles or object commands.

Handles

Some objects of data types too complex to be efficiently converted to and from strings can
be represented with string handles. Primitive commands that manipulate these objects
use standard methods to convert string handles back to objects, and from objects to
string handles.

A good example of objects that are represented by string handles are open files. The
standard Tcl library provides commands to open, close, read and write files. These
primitive use file handles, short strings that can be converted to and from file descriptors
using hash tables.

Object Commands

Tcl object commands provide a powerful way to represent objects too complex to be

efficiently converted to and from strings. For each object of a complicated data type, a
unique Tcl command can be registered in the interpreter. Operations on an object can

be performed by invoking its Tcl command, with the first argument to the command

specifying the operation, and the rest of the arguments specifying the arguments to the
operation. VuSystem object commands are implemented using Object Tcl [7], a dynamic

object-oriented extension to Tcl developed for this purpose.
Object commands are used by the VuSystem to represent modules and ports. They

provide a Tcl command name for each module and port, so that the module or port can be

named and manipulated in Tcl. Each module and port is manipulated with its own object

command. Each object command has several subcommands that allow the state of its

object to be queried and changed. Each subcommand specifies a different operation that

can be performed on the object. Object command names follow a hierarchical convention
so that the possibility of name collisions is reduced.

Table 4.1: Some VuSystem sources.

The Tcl interface to the Xt toolkit and the Athena widget set also uses object com-
mands to manipulate displays, application contexts, events, widgets, and widget classes.
Widget resources and other object state can be manipulated through subcommands to
these object commands.

4.2 Manipulating Modules

VuSystem media processing modules are created in Tcl with creation commands and
manipulated with object commands. For each type of module that can be created, there
is a creation command. For each module, there is an object command.

For example, the VsWindowSink Tcl command creates a VsWindowSink module. It
also installs a new command in the Tcl interpreter to control the module. It takes as its
first argument the name of the object command to create. The rest of the arguments to
the creation command are parameters for the new module.

Object commands have many subcommands. The first argument to an object com-
mand is the name of the subcommand, and the rest of the arguments are parameters to
the subcommand. This provides a form of object-oriented programming in Tcl. Invoking
an object command is the same as sending a message to the module.

4.2.1 Module Types

VuSystem modules are perhaps best categorized by how many input and output ports
they have. A module is either a source, a sink, a filter, or some other module. Descriptions
of all the predefined VuSystem modules are available in Appendix A.

Sources

Modules with no input ports and one output port are called sources because they appear
to the VuSystem to source data. Sources are typically I/O modules, since they interface to
media capture devices or media storage systems. Audio sources interface to audio capture
hardware. Video sources interface to video capture hardware. File sources interface to

Source Function
VsSunAudioSource Interfaces directly to the audio device

on Sun workstations.
VsAudioFileSource Interfaces to an AudioFile [10] server

typically running on a Digital Alpha workstation.
VsSunVfcSource Interfaces to the VideoPix video capture card

on Sun workstations.
VsXVideoSource Interfaces to video display adapters

that have video capture capability
through the XVideo X extension.

VsVidboardSource Interfaces to the Vidboard [9],
a LAN-based video capture subsystem.

VsFileSource Interfaces to files stored
using the native VuSystem file format.

VsQtimeSource Interfaces to Quicktime [12] files.
VsMpegSource Interfaces to MPEG [211 files.

VsCaptionSource Interfaces to a closed-caption decoder
through a serial line.

VsExternalSource Assembles separate image files
into a sequence of video frames.

Table 4.2: Some VuSystem sinks.

files. More exotic sources exist as well. Some sources provided with the VuSystem are
listed in Table 4.1.

Sinks

Modules with one input port and no output ports are called sinks because they appear to
the VuSystem to sink data. Sinks are typically I/O modules, since they interface to media
playback devices or to media storage systems. Audio sinks interface to audio playback
hardware. Video sinks interface to video playback hardware. File sinks interface to files.
Some sinks provided with the VuSystem are listed in Table 4.2.

Filters

Modules with one input port and one output port are called filters because they are
typically used to perform some signal processing operation on the data flowing through
them. Compression filters compress or de-compress video frames. Pizel format conversion
filters convert the format video frames. Descriptor filters perform operations on the
descriptors of payloads. Visual processing filters perform various functions on video
data. Some filters provided with the VuSystem are listed in Table 4.3.

Network modules are filters too. The VsTcpClient and VsTcpServer modules both
have an input port and output port, so they are classified as filters, but they really act as
endpoints of a TCP connection. Payloads that enter the input port of one of the modules
come out of the output port of the other. The VsTcpSource and VsTcpSink modules
need not be running in the same shell. They can be anywhere on the Internet. Through
the use of these modules, and with the VsTcpListener module, networked VuSystem
applications can be developed.

Other Modules

Modules with more than one input or output port provide mechanisms for splitting
and merging payload sequences. Some modules with one input port and many output
ports split a single timestamped sequence of payloads into multiple sequences. Some
modules with many input ports and one output port merge multiple sequences into a
single sequence. Modules subclassed from VsEffect and VsGate2xi combine payload
sequences from two input ports to one output payload sequence based on operations on
the contents of the data. Table 4.4 lists some VuSystem modules with more than one
input and output port.

Sink Function
VsSunAudioSink Interfaces directly to the audio device

on Sun workstations.
VsAudioFileSink Interfaces to an AudioFile [10] server

typically running on a Digital Alpha workstation.
VsWindowSink Interfaces to video display adapters

through the X Window System.
VsFileSink Interfaces to files stored

using the native VuSystem file format.
VsQtimeSink Interfaces to Quicktime [12] files.

VsExternalSink Causes a sequence of video frames
to be written to several image files.

Filter Function
VsJpegC Compresses video frames using the JPEG [16]

video compression standard.
VsJpegD Decompresses video frames using the JPEG [16]

video compression standard.
VsCCCC Compresses 8-bit color video frames using a color cell

compression algorithm.
VsCCCD Decompresses 8-bit color video frames using a color cell

compression algorithm.
VsQRLC Compresses grayscale video frames using a simple

run-length coding scheme.
VsQRLD Decompresses grayscale video frames using a simple

run-length coding scheme.
VsColor24to8 Converts 24-bit color to 8-bit color video frames.
VsColor8to24 Converts 8-bit color to 24-bit color video frames.

VsColor24toGray Converts 8-bit color to grayscale video frames.
VsChannelSelect Only passes payloads with certain channel identifiers.

VsChannelSet Sets channel identifiers for VsChannelSelect.
VsReTime Changes the starting-time and duration on payloads.

VsStepper Allows explicit lockstep scripting control
of each video frame passed.

VsWait Waits for VsFinish payloads.
VsRateMeter Measures the flow rate of payloads through it.

VvEdge Performs edge processing on video frames.
VvThresh Performs thresholding on pixel values.

VvHistogram Converts a video frame into a pixel value histogram.
VsTcpClient Interfaces to the client end of a TCP connection.
VsTcpServer Interfaces to the server end of a TCP connection.

Table 4.3: Some VuSystem filters.

4.2.2 Object Subcommands

Each module object command has a set of subcommands that vary according to type of the
module. The internal state of the module can be queried and changed with some of these
subcommands. For example, the VsVidboardSource module has a port subcommand
that is used to control from which input port it captures video. Table 4.5 shows a list of
typical module subcommands.

4.2.3 Callbacks

Sometimes, out-of-band Tcl code in an application should be executed whenever an
in-band event occurs. In this case, a callback is used. Many modules call their Tcl
callback whenever a specific event occurs during in-band processing. For example, the
VsFileSource module calls its callback when it reaches end-of-file.

Tcl callback commands are installed on each module with the callback module sub-
command. Each module can have only one callback installed at a time. If a module
can signal more than one type of event, it supplies keyword arguments to the callback
command, so the command can determine which event occured. Table 4.6 shows a list
of typical module callbacks.

4.3 The VuSystem Application Shell

The VuSystem is implemented as a Unix application shell: it is program that interprets
an extended version of Tcl. Linked into the program are all standard in-band modules,

Module Function

VsDup, VsTap Copies payloads to provide identical output sequences.
VsDeMux Splits its input sequence based on payload channel number.

VsMerge, VsMux Merges multiple payload sequences into a single sequence.
VsOrderedMux Merges multiple payload sequences into a single sequence,

but ensures that timestamps in the output sequence
are always monotonically increasing.

VsFade Provides a fade effect between two sequences of video frames.

Table 4.4: Some VuSystem modules with more than one input and output.

Subcommand Modules Function
callback All Modules The callback.
children All Modules Lists all children

in the structural hierarchy.
color Video Sources The color or grayscale toggle.

destroy All Modules Destroys module and all its children.
frameRate Video Sources The video frame rate to sample.

gain Audio Sources The gain adjustment.
and Sinks

hue Video Sources The hue adjustment.
pathname File Sources The pathname.

and Sinks
port Many Sources The hardware input port to send output.

and Sinks
scale Video Sources The video frame size to generate.
start All Modules Starts module and all its children.
stop All Modules Stops module and all its children.

Table 4.5: Some VuSystem object subcommands.

implemented as C++ classes. Tcl scripts implement simple applications that use the de-
fault set of in-band modules. By linking additional in-band modules into the application
shell, more complicated applications can be constructed.

The application shell defines the interface between the primitive module and com-
mand developer and the application script developer. At the primitive level, the module
developer creates new primitive VuSystem modules and primitive Tcl commands and
links them into the VuSystem application shell. At the application level, the developer
writes Tcl code that runs in the application shell.

4.4 Programming The Graphical User Interface

The VuSystem includes facilities to construct an application graphical user interface
with Tcl code. I developed TclXt, a Tcl interface to the Xt toolkit and TclXaw, a Tcl

interface to the Athena widget set, to enable Tcl code to open X display connections,
create windows, and install callbacks that cause Tcl commands to be executed on user
input.

The TclXt and TclXaw components of the VuSystem provide Tcl programming in-

terfaces to the Xt and Xaw libraries respectively. These components enable the Tcl pro-

grammer to construct graphical user interfaces based on the Xt toolkit and the Athena

widget set. They provide an interface to the Athena widget set that is similar to Tk [18]:

* Widget instances are created by invoking a WidgetClass command. For

Condition Modules Indication
caption VsWindowSink, A caption was received.

VsCaptionSink
compressRatio Compression Filters Filter is achieving this compression ratio.

detect VsPayloadDetect A payload of the specified type
has been detected.

done Effects Modules The effect has completed.
rate VsRateMeter Payloads are passing at this rate.

sinkFinish All Sinks A VsFinish payload was received.
sinkStop All Sinks A VsFinish payload was received

while in stopping mode.
solve VsPuzzle The puzzle has been solved.

sourceEnd All Sources The end of the source has been reached.
stepDone VsStepper A payload has been sent.

waiting VsWait A change of waiting status has occured.

Table 4.6: Some VuSystem callback conditions.

example, to create a button, one uses the Command Tcl command, which
creates a Command widget.

* Initial values for widget resources are provided as keyword arguments
to the creation command. The standard string conversion facilities pro-
vided by the Xt intrinsics convert the resource values from strings.

* Resources of existing widgets can be queried and changed through wid-
get subcommands. Just as for the initial values of these resources, the
standard string conversion facilities provided by the Xt intrinsics convert
the resource values to and from strings.

* Callbacks and Translations can be specified as Tcl commands. These
commands are executed whenever the given input event occurs.

TclXt and TclXaw provide all the ease of programming of the Tk widget set, but also
provide an interface to the Athena widget set, a more standard set of widgets. Additional
widgets based on the Athena widget set can trivially be added to the set of widgets that
can be manipulated with Tcl. Motif widgets can be added too. Not only do these compo-
nents provide a powerful interface to the Athena widget set, they also provide a complete
interface. TclXt and TclXaw expose the entire interface to the Xt and Xaw libraries to
the Tcl programmer. There is no library interface available to the C programmer that is
not also available to the Tcl programmer. Detailed documentation on TclXt and TclXaw
is available in Appendix D.

4.5 Application Scripts

The VuSystem provides considerable flexibility to the programmer of applications. This
flexibility can result in widely varying coding styles. One programmer may not be able to
understand the code of another. To enhance maintainability of VuSystem applications,
some application script conventions have been established. One such convention is that
all application scripts are written to contain module creation procedures and a main
procedure.

Example

Figure 4.2 shows the graphical user interface for the vspuzzle program, an example
VuSystem application. A simplified modular diagram of the application is shown in

Figure 4.2: The graphical user interface of the puzzle application.

Figure 4.3.

4.5.1 The main Procedure

Every application script should include a main procedure. As in C programs, this mainprocedure should be the top level procedure for the application. At the very end ofan application script should be the single Tcl command main, which causes the mainprocedure to be executed. Each main procedure performs five functions:

1. It initializes the graphical user interface libraries.
2. It extracts application-specific command-line arguments.
3. It initializes the run-time components of the VuSystem.
4. It creates its graphical user interface and media-processing modules.
5. It runs the application event loop.

Example

Figure 4.4 shows the code for the main procedure for the vspuzzle program. When itis called, the command line arguments to the application script lie in the global variable
argv.

The first thing this main procedure does is to call the xt appInitialize (page 203)command to initialize the graphical user interface libraries. It then extracts its name andcommand arguments from the argv global variable and tells the top-level shell widgetthat it can be resized. Next, the run-time components of the VuSystem are initialized
with a call to vs appInitialize (page 159).

A call to the Puzzle module creation procedure creates the graphical user interface
components and the in-band VuSystem modules for the application. The user interface
components are instantiated with the realize (page 229) Widget subcommand, and thein-band VuSystem modules are started with the vs start (page 166) command. Finally,

m.source m.filter m.sink

Figure 4.3: A block diagram of the puzzle application.

the main procedure runs the event loop of the application with app.context mainLoop
(page 208). If the event loop ends with an error, the error is caught, a VsErrorShell is
created with the error message, and the event loop is restarted.

4.5.2 Module Creation Procedures

If an application script creates a network of in-band processing modules, by convention
it does it in a module creation procedure. Each module creation procedure does its work
in three stages:

1. It extracts its parameters from the keyword-value pairs passed to it, and
substitutes default values for parameters not supplied.

2. It creates its graphical user interface components.

3. It creates its in-band media-processing modules.

Module Creation Procedure Parameters

Module creation procedures are defined to have a calling sequence similar to that of
graphical user interface components and VuSystem in-band modules:

* If a module creation procedure creates any graphical user interface com-
ponents, the name of the object command for the top component in the
structural hierarchy to be constructed is accepted as the first parameter.

* If a module creation procedure creates any in-band media processing
modules, the name of the object command for the top module in the
structural hierarchy to be constructed is accepted as the next parameter.

* All other parameters to module creation procedures are passed as
keyword-value pairs.

Example

Figure 4.5 shows the code for the Puzzle example module creation procedure. This
procedure creates the graphical user interface and in-band media processing modules for
a simple video puzzle program. The graphical user interface is shown in Figure 4.2, and
a diagram of the in-band media processing modules created is shown in Figure 4.6.

proc main {} {
global argv errorInfo

xt appInitialize appContext "Puzzle" argv {}

set v [lindex $argv 01
set args [irange $argv 1 end]
$w setValues -allowShellResize true

vs appInitialize appContext vs

apply Puzzle $w.puzzle vs.puzzle \
$args

$w realize
vs start

while {[catch {appContext mainLoop} msg]} {
VsErrorShell $w.err \

-summary $msg \
-detail $errorInfo

}

main

Figure 4.4: The main procedure of the the puzzle application.

The first parameter, w is the object command name to use for the top component of
the graphical user interface structural hierarchy. The second parameter, m is the object
command name to use for the top component of the in-band media processing module
structural hierarchy. The rest of the parameters are accepted in keyword-value pairs.

The Puzzle procedure first extracts the dimension parameter from the keyword ar-
gument list, using the keyarg (page 169) command. This parameter is used to establish
the number of rows and columns in the video puzzle. If no -dimension keyword was
supplied, a default value of 4 is substituted.

The Puzzle procedure next extracts the scale parameter from the keyword argument
list. This parameter is used to establish the size of the video window in the video puzzle.
A scale of 1 means full size, 2 means half size, and so on. If no -scale keyword was
supplied, a default value of 2 is substituted.

Any other keyword parameters left in the args list are passed on to the top component
of the graphical user interface hierarchy. The keyargs (page 169) command is used to
remove the -dimension and -scale keyword arguments from args.

After parameter processing, the Puzzle procedure creates a graphical user interface
structural hierarchy. At the top of the hierarchy a Form composite widget is created. All
unrecognized parameters passed to the procedure are assumed to be widget subresource
specifications, and so are passed to the Form widget creation command.

Inside the Form widget, the procedure creates a VsScreen widget. The size of the
widget is determined by the -scale parameter, but it can also be resized by also passing
true as a -resizable parameter.

Underneath the VsScreen widget, the procedure creates a button labeled Scramble.
When pressed, this button will cause the scramble subcommand on the puzzle module
to be called.

Underneath the Scramble button, the procedure creates a Dismiss button. When
pressed, this button will destroy all the in-band media-processing modules and exit from
the application.

Beside the Dismiss button, the procedure creates a Control Panel button. When
pressed, this button will create a new top-level window which will contain control panels
for the media-processing modules.

proc Puzzle {w m args} {
set dimension [keyarg -dimension $args 4]
set scale [keyarg -scale $args 2]
set args [keyargs {-dimension -scale} $args exclude]

apply Form $w \
$args

VsScreen $w.screen \
-scale $scale \
-resizable true

Command $Sw.scramble \
-label "Scramble" \
-callback "$m.puzzle scramble" \
-fromVert $w.screen

Command $w.dismiss \
-label "Dismiss" \
-callback "catch {vs destroy}; exit" \
-fromVert $w.scramble

Command $w.controlPanel \
-label "Control Panel" \
-callback "VsPanelShell $w.controlPanel.shell -obj $m" \
-fromVert $w.scramble \
-fromHoriz $w.dismiss

$w.screen overrideTranslations "<BtnDown>: tcl($m position)"

VsEntity $m
$m set w $w
$m proc position {} {

set clickpos [%event position]
set width [$w.screen getValues -width]
set height [$w.screen getValues -height]
set x [expr { [lindex $clickpos 0]*[$self.puzzle dimension]/$width}]
set y [expr {[lindex $clickpos 1]*[$self.puzzle dimension]/$height}]
$self.puzzle position [list $x $y]

}
VsSunVfcSource $m.source \
-scale $scale

VsPuzzle $m.puzzle \
-dimension $dimension \
-input "bind $m.source.output"

VsWindowSink $m.sink \
-widget $w.screen \
-input "bind $m.puzzle.output"

Figure 4.5: The Puzzle module creation procedure.

After creating all the graphical user-interface components, the Puzzle procedure adds
a translation to the VsScreen widget. A translation is a mechanism supported by the
X Window System Toolkit that maps a user-interface event to an application operation.
This translation maps button presses, made in the window corresponding to the VsScreen
widget, to a Tcl command "$m position", which causes the position subcommand to
be invoked for the top component of the media processing structural hierarchy. In this
way clicks on the video display are captured to change the position of the "hole" in the
puzzle.

After creating the graphical user interface components, the Puzzle procedure creates
an in-band media processing module structural hierarchy. At the top of the hierarchy
a VsEntity module is created. This module does no media processing on its own, but
exists as a common structural parent to the module network and holds common variables
and methods.

On this VsEntity module, the Puzzle procedure creates an instance variable w which
is the command name for the Form widget created earlier. The Puzzle procedure also
defines a position method, which gets called whenever a mouse button is pressed inside

!w,
[..~.....Position

VsSunVfe VsPuzzle VsWindow
Source Sink

vs.puzzle.source vs.puzzle.puzzle vs.puzzle.sink
vs.puzzle

Figure 4.6: The VuSystem modules created by the Puzzle module creation procedure.

the VsScreen widget.
The position method is defined to turn each mouse click in a window into a command

to the VsPuzzle in-band media-processing module in order to change the position of the
"hole" in the puzzle. It gets the x and y coordinates from the mouse click, figures out in
which square in the puzzle the click occured by comparing the position with the width
and height of the VsScreen widget, and then calls the position method on the VsPuzzle
module to move the hole to the square that was clicked.

Now the VsPuzzle procedure creates the in-band media-processing modules. It first
creates a VsSunVfcSource module to capture video from a Sun Microsystems VideoPix
video capture device. The scale parameter, previously used to establish the size of the
display window, is also passed to the VsSunVfcSource command to establish the size of
the video frames captured.

Next, the procedure creates a VsPuzzle module. The dimension parameter is passed
to the VsPuzzle command to establish the number of rows and columns in the puz-
zle. The procedure also binds the input port of the module to the output port of the
VsSunVfcSource module.

Finally, the VsPuzzle procedure creates a VsWindowSink module, which displays video
frames on the computer screen. The name of the widget in which the frames should be
displayed is supplied, so the module knows in which window on the screen the video
frames should go. The procedure also binds the input port of the sink to the output port
of the VsPuzzle module.

4.6 Review

The out-of-band partition of VuSystem applications is programmed in Tcl, a simple but
extensible interpreted scripting language. In Tcl, all data is represented as strings, which
simplifies the implementation of the language and its interface to the C++ code that
implements the in-band partition. Data used in the in-band partition that cannot easily
be converted to and from strings is represented by handles and object commands.

Tcl application scripts create and control a network of in-band media processing
modules through object commands. The modules act as media sources, sinks, filters, and
other modules, depending on the number of input and output ports they possess. Scripts
use object subcommands to change the state of the modules, and modules use callbacks
to signal back to scripts that in-band events have occurred.

A single executable image, the application shell, can implement many applications.
All in-band processing modules are linked into the application shell. Application scripts
written in Tcl run in the application shell, creating the modules they need. The ap-
plication scripts can call on library scripts to perform common out-of-band operations.

Applications that require additional special-purpose in-band processing modules use cus-
tomized application shells.

Application scripts control the graphical user-interface of the application, through
TclXi and TclXaw, a powerful and complete Tcl interface to the Xt intrinsics and the
Athena widget set. The interface presented by the toolkits is similar to that of Tk [18]
but are to a more standard set of widgets.

By convention, application scripts are written to contain a module creation procedure
and a main procedure. The module creation procedure creates all the in-band media pro-
cessing and graphical user interface components for the application. The main procedure
acts as the top-level procedure in the application, initializing the in-band partition and
the graphical user interface, calling the module creation procedure, running the applica-
tion event loop, and reporting errors to the user.

Chapter 5

Module Programming In The
VuSystem

The in-band partition of a VuSystem application is structured as a reconfigurable directed
graph of modules. The nodes of the graph are the in-band processing modules and the
edges are associations of input and output ports on the modules. Through these ports
logically pass payloads which hold the media data. A run-time system provides support to
the modules for memory management, communication, and scheduling. In this chapter,
I describe the implementation of modules, and discuss issues important to the module
designer. Detailed VuSystem module development reference information can be found in
Appendix C.

output input
port port

downstream module

W(eýD

Figure 5.1: The module data protocol.

5.1 The Module Data Protocol

The module data protocol is the mechanism used to transfer payload ownership between
an upstream module and a downstream module. Figure 5.1 shows the principal actors
in the protocol and their relationships. To pass a payload, the upstream module calls
the Send C++ class member function on its output port, which calls the Receive C++
class member function of the downstream module. If the downstream module accepts
the payload, it returns True from Receive, and the upstream module receives True from
Send. The upstream module then clears all internal references to the payload, since
ownership of the payload has been passed.

upstream module

Idle

Payload Type Payload Description
VsVideoFrame A single uncompressed full frame of video data.

VsJpegFrame A single full frame of video data compressed according
to the JPEG still image compression standard.

VsqRLFrame A single full frame of grayscale video data compressed
by quantizing and then run-length encoding.

VsCCCFrame A single full frame of color video data compressed
by a color-cell compression technique.

VsAudioFragment A fragment of audio data, typically enough audio
samples to cover roughly the same time that a
a video frame would cover.

VsCaption A single text caption, corresponding to closed
captions transmitted on american television.

VsStart Indication of the start of a payload sequence.
VsFinish Indication of the end of a payload sequence.

VsFlush Indication that modules should flush payloads
from any buffers.

Table 5.1: The payload types.

If The Downstream Module Is Not Ready For More Data

The downstream module indicates it is not ready for more data by refusing a payload. It
does this by returning False from Receive when called with a payload. Upon receiving
False from Send, the upstream module keeps an internal reference to the payload, since
ownership has not been passed. The upstream module may also note that the downstream
module is not ready, and may stop trying to send data.

Later, when the downstream module is ready for more data, it calls the Idle C++
class member function on its input port, which calls the Idle C++ class member function

on the upstream module. Idle of the upstream module notes that the downstream
module is ready for data, and sends any waiting data to the downstream module. A

downstream module may call Idle any time, even if it is not ready for more data, but if

it ever refuses data by returning False from Receive, it must call Idle when it becomes
ready for more data. Once the downstream module refuses a payload by returning False
from Receive, the upstream module may assume the downstream module is not ready
for more data until Idle is called.

If The Upstream Module Has No More Data

The upstream module can also stop sending data if it has no more payloads to send. If

Idle is called and it has no data to send, it may starve the downstream module by not
sending anything. Later, when the upstream module has more data to send, it calls Send

with the payload. The upstream module may call Send any time, even if the downstream
module has indicated that it is not ready for more data, but if it starves the downstream

module, the upstream module must then call Send when it has more data. It should not

wait for Idle to be called - once starved, a downstream module might not ever call

Idle again.

5.2 Payloads

VuSystem payloads are self-identifying, dynamically-typed data structures which log-

ically are passed through ports between modules. Examples of payloads include

VsVideoFrame payloads, which contain single uncompressed full frames of video data;

Payload Type Descriptor Component Contents
all payloads Channel number, starting time, and active duration.

VsVideoFrame Width, height, depth, bytes per line, bits per pixel,
byte order, and pixel encoding.

VsJpegFrame Width, height, quality, and original pixel encoding.
VsQRLFrame Width, height, bytes per line, and quality.
VsCCCFrame Width, height, and bytes per line.

VsAudioFragment Samples per second, sample encoding, bits per sample,
number of channels and byte order.

VsCaption Length of the caption text.
VsStart

VsFinish
VsFlush

Table 5.2: Descriptor component contents specific to payload type.

and VsAudioFragment payloads, which contain fragments of audio data. Table 5.1 shows
the currently defined payload types.

Payloads are composed of two components: a descriptor component and a data com-
ponent. The data component of a payload holds the media data of a payload, while the
descriptor component holds information about the data. The descriptor component of a
payload is represented as C++ class member variables. The precise representation of the
data component of a payload is specified by the descriptor component.

5.2.1 Descriptor Components

Descriptor payload components hold general information for every payload as well as
type-specific parameters. Table 5.2 shows descriptor component contents specific to pay-
load type. Payload descriptor members common to all payload types include Channel,
StartingTime, and Duration.

The Channel Payload Descriptor Member

The Channel payload descriptor member is a 32-bit integer used for multiplexing pay-
loads. The VsMux and VsOrderedMux modules combine multiple input sequences of pay-
loads into a single output sequence. They encode information in the channel number
of the payloads to be used by VsDeMux to reconstruct multiple output sequences from a
single input sequence.

A VsMux or VsOrderedMux module with n input ports records which input port from
which payloads came, by updating the Channel payload descriptor so that Channel mod
n returns which input port from which the payload came, and Channel/n returns the
original Channel descriptor. A VsDeMux module with n output ports uses Channel mod
n to select which output port to direct a payload, and replaces the Channel payload
descriptor component with Channel/n.

Since the storage for the Channel payload descriptor is an integer of limited size, there
is some limit to the depth of multiplexing that can be supported by the VuSystem. Being
a 32-bit integer, the Channel payload descriptor can store up to 232 possible encodings.
This is enough to support 2-port multiplexers nested to a depth of 32, 3-port multiplexers
nested to a depth of 20, 4-port multiplexers nested to a depth of 16, and so on. Since
these are quite deep nestings of multiplexers, a fixed Channel value of 32 bits should be
adequate for all multiplexer configurations in any forseeable VuSystem application.

Table 5.3: Data component contents specific to payload type.

The StartingTime Payload Descriptor Member

The StartingTime payload descriptor member is a 64-bit time value which indicates the
time at which a payload is valid. Media capture modules such as the VsVidboardSource
and VsAudioFileSource modules record the time at which media samples are captured
in the StartingTime payload descriptor member of the payloads they create. Media
display modules such as the VsWindowSink and VsAudioFileSink modules display media
samples at the times indicated by the StartingTime payload descriptor member.

The VsReTime filter module (page 147) modifies the StartingTime payload descriptor
member of payloads that pass through it to allow display of media data at a time later
than capture by adding a fixed offset to every timestamp. This offset corresponds to
the time difference between the time at the start of the display of a sequence and the
StartingTime of the first payload of the sequence.

The VsRetime filter can also be used to allow display of stored media data at a
different rate than capture by subtracting out the StartingTime of the first payload of a
sequence from all payloads in the sequence, scaling the StartingTime, and then adding
the time at the start of the display of the sequence.

The Duration Payload Descriptor Member

The Duration payload descriptor member is a 64-bit time value which indicates the dura-
tion in which a payload is valid. Media capture modules such as the VsVidboardSource
and VsAudioFileSource modules record the duration of validity in the duration payload
descriptor member of the payloads they create.

The VsReTime filter module modifies the duration payload descriptor member of pay-
loads that pass through it when it is being used to allow display of stored media data at
a different rate than it was captured. It scales the duration of each payload that passes
through it.

5.2.2 Payload Memory-Management and Marshalling

Data payload components are located in shared memory segments to facilitate cheap
local interprocess communication of payloads. For example, the data component of a
VsVideoFrame payload holds the image data for the video frame. Since the image data
are therefore located in a shared memory segment, the VsWindowSink module uses the
MIT-SHM X extension to pass the image data to the local X server to display the video
frame in a window on the workstation screen. This extension uses shared memory seg-
ments to pass image data instead of the X connection byte stream, substantially increasing
performance by eliminating copying of the data.

Payload Type Data Component Contents
VsVideoFrame Image data for the video frame.
VsJpegFrame Compressed image data for the video frame.

VsqRLFrame Compressed image data for the video frame.
VsCCCFrame Compressed image data for the video frame.

VsAudioFragment Audio samples.
VsCaption Caption text.
VsStart
VsFinish
VsFlush

descriptor

Copying
Module

Input
Payload

data

d t descriptor

Output

Copying descriptor Payloads
Module

data

Figure 5.2: Making a shallow payload copy.

Shallow Copies And Deep Copies

Whenever any module is passed a pointer to a payload from an upstream module, it is
considered to own the payload. It is responsible to either pass a pointer to the payload to
a downstream module or to delete the payload. Once a module passes a payload pointer
to a downstream module and the downstream module has accepted it, the upstream
module no longer owns the payload. It should clear all pointers to the payload. It should
not delete the payload, pass it on to another downstream module, or even look at it,
since the downstream module may have already deleted it.

Modules can create copies of payloads to loosen these ownership restrictions. Modules
can create shallow copies that share data components, or deep copies that have private
data components. Deep copies of payloads are completely independent of each other,
while shallow copies have independent descriptor components but shared data compo-
nents.

Making shallow copies is much cheaper to do than making deep copies, since the data
component isn't copied. Instead, data components are shared between shallow copies,
and a reference counting pointer system is used to free the shared data when the last
reference to it is deleted. The VsDup module creates n - 1 shallow copies of its input
payload and sends all n payloads to n downstream modules.

Side Effects And Shallow Copies

In general, a module cannot easily tell if its input payload has shallow copies, therefore
it cannot easily tell if a data component of a payload is shared with other shallow copies
of the payload. Therefore, it is important that modules not alter the data component
of input payloads without first ensuring that the data component is not shared, as some
other module might be processing a shallow copy of the payload with the shared data.
Changing the data component of an input payload may cause unexpected side-effects.
For example, an application might have created a shallow copy of a payload with the
VsDup module, sending it to a filter, and sending the original payload to a module that
displays it on the screen. If the filter modifies the data component of its input payload,
unexpected results may appear on the screen.

A filter can ensure that the data component of its input payload is not shared

descriptor

Copying
Module

Input
Payload

descriptor

data
Output
Payloads

descriptor

LiI
data

Figure 5.3: Making a deep payload copy.

by calling the EnsureDataPrivate payload C++ class member function. If the pay-
load data is shared, EnsureDataPrivate replaces the data component with a copy,
effectively transforming a shallow payload copy into a deep payload copy. If the pay-
load data is not shared, EnsureDataPrivate does nothing. Use of shallow copies and
EnsureDataPrivate effectively implements a copy-in-write policy for payload data com-
ponents. It is efficient, since deep copies are made only when necessary.

Payload descriptors are never shared, so there is no restriction on modules changing
the descriptors of payloads they own. For example, the VsReTime filter changes the
starting time of payloads that pass through it, and the VsChannelSet filter changes the
channel of payloads that pass through it.

Payload Encoding and Decoding

All payloads provide C++ class member functions to encode themselves into a reliable
byte stream, and to decode themselves from a byte stream. By using these C++ class
member functions, any sequence of payloads can be converted into a reliable byte stream
and either be saved into a file or transmitted over a network.

5.3 Sending Data To A Downstream Module

The Send (page 173) VsOutputPort C++ class member function is used to send data to a
downstream module, and an Idle (page 173) C++ class member function is implemented
by the module designer to be called when a downstream module is ready for more data.
Send can be called from anywhere in the upstream module, but by convention it is always
called by Idle.

Example

Figure 5.4 shows a diagram and the code for the Idle C++ class member function of
a simple source that sends data to a downstream module. In this example, the source
module has two C++ class member variables: outputPort, a pointer to the output port
for the module; and payload, which may point to a payload to be sent.

module outputPort
!payload

output port

Idle

Send

void
SimpleSource::Idle(VsOutputPort* op) {
if (payload != 0 && op->Send(payload)) payload = 0;

}

Figure 5.4: A diagram of a simple source and the code for the Idle
function for the module.

module inputPort
payload

input port

C++ class member

Boolean
SimpleSink::Receive(VsInputPort*, VsPayload* p) {
if (payload == 0) { payload = p; return True; }
else return False;

}

Figure 5.5: A diagram of a simple sink and the code for the Receive C++ class member
function for the module.

Here Idle takes one parameter: op, a pointer to the output port that is to receive
more data. Idle checks payload to see if there is a payload to be sent. If there is a
payload to be sent, it calls Send with the payload as a parameter. If the payload was
accepted, Send returns True and Idle clears payload.

5.4 Receiving Data From An Upstream Module

The Idle (page 173) VsInputPort C++ class member function is used to indicate when
a downstream module is ready to receive more data from an upstream module, and a
Receive (page 174) C++ class member function is implemented by the module designer
to accept the payload.

Example

Figure 5.5 shows a diagram and the code for the Receive C++ class member function
of a simple sink that receives data from an upstream module. In this example, the sink
module has two C++ class member variables: inputPort, a pointer to the input port
for the module; and payload, which may point to a payload that was received.

input port output port

Send

Boolean
SimpleTransparentFilter: :Receive(VsInputPort*, VsPayload* p) {
return outputPort->Send(p);

}

void
SimpleTransparentFilter::Idle(VsOutputPort*) {

inputPort->Idle ();
}

Figure 5.6: A diagram of a simple transparent filter and the code for the Receive and
Idle C++ class member functions for the module.

Here Receive takes two parameters: an ignored pointer to the input port from which
the data arrives; and p, a pointer to the payload. Receive checks payload to see if it
is null. If it is, Receive assigns payload to the payload, and returns True to accept
the payload. If payload was not null, Receive rejects the payload by returning False.
Later, the sink may clear payload and call Idle on the input port to indicate that the
sink is to receive more data.

5.5 A Simple Transparent Filter

A simple transparent filter could be implemented which performs no data processing but
instead passes all data transparently. Figure 5.6 shows a diagram and the code for the
Idle and Receive C++ class member functions of a simple filter that transparently
sends any data it receives. This is the most simple implementation of a filter. In this
example, the filter module has at least two C++ class member variables: inputPort, a
pointer to the input port for the module; and outputPort, a pointer to the output port
for the module.

Here Receive takes two parameters: an ignored pointer to the input port from which
the data arrives, and p, a pointer to the payload. Receive simply calls Send on the
module output port with the payload, returning the result received to indicate whether
or not the payload has been accepted.

Here Idle takes one parameter: an ignored pointer to the output port that is to
receive more data. Idle simply calls Idle on the module input port, indicating that it
is ready for more data.

5.6 Scheduling Computation Operations

Most filters do more than just pass their input payload on to the downstream module.
They perform some computation based on the information stored in the payload. If this
computation is trivial, it can be performed in Receive. More commonly, though, the
computation takes some time, and should be performed in a procedure that can be sched-
uled to run at an appropriate time. Modules schedule nontrivial computation operations

outputPort

Idle

Rveev

inpt

L ,,,,,I

Boolean
SimpleFilter::Receive(VsInputPort*, VsPayload* p) {
if (payload == 0) { payload = p; workId = StartWorkO; return True; }
else return False;

}

Boolean
SimpleFilter::Work()
...do the work...
workId = 0; Idle(outputPort); return True;

}

void
SimpleFilter::Idle(VsOutputPort*) {
if (payload != 0 && workId == 0 && outputPort->Send(payload)) payload = 0;
if (payload == 0) inputPort->Idle();

}

Figure 5.7: A diagram of a simple filter and the code for the Receive, Work, and Idle
C++ class member functions for the module.

with Work (page 174) C++ class member functions. Once started with StartWork (page
174), Work is called regularly by the VuSystem scheduler until it either returns True or
it is stopped with StopWork (page 174).

Example

The simple filter described in Section 5.5 could be modified to perform some computation
on its payload in a Work C++ class member function. Figure 5.7 shows a diagram and the
code for the Receive, Work and Idle C++ class member functions of a simple filter that
processes data with Work. In this example, the filter module has at least four C++ class
member variables: inputPort, a pointer to the input port for the module; outputPort,
a pointer to the output port for the module; workId, a work identifier used to indicate
Work been scheduled; and payload, a pointer to the payload being processed.

Here Receive takes two parameters: an ignored pointer to the input port from which
the data arrives; and p, a pointer to the payload. Receive checks payload to see if it
is null. If it is, Receive assigns payload to the payload, schedules the work function by
calling StartWork, saves the result of StartWork in workId, and returns True to accept
the payload. If payload was not null, Receive rejects the payload by returning False.

Here Work takes no parameters. After processing the payload, Work clears workId
to indicate that is is finished. Just before returning True to indicate completion, Work

inpl

L --- j

Boolean
StandardFilter::WorkRequiredP(VsPayload *p) {

return VsVideoFrame: :DerivePtr(p) != 0;
}

Boolean
StandardFilter::Work() {

VsVideoFrame* frame = VsVideoFrame::DerivePtr(payload);
caddr-t image-data = frame->Data().Ptr() ;
VsXdrBlock newData(frame->Data(). ForeO);
caddrt computedata = newData.Ptr();
...Perform the filter operation...
frame->Data() = newData;
return VsFilter::Work();

}

Figure 5.8: A diagram of a standard filter and the code for the WorkRequiredP and Work
C++ class member functions for the module.

should call Send to send the processed payload downstream, and call Idle upstream if
the payload was accepted, indicating the module is ready for more data. This is exactly
what Idle does, so Work simply calls Idle.

Here Idle takes one parameter: an ignored pointer to the output port that is to
receive more data. Idle check payload and workId to see if there is a payload to be
sent, and that work in it has been completed. If there is a payload to be sent and work
in it has been completed, Idle calls Send on the output port with the payload as a
parameter. If the payload was accepted, Send returns True and Idle clears payload.

5.6.1 The Granularity of Scheduled Computation Operations

The VuSystem scheduler is non-preemptive: operations run to completion before control
returns to the scheduler. It is also single threaded: only one operation runs at a time.
This simplifies the design of modules in that no complicated locking or critical sections
are required, since operations never overlap. On the other hand, it complicates the design
of modules because no scheduled operation should run for too long.

Besides scheduling computation operations, the VuSystem scheduler schedules I/O
operations and time-dependent operations. A long-running computation operation locks
out any I/O or time-dependent operations while it is running. Because of this, scheduled
computation operations should be designed to run with a fine enough granularity that
the VuSystem scheduler can schedule more critical I/O and time-dependent operations.

It is up to the module developer to ensure that a scheduled computation operation does
not run too long.

Work C++ class member functions should be written to run with a granularity appro-
priate for the applications in which they will be used. A good design rule is that a sched-
uled computation operation should take no more than 1/2 of a frame time. For example,
for a VuSystem application that is expected to run at 15 frames/second, a computation
operation should be designed to run no longer than 1/30 of a second. Applications built
from modules following this rule exhibit sufficient levels of temporal sensitivity.

5.7 Standard Filters

Filter modules that simply perform computational transforms on data are called standard
filters. They are written as subclasses of the VsFilter module class, and include a
WorkRequiredP (page 182) C++ class member function and a Work (page 182) C++
class member function. WorkRequiredP is implemented by the module designer to return
True if Work should be called for a given payload, and False if the payload should
just be passed on without processing. Work is implemented by the module designer to
perform the filter computation. When Work is called, the input to the computation is
in payload. Work performs the computation and puts the result in payload. It calls
VsFilter: :Work() and returns its result.

Example

Figure 5.8 shows a diagram and the code for the WorkRequiredP and Work C++ class
member functions of a standard filter. In this example, the filter module has at least four
C++ class member variables: inputPort, a pointer to the input port for the module;
outputPort, a pointer to the output port for the module; workId, a work identifier used
to indicate that a call to Work has been scheduled; and payload, a pointer to the payload
being processed.

Here Receive takes two parameters: an ignored pointer to the input port from which
the data arrives; and p, a pointer to the payload. Receive checks payload to see if it
is null. If it is, Receive assigns payload to the payload, and returns True to accept
the payload. If payload was not null, Receive rejects the payload by returning False.
Later, some other C++ class member function of the sink may clear payload and call
Idle on the input port to indicate that the sink is to receive more data.

5.8 Scheduling File I/O Operations

Some modules perform I/O, through Unix system calls, using Unix file descriptors. For
example, a simple file source reads Unix files and generates payloads from the data in
the files. If a module designer is not careful, the single threaded Unix process in which
the VuSystem scheduler is running can become blocked by the Unix scheduler if an I/O
operation is attempted by the module on an unready Unix file. In such a situation,
since the entire process has been blocked, the VuSystem scheduler cannot allow some
other module to run, even though one may be ready. To minimize I/O blocking of
the VuSystem, modules that perform file input using Unix I/O use nonblocking I/O.
Nonblocking I/O system calls return errors, instead of blocking, when files are not ready.

5.8.1 File Input

VuSystem modules that perform file input perform nonblocking I/O with the Input (page
176) C++ class member function. It is called by the VuSystem scheduler whenever a file
indicated with StartInput (page 176) is ready for input. A typical Input C++ class

L.

void
SimpleFileSource::Input(int, VsInputId) {

...read from the file, create payload when done...
if (payload != 0) { StopInput(inputId); inputId = O; Idle(outputPort); }

}

void
SimpleFileSource: :Idle(VsOutputPort*) {
if (payload != 0 && outputPort->Send(payload)) payload = 0;
if (payload == 0 && inputId == 0 && fd >= 0) inputId = StartInput(fd);

}

Figure 5.9: A diagram of a simple file source and the code for the Input and Idle C++
class member functions for the module.

member function reads data from a file until a payload can be constructed or the file is
no longer ready. When no more data is necessary from the file, StopInput (page 176) is
used to stop calls to Input from the VuSystem scheduler.

Example

The simple source module described in Section 5.3 could be extended to read payloads
from a file. Figure 5.9 shows a diagram and the code for the Input and Idle C++
class member function of a simple file source. In this example, the source module has
at least four C++ class member variables: outputPort, a pointer to the output port
for this module; inputId, an input identifier used to indicate Input has been scheduled;
payload, which may point to a payload to be sent; fd, the Unix file descriptor for the
file; and pathname, the name of the file.

Here Input takes two parameters: an ignored file descriptor that is ready for input;
and an ignored input identifier. Input first reads any available data from the file. If
enough data was read to build a payload, payload is set to point to the new payload.
Input checks payload to see if it points to anything. If it does, Input stops scheduling
file input operations with StopInput (page 176), clears inputId to indicate that Input
is no longer scheduled, and calls Idle to try to send the new payload downstream to the
next module.

Here Idle takes one parameter: an ignored pointer to the output port that is to
receive more data. Idle checks payload to see if there is a payload to be sent. If there
is a payload to be sent, it calls the Send function on the output port with the payload as
a parameter. If the payload was accepted, Send returns True, so Idle clears payload.

inpt

L , , , , , ,

Boolean
SimpleFileSink::Receive(VsInputPort*, VsPayload* p) {
if (payload == 0 && fd >= 0) {
payload = p; outputId = StartOutput(fd); return True;

} else return False;
}
void
SimpleFileSink: :Output(int, VsOutputId) {
...write to the file, delete payload when done...
if (payload == 0) { StopOutput(outputId); outputId = 0; inputPort->Idle(); }

}

Figure 5.10: A diagram of a simple file sink and the code for the Receive and Output
C++ class member functions for the module.

Finally, if payload is null, inputId is zero, and Id is a legal file descriptor, then Idle
calls StartInput (page 176) with the file descriptor in order to cause Input to be called
when input is available from the file. Idle sets inputId to the input identifier returned
from StartInput to indicate that Input has been scheduled.

5.8.2 File Output

VuSystem modules that perform file output perform nonblocking I/O with an Output
(page 177) C++ class member function. It is called by the VuSystem scheduler whenever
a file indicated with StartOutput (page 177) is ready for output. A typical Output C++
class member function writes output data to a file until it has finished or the file is no
longer ready. When no more data is necessary from the file, StopOutput (page 177) is
used to stop calls to Output from the VuSystem scheduler.

Example

The simple sink module described in Section 5.4 could be extended to write payloads to
a file. Figure 5.10 shows a diagram and the code for the Receive and Output C++ class
member functions of a simple file sink. In this example, the sink module has at least four
C++ class member variables: inputPort, a pointer to the input port for this module;
outputId, an output identifier used to indicate Output has been scheduled; payload,
which may point to a payload that was received; and fd, the Unix file descriptor for the
file.

Here Receive takes two parameters: an ignored pointer to the input port from which
the data arrives; and p, a pointer to the payload. Receive checks payload to see if it
is null. If it is, and if fd is a legal file descriptor, then Receive assigns payload to the

payload, calls StartOutput (page 177) with the file descriptor in order to cause Output
to be called when the file is ready for output, saves the output identifier returned by
StartOutput in outputId to indicate Output has been scheduled, and finally returns
True to accept the payload. If payload was not null, Receive rejects the payload by
returning False.

Here Output takes two parameters: an ignored file descriptor that is ready for output;
and an ignored output identifier. Output first writes as much data as it can to the
file. If enough data was written to complete the payload, the payload will be deleted
and payload cleared. Output checks payload to see if it is null. If it is, Output stops
scheduling file output operations with StopOutput (page 176), clears outputId to indicate
that Output is no longer scheduled, and calls Idle on the input port to indicate that the
sink is to receive more data.

5.8.3 The Granularity of Scheduled I/O Operations

As with computation operations, a long-running I/O operation locks out any other I/O
and time-dependent operations while it is running. Because of this, scheduled I/O op-
erations should be designed to run with a fine enough granularity that the VuSystem
scheduler can schedule other I/O and time-dependent operations. It is up to the module
developer to ensure that a scheduled I/O operation does not run too long.

Input and Output C++ class member functions should be written to run with a
granularity appropriate for the applications in which they will be used. This is best
achieved through the design of I/O operations that return when either their corresponding
file becomes unready, or when they have completed one payload's worth of work.

5.9 Scheduling Time-Dependent Operations

Since the VuSystem is designed to manipulate temporally sensitive data, some modules
in the VuSystem need to perform operations at precise times. Typically these modules
are sources or sinks that interface to media capture or display devices. For example, a
window sink, which draws video frames on a window of a workstation display, needs to
perform window updates at times specified by the video frames.

The VuSystem provides a mechanism in support of time-sensitive operation schedul-
ing. If a module operation needs to be performed at a particular time, it is done in a
Timeout (page 175) C++ class member function. It is called by the VuSystem scheduler
after a time indicated through StartTimeout (page 175) has passed.

Example

The simple sink module described in Section 5.4 could be extended to write video frames
on a window. This display operation would use the Timeout C++ class member function
to ensure that the video frames are displayed at the right times. Figure 5.11 shows a
diagram and the code for the Receive and Timeout C++ class member functions of
a simple window sink. In this example, the sink module has at least six C++ class
member variables: inputPort, a pointer to the input port for this module; intervalId,
an interval identifier used to indicate Timeout has been scheduled; frame, which may
point to a video frame that was received; display, a pointer to an X Window System
display object; and windowId, an X Window System window identifier.

Here Receive takes two parameters: an ignored pointer to the input port from
which the data arrives; and p, a pointer to the payload. Receive first calls
VsVideoFrame: :DerivePtr saving the result in the local variable f to check if the pay-
load is a video frame. VsVideoFrame: :DerivePtr returns a pointer to a video frame if
the payload is a VsVideoFrame payload, and null if it is not.

libraries

L-------- --- I

Boolean
SimpleWindowSink::Receive(VsInputPort*, VsPayload* p) {
VsVideoFrame* f = VsVideoFrame::DerivePtr(p);
if (f != 0) {

if (frame == 0) {
frame = f;
intervalId = StartTimeout(f->StartingTime());
return True;

} else return False;
} else if (VsFlush::DerivePtr(p) != 0) {
if (frame != 0) { delete frame; frame = 0; }
if (intervalId != 0) { StopTimeout(intervalId); intervalId = 0; }
delete p; return True;

} else { delete p; return True; }

void
SimpleWindowSink::timeout(VsIntervalId) {

...display video frame...
delete frame; frame = 0;
intervalId = 0; inputPort->Idle();

}

Figure 5.11: A diagram of a simple window sink and the code for the Receive and
Timeout C++ class member functions for the module.

If f is non-null (hence the payload is a VsVideoFrame payload), Receive checks
whether frame already points to a video frame payload. If not, Receive assigns frame to
the video frame, calls StartTimeout (page 175) with the timestamp of the video frame,
saves the interval identifier in intervalId to indicate Timeout has been scheduled, and
returns True to accept the payload. If frame already points to a frame, Receive returns
False to decline the payload.

If the payload is not a video frame, Receive calls VsFlush: :DerivePtr with the
payload to check whether it is a VsFlush (page 195) payload. VsFlush payloads indicate
that modules waiting for the appropriate time to pass before presenting data, should stop
waiting and flush their data. If the payload is a VsFlush payload, Receive deletes any
saved frame, cancels any scheduled time dependent operation with StopTimeout (page
175), deletes the payload, and returns True to accept it.

If the payload is neither a VsVideoFrame payload nor a VsFlush payload, Receive
simply deletes the payload and returns True to accept it.

Here Timeout takes one parameter: an ignored interval identifier. It is called when the
time saved in the StartingTime payload descriptor member of the video frame arrives.
Timeout first displays the video frame, then deletes the video frame and clears frame.
Timeout also clears intervalId to indicate that a time dependent operation is no longer

scheduled. Finally, it calls Idle on the input port to indicate that the sink is to receive
more data.

5.9.1 The Granularity of Scheduled Time-Dependent Operations

As with computation and I/O operations, a long-running time-dependent operation locks
out any I/O and other time-dependent operations while it is running. Because of this,
scheduled time-dependent operations should be designed to run with a fine enough gran-
ularity that the VuSystem scheduler can schedule I/O and other time-dependent op-
erations. It is the responsibility of the module developer to ensure that a scheduled
time-dependent operation does not run too long.

This responsibility is easily met through the following of a simple guideline. Funda-
mentally, Timeout C++ class member functions should be written to run with a granu-
larity appropriate for the applications in which they will be used. This is best achieved
through the design of time-dependent operations with constraints similar to that of com-
putation operations: a scheduled time-dependent operation should take no more than
1/2 of a frame time.

5.9.2 The Precision of Scheduled Time-Dependent Operations

The VuSystem scheduler cannot preempt any running operation when a scheduled time-
dependent operation comes due. Nor can it force the Unix scheduler to transfer control
to the VuSystem application. Therefore the VuSystem scheduler cannot guarantee that
a scheduled time-dependent operation runs precisely when its scheduled time passes.
However, the scheduler can guarantee that a time-dependent operation will be scheduled
immediately after its scheduled time passes.

This approach does not provide the precision that a true multi-threaded real-time
scheduler could provide: precise scheduling of time-dependent operations through the
preemption of less critical operations. Still, with well-designed modules, satisfactory ap-
plication performance can be maintained with the VuSystem scheduler. Through control
of the granularity of all scheduled VuSystem module operations, and through adjustment
of the Unix process scheduler priority of the VuSystem application process, the scheduling
precision of time-dependent operations can be controlled.

Modules that require time-dependent operations can be designed to have relaxed con-
straints on the precision of the scheduling of the operations. For example, an audio sink
module that sends audio data to a kernel device driver for a speaker can use buffering to
decouple the scheduling of its time dependent operations from the precise timing of the
digital-to-analog conversion of the audio samples. By using buffering in a device driver,
delay is introduced between the delivery of the data to the device driver and the actual
audio output. This delay can be used by the sink module through the early scheduling
of its time-dependent operations, to allow for late execution of its time-dependent op-
erations. Using 1/8 to 1/4 of a second of buffering would provide ample time for late
time-dependent operations.

Some applications cannot afford the latency introduced through buffering. For exam-
ple, delays of more than a small fraction of a second can make a conferencing application
unacceptably painful to use. In this situation, the precision of time-dependent operation
scheduling can be improved through the sole use of modules that use fine granularity in all
their scheduled operations. VuSystem applications with critical scheduling requirements
can also be run with high Unix scheduler priorities (highly negative "nice" values), to en-
courage the Unix process scheduler to preempt other Unix processes when the VuSystem
application needs to run.

Performance measurements reported in Chapter 7 demonstrate that this approach
to the schedulling of time-dependent operations works reasonably well. A measurement
made of the precision of Timeout calls shows most calls were made within one millisecond

void
SimpleFileSource: :Start(Boolean mode) {
if (fd >= 0 11 inputId ! 0 11 payload != 0) Stop(True);
if ((fd = open(pathname, ORDONLYIO_NONBLOCK, 0)) < 0)
VsError("%s: open %s: %s", Name(), pathname, strerror(errno));

VsEntity: :Start (mode);
if (mode == False) Idle(outputPort);

}
void
SimpleFileSink: :Stop(Boolean mode) {
VsEntity: :Stop(mode);
if (inputId != 0) { StopInput(inputId); inputId = 0; }
if (payload != 0) { delete payload; payload = 0; }
if (fd >= 0) {

if (close(fd))
VsError("%s: close %s: %s",Name(),pathname,strerror(errno));

fd = -1;

if (mode == False) {
payload = new VsFinish(VsTimeval::Now(), 0);
Idle (outputPort);

}

Figure 5.12: The code for the Start and Stop C++ class member functions for a simple
file source.

of their scheduled time, within the limit of the precision of the operation system clock.
Of the calls not made within one millisecond, the vast majority were made within a
few milliseconds. The measurements also show that precision gracefully degrades with
increased system load.

5.10 Starting and Stopping

Some modules need to perform some operations at the beginning or end of in-band media
processing. For example, a file source or sink module needs to open its file at the beginning
of in-band media processing, and close its file at the end of in-band media processing.
Modules that need to perform any processing at the beginning or at the end of in-band
processing do so in Start (page 177) and Stop (page 177) C++ class member functions.

Example

The simple file sink module described in Section 5.8.1 would need to open the file at the
start of in-band processing, and close the file at the end. Figure 5.12 shows the code for
the Start and Stop C++ class member function for a simple file source. In this example,
the source module has at least five C++ class member variables: outputPort, a pointer
to the output port for the module; inputId, an input identifier used to indicate Input
has been scheduled; payload, which may point to a payload to be sent; fd, the Unix file
descriptor for the file; and pathname, the name of the file.

Here Start takes one parameter: mode, a Boolean value indicating whether Start
should cause payloads to be sent downstream. Start first checks if fd is a legal file
descriptor, which indicates that the file is already open. It also checks if inputId is
non-null, which indicates that an input operation is scheduled, or if payload is non-null,
which indicates that a payload is ready to be sent. If any of these conditions is true,
Start calls Stop in abort mode to reset the module.

Here Start then attempts to open the file by calling open, storing the result in fd.
If open fails, resulting in fd being negative, Start reports the error with VsError (page

SimpleSimpleFileSource: : SimpleFileSource(TclInterp* in, VsEntity* pr,
const char* nm)

:VsEntity (in,pr,nrm), outputPort (new VsOutputPort (in, this, "output ")),
pathname(strcpy(new char[strlen("/dev/null")+1],"/dev/null")),
fd(-1) ,payload (0),inputId (0)

CreateOptionCommand("pathname", SimpleFileSourcePathnameCmd,
(ClientData)this, 0);

SimpleFileSource: :SimpleFileSource() {
if (fd >= 0 1I inputId != 0 II payload != 0) Stop(True);
if (outputPort != 0) { delete outputPort; outputPort = 0; }
if (pathname != 0) { delete pathname; pathname = 0; }}

Figure 5.13: The code for the C++ class constructor and destructor of a simple file
source.

183). Start calls VsEntity: :Start in order to cause the Start C++ class member
functions of any children of this module to be called. Finally, if mode is false, indicating
that Start should try to send data to downstream modules, Start calls Idle, which will
start an input operation.

Stop takes one parameter: mode, a Boolean value indicating whether Stop should
cause VsFinish payloads to be sent, and whether filter and sink modules should wait for
the VsFinish payloads before really stopping. Stop first calls VsEntity: :Stop to cause
the Stop C++ class member functions of any children of this module to be called. Stop
checks inputId, and if it is non-zero, Stop then cancels any scheduled input operation
with StopInput (page 176) and resets inputId.

Stop also checks the payload variable and if it is non-null, deletes the payload it is
pointing to and clears the variable. If fd is a legal file descriptor, Stop calls close on
it, reporting any errors with VsError. Stop resets fd to an illegal file descriptor, and if
mode indicates that a VsFinish (page 194) payload should be sent, Stop sets payload to
a new VsFinish payload and calls Idle, which will send the payload downstream.

5.11 Constructors and Destructors

Some module initializations cannot be performed by Start, and instead are performed
by a C++ class constructor, which is executed by the C++ language system immediately
after the module is first created. For example, input and output ports are created in the
C++ class constructors of their parent module. Ports cannot be created at the start of
in-band processing, since they must be connected together before the start of in-band
processing. Similarly, some deinitializations cannot be performed by Stop, and instead
are performed by the class destructor for the module, which is executed by the C++
language system immediately before the module is destroyed. For example, module input
and output ports are deleted in module C++ class destructors, not at the completion of
in-band processing.

Example

Figure 5.13 shows the code for the class constructor and class destructor for a simple file
source. In this example, the source module has at least five C++ class member variables:
outputPort, a pointer to the output port for the module; inputId, an input identifier;
payload, a pointer to a payload; fd, the Unix file descriptor for the file; and pathname,
to the name of the file.

VsEntity*
SimpleFileSource::Creator(TclInterp* in, VsEntity* pr, const char* nm) {

return new FileSource(in, pr, nm);
}

VsSymbol* SimpleFileSource::classSymbol;

void
SimpleFileSource::InitInterp(TclInterp* in) {

classSymbol = InitClass(in, Creator, "SimpleFileSource", "VsEntity");
}

Figure 5.14: The code for the Creator static C++ class member function, the
classSymbol class variable, and the InitInterp static C++ class member function of a
simple file source.

Here the class constructor takes three parameters: in, a pointer to a Tcl interpreter;
pr, a pointer to the parent module; and nm the child name of the module. The constructor
first calls the constructor for its parent class (VsEntity), passing on in, pr, and nm. It
then creates its output port, saving a pointer to it in outputPort. The constructor sets its
file name to /dev/null, and initializes id, payload, and inputId. The constructor finally
registers its pathname option subcommand with CreateOptionCommand (page 178).

Here the class destructor takes no parameters. If the module appears to be running,
as indicated, by fd, inputId, or payload not reflecting their initial values, the destructor
calls Stop (page 178) in abort mode. The destructor then destroys the modules output
port if it has one, and finally destroys its file name string, if it has one.

5.12 Module Linkage Within The Application Shell

In order to make modules available to the application programmer, the modules have to
be linked into the application shell. Tcl Commands to instantiate VuSystem modules
are installed into the Tcl interpreter by calling an InitInterp static C++ class member
function for each module.

Example

Figure 5.14 shows the code for the Creator static C++ class member function,
classSymbol class variable, and InitInterp static C++ class member function of a sim-
ple file source. Creator returns a new instance of a VsPuzzle module, and InitInterp
(page 181) calls InitClass (page 181), supplying its creator function, and saving the
returned class symbol in a static variable. Since the VsPuzzle class was built on the
VsFilter class, "VsFilter" is supplied as the superclass name to InitClass.

5.12.1 How The InitInterp Static C++ Class Member Function
Is Called

In order to have module code linked into the application shell and registered in the Tcl
command interpreter, the InitInterp static C++ class member function for the module
(page 181) needs to be called by the application shell main program. The simplest way
to have this done is to have it called by the main procedure of the application, right after
all other Tcl interpreter initializations.

If a library of in-band modules is to be linked and registered, it is a good idea to
provide a single InitInterp procedure for the whole library, which in turn calls the

#include <vs/vslib.h>
#include <vs/vsTcl.h>
#include <vsio/vsioInit .h>
#include <vv/vvInit .h>

int
main(int argc, char **argv) {
TclInterp *interp = Tcl_CreateInterp();
VsInitInterp(interp);
VsioInitInterp(interp);
VvInitInterp(interp);
SimpleFileSource::InitInterp(interp);
return VsShellTopLevel(interp, argc, argv);

}

Figure 5.15: The code for the C++ main procedure for an application shell that includes
the SimpleFileSource module.

InitInterp static C++ class member functions (page 181) for each module in the li-
brary. For example, the main procedure above calls VsInitInterp, VsioInitInterp,
and VvInitInterp, which call the InitInterp static C++ class member functions for
all modules in the vs, vsio, and vv libraries, respectively.

Example

Figure 5.15 shows the code for the main procedure for an application shell that in-
cludes a simple file source module. The main procedure takes two parameters: argc,
the number arguments passed to the program; and argv, the arguments themselves.
The main procedure first creates the Tcl interpreter and assigns the interp local vari-
able to it. Next, the VsInitInterp, VsioInitInterp, and VvInitInterp procedures
are called, to initialize the Tcl interpreter for the vs, vsio, and vv libraries, respec-
tively. Then, the simple file source module class is installed in the interpreter with the
SimpleFileSource: :InitInterp procedure. Finally, the top-level processing loop is
entered with a call to VsShellTopLevel, passing to it argc and argv, as well as interp.

5.13 Review

The in-band partition of a VuSystem application is structured as a reconfigurable directed
graph of modules. The nodes of the graph are the in-band processing modules and the
edges are associations of input and output ports on the modules. Through these ports
logically pass payloads which hold the media data.

VuSystem payloads are self-identifying, dynamically-typed data structures which log-
ically are passed through ports between modules. Payloads all have two components:
a data component, which holds the media data; and a descriptor component, which
holds information about the payload. Payload descriptor member variables common
to all payload types include Channel, a 32-bit integer used for multiplexing payloads;
StartingTime, a 64-bit time value which indicates the time at which a payload is valid;
and Duration, a 64-bit time value which indicates the duration in which a payload is
valid.

Media capture modules such as the VsVidboardSource and VsAudioFileSource mod-
ules record the time at which media samples are captured in the StartingTime payload
descriptor member of each payload they create. Media display modules such as the
VsWindowSink and VsAudioFileSink modules display media samples at the times in-
dicated by the StartingTime payload descriptor member. The VsReTime filter mod-
ule modifies the StartingTime payload descriptor member of each payload that passes

through it. This provides for the display of media data at a time later than capture
through the addition of a fixed offset to every timestamp. This offset corresponds to
the time difference between the time at the start of the display of a sequence and the
StartingTime of the first payload of the sequence.

Modules can create shallow copies of payloads that share data components, or deep
copies that have private data components. Deep copies of payloads are completely in-
dependent of each other, while shallow copies have independent descriptor components
but shared data components. Changing the data component of a payload with shallow
copies may cause unexpected side-effects. Since a module cannot tell whether its input
payload has shallow copies or not, it should not change the data component of its input
payload.

The module data protocol is used to transfer payload ownership between an upstream
module and a downstream module. To pass a payload, the upstream module calls the
Send C++ class member function on its output port, which calls the Receive C++
class member function of the downstream module. If the downstream module accepts
the payload, it returns True from Receive, and the upstream module receives True from
Send. If the downstream module is not ready for more data, it returns False from
Receive when called with a payload. Later, when the downstream module is ready for
more data, it calls the Idle C++ class member function on its input port, which calls
the Idle C++ class member function on the upstream module.

Most filters do their computation in a Work C++ class member function, which once
started with StartWork, is called regularly by the VuSystem scheduler until it either
returns True or is stopped with StopWork. Standard filters that simply perform compu-
tational transforms on data are written as subclasses of the VsFilter module class, and
include a WorkRequiredP C++ class member function and a Work C++ class member
function.

Modules that perform file input use an Input C++ class member function, which is
called by the VuSystem scheduler whenever a file indicated with StartInput is ready
for input. Modules that perform file output use an Output C++ class member function
which is called by the VuSystem scheduler whenever a file indicated with StartOutput
is ready for output. If an operation needs to be performed at a particular time, it is done
in a Timeout C++ class member function, which is called by the VuSystem scheduler
after a time specified with StartTimeout has passed.

Modules that need to perform any processing at the beginning or at the end of in-band
processing use Start and Stop C++ class member functions. Module initializations that
cannot be performed in a Start C++ class member function are put in the C++ class
constructor for the module, and deinitializations that cannot be performed in a Stop
C++ class member function are put in the C++ class destructor for the module.

In order to be available to the application programmer, modules have to be linked
into the application shell. Tcl Commands to instantiate VuSystem modules are installed
into the Tcl interpreter by calling an InitInterp static C++ class member function for
each module.

Chapter 6

Communication Between
In-Band And Out-Of-Band
Partitions

Out-of-band processing is that processing which performs the event-driven functions of
a program: the familiar event driven code typical of all interactive applications. In-
band processing is the processing performed on every video frame and audio fragment:
performed continuously on a running audio or video sequence. These two partitions are
radically different in terms of functionality, programming language, and execution profile,
yet they somehow need to cooperate to form the powerful application style used in the
VuSystem. In this chapter, I discuss how they cooperate.

In-band code

Figure 6.1: The structure of VuSystem applications.

Once again, recall the VuSystem application structure diagram, shown in Figure 6.1. The
oval at the top of the diagram, labeled "Out-of-band code", corresponds to the application
script, discussed in Chapter 4. The blocks at the bottom of the program, labeled "In-
band code" correspond to the media processing modules, discussed in Chapter 5. The
out-of-band partition uses commands, and the in-band partition uses callbacks.

The VuSystem uses what I call Tcl object commands to represent in-band modules
and ports to out-of-band scripts. They provide a Tcl command name for each module
and port, so that the module or port can be named and manipulated in Tcl. Each module
and port is manipulated with its own object command. Each object command has several

of what I call subcommands that allow the state of its object to be queried and changed.
Each subcommand specifies a different operation that can be performed on the object.

Sometimes, out-of-band Tel code in an application should be executed whenever an
in-band event occurs. In that case, a callback is used.

6.1 Subcommands

Module subcommands are used to communicate from the out-of-band control partition to
the in-band data partition. They are used to set parameters - adjusting virtual knobs
and flipping virtual switches. Descriptions of the subcommands for all the predefined
VuSystem modules are available in Appendix A.

Many subcommands are in the form of module option subcommands. Option sub-
commands are used to query and set values. They always return the current setting
of a value, and take an optional argument to change the setting. Since they have a
more restrictive form than other subcommands, option subcommands can be handled by
graphical programming tools.

6.1.1 Subcommand Definition

Subcommands are normal Tel command procedures, whose ClientData argument by
default is a pointer to the associated module. Subcommands are declared C++ friend
procedures to the module class, so they may manipulate private members of a module.
They are declared to use C linkage.

Like all primitive Tcl command procedures, subcommands all have a standard form.
Subcommands all take four parameters: an opaque client data parameter, a pointer to a
Tcl interpreter, the number of command parameters, and the parameters themselves. A
typical subcommand has three parts: input parameter, processing, and return value.

* The parameter part of a subcommand performs all input parameter pro-
cessing. It first casts its opaque client data parameter to a pointer to
its associated module. It checks the number of parameters, and uses
the VsTclErrArgCnt (page 184) procedure to report incorrect param-
eter counts. It then parses its parameters, converting them to C data
types. See Section C.13 for descriptions of procedures that provide for
conversion of parameters to common C data types.

* The core of a typical subcommand is its processing part. This part
does the actual work of the subcommand. Errors are caught in this
part with VsPushErrRec (page 183), VsPopErrRec (page 183), and
VsErrRecToTclErr (page 184).

* The return value part of a subcommand converts the C data type to a
string, saves it in the Tcl interpreter's result slot, and returns the TCL_OK
value. See Section C.14 for descriptions of procedures that provide for
conversion of return values from common C data types.

Tcl subcommands are registered with the CreateCommand member function in the module
class constructor. Option subcommands are registered using the CreateOptionCommand
procedure in the module class constructor. See Section 5.11 for an example constructor.

Example

Figure 6.2 shows the code for the SimpleFileSourceSourcePathnameCmd Tcl subcom-
mand procedure for a simple file source. In this example, the source module has at least
two instance variables: fd, the Unix file descriptor for the file; and pathname, the name
of the file.

int
SimpleFileSourceSourcePathnameCmd(ClientData cd, TclInterp* in, int argc,

char* argv[])
{
SimpleFileSource* src = (SimpleFileSource*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?pathname?");
if (argc > 1) {

char* pathname;
if (VsGetString(in, argv[11], &pathname) != TCL_0K)
return TCLERROR;

if (src->fd >= 0) {
VsErrRec rec; VsPushErrRec(&rec);
src->Stop(False);
delete src->pathname;
src->pathname = strcpy(new char[strlen(pathname)+l] ,pathname);
src->Start (True);
if (VsPopErrRec(&rec)) return VsErrRecToTclErr(in, &rec);

} else {
if (src->pathname != 0) delete src->pathname;
src->pathname = strcpy(new char[strlen(pathname)+1] ,pathname);

}
}
return VsReturnString(in, src->pathname, TCLSTATIC);

Figure 6.2: The code for the pathname subcommand for a simple file source.

The SimpleFileSourceSourcePathnameCmd Tcl subcommand procedure takes four
parameters: cd, a Tcl client data parameter; in, a pointer to a Tcl interpreter, argc, the
number of Tcl parameters to this command; and argv, the Tcl parameters. First, the
procedure converts its cd parameter into a pointer to the SimpleFileSource module. It
then checks the number of parameters. Since this command is an option command, one
optional parameter is allowed. If the parameter count is wrong, the procedure signals a
Tcl error by calling VsTclErrArgCnt (page 184) and returning the error code from it.

If argc is greater than 1, the procedure is called with a parameter, and this param-
eter is extracted into the pathname local variable, using VsGetString (page 189). The
procedure checks if the current file is open and if fd is a legal file descriptor. If the file is
open, the procedure stops the module by calling its Stop member function, deletes the
old pathname, sets the pathname instance variable of the module with a new pathname
string, and then restarts the module.

If any errors are reported by VsError during the execution of Stop and Start, they
are caught in the VsErrRec rec, and are signalled as Tcl errors with VsErrRecToTclErr
(page 184). If fd is not a legal file descriptor, which indicates the current file is not open,
then the procedure simply deletes the old pathname string and replaces it with a new
string.

Finally, SimpleFileSourceSourcePathnameCmd always returns the pathname in-
stance variable of the module.

6.2 Callbacks

Modules process continuous sequences of in-band data, while out-of-band Tcl control pro-
cessing deals with events. Modules turn continuous data into discrete events by calling
Tcl callbacks. The VuSystem provides a facility for each module to have a callback. All
modules have a callback option subcommand that is used to set the callback command
string, and an EvalCallback (page 179) member function to call the callback. Descrip-
tions of the callback conditions for all the predefined VuSystem modules are available in
Appendix A.

void SimpleFileSource::Input(int, VsInputId) {

if (... end of file...) EvalCallback("-sourceEnd 1");

Figure 6.3: The C++ code for the Input procedure of a simple file source that calls a
callback.

Example

Figure 6.3 shows the code for the Input procedure of a simple file source that calls a
callback. In this example, when the end-of-file condition is encountered by the source
module, the callback command string is evaluated with the string -sourceEnd 1 ap-
pended to it. This provides a Tcl application script with an indication that the simple
file source has reached the end of its input file. An example Tcl script that would make
use of the callback is shown in Figure 6.4.

proc sourceCallback {args} {
set sourceEnd [keyarg -sourceEnd $args 0]
if $sourceEnd {
vs.source pathname "second.uv"
vs.source callback ""

}

SimpleFileSource vs.source \
-pathname "first.uv" \
-callback "sourceCallback"

Figure 6.4: How a simple file source callback might be used in Tcl.

6.2.1 Callback Definition

Callbacks are defined by the application programmer in Tcl, the application scripting
language. Typically the Tcl application programmer provides a name of a Tcl procedure
as the callback command. The Tcl procedure looks at its arguments to determine what
event has occured.

Example

Figure 6.4 shows how a Tcl application programmer might make use of a simple file source
callback that indicates end-of-file (Figure 6.3, page 76). This example code provides the
automatic switching of the file source from file first.uv to the file second.uv when
end-of-file is encountered on the first file.

The sourceCallback Tcl procedure takes a keyword argument list in its args pa-
rameter. It extracts any sourceEnd keyword parameter with the keyarg (page 169)
command, defaulting to 0. If sourceEnd is nonzero, sourceCallback changes the file for
the source module using the pathname subcommand for the module. This will cause the
source module to start on the file second.uv. The sourceCallback procedure also clears
the callback for the source module using the callback subcommand for the module so
that when the end of second.uv is signalled, the callback does not get run again.

After defining the sourceCallback procedure, a SimpleFileSource named
vs.source is created, with its input file set to first.uv and its callback set to

SimpleFileSource classProc panel {v orient args} {
apply Form $w \

$args
Label $w.label \

-label "Simple File Source" \
-borderWidth 0

VsLabeledPathname $w.pathname \
-label "Pathname" \
-value [$self pathname] \
-types {

{"All Video Files" ".*\.(uvlrvlcv)"}
{"Uncompressed Video Files" ".*\.uv"}
{"Raw Video Files" ".*\.rv"}
{"Compressed Video Files" ".*\.cv"}
{"All Files" ".*"}

-mustExist [true] \
-callback "$self pathname" \
-fromVert $w.label

Figure 6.5: A control panel for a simple file source and the code for the panel Tcl class
procedure for the module.

sourceCallback. When started, vs.source will read from first.uv and evaluate the
Tcl command string "sourceCallback -sourceEnd 1" when it encounters end-of-file.

6.2.2 Tcl Callback Execution

Tel Callbacks provide a mechanism for communication of events from the time-critical
in-band partition of applications to the event-processing out-of-band partition. Since
the VuSystem runs within one thread of control, immediate execution of out-of-band
functions while more time-critical in-band functions wait would be unwise. Because of
this, Tel callbacks are executed asynchronously.

Instead of evaluating its Tcl command argument immediately, EvalCallback arranges
for the Tcl command to be evaluated later, and returns immediately. The command is
evaluated after more time critical in-band functions have been performed. Because Tcl
callbacks are executed asynchronously, you cannot use EvalCallback to return a value
from the Tcl command. You should use Tcl subcommands that can be called from your
callbacks to perform control functions on the module.

6.3 Control Panels

Module control panels provide a graphical user interface to option subcommands. Module
control panels are defined with Tcl code. For every module that has a control panel, there
is a library Tcl script that defines a panel class procedure for the module class. This
panel class procedure contains code to construct a graphical user interface to the option
subcommands of a module.

Simple File Source

Pathname

IDollarsAndSense.uv

Detal Change IIDelete I

Pathname
i/video/cayenne/CNNHeadlineNews/HeadiineNewsnuv

Detail IIChange. DeleteI

VsLabeledPathname $w.pathname \
-label "Pathname" \
-value [$self pathname] \
-types {
{"All Video Files" ".*\.(uvlrvlcv)"}
{"Uncompressed Video Files" ".*\.uv"}
{"Raw Video Files" ".*\.rv"}
{"Compressed Video Files" ".*\.cv"}
{"All Files" ".*"}

-mustExist [true] \
-callback "$self pathname" \
-width 320 \
-fromVert $w.form.caption

Figure 6.6: The user interface presented by, and the code for, the example use of the
VsLabeledPathname control panel clich4.

Port

VsLabeledChoice $w.form.port \
-choices {{0 Zero} {1 One} {2 Two}} \
-label "Port" \
-value [$self port] \
-callback "$self port" \
-fromVert $w.form.label

Figure 6.7: The user interface presented by, and the code for, an example use of the
VsLabeledChoice control panel clich4.

Example

A control panel interface to the SimpleFileSource module might include a panel to
allow the specification of pathname to the module. Figure 6.5 shows a control panel and
the code for the panel Tcl procedure for a simple file source. In this example, the source
module has at least one option subcommand: pathname, which specifies the name of the
file.

The panel Tel class procedure, like all panel class procedures, takes three parameters:

w, the object command name for the main widget to be created; orient, set at either

the word -fromVert or -fromHoriz, specifying the subpanels for module children that

should be oriented horizontally or vertically; and args, the rest of the parameters to the
procedure, which are supplied as a list suitable for processing with the keyarg (page 169)
and keyargs (page 169) commands.

First, the panel Tcl class procedure creates a Form (page 203) widget as the main

widget for the control panel. For the first panel member, the panel Tel class procedure
creates a Label (page 203) widget with no border and with the text "Simple File

Source" to make a title. Then the procedure uses the VsLabeledPathname (page 198)

Frame Rate '15

VsLabeledScrollbar $v.form.frameRate \
-label "Frame Rate" \
-value [$self frameRate] \
-continuous [true] \
-converter "vsLinearConverter 0 [vsDefault -frameRate]" \
-inverter "vsLinearInverter 0 [vsDefault -frameRate]" \
-callback "$self frameRate" \
-valueWidth 70 \
-width [expr { [vsDefault -frameRate]*5+10}] \
-fromVert $w.form.hue

Figure 6.8: The user interface presented by, and the code for, an example use of the
VsLabeledScrollbar control panel cliche.

procedure to define a panel member for selecting pathnames.

6.3.1 Control Panel Clich4s

Control panel members usually can be built with a small set of code clichis. Some helper
procedures are provided for constructing these control panel members.

* The VsLabeledPathname (page 198) procedure provides a user-interface
cliche for displaying and changing file pathnames. For example, the
VsSunVfcSource module uses the VsLabeledPathname procedure to de-
fine the interface to its pathname option subcommand, which is used
to specify which Sun VideoPix device file to use. Figure 6.6 shows the
user interface presented by, and the code for, an example use of the
VsLabeledPathname control panel clich4.

* The VsLabeledChoice (page 198) procedure provides a user-interface
clich6 for displaying and changing parameters that are multiple-choice.
For example, the VsSunVfcSource module uses the VsLabeledChoice
procedure to define the interface to its port option subcommand, which
is used to specify which analog video input port to select during video
capture. Figure 6.7 shows the user interface presented by, and the code
for, an example use of the VsLabeledChoice control panel clich6.

* The VsLabeledScrollbar (page 199) procedure provides a user-interface
clich6 for displaying and changing numeric parameters that vary
over a range. For example, the VsSunVfcSource module uses the
VsLabeledScrollbar procedure to define the interface to its frameRate
option subcommand, which is used to specify the maximum frame rate
to be used during video capture. Figure 6.8 shows the user interface pre-
sented by, and the code for, an example use of the VsLabeledScrollbar
control panel clich4.

6.4 Review

Tcl object commands are used by the VuSystem to represent in-band modules and ports to
out-of-band scripts. Each module is manipulated with its own object command. Object

commands have several subcommands that allow the state of objects to be queried and
changed.

A typical subcommand has three parts: an input parameter part which performs
all input parameter processing; a processing part, which does the actual work of the
subcommand; and a return value part, which converts the C data type to a string, saves
it in the Tcl interpreter's result slot, and returns the TCL_0K value. Tcl subcommands
are registered with the CreateCommand member function in the module class constructor.

Many subcommands are in the form of module option subcommands. Option sub-
commands are used to query and set values. They always return the current setting
of a value, and take an optional argument to change the setting. Since they have a
more restrictive form than other subcommands, option subcommands can be handled
specially by graphical programming tools. Option subcommands are registered using the
CreateOptionCommand procedure in the module class constructor.

Module control panels provide a graphical user interface to option subcommands.
Module control panels are defined with Tcl code. For every module that has a control
panel, there is a library Tcl script that defines a panel class procedure for the module
class. This panel class procedure contains code to construct a graphical user interface to
the option subcommands of a module. Control panel members usually can be built with
a small set of code cliches. Some helper procedures are provided for constructing these
control panel members.

Sometimes, out-of-band Tcl code in an application should be executed whenever an
in-band event occurs. In this case, a callback is used. The VuSystem provides a facility for
each module to have one callback. All modules have a callback option subcommand that
is used to set the callback command string, and an EvalCallback member function to call
the callback. Callbacks are defined by the application programmer in Tcl, the application
scripting language. They are executed in the out-of-band partition, asynchronous with
the in-band partition, and are only used to signal events to the out-of-band code.

Chapter 7

Performance

Performance of the in-band component of any media processing system is important.
A useful system must meet perceptual-time constraints. The overhead of the run-time
component of the system must be low. Any in-band processing modules within the system
must be efficient. The scheduler used by the system must be able to perform operations
at precise times. Finally, the system must have enough thoughput to support full-motion
video.

In this chapter I report on experiments that verify that the VuSystem meets these
performance requirements. I made five performance measurements on the VuSystem:

1. Payload-passing overhead was measured by measuring the amount of
time a simple transparent filter takes to process a payload.

2. Scheduler overhead was measured by measuring the amount of time a
filter that includes a Work C++ class member function takes to process
a payload.

3. Processing times of representative filter modules were measured.

4. Timeout precision was measured by measuring the variation between the
requested and the actual starting times of Timeout C++ class member
functions.

5. Total system throughput was measured by measuring the amount of time
a simple program takes to completely process a video frame.

7.1 Payload-Passing Overhead
To verify that the overhead of the module data protocol is low, I measured the amount
of time a simple transparent filter takes to process a payload. I chose the VsChannelSet
filter module (page 139). It simply sets the channel payload descriptor member of all
payloads that pass through it, and does not look at the data of the payload. For this
most simple filter module, the overhead of the module data protocol dominates the time
taken to process a payload. Figure 7.1 shows a diagram of the module.

7.1.1 Experimental Setup

To measure the amount of time taken by the VsChannelSet filter to process a payload,
a special test VuSystem program was written, and the throughput of the program was
measured. Figure 7.2 shows the in-band modules used for the program.

In the program, the VsTestVideoSource (page 120) very cheaply generated a se-
cluence of test payloads. These payloads were fed into N VsChannelSet filter modules

inp

Figure 7.1: A diagram for the simple transparent filter module used for the data-passsing
overhead measurement.

I---1

VsRate VsNull
Meter Sink

N
VsChannelSet
Filter Modules

Figure 7.2: The payload-passing overhead experimental setup.

in series, where N was varied from 1 to 8192. The payloads then all traveled through a
VsRateMeter filter module (page 146), and finally were deleted by a VsNullSink (page
136).

7.1.2 Determining Filter Processing Time

The amount of time to process a video frame in this test program is the sum of the
processing time for each module,

Tprogram = TVsTestVideoSource + N X TVsChannelSet + TVsRateMeter + TVsNullSink. (7.1)

Rearranging gives,

TVsChannelSet - Tprogram TVsTestVideoSource + TVsRateMeter + TVsNullSink (7.2)
N N

So always,

TVschannelSet < Tprogram (7.3)

Also, as N grows large, TProgram also grows, but TvsTestVideosource, TVsRateMeter, and
TVsNu1lSink stay relatively constant. For N sufficiently large,

Tprogram TVsTestVideoSource + TVsRateMeter + TVsNullSink (7.4)
N N

So for sufficiently large N,

TProgram
TVsChannelSet ý

N (7.5)
With the VsRateMeter module, we can get accurate measurements of the payload rate
through the program (R(N)). The time taken by the program to process a payload
(Tprogram) is simply the reciprocal of the payload rate,

1
Tprogram = R(N)

Combining Approximation 7.5 and Equation 7.6,

(7.6)

TV.WhannelSetL N X (7.7)

7.1.3 Results

Figure 7.3 shows TvchannelSet as a function of N. Initially, as N grows, Tv,channelset
shrinks. With 500 filter modules in series, the time taken by VsChannelSet to process
one payload was approximately 12 microseconds on the Sun SparcStation 10/512 and
approximately 3 microseconds on the Digital DEC 3000/400. Given these numbers,
we can conclude that the payload-passing overhead of the VuSystem was less than 12
microseconds on the Sun Sparcstation 10/512 and less than 3 microseconds on the Digital
DEC 3000/400.

1000

100

10

100
Number of Filter Modules

1000 10000

Figure 7.3: A plot of microseconds per filter as a function of the number of filter modules.

An interesting unexpected effect is also shown in the figure. Initially, as N grew from
1 to approximately 1000, the measured TVschanneset fell as predicted by the model.
However, as the number of filter modules in series grows beyond 1000, the measured
Tvschannelset rises again. This effect is probably from memory system thrashing due to
the large number of modules in use. These extremely long chains of transparent filter

83

... i.. i........ i.L--- - -H -- i......... I - •- , -! - ! -- i --i............. -- -- ."--- -i-
............. r7 !............ i.. i i

..: . : : . ; : : : : : I I
....i i ... i- .•,... -.--. . .--.-. .,-. .,.-...

......................
.. LL.. . :1:

....•...?'" '• ;:'! " 7 .r; ' '" '" " " ." '7 "F T •. . . " - " i i 7 !

............. .!. --- --- T T! ! ! !......... i~
. : i

-.---. ------... D c 3 0
...........

..

.."" '' " " - ! ' ' ----- " ." .". . '.
....•:: : : : ::: : :,, : ::::.:..

..~.....~.....i·

.......... 4. ; : 4 ··-.4 :......;

: . : . : - : : : : : : : :

..............i...... ---- ~......

modules result in call stacks deep enough to exceed the size of the primary cache of the
processors tested.

7.2 Scheduler Overhead

To verify the VuSystem run-time scheduler has low overhead, I measured the amount
of time a mimimum filter with a Work C++ class member function takes to process a
payload. I chose the VsFilter module. For each payload, it runs a Work C++ class
member function which does nothing to the payload but pass it on. For this simple
standard filter module, the overhead of scheduling Work dominates the time taken to
process a payload. Figure 7.4 shows a diagram of the module.

inpi

L,,------------

Figure 7.4: A diagram for the simple standard filter module used for the scheduler
overhead measurement.

7.2.1 Experimental Setup

To measure the amount of time taken by the VsFilter module to process a payload, the
special test VuSystem program described in Section 7.1 was modified to use the VsFilter
module, and the throughput of the program was measured. Figure 7.5 shows the in-band
modules used for the program.

- -- 1
II---- i~---· ii---
VsTest
Video VsFilter VsFilter ...
Source

iN

VsRate VsNull
Meter Sink

V Sri1lterMdlA
I u-----

Figure 7.5: The scheduler overhead measurement experimental setup.

In the program, the VsTestVideoSource (page 120) very cheaply generated a sequence
of test payloads. These payloads were fed into N VsFilter filter modules in series, where
N was varied from 1 to 512. The payloads then all traveled through a VsRateMeter filter
module (page 146), and finally were deleted by a VsNullSink (page 136).

7.2.2 Results

Figure 7.6 shows TVaFilter as a function of N. Initially, as N grows, TVSFilter shrinks.
With 50 filter modules in series, the time taken by VsFilter to process one payload was
approximately 150 microseconds on the Sun SparcStation 10/512 and approximately 115
microseconds on the Digital DEC 3000/400. Given these numbers, we can conclude that
the scheduler overhead of the VuSystem for Work was less than 150 microseconds on the
Sun Sparcstation 10/512 and less than 115 microseconds on the Digital DEC 3000/400.

1000

1000
Number of Filter Modules

Figure 7.6: A plot of microseconds per filter as a function of the number of filter modules.

Just as for the payload-passing overhead measurements, the scheduler overhead rises
when large number of modules are involved. Initially, as N grew from 1 to approximately
100, the measured TVsFilter fell as predicted by the model. However, as the number of
filter modules in series grows beyond 100, the measured TvsFilter rises again. Once again,
this effect is probably from memory system thrashing due to the large number of modules
in use and Work C++ class member functions concurrently scheduled.

7.3 Processing Times Of Representative Filter Mod-
ules

To verify that media processing modules in the VuSystem are able to perform their func-
tions with perceptual-time granularity, I measured the amount of time two representative

...

.

...

. -- --- -- --- -- T

i~ i i i Ii i i i i i i l i i i i i .- 1............... •- ..-, .-.-i .i- i.......' -.. I...'- ..- .-.,--°, ..-

.... : :

SSparcStgtion 10/512

DEC 30001400

filter modules took to process a video frame. I measured the processing times for the
VsPuzzle filter module (page 143) and the VvEdge filter module.

L ----------

Figure 7.7: A diagram for the representative filter modules used for the processing times
measurement.

The VsPuzzle filter module is the module used as an example throughout this thesis.
It scrambles a video frame to form a video puzzle. The VvEdge filter module is part of
Stasior's library of vision service modules [8]. It performs edge detection on video frames.
Both of these modules are based on the VsFilter module, and contain Work C++ class
member functions that perform a substantial amount of computation. Figure 7.7 shows
a diagram of these modules.

7.3.1 Experimental Setup

The special test VuSystem program described in Sections 7.1 and 7.2 was modified to
use one of the representative modules. Figure 7.8 shows the in-band modules used for
the program.

VsTest filter VsRate VsNull
Video module Meter SinkSource

Figure 7.8: The setup used to measure the processing times of representative filter mod-
ules.

In the program, the VsTestVideoSource (page 120) very cheaply generated a sequence
of test video frame payloads of various sizes. These payloads were fed into the filter
module. The video frame payloads then traveled through a VsRateMeter filter module
(page 146), and finally were deleted by a VsNullSink (page 136).

7.3.2 Determining Filter Processing Time

This configuration is identical to the one described in Sections 7.1 and 7.2, except N = 1,
therefore the inequality 7.3 is still valid. In addition, because Work in the filter module

does a lot of processing, the inequality 7.4 is valid, even though there is only one filter
module being tested in this setup. Therefore for this setup,

TFilter FY TProgram. (7.8)
Combining with Equation 7.6,

TFilter ~ -.R
(7.9)

where R is the frame rate reported by the VsRateMeter module.

7.3.3 Results

Figure 7.9 shows TFilt,e as a function of the frame size for the input video frame. A
frame size of 640x480 represents a full-sized video frame, 320x240 represents a half-size
frame, and so forth. The number of pixels in each video frame changes by the product
of the changes of the frame size, therefore the frame size of 320x240 represents a quarter
of the number of pixels represented by the frame size 640x480.

0.1

Figure 7.9:
size.

640x480 320x240 212x160 160x120
Frame Size

A plot of milliseconds of processing per video frame as a function of frame

Table 7.1 shows the filter processing times in milliseconds per frame and nanoseconds
per pixel. It indicates that on both the Digital DEC 3000/400 and the Sun SparcStation
10/512, the VsPuzzle filter module can scramble a half-sized frame in approximately 2.5
milliseconds, and the VvEdge filter module can highlight edges in a half-sized frame in ap-
proximately 20 milliseconds. These times indicate that elaborate pixel-based operations
can be performed efficiently on standard computer workstations.

The per-pixel performance of the VsPuzzle module varies with the size of its input
video frame more than that of the VvEdge module, particularly on the Digital DEC

87

............ :..................................." "
................

..--..- .= :............]........................

.................. •i -,,:-....-... I

..................,. • :.

.............. v t fe:ac·,.• •-z.......
...............; '...,. : , ..

.................. ?...............: , !-

.. • i .. i
+ 1................;.;t,~.........:.c.....;-...... -:_

........................ _e SpafeStation-10/512
...I
------ ::fi·dif EG ON7406········.....····

.............

Digital Digital Sun Sun
DEC DEC SparcStation SparcStation

3000/400 3000/400 10/512 10/512
frame milliseconds nanoseconds milliseconds nanoseconds

size per frame per pixel per frame per pixel
VsPuzzle
640x480 7.81 25 9.01 29
320x240 1.69 22 2.74 36
212x160 1.30 38 1.79 52
160x120 0.73 38 1.17 61

VvEdge
640x480 75.76 247 83.68 272
320x240 18.58 242 20.92 272
212x160 8.29 243 9.40 275
160x120 4.83 252 5.41 282

Table 7.1: Some filter processing times of representative VuSystem modules.

3000/400. Table 7.1 indicates that the VsPuzzle module gets the best per-pixel perfor-
mance when run on a half-size picture on the Digital DEC 3000/400. This is because
the module uses many calls to memcpy to re-arrange the pixels in the video frames. The
performance of memcpy depends substantially on memcpy setup and cache issues. With
increasing video frame size, less time per-pixel is used for setup. In the full-size case on
the DEC 3000/400, the video frame size exceeds the size of the secondary cache, which
causes it to have a slightly worse per-pixel performance than the half-size case does.

7.4 Timeout Precision

The VuSystem scheduler is non-preemptive, and depends on the Unix process scheduler
for scheduling of time-dependent operations. To verify that this scheduling system is
adequate for many perceptual-time processing tasks, I measured the exact time that
Timeout C++ class member functions run. I instrumented the system to compare the
actual time at which a Timeout C++ class member function is called, to the time for
which Timeout was scheduled. If the VuSystem performs well, the difference between the
actual time and the scheduled time will be very slight. I recorded this Timeout precision
for several minute runs of the vsdemo program. Four runs were taken, each indicating
Timeout precision under different system loads, created by running multiple concurrent
vsdemo processes.

7.4.1 Experimental Setup

The vsdemo application is the concatenation of the VsSource module and the VsSink
module. This application passes live video, audio and closed-captions from capture de-
vices to display devices. (See page 103 for a complete discussion of the VsSource module,
and page 104 for a complete discussion of the VsSink module.) Figure 7.10 shows the
module configuration of the vsdemo program.

7.4.2 Results

Figure 7.11 shows a histogram of the percentage of Timeout calls, as a function of the
number of milliseconds after the scheduled time that Timeout was called. These mea-
surements were made on the Digital DEC 3000/400. The precision of the time-of-day
clock on the Digital DEC 3000/400 is one millisecond.

VsSource - VsSink

7.10: The setup to measure Timeout precision in the vsdemo VuSystem applica-

90

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Milliseconds From Scheduled Time

Figure 7.11: A histogram of the percentage of Timeout calls as a function of the number of
milliseconds after the scheduled time that Timeout was called. (Digital DEC 3000/400).

The histogram shows that most of Timeout calls were made within one millisecond of
the scheduled time, and can be considered "on-time". Of the calls not made within one
millisecond, the vast majority were made within a few milliseconds. The histogram also
shows that scheduler precision also gracefully degrades with increased system load.

7.5 Total System Throughput

I measured the the total system throughput of two VuSystem programs based on the two
representative filter modules measured in Section 7.3. I measured the maximum frame
rate for the vspuzzle application and for the vvdemo application.

7.5.1 Experimental Setup

The vspuzzle VuSystem application is the application built around VsPuzzle filter mod-
ule. It is used as an example in Chapter 4. It scrambles a video frame to form a video
puzzle. The vvdemo application demonstrates several features of Stasior's library of vi-
sion service modules [8]. It was used to run the VvEdge filter module. Figure 7.12 shows

Figure
tion.

IOne vsdemo
proce

s

Two vsdemo processes

Three vsdemo processes

Four vsdemo processes

17 18 19 20
- -~~-~~-~---·---'-'~"--i i__--L~Y~-I~Y~liUI-·~r-rrlY15li··ii----

I

"" ' -' t "-'°--' - ý.i, ,. •.z• = - - .5 .-

the in-band modules used in both programs.

VsVideo filter VsRate VsWindow
Source module Meter Sink

Figure 7.12: The system throughput experimental setup.

In both programs, the VsVidboardSource (page 121) captured a sequence of live
grayscale video frame payloads. In the vspuzzle program, these frames were processed
through the VsPuzzle module. In the vvdemo program frames were processed through
the VvEdge module. The video frame payloads then passed through a VsRateMeter filter
module (page 146), and finally to a VsWindowSink (page 137) which displayed them in
a window on the computer screen. For each video frame scale factor available on the
vidboard, the frame rate achieved by the programs was measured and is shown in Table
7.2.

7.5.2 Results

Table 7.2 shows the measured frame rates of simple VuSystem applications using the
VsPuzzle and VvEdge filter modules on the Digital DEC 3000/400. The table indicates
that the vspuzzle application can process half-size live video at 30 frames per second,
the maximum frame rate at which video can be captured with the hardware. The vvdemo
application running the VvEdge filter can process 25 frames per second of half-size live
video. This verifies that applications that perform nontrivial media processing can run
at perceptual-time speeds on standard computer workstations.

frame size VsPuzzle VvEdge
640x480 12 6.67
320x240 30 25
212x160 15 15
160x120 30 30

Table 7.2: Some measured frame rates of simple VuSystem applications using the
VsPuzzle and VvEdge filter modules on the Digital DEC 3000/400.

For many of the configurations shown in Table 7.2, the system throughput was con-
strained not by the VuSystem, but by the Vidboard [9], the video capture hardware used.
For frame sizes of 640x480, 320x240, and 160x120, the Vidboard can capture video at a
maximum rate of 30 frames per second. For frame size 212x160, the Vidboard can capture
video at a maximum rate of 15 frames per second 1. This means that the throughput
of VsPuzzle test program is constrained by the Vidboard at frame sizes of 320x240,
212x160, and 160x120; and the throughput of VvEdge test program is constrained by the
Vidboard at frame sizes 212x160 and 160x120.

1 To reduce grayscale video from full scale to one-third scale, the Vidboard performs a pixel filtering
operation, instead of the simple pixel subsampling operation used for reduction to one-half scale and
one-fourth scale.

7.6 System Throughput With Audio And Captions

I measured the total system throughput of the vsdemo VuSystem application. The vsdemo
VuSystem application demonstrates the capture and display capabilities of the VuSystem
through the display of live video in a window, with audio and closed-captions. It is
representative of VuSystem applications that pass video, audio, and closed-captioned
data. Figure 7.13 shows a logical diagram of the composite in-band modules used in the
programs.

7.6.1 Experimental Setup

As discussed in Section 7.4, the vsdemo application is the concatenation of the VsSource
module and the VsSink module. These modules are composites. They are implemented
with several primitive modules. (See page 103 for a complete discussion of the VsSource
module, and page 104 for a complete discussion of the VsSink module.) Of all the pro-
grams described in this chapter, the vsdemo program appears to use the fewest primitive
modules, but actually uses the most, because it uses these complex composite modules.

VsSource - VsSink

Figure 7.13: The experimental setup to measure system throughput with audio and
closed-captions through the vsdemo VuSystem application.

For each video frame scale factor available on the vidboard, the frame rates achieved
by the programs were measured and are shown in Table 7.3. Many times, the support for
scaling, dithering, and closed-captions on the vidboard caused the vidboard to become
the performance bottleneck for the system. Measurements were made for both color and
grayscale, as well as for with and without closed-caption decoding, to show the effect of
these configurations on system throughput.

7.6.2 Results

Table 7.3 shows the measured frame rates of the vsdemo VuSystem application on the
Digital DEC 3000/400. The table indicates that the vsdemo application can pass half-size
dithered color live video, audio, and closed-captions at 10 frames per second. Without
compute-intensive closed-caption processing, half-size dithered color live video with audio
can be passed at 15 frames per second. This verifies that relatively complex module
configurations can pass live media and maintain synchronization at reasonable speeds on
standard computer workstations without any special real-time operating system support.

7.7 Review

To verify that the overhead of the module data protocol is low, I measured the amount
of time a simple transparent filter takes to process a payload. The time taken by
VsChannelSet to process one payload was approximately 12 microseconds on the Sun
SparcStation 10/512 and approximately 3 microseconds on the Digital DEC 3000/400.
Given these numbers, we can conclude that the payload-passing overhead of the VuSys-
tem was low, less than 12 microseconds on the Sun Sparcstation 10/512 and less than 3
microseconds on the Digital DEC 3000/400.

Table 7.3: Some measured frame rates of the vsdemo VuSystem application on the Digital
DEC 3000/400.

To verify that the VuSystem run-time scheduler has low overhead, I measured the
amount of time a mimimum filter with a Work C++ class member function takes to
process a payload. The time taken by VsFilter to process one payload was approximately
150 microseconds on the Sun SparcStation 10/512 and approximately 115 microseconds
on the Digital DEC 3000/400. Given these numbers, we can conclude that the scheduler
overhead of the VuSystem for Work C++ class member functions was low, less than 150
microseconds on the Sun Sparcstation 10/512 and less than 115 microseconds on the
Digital DEC 3000/400.

To verify that media processing modules in the VuSystem are able to perform their
functions with perceptual-time granularity, I measured the amount of time two represen-
tative filter modules took to process a video frame. On both the Digital DEC 3000/400
and the Sun SparcStation 10/512, the VsPuzzle filter module can scramble a half-sized
frame in approximately 2.5 milliseconds, and the VvEdge filter module can highlight edges
in a half-sized frame in approximately 20 milliseconds.

To verify that this VuSystem scheduler is adequate for many perceptual-time pro-
cessing tasks, I instrumented the system to compare the actual time at which a Timeout
C++ class member function is called with the time for which the Timeout C++ class
member function was scheduled. Most of Timeout calls were made within one millisecond
of the scheduled time, and can be considered "on-time". Of the calls not made within one
millisecond, the vast majority were made within a few milliseconds. Scheduler precision
also gracefully degrades with increased system load.

I measured the total system throughput of two VuSystem programs based on two
representative filter modules. The vspuzzle application can process half-size live video
at fully 30 frames per second. The vvdemo application running the VvEdge filter can
process 25 frames per second of half-size live video.

7.7.1 Summary

The overhead of the run-time component of the VuSystem is low. Representative VuSys-
tem in-band processing modules are efficient. The VuSystem scheduler can cause opera-
tions to occur at reasonably precise times. The system has enough thoughput to support
full-motion video. All these measurements verify that the VuSystem meets perceptual-
time constraints sufficiently to support media-processing applications.

Chapter 8

Conclusion

With this chapter I conclude my thesis, beginning with a discussion of the primary
contributions of this thesis, followed by a discussion of additional insights I have gained
in the course of my research. A survey of work in progress by myself and others on the
VuSystem is also included, as well as suggestions for future work.

8.1 Primary Contributions

The primary contributions of this thesis is the identification of computer-participative
multimedia applications as an application class with unique requirements, and the de-
sign and implementation of a programming system that supports the development of
experimental computer-participative multimedia applications.

8.1.1 Computer-Participative Multimedia Applications

I have identified a class of multimedia applications in which the computer performs tasks
requiring the direct processing of multimedia data, as well as the capture, storage, re-
trieval, and display tasks of traditional multimedia applications. Members of the class are
best called computer-participative multimedia applications, because in them the computer
directly participates in the interpretation of the multimedia data.

Traditional multimedia toolkits are optimized for the efficient capture, storage, re-
trieval, and display of pre-recorded video sequences. They do not adequately support
the extensible, direct in-band processing of multimedia data. Computer-participative
multimedia applications require more support than is provided by these toolkits.

Visualization systems allow a wide variety of operations on sequences of images. They
provide a library of image processing modules that can be hooked together to transform
a sequence of source images stored in individual files to a sequence of resultant images.
They also provide a graphical programming system that can be used to combine process-
ing modules into programs. However, they are inadequate for multimedia applications
because they do not include the synchronization support for temporally sensitive data
that multimedia toolkits include.

A system that supports the development of computer-participative multimedia appli-
cations must provide a mechanism for extensible programming of multimedia data like
that of visualization systems, but also must provide the temporal sensitivity and support
for synchronization of multimedia systems.

8.1.2 The VuSystem

I designed and implemented the VuSystem, which supports the development of computer-
participative multimedia applications. VuSystem applications are partitioned into in-

band code that manipulates the audio or video data, and out-of-band code that performs
event-driven functions. My approach is unique in that it combines the computational
flexibility of visualization systems with the temporal sensitivity of multimedia systems.
The system is data-directed, handling dynamically-typed and self-identifying payloads.
Applications are dynamically reconfigurable, even when media is flowing.

The in-band partition of the VuSystem is a reconfigurable directed graph of modules
that logically pass time-stamped payloads holding media data. I designed a run-time
system that supports memory management, communication, and scheduling for modules.
The system is implemented for general-purpose Unix workstations running the X Window
System, using no special real-time facilities. All in-band processing in the system is
performed in a user-mode shell program without any special kernel modifications.

VuSystem programs have what can be called a media-flow architecture: code that
directly processes temporally sensitive data is divided into processing modules arranged
in data processing pipelines. This architecture is similar to that of some visualization
systems [29, 31], but is unique in that all data is held in dynamically-typed time-stamped
payloads, and programs can be reconfigured while they run. Timestamps allow for media
synchronization, and dynamic typing and reconfiguration allows programs to change their
behavior based on the data being fed into them.

A rich set of modules has been developed. Over fifty modules have been written,
including filters that perform image processing and machine vision functions as well as
JPEG compression and decompression [16]. A Tcl library for user-interface programming
with over fifty script files has also been developed by the users. I have found it easy to
reuse these modules and Tcl scripts in new applications. Performance of representative
modules on DEC 3000/400 and Sun SPARCstation 10/512 workstations demonstrates
that my communication protocol is efficient and practical. Applications that perform
visual processing can easily do so at 15 half-resolution frames per second. This is an
acceptable level of performance for today, and will improve with advances in workstation
technology since the system is portable.

The out-of-band partition of the VuSystem is programmed in the Tool Command
Language, or Tcl [26], an interpreted scripting language. Application code written in Tcl
is responsible for creating and controlling the network of in-band media-processing mod-
ules, and controlling the graphical user-interface of the application. In-band modules are
manipulated with object commands, and in-band events are handled with asynchronous
callbacks.

The VuSystem is implemented on Unix workstations as a program that interprets
an extended version of Tcl. This single executable image, the application shell, can
implement many applications. All out-of-band code, including all user-interface code, is
written as Tcl scripts. In-band modules are implemented as C++ classes and are linked
into the shell. Application scripts written in Tcl run in the application shell, creating
the modules they need. Simple applications that use the default set of in-band modules
are written as Tcl scripts. Applications that require additional special-purpose in-band
processing modules use customized application shells.

The system provides a high degree of modularity, reusability and extensibility without

sacrificing performance. Developers have found it easy to build new applications with
existing modules. They have found it easy to extend the system with new modules.

8.2 Additional Insights

In the process of my research I have gained several additional insights. One insight is

that not only is the partitioning of in-band and out-of-band code in multimedia applica-
tions important, but that it is also important that the design of each partition allow for

application extensibility. The right choice of architectural and programming language
issues is important for both partitions.

8.2.1 In-Band Issues

By splitting VuSystem code in to in-band and out-of-band partitions, both partitions
can be optimized differently. In-band code can be written in a low level language and
can be optimized for performance, while out-of-band code can be written in a high level
language and optimized for programmability, usability and extensibility.

Modules and Payloads

It is not necessarily novel to structure an in-band multimedia processing partition as a di-
rected graph of modules. However, to have the modules pass self-identifying, dynamically
typed payloads through a tight payload-passing protocol allows for the use of payloads
as more than just data packages. The VuSystem uses payloads as scheduling tokens that
automatically balance computational resources between modules through starvation and
back-pressure.

Payloads also allow for dynamic reconfigurability of in-band processing networks.
Through their descriptors, payloads themselves hold all the information about their data,
whereas the connections between modules hold no descriptive information. Connections
between processing modules can easily be broken and modules can be created and de-
stroyed, all while the system is running, without losing any data or timing information.
This would be much more difficult if data were passed between modules with a much
simpler mechanism.

Programming Language

C++ satisfied the requirements that the programming language for in-band processing be
efficient, portable, and object-oriented, but it is hardly optimal. The language scores well
on efficiency and portability, but it is a poor language for implementing dynamic object
oriented systems. C++ provides no mechanism for dynamically determining the class of
objects, for example. I had to implement a mechanism for dynamic class determination,
using virtual functions and static variables. C++ code for in-band modules and payloads
also involves too much "boilerplate" code. Ideally, there should be a better language for
this.

Extensibility

Some other multimedia systems partition in-band processing from out-of-band process-
ing, but the VuSystem is unique in that it is designed to provide safe, application-level
extensibility for the in-band partition as well as the out-of-band partition. This is impor-
tant. Without safe application-level extensibility of the in-band partition, a programming
system cannot support true computer-participative multimedia applications, because
the toolkit author cannot envision all possible in-band operations that any computer-
participative multimedia application might require.

Some systems manipulate media data away from the application, in an operating
system kernel or server process. The motivation for their design is cheap data transfer
and precise scheduling through the avoidance of standard Unix services perceived to be
inefficient. By keeping all media data in a system kernel or server process, no copying is
required, since all data share the same address space. Extremely precise scheduling can
be maintained in an operating system kernel implementation, since the media processing
code can run with very high scheduler priority and make use of hardware and software
interrupts.

Unfortunately, systems built this way are difficult to extend without losing the benefits
of memory protection and security. A user of such a system is either not trusted and is not
allowed to add new modules to the kernel or server process, or is trusted completely and is
allowed to add modules to the kernel or server process without any memory protection or

security. The VuSystem does not have this problem. In the VuSystem, in-band processing
is performed in a user process, so standard operating system memory-protection and
security mechanisms can protect the system from errant in-band processing modules.

In the VuSystem, copying is minimized in data transfer between processes through the
use of shared memory segments, and scheduling is done using standard Unix scheduling
interfaces. As new standard interfaces like the POSIX real-time extensions [14] become
available, even more precise scheduling capabilities will be available to Unix applications.
With the VuSystem approach, a practical and highly extensible media-processing system
can be implemented using standard Unix system services.

Real Time and Virtual Time

Much effort is being made in current research to design multimedia systems that associate
and maintain at all times a fixed video frame rate with each desktop application. This
approach is well motivated, but runs the risk of neglecting the power and elegance of the
virtual model of computation that has been proven so sucessful in the past.

Classic real-time systems approximate real world time at a granularity determined by
the available technology. As computers get faster, real-time constraints get tighter. In
contrast, virtual-time programs operate with little or no detailed knowledge of real world
time, and generally take larger inputs as computers get faster. With some assistance
from the operating system, virtual-time applications adapt to the computational resources
made available to them. This adaptability provides for graceful degradation of application
performance, a virtue that should not be neglected in the introduction of multimedia
systems.

In the VuSystem, media processing application components operate in virtual time,
using closed-loop control over media source components. Temporally sensitive data can
be incorporated into applications without sacrificing scalability and graceful degradation.
Applications written using this approach are conveniently ported to higher performance
platforms as they become available.

8.2.2 Out-of-band Issues

I found that Tcl is an excellent programming language for out-of-band control in the
VuSystem. The simplicity of the language and its interpreted nature provide for the
rapid prototyping of new VuSystem applications. Its trivial type system is speeding the
implementation of remote-evaluation support for distributed applications. Tcl's exten-
sibility and simple interface to C is used to a great extent in the VuSystem through
object commands. Finally, the introspective features of Tcl and the VuSystem ease the
development of interactive visual media programming systems.

Graphical User-Interface Toolkits and Tcl

Claims have been made that the Tk [18] graphical user-interface toolkit provides capa-
bilities to the Tcl programmer that cannot be provided through the X Window System
Toolkit [30] and the Athena widget set. The claims effectively state that even though
Tcl is designed to have an efficient interface to C and Tcl-based applications can lever-
age off existing C libraries, existing C-based graphical user-interface libraries are not
good enough for Tcl-based programs, which instead require a totally new graphical user-
interface toolkit. These claims simply are not true. In reality, the TclXt and TclXaw
libraries I developed for the VuSystem do fundamentally all of what Tk does, but use the

standard Athena widget set, instead of a new, incompatible set of widgets written from
scratch.

It was not hard to write TclXt and TclXaw. The X Window System Toolkit includes
most of the necessary support for converting values to and from strings. After writing a

simple extension to Tcl to support object-oriented programming, I wrote a Tcl command
for each C library interface procedure. The result is a Tcl interface to the X Window
System Toolkit and the Athena widget set.

I developed TclXt and TclXaw because at the time I started the developing VuSys-
tem, Tcl was young and there were not many widgets written for the Tk widget set.
Specifically, there was no useful text-manipulation widget for Tk. Instead of writing a
text-widget for Tk or waiting for one to be written, I simple wrote a Tcl interface to the
X Window System Toolkit and the Athena widget set, which already included a very
useful text-manipulation widget.

Since then, Tk has gained much popularity because of its ease of programming through
Tcl. Tcl/Tk fans have developed a text-manipulation widget and many other elaborate
and useful Tk widgets. These widgets provide much of the capability that makes Tk so
popular today. It is a waste, however, that the Tk and Xt widget sets are incompatible.

8.3 Work in Progress on the VuSystem

The VuSystem is in use at MIT and elsewhere. At MIT there are 8 developers using
the environment (four graduate students and four undergraduates). The students have
collectively implemented several applications for the computer-participative multimedia
environment and are extending the system's scope. Work in progress includes visual
processing for seamless interactive computing, a visual programming system for media
computation, a distributed programming system for media applications, and a media
server acessible through the World Wide Web.

8.3.1 Visual Processing For Seamless Interactive Computing

William Stasior is investigating concrete ways that computers may become more re-
sponsive and thus less visible to their human users [8]. He is developing a prototype
"Computerized Office Multimedia Assistant", which will be capable of assisting its user
by performing various tasks which require the analysis of time varying imagery.

Stasior is studying the role of visual processing within the framework of seamless inter-
active computing. The term interactive refers to a broadened context of interaction which
includes the human, the computer, and the physical environment. Stasior is studying a
mode of interaction which encompasses the user's complete physical environment. People
work on desktops, write on blackboards, and handle documents. Stasior's ambition is to
use computers to augment the interaction between people and these objects.

Such interaction will require the computer to acquire and analyze sensory input.
Stasior intends to investigate, develop, and integrate various video analysis tools into
a working, interactive system. He proposes to build a prototype "Computerized Office
Multimedia Assistant", or COMMA. COMMA will be capable of assisting its user by
performing various tasks which require the analysis of time varying imagery. For example,
the user may ask his or her assistant to monitor the office, recording the identity of
everybody who drops by while the user is gone. Similarly, the assistant may be asked
to monitor the whiteboard and to summarize the information which is subsequently
recorded.

Ultimately, the office assistant will be capable of responding to a variety of queries
about the state of the office. For example, the user may wish to ask the assistant (perhaps
from a phone) whether the lights are on, whether the garbage can is empty, whether the
door is opened, etc. Finally, COMMA will be capable of recognizing various visual
commands or gestures to facilitate the user in interacting with his or her workstation.

Stasior's applications are programmed using the VuSystem, and involve creating a
library of vision service modules. Example vision service modules include a change de-
tector, a motion detector, and a stationary filler. The change detector accepts two input

Figure 8.1: The visual programming interface to the VuSystem, manipulating some vision
service modules. The program running is a smart blue-screen application, which separates
the active foreground from the stationary backgound in a video sequence. The diagram
is of the VuSystem modules that comprise the program.

images and outputs a binary image which shows which pixels differ on the two input
images. The motion detector attempts to detect and localize motion in a video stream
by outputting a true value for those pixels which correspond to moving objects in the
scene. The stationary filter is effectively the converse of the motion detector.

The vision service modules would communicate with the scripting language by sig-
naling events or callbacks to the Tcl layer. For example, a face recognition service may
be implemented as a filter which calls a Tcl subroutine whenever a model face appears
in the video stream. The Tcl program would, therefore, be responsible for determining
how to use this information.

8.3.2 A Visual Programming System for Media Computation

David Wetherall is completing a visual programming system for application users [7].
Users interact with the system through a flow graph representation of the running pro-
gram to control its media processing component. A "flow graph" perspective emphasizes
the computation that occurs, rather than a "hypermedia" perspective, which may view
the media in terms of a database to be navigated. Flow graph, or dataflow, representa-
tions have been used with success in prior visual languages [31].

The visual environment is suited to tasks such as customization, rapid prototyping
and experimentation, as well as more general program development. It provides a pro-
gramming ability (rather than a limited set of configuration options) to users, allowing
them to re-program previously developed applications. By embedding it in a toolkit,

consistent user programming facilities are available in all derived applications.
From the user's point of view, the visual environment consists of a number of display

windows. One window shows the media flow graph representation, the primary means
of user programming. Another is a customization panel, detailing the individual options
that may be selected for each module of the program's computation. Further objects allow
interactions with the textual programming methods of the VuSystem. Description panels
show the code fragment associated with a module, and an Interpreter object evaluates
commands on demand.

The visual environment demonstrates the modularity, flexibility, and extensibility of
Tcl and the VuSystem. Its implementation required only a few additions to the VuSystem
core; it works from within the VuSystem; and it is mostly written in Tcl. The visual
environment also demonstrates the introspective capabilities of Tcl and of the VuSystem.
The environment shows that VuSystem applications can examine and modify themselves
while they run.

8.3.3 Distributed Programming with VuDP

Brent Phillips is developing a distributed programming system for media-based applica-
tions that provides enough support to make distributed VuSystem programs more simple
and powerful [6]. Currently, all modules of a standard VuSystem program must execute
in the same local environment on a single host. Applications split across the network
must be realized as a set of co-operating programs, making them difficult to write. Using
VuDP, a program may be constructed from modules that exist in different environments
distributed across several hosts.

Under development, the VuSystem Distributed Programming (VuDP) extension will
simplify the construction of applications whose processing is distributed across the net-
work. Three advantages offered by the VuDP model are: transparent access to shared
resources, the ability to divide applications across hosts, and the enabling of collaborative
applications.

VuDP will support distributed programming through three mechanisms: a remote
evaluation capability, an extensible set of exportable services, and a network based model
for intra-application communication. The remote evaluation capability will provide a
general means of creating remote modules in a suitable execution environment. The ex-
portable services will work in an RPC-like manner to support common tasks. Finally,
VuDP will support both in-band communication for media flow and out-of-band commu-
nication for control between modules at different sites.

VuDP will leverage off features of Tcl and the VuSystem that make distributed sys-
tems easy to implement. The remote evaluation component of VuDP will work by passing
Tcl commands and values over reliable byte-stream TCP connections. Since all com-
mands and values in Tcl are strings, linearization for this network transport is trivial. In
addition, linearization code for in-band VuSystem payloads has already been implemented
in support of the native VuSystem file format. This support will also be used for the
transport of in-band data over reliable byte-stream connections. Distributed VuSystem
applications will be built using this mechanism.

8.3.4 The Media Server

The Media Server has been developed to extend the reach of VuSystem applications to
wide-area networks. It seamlessly integrates the World Wide Web with the VuSystem.
By leveraging off of the network and operating system portability of the Web, and its
straightforward browsing clients, The Media Server provides a publicly accessible interface
to selected VuSystem applications.

The server appears to Web users as a series of pages culminating in a form that leads
to video display. The Web pages act as a navigational interface to applications, using

~Fls 9n ns pagf tinft aD n O r.I

7 :s .wr l+. ..t .h t

i ..'
CIIcktiere to see descriptions of thedifferent ItItem.

Show v Filted Image only A Filtered aw unfiltered imqges

Chelt that tt box labeled " Your X Display Is correct nbe are to type 'ost
+paprIkalmamitan'sto the UNaIX Loampnmd atl onyour mlhine so that your X
PWrvwmill owyo p"rka to put a wind nyowur sren Click oan it"tbuton labteld
'Vaw Video Source when you 4Me rfdy.

D .bugg OL f-. : .One.::..w. e-•. roe.:.:. . .; ..l . .-. l : .:: ?: ::.l...;.-: .
OeCkt Ftn -oe stelos ::::.s:- -l : Oe $ae ::I C i e ::f : e ::: • e.j Ciceew:::owi

Figure 8.2: Launching an Image Processing program from the World Wide Web.

forms to select program options. Figure 8.2 shows the form used to launch a live video
processing program. When a form is submitted, an application appears as though an
external viewer were spawned, but without a downloading delay.

The Media Server is implemented as an HTTP server and an associated set of scripts.
The scripts customize Web pages to reflect available resources and characteristics of the
client. To manage network and computational load, they distribute the video processing
applications across a cluster of a dozen workstations. Video files can be viewed by many
clients simultaneously, but live video sources are restricted to one client at a time. The
video itself is distributed using the X Window System, and audio is distributed with
AudioFile [10]. This approach provides wide-area accessibility at the cost of reduced
performance.

8.4 Future Work

Some directions for the future exploration of computer-participative multimedia can be
explored with the VuSystem: integration with commercial multimedia application envi-
ronments, the application of artificial intelligence techniques, and the use of advanced
operating system interfaces.

Integration With Commercial Multimedia Systems

Currently, the VuSystem works as a complete stand-alone multimedia application envi-
ronment. It does not interact well with other, more popular systems. It is clear that
better integration of the VuSystem with commercial multimedia application environments
is imperative for it to be useful to more than a small set of users. The best approach to
this integration is to introduce the VuSystem techniques of in-band module programming,
high level scripting, and dynamic reconfiguration into these systems.

100

.... _i_ M. . .

Application Of Artificial Intelligence Techniques

The application of artificial intelligence techniques to computer-participative multimedia
applications might prove fruitful. For example, machine vision and speech recognition
techniques would be useful in in-band modules, and rule and production systems would
be useful in the event-handling out-of-band partition of these applications.

Use Of Advanced Operating System Interfaces

The VuSystem Scheduler could be extended to make use of standard operating system
interfaces that support concurrency through multi-threaded applications, such as those
specified in POSIX.4 [14]. Currently, the VuSystem runs in one thread of control, without
any preemption. With this framework, a Work procedure that runs for too long of a time,
for example, may cause a Timeout procedure to run late. By using preemption and
multiple threads of execution, the VuSystem would allow the concurrent execution of
Input, Output, Timeout and Work procedures of different modules. This would have the
effect of decreasing the execution granularity of the VuSystem, resulting in more temporal
precision. In addition, the VuSystem could make use of emerging multiprocessor systems
by having threads of execution running concurrently on multiple processors.

Any modification to the VuSystem to support multiple threads should be done with
minimum impact on the programming interface. One approach might be to define each
module as a critical section. The VuSystem would automatically prevent multiple threads
from concurrently running code in the same module, but would allow concurrent process-
ing between modules. Such an approach would probably have deadlock problems, but
that might be resolvable.

8.5 Towards Intelligent Multimedia Environments

Multimedia systems have tended to follow one of two models: document based multi-
media or data-flow based multimedia. Each of these models has its own strengths and
weaknesses.

Systems based on the document model result in document processing applications.
The user of these systems either authors or views multimedia documents. These systems
are particularly good for using multimedia as a form of communication across time.
With them, the multimedia author prepares a document to be viewed by a reader in the
future. A multimedia cd-rom encyclopedia is an example of a document-based multimedia
system.

Systems based on the data-flow model result in media channeling applications. The
user of these systems processes large quantities of temporally sensitive data. These
systems are particularly good for communication across space. With them, individuals
using computers can manipulate live media. A video conferencing program is an example
of a data-flow based multimedia application.

At first glance, the VuSystem fits into the data-flow of multimedia. VuSystem pro-
grams consist of a network media processing modules controlled by an application script.
But the VuSystem does more. Modules in VuSystem applications perform intelligent
processing of media data, and can signal the scripting level that significant events have
been detected. The scripting level can reconfigure the network of modules as a reaction to
the events. This combination can result in intelligent applications that can react to sen-
sory input. I believe that the VuSystem represents the start of a new wave of intelligent
multimedia systems.

101

102

Appendix A

Predefined Modules In The
VuSystem

The modules described here were developed by several people. Many modules, includ-
ing the VsVidboardSource, VsPuzzle, VsRateMeter, VsJpegC, VsJpegD, VsResizeBy,
VsResizeTo, VsColor24to8, and VsColor8to24 modules, were developed by David
Wetherall. The VsBlockShift, VsFade, and VsWipe modules were developed by David
Bacher. The VsMpegSource module was developed by Abhimanyu Warikoo using the
Berkeley MPEG distribution. The VsQtimeSource and VsQtimeSink were developed by
Peter Gloor and Ethan Mirsky using Apple Computer's Quicktime code for Unix. The
VsCCCC and VsCCCD modules were developed by Andrej Duda and Ron Weiss.

Figure A.1: The VsSource module when not reading from a file.

A.1 The VsSource Module

The VsSource Module implements a generic media source by creating appropriate primi-
tive and composite modules based on parameters supplied to its creation command. The
-source parameter to the VsSource module creation command specifies which primitive
module to create:

* If a -source parameter is specified, a VsFileSource module (page 108) is
created, and the value of the -source parameter is used as the pathname.

* If a -source parameter is not specified, a VsVideoSource (page 105)
and a VsAudioSource (page 106) module is created. Figure A.1 shows a
block diagram of this configuration.

103

When VsSource creates the VsVideoSource and VsAudioSource modules, it also creates
other modules:

* VsBuffer modules (page 138) are created immediately downstream of
the VsVideoSource and VsAudioSource modules, to slightly decouple
the timing of each.

* A VsOrderedMux module (page 153) is created downstream of the Vs-
Buffer modules, to multiplex the two input sequences to a single output
sequence.

* A VsRateMeter module (page 146) is created downstream of the Vs-
DeMux module, to measure the rate of payloads through the Source
module.

Using the VsSource module creation command in scripts is preferred to other primitive
and composite source module creation commands, because it provides more flexibility.
An application script that uses the VsSource module creation command to create a source
module can work with whatever video and audio capture interfaces are available on the
local machine, working even with files.

Figure A.2: The VsSink module when not writing to a file.

A.2 The VsSink Module

The VsSink Module implements a generic media sink by creating appropriate primi-
tive and composite modules based on parameters supplied to its creation command. The
-sink parameter to the VsSink module creation command specifies which primitive mod-
ules to create:

* If a -sink parameter is specified, a VsFileSink module (page 108) is
created, and the value of the -sink parameter is used as the pathname.

* If a -sink parameter is not specified, a VsVideoSink (page 107) and a
VsAudioSink (page 107) module is created. Figure A.2 shows a block
diagram of this configuration.

When VsSink creates the VsVideoSink and VsAudioSink modules, it also creates other
modules:

* VsBuffer modules (page 138) are created immediately upstream of the
VsVideoSink and VsAudioSink modules, to slightly decouple the timing
of each.

* A VsDeMux module (page 153) is created upstream of the VsBuffer mod-
ules, to demultiplex a single input sequence into two output sequences.

104

VsSink V uf VsVideoVsSink
VsBuffer Sink

VsReTime VsRate VsDeMuxMeter

VsBuffer VsAudio
Sink

* A VsRateMeter module (page 146) is created upstream of the VsDeMux
module, to measure the rate of payloads through the Sink module.

* A VsReTime module (page 147) is created upstream of the VsRateMeter
module to synchronize the timestamps of payloads received by the Sink
module.

Using the VsSink module creation command in scripts is preferred to other primitive
and composite sink module creation commands, because it provides more flexibility. An
application script that uses the VsSink command to create a sink module can work with
whatever video and audio capture interfaces are available on the local machine, working
even with files.

Figure A.3: The VsVideoSource module reading from a VideoPix card and a closed-
caption decoder.

A.3 The VsVideoSource Module

The VsVideoSource Module implements a generic video source by creating appropri-
ate primitive modules based on parameters supplied to its creation command. The
-videoSource parameter to the VsVideoSource module creation command specifies
which primitive modules to create:

:rtvcN specifies the VsSunVideoSource module (page 118) with pathname
/dev/rtvcN.

:vfcN specifies the VsSunVfcSource module (page 116) with pathname
/dev/vfcN.

:vidboardN specifies the VsVidboardSource module (page 121) and
vidboardN.

:xvideo specifies the VsXvideoSource module (page 128).

:test specifies the VsTestVideoSource module (page 120).

:null specifies the VsNullSource module (page 114).

anything else specifies the VsFileSource module (page 108) and pathname.

Using the VsVideoSource module creation command in scripts is preferred to primitive
video source module creation commands, because it provides more flexibility. An appli-
cation script that uses the VsVideoSource command to create a video source module can
work with whatever video capture interface is available on the local machine, working
even with files.

All the usual parameters accepted by the primitive video source modules are also
accepted by the VsVideoSource module creation command. For example, the -frameRate

105

VsVideoSource
VsSunVfcSource

VsMerge
VsCaption
Source

-Bob-

parameter accepted by all the video capture modules is accepted by VsVideoSource, and
passed on to the video capture module creation procedure. In addition, each parameter
can be prefixed with videoSource to make it more specific. For example, the -frameRate
parameter can also be supplied as -videoSourceFrameRate. This is handy for parameters
with generic names, like -port. The name -videoSourcePort is more specific.

The VsVideoSource module also provides support for the capture of closed-captions as
well as video. The capture of closed-captions is requested with the -captions (Boolean)
parameter. Captions are captured directly with the VsVidboardSource module. For
the other source modules, a VsCaptionSource (page 111) and a VsMerge (page 155)
module is automatically created by VsVideoSource, and the caption payload sequence is
merged with the video source payload sequence. Figure A.3 shows a block diagram of
this configuration. The -pathname parameter to the VsCaptionSource module can be
specified as -videoSourceCaptionPathname.

A.4 The VsAudioSource Module

The VsAudioSource Module implements a generic audio source by creating an appro-
priate primitive module based on parameters supplied to its creation command. The
-audioSource parameter to the VsAudioSource module creation command specifies
which primitive module to create:

:af or :audiofile specifies the VsAudioFileSource module (page 109).

:sun specifies the VsSunAudioSource module (page 115).

:dec specifies the VsDecAudioSource module (page 111).

:null specifies the VsNullSource module (page 114).

anything else specifies the VsFileSource module (page 108) and pathname.

Using the VsAudioSource module creation command in scripts is preferred to primitive
audio source module creation commands, because it provides more flexibility. An appli-
cation script that uses the VsAudioSource command to create an audio source module
can work with whatever audio capture interface is available on the local machine, working
even with files.

All the usual parameters accepted by the primitive audio source modules are also
accepted by the VsAudioSource module creation command. For example, the -gain
parameter accepted by all the audio capture modules is accepted by VsAudioSource, and
passed on to the audio capture module creation procedure. In addition, each parameter
can be prefixed with audioSource to make it more specific. For example, the -gain
parameter can also be supplied as -audioSourceGain. This is handy for parameters
with generic names, like -port. The name -audioSourcePort is more specific.

Figure A.4: The VsVideoSink module writing to an 8-bit deep window with absolute
resizing.

106

VsVideoSink

VsColor VsResize VsWindow
24to8 Sink

A.5 The VsVideoSink Module

The VsVideoSink Module implements a generic video sink by creating appropriate prim-
itive modules based on parameters supplied to its creation command. The -videoSink
parameter to the VsVideoSink creation command specifies which primitive modules to
create:

:window specifies the VsWindowSink module (page 137). Figure A.4 shows
a block diagram of this configuration.

:null specifies the VsNullSink module (page 136).

anything else specifies the VsFileSink module (page 108) and pathname.

When creating a VsWindowSink module, the VsVideoSink module automatically creates
a color video frame depth conversion module to match the depth of the window on which
video is to be displayed:

* If the window has a depth of 8, VsVideoSink creates a VsColor24to8
module (page 140) and connects it upstream from the VsWindowSink
module.

* If the window has a depth of 24, VsVideoSink creates a VsColor8to24
module (page 140) and connects it upstream from the VsWindowSink
module.

When creating a VsWindowSink module, the VsVideoSink module also automatically
creates a color video frame resizing module based on the value of the -videoSinkResize
or -resize parameter:

* If the parameter is absolute, VsVideoSink creates a VsResize module
(page 149) and connects it upstream from the VsWindowSink module.

* If the parameter is relative, VsVideoSink creates a VsScale module
(page 150) and connects it upstream from the VsWindowSink module.

Using the VsVideoSink module creation command in scripts is preferred to primitive video
sink module creation commands, because it provides more flexibility. An application
script that uses the VsVideoSink command to create a video sink module can work with
whatever video capture interface is available on the local machine, working even with
files.

All the usual parameters accepted by the primitive video sink modules are also ac-
cepted by the VsVideoSink module creation command. In addition, each parameter can
be prefixed with videoSink to make it more specific.

A.6 The VsAudioSink Module

The VsAudioSink Module implements a generic audio sink by creating an appropri-
ate primitive module based on parameters supplied to its creation command. The
-audioSink parameter to the VsAudioSink creation command specifies which primitive
module to create:

:af or :audiofile specifies the VsAudioFileSink module (page 131).

:sun specifies the VsSunAudioSink module (page 136).

:dec specifies the VsDecAudioSink module (page 133).

:null specifies the VsNullSink module (page 136).

anything else specifies the VsFileSink module (page 108) and pathname.

107

Using the VsAudioSink module creation command in scripts is preferred to primitive au-
dio sink module creation commands, because it provides more flexibility. An application
script that uses the VsAudioSink command to create an audio sink module can work
with whatever audio capture interface is available on the local machine, working even
with files.

All the usual parameters accepted by the primitive audio sink modules are also ac-
cepted by the VsAudioSink module creation command. For example, the -gain parame-
ter accepted by all the audio playback modules is accepted by VsAudioSink, and passed
on to the audio capture module creation procedure. In addition, each parameter can be
prefixed with audioSink to make it more specific. For example, the -gain parameter can
also be supplied as -audioSinkGain. This is handy for parameters with generic names,
like -port. The name -audioSinkPort is more specific.

Figure A.5: The VsFileSource module with all decompression.

A.7 The VsFileSource Module

The VsFileSource Module implements a generic file source by creating a _VsFileSource
primitive module (page 113) and appropriate decompression modules based on param-
eters supplied to its creation command. The -fileSourceCompress or -compress pa-
rameter to the VsFileSource creation command specifies which decompression modules
to create upstream from the _VsFileSource module:

ccc specifies the VsCCCD module (page 139).

jpeg specifies the VsJpegD module (page 142).

qrl specifies the VsQRLD module (page 146).

all specifies the VsCCCD, the VsJpegD, and the VsQRLD modules in series.
In this configuration, each module decompresses payloads that it is de-
signed to handle, and passes transparently everything else. Figure A.5
shows a block diagram of this configuration.

none specifies no modules.

Using the VsFileSource module creation command in scripts is preferred to the
_VsFileSource module creation command, because it provides more flexibility. An ap-

plication script that uses the VsFileSource module creation command to create a file

source module can easily select a compression technique.
All the usual parameters accepted by the primitive file source modules are also ac-

cepted by the VsFileSource module creation command. In addition, each parameter can
be prefixed with fileSource to make it more specific.

A.8 The VsFileSink Module

The VsFileSink Module implements a generic file sink by creating a _VsFileSink primi-

tive module (page 135) and appropriate compression modules based on parameters sup-

plied to its creation command. The -fileSinkCompress or -compress parameter to

108

Figure A.6: The VsFileSink module with qrl+ccc compression.

the VsFileSink module creation command specifies which compression modules to create
upstream from the _VsFileSink module:

ccc specifies the VsCCCC module (page 138).

jpeg specifies the VsJpegC module (page 141).

qrl specifies the VsQRLC module (page 145).

qrl+ccc specifies the VsQRLC and VsCCCC modules in series. In this
configuration, the VcQRLC module compresses black and white video
frames, and the VsCCCC module compresses color video frames. Figure
A.6 shows a block diagram of this configuration.

none specifies no modules.

Using the VsFileSink module creation command in scripts is preferred to the _VsFileSink
module creation command, because it provides more flexibility. An application script
that uses the VsFileSink module creation command to create a file sink module can
easily select a compression technique.

All the usual parameters accepted by the primitive file sink modules are also accepted
by the VsFileSink module creation command. In addition, each parameter can be pre-
fixed with fileSink to make it more specific. For example, the -quality compression
parameter can also be supplied as -fileSinkQuality.

A.9 Primitive Source Modules

Source modules have no input ports and only one output port. The output port is always
named output. Source modules are usually media capture device interface modules.

A.9.1 The VsAudioFileSource Module

The VsAudioFileSource module provides an audio source interface to the AudioFile [10]
protocol. It is based on the VsEntity module.

The server VsAudioFileSource Subcommand

<vsAudioFileSource> server [<server>]
==> <server>

The server VsAudioFileSource subcommand provides access to the AudioFile server
specifier for a VsAudioFileSource module. It takes:

server (String) A new AudioFile server specification.

It returns:

server (String) The current AudioFile server specification.

VsFileSink

VVsFileVsCCCC VsQRLC Sink

The port VsAudioFileSource Subcommand

<vsAudioFileSource> port [<port>]
==> <port>

The port VsAudioFileSource subcommand provides access to the audio input port spec-
ifier for a VsAudioFileSource module. It takes:

port (Integer) A new audio input port.

It returns:

port (Integer) The current audio input port.

The numPorts VsAudioFileSource Subcommand

<vsAudioFileSource> numPorts
==> <numPorts>

The numPorts VsAudioFileSource subcommand returns the number of input ports on an
audio device. It returns:

numPorts (Integer) The number of input ports on the audio device.

The gain VsAudioFileSource Subcommand

<vsAudioFileSource> gain [<gain>]
==> <gain>

The gain VsAudioFileSource subcommand provides access to the gain setting for a
VsAudioFileSource module. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

The maxGain VsAudioFileSource Subcommand

<vsAudioFileSource> maxGain
==> <maxGain>

The maxGain VsAudioFileSource subcommand returns the maximum gain value for the
audio device. It returns:

maxGain (Integer) The maximum gain value for the audio device.

The minGain VsAudioFileSource Subcommand

<vsAudioFileSource> minGain
==> <minGain>

The minGain VsAudioFileSource subcommand returns the minimum gain value for the
audio device. It returns:

minGain (Integer) The minimum gain value for the audio device.

110

A.9.2 The VsCaptionSource Module

The VsCaptionSource module provides a caption source interface to a closed-caption
decoder that connects to the serial line of a workststion. It is based on the VsEntity
module.

The pathname VsCaptionSource Subcommand

<vsCaptionSource> pathname [<pathname>]
==> <pathname>

The pathname VsCaptionSource subcommand provides access to the serial line device
node pathname for a VsCaptionSource module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

A.9.3 The VsDecAudioSource Module

The VsDecAudioSource module provides an audio source interface to the DecAudio pro-
tocol. It is based on the VsEntity module.

The audioserver VsDecAudioSource Subcommand

<vsDecAudioSource> audioserver [<audioserver>]
==> <audioserver>

The audioserver VsDecAudioSource subcommand provides access to the DecAudio
server specifier for a VsDecAudioSource module. It takes:

audioserver (String) A new DecAudio server specifier.

It returns:

audioserver (String) The DecAudio server specifier.

The port VsDecAudioSource Subcommand

<vsDecAudioSource> port [<port>]
==> <port>

The port VsDecAudioSource subcommand provides access to the input port for the audio
device. It takes:

port (Integer) A new input port.

It returns:

port (Integer) The current input port.

111

The gain VsDecAudioSource Subcommand

<vsDecAudioSource> gain [<gain>]
==> <gain>

The gain VsDecAudioSource subcommand provides access to the gain of the audio
source. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

A.9.4 The VsExternalSource Module

The VsExternalSource module provides a video source interface to image sequences stored
in separate image files. It handles a variety of image formats. It is based on the VsEntity
module.

The VsExternalSource module indicates through its callback that it has reached end-
of-file on its input. The callback command string is evaluated with the following keyword
parameter appended:

-sourceEnd (Boolean) The module has reached end-of-file on its input.

The type VsExternalSource Subcommand

<vsExternalSource> type [<type>]
==> <type>

The type VsExternalSource subcommand provides access to the input type specifier for
a VsExternalSource module. It takes:

type (jpeg, pnm, or none) A new input type.

It returns:

type (jpeg, pnm, or none) The current input type.

The channel VsExternalSource Subcommand

<vsExternalSource> channel [<channel>]
==> <channel>

The channel VsExternalSource subcommand

a VsExternalSource module. It takes:
provides access to the channel specifier for

channel (Integer) A new channel.

It returns:

channel (Integer) The current channel specifier.

112

The pathname VsExternalSource Subcommand

<vsExternalSource> pathname [<pathname>]
==> <pathname>

The pathname VsExternalSource subcommand provides access to the pathname param-
eter for a VsExternalSource module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

The nextFile VsExternalSource Subcommand

<vsExternalSource> nextFile [<nextFile>]
==> <nextFile>

The nextFile VsExternalSource subcommand provides access to the file name generating
command string for a VsExternalSource module. It takes:

nextFile (Command Siring) A new file name generating command string.

It returns:

nextFile (Command String) The current file name generating command
string.

The frameRate VsExternalSource Subcommand

<vsExternalSource> frameRate [<frameRate>]
==> <frameRate>

The frameRate VsExternalSource subcommand provides access to the frame rate for a
VsExternalSource module, in frames-per-second. It takes:

frameRate (Double) A new frame rate.

It returns:

frameRate (Double) The current frame rate.

A.9.5 The _VsFileSource Module

The _VsFileSource module provides a media source interface to files in the native VuSys-
tem file format. It can start and end at any point in a file, and can read files backwards
as well as forwards. It is based on the VsByteStream module.

The pathname _VsFileSource Subcommand

<_vsFileSource> pathname [<pathname>]
==> <pathname>

The pathname _VsFileSource subcommand provides access to the pathname parameter
for a _VsFileSource module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

113

The reverse _VsFileSource Subcommand

<_vsFileSource> reverse [<reverse>]
==> <reverse>

The reverse -VsFileSource subcommand provides access to the reverse parameter for a
-VsFileSource module. If the reverse parameter is true, the file is read in reverse direction.
It takes:

reverse (Boolean) A new reverse.

It returns:

reverse (Boolean) The current reverse.

A.9.6 The VsMpegSource Module

The VsMpegSource module provides a video source interface to files in the MPEG [21]
file format. It is based on the VsEntity module.

The VsMpegSource module indicates through its callback that it has reached end-of-
file on its input. The callback command string is evaluated with the following keyword
parameter appended:

-sourceEnd (Boolean) The module has reached end-of-file on its input.

The pathname VsMpegSource Subcommand

<vsMpegSource> pathname [<pathname>]
==> <pathname>

The pathname VsMpegSource subcommand provides access to the pathname parameter
for a VsMpegSource module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

A.9.7 The VsNullSource Module

The VsNullSource module provides a null source. It is based on the VsEntity module.

A.9.8 The VsQtimeSource Module

The VsQtimeSource module provides a video source interface to files in the Apple Quick-
time [12] file format. It is based on the VsEntity module.

The pathname VsQtimeSource Subcommand

<vsQtimeSource> pathname [<pathname>]
==> <pathname>

The pathname VsQtimeSource subcommand provides access to the pathname parameter
for a VsQtimeSource module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

114

A.9.9 The VsSunAudioSource Module

The VsSunAudioSource module provides an audio source interface to Sun audio hardware.
It is based on the VsEntity module.

The pathname VsSunAudioSource Subcommand

<vsSunAudioSource> pathname [<pathname>]
==> <pathname>

The pathname VsSunAudioSource subcommand provides access to the audio device node
pathname parameter for a VsSunAudioSource module. It takes:

pathname (Pathname) A new audio device node pathname.

It returns:

pathname (Pathname) The current audio device node pathname.

The port VsSunAudioSource Subcommand

<vsSunAudioSource> port [<port>]
==> <port>

The port VsSunAudioSource subcommand provides access to the input port specifier for
the audio device. It takes:

port (microphone, 1, 2, 3, or 4) A new input port specifier.

It returns:

port (1, 2, 3, or 4) The current input port specifier.

The gain VsSunAudioSource Subcommand

<vsSunAudioSource> gain [<gain>]
==> <gain>

The gain VsSunAudioSource subcommand provides access to the gain for the audio
device. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

The monitorGain VsSunAudioSource Subcommand

<vsSunAudioSource> monitorGain [<monitorGain>]
==> <monitorGain>

The monitorGain VsSunAudioSource subcommand provides access to the monitor gain
parameter for the audio device. It takes:

monitorGain (Integer) A new monitor gain.

It returns:

monitorGain (Integer) The current monitor gain.

A.9.10 The VsSunVfcSource Module

The VsSunVfcSource module provides a video source interface to the Sun VideoPix video
capture hardware. It is based on the VsEntity module.

The pathname VsSunVfcSource Subcommand

<vsSunVfcSource> pathname [<pathname>]
==> <pathname>

The pathname VsSunVfcSource subcommand provides access to the VideoPix device node
pathname for the VideoPix. It takes:

pathname (Pathname) A new VideoPix device node pathname.

It returns:

pathname (Pathname) The current VideoPix device node pathname.

The port VsSunVfcSource Subcommand

<vsSunVfcSource> port [<port>]
==> <port>

The port VsSunVfcSource subcommand provides access to the input port for the
VideoPix. It takes:

port (svideo, 1, 2, or 3) A new input port.

It returns:

port (1, 2, or 3) The current input port.

The std VsSunVfcSource Subcommand

<vsSunVfcSource> std [<std>]
==> <std>

The std VsSunVfcSource subcommand provides access to the video standard for the
VideoPix. It takes:

std (auto, ntsc, or pal) A new video standard.

It returns:

std (auto, ntsc, pal) The current video standard.

The color VsSunVfcSource Subcommand

<vsSunVfcSource> color [<color>]
==> <color>

The color VsSunVfcSource subcommand provides access to the color switch for the
VideoPix. If true, color video is captured. If false, black-and-white video is captured. It
takes:

color (Boolean) A new color switch value.

It returns:

color (Boolean) The current color switch valie.

116

The hue VsSunVfcSource Subcommand

<vsSunVfcSource> hue [<hue>]
==> <hue>

The hue VsSunVfcSource subcommand provides access to the hue adjustment for the
VideoPix, which ranges from above -180 to 180. It takes:

hue (Integer) A new hue.

It returns:

hue (Integer) The current hue.

The scale VsSunVfcSource Subcommand

<vsSunVfcSource> scale [<scale>]
==> <scale>

The scale VsSunVfcSource subcommand provides access to the scale parameter for the
VideoPix. The scale parameter specifies the size of the video frames generated: 1 means
full size, 2 means half size, and 4 means quarter size. It takes:

scale (1, 2, or 4) A new scale.

It returns:

scale (1, 2, or 4) The current scale.

The depth VsSunVfcSource Subcommand

<vsSunVfcSource> depth [<depth>]
==> <depth>

The depth VsSunVfcSource subcommand provides access to the depth parameter for the
VideoPix, which specifies the depth of the color video frames captured. It takes:

depth (8 or 24) A new depth.

It returns:

depth (8 or 24) The current depth.

The frameRate VsSunVfcSource Subcommand

<vsSunVfcSource> frameRate [<frameRate>]
==> <frameRate>

The frameRate VsSunVfcSource subcommand provides access to the frame rate param-
eter for the VideoPix, in frames-per-second. It takes:

frameRate (Integer) A new frame rate.

It returns:

frameRate (Integer) The current frame rate.

117

The byte0rder VsSunVfcSource Subcommand

<vsSunVfcSource> byteOrder [<byteOrder>]
==> <byte0rder>

The byte0rder VsSunVfcSource subcommand provides access to the byte order param-
eter for the VideoPix. It specifies the byte order to use for captured video frames. It
takes:

byteOrder (msbFirst or IsbFirst) A new byte order.

It returns:

byteOrder (msbFirst or IsbFirst) The current byte order.

The encoding VsSunVfcSource Subcommand

<vsSunVfcSource> encoding [<encoding>]
==> <encoding>

The encoding VsSunVfcSource subcommand provides access to the color pixel encoding
used for 24-bit color frames captured with the VideoPix. It takes:

encoding (bgr or rgb) A new encoding.

It returns:

encoding (bgr or rgb) The current encoding.

A.9.11 The VsSunVideoSource Module

The VsSunVideoSource module provides a video source interface to the SunVideo capture
hardware through Sun's XIL library. It is based on the VsEntity module.

The pathname VsSunVideoSource Subcommand

<vsSunVideoSource> pathname [<pathname>]
==> <pathname>

The pathname VsSunVideoSource subcommand provides access to the SunVideo device
node pathname parameter for the SunVideo capture card. It takes:

pathname (Pathname) A new SunVideo device node pathname.

It returns:

pathname (Pathname) The current SunVideo device node pathname.

The port VsSunVideoSource Subcommand

<vsSunVideoSource> port [<port>]
==> <port>

The port VsSunVideoSource subcommand provides access to the input port specifier for

the SunVideo capture card. It takes:

port (svideo, 0, 1 or 2) A new input port.

It returns:

port (0, 1, or 2) The current input port.

118

The color VsSunVideoSource Subcommand

<vsSunVideoSource> color [<color>]
==> <color>

The color VsSunVideoSource subcommand provides access to the color switch for the
SunVideo capture card. If true, video is captured in color. If false, video is captured in
black-and-white. It takes:

color (Boolean) A new color switch value.

It returns:

color (Boolean) The current color switch value.

The scale VsSunVideoSource Subcommand

<vsSunVideoSource> scale [<scale>]
==> <scale>

The scale VsSunVideoSource subcommand provides access to the scale parameter for
the SunVideo capture card. The scale parameter specifies the size of the video frames
generated: 1 means full size, 2 means half size, and so forth. It takes:

scale (Integer) A new scale.

It returns:

scale (Integer) The current scale.

The depth VsSunVideoSource Subcommand

<vsSunVideoSource> depth [<depth>]
==> <depth>

The depth VsSunVideoSource subcommand provides access to the depth parameter for
the SunVideo capture card, which specifies the depth of the color video frames captured.
It takes:

depth (8 or 24) A new depth.

It returns:

depth (8 or 24) The current depth.

The frameRate VsSunVideoSource Subcommand

<vsSunVideoSource> frameRate [<frameRate>]
==> <frameRate>

The f rameRate VsSunVideoSource subcommand provides access to the frame rate pa-
rameter for the SunVideo capture card, in frames-per-second. It takes:

frameRate (Integer) A new frame rate.

It returns:

frameRate (Integer) The current frame rate.

119

A.9.12 The VsTestVideoSource Module

The VsTestVideoSource module provides a test video source that generates video frames
of various sizes and depths. It is based on the VsEntity module.

The scale VsTestVideoSource Subcommand

<vsTestVideoSource> scale [<scale>]
==> <scale>

The scale VsTestVideoSource subcommand provides access to the scale parameter for
a VsTestVideoSource module. The scale parameter specifies the size of the video frames
generated: 1 means full size, 2 means half size, and so forth. It takes:

scale (1, 2, 3, or 4) A new scale.

It returns:

scale (1, 2, 3, or 4) The current scale.

The depth VsTestVideoSource Subcommand

<vsTestVideoSource> depth [<depth>]
==> <depth>

The depth VsTestVideoSource subcommand provides access to the depth parameter for a
VsTestVideoSource module, which specifies the depth of the color video frames generated.
It takes:

depth (8 or 24) A new depth.

It returns:

depth (8 or 24) The current depth.

The cycle VsTestVideoSource Subcommand

<vsTestVideoSource> cycle [<cycle>]
==> <cycle>

The cycle VsTestVideoSource subcommand provides access to the cycle length parame-
ter for a VsTestVideoSource module, which specifies the size in megabytes of the block of
memory to cycle though when generating test frames. It is useful for ensuring generated
video frames are not in the cache. It takes:

cycle (Double) A new cycle length.

It returns:

cycle (Double) The current cycle length.

120

The byte0rder VsTestVideoSource Subcommand

<vsTestVideoSource> byteOrder [<byteOrder>]
==> <byteOrder>

The byteOrder VsTestVideoSource subcommand provides access to the byte order pa-
rameter for a VsTestVideoSource module, which specifies the byte order to use for gen-
erated video frames. It takes:

byteOrder (lsbFirst or msbFirst) A new byte order.

It returns:

byteOrder (IsbFirst or msbFirst) The current byte order.

The timeStep VsTestVideoSource Subcommand

<vsTestVideoSource> timeStep [<timeStep>]
==> <timeStep>

The timeStep VsTestVideoSource subcommand provides access to the time step pa-
rameter for a VsTestVideoSource module, which specifies the time in seconds between
generated video frames. It takes:

timeStep (Double) A new time step.

It returns:

timeStep (Double) The current time step.

The timeBase VsTestVideoSource Subcommand

<vsTestVideoSource> timeBase [<timeBase>]
==> <timeBase>

The timeBase VsTestVideoSource subcommand provides access to the time base param-
eter for a VsTestVideoSource module. It takes:

timeBase (real or virtual) A new time base.

It returns:

timeBase (real or virtual) The current time base.

A.9.13 The VsVidboardSource Module

The VsVidboardSource module provides a video source interface to the Vidboard [9], a
ATM-based video capture device. It is basd on the VsEntity module.

The feoff VsVidboardSource Subcommand

<vsVidboardSource> feOff

The feOff VsVidboardSource subcommand sends a front-end off command cell to the
vidboard. It is only used for diagnostic purposes.

121

The feInit VsVidboardSource Subcommand

<vsVidboardSource> feInit

The feInit VsVidboardSource subcommand sends a front-end init command cell to the
vidboard. It is only used for diagnostic purposes.

The softInit VsVidboardSource Subcommand

<vsVidboardSource> softInit

The softInit VsVidboardSource subcommand initializes everything but the front-end
on the vidboard. It is only used for diagnostic purposes.

The getFrame VsVidboardSource Subcommand

<vsVidboardSource> getFrame

The getFrame VsVidboardSource subcommand sends a frame capture command cell to
the vidboard. It is only used for diagnostic purposes.

The getCaption VsVidboardSource Subcommand

<vsVidboardSource> getCaption

The getCaption VsVidboardSource subcommand sends a caption capture command cell
to the vidboard. It is only used for diagnostic purposes.

The std VsVidboardSource Subcommand

<vsVidboardSource> std [<std>]
==> <std>

The std VsVidboardSource subcommand provides access to the video standard param-
eter for the vidboard. It takes:

std (auto, ntsc, or pal) A new video standard.

It returns:

std (auto, ntsc, or pal) The current video standard.

The port VsVidboardSource Subcommand

<vsVidboardSource> port [<port>]
==> <port>

The port VsVidboardSource subcommand provides access to the input port specifier for
the vidboard. It takes:

port (0, 1, or 2) A new input port.

It returns:

port (0, 1, or 2) The current input port.

122

The colorSpace VsVidboardSource Subcommand

<vsVidboardSource> colorSpace [<colorSpace>]
==> <colorSpace>

The colorSpace VsVidboardSource subcommand provides access to the color space pa-
rameter for the vidboard. It takes:

colorSpace (auto, rgb, or yuv) A new color space.

It returns:

colorSpace (auto, rgb, or yuv) The current color space.

The packType VsVidboardSource Subcommand

<vsVidboardSource> packType [<packType>]
==> <packType>

The packType VsVidboardSource subcommand provides access to the pack type param-
eter for the vidboard. It takes:

packType (auto, pixel, or frame) A new pack type.

It returns:

packType (auto, pixel, or frame) The current pack type.

The color VsVidboardSource Subcommand

<vsVidboardSource> color [<color>]
==> <color>

The color VsVidboardSource subcommand provides access to the color switch for the
vidboard. If true, video is captured in color. If false, video is captured in black-and-white.
It takes:

color (Boolean) A new color switch value.

It returns:

color (Boolean) The current color switch value.

The depth VsVidboardSource Subcommand

<vsVidboardSource> depth [<depth>]
==> <depth>

The depth VsVidboardSource subcommand provides access to the depth parameter for
the vidboard, which specifies the depth of the color video frames captured. It takes:

depth (8 or 24) A new depth.

It returns:

depth (8 or 24) The current depth.

123

The dither VsVidboardSource Subcommand

<vsVidboardSource> dither [<dither>]
==> <dither>

The dither VsVidboardSource subcommand provides access to the dither switch for the
vidboard. If true, 8-bit color frames are dithered. If false, they are not dithered. It takes:

dither (Boolean) A new dither switch value.

It returns:

dither (Boolean) The current dither switch value.

The captions VsVidboardSource Subcommand

<vsVidboardSource> captions [<captions>]
==> <captions>

The captions VsVidboardSource subcommand provides access to the captions channel
for the vidboard. If non-zero, it specified which closed-caption channel to capture. If
zero, captions are ignored. It takes:

captions (0, 1, or 2) A new captions channel.

It returns:

captions (0, 1, or2) The current captions channel.

The hue VsVidboardSource Subcommand

<vsVidboardSource> hue [<hue>]
==> <hue>

The hue VsVidboardSource subcommand provides access to the hue adjustment for the
vidboard, which ranges from above -180 to 180. It takes:

hue (Integer) A new hue.

It returns:

hue (Integer) The current hue.

The scale VsVidboardSource Subcommand

<vsVidboardSource> scale [<scale>]
==> <scale>

The scale VsVidboardSource subcommand provides access to the scale parameter for
the vidboard. The scale parameter specifies the size of the video frames captured: 1
means full size, 2 means half size, and so forth. It takes:

scale (1, 2, 3, or 4) A new scale.

It returns:

scale (1, 2, 3, or 4) The current scale.

The byteOrder VsVidboardSource Subcommand

<vsVidboardSource> byteOrder [<byteOrder>]
==> <byteOrder>

The byteOrder VsVidboardSource subcommand provides access to the byte order pa-
rameter for the vidboard, which specifies the byte order to use for captured video frames.
It takes:

byteOrder (lsbFirst or msbFirst) A new byte order.

It returns:

byteOrder (IsbFirst or msbFirst) The current byte order.

The encoding VsVidboardSource Subcommand

<vsVidboardSource> encoding [<encoding>]
==> <encoding>

The encoding VsVidboardSource subcommand provides access to color pixel encoding
to use for 24-bit color frames captured with the vidboard. It takes:

encoding (bgr or rgb) A new color pixel encoding.

It returns:

encoding (bgr or rgb) The current color pixel encoding.

The frameRate VsVidboardSource Subcommand

<vsVidboardSource> frameRate [<frameRate>]
==> <frameRate>

The frameRate VsVidboardSource subcommand provides access to the frame rate pa-
rameter for the vidboard, in frames-per-second It takes:

frameRate (Double) A new frame rate.

It returns:

frameRate (Double) The current frame rate.

The vciLocalDataIn VsVidboardSource Subcommand

<vsVidboardSource> vciLocalDataIn [<vciLocalDataIn>]
==> <vciLocalDataIn>

The vciLocalDataIn VsVidboardSource subcommand provides access to the vciLocal-
Dataln parameter for the vidboard, which specifies the local input vci for the data circuit.
It takes:

vciLocalDataln (Integer) A new vci.

It returns:

vciLocalDataln (Integer) The current vci.

125

The vciLocalControl0Out VsVidboardSource Subcommand

<vsVidboardSource> vciLocalControlOut [<vciLocalControlOut>]
==> <vciLocalControlOut>

The vciLocalControlOut VsVidboardSource subcommand provides access to the vciLo-
calControlOut parameter for the vidboard, which specifies the local output vci for the
control circuit. It takes:

vciLocalControlOut (Integer) A new vci.

It returns:

vciLocalControlOut (Integer) The current vci.

The vciLocalControlIn VsVidboardSource Subcommand

<vsVidboardSource> vciLocalControlIn [<vciLocalControlIn>]
==> <vciLocalControlIn>

The vciLocalControlIn VsVidboardSource subcommand provides access to the vciLo-
calControlln parameter for the vidboard, which specifies the local input vci for the control
circuit. It takes:

vciLocalControlIn (Integer) A new vci.

It returns:

vciLocalControlIn (Integer) The current vci.

The vciRemoteData0ut VsVidboardSource Subcommand

<vsVidboardSource> vciRemoteData0ut [<vciRemoteDataOut>]
==> <vciRemoteDataOut>

The vciRemoteDataOut VsVidboardSource subcommand provides access to the vciRe-
moteDataOut parameter for the vidboard, which specifies the remote output vci for the
data circuit. It takes:

vciRemoteDataOut (Integer) A new vci.

It returns:

vciRemoteDataOut (Integer) The current vci.

The vciRemoteControlout VsVidboardSource Subcommand

<vsVidboardSource> vciRemoteControlOut [<vciRemoteControlOut>]
==> <vciRemoteControlOut>

The vciRemoteControl0ut VsVidboardSource subcommand provides access to the
vciRemoteControlOut parameter for the vidboard, which specifies the remote output
vci for the control circuit. It takes:

veiRemoteControlOut (Integer) A new vci.

It returns:

vciRemoteControlOut (Integer) The current vci.

126

The tportRemoteData VsVidboardSource Subcommand

<vsVidboardSource> tportRemoteData [<tportRemoteData>]
==> <tportRemoteData>

The tportRemoteData VsVidboardSource subcommand provides access to the
tportRemoteData parameter for the vidboard, which specifies the remote tport for the
data circuit. It takes:

tportRemoteData (Integer) A new tport.

It returns:

tportRemoteData (Integer) The current tport.

The tportRemoteControl VsVidboardSource Subcommand

<vsVidboardSource> tportRemoteControl [<tportRemoteControl>]
==> <tportRemoteControl>

The tportRemoteControl VsVidboardSource subcommand provides access to the
tportRemoteControl parameter for the vidboard, which specifies the remote tport to
use for the control circuit. It takes:

tport RemoteControl (Integer) A new tport.

It returns:

tportRemoteControl (Integer) The current tport.

The interDatagramDelay VsVidboardSource Subcommand

<vsVidboardSource> interDatagramDelay [<interDatagramDelay>]
==> <interDatagramDelay>

The interDatagramDelay VsVidboardSource subcommand provides access to the inter-
DatagramDelay parameter for the vidboard, which specifies the delay in microseconds
between datagrams sent by the vidboard. It takes:

interDatagramDelay (auto or an Integer) A new delay.

It returns:

interDatagramDelay (auto or an Integer) The current delay.

The interBurstDelay VsVidboardSource Subcommand

<vsVidboardSource> interBurstDelay [<interBurstDelay>]
==> <interBurstDelay>

The interBurstDelay VsVidboardSource subcommand provides access to the inter-
BurstDelay parameter for the vidboard, which specifies the delay in microseconds be-
tween cell bursts sent by the vidboard. It takes:

interBurstDelay (auto or an Integer) A new delay.

It returns:

interBurstDelay (auto or an Integer) The current delay.

127

The cellsPerBurst VsVidboardSource Subcommand

<vsVidboardSource> cellsPerBurst [<cellsPerBurst>]
==> <cellsPerBurst>

The cellsPerBurst VsVidboardSource subcommand provides access to the cellsPer-
Burst parameter for the vidboard, which specifies the number of cells in a cell burst. It
takes:

cellsPerBurst (auto or an Integer) A new number.

It returns:

cellsPerBurst (auto or an Integer) The current number.

The linesPerDatagram VsVidboardSource Subcommand

<vsVidboardSource> linesPerDatagram [<linesPerDatagram>]
==> <linesPerDatagram>

The linesPerDatagram VsVidboardSource subcommand provides access to the linesPer-
Datagram parameter for the vidboard, which specifies the number of image scan lines to
include per datagram sent by the vidboard. It takes:

linesPerDatagram (auto or an Integer) A new number.

It returns:

linesPerDatagram (auto or an Integer) The current number.

A.9.14 The VsXVideoSource Module

The VsXVideoSource module provides a video source interface to frame buffers with
image capture capabilities through the XVideo X server extension. It is based on the
VsEntity module.

The port VsXVideoSource Subcommand

<vsXVideoSource> port [<port>]
==> <port>

The port VsXVideoSource subcommand provides access to the input port parameter for
an XVideo capture card. It takes:

port (Integer) A new input port.

It returns:

port (Integer) The current input port.

The numPorts VsXVideoSource Subcommand

<vsXVideoSource> numPorts
==> <numPorts>

The numPorts VsXVideoSource subcommand returns the number of input video ports.
It returns:

numPorts (Integer) The number of input ports.

128

The frameRate VsXVideoSource Subcommand

<vsXVideoSource> frameRate [<frameRate>]
==> <frameRate>

The frameRate VsXVideoSource subcommand provides access to the frame rate param-
eter for an XVideo capture card, in frames-per-second. It takes:

frameRate (Integer) A new frame rate.

It returns:

frameRate (Integer) The current frame rate.

The hue VsXVideoSource Subcommand

<vsXVideoSource> hue [<hue>]
==> <hue>

The hue VsXVideoSource subcommand provides access to the hue adjustment for an
XVideo capture card. It ranges between -1000 and 1000. It takes:

hue (Integer) A new hue.

It returns:

hue (Integer) The current hue.

The saturation VsXVideoSource Subcommand

<vsXVideoSource> saturation [<saturation>]
==> <saturation>

The saturation VsXVideoSource subcommand provides access to the saturation param-
eter for an XVideo capture card. It ranges between -1000 and 1000. It takes:

saturation (Integer) A new saturation.

It returns:

saturation (Integer) The current saturation.

The brightness VsXVideoSource Subcommand

<vsXVideoSource> brightness [<brightness>]
==> <brightness>

The brightness VsXVideoSource subcommand provides access to the brightness param-
eter for an XVideo capture card. It ranges between -1000 and 1000. It takes:

brightness (Integer) A new brightness.

It returns:

brightness (Integer) The current brightness.

129

The contrast VsXVideoSource Subcommand

<vsXVideoSource> contrast [<contrast>]
==> <contrast>

The contrast VsXVideoSource subcommand provides access to the contrast parameter
for an XVideo capture card. It ranges between -1000 and 1000. It takes:

contrast (Integer) A new contrast.

It returns:

contrast (Integer) The current contrast.

The scale VsXVideoSource Subcommand

<vsXVideoSource> scale [<scale>]
==> <scale>

The scale VsXVideoSource subcommand provides access to the scale parameter for an

XVideo capture card. The scale parameter specifies the size of the video frames captured:
1 means full size, 2 means half size, and so forth. It takes:

scale (1, 2, or 4) A new scale.

It returns:

scale (1, 2, or 4) The current scale.

The std VsXVideoSource Subcommand

<vsXVideoSource> std [<std>]
==> <std>

The std VsXVideoSource subcommand provides access to the video standard parameter
for an XVideo capture card. It takes:

std (String) A new video standard.

It returns:

std (String) The current video standard.

The signalType VsXVideoSource Subcommand

<vsXVideoSource> signalType [<signalType>]
==> <signalType>

The signalType VsXVideoSource subcommand provides access to the signal type pa-
rameter for an XVideo capture card. It takes:

signalType (String) A new signal type.

It returns:

signalType (String) The current signal type.

130

The widget VsXVideoSource Subcommand

<vsXVideoSource> widget [<widget>]
==> <widget>

The widget VsXVideoSource subcommand provides access to the widget parameter for
an XVideo capture card, which specifies the window in which to capture video. It takes:

widget (Command Name) A new widget.

It returns:

widget (Command Name) The current widget.

A.10 Primitive Sink Modules

Sink modules have one onput port and no output ports. The input port is always named
input. Sink modules are usually media playback device interface modules.

A.10.1 The VsAudioFileSink Module

The VsAudioFileSink module provides an audio sink interface to the AudioFile [10] pro-
tocol. It is based on the VsEntity module.

The server VsAudioFileSink Subcommand

<vsAudioFileSink> server [<server>]
==> <server>

The server VsAudioFileSink subcommand provides access to the AudioFile server spec-
ifier for a VsAudioFileSink module. It takes:

server (String) A new AudioFile server specifier.

It returns:

server (String) The current AudioFile server specifier.

The port VsAudioFileSink Subcommand

<vsAudioFileSink> port [<port>]
==> <port>

The port VsAudioFileSink subcommand provides access to the output port parameter
for a VsAudioFileSink module. It takes:

port (Integer) A new output port bitmask.

It returns:

port (Integer) The current output port bitmask.

The numPorts VsAudioFileSink Subcommand

<vsAudioFileSink> numPorts
==> <numPorts>

The numPorts VsAudioFileSink subcommand returns the number of output audio ports.
It returns:

numPorts (Integer) The number of output ports.

The gain VsAudioFileSink Subcommand

<vsAudioFileSink> gain [<gain>]
==> <gain>

The gain VsAudioFileSink subcommand provides access to the gain parameter for a
VsAudioFileSink module. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

The maxGain VsAudioFileSink Subcommand

<vsAudioFileSink> maxGain
==> <maxGain>

The maxGain VsAudioFileSink subcommand returns
audio device. It returns:

maxGain (Integer) The maximum gain value.

The minGain VsAudioFileSink Subcommand

<vsAudioFileSink> minGain
==> <minGain>

The minGain VsAudioFileSink subcommand returns
audio device. It returns:

the maximum gain value for the

the minimum gain value for the

minGain (Integer) The minimum gain value.

A.10.2 The VsCaptionSink Module

The VsCaptionSink module calls its callback when it receives a caption. It ignores all
other payloads. It is based on the VsEntity module.

The VsCaptionSink module indicates through its callback that it has received a
VsCaption payload. The callback command string is evaluated with the following key-
word parameter appended:

-caption (String) The caption text.

132

A.10.3 The VsDecAudioSink Module

The VsDecAudioSink module provides an audio sink interface to the DecAudio protocol.
It is based on the VsEntity module.

The audioserver VsDecAudioSink Subcommand

<vsDecAudioSink> audioserver [<audioserver>]
==> <audioserver>

The audioserver VsDecAudioSink subcommand provides access to the DecAudio server
specifier parameter for a VsDecAudioSink module. It takes:

audioserver (Siring) A new DecAudio server specifier.

It returns:

audioserver (Siring) The current DecAudio server specifier.

The port VsDecAudioSink Subcommand

<vsDecAudioSink> port [<port>]
==> <port>

The port VsDecAudioSink subcommand provides access to the output port parameter
for a VsDecAudioSink module. It takes:

port (Integer) A new output port bitmask.

It returns:

port (Integer) The current output port bitmask.

The gain VsDecAudioSink Subcommand

<vsDecAudioSink> gain [<gain>]
==> <gain>

The gain VsDecAudioSink subcommand provides access to the gain parameter for a
VsDecAudioSink module. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

A.10.4 The VsExternalSink Module

The VsExternalSink module provides a video sink interface to images stored in separate
files. It supports a variety of file formats, including raw, standalone, ppm, pbm, pbm-
ascii, and postscript. It is based on the VsEntity module.

The VsExternalSink module indicates through its callback that it has received a
VsFinish payload. The callback command string is evaluated with any of the following
keyword parameters appended:

-sinkFinish (Boolean) The module has received a VsFinish payload but was
not stopping.

-sinkStop (Boolean) The module has received a VsFinish payload and has
completely stopped.

133

The payload VsExternalSink Subcommand

<vsExternalSink> payload [<payload>]
==> <payload>

The payload VsExternalSink subcommand provides access to the payload type parameter
for a VsExternalSink module. It takes:

payload (String) A new payload type.

It returns:

payload (String) The current payload type.

The channel VsExternalSink Subcommand

<vsExternalSink> channel [<channel>]
==> <channel>

The channel VsExternalSink subcommand provides access to the channel parameter for
a VsExternalSink module. It takes:

channel (Integer) A new channel.

It returns:

channel (Integer) The current channel.

The pathname VsExternalSink Subcommand

<vsExternalSink> pathname [<pathname>]
==> <pathname>

The pathname VsExternalSink subcommand provides access to the pathname parameter
for a VsExternalSink module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

The nextFile VsExternalSink Subcommand

<vsExternalSink> nextFile [<nextFile>]
==> <nextFile>

The nextFile VsExternalSink subcommand provides access to the file name generating
command string for a VsExternalSink module. It takes:

nextFile (Command String) A new file name generating command string.

It returns:

nextFile (Command String) The current file name generating command
string.

134

The convert VsExternalSink Subcommand

<vsExternalSink> convert [<convert>]
==> <convert>

The convert VsExternalSink subcommand provides access to the conversion specifier for
a VsExternalSink module. It takes:

convert (null, raw, standalone, ppm, pbm, pbm-ascii, or postscript) A new
conversion specifier.

It returns:

convert (null, raw, standalone, ppm, pbm, pbm-ascii, or postscript) The
current conversion specifier.

A.10.5 The _VsFileSink Module

The _VsFileSink module provides a media sink interface to files in the native VuSystem
file format. It is based on the VsByteStream module.

The pathname _VsFileSink Subcommand

<_vsFileSink> pathname [<pathname>]
==> <pathname>

The pathname -VsFileSink subcommand provides access to the pathname parameter for
a _VsFileSink module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

The indexExtension -VsFileSink Subcommand

<_vsFileSink> indexExtension [<indexExtension>]
=-> <indexExtension>

The indexExtension _VsFileSink subcommand provides access to the index extension
parameter for a VsFileSink module, which specifies the file name extension to use for the
generated index file. It takes:

indexExtension (String) A new extension.

It returns:

indexExtension (String) The current extension.

The payload _VsFileSink Subcommand

<_vsFileSink> payload [<payload>]
==> <payload>

The payload _VsFileSink subcommand provides access to the payload specifier for a
VsFileSink module, which specifies which payload types to write to the file. It takes:

payload (String) A new list of payload types.

It returns:

payload (String) The current list of payload types.

135

A.10.6 The VsNullSink Module

The VsNullSink module is a pure data sink. It is based on the VsEntity module.
The VsNullSink module indicates through its callback that it has received a finish

payload while stopping. The callback command string is evaluated with any of the
following keyword parameters appended:

-sinkFinish (Boolean) The module has received a VsFinish payload but was
not stopping.

-sinkStop (Boolean) The module has received a VsFinish payload while
stopping and has completely stopped.

A.10.7 The VsQtimeSink Module

The VsQtimeSink module provide a video sink interface to files in the Apple Quicktime
[12] file format. It is based on the VsEntity module.

The VsQtimeSink module indicates through its callback that it has received a
VsFinish payload. The callback command string is evaluated with any of the follow-
ing keyword parameters appended:

-sinkFinish (Boolean) The module has received a VsFinish payload but was
not stopping.

-sinkStop (Boolean) The module has received a VsFinish payload and has
completely stopped.

The pathname VsQtimeSink Subcommand

<vsQtimeSink> pathname [<pathname>]
==> <pathname>

The pathname VsQtimeSink subcommand provides access to the pathname parameter
for a VsQtimeSink module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

A.10.8 The VsSunAudioSink Module

The VsSunAudioSink module provides an audio sink interface to Sun audio hardware. It
is based on the VsEntity module.

The pathname VsSunAudioSink Subcommand

<vsSunAudioSink> pathname [<pathname>]
==> <pathname>

The pathname VsSunAudioSink subcommand provides access to the pathname parameter
for a VsSunAudioSink module. It takes:

pathname (Pathname) A new pathname.

It returns:

pathname (Pathname) The current pathname.

136

The port VsSunAudioSink Subcommand

<vsSunAudioSink> port [<port>]
==> <port>

The port VsSunAudioSink subcommand provides access to the output port parameter
for a VsSunAudioSink module. It takes:

port (internal, external, 1, 2, 3, or 4) A new output port.

It returns:

port (1, 2, 3, or 4) The current output port.

The gain VsSunAudioSink Subcommand

<vsSunAudioSink> gain [<gain>]
==> <gain>

The gain VsSunAudioSink subcommand provides access to the gain parameter for a
VsSunAudioSink module. It takes:

gain (Integer) A new gain.

It returns:

gain (Integer) The current gain.

A.10.9 The VsWindowSink Module

The VsWindowSink module provides a video sink interface to a workstation screen
through the X Window System. It is based on the VsEntity module.

The VsWindowSink module indicates through its callback that it has received a
VsFinish payload. It also indicates through its callback that it has received a VsCaption
payload. The callback command string is evaluated with any of the following keyword
parameters appended:

-sinkFinish (Boolean) The module has received a VsFinish payload but was
not stopping.

-sinkStop (Boolean) The module has received a VsFinish payload and has
completely stopped.

-caption (String) The caption text.

The widget VsWindowSink Subcommand

<vsWindowSink> widget [<widget>]
==> <widget>

The widget VsWindowSink subcommand provides access to the widget parameter for a
VsWindowSink module, which specifies the window in which to display video frames. It
takes:

widget (Command Name) A new widget.

It returns:

widget (Command Name) The current widget.

The grab VsWindowSink Subcommand

<vsWindowSink> grab pathname

The grab VsWindowSink subcommand grabs the currently displayed video frame and
puts it in a file. It takes:

pathname (Pathname) the pathname of the file in which to put the video
frame.

A.11 Primitive Filter Modules

Filter modules have one input port and one output port. The input port is always
named input, and the output port is always named output. Filter modules are usually
media-processing modules.

A.11.1 The VsBuffer Module

The VsBuffer module provides a buffering mechanism. The depth of the buffer is spec-
ified in time differences, instead of numbers of payloads. The VsBuffer module accepts
payloads, even if its downstream module is not accepting payloads, until the range of
times in the buffer exceeds the depth parameter. It is based on the VsEntity module.

The depth VsBuffer Subcommand

<vsBuffer> depth [<depth>]
==> <depth>

The depth VsBuffer subcommand provides access to the depth parameter for a VsBuffer
module, which specifies number of seconds of time difference allowed between the times-
tamp on the head payload in the buffer and the timestamp on the tail payload in the
buffer. It takes:

depth (Double) A new depth.

It returns:

depth (Double) The current depth.

A.11.2 The VsCCCC Module

The VsCCCC module does Color Cell compression. It converts each 8-bit color video
frame passed to it to a compressed video frame. All other payloads are passed transpar-
ently. It is based on the VsFilter module.

The VsCCCC module indicates compression ratios through its callback. The callback
command string is evaluated with the following keyword parameter appended:

-compressRatio (Float) The compression ratio achieved.

138

The reportInterval VsCCCC Subcommand

<vsCCCC> reportInterval [<reportInterval>]
==> <reportInterval>

The reportInterval VsCCCC subcommand provides access to the report interval pa-
rameter for a VsCCCC module, which specifies the number of seconds between calls to
the callback reporting compression ratios. It takes:

reportInterval (Long) A new report interval.

It returns:

reportInterval (Seconds) The current report interval.

A.11.3 The VsCCCD Module

The VsCCCD module does Color Cell decompression. It converts each color-cell com-
pressed video frame passed to it to an 8-bit color video frame. All other payloads are
passed transparently. It is based on the VsFilter module.

A.11.4 The VsChannelSelect Module

The VsChannelSelect module passes all payloads with a channel descriptor member that
matches the module's channel parameter. It deletes all other payloads. It is based on
the VsEntity module.

The channel VsChannelSelect Subcommand

<vsChannelSelect> channel [<channel>]
==> <channel>

The channel VsChannelSelect subcommand provides access to the channel parameter
for a VsChannelSelect module. It takes:

channel (Integer) A new channel.

It returns:

channel (Integer) The current channel.

A.11.5 The VsChannelSet Module

The VsChannelSet module sets the channel payload descriptor member of all payloads
that pass through it to the module's channel parameter. It is based on the VsEntity
module.

The channel VsChannelSet Subcommand

<vsChannelSet> channel [<channel>]
==> <channel>

The channel VsChannelSet subcommand provides access to the channel parameter for
a VsChannelSet module. It takes:

channel (Integer) A new channel.

It returns:

channel (Integer) The current channel.

139

A.11.6 The VsColor8to24 Module

The VsColor8to24 module converts 8-bit color video frames into 24-bit color video frames.
All other payloads are passed transparently. It is based on the VsEntity module.

The byte0rder VsColor8to24 Subcommand

<vsColor8to24> byte0rder [<byteOrder>]
==> <byteOrder>

The byte0rder VsColor8to24 subcommand provides access to the byte order parameter
for a VsColor8to24 module, which specifies the byte order for converted video frames. It
takes:

byteOrder (IsbFirst or msbFirst) A new byte order.

It returns:

byteOrder (IsbFirst or msbFirst) The current byte order.

The encoding VsColor8to24 Subcommand

<vsColor8to24> encoding [<encoding>]
==> <encoding>

The encoding VsColor8to24 subcommand provides access to the encoding parameter for
a VsColor8to24 module, which specifies the pixel encoding of converted video frames. It
takes:

encoding (bgr or rgb) A new pixel encoding.

It returns:

encoding (bgr or rgb) The current pixel encoding.

A.11.7 The VsColor24to8 Module

The VsColor24to8 module converts 24-bit color video frames into 8-bit color video frames.
All other payloads are passed transparently. It is based on the VsEntity module.

A.11.8 The VsExercise Module

The VsExercise module does data walking exercises on video frames. It is used to measure
performance of the VuSystem. It is based on the VsFilter module.

The cycles VsExercise Subcommand

<vsExercise> cycles [<cycles>]
==> <cycles>

The cycles VsExercise subcommand provides access to the cycles parameter for a VsEx-
ercise module. It takes:

cycles (Integer) A new number of cycles.

It returns:

cycles (Integer) The current number of cycles.

140

The transferUnit VsExercise Subcommand

<vsExercise> transferUnit [<transferUnit>]
==> <transferUnit>

The transferUnit VsExercise subcommand provides access to the transfer unit param-
eter for a VsExercise module. It takes:

transferUnit (8, 16, 32, or 64) A new transfer unit.

It returns:

transferUnit (8, 16, 32, or 64) The current transfer unit.

The mode VsExercise Subcommand

<vsExercise> mode [<mode>]
==> <mode>

The mode VsExercise subcommand provides access to the mode parameter for a VsEx-
ercise module. It takes:

mode (read, write, readWrite, or copy) A new mode.

It returns:

mode (read, write, readWrite, or copy) The current mode.

The microop VsExercise Subcommand

<vsExercise> microOp [<micro0p>]
==> <microOp>

The micro0p VsExercise subcommand provides access to the micro op parameter for a
VsExercise module. It takes:

microOp (Integer) A new micro operation.

It returns:

microOp (Integer) The current micro operation.

A.11.9 The VsJpegC Module

The VsJpegC module performs JPEG compression. It converts all color video frames into
JPEG frames. All other payloads are passed transparently. It is based on the VsFilter
module.

The VsJpegC module indicates compression ratios through its callback. The callback
command string is evaluated with the following keyword parameter appended:

-compressRatio (Float) The compression ratio achieved.

The quality VsJpegC Subcommand

<vsJpegC> quality [<quality>]
==> <quality>

The quality VsJpegC subcommand provides access to the output quality parameter for
a VsJpegC module, which ranges between 0 and 100. It takes:

quality (Integer) A new output quality.

It returns:

quality (Integer) The current output quality.

A.11.10 The VsJpegD Module

The VsJpegD module performs JPEG decompression. It converts all JPEG frames into
color video frames. All other payloads are passed transparently. It is based on the
VsFilter module.

The byte0rder VsJpegD Subcommand

<vsJpegD> byte0rder [<byteOrder>]
==> <byteOrder>

The byteOrder VsJpegD subcommand provides access to the byte order parameter for a
VsJpegD module, which specifies the byte order for decompressed video frames. It takes:

byteOrder (IsbFirst or msbFirst) A new byte order.

It returns:

byteOrder (lsbFirst or msbFirst) The current byte order.

The encoding VsJpegD Subcommand

<vsJpegD> encoding [<encoding>]
==> <encoding>

The encoding VsJpegD subcommand provides access to the encoding parameter for a
VsJpegD module, which specifies the pixel encoding to use for decompressed 24-bit color
frames. It takes:

encoding (0, 1, 2, or 3) A new pixel encoding.

It returns:

encoding (0, 1, 2, or 3) The current pixel encoding.

A.11.11 The VsPayloadDetect Module

The VsPayloadDetect module detects payloads of a certain type. It calls its callback when
a payload of a specified type passes through it. It passes all payloads transparently. It is
based on the VsFilter module.

The VsPayloadDetect module indicates through its callback that it has detected a
payload of the right type. The callback command string is evaluated with the following
keyword parameter appended:

-detect (String) The type of the payload that has been detected.

142

The payload VsPayloadDetect Subcommand

<vsPayloadDetect> payload [<payload>]
==> <payload>

The payload VsPayloadDetect subcommand provides access to the payload type param-
eter for a VsPayloadDetect module. It takes:

payload (String) A new payload type.

It returns:

payload (String) The current payload type.

A.11.12 The VsPayloadFilter Module

The VsPayloadFilter module only passes payloads of a certain type. All payloads not of
the same type as the payload type parameter are deleted. It is based on the VsFilter
module.

The payload VsPayloadFilter Subcommand

<vsPayloadFilter> payload [<payload>]
==> <payload>

The payload VsPayloadFilter subcommand provides access to the payload type param-
eter for a VsPayloadFilter module. It takes:

payload (String) A new payload type.

It returns:

payload (String) The current payload type.

A.11.13 The VsPuzzle Module

The VsPuzzle module scrambles video frames to form a video puzzle. It can also solve
the puzzle on its own. It is based on the VsFilter module.

The VsPuzzle module indicates through its callback that the puzzle has been solved.
It also indicates through its callback that it has completed a permutation. The callback
command string is evaluated with any of the following keyword parameters appended:

-solved (Boolean) The puzzle has been solved.

-permute (Boolean) The permutation has completed.

The position VsPuzzle Subcommand

<vsPuzzle> position [<position>]
==> <position>

The position VsPuzzle subcommand provides access to the position parameter for a
VsPuzzle module, which specifies where the "hole" in the puzzle is. It takes:

position (Pair of Integers) A new position.

It returns:

position (Pair of Integers) The current position.

143

The dimension VsPuzzle Subcommand

<vsPuzzle> dimension [<dimension>]
==> <dimension>

The dimension VsPuzzle subcommand provides access to the dimension parameter for
a VsPuzzle module, which specifies the number of rows and columns in the puzzle. It
takes:

dimension (Integer) A new dimension.

It returns:

dimension (Integer) The current dimension.

The scramble VsPuzzle Subcommand

<vsPuzzle> scramble

The scramble VsPuzzle subcommand scrambles the puzzle.

The solve VsPuzzle Subcommand

<vsPuzzle> solve [<solve>]
==> <solve>

The solve VsPuzzle subcommand provides access to the solve switch for a VsPuzzle
module. If true, the puzzle will solve itself, one move at a time. It takes:

solve (Boolean) A new solve switch value.

It returns:

solve (Boolean) The current solve switch value.

The permute VsPuzzle Subcommand

<vsPuzzle> permute <fromPos> <toPos>

The permute VsPuzzle subcommand permutes the puzzle, moving a piece from one po-
sition to another. It takes:

fromPos (Pair of Integers) A starting position.

It returns:

toPos (Pair of Integers) An ending position.

The lock VsPuzzle Subcommand

<vsPuzzle> lock <position> [<lock>]
==> <lock>

The lock VsPuzzle subcommand locks or unlocks a piece at a position. It takes:

position (Pair of Integers) A position.

lock (Boolean) Lock value.

It returns:

lock (Boolean) The lock value for the position.

144

The timeStep VsPuzzle Subcommand

<vsPuzzle> timeStep [<timeStep>]
==> <timeStep>

The timeStep VsPuzzle subcommand provides access to the time step parameter for a
VsPuzzle module, which specifies the number of seconds between moves when solving
automatically. It takes:

timeStep (Float) A new time step.

It returns:

timeStep (Float) The current time step.

A.11.14 The VsQRLC Module

The VsQRLC module performs a quantized-run-length compression. It converts black-
and-white video frames into compressed QRL frames. All other payloads are passed
transparently. It is based on the VsFilter module.

The VsQRLC module indicates compression ratios through its callback. The callback
command string is evaluated with the following keyword parameter appended:

-compressRatio (Float) The compression ratio achieved.

The quality VsQRLC Subcommand

<vsQRLC> quality [<quality>]
==> <quality>

The quality VsQRLC subcommand provides access to the output quality parameter for
a VsQRLC module, which ranges between 0 and 100. It takes:

quality (Integer) A new output quality.

It returns:

quality (Integer) The current output quality.

The reportInterval VsQRLC Subcommand

<vsQRLC> reportInterval [<reportInterval>]
==> <reportInterval>

The reportInterval VsQRLC subcommand provides access to the report interval pa-
rameter for a VsQRLC module, which specifies the number of seconds between callbacks
reporting compression ratios. It takes:

reportInterval (Integer) A new report interval.

It returns:

reportInterval (Integer) The current report interval.

145

The keyFrameInterval VsQRLC Subcommand

<vsQRLC> keyFrameInterval [<keyFrameInterval>]
==> <keyFrameInterval>

The keyFrameInterval VsQRLC subcommand provides access to the key frame interval
parameter for a VsQRLC module, which specifies the number of microseconds between
key frames. It takes:

keyFrameInterval (Integer) A new key frame interval.

It returns:

keyFrameInterval (Integer) The current key frame interval.

A.11.15 The VsQRLD Module

The VsQRLD module performs a quantized-run-length decompression. It converts com-
pressed QRL frames into black-and-white video frames. All other payloads are passed
transparently. It is based on the VsFilter module.

A.11.16 The VsRateMeter Module

The VsRateMeter module measures the rate of payloads passing though it. It measures
the rate in virtual time, using the timestamps in the payload descriptors. It passes all
payloads transparently. It is based on the VsEntity module.

The VsRateMeter module indicates payload rates through its callback. The callback
command string is evaluated with the following keyword parameter appended:

-rate (Float) The payload rate achieved, in payloads-per-second.

The history VsRateMeter Subcommand

<vsRateMeter> history [<history>]
==> <history>

The history VsRateMeter subcommand provides access to the history parameter for
a VsRateMeter module, which specifies the number of microseconds of history to keep
when computing payload rates. It takes:

history (Integer) A new history.

It returns:

history (Integer) The current history.

The report VsRateMeter Subcommand

<vsRateMeter> report [<report>]
==> <report>

The report VsRateMeter subcommand provides access to the report parameter for a
VsRateMeter module, which specifies the number of microseconds between callbacks
reporting payload rates. It takes:

report (Integer) A new report interval.

It returns:

report (Integer) The current report interval.

146

The payload VsRateMeter Subcommand

<vsRateMeter> payload [<payload>]
==> <payload>

The payload VsRateMeter subcommand provides access to the payload parameter for a

VsRateMeter module, which specifies the payload type to measure the rate of. It takes:

payload (String) A new payload type.

It returns:

payload (String) The current payload type.

The channel VsRateMeter Subcommand

<vsRateMeter> channel [<channel>]
==> <channel>

The channel VsRateMeter subcommand provides access to the channel parameter for a
VsRateMeter module, which specifes which channel to measure the rate of. It takes:

channel (Integer) A new channel.

It returns:

channel (Integer) The current channel.

The rate VsRateMeter Subcommand

<vsRateMeter> rate
==> <rate>

The rate VsRateMeter subcommand returns the payload rate. It returns:

rate (Float) The payload rate.

A.11.17 The VsReTime Module

The VsReTime module is used for media synchronization. It modifies the StartingTime
payload descriptor member of payloads that pass through it. It is based on the VsEntity
module.

By adding a fixed offset to every timestamp, the filter allows the playback of media
data at a time later than it was captured. The offset corresponds to the time difference
between the time of day of the start of playback of a sequence, and the time of day of
the start of capture of the sequence.

147

How It Works

Consider a sequence of media payloads, perhaps a sequence of video frames interleaved
with corresponding audio fragments. When each video frame and audio fragment was
captured by the VuSystem, the exact time of day of capture was recorded by the capturing
source module in the StartingTime payload descriptor member for the payload. When
the sequence is played back, the respective playback sink module presents the video
frame or audio fragment at the time indicated by the StartingTime payload descriptor
member. It is the job of the VsReTime module to change the StartingTime payload
descriptor members so that the payload sequence can be played back correctly. It does
so by keeping invariant the relative payload timestamps within the sequence:

TN,Playback - TO,Playback - TN,Capture - TO,Capture (A.1)

The VsReTime module assigns the current time, plus a small offset to allow for some
buffering before playback, to the StartingTime payload descriptor member for the first
payload of the sequence:

TO,Playback = CurrentTime + delay (A.2)

For the rest of the payloads, VsReTime uses the time assigned to the first payload in the
sequence and Equation A.1:

TN,Playback = TN,Capture - TO,Capture + TO,Playback (A.3)

The VsRetime filter can also cause the playback of stored media data at a speed different
than it was captured. To do this, the filter subtracts the timestamp of the first payload
of the sequence, scales the result, and then adds the time of day of the start of playback
of the sequence. Equation A.1 can be rewritten to include a scale factor:

TN,Capture - TO,Capture
TN,Playback - TO,Playback TNCaptu - T u (A.4)

speed

Equation A.3 can also be rewritten to include this scale factor:

TN,Playback TNCapture - To,capture + TO,Playback (A.5)
speed

The delay VsReTime Subcommand

<vsReTime> delay [<delay>]
==> <delay>

The delay VsReTime subcommand provides access to the delay parameter for a Vs-
ReTime module, which specifies the delay, in seconds from the current time, that new

payload timestamps should start with. It takes:

delay (Double) A new delay.

It returns:

delay (Double) The current delay.

148

The speed VsReTime Subcommand

<vsReTime> speed [<speed>]
==> <speed>

The speed VsReTime subcommand provides access to the speed parameter for a Vs-
ReTime module, which specifies the speed at which new payload timestamps should
progress: 1 means normal time, 2 means double speed, .5 means half speed, and so forth.
It takes:

speed (Double) A new speed.

It returns:

speed (Double) The current speed.

A.11.18 The VsResize Module

The VsResize module changes the size of video frames that pass through it. All other
payloads are passed transparently. It is based on the VsFilter module.

The scale VsResize Subcommand

<vsResize> scale [<scale>]
==> <scale>

The scale VsResize subcommand provides access to the scale parameter for a VsResize
module, which specifies how much to resize video frames. It takes:

scale (Float) A new scale.

It returns:

scale (Float) The current scale.

The width VsResize Subcommand

<vsResize> width [<width>]
==> <width>

The width VsResize subcommand provides access to the width parameter for a VsResize
module. It takes:

width (Integer) A new width.

It returns:

width (Integer) The current width.

The height VsResize Subcommand

<vsResize> height [<height>]
==> <height>

The height VsResize subcommand provides access to the height parameter for a VsResize
module. It takes:

height (Integer) A new height.

It returns:

height (Integer) The current height.

149

A.11.19 The VsScale Module

The VsScale module rescales video frames that are passed through it. The horizontal
and vertical dimensions can be independently scaled. All other payloads are passed
transparently. It is based on the VsFilter module.

The scale VsScale Subcommand

<vsScale> scale [<scale>]
==> <scale>

The scale VsScale subcommand provides access to the scale parameter for a VsScale
module. It takes:

scale (Float) A new scale.

It returns:

scale (Float) The current scale.

The xmag VsScale Subcommand

<vsScale> xmag [<xmag>]
==> <xmag>

The xmag VsScale subcommand provides access to the xmag parameter for a VsScale
module. It takes:

xmag (Float) A new xmag.

It returns:

xmag (Float) The current xmag.

The ymag VsScale Subcommand

<vsScale> ymag [<ymag>]
==> <ymag>

The ymag VsScale subcommand provides access to the ymag parameter for a VsScale
module. It takes:

ymag (Float) A new ymag.

It returns:

ymag (Float) The current ymag.

A.11.20 The VsStepper Module

The VsStepper module provides precise control of payload passing. The stepper normally
passes all payloads, but when it encounters a payload of the specified type, it passes it,
calls its callback, and stops. It passes no more payloads until it is restarted. It is based
on the VsEntity module.

The VsStepper module indicates completion of the step by calling its callback. The
callback command string is evaluated with the following keyword parameter appended:

-stepDone (Boolean) The step has completed.

150

The payload VsStepper Subcommand

<vsStepper> payload [<payload>]
==> <payload>

The payload VsStepper subcommand provides access to the payload type parameter for
a VsStepper module. It takes:

payload (String) A new payload type.

It returns:

payload (String) The current payload type.

A.11.21 The VsByteStream Module

The VsByteStream module is the base module for all modules that pass payloads though
byte streams in the native VuSystem format. It knows how to convert payloads from and
to sequences of bytes. Modules built on the VsByteStream module include _VsFileSource,
VsFileSink, VsTcpClient, and VsTcpServer. It is based on the VsEntity module.

The VsBytestream module indicates through its callback that it has reached end-of-
file on its input. It also indicates through its callback that it has received a VsFinish
payload. The callback command string is evaluated with any of the following keyword
parameters appended:

-sourceEnd (Boolean) The module has reached end-of-file on its input.

-sinkFinish (Boolean) The module has received a VsFinish payload but was
not stopping.

-sinkStop (Boolean) The module has received a VsFinish payload and has
completely stopped.

The end VsByteStream Subcommand

<vsByteStream> end [<end>]
==> <end>

The end VsByteStream subcommand provides access to the end parameter for a Vs-
ByteStream module, which sets the position in the byte stream to stop reading. It takes:

end (Integer) A new end position.

It returns:

end (Integer) The current end position.

The seek VsByteStream Subcommand

<vsByteStream> seek [<seek>]
==> <seek>

The seek VsByteStream subcommand provides access to the seek parameter for a Vs-
ByteStream module, which specifies the starting position in the byte stream. It takes:

seek (Integer) A new seek position.

It returns:

seek (Integer) The current seek position.

The tell VsByteStream Subcommand

<vsByteStream> tell
=> <position>

The tell VsByteStream subcommand returns the current seek position on the byte
stream. It returns:

position (Integer) The current position.

A.11.22 The VsTcpClient Module

The VsTcpClient module provides an interface to the client side of a TCP connection. It
is based on the VsByteStream module. It is classified as a filter because it has an input
port and an output port. All payloads passed into its input port come out of the output
port of a corresponding VsTcpServer module on the server side of the TCP connection.
Similarly, all payloads that are passed into the input port of a corresponding VsTcpServer
module on the server side of the TCP connection come out of the output port of this
module.

The host VsTcpClient Subcommand

<vsTcpClient> host [<host>]
==> <host>

The host VsTcpClient subcommand provides access to the host parameter for a VsTcp-
Client module, which specifies the remote host for the TCP connection. It takes:

host (String) A new host name.

It returns:

host (String) The current host name.

The port VsTcpClient Subcommand

<vsTcpClient> port [<port>]
==> <port>

The port VsTcpClient subcommand provides access to the port parameter for a VsTcp-
Client module, which specifies the TCP port for the TCP connection. It takes:

port (TCP Service Name or Integer) A new TCP port.

It returns:

port (Integer) The current TCP port.

A.11.23 The VsTcpServer Module

The VsTcpServer module provides an interface to the server side of a TCP connection.
It is based on the VsByteStream module. It is classified as a filter because it has an

input port and an output port. All payloads passed into its input port come out of

the output port of a corresponding VsTcpClient module on the client side of the TCP
connection. Similarly, all payloads that are passed into the input port of a corresponding
VsTcpClient module on the client side of the TCP connection come out of the output
port of this module.

VsTcpServer modules are not created with creation commands. Instead, the VsTc-
pListener module (page 158) creates a VsTcpServer module whenever it receives a con-

nection request.

152

A.12 Other Primitive Modules

Other modules are modules with more than one input port or more than one output port.

A.12.1 The VsBlockShift Module

The VsBlockShift module performs a time-based block-shift effect on video frames. All
other payloads are passed transparently. It is based on the VsEffect module.

The VsBlockShift module indicates completion of the effect by calling its callback.
The callback command string is evaluated with the following keyword parameter ap-
pended:

-done (Boolean) The effect has completed.

The direction VsBlockShift Subcommand

<vsBlockShift> direction [<direction>] ==> <direction>

The direction VsBlockShift subcommand provides access to the direction parameter
for a VsBlockShift module. It takes:

direction (corners or center) A new direction.

It returns:

direction (corners or center) The current direction.

A.12.2 The VsDeMux Module

The VsDeMux module performs communications-like payload demultiplexing. It is based
on the VsEntity module. It has one input port, named input; and any number of
output ports, each named outputN (for N from 0 to numOutputPorts - 1). Payload
sequences that have been multiplexed by VsMux (page 156) or VsOrderedMux (page
157) are demultiplexed with VsDeMux. Multiplexing is performed by saving the input
port number in the channel payload descriptor member of each payload.

The num0utputPorts VsDeMux Subcommand

<vsDeMux> num0utputPorts [<num0utputPorts>]
==> <numOutputPorts>

The numOutputPorts VsDeMux subcommand provides access to the numOutputPorts
parameter for a VsDeMux module, which specifies the number of output ports the module
should have. It takes:

numOutputPorts (Integer) A new number of output ports.

It returns:

numOutputPorts (Integer) The current number of output ports.

153

A.12.3 The VsDup Module

The VsDup module duplicates payload sequences. It is based on the VsEntity module. It
has one input port, named input; and any number of output ports, each named outputN
(for N from 0 to numOutputPorts - 1). Payload sequences are duplicated by making
shallow copies (page 55) that are distributed to each output port. A new payload is not
accepted from an upstream module until all copies of an old payload have been accepted
by all downstream modules.

The numOutputPorts VsDup Subcommand

<vsDup> num0utputPorts [<numOutputPorts>]
==> <numOutputPorts>

The num0utputPorts VsDup subcommand provides access to the numOutputPorts pa-
rameter for a VsDup module, which specifies the number of output ports the module
should have. It takes:

numOutputPorts (Integer) A new number of output ports.

It returns:

numOutputPorts (Integer) The current number of output ports.

A.12.4 The VsEffect Module

The VsEffect module is the base module for modules that perform visual effects by gen-
erating a single output video sequence from two input video sequences. It is based on
the VsEntity module. It has two input ports, named input0 and inputi, and one out-
put port, named output. Modules based on the VsEffect module include VsBlockShift,
VsFade, and VsWipe.

The value VsEffect Subcommand

<vsEffect> value [<value>]
==> <value>

The value VsEffect subcommand provides access to the value parameter for a VsEffect
module, which ranges from 0 to 128. The value parameter corresponds to the lever on
an effects generator box. It takes:

value (Integer) A new value.

It returns:

value (Integer) The current value.

The duration VsEffect Subcommand

<vsEffect> duration [<duration>]
==> <duration>

The duration VsEffect subcommand provides access to the duration parameter for a
VsEffect module, which specifies the number of seconds an effect should take. It takes:

duration (Integer) A new duration.

It returns:

duration (Integer) The current duration.

154

The startValue VsEffect Subcommand

<vsEffect> startValue [<startValue>]
==> <startValue>

The startValue VsEffect subcommand provides access to the startValue parameter for
a VsEffect module, which ranges from 0 to 128. It takes:

startValue (Integer) A new startValue.

It returns:

startValue (Integer) The current startValue.

The endValue VsEffect Subcommand

<vsEffect> endValue [<endValue>]
==> <endValue>

The endValue VsEffect subcommand provides access to the endValue parameter for a
VsEffect module, which ranges from 0 to 128. It takes:

endValue (Integer) A new endValue.

It returns:

endValue (Integer) The current endValue.

A.12.5 The VsFade Module

The VsFade module performs a time-based fade effect on video frames. All other payloads
are passed transparently. It is based on the VsEffect module.

The VsFade module indicates completion of the effect by calling its callback. The
callback command string is evaluated with the following keyword parameter appended:

-done (Boolean) The effect has completed.

A.12.6 The VsMerge Module

The VsMerge module merges two payload sequences into one. It works like the VsOr-
deredMerge module (page 156), except that it does not ensure that the payload times-
tamps in the output sequence are always increasing. It has any number of input ports,
each named inputN (for N from 0 to numlnputPorts - 1); and one output port, named
output. It is based on the VsEntity module.

The numInputPorts VsMerge Subcommand

<vsMerge> numInputPorts [<numIlnputPorts>]
==> <numlnputPorts>

The numInputPorts VsMerge subcommand provides access to the numInputPorts pa-
rameter for a VsMerge module, which specifies the number of inputs ports the module
should have. It takes:

numInputPorts (Integer) A new number of input ports.

It returns:

numInputPorts (Integer) The current number of input ports.

155

A.12.7 The VsMux Module

The VsMux module multiplexes many payload sequences into one. It is based on the
VsEntity module. It works like the VsOrderedMux module (page 157), except that it does
not ensure that the payload timestamps in the output sequence are always increasing. It
has any number of input ports, each named inputN (for N from 0 to numInputPorts -
1); and one output port, named output. Payload sequences that have been multiplexed
by VsMux can be demultiplexed with VsDeMux (page 153). Multiplexing is performed
by saving the input port number in the channel payload descriptor member of each
payload.

A VsMux or VsOrderedMux module with n input ports records which input port from
which payloads came, by updating the Channel payload descriptor so that channel mod
n returns which input port from which the payload came, and channel/n returns the
original Channel descriptor. A VsDeMux module with n output ports uses channel mod
n to select which output port to direct a payload, and replaces the Channel payload
descriptor component with channel/n.

Since Channel payload descriptor is an integer of limited size, there is some limit to
the depth of multiplexing that can be supported by the VuSystem. Being a 32-bit integer,
the channel payload descriptor can store up to 232 possible encodings. This is enough to
support 2-port multiplexers nested up to a depth of 32, 3-port multiplexers nested up to
a depth of 20, 4-port multiplexers nested up to a depth of 16, etc. Since these are quite
deep nestings of multiplexers, a fixed Channel value of 32 bits should be adequate for all
multiplexer configurations in any forseeable VuSystem application.

The numInputPorts VsMux Subcommand
<vsMux> numInputPorts [<numInputPorts>1

==> <numInputPorts>

The numInputPorts VsMux subcommand provides access to the numlnputPorts param-
eter for a VsMux module, which specifies the number of input ports the module should
have. It takes:

numInputPorts (Integer) A new number of input ports.

It returns:

numInputPorts (Integer) The current number of input ports.

A.12.8 The VsOrderedMerge Module

The VsOrderedMerge module merges two payload sequences into one. It works like the
VsMerge module (page 155), except that it ensures that the payload timestamps in the
output sequence are always increasing. It has any number of input ports, each named
inputN (for N from 0 to numInputPorts - 1); and one output port, named output. It
is based on the VsEntity module.

The numInputPorts VsOrderedMerge Subcommand
<vsOrderedMerge> numInputPorts [<numInputPorts>]

==> <numInputPorts>

The numInputPorts VsOrderedMerge subcommand provides access to the numInput-
Ports parameter for a VsOrderedMerge module, which specifies the number of input
ports the module should have. It takes:

numInputPorts (Integer) A new number of input ports.

It returns:

numInputPorts (Integer) The current number of input ports.

156

A.12.9 The VsOrderedMux Module

The VsOrderedMux module multiplexes many payload sequences into one. It is based on
the VsEntity module. It works like the VsMux module (page 156), except that it ensures
that the payload timestamps in the output sequence are always increasing. It has any
number of input ports, each named inputN (for N from 0 to numlnputPorts - 1);
and one output port, named output. Payload sequences that have been multiplexed
by VsOrderedMux can be demultiplexed with VsDeMux (page 153). Multiplexing is
performed by saving the input port number in the channel payload descriptor member
of each payload.

A VsMux or VsOrderedMux module with n input ports records which input port from
which payloads came, by updating the Channel payload descriptor so that channel mod
n returns which input port from which the payload came, and channel/n returns the
original Channel descriptor. A VsDeMux module with n output ports uses channel mod
n to select which output port to direct a payload, and replaces the Channel payload
descriptor component with channel/n.

Since Channel payload descriptor is an integer of limited size, there is some limit to
the depth of multiplexing that can be supported by the VuSystem. Being a 32-bit integer,
the channel payload descriptor can store up to 232 possible encodings. This is enough to
support 2-port multiplexers nested up to a depth of 32, 3-port multiplexers nested up to
a depth of 20, 4-port multiplexers nested up to a depth of 16, etc. Since these are quite
deep nestings of multiplexers, a fixed Channel value of 32 bits should be adequate for all
multiplexer configurations in any forseeable VuSystem application.

The numInputPorts VsOrderedMux Subcommand
<vsOrderedMux> numInputPorts [<numInputPorts>]
==> <numInputPorts>

The numInputPorts VsOrderedMux subcommand provides access to the numInputPorts
parameter for a VsOrderedMux module, which specifies the number of input ports the
module should have. It takes:

numInputPorts (Integer) A new number of input ports.

It returns:

numInputPorts (Integer) The current number of input ports.

A.12.10 The VsWipe Module

The VsWipe module performs a time-based wipe effect on video frames. All other pay-
loads are passed transparently. It is based on the VsEffect module.

The VsWipe module indicates completion of the effect by calling its callback. The
callback command string is evaluated with the following keyword parameter appended:

-done (Boolean) The effect has completed.

The orientation VsWipe Subcommand
<vsWipe> orientation [<orientation>]

==> <orientation>

The orientation VsWipe subcommand provides access to the orientation parameter for
a VsWipe module. It takes:

orientation (horizontal or vertical) A new orientation.

It returns:

orientation (horizontal or vertical) The current orientation.

157

The direction VsWipe Subcommand
<vsWipe> direction [<direction>]

==> <direction>

The direction VsWipe subcommand provides access to the direction parameter for a
VsWipe module. It takes:

direction (forward or backward) A new direction.

It returns:

direction (forward or backward) The current direction.

A.12.11 The VsTcpListener Module

The VsTcpListener module listens for new connection requests on a TCP port. When a
connection request is received, it creates a VsTcpServer module (page 152) and calls its
callback. It has no input or output ports. It is based on the VsEntity module.

The VsTcpListener module indicates through its callback that it has received a con-
nection request and that it has created a VsTcpServer module (page 152). The callback
command string is evaluated with the following keyword parameter appended:

-obj (Command Name) The object command for the VsTcpServer module.

The backlog VsTcpListener Subcommand
<vsTcpListener> backlog [<backlog>]
==> <backlog>

The backlog VsTcpListener subcommand provides access to the backlog parameter for
a VsTcpListener module. It takes:

backlog (Integer) A new backlog.

It returns:

backlog (Integer) The current backlog.

The port VsTcpListener Subcommand
<vsTcpListener> port [<port>]
==> <port>

The port VsTcpListener subcommand provides access to the port parameter for a VsTc-
pListener module. It takes:

port (Integer) A new port.

It returns:

port (Integer) The current port.

The Timeout VsTcpListener Subcommand
<vsTcpListener> timeout [<timeout>]
==> <timeout>

The Timeout VsTcpListener subcommand provides access to the timeout parameter for
a VsTcpListener module. It takes:

timeout (Integer) A new timeout.

It returns:

timeout (Integer) The current timeout.

158

Appendix B

Tcl Support Provided By The
VuSystem

B.1 Vs Subcommands

The appInitialize Vs Subcommand
vs appInitialize <appContext> <name>

The appInitialize Vs subcommand initializes the VuSystem. It creates a top-level
VsEntity object command and installs all the VsTclClass commands so that they may
be used. It takes:

appContext (Command Name) A name of an appContext object com-
mand, created by the xt appInitialize (page 203) command or the
xt createApplicationContext (page 203) command.

name (String) A name to use for the top-level object command to be created.

B.2 VsTclObj Subcommands

The alias VsTclObj Subcommand
<vsTclObj> alias <name>

The alias VsTclObj subcommand creates addtional object commands or aliases for an
object. It takes:

name (String) A name to use for the object command to be created.

The class VsTclObj Subcommand
<vsTclObj> class [<name>]

==> <class>

The class VsTclObj subcommand provides access to the class object command for the
object. It takes:

name (String) A name to use for the VsTclClass object command to be
created, if it does not already exist.

It returns:

class (Command Name) The name of the vsTclClass object comand for this
object's class.

159

The info commands VsTclObj Subcommand

<vsTclObj> info commands [<pattern>]
==> <commands>

The info commands VsTclObj subcommand returns a list of subcommands for the ob-
ject. It takes:

pattern (String) A regular expression.

It returns:

commands (List) The list of command names that match the pattern. If
no pattern is supplied, all command names are returned.

The conf igCallback VsTclObj Subcommand

<vsTclObj> configCallback [<command>]
==> <command>

The configCallback VsTclObj subcommand provides access to a command string that
is executed whenever a change to the configuration of the object is made. Configuration
changes include the creation or deletion of a child, connection or disconnection of a port,
or any configuration change to a child. It takes:

command (Command String) A command string to be evaluated at config-
uration time.

It returns:

command (Command Siring) The configCallback command string.

The destroy VsTclObj Subcommand

<vsTclObj> destroy

The destroy VsTclObj subcommand destroys an object and deletes all object commands
for the object. It also evaluates the destroyCallback (page 160) just before the object
is destroyed.

The destroyCallback VsTclObj Subcommand

<vsTcl0bj> destroyCallback [<command>]
==> <command>

The destroyCallback VsTclObj subcommand provides access to the command string
that is evaluated just before the object is destroyed. It takes:

command (Command String) A command string to be evaluated before de-
struction.

It returns:

command (Command Siring) The destroyCallback command string.

160

The name VsTclObj Subcommand

<vsTcl0Obj> name
==> <name>

The name VsTclObj subcommand provides the primary object command name for the
object. It returns:

name (Command Name) The primary object command name for this object.

The names VsTclObj Subcommand

<vsTclObj> names
==> <names>

The names VsTclObj subcommand provides access to the object command names for the
object. It returns:

names (List) All object command names for this object.

The options VsTclObj Subcommand

<vsTclObj> info options [<pattern>]
==> <options>

The info options VsTclObj subcommand provides the option subcommand names for
the object. It takes:

pattern (String) A regular expression.

It returns:

options (List) The list of option command names that match the pattern.
If no pattern is supplied, all option command names are returned.

The proc VsTclObj Subcommand

<vsTclObj> proc <name> <args> <body>

The proc VsTclObj subcommand defines a new subcommand for the object. It is similar
to the proc top-level command, except that the procedure is defined as a subcommand
to the object, instead of as a top-level command. It takes:

name (String) A name for the proc.

args (List) A list of formal parameters to the proc.

args (List) A body for the proc. During evaluation of the procedure body, an
additional local variable named self exists, whose value is the primary
object command name of the object. In addition, any instance variables
defined with the set (page 162) subcommands exist as local variables.

The info procs VsTclObj Subcommand

<vsTclObj> info procs [<pattern>]
==> <procs>

The info procs VsTclObj subcommand provides the procedure subcommand names for
the object. It takes:

pattern (String) A regular expression.

It returns:

procs (List) The list of proc names that match the pattern. If no pattern is
supplied, all proc names are returned.

The rename VsTclObj Subcommand

<vsTclObj> rename <from> <to>

The rename VsTclObj subcommand renames subcommands for the object. It takes:

old (Command Name) An old subcommand name.

new (Command Name) A new subcommand name.

The set VsTclObj Subcommand

<vsTclObj> set <name> [<value>]
==> <value>

The set VsTclObj subcommand provides access to instance variables for the object.
These instance variables are also accessable to procedures defined with the proc (page
161) subcommand as local variables. It takes:

name (String) A name for an instance variable.

value (String) A value for the instance variable.

It returns:

value (String) The value of the instance variable.

The info vars VsTclObj Subcommand

<vsTclObj> info vars [<pattern>]
==> <vars>

The info vars VsTclObj subcommand provides the names of instance variables for the
object. It takes:

pattern (String) A regular expression.

It returns:

vars (List) The list of variable names that match the pattern. If no pattern
is supplied, all variable names are returned.

162

B.3 VsTclClass Subcommands

The addInstance VsTclClass Subcommand

<vsTclClass> addInstance <name>

The addInstance VsTclClass subcommand adds an object to its list of instances. It
takes:

name (Command Name) A name of an instance of this class.

The classCommands VsTclClass Subcommand

<vsTclClass> classCommands [<pattern>]
==> <classCommands>

The classCommands VsTclClass subcommand provides the names of subcommands de-
fined for all instances of the class. It takes:

pattern (String) A regular expression.

It returns:

classCommands (List) The list of class command names that match the
pattern. If no pattern is supplied, all class command names are returned.

The class0ptions VsTclClass Subcommand

<vsTclClass> class0ptions [<pattern>]
==> <classOptions>

The classOptions VsTclClass subcommand provides the names of option subcommands
defined for all instances of the class. It takes:

pattern (String) A regular expression.

It returns:

classOptions (List) The list of class option command names that match the
pattern. If no pattern is supplied, all class option command names are
returned.

The classProc VsTclClass Subcommand

<vsTclClass> classProc <name> <args> <body>

The classProc VsTclClass subcommand defines a new subcommand for all instances
of the class. It is similar to the proc top-level command, except that the procedure is
defined as a subcommand to the instances, instead of as a top-level command. It is very
similar to the proc (page 161) VsTclObj command, except that the procedure is defined
for all instances of the class. It takes:

name (String) A name for the proc.

args (List) A list of formal parameters to the proc.
args (List) A body for the proc. During evaluation of the procedure body,

an additional local variable named self exists, whose value is the pri-
mary object command name of the instance. In addition, any instance
variables defined with the set (page 162) subcommands exist as local
variables.

163

The classProcs VsTclClass Subcommand

<vsTclClass> classProcs [<pattern>]
==> <classProcs>

The classProcs VsTclClass subcommand provides the names of procedure commands
for all instances of the class. It takes:

pattern (String) A regular expression.

It returns:

classProcs (List) The list of class proc names that match the pattern. If no
pattern is supplied, all class proc names are returned.

The create VsTclClass Subcommand

<vsTclClass> create <name> [<keyword> <value>] ...

The create VsTclClass subcommand creates an instance of the class. It takes:

name (String) A name for the instance to be created.

keyword (String) A name of an option command the instance provides.

value (String) A value for the option command.

The instances VsTclClass Subcommand

<vsTclClass> instances [<pattern>]
==> <instances>

The instances VsTclClass subcommand returns the object command names of instances
of the class. It takes:

pattern (String) A regular expression.

It returns:

instances (List) The list of instance names that match the pattern. If no
pattern is supplied, all instance names are returned.

The removeInstance VsTclClass Subcommand

<vsTclClass> removeInstance <name>

The removeInstance VsTclClass subcommand removes an object from its list of in-
stances. It takes:

name (Command Name) A name of an instance of this class.

164

The superClass VsTclClass Subcommand

<vsTclClass> superClass [<parent>]
==> <parent>

The superClass VsTclClass subcommand provides access to the superclass of the class.
It takes:

parent (Command Name) A VsTclClass name to set the superclass to this
class.

It returns:

parent (Command Name) The name of the superclass to this class.

B.4 VsEntity Subcommands

The callback VsEntity Subcommand

<vsEntity> callback [<command>]
==> <command>

The callback VsEntity subcommand provides access to the callback command string
for the object. It takes:

command (Command String) A command string to be evaluated at event
times.

It returns:

command (Command String) The callback command string.

The children VsEntity Subcommand

<vsEntity> children
==> <children>

The children VsEntity subcommand provides the object command names of all the
children of this object. It returns:

children (List) The children of this module.

The inputs VsEntity Subcommand

<vsEntity> inputs
==> <inputs>

The inputs VsEntity subcommand provides the object command names for all input
ports of the object. It returns:

inputs (List) The input ports of this module.

165

The outputs VsEntity Subcommand

<vsEntity> outputs
==> <outputs>

The outputs VsEntity subcommand provides the object command names for all the
output ports of the object. It returns:

outputs (List) The output ports of this module.

The start VsEntity Subcommand

<vsEntity> start [<mode>]

The start VsEntity subcommand starts the object. It causes the Start (page 177)
member functions for this object and all its children to be called, which start in-band
processing. It takes:

mode (Boolean) 1 to cause source modules to send VsStart payloads, 0
otherwise.

The stop VsEntity Subcommand

<vsEntity> stop [<mode>]

The stop VsEntity subcommand stops the object. It causes the Stop (page 178) member
functions for this object and all its children to be called, which stop in-band processing.
It takes:

mode (Boolean) 1 to cause modules to wait for VsFinish payloads before
shutting down, 0 to shut down immediately.

The xPosition VsEntity Subcommand

<vsEntity> xPosition [<xPosition>]
==> <xPosition>

The xPosition VsEntity subcommand provides access to the objects x position. It is
used by a grapical programming system under development. It takes:

xPosition (Integer) A new x position.

It returns:

xPosition (Integer) The x position.

The yPosition VsEntity Subcommand

<vsEntity> yPosition [<yPosition>]
==> <yPosition>

The yPosition VsEntity subcommand provides access to the objects y position. It is
used by a graphical programming system under development. It takes:

xPosition (Integer) A new x position.

It returns:

xPosition (Integer) The x position.

166

B.5 VsInputPort Subcommands

The bind VsInputPort Subcommand

<vsInputPort> bind [<outputPort>]
==> <outputPort>

The bind VsInputPort subcommand associates an output port with the input port. It
takes:

outputPort (Command Name) An output port to bind.

It returns:

outputPort (Command Name) The output port currently bound.

The unbind VsInputPort Subcommand

<vsInputPort> unbind <outputPort>

The unbind VsInputPort subcommand disassociates an output port with the input port.
It takes:

outputPort (Command Name) An output port to unbind.

B.6 VsOutputPort Subcommands

The connect VsOutputPort Subcommand

<vs0utputPort> connect [<inputPort>]
==> <inputPort>

The connect VsOutputPort subcommand associates an input port with the output port.
It takes:

inputPort (Command Name) An input port to connect.

It returns:

inputPort (Command Name) The input port currently connected.

The disconnect VsOutputPort Subcommand

<vsOutputPort> disconnect <inputPort>

The disconnect VsOutputPort subcommand disassociates an input port with the output
port. It takes:

inputPort (Command Name) An input port to disconnect.

B.7 Utility Commands

The following are some useful commands that are not part of standard Tcl distribution,
but are useful to VuSystem application scripts.

167

The date Command

date [<format>]
==> <date>

Use the date command to get the current date and time in a formatted string. It uses
the strftime POSIX procedure. It takes:

format (String) The format control string. Characters are copied from this
string to the result, with substitutions occuring whenever the % charac-
ter is encountered. The character following the % character is used to
specify the substitution. See the strftime POSIX procedure description
for the meanings of the substitution characters. The default value of the
format argument is "%c".

It returns:

date (String) The current date and time formatted as specified.

The sleep Command

sleep <seconds>

Use the sleep command to sleep for a certain amount of time. It takes:

seconds (Float) A
sleep.

floating point value indicating the number of seconds to

The true Command

true
==> 1

The true command always returns 1. Use it instead of 1 where a boolean value is
necessary, to enhance readability of a script.

The false Command

false
==> 0

The false command always returns 0. Use it instead of 0 where a boolean value is
necessary, to enhance readability of a script.

B.8 Commands To Support The Manipulation Of
Keyword Argument Lists

Many VuSystem scripts use keyword argument lists to pass parameters around. The
keyarg (page 169), keyargs (page 169), and apply (page 170) commands are useful to
these scripts.

168

The keyarg Command

keyarg <keyword> <args> [<default>] [<required>]
==> <value>

Use the keyarg command extract the value of a keyword-specified argument from a list
of alternating keywords and values. It compares every other element of a list with a
specified keyword, and if the keyword matches, it returns the next element in the list. It
takes:

keyword (String) The keyword to match in the argument list.

args (List) The argument list to search.

default (String) The value to return if the keyword could not be found in
the list.

required (String) If this argument is the word required, an error is signaled
if the keyword could not be found in the list.

It returns:

value After comparing every other element of args with keyword, if a match
was found, then the next element in the list. Otherwise default.

The keyargs Command

keyargs <keywords> <args> [<exclude>]
==> <args>

Use the keyargs command to create new argument lists from existing argument lists. It
extracts keyword value pairs from a list of alternating keywords and values. It compares
every other element of a list with a specified keyword, and if the keyword matches, it
returns the next element in the list. It takes:

keywords (List) A list of keywords specifying which values to extract from
the argument list. Members of the keywords list can either be keywords,
or pairs of keywords:

* If a member of the keyword list is a single keyword, then it is used as
a search key for the supplied argument list, and also as a specification
keyword in the result argument list.

* If a member of the keyword list is a pair of keywords, then the first
keyword is used as the search key for the supplied argument list,
and the second keyword is used as the specification keyword in the
result argument list.

args (List) The argument list to search.

exclude (String) If this argument is the word exclude, then the result list is
a list of keyword value pairs whose keywords do not match any keyword
in the keywords list. This is useful for building argument lists with
certain arguments removed from them.

It returns:

args (List) The new keyword argument list.

169

The apply Command

apply [<command> [<arg>...]] <args>
==> <result>

Use the apply command to invoke a command for which you have some of the argument
list in list form. It is especially handy if a keyword argument list is being supplied to a
command. It takes:

command (Command Name) The name of the command to invoke. If it
is not supplied, then the first value in the args list is taken to be the
command. Members of the keywords list can either be keywords, or
pairs of keywords:

arg (String) Any number of arguments to the command.

args (List) The rest of the arguments to the command. Effectively, this list is
spread out over the command, instead of supplied as a single argument.

It returns:

result (String) The result of command invocation.

B.9 Commands To Support The Interactive Entry
Of Tcl Commands

Some applications might have a special window where Tcl Commands can be typed in
by the user. The assemble and assembleDestroy commands are useful to support this.

The assemble Command

assemble <bufName> <commandPiece>
==> <cmd>

Use the assemble command to incrementally assemble tcl commands before having them
evaluated. When a complete command has been assembled, it is returned. The assemble
is useful if you are implementing a graphical user interface that supports the typing of
commands. It takes:

bufName (Handle) The name of the command buffer in which to assem-
ble the command. This allows multiple independent commands to be
assembled simultaneously.

commandPiece (String) The string to be appended to the command buffer.

It returns:

cmd (Command String) The command string if a complete one has been
assembled, otherwise the empty string.

The assembleDestroy Command

assembleDestroy <bufName>

Use the assembleDestroy command to destroy an assemble buffer. It takes:

bufName (Handle) The name of the command buffer to destroy.

170

B.10 Commands To Support Debugging And Low-
Level Operations

Some VuSystem applications are used to manipulate low-level interfaces. For example,
the vuptest and vudtest VuSystem applications are used to test network device drivers.
The following are some commands useful to such applications.

The isbFirst Command

isbFirst
=> <lsbFirst>

Use the isbFirst command whenever your script needs to know the endianness of the
machine on which you are running. It returns:

lsbFirst (Boolean) 1 if the machine is a little-endian machine, and 0 if it is
a big-endian machine.

The debug Command

debug [<mode>]
==> <mode>

Use the debug command to set the debug mode. It always returns the value of the current
debug mode, and sets it if an argument is supplied. It takes:

mode (Integer) An integer value to set the debug mode. It is an integer value
that is used to enable the execution of debugging code throughout the
VuSystem shell. In a VuSystem shell that has been compiled for debug-
ging, certain bits in the debug mode turn on certain print statements.

It returns:

mode (Integer) The current value of the debug mode.

171

172

Appendix C

Support For Modules In The

VuSystem

C.1 Sending Data To A Downstream Module

The Send VsOutputPort Member Function

Boolean
Send(VsPayload* payload);

Use the Send VsOutputPort member function to send data through the port to a down-
stream module. It returns True if the downstream module accepted the payload. If it
returns False, you should try again later, in an Idle (page 173) member function. It
takes:

payload The payload to be sent.

The Idle Member Function

virtual void
Idle(VsOutputPort* outputPort);

Implement an Idle member function if your module has any output ports and you are
not subclassing VsFilter (page 182). It is called whenever any downstream module
may be ready for more data. It should use the Send (page 173) VsOutputPort member
function to send any payloads that can be sent. An Idle member function returns no
values and takes:

outputPort The outputPort which may be ready for more data.

C.2 Receiving Data From An Upstream Module

The Idle VsInputPort Member Function

void
Idle();

Use the Idle VsInputPort member function to indicate when your module is ready for
more data. Additional data will arrive though the Receive (page 174) member function.
The Idle VsInputPort member function returns no values and takes no arguments.

173

The Receive Member Function

virtual Boolean
Receive(VsInputPort* inputPort, VsPayload* payload);

Implement a Receive member function if your module has any input ports and you are
not subclassing VsFilter (page 182). It is called whenever any upstream module has
data to be sent. It should return True if the payload is accepted, and False if the module
is not ready for the payload and you want the upstream module to try again later. Some
time after returning False, your module should use the Idle (page 173) VsInputPort
member function to indicate that the module is ready for more data. A Receive member
function takes:

inputPort The inputPort from which the data is being sent.

payload The data.

C.3 Scheduling Computation Operations

The Work Member Function

virtual Boolean
Work();

Implement a Work member function if your module is to do any substantial computation.
Once started with the StartWork (page 174) member function, it is called regularly until

it either returns True or it is stopped with the StopWork (page 174) member function.

A Work member function takes no arguments.

The StartWork Member Function

VsWorkId
StartWork();

Use the StartWork member function to indicate that you want the Work (page 174)

member function to be called. The StartWork member function takes no values and

returns a work identifier that should be saved to be used in any subsequent calls to the

StopWork (page 174) member function.

The StopWork Member Function

void
StopWork(VsWorkId workId);

Use the StopWork member function to stop calls to the Work (page 174) member function.

The StopWork member function returns no values and takes:

workId The work identifier returned from the StartWork (page 174) member

function.

174

C.4 Scheduling Time-Dependent Operations

The Timeout Member Function

virtual void
timeout(VsIntervalId intervalId);

Implement a Timeout member function if your module has any operations that should be
performed at a particular time. It is called at a time indicated through the StartTimeout
(page 175) member function. It returns no values and takes:

intervalld The interval identifier returned from the StartTimeout (page
175) member function.

The StartTimeout Member Function

VsIntervalId
StartTimeout(const VsTimeval& time);

Use the StartTimeout member function to indicate that you want the Timeout (page 175)
member function to be called at a particular time. The StartTimeout member function
returns the interval identifier that should be saved to be used in any subsequent calls
to the StopTimeout (page 175) member function. The StartTimeout member function
takes:

time An absolute time when the Timeout member function should be called.

The StopTimeout Member Function

void
StopTimeout(VsIntervalId intervalId);

Use the StopTimeout member function to stop a call to the timeout (page 175) member
function. The StopTimeout returns no values and takes:

intervalld The interval identifier returned from the StartTimeout member
function.

VsTimeval Values

class VsTimeval : public timeval {

public:
VsTimeval();
VsTimeval(long usec);
VsTimeval(long sec, long usec);
VsTimeval operator+(const VsTimeval&) const;
VsTimeval operator-(const VsTimeval&) const;
VsTimeval operator*(double) const;
VsTimeval& operator+=(const VsTimeval&);
VsTimeval& operator-=(const VsTimeval&);
VsTimeval& operator*=(double);
int operator==(const VsTimeval&) const;
int operator!=(const VsTimeval&) const;
int operator>=(const VsTimeval&) const;
int operator<=(const VsTimeval&) const;
int operator>(const VsTimeval&) const;
int operator<(const VsTimeval&) const;
long Milliseconds() const;
long Microseconds() const;
static int Get(TclInterp*, char*, VsTimeval*);
int Return(Tcl_Interp*) const;
static VsTimeval Now();

175

VsTimeval values are used to represent absolute time values with microsecond precision.
The StartTimeout (page 175) member function takes a VsTimeval value to designate
when the Timeout (page 175) member function should be called.

VsTimeval member functions provide facilities for adding to, subtracting from, scal-
ing, and comparing VsTimeval values. Of particular interest is the Now VsTimeval static
member function, which returns a VsTimeval value corresponding to the current time.

C.5 Scheduling File Input Operations.

The Input Member Function

virtual void
Input(int fileDescriptor, VsInputId inputId);

Implement an Input member function if your module performs input operations on files.

It is called whenever a file indicated with the StartInput (page 176) member function
is ready for input. An Input member function returns no values and takes:

fileDescriptor The Unix file descriptor for the file.

inputId The input identifier returned from the StartInput (page 176) mem-
ber function.

The StartInput Member Function

VsInputId
StartInput(int fileDescriptor);

Use the StartInput member function to indicate that you want the Input (page

176) member function to be called whenever a particular file is ready for input. The

StartInput member function returns an input identifier that should be saved to be used

in any subsequent calls to the StopInput (page 176) member function. The StartInput

member function takes:

fileDescriptor The Unix file descriptor for the file.

The StopInput Member Function

void
StopInput(VsInputId inputId);

Use the StopInput member function to stop calls to the Input (page 176) member

function. The StopInput member function returns no values and takes:

inputId The input identifier returned from the StartInput (page 176) mem-
ber function.

176

C.6 Scheduling File Output Operations.

The Output Member Function

virtual void
Output (int fileDescriptor, VsOutputId outputId);

Implement an Output member function if your module performs output operations on
files. It is called whenever a file indicated with the StartOutput (page 177) member
function is ready for output. An Output member function returns no values and takes:

fileDescriptor The Unix file descriptor for the file.

outputId The output identifier returned from the StartOutput (page 177)
member function.

The StartOutput Member Function

VsOutputId
StartOutput(int fileDescriptor);

Use the StartOutput member function to indicate that you want the Output (page
177) member function to be called whenever a particular file is ready for output. The
StartOutput member function returns an output identifier that should be saved to be
used in any subsequent calls to the StopOutput (page 177) member function. The
StartOutput member function takes:

fileDescriptor The Unix file descriptor for the file.

The StopOutput Member Function

void
StopOutput(VsOutputId outputId);

Use the StopOutput member function to stop calls to the Output (page 177) member
function. The StopOutput member function returns no values and takes:

outputId The output identifier returned from the StartOutput (page 177)
member function.

C.7 Starting and Stopping

The Start Member Function

virtual void
Start (Boolean mode);

Implement a Start member function if your module needs to perform any operations
at the beginning of in-band processing. This would include any initial calls to the
StartInput (page 176) and StartTimeout (page 175) member functions. A Start mem-
ber function returns no values and takes:

mode The start mode. If False, then source modules should send a VsStart
(page 197) payload to mark a synchronous starting point in the data
stream after starting.

177

The Stop Member Function

virtual void
Stop(Boolean mode);

Implement a Stop member function if your module needs to perform any operations at
the end of in-band processing. This includes any final calls to the StopWork (page 174),
StopTimeout (page 175), StopInput (page 176), and StopOutput (page 177) member
functions. A Stop member function returns no values and takes:

mode The stop mode. If False, then source modules should send a VsFinish
(page 194) payload to mark a synchronous stopping point in the data
stream before stopping, and all other modules should prepare to stop
when they receive a Finish payload. If True then all modules should
stop immediately.

C.8 Adding Tcl Subcommands

The CreateCommand Member Function

void
CreateCommand(char* commandName,

Tcl_CmdProc* commandProc,
ClientData clientData,
Tcl_CmdDeleteProc* deleteProc,
char* documentation = ""
CommandType type = VSCOMMAND);

Use the CreateCommand member function in the constructor function for your module

class to register subcommand procedures. The CreateCommand member function returns
no values and takes:

commandName The name of the subcommand.

commandProc The friend procedure that implements the subcommand.

clientData A pointer to the module ("this").

deleteProc A procedure to be called when the subcommand is deleted.

documentation A short documentation string describing the subcommand.

type One of VSCOMMAND or VSOPTIONCOMMAND.

The CreateOptionCommand Member Function

void
CreateOptionCommand(char* commandName,

Tcl_CmdProc* commandProc,
ClientData clientData = 0,
Tcl_CmdDeleteProc* deleteProc = 0,
char* documentation = "");

Use the CreateOptionCommand member function in the constructor function for your

module class to register option subcommand procedures. The CreateOptionCommand
member function returns no values and takes:

commandName The name of the subcommand.

commandProc The friend procedure that implements the subcommand.

clientData A pointer to the module ("this").

deleteProc A procedure to be called when the subcommand is deleted.

documentation A short documentation string describing the subcommand.

178

C.9 Calling Tcl Callbacks

The EvalCallback Member Function

void
EvalCallback(char* args);

Use the EvalCallback member function in modules to call Tcl callbacks, supplying a
parameter string describing what event has occurred. The parameter string can be used
to provide event-specific parameters, or to indicate which event has occurred if more
than one type of event may be signalled. The EvalCallback member function returns
no values and takes:

args A character string to be appended to the command provided by the
application programmer before the whole string is evaluated.

C.10 Initialization

The classSymbol Static Variable

VsSymbol* YourClass: :classSymbol;

Implement a classSymbol static variable to provide a place for storing a class name.
Examples:

VsSymbol* VsVidboardSource::classSymbol;

VsSymbol* VsPuzzle: :classSymbol;

The ObjPtr Member Function

virtual void*
ObjPtr(const VsSymbol* cl);

Implement an ObjPtr member function to provide a facility for checking whether an
instance of your class is an instance of a specified class. An ObjPtr member function
returns a pointer to an instance and takes:

cl The class symbol representing the class for which a pointer is requested.

Examples:

void*
VsVidboardSource::ObjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsEntity::ObjPtr(cl);
}

void*
VsPuzzle::ObjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsFilter::ObjPtr(cl);
}

179

The DerivePtr Static Member Function

static YourClass*
DerivePtr(VsObj* o);

Implement a DerivePtr static member function to provide a facility for converting from
a pointer to a VsObj instance to a pointer to an instance of your class. It is typically
defined as a inline member function, since it is so short. A DerivePtr member function
returns a pointer to an instance of the class and takes:

o A pointer to a VsObj instance.

Examples:

inline VsVidboardSource*
VsVidboardSource::DerivePtr(VsObj* o) {
return (VsVidboardSource*)o->ObjPtr(classSymbol);

}

inline VsPuzzle*
VsPuzzle::DerivePtr(VsObj* o) {
return (VsPuzzle*)o->ObjPtr(classSymbol);

}

The Get Static Member Function

static int
Get(TclInterp* in, char* run, YourClass** pp);

Implement a Get static member function to provide a facility for converting from a Tcl
command name, to a pointer to an instance of your class. It is typically defined as an
inline member function, since it is so short. A Get member function returns a Tcl status
and takes:

in The pointer to the Tcl interpreter.

nm The pointer to the Tcl command name.

pp The pointer to the location to store the instance pointer.

Examples:

inline int
VsVidboardSource::Get(Tcl_Interp* in,char* nm,VsVidboardSource** pp) {
return VsTclObj: :Get(in,nm, classSymbol, (void**)pp);

}

inline int
VsPuzzle::Get(TclInterp* in, char* nm, VsPuzzle** pp) {
return VsTclObj::Get(in, nm, classSymbol, (void**)pp);

}

The Creator Static Member Function

static VsEntity*
Creator(Tcl_Interp* in,VsEntity* pr,const char* nm);

Implement a Creator static member function to provide a facility for creating instances
of your class. A Creator member function returns a pointer to an instance of your class
and takes:

in The pointer to the Tcl interpreter.

pr The pointer to the parent module.

180

nm A pointer to the child name for this instance.

Examples:

VsEntity*
VsVidboardSource::Creator(Tcl_Interp* in,VsEntity* pr,const char* nm) {

return new VsVidboardSource(in,pr,nm);
}

VsEntity*
VsPuzzle::Creator(TclInterp* in,VsEntity* pr,const

return new VsPuzzle(in,pr,nm);
}

char* nm) {

The InitClass Static Member Function

static VsSymbol*
InitClass(TclInterp* interp,

VsEntityCreatorProc* creator,
char* name,
char* superClass);

Use the InitClass static member function to install your module. It returns a pointer
to a symbol which should be saved in a classSymbol (page 179) class
by the ObjPtr (page 179) and DerivePtr (page 180) member functions.
static member function takes:

variable for use
The InitClass

interp The Tcl interpreter.

creator A procedure that creates a new instance of the module.

name The name of the module class.

superClass The name of the superclass of the module class.

The InitInterp static member function

static void
InitInterp(Tcl_Interp* interp);

Implement an InitInterp static member function that installs your module by calling
the InitClass static member function. An InitInterp static member function returns
no values and takes:

interp The Tcl interpreter.

Examples:

void
VsVidboardSource: :InitInterp(Tcl_Interp* in) {
classSymbol = InitClass(in, Creator, "VsVidboardSource", "VsEntity");

}

void
VsPuzzle::InitInterp(Tcl_Interp* in) {

classSymbol = InitClass(in,Creator,"VsPuzzle","VsFilter");
}

C.11 Filter Modules

If the module you are designing has one input port and one output port, you are designing
a filter module. If your filter is simply computation-based, you should subclass the
VsFilter class, and implement a WorkRequiredP (page 182) member function and a
Work (page 182) member function. There is no need to implement an Idle (page 173) or
Receive (page 174) member function.

The WorkRequiredP Member Function

virtual Boolean
WorkRequiredP(VsPayload *p) {

Implement a WorkRequiredP member function to return True if the work function should
be called for this payload, and False if the payload should just be passed on without
processing. Example:

Boolean
VsPuzzle::WorkRequiredP(VsPayload *p) {

return solved == False && VsVideoFrame::DerivePtr(p) != 0;
}

The Work Member Function

virtual Boolean
Work();

Implement a Work member function to perform your filter computation. The input to
your computation is in the payload instance variable. Perform the computation and put
the result in the payload instance variable. Finally, call VsFilter: :Work() and return
its result. Example:

VsPuzzle::Work() {
VsVideoFrame* frame = VsVideoFrame::DerivePtr(payload);
if (!solved) {
VsXdrBlock newData(frame->Data().Fore());
/* scramble the image */
frame->Data() = newData;

}
return VsFilter::Work();

C.12 Signalling and Handling Errors

The VsPanic Procedure

void
VsPanic(const char* msg, ...);

Use the VsPanic procedure to report fatal errors to the user, supplying a string and up to

10 additional parameters suitable for printf. VsPanic aborts execution of the program
and takes:

msg A character string suitable for printf.

... Additional parameters suitable for printf.

Example:

if (mustBeZero != 0) VsPanic("/.s: I can not take it any longer.",
Name());

182

The VsError Procedure

void
VsError(const char* msg, ...);

Use the VsError procedure to queue error messages in VsErrRec structures for later
reporting to the user, supplying a string and up to 10 additional parameters suitable
for sprintf. VsError does not interrupt the flow of execution of the program. It only
reports errors. You still need to recover from the error condition. VsError returns no
values and takes:

msg A character string suitable for sprintf.

... Additional parameters suitable for sprintf.

Example:

if (x < 0.0) {
VsError("%s: The peasants are revolting", Name());
y = O;

} else y = sqrt(x);

The VsPushErrRec Procedure

void
VsPushErrRec(VsErrRec *erPtr);

Use the VsPushErrRec procedure to start a section of code where errors reported with
VsError are captured and reported to the user. VsPushErrRec clears a VsErrRec struc-
ture and pushes it on to a stack. VsPushErrRec returns no values and takes:

erPtr A pointer to a VsErrRec structure.

Example:

VsErrRec rec; VsPushErrRec(&rec);
src->Stop(False);
src->Start(False);
if (VsPopErrRec(&rec)) return VsErrRecToTclErr(in, &rec);

}

The VsPopErrRec Procedure

int
VsPopErrRec (VsErrRec *erPtr);

Use the VsPopErrRec procedure to end a section of code where errors reported with
VsError are captured and reported to the user. VsPopErrRec pops a VsErrRec structure
off a stack and checks whether any errors reported with VsError have been queued on
it. VsPopErrRec returns 1 if any errors have been queued, and 0 if not. It takes:

erPtr A pointer to a VsErrRec structure.

Example:

VsErrRec rec; VsPushErrRec(&rec);
src->Stop(False);
src->Start(False);
if (VsPopErrRec(&rec)) return VsErrRecToTclErr(in, &rec);

183

The VsErrRecToTclErr Procedure

int
VsErrRecToTclErr(Tcl_Interp *interp,

VsErrRec *erPtr);

Use the VsErrRecToTclErr procedure to convert any errors reported with VsError and
captured into a VsErrRec structure to a Tcl error message. VsErrRecToTclErr converts
error messages queued into a VsErrRec structure by VsError to Tcl error messages.
VsErrRecToTclErr returns TCL-ERROR if any error messages were converted, and TCL_OK
if not. It takes:

interp A pointer to the Tcl interpreter in which the errors should be sig-
nalled.

erPtr A pointer to a VsErrRec structure.

Example:

{
VsErrRec rec; VsPushErrRec(&rec);
src->Stop(False);
src->Start (False);
if (VsPopErrRec(&rec)) return VsErrRecToTclErr(in, trec);

}

The VsTclErrArgCnt Procedure

int
VsTclErrArgCnt (TclInterp *interp,

char *cmdname,
char *arglist);

Use the VsTclErrArgCnt procedure to report an incorrect number of parameters to a Tcl
command procedure. VsTclErrArgCnt sets the Tcl result string to

wrong # args: should be {CHDNAME ARGLIST}

where CMDNAME is specified by the cmdname parameter and ARGLIST by the arglist
parameter. It returns TCL-ERROR and takes:

interp A pointer to the Tcl interpreter in which the error should be signalled.

cmdname The name of the current Tcl command. This string is used in the
error message.

arglist A description of the formal parameters to the Tcl command. This
string is used in the error message.

Example:

int
SimpleFileSourceSourcePathnameCmd(ClientData cd, Tcl_Interp* in, int argc,

char* argv[])
{
SimpleFileSource* src = (SimpleFileSource*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[0], "?pathname?");

return VsReturnString(in, src->pathname, TCL_STATIC);
}

184

The VsTclErrBadVal Procedure

int
VsTclErrBadVal(TclInterp *interp,

char *expected,
char *value);

Use the VsTclErrBadVal procedure to report a bad value for a parameter to a Tcl
command procedure. VsTclErrBadVal sets the result Tcl result string to

expected EXPECTED but got VALUE

where EXPECTED is specified by the expected parameter and VALUE by the value param-
eter. It returns TCLERROR and takes:

interp A pointer to the Tcl interpreter in which the error should be signalled.

expected A description of what was expected. This string is used in the
error message.

value The actual parameter value. This string is used in the error message.

Example:

int
VsPuzzlePositionCmd(ClientData cd,TclInterp* in,int argc, char* argv []) {

if (argc == 2) {
int x, y;
if (VsGetIntPair(in, argv[11], &x, &y) != TCL_0OK) return TCLERROR;
if (x >= p->dim I1 x < 0)
return VsTclErrBadVal(in, "x position within range", argv[1]);

if (y >= p->dim II y < 0)
return VsTclErrBadVal(in, "y position within range", argv[2]);

if (x-p->x != 1 && x-p->x != -i && y-p->y != 1 && y-p->y != -1)
return VsTclErrBadVal(in, "x or y adjacent", "none");

if (x-p->x != 0 && y-p->y != 0)
return VsTclErrBadVal(in, "x or y adjacent", "both");

C.13 Tcl Command Input Parameter Parsing
The VsGetBoolean Procedure

int
VsGetBoolean(Tcl_Interp *interp,

String val,
Boolean *ptr);

Use the VsGetBoolean procedure to convert an input parameter to a Boolean. If the
input parameter conversion was successful, VsGetBoolean stores the data where ptr
points and returns TCLJJK. If an error occurred during conversion, VsGetBoolean stores
nothing where ptr points and returns TCLERROR. The VsGetBoolean procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

185

The VsGetChar Procedure

int
VsGetChar(Tcl_Interp *interp,

String val,
char *ptr);

Use the VsGetChar procedure to convert an input parameter to a char. If the input
parameter conversion was successful, VsGetChar stores the data where ptr points and
returns TCLOK. If an error occurred during conversion, VsGetChar stores nothing where
ptr points and returns TCLERROR. The VsGetChar procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetFloat Procedure

int
VsGetFloat(TcljInterp *interp,

String val,
float *ptr);

Use the VsGetFloat procedure to convert an input parameter to a float. If the input
parameter conversion was successful, VsGetFloat stores the data where ptr points and
returns TCLOK. If an error occurred during conversion, VsGetFloat stores nothing where
ptr points and returns TCLERROR. The VsGetFloat procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetFloatPair Procedure

int
VsGetFloatPair(TclInterp *interp,

String val,
float *xptr,
float *yptr);

Use the VsGetFloatPair procedure to convert an input parameter to a float pair.
If the input parameter conversion was successful, VsGetFloatPair stores the data
where xptr and yptr point and returns TCLOK. If an error occurred during conversion,
VsGetFloatPair stores nothing where xptr and yptr point and returns TCLERROR. The
VsGetFloatPair procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

xptr A pointer to where the first result of the pair should go.

yptr A pointer to where the second result of the pair should go.

The VsGetDouble Procedure

int
VsGetDouble(TclInterp *interp,

String val,
double *ptr);

Use the VsGetDouble procedure to convert an input parameter to a double. If the input
parameter conversion was successful, VsGetDouble stores the data where ptr points and
returns TCL.DK. If an error occurred during conversion, VsGetDouble stores nothing where
ptr points and returns TCL-ERROR. The VsGetDouble procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetInt Procedure

int
VsGetInt (TclInterp .interp,

String val,
int *ptr);

Use the VsGetInt procedure to convert an input parameter to an int. If the input
parameter conversion was successful, VsGetInt stores the data where ptr points and
returns TCLDOK. If an error occurred during conversion, VsGetInt stores nothing where
ptr points and returns TCL.ERROR. The VsGetInt procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetIntPair Procedure

int
VsGetIntPair(Tcl_Interp *interp,

String val,
int *xptr,
int *yptr);

Use the VsGetIntPair procedure to convert an input parameter to an int pair. If the
input parameter conversion was successful, VsGetIntPair stores the data where xptr and
yptr point and returns TCLIOK. If an error occurred during conversion, VsGetIntPair
stores nothing where xptr and yptr point and returns TCLERROR. The VsGetIntPair
procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

xptr A pointer to where the first result of the pair should go.

yptr A pointer to where the second result of the pair should go.

187

The VsGetIntList Procedure

int
VsGetIntList(Tcl_Interp *interp,

String val,
int *cptr,
int **lptr);

Use the VsGetIntList procedure to convert an input parameter to an int list. If the
input parameter conversion was successful, VsGetIntList stores the list length where
cptr points and the list data where lptr points and returns TCLOK. If an error occurred
during conversion, VsGetIntList stores nothing where cptr and lptr point and returns
TCLERROR. The VsGetIntList procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

cptr A pointer to where the result list length should go.

lptr A pointer to where the result list data should go.

The VsGetLong Procedure

int
VsGetLong(TclInterp *interp,

String val,
long *ptr);

Use the VsGetLong procedure to convert an input parameter to a long. If the input
parameter conversion was successful, VsGetLong stores the data where ptr points and
returns TCLOK. If an error occurred during conversion, VsGetLong stores nothing where
ptr points and returns TCLERROR. The VsGetLong procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetShort Procedure

int
VsGetShort(Tcl_Interp *interp,

String val,
short *ptr);

Use the VsGetShort procedure to convert an input parameter to a short. If the input
parameter conversion was successful, VsGetShort stores the data where ptr points and
returns TCLAOK. If an error occurred during conversion, VsGetShort stores nothing where
ptr points and returns TCL-ERROR. The VsGetShort procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

188

The VsGetShortPair Procedure

int
VsGetShortPair(Tcl_Interp *interp,

String val,
short *xptr,
short *yptr);

Use the VsGetShortPair procedure to convert an input parameter to a short pair.
If the input parameter conversion was successful, VsGetShortPair stores the data
where xptr and yptr point and returns TCL0-K. If an error occurred during conversion,
VsGetShortPair stores nothing where xptr and yptr point and returns TCLERROR. The
VsGetShortPair procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

xptr A pointer to where the first result of the pair should go.

yptr A pointer to where the second result of the pair should go.

The VsGetString Procedure

int
VsGetString(TclInterp *interp,

String val,
String *ptr);

Use the VsGetString procedure to convert an input parameter to a String. If the input
parameter conversion was successful, VsGetString stores the data where ptr points and
returns TCLOK. If an error occurred during conversion, VsGetString stores nothing where
ptr points and returns TCLERROR. The VsGetString procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetUnsignedChar Procedure

int
VsGetUnsignedChar (Tcl_Interp *interp,

String val,
unsigned char *ptr);

Use the VsGetUnsignedChar procedure to convert an input parameter to an unsigned
char. If the input parameter conversion was successful, VsGetUnsignedChar stores
the data where ptr points and returns TCLDK. If an error occurred during conver-
sion, VsGetUnsignedChar stores nothing where ptr points and returns TCLERROR. The
VsGetUnsignedChar procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetUnsignedInt Procedure

int
VsGetUnsignedInt (TclInterp *interp,

String val,
unsigned int *ptr);

Use the VsGetUnsignedInt procedure to convert an input parameter to an unsigned
int. If the input parameter conversion was successful, VsGetUnsignedInt stores
the data where ptr points and returns TCLOK. If an error occurred during conver-
sion, VsGetUnsignedInt stores nothing where ptr points and returns TCL-ERROR. The
VsGetUnsignedInt procedure takes:

interp A pointer to the Tel interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetUnsignedLong Procedure

int
VsGetUnsignedLong (TclInterp *interp,

String val,
unsigned long *ptr);

Use the VsGetUnsignedLong procedure to convert an input parameter to an unsigned
long. If the input parameter conversion was successful, VsGetUnsignedLong stores
the data where ptr points and returns TCLIK. If an error occurred during conver-
sion, VsGetUnsignedLong stores nothing where ptr points and returns TCL-ERROR. The
VsGetUnsignedLong procedure takes:

interp A pointer to the Tcl interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

The VsGetUnsignedShort Procedure

int
VsGetUnsignedShort (Tcl_Interp *interp,

String val,
unsigned short *ptr);

Use the VsGetUnsignedShort procedure to convert an input parameter to an unsigned
short. If the input parameter conversion was successful, VsGetUnsignedShort stores
the data where ptr points and returns TCLOK. If an error occurred during conver-
sion, VsGetUnsignedShort stores nothing where ptr points and returns TCL-ERROR. The
VsGetUnsignedShort procedure takes:

interp A pointer to the Tel interpreter.

val A parameter string to be converted.

ptr A pointer to where the result should go.

190

C.14 Tcl Command Return Value Generation

The VsReturnBoolean Procedure

int
VsReturnBoolean(TclInterp *interp,

Boolean val);

Use the VsReturnBoolean procedure to convert a return value parameter from a Boolean.
It puts the string result in the result slot of the Tcl interpreter. The VsReturnBoolean
procedure returns TCLOK and takes:

interp A pointer to the Tcl interpreter.

val A value to be converted.

The VsReturnInt Procedure

int
VsReturnInt (Tcl_Interp *interp,

int val);

Use the VsReturnInt procedure to convert a return value parameter from an int. It puts
the string result in the result slot of the Tcl interpreter. The VsReturnInt procedure
returns TCLOK and takes:

interp A pointer to the Tcl interpreter.

val A value to be converted.

The VsReturnIntPair Procedure

int
VsReturnIntPair(TclInterp *interp,

int x,
int y);

Use the VsReturnIntPair procedure to convert a return value parameter from an
int pair. It puts the string result in the result slot of the Tcl interpreter. The
VsReturnIntPair procedure returns TCLOK and takes:

interp A pointer to the Tcl interpreter.

x A value to be converted to the first of the pair.

y A value to be converted to the second of the pair.

The VsReturnLong Procedure

int
VsReturnLong(TclInterp *interp,

long val);

Use the VsReturnLong procedure to convert a return value parameter from a long. It
puts the string result in the result slot of the Tcl interpreter. The VsReturnLong
procedure returns TCLDK and takes:

interp A pointer to the Tcl interpreter.

val A value to be converted.

191

The VsReturnLongPair Procedure

int
VsReturnLongPair (Tcl_Interp *interp,

long x,
long y);

Use the VsReturnLongPair procedure to convert a return value parameter from a
long pair. It puts the string result in the result slot of the Tel interpreter. The
VsReturnLongPair procedure returns TCLOK and takes:

interp A pointer to the Tcl interpreter.

x A value to be converted to the first of the pair.

y A value to be converted to the second of the pair.

The VsReturnFloat Procedure

int
VsReturnFloat (Tcl_Interp *interp,

float val);

Use the VsReturnFloat procedure to convert a return value parameter from a float.
It puts the string result in the result slot of the Tel interpreter. The VsReturnFloat
procedure returns TCLOK and takes:

interp A pointer to the Tcl interpreter.

val A value to be converted.

The VsReturnDouble Procedure

int
VsReturnDouble (TclInterp *interp,

double val);

Use the VsReturnDouble procedure to convert a return value parameter from a double.
It puts the string result in the result slot of the Tcl interpreter. The VsReturnDouble
procedure returns TCLODK and takes:

interp A pointer to the Tcl interpreter.

val A value to be converted.

The VsReturnNull Procedure

int
VsReturnNull(Tcl_Interp *interp);

Use the VsReturnNull procedure to return a null result. It puts an empty string in the
result slot of the Tcl interpreter. The VsReturnNull procedure returns TCLOK and
takes:

interp A pointer to the Tcl interpreter.

192

The VsReturnString Procedure
int
VsReturnString(TclInterp *interp,

String val);

Use the VsReturnString procedure to convert a return value parameter from a String.
It puts the string result in the result slot of the Tcl interpreter. The VsReturnString
procedure returns TCL..K and takes:

interp A pointer to the Tcl interpreter.
val A value to be converted.

The VsReturnStringPair Procedure
int
VsReturnStringPair(TcljInterp *interp,

String x,
String y);

Use the VsReturnStringPair procedure to convert a return value parameter from a
String pair. It puts the string result in the result slot of the Tcl interpreter. The
VsReturnStringPair procedure returns TCLJ)K and takes:

interp A pointer to the Tcl interpreter.

x A value to be converted to the first of the pair.
y A value to be converted to the second of the pair.

The VsReturnUnsignedLong Procedure
int
VsReturnUnsignedLong(TclInterp *interp,

unsigned long val);

Use the VsReturnUnsignedLong procedure to convert a return value parameter from an
unsigned long. It puts the string result in the result slot of the Tcl interpreter. The
VsReturnUnsignedLong procedure returns TCL.0K and takes:

interp A pointer to the Tel interpreter.
val A value to be converted.

C.15 Payloads
class VsPayload : public VsObj {

public:

int& Channel();
VsMemBlock& Data();
VsTimeval& StartingTime();
VsTimeval& Duration();
VsTimeval EndingTime();

}; -

All payloads provide the following parameters useful to modules:

Channel The channel assignment (for multiplexed streams).
Data The block of shared memory where the data for this payload resides.
StartingTime The timestamp for this payload.
Duration The difference between starting time and ending time.
EndingTime The time after the duration.

193

VsAudioFragment Payloads

class VsAudioFragment : public VsPayload {

public:
VsAudioFragment(const VsTimeval& startingTime, int channel,

size_t size, ushort samplesPerSecond,
uchar encoding, uchar bitsPerSample,
uchar byte0rder, u_char channels);

u_short& SamplesPerSecond();
u_char& Encoding();
u_char& BitsPerSample();
u_char& ByteOrder();
u_char& Channels();
void ComputeDuration();

};

VsAudioFragment payloads represent a fragment of audio data. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

size The size of shared memory to allocate for the data.

samplesPerSecond The sample rate.

encoding One of VsUnknownAudioSampleEncoding, VsULawAudioSampleEncoding,
VsALawAudioSampleEncoding, VsLinearAudioSampleEncoding,or VsADPCMAudioSampleEncoc

bitsPerSample The number of bits in each audio sample.

byteOrder One of LSBFirst or MSBFirst.

channels The number of audio channels sampled.

VsCaption Payloads

class VsCaption : public VsPayload {

public:
VsCaption(const VsTimeval& startingTime, int channel,

u_short size, char* rawText);
char* CaptionText();

VsCaption payloads represent a line of closed-caption data. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

size The size of shared memory to allocate for the data.

raw Text The raw text.

VsFinish Payloads

class VsFinish : public VsPayload {

public:
VsFinish(const VsTimeval& startingTime, int channel);

194

VsFinish payloads mark the end of a temporal sequence of payloads. Modules that have
been signaled with the Stop (page 178) member function with mode 1 should stop when
receiving a VsFinish payload. Modules that keep synchronized with the starting times
of payloads should resychronize upon receipt of a payload following a VsFinish payload.
The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

VsFlush Payloads

class VsFlush : public VsPayload {

public:
VsFlush(const VsTimeval& startingTime, int channel);

1;

VsFlush payloads indicate a unexpected discontinuity in a temporal sequence of payloads.
Presentation modules waiting for the appropriate time to pass to present data at the right
time should stop waiting and flush their data upon receipt of a VsFlush payload. The
parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

VsJpegFrame Payloads

class VsJpegFrame : public VsPayload {

public:
VsJpegFrame(const VsTimeval& startingTime, int channel,

size_t size, const VsTimeval& duration,
ushort width, ushort height, ushort quality,
u_char origEncoding);

ushort& Width();
ushort& Height();
u_short& Quality();
uchar& OrigEncoding();

VsJpegFrame payloads represent a frame of video data compressed using JPEG compres-
sion. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

size The size of shared memory to allocate for the data.

duration The duration of this video frame.

width The width of the image.

height The height of the image.

quality The quality of the compressed image, which ranges from 0 to 100.
origEncoding One of VsNullVideoPixelEncoding, VsGrayVideoPixelEncoding,

VsColorVideoPixelEncoding, VsColorBGRVideoPixelEncoding, or
VsColorRGBVideoPixelEncoding.

195

VsQRLFrame Payloads

class VsQRLFrame : public VsPayload {

public:
VsQRLFrame(const VsTimeval& startingTime, int channel,

size_t size, const VsTimeval& duration,
u_char quality,
u_short width, ushort height, ushort bytesPerLine,
u_int offset);

uchar& Quality();
u_short& Width();
u_short& Height();
u_short& BytesPerLine();
uint& Offset();

I;

VsQRLFrame payloads represent a frame of video data compressed using Quantized-Run-
Length compression. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

size The size of shared memory to allocate for the data.

duration The duration of this video frame.

quality The quality of the compressed image, which ranges from 0 to 100.

width The width of the image.

height The height of the image.

bytesPerLine The spanning width of the image.

offset The offset of the image.

VsCCCFrame Payloads

class VsCCCFrame : public VsPayload {

public:
VsCCCFrame(const VsTimeval& startingTime, int channel,

size_t size, const VsTimeval& duration,
u_short width, u_short height, u_short bytesPerLine);

ushort& Width();
ushort& Height ();
ushort& BytesPerLine();

};

VsCCCFrame payloads represent a frame of video data compressed using Color-Cell com-
pression. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

size The size of shared memory to allocate for the data.

duration The duration of this video frame.

width The width of the image.

height The height of the image.

bytesPerLine The spanning width of the image.

196

VsStart Payloads

class VsStart : public VsPayload {

public:
VsStart(const VsTimeval& startingTime, int channel);

VsStart payloads mark the start of a temporal sequence of payloads. Modules that keep
synchronized with the starting times of payloads should resychronize upon receipt of a
VsStart payload. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).

VsVideoFrame Payloads

class VsVideoFrame : public VsPayload {

public:
VsVideoFrame(const VsTimeval& startingTime, int channel,

sizet size, const VsTimeval& duration,
u_short width, u_short height, u_short bytesPerLine,
u_char encoding, uchar depth, uchar bitsPerPixel,
u_char byteOrder, u_char bitmapUnit,
uchar bitmapBitOrder, u_char bitmapPad);

ushort& Width();
ushort& Height ();
ushort& BytesPerLine();
uchar& Encoding ();
uchart Depth();
uchark BitsPerPixel();
u_chark ByteOrder();
u_char& BitmapUnit ();
uchar& BitmapBitOrder();
u_char& BitmapPad();

};***

VsVideoFrame payloads represent a frame of video data. The parameters are:

startingTime The timestamp for this payload.

channel The channel assignment (for multiplexed streams).
size The size of shared memory to allocate for the data.
duration The duration of this video frame.

width The width of the image.

height The height of the image.

bytesPerLine The spanning width of the image.

encoding One of VsNullVideoPixelEncoding, VsGrayVideoPixelEncoding,
VsColorVideoPixelEncoding, VsColorBGRVideoPixelEncoding, or
VsColorRGBVideoPixelEncoding.

depth The depth of the image.

bitsPerPixel One of 1, 4, 8, 16, 24, or 32.

byteOrder One of LSBFirst or MSBFirst.
bitmapUnit One of 8, 16, or 32.

bitmapBitOrder One of LSBFirst or MSBFirst.
bitmapPad One of 8, 16, or 32.

197

C.16 Control Panel Procedures

The VsLabeledPathname Procedure

VsLabeledPathname <parent>.<name> [-label <label>] [-value <value>] \
[-types <types>] E-mustExist <mustExist>] [-callback <callback>] \
[-width <width>]

The VsLabeledPathname procedure creates a control panel entry for displaying and
changing a file pathname. Any unrecognized keyword arguments are passed to the first
widget that is created. It takes:

parent (Command Name) A name of the parent Widget object command.

name (String) A child name for the widget.

value (String) An initial value for the pathname.

types (List) A list to specify which files are to be visible in the file choice
dialog box when the user is choosing a new pathname. Each element
of the list should be a list of two elements. The first element should be
a text string, suitable for inclusion in a menu, describing a set of files.
The second element should be a key string for the regexp Tcl command
that should match pathnames that fit in the set of files.

mustExist (Boolean) 1 if the file must exist, 0 otherwise.

callback (Command String) A callback command string to be evaluated
when the user has chosen a new pathname. The callback string with
the new pathname appended is evaluated, and the new pathname is set
to the result of the evaluation.

width (Integer) A width in pixels to make the text box to hold the pathname.

The VsLabeledChoice Procedure

VsLabeledChoice <parent>.<name> [-label <label>] [-value <value>] \
[-choices <choices>] [-callback <callback>]

The VsLabeledChoice procedure creates a control panel entry for displaying and chang-
ing a multiple-choice parameter. Any unrecognized keyword arguments are passed to the
first widget that is created. It takes:

parent (Command Name) A name of the parent Widget object command.

name (String) A child name for the widget.

value (String) An initial value for the choice.

choices (List) A list specifying the choices. Each element of the list repre-
sents a choice. If an element is a list, the first element of the list is taken
to be the choice, and the second is used as a representation of the choice
in the user interface. If the element is not a list, then the first element
is taken to be both the choice and the representation.

callback (Command String) A callback command string to be evaluated
when the user has chosen a new choice. The callback string with the
new choice appended is evaluated, and the result of the evaluation is set
to the new choice.

198

The VsLabeledScrollbar Procedure
VsLabeledScrollbar <parent>.<name> [-label <label>] [-value <value>] \

[-callback <callback>] [-converter <converter>] [-inverter <inverter>] \
[-continuous <continuous>] [-width <width>] [-valueWidth <valueWidth>]

The VsLabeledScrollbar procedure creates a control panel entry for displaying and
changing a numeric parameter that can vary within a range. Any unrecognized keyword
arguments are passed to the first widget that is created. It takes:

parent (Command Name) A name of the parent Widget object command.

name (String) A child name for the widget.

value (String) An initial value for the scrollbar.

callback (Command String) A callback command string to be evaluated
when the user has chosen a new value with the scrollbar. The call-
back string with the new converted value appended is evaluated, and
the result of the evaluation is inverted and set to the new scrollbar.

converter (Command String) A command string to be evaluated when a
value in scroll units needs to be converted to module units. Scroll units
are always real numbers with minimum 0 and maximum 1. Module units
are defined by the module option subcommand. Useful procedures here
are vsLinearConverter (page 199) and vsRoundingLinearConverter
(page 200).

inverter (Command String) A command string to be evaluated when a value
in module units needs to be converted back to scroll units. Scroll units
are always real numbers with minimum 0 and maximum 1. Module units
are defined by the module option subcommand. A useful procedure is
vsLinearInverter (page 200).

continuous (Boolean) 1 to call the converter, callback, and inverter with
each movement of the mouse while the button is held down on the scroll-
bar. 0 to call the converter, callback, and inverter only when the mouse
button is released.

width (Integer) A width in pixels to make the scrollbar.
valueWidth (Integer) A width in pixels to make the text box to hold the

value.

The vsLinearConverter Procedure

vsLinearConverter <min> <max> <scrollVal>
==> <moduleVal>

The vsLInearConverter procedure converts VsLabeledScrollbar (page 199) scroll val-
ues to module values for module values that vary linearly and continuously in a range.
It takes:

min (Double) The minimum value in module units.

max (Double) The maximum value in module units.
scrollVal (Double) The input value, in scroll units, to be converted to module

units.

It returns:

moduleVal (Double) The output value, in module units, converted from
scroll units.

199

The vsRoundingLinearConverter Procedure

vsRoundingLinearConverter <min> <max> <scrollVal>
==> <moduleVal>

The vsRoundingLinearConverter procedure converts VsLabeledScrollbar (page 199)
scroll values to module values for module values that vary linearly and discretely in a
range. It takes:

min (Double) The minimum value in module units.

max (Double) The maximum value in module units.

scrollVal (Double) The input value, in scroll units, to be converted to module
units.

It returns:

moduleVal (Integer) The output value, in module units, converted from
scroll units.

The vsLinearInverter Procedure

vsLinearInverter <min> <max> <moduleVal>
==> <scrollVal>

The vsLInearInverter procedure inverts module values to VsLabeledScrollbar (page
199) scroll values for module values that vary linearly in a range. It takes:

min (Double) The minimum value in module units.

max (Double) The maximum value in module units.

moduleVal (Double) The input value, in module units, to be inverted to
scroll units.

It returns:

scrollVal (Double) The output value, in scroll units, inverted from module
units.

200

Appendix D

Tcl Support For A Graphical
User Interface

D.1 Object Types

Here is a summary of the object commands provided to support a graphical user interface
under the X Window System using the Xt and Xaw toolkits. The complete object type
hierarchy is shown in Figure D.1.

The xt Object Command

The xt object command provides the top-level interface to the tclXt and tclXaw libraries.
It is used for initialization of the application user interface. The most common use of the
xt object command is the appInitialize (page 203) Xt subcommand. Xt subcommands
are described in Section D.2.

XtAppContext Object Commands

XtAppContext object commands provide an interface to XtAppContext data struc-
tures and functions provided by the Xt library. They are used to access the global
application state. XtAppContext object commands are most commonly created by
the appInitialize (page 203) Xt command, but can also be created with the
createApplicationContext (page 203) Xt command. XtAppContext subcommands
are described in Section D.3.

Display Object Commands

Display object commands provide an interface to Display data structures and functions
provided by the Xt library. They are used to access the state relating to the connection
from the application to the X server. Display object commands are created by the
display (page 219) Object subcommand. Display subcommands are described in Section
D.4.

XEvent Object Commands

XEvent object commands provide an interface to XEvent data structures. They are used
to access event parameters such as cursor position, and application components such as
windows and menus. The %event XEvent object command represents the current event
during the evaluation of callback and translation commands strings. XEvent subcom-
mands are described in Section D.5.

201

Display
Object

Rect
Sme

SmeBSB
SmeLine

UnNamedObj
Core

Composite
Box
Constraint

Form
Dialog, Viewport

Paned, Tree
WorkSpace

Graph
Porthole
Shell

OverrideShell
SimpleMenu

WMShell
VendorShell

TopLevelShell
ApplicationShell

TransientShell
Simple

Clock, Grip
Label

Command
MenuButton, Repeater, Toggle

List, Logo, Mailbox, Panner, Scrollbar, StripChart
Text

AsciiText
TextSink

AsciiSink
TextSrc

AsciiSrc
ObjectClass

RectClass
SmeClass

SmeBSBClass, SmeLineClass
UnNamedObjClass

CoreClass
CompositeClass

BoxClass
ConstraintClass

FormClass
DialogClass, ViewportClass

PanedClass, TreeClass
WorkSpaceClass

GraphClass
PortholeClass
ShellClass

OverrideShellClass
SimpleMenuClass

WMShellClass
VendorShellClass

TopLevelShellClass
ApplicationShellClass

TransientShellClass
SimpleClass

ClockClass, GripClass
LabelClass

CommandClass
MenuButtonClass, RepeaterClass, ToggleClass

ListClass, LogoClass, MailboxClass, PannerClass
ScrollbarClass, StripChartClass
TextClass

AsciiTextClass
TextSinkClass

AsciiSinkClass
TextSrcClass

AsciiSrcClass
XEvent, Xt, XtAppContext

Figure D.1: The Complete List Of GUI Object Types.

202

Widget Object Commands

Widget object commands provide an interface to Widget data structures and procedures
provided by the Xt and Xaw library. They are used to manage application components
such as windows and menus. Widget object commands are created by the appropriate
WidgetClass (page 203) object commands.

Various Widget subcommands are described in Sections D.11, D.12, D.13, D.14, D.15,
D.16, D.17, D.18, D.19, D.20, D.21, D.22, D.23, D.24, D.25, D.26, and D.27.

WidgetClass Object Commands

WidgetClass object commands provide an interface to WidgetClass data structures and
procedures provided by the Xt and Xaw library. They are used to create widgets and
manage widgets. WidgetClass object commands are created by the appInitalize (page
203) or toolkitInitialize (page 204) Xt commands.

The WidgetClass object commands are Sme, SmeBSB, SmeLine, UnNamedObj, Core,
Composite, Box, Constraint, Form, Dialog, Viewport, Paned, Tree, WorkSpace,
Graph, Porthole, Shell, OverrideShell, SimpleMenu, WMShell, VendorShell,
TopLevelShell, ApplicationShell, TransientShell, Simple, Clock, Grip, Label,
Command, MenuButton, Repeater, Toggle, List, Logo, Mailbox, Panner, Scrollbar,
StripChart, Text, AsciiText, TextSink, AsciiSink, TextSrc, and AsciiSrc.

WidgetClass subcommands are described in Sections D.6, D.7, D.8, and D.9.

D.2 Xt Subcommands

The appInitialize Xt Subcommand
xt appInitialize <appContextName> <class> <argvVarname> \

<fallbackResources>

The appInitialize Xt subcommand provides an interface to the XtAppInitialize func-
tion. It takes:

appContextName (String) A name for the XtAppContext object command
to be created.

class (String) An application class.

argvVarname (Variable Name) A name of a variable where the command-
line arguments to this program are stored. This variable is updated, with
command-line options removed as they are recognized and processed.

fallbackResources (List) A list of application fallback resource specifica-
tions.

The equivalent C code for this subcommand would be:
XtAppInitialize(tappContext, applicationClass, options,

numOptions, &argcInOut, argvInOut,
fallbackResources, args, numArgs);

The createApplicationContext Xt Subcommand
xt createApplicationContext <name>

The createApplicationContext Xt subsubcommand provides an interface to the
XtCreateApplicationContext function. It takes:

name (String) A name for the XtAppContext object command to be created.

The equivalent C code for this subcommand would be:
XtCreateApplicationContext ();

203

The findFile Xt Subcommand

xt findFile <path> <substitutions> <subcommand>
==> <filename>

The findFile Xt subcommand provides an interface to the XtFindFile function. It
takes:

path (String) A file search path.

substitutions (Substitution List) A substitution list.

command (Command String) A command string to be evaluated for each
file found. The command is evaluated in a procedure body with the
following local variables bound:

filename (String) The name of the file.

The result of the evaluation should be 1 if the file name is acceptable, 0
otherwise.

It returns:

filename (String) The file name that was accepted by the subcommand
string.

The equivalent C code for this subcommand would be:
filename = XtFindFile(path, subs, numSubs, predicate);

The toolkitInitialize Xt Subcommand

xt toolkitInitialize

The toolkitInitialize Xt subcommand provides an interface to the XtToolkitInitialize
function. The equivalent C code for this subcommand would be:

XtToolkitInitialize();

D.3 XtAppContext Subcommands

The addActionHook XtAppContext Subcommand
<appContext> addActionHook <subcommand> ==> <id>

The addActionHook XtXtAppContext Subcommand provides an interface to the
XtAppAddActionHook function. It takes:

command (Command String) A command string to be evaluated when the
action occurs. The command is evaluated in a procedure body with the
following local variables bound:

widget (Command Name) The name of the widget.
action_name (String) The name of the action.
event (Command Name) The name of the event.
params (List) The action parameters.

It returns:

id (Integer) The handle to be used with the removeActionHook XtAppCon-
text subcommand.

The equivalent C code for this subcommand would be:
id = XtAppAddActionHook(appContext, proc, closure);

204

The removeActionHook XtAppContext Subcommand

<appContext> removeActionHook <id>

The removeActionHook XtAppContext subcommand provides an interface to the
XtRemoveActionHook function. It takes:

id (Integer) A handle returned from the addActionHook XtAppContext sub-
command.

The equivalent C code for this subcommand would be:

XtRemoveActionHook(id);

The addInput XtAppContext Subcommand

<appContext> addInput <source> <condition> <subcommand>
==> <id>

The addInput XtAppContext subcommand provides an interface to the XtAppAddInput
function. It takes:

source (Integer) A file descriptor open for input.

condition (Integer) A condition indicating when the file is ready.

command (Command String) A command string to be evaluated when the
file is ready. The command is evaluated in a procedure body with the
following local variables bound:

source (Integer) The file descriptor.

id (Integer) The handle to be used with the removeInput
XtAppContext subcommand.

It returns:

id (Integer) The handle to be used with the removeInput XtAppContext
subcommand.

The equivalent C code for this subcommand would be:

id = XtAppAddInput(appContext, source, condition, proc, closure);

The removeInput XtAppContext Subcommand

<appContext> removeInput <id>

The removelnput XtAppContext subcommand provides an interface to the
XtRemoveInput function. It takes:

id (Integer) A handle returned from the addInput XtAppContext subcom-
mand.

The equivalent C code for this subcommand would be:

XtRemoveInput (id);

205

The addtimeout XtAppContext Subcommand

<appContext> addtimeout <interval> <subcommand>
==> <id>

The addtimeout XtAppContext subcommand provides an interface to the XtAppAddtimeout
function. It takes:

interval (Integer) A number of milliseconds to pass before evaluating the
subcommand.

command (Command String) A command string to be evaluated after the
time has elapsed. The command is evaluated in a procedure body with
the following local variables bound:

id (Integer) The handle to be used with the removetimeout
XtAppContext subcommand.

It returns:

id (Integer) The handle to be used with the removetimeout XtAppContext
subcommand.

The equivalent C code for this subcommand would be:

id = XtAppAddtimeout(appContext, interval, proc, closure);

The removetimeout XtAppContext Subcommand

<appContext> removetimeout <id>

The removetimeout XtAppContext subcommand provides an interface to the
XtRemovetimeout function. It takes:

id (Integer) A handle returned from the addtimeout XtAppContext subcom-
mand.

The equivalent C code for this subcommand would be:

XtRemovetimeout(timer);

The addWorkProc XtAppContext Subcommand

<appContext> addWorkProc <subcommand>
==> <id>

The addWorkProc XtAppContext subcommand provides an interface to the
XtAppAddWorkProc function. It takes:

command (Command String) A command string to be evaluated. The com-
mand is evaluated in a procedure body. The result of the evaluation
should be 1 if it is done, and 0 if it should be called again.

It returns:

id (Integer) The handle to be used with the removeWorkProc XtAppContext
subcommand.

The equivalent C code for this subcommand would be:

id = XtAppAddWorkProc(appContext, proc, closure);

206

The removeWorkProc XtAppContext Subcommand

<appContext> removeWorkProc <id>

The removeWorkProc XtAppContext subcommand provides an interface to the
XtRemoveWorkProc function. It takes:

id (Integer) A handle returned from the addWorkProc XtAppContext sub-
command.

The equivalent C code for this subcommand would be:

XtRemoveWorkProc (id);

The destroy XtAppContext Subcommand

<appContext> destroy

The destroy XtAppContext subcommand provides an interface to the XtDestroyApplicationCont ext
function. The equivalent C code for this subcommand would be:

XtDestroyApplicationContext (appContext);

The error XtAppContext Subcommand

<appContext> error <message>

The error XtAppContext subcommand provides an interface to the XtAppError func-
tion. It takes:

message (String) An error message text.

The equivalent C code for this subcommand would be:

XtAppError(appContext, message);

The errorMsg XtAppContext Subcommand

<appContext> errorMsg <name> <type> <class> <default> [<param>]...

The errorMsg XtAppContext subcommand provides an interface to the XtAppErrorMsg
function. It takes:

name (String) A name of an error message.

type (String) A type of an error message.

class (String) A class of an error message.

default (String) A default error message text.

param (String) A parameter to the error message.

The equivalent C code for this subcommand would be:

XtAppErrorMsg(appContext, name, type, class, dflt,
params, &numParams);

207

The getSelectiontimeout XtAppContext Subcommand

<appContext> getSelectiontimeout
==> <timeout>

The getSelectiontimeout XtAppContext subcommand provides an interface to the
XtAppGetSelectiontimeout function. It returns:

timeout (Integer) The selection timeout.

The equivalent C code for this subcommand would be:

timeout = XtAppGetSelectiontimeout(appContext);

The mainLoop XtAppContext Subcommand

<appContext> mainLoop

The mainLoop XtAppContext subcommand provides an interface to the XtAppMainLoop
function. The equivalent C code for this subcommand would be:

XtAppMainLoop(appContext);

The nextEvent XtAppContext Subcommand

<appContext> nextEvent <name>

The nextEvent XtAppContext subcommand provides an interface to the XtAppNextEvent
function. It takes:

name (String) A name for the event object command to be created.

The equivalent C code for this subcommand would be:

XtAppNextEvent(appContext, event);

The openDisplay XtAppContext Subcommand

<appContext> openDisplay <name> <displayString> <applicationName> \
<applicationClass> <argvVarname>

The openDisplay XtAppContext subcommand provides an interface to the
XtOpenDisplay function. It takes:

name (String) A name for the Display object command to be created.

displayString (String) An X display string.

applicationName (String) An application name.

applicationClass (String) An application class.

argvVarname (Variable Name) A name of a variable where the
subcommand-line arguments to this program are stored. This variable is
updated, with subcommand-line options removed as they are recognized
and processed.

The equivalent C code for this subcommand would be:

XtOpenDisplay(appContext, dpyString, applicationName,
applicationClass, options, numOptions,
&argcInOut, argvInOut);

208

The peekEvent XtAppContext Subcommand

<appContext> peekEvent <event>
==> <present>

The peekEvent XtAppContext subcommand provides an interface to the XtAppPeekEvent
function. It takes:

event (String) A type of an event.

It returns:

present (Boolean) 1 if an event is present, 0 otherwise.

The equivalent C code for this subcommand would be:

present = XtAppPeekEvent(appContext, event);

The pending XtAppContext Subcommand

<appContext> pending
==--> <pending>

The pending XtAppContext subcommand provides an interface to the XtAppPending
function. It returns:

pending (Integer) 1 if an event is pending, 0 otherwise.

The equivalent C code for this subcommand would be:

pending = XtAppPending(appContext);

The processEvent XtAppContext Subcommand

<appContext> processEvent <mask>

The processEvent XtAppContext subcommand provides an interface to the
XtAppProcessEvent function. It takes:

mask (Integer) An input mask.

The equivalent C code for this subcommand would be:

XtAppProcessEvent (appContext, mask);

The setSelectiontimeout XtAppContext Subcommand

<appContext> setSelectiontimeout <milliseconds>

The setSelectiontimeout XtAppContext subcommand provides an interface to the
XtAppSetSelectiontimeout function. It takes:

milliseconds (Integer) A number of milliseconds to set the selection timeout.

The equivalent C code for this subcommand would be:

XtAppSetSelectiontimeout(appContext, milliseconds);

209

The setErrorHandler XtAppContext Subcommand

<appContext> setErrorHandler <subcommand>

The setErrorHandler XtAppContext subcommand provides an interface to the
XtAppSetErrorHandler function. It takes:

command (Command String) A command string to be evaluated when an
error is being reported. The command is evaluated in a procedure body
with the following local variables bound:

msg (String) The error message text.

The equivalent C code for this subcommand would be:

XtAppSetErrorHandler(appContext, handler);

The setErrorMsgHandler XtAppContext Subcommand

<appContext> setErrorMsgHandler <subcommand>

The setErrorMsgHandler XtAppContext subcommand provides an interface to the
XtAppSetErrorMsgHandler function. It takes:

command (Command String) A command string to be evaluated when an
error message is being reported. The command is evaluated in a proce-
dure body with the following local variables bound:

name (String) The name of the error message.

type (String) The type of the error message.

class (String) The class of the error message.

default (String) The default error message text.

params (String) A list of parameters to the error message.

The equivalent C code for this subcommand would be:

XtAppSetErrorMsgHandler(appContext, handler);

The setFallbackResources XtAppContext Subcommand

<appContext> setFallbackResources <fallbackResources>

The setFallbackResources XtAppContext subcommand provides an interface to the
XtAppSetFallbackResources function. It takes:

fallbackResources (List) A list of application fallback resource specifica-
tions.

The equivalent C code for this subcommand would be:

XtAppSetFallbackResources(appContext, frl);

210

The setWarningHandler XtAppContext Subcommand

<appContext> setWarningHandler <subcommand>

The setWarningHandler XtAppContext subcommand provides an interface to the

XtAppSetWarningHandler function. It takes:

command (Command String) A command string to be evaluated when a
warning is being reported. The command is evaluated in a procedure
body with the following local variables bound:

msg (String) The warning message text.

The equivalent C code for this subcommand would be:

XtAppSetWarningHandler(appContext, handler);

The setWarningMsgHandler XtAppContext Subcommand

<appContext> setWarningMsgHandler <subcommand>

The setWarningMsgHandler XtAppContext subcommand provides an interface to the
XtAppSetWarningMsgHandler function. It takes:

command (Command String) A command string to be evaluated when a
warning message is being reported. The command is evaluated in a
procedure body with the following local variables bound:

name (String) The name of the warning message.

type (String) The type of the warning message.

class (Siring) The class of the warning message.

default (String) The default warning message text.

params (String) A list of parameters to the warning message.

The equivalent C code for this subcommand would be:

XtAppSetWarningMsgHandler(appContext, handler);

The warning XtAppContext Subcommand

<appContext> warning <message>

The warning XtAppContext subcommand provides an interface to the XtAppWarning
function. It takes:

message (String) A warning message text.

The equivalent C code for this subcommand would be:

XtAppWarning(appContext, message);

211

The warningMsg XtAppContext Subcommand

<appContext> warningMsg <name> <type> <class> <default> \
[<param>]...

The warningMsg XtAppContext subcommand provides an interface to the XtAppWarningMsg
function. It takes:

name (String) A name of a warning message.

type (String) A type of a warning message.

class (String) A class of a warning message.

default (String) A default warning message text.

param (String) A parameter to the warning message.

The equivalent C code for this subcommand would be:

XtAppWarningMsg(appContext, name, type, class, dflt,
params, &numParams);

The addGlobalActions XtAppContext Subcommand

<appContext> addGlobalActions

The addGlobalActions XtAppContext subcommand provides an interface to the
XawSimpleMenuAddGlobalActions function. The equivalent C code for this subcom-
mand would be:

XawSimpleMenuAddGlobalActions(appCon);

D.4 Display Subcommands

The createShell Display Subcommand

<display> createShell <applicationName> <applicationClass> \
<widgetClass>

The createShell Display subcommand provides an interface to the XtAppCreateShell

function. It takes:

applicationName (String) An application name.

applicationClass (String) An application class.

widgetClass (String) A name for the shell Widget object command to be
created.

The equivalent C code for this subcommand would be:

XtAppCreateShell(applicationName, applicationClass,
vidgetClass, dpy, args, numArgs);

212

The applicationContext Display Subcommand

<display> applicationContext [<name>]
==> <appContext>

The applicationContext Display subcommand provides an interface to the
XtDisplayToApplicationContext function. It takes:

name (String) A name for the XtAppContext object command to be created,
if an object command for the XtAppContext does not yet exist.

It returns:

appContext (Command Name) The name of the XtAppContext object
command.

The equivalent C code for this subcommand would be:

appContext = XtDisplayToApplicationContext(dpy);

The close Display Subcommand

<display> close

The close Display subcommand provides an interface to the XtCloseDisplay function.
The equivalent C code for this subcommand would be:

XtCloseDisplay(dpy);

The getApplicationNameAndClass Display Subcommand

<display> getApplicationNameAndClass
==> <name> <class>

The getApplicationNameAndClass Display subcommand provides an interface to the
XtGetApplicationNameAndClass function. It returns:

name (String) The application name.

class (String) The application class.

The equivalent C code for this subcommand would be:

XtGetApplicationNameAndClass(dpy, &name, &class);

The getMultiClickTime Display Subcommand

<display> getMultiClickTime
==> <time>

The getMultiClickTime Display subcommand provides an interface to the
XtGetMultiClickTime function. It returns:

time (Integer) The multi-click time in milliseconds.

The equivalent C code for this subcommand would be:

time = XtGetMultiClickTime(dpy);

213

The lastTimestampProcessed Display Subcommand

<display> lastTimestampProcessed
==> <last>

The lastTimestampProcessed Display subcommand provides an interface to the
XtLastTimestampProcessed function. It returns:

last (Integer) The last timestamp processed.

The equivalent C code for this subcommand would be:

last = XtLastTimestampProcessed(dpy);

The resolvePathname Display Subcommand

<display> resolvePathname <type> <filename> <suffix> <path> \
<substitutions> <subcommand>

==> <resolved>

The resolvePathname Display subcommand provides an interface to the XtResolvePathname
function. It takes:

type (String) A file type.

filename (String) A file name.

suffix (String) A file suffix.

path (String) A file search path.

substitutions (Substitution List) A file substitution list.

command (Command String) A command string to be evaluated for each
file found. The command is evaluated in a procedure body with the
following local variables bound:

filename (String) The name of the file.

The result of the evaluation should be 1 if the file name is acceptable, 0
otherwise.

It returns:

resolved (String) The file name that was accepted by the subcommand
string.

The equivalent C code for this subcommand would be:

resolved = XtResolvePathname(dpy, type, filename, suffix, path,
subs, numSubs, predicate);

The setMultiClickTime Display Subcommand

<display> setMultiClickTime <milliseconds>

The setMultiClickTime Display subcommand provides an interface to the

XtSetMultiClickTime function. It takes:

milliseconds (Integer) A number of milliseconds to set the multi-click time.

The equivalent C code for this subcommand would be:

XtSetMultiClickTime(dpy, milliseconds);

214

The windowToWidget Display Subcommand

<display> windowToWidget <window>
==> <widget>

The windowToWidget Display subcommand provides an interface to the XtWindowToWidget
function. It takes:

window (Integer) A window id.

It returns:

widget (Command Name) A Widget object command name.

The equivalent C code for this subcommand would be:

widget = XtWindowToWidget(dpy, window);

D.5 XEvent Subcommands

The destroy XEvent Subcommand

<event> destroy

The destroy XEvent subcommand provides an interface to the XtFree function. The
equivalent C code for this subcommand would be:

XtFree((char*)event);

The dispatch XEvent Subcommand

<event> dispatch
==> <dispatched>

The dispatch XEvent subcommand provides an interface to the XtDispatchEvent func-
tion. It returns:

dispatched (Boolean) 1 if the event was dispatched, 0 otherwise.

The equivalent C code for this subcommand would be:

dispatched = XtDispatchEvent(event);

The position XEvent Subcommand

<event> position
==> <x> <y>

The position XEvent subcommand provides access to the cursor position of an event.
It returns:

x (Integer) The x coorrdinate.

y (Integer) The y coordinate.

The equivalent C code for this subcommand would be:

x, y = position of event

215

D.6 ObjectClass Subcommands

The createManagedWidget ObjectClass Subcommand

<objectClass> createManagedWidget <name> <parent> \
[<resource> <value>]...

The createManagedWidget ObjectClass subcommand provides an interface to the
XtCreateManagedWidget function. It takes:

name (String) A child name for the widget.

parent (Command Name) A name of the parent Widget object command.

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value.

The equivalent C code for this subcommand would be:

XtCreateManagedWidget(name, objectClass, parent, args, numArgs);

The createWidget ObjectClass Subcommand

<objectClass> createWidget <name> <parent> [<resource> <value>]...

The createWidget ObjectClass subcommand provides an interface to the XtCreateWidget
function. It takes:

name (String) A child name for the widget.

parent (Command Name) A name of the parent Widget object command.

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value.

The equivalent C code for this subcommand would be:

XtCreateWidget(name, objectClass, parent, args, numArgs);

The getConstraintResourceList ObjectClass Subcommand

<objectClass> getConstraintResourceList
==> <resources>

The getConstraintResourceList ObjectClass subcommand provides an interface to the
XtGetConstraintResourceList function. It returns:

resources (List) A list of resource information. Each element of the list is a
list of resource name, resource class, and resource type.

The equivalent C code for this subcommand would be:

XtGetConstraintResourceList (idgetClass, &res, &numRes);

216

The getResourceList ObjectClass Subcommand

<objectClass> getResourceList
==> <resources>

The getResourceList ObjectClass subcommand provides an interface to the
XtGetResourceList function. It returns:

resources (List) A list of resource information. Each element of the list is a
list of resource name, resource class, and resource type.

The equivalent C code for this subcommand would be:

XtGetResourceList(vidgetClass, &res, &numRes);

D.7 RectClass Subcommands

The RectClass Instance Creation Subcommand

<rectClass> <parent>.<name> [<resource> <value>]...

The RectClass Instance Creation subcommand provides an interface to the
XtCreateManagedWidget function. It takes:

parent (Command Name) A name of the parent Widget object command.

name (String) A child name for the widget.

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value.

The equivalent C code for this subcommand would be:

XtCreateManagedWidget(name, objectClass, parent, args, numArgs);

D.8 WidgetClass Subcommands

The getActionList WidgetClass Subcommand

<widgetClass> getActionList
==> <actions>

The getActionList WidgetClass subcommand provides an interface to the
XtGetActionList function. It returns:

actions (List) The list of actions.

The equivalent C code for this subcommand would be:

XtGetActionList(widgetClass, &actions, &numActions);

217

D.9 ShellClass Subcommands

The ShellClass Instance Creation Subcommand

<shellClass> <parent>.<name> [<resource> <value>] ...

The ShellClass Instance Creation subcommand provides an interface to the
XtCreatePopupShell function. It takes:

parent (Command Name) A name of the parent Widget object command.

name (String) A child name for the widget.

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value.

The equivalent C code for this subcommand would be:

XtCreatePopupShell(name, objectClass, parent, args, numArgs);

The createPopupShell ShellClass Subcommand

<shellClass> createPopupShell <name> <parent> \
[<resource> <value>]...

The createPopupShell ShellClass subcommand provides an interface to the
XtCreatePopupShell function. It takes:

name (String) A child name for the widget.

parent (Command Name) A name of the parent Widget object command.

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value.

The equivalent C code for this subcommand would be:

XtCreatePopupShell(name, objectClass, parent, args, numArgs);

D.10 Object Commands

The checkSubclassFlag Object Subcommand

<object> checkSubclassFlag <typeFlag>
==> <isSubclass>

The checkSubclassFlag Object subcommand provides an interface to the
Xtchecksubclassflag function. It takes:

typeFlag (Integer) A type flag.

It returns:

isSubclass (Boolean)

The equivalent C code for this subcommand would be:

isSubclass = Xtchecksubclassflag(widget, typeFlag);

218

The class Object Subcommand

<object> class
==> <class>

The class Object subcommand provides an interface to the XtClass function. It returns:

class (Command Name) The ObjectClass object command.

The equivalent C code for this subcommand would be:

class = XtClass(object);

The destroy Object Subcommand

<object> destroy

The destroy Object subcommand provides an interface to the XtDestroyWidget func-
tion. The equivalent C code for this subcommand would be:

XtDestroyWidget(widget);

The display Object Subcommand

<object> display [<name>]
==> <display>

The display Object subcommand provides an interface to the XtDisplay0fObj ect func-
tion. It takes:

name (String) A name for the Display object command to be created, if an
object command for the display does not yet exist.

It returns:

display (Command Name) The name of the Display object command.

The equivalent C code for this subcommand would be:

display = XtDisplayOfObject(vidget);

The getValues Object Subcommand

<object> getValues <resource> [<resource>]...
==> <value> [<value>]...

The getValues Object subcommand provides an interface to the XtGetValues function.
It takes:

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

It returns:

value (String) The value of the resource.

The equivalent C code for this subcommand would be:

XtGetValues(widget, args, numArgs);

219

The isObject Object Subcommand

<object> isObject
==> <isObject>

The isObj ect Object subcommand provides an interface to the XtIsObj ect function. It
returns:

isObject (Boolean) 1 if it is an object, 0 otherwise.

The equivalent C code for this subcommand would be:

is0bject = XtIsObject(object);

The isSubclassOf Object Subcommand

<object> isSubclassOf <widgetClass> <flagClass> <typeFlag>
==> <isSubclass>

The isSubclassOf Object subcommand provides an interface to the Xtissubclassof
function. It takes:

widgetClass (Command Name) A name of the WidgetClass object com-
mand.

flagClass (Command Name) A name of the flag WidgetClass object com-
mand.

typeFlag (Integer) A type flag.

It returns:

isSubclass (Boolean) 1 if the widget class is a subclass of the flag class, 0
otherwise. Or vice-versa. Whatever.

The equivalent C code for this subcommand would be:

isSubclass = Xtissubclassof (object, widgetClass, flagClass,
typeFlag);

The name Object Subcommand

<object> name
==> <name>

The name Object subcommand provides an interface to the XtName function. It returns:

name (String) The child name of the object.

The equivalent C code for this subcommand would be:

name = XtName(object);

220

The setValues Object Subcommand

<object> setValues <resource> <value> [<resource> <value>]...

The setValues Object subcommand provides an interface to the XtSetValues function.
It takes:

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

value (String) A resource value

The equivalent C code for this subcommand would be:

XtSetValues(widget, args, numArgs);

The superclass Object Subcommand

<object> superclass
==> <superClass>

The superclass Object subcommand provides an interface to the XtSuperclass func-
tion. It returns:

superClass (Command Name) The superclass object command name.

The equivalent C code for this subcommand would be:

superClass = XtSuperclass(object);

The window Object Subcommand

<object> window
==> <window>

The window Object subcommand provides an interface to the XtWindowOfObj ect func-
tion. It returns:

window (Integer) The window id.

The equivalent C code for this subcommand would be:

window = XtWindowOfObject(widget);

D.11 Rect Subcommands

The isManaged Rect Subcommand

<rect> isManaged
==> <isManaged>

The isManaged Rect subcommand provides an interface to the XtIsManaged function.
It returns:

isManaged (Boolean) 1 if the widget is managed, 0 otherwise.

The equivalent C code for this subcommand would be:

isManaged - XtIsManaged(rectobj);

D.12 Widget Subcommands

The applicationContext Widget Subcommand

<widget> applicationContext [<name>]
==> <appContext>

The applicationContext Widget subcommand provides an interface to the
XtWidgetToApplicationContext function. It takes:

name (Command Name) A name for the XtAppContext object command to
be created, if an object command for the XtAppContext does not yet
exist.

It returns:

appContext (Command Name) The name of the XtAppContext object
command.

The equivalent C code for this subcommand would be:

appContext = XtWidgetToApplicationContext(widget);

The augmentTranslations Widget Subcommand

<widget> augmentTranslations <translations>

The augmentTranslations Widget subcommand provides an interface to the
XtAugmentTranslations function. It takes:

translations (List) A translation table.

The equivalent C code for this subcommand would be:

XtAugmentTranslations(widget, translations);

The disownSelection Widget Subcommand

<widget> disownSelection <selection> <time>

The disownSelect ion Widget subcommand provides an interface to the XtDisownSelection
function. It takes:

selection (Atom) A selection.

time (Integer) A time.

The equivalent C code for this subcommand would be:

XtDisownSelection(widget, selection, time);

222

The getApplicationResources Widget Subcommand
<widget> getApplicationResources [<resource>]...
==> <resources>

The getApplicationResources Widget subcommand provides an interface to the
XtGetApplicationResources function. It takes:

resource (String) A resource name. If it starts with a hyphen, the hypen is
removed.

It returns:

resources (List) The application resources.

The equivalent C code for this subcommand would be:
XtGetApplicationResources(widget, base, res, numRes,

args, numArgs);

The getSelectionRequest Widget Subcommand
<widget> getSelectionRequest <selection> [<eventName>] \

[<requestId>]
==> <event>

The getSelectionRequest Widget subcommand provides an interface to the
XtGetSelectionRequest function. It takes:

selection (Atom) A selection.

eventName (String) An event name.
requestId (String) A request id.

It returns:

event (Command Name) The name of the event object command.

The equivalent C code for this subcommand would be:
id = XtGetSelectionRequest(widget, selection, requestId);

The getSelectionValue Widget Subcommand
<widget> getSelectionValue <selection> <target> \

<subcommand> <time>

The getSelectionValue Widget subcommand provides an interface to the
XtGetSelectionValue function. It takes:

selection (Atom) A selection.
target (Atom) A target.
command (Command String) A command string to be evaluated with the

value. The command is evaluated in a procedure body with the following
local variables bound:

widget (Command Name) The widget.
selection (Atom) The selection.
type (Atom) The type.
value (String) The value.
format (String) The format.

time (Integer) A time.

The equivalent C code for this subcommand would be:
XtGetSelectionValue(widget, selection, target,

callback, closure, time);

223

The getSelectionValueIncremental Widget Subcommand

<widget> getSelectionValueIncremental <selection> <target> \
<subcommand> <time>

The getSelectionValueIncremental Widget subcommand provides an interface to the
XtGetSelectionValueIncremental function. It takes:

selection (Atom) A selection.

target (Atom) A target.

command (Command String) A command string to be evaluated with the
value. The command is evaluated in a procedure body with the following
local variables bound:

widget (Command Name) The widget.

selection (Atom) The selection.

type (Atom) The type.

value (String) The value.

time (Integer) A time.

The equivalent C code for this subcommand would be:

XtGetSelectionValuelncremental(widget, selection, target,
selectionCallback, closure, time);

The getSelectionValues Widget Subcommand

<widget> getSelectionValues <selection> <targets> \
<subcommands> <time>

The getSelectionValues Widget subcommand provides an interface to the
XtGetSelectionValues function. It takes:

selection (Atom) A selection.

targets (List) A list of targets.

commands (List) A list of command strings to be evaluated with the values.
The commands are evaluated in a procedure body with the following
local variables bound:

widget (Command Name) The widget.

selection (Atom) The selection.

type (Atom) The type.

value (String) The value.

time (Integer) A time.

The equivalent C code for this subcommand would be:

XtGetSelectionValues(widget, selection, targets, count,
callback, closures, time);

224

The getSelect ionValuesIncremental Widget Subcommand

<widget> getSelectionValuesIncremental <selection> <targets> \
<subcommands> <time>

The getSelectionValuesIncremental Widget subcommand provides an interface to the
XtGetSelectionValuesIncremental function. It takes:

selection (Atom) A selection.

targets (List) A list of targets.

commands (List) A list of command strings to be evaluated with the values.
The commands are evaluated in a procedure body with the following
local variables bound:

widget (Command Name) The widget.

selection (Atom) The selection.

type (Atom) The type.

value (String) The value.

time (Integer) A time.

The equivalent C code for this subcommand would be:

XtGetSelectionValuesIncremental(widget, selection, targets, count,
callback, closures, time);

The installAccelerators Widget Subcommand

<widget> installAccelerators <source>

The installAccelerators Widget subcommand provides an interface to the
XtInstallAccelerators function. It takes:

source (Command Name) A widget object command name.

The equivalent C code for this subcommand would be:

XtInstallAccelerators(widget, source);

The installAllAccelerators Widget Subcommand

<widget> installAllAccelerators <source>

The installAllAccelerators Widget subcommand provides an interface to the
XtInstallAllAccelerators function. It takes:

source (Command Name) A widget object command name.

The equivalent C code for this subcommand would be:

XtInstallAllAccelerators(widget, source);

225

The isRealized Widget Subcommand

<widget> isRealized
==> <isRealized>

The isRealized Widget subcommand provides an interface to the XtIsRealized func-
tion. It returns:

isRealized (Boolean) 1 if the widget is realized, 0 otherwise.

The equivalent C code for this subcommand would be:

isRealized = XtIsRealized(widget);

The isSensitive Widget Subcommand

<widget> isSensitive
==> <isSensitive>

The isSensitive Widget subcommand provides an interface to the XtIsSensitive func-
tion. It returns:

isSensitive (Boolean) 1 if the widget is sensitive, 0 otherwise.

The equivalent C code for this subcommand would be:

isSensitive = XtIsSensitive(widget);

The isSubclass Widget Subcommand

<widget> isSubclass <widgetClass>
==> <isSubclass>

The isSubclass Widget subcommand provides an interface to the XtIsSubclass func-
tion. It takes:

widgetClass (Command Name) A WidgetClass object command name.

It returns:

isSubclass (Boolean) 1 if the widget class of the widget is a subclass of the
widget class provided, 0 otherwise.

The equivalent C code for this subcommand would be:

isSubclass = XtIsSubclass(widget, widgetClass);

The map Widget Subcommand

<widget> map

The map Widget subcommand provides an interface to the XtMapWidget function. The
equivalent C code for this subcommand would be:

XtMapWidget (widget);

226

The overrideTranslations Widget Subcommand

<widget> overrideTranslations <translations>

The overrideTranslations Widget subcommand provides an interface to the
XtOverrideTranslations function. It takes:

translations (List) A translation table.

The equivalent C code for this subcommand would be:

XtOverrideTranslations(widget, translations);

The ownSelection Widget Subcommand

<widget> ownSelection <selection> <time> \
<convertSubcommand> <loseSubcommand>

==> <owner>

The ownSelection Widget subcommand provides an interface to the XtOwnSelection
function. It takes:

selection (Atom) A selection.

time (Integer) A time.

convertCommand (Command String) A command string to be evaluated
to perform the conversion. The command is evaluated in a procedure
body with the following local variables bound:

widget (Command Name) The widget.

selection (Atom) The selection.

target (Atom) The target.

loseCommand (Command String) A command string to be evaluated when
the selection is lost. The command is evaluated in a procedure body with
the following local variables bound:

widget (Command Name) The widget.

selection (Atom) The selection.

It returns:

owner (Boolean)

The equivalent C code for this subcommand would be:

owner = XtOwnSelection(widget, selection, time, convert,
lose, done);

227

The ownSelectionIncremental Widget Subcommand

<widget> ownSelectionIncremental <selection> <time> \
<convertSubcommand> <cancelSubcommand> <loseSubcommand>

==> <owner>

The ownSelectionIncremental Widget subcommand provides an interface to the
XtOwnSelectionIncremental function. It takes:

selection (Atom) A selection.

time (Integer) A time.

convertCommand (Command String) A command string to be evaluated
to perform the conversion. The command is evaluated in a procedure
body with the following local variables bound:

widget (Command Name) The widget.
selection (Atom) The selection.
target (Atom) The target.
max-ength (Integer) The maximum length.
receiver-id (Atom) The receiver id.

cancelCommand (Command String) A command string to be evaluated
when the conversion is cancelled. The command is evaluated in a pro-
cedure body with the following local variables bound:

widget (Command Name) The widget.
selection (Atom) The selection.
target (Atom) The target.
max-ength (Integer) The receiver id.

loseCommand (Command String) A command string to be evaluated when
the selection is lost. The command is evaluated in a procedure body with
the following local variables bound:

widget (Command Name) The widget.
selection (Atom) The selection.

It returns:

owner (Boolean)

The equivalent C code for this subcommand would be:

owner = XtOwnSelectionIncremental(widget, selection, time,
convertCallback, loseCallback,
doneCallback, cancelCallback,
(XtPointer)sic);

The parent Widget Subcommand

<widget> parent
==> <parent>

The parent Widget subcommand provides an interface to the XtParent function. It
returns:

parent (Command Name) The name of the parent widget object command.

The equivalent C code for this subcommand would be:

parent = XtParent(widget);

228

The realize Widget Subcommand

<widget> realize

The realize Widget subcommand provides an interface to the XtRealizeWidget func-
tion. The equivalent C code for this subcommand would be:

XtRealizeWidget(widget);

The setKeyboardFocus Widget Subcommand

<widget> setKeyboardFocus <descendent>

The setKeyboardFocus Widget subcommand provides an interface to the XtSetKeyboardFocus
function. It takes:

descendent (Command Name) The name of the descendent Widget object
command.

The equivalent C code for this subcommand would be:

XtSetKeyboardFocus(widget, descendent);

The setMappedWhenManaged Widget Subcommand

<widget> setMappedWhenManaged <mappedWhenManaged>

The setMappedWhenManaged Widget subcommand provides an interface to the
XtSetMappedWhenManaged function. It takes:

mappedWhenManaged (Boolean)

The equivalent C code for this subcommand would be:

XtSetMappedWhenManaged(widget, mappedWhenManaged);

The setSensitive Widget Subcommand

<widget> setSensitive <sensitive>

The setSensitive Widget subcommand provides an interface to the XtSetSensitive
function. It takes:

sensitive (Boolean)

The equivalent C code for this subcommand would be:

XtSetSensitive(widget, sensitive);

229

The translateCoords Widget Subcommand

<widget> translateCoords <pt>
==> <pt>

The translateCoords Widget subcommand provides an interface to the XtTranslateCoords
function. It returns:

pt (List)

The equivalent C code for this subcommand would be:

XtTranslateCoords(widget, x, y, &rootx, trooty);

The uninstallTranslat ions Widget Subcommand

<widget> uninstallTranslations

The uninstallTranslations Widget subcommand provides an interface to the
XtUninstallTranslations function. The equivalent C code for this subcommand would
be:

XtUninstallTranslations(widget);

The unMap Widget Subcommand

<widget> unMap

The unMap Widget subcommand provides an interface to the XtUnmapWidget function.
The equivalent C code for this subcommand would be:

XtUnmapWidget (widget);

The unrealize Widget Subcommand

<widget> unrealize

The unrealize Widget subcommand provides an interface to the XtUnrealizeWidget
function. The equivalent C code for this subcommand would be:

XtUnrealizeWidget(widget);

The addCallback Widget Subcommand

<widget> addCallback <name> <subcommand>

The addCallback Widget subcommand provides an interface to the XtAddCallback func-
tion. It takes:

name (String) A callback name.

command (Command String) A command string to be evaluated with the
value. The command is evaluated in a procedure body with the following
local variables bound:

widget (Command Name) The widget.

The equivalent C code for this subcommand would be:

XtAddCallback(widget, name, proc, clientData);

230

The callCallbacks Widget Subcommand

<widget> callCallbacks <name>

The callCallbacks Widget subcommand provides an interface to the XtCallCallbacks
function. It takes:

name (String) A callback name.

The equivalent C code for this subcommand would be:

XtCallCallbacks(widget, name);

The hasCallbacks Widget Subcommand

<widget> hasCallbacks <name>
==> <n>

The hasCallbacks Widget subcommand provides an interface to the XtHasCallbacks
function. It takes:

name (String) A callback name.

It returns:

n (Integer)

The equivalent C code for this subcommand would be:

n = XtHasCallbacks(widget, name);

The removeCallback Widget Subcommand

<widget> removeCallback <name> <subcommand>

The removeCallback Widget subcommand provides an interface to the XtRemoveCallback
function. It takes:

name (String) A callback name.

command (Command String) A command string for matching.

The equivalent C code for this subcommand would be:

XtRemoveCallback(widget, name, proc, clientData);

The removeAllCallbacks Widget Subcommand

<widget> removeAllCallbacks <name>

The removeAllCallbacks Widget subcommand provides an interface to the
XtRemoveAllCallbacks function. It takes:

name (String) A callback name.

The equivalent C code for this subcommand would be:

XtRemoveAllCallbacks(widget, name);

231

D.13 Composite Subcommands

The manageChild Composite Subcommand

<composite> manageChild <child>

The manageChild Composite subcommand provides an interface to the XtManageChild
function. It takes:

child (Command Name) A name of a child Widget object command.

The equivalent C code for this subcommand would be:

XtManageChild(child);

The manageChildren Composite Subcommand

<composite> manageChildren <children>

The manageChildren Composite subcommand provides an interface to the
XtManageChildren function. It takes:

children (List) A list of child Widget object commands.

The equivalent C code for this subcommand would be:

XtManageChildren(children, numChildren);

The unmanageChild Composite Subcommand

<composite> unmanageChild <child>

The unmanageChild Composite subcommand provides an interface to the XtUnmanageChild
function. It takes:

child (Command Name) A name of a child Widget object command.

The equivalent C code for this subcommand would be:

XtUnmanageChild(child);

The unmanageChildren Composite Subcommand

<composite> unmanageChildren <children>

The unmanageChildren Composite subcommand provides an interface to the
XtUnmanageChildren function. It takes:

children (List) A list of child Widget object commands.

The equivalent C code for this subcommand would be:

XtUnmanageChildren(children, numChildren);

232

D.14 Shell Subcommands

The popdown Shell Subcommand

<shell> popdown

The popdown Shell subcommand provides an interface to the XtPopdown function. The
equivalent C code for this subcommand would be:

XtPopdown(popupShell);

The popup Shell Subcommand

<shell> popup <grabKind>

The popup Shell subcommand provides an interface to the XtPopup function. It takes:

grabKind (Siring) One of none, nonexclusive, or exclusive.

The equivalent C code for this subcommand would be:

XtPopup(popupShell, grabKind);

The popupSpringLoaded Shell Subcommand

<shell> popupSpringLoaded

The popupSpringLoaded Shell subcommand provides an interface to the XtPopupSpringLoaded
function. The equivalent C code for this subcommand would be:

XtPopupSpringLoaded(popupShell);

D.15 AsciiSource Subcommands

The freeString AsciiSource Subcommand

<asciiSource> freeString

The freeString AsciiSource subcommand provides an interface to the XawAsciiSourceFreeString
function. The equivalent C code for this subcommand would be:

XawAsciiSourceFreeString(w);

The save AsciiSource Subcommand

<asciiSource> save
==> <successful>

The save AsciiSource subcommand provides an interface to the XawAsciiSave function.
It returns:

successful (Boolean) 1 if the file was saved sucessfully, 0 otherwise.

The equivalent C code for this subcommand would be:

result = XawAsciiSave(w);

233

The saveAsFile AsciiSource Subcommand

<asciiSource> saveAsFile <name>
==> <successful>

The saveAsFile AsciiSource subcommand provides an interface to the XawAsciiSaveAsFile
function. It takes:

name (String) A file name.

It returns:

successful (Boolean) 1 if the file was saved sucessfully, 0 otherwise.

The equivalent C code for this subcommand would be:

successful = XawAsciiSaveAsFile(w, name);

The changed AsciiSource Subcommand

<asciiSource> changed
==> <changed>

The changed AsciiSource subcommand provides an interface to the XawAsciiSourceChanged
function. It returns:

changed (Boolean) 1 if the buffer has been modified, 0 otherwise.

The equivalent C code for this subcommand would be:

changed = XawAsciiSourceChanged(w);

D.16 Dialog Subcommands

The addButton Dialog Subcommand

<dialog> addButton <name> <subcommand>

The addButton Dialog subcommand provides an interface to the XavDialogAddButton

function. It takes:

name (String) A button name.

command (Command String) A command string to be evaluated when the
button is pressed. The command is evaluated in a procedure body with
the following local variables bound:

widget (Command Name) The widget.

calldata (Command Name) The call data.

The equivalent C code for this subcommand would be:

XawDialogAddButton(dialog, name, function, clientData);

234

The getValueString Dialog Subcommand

<dialog> getValueString
==> <value>

The getValueString Dialog subcommand provides an interface to the XawDialogGetValueString
function. It returns:

value (String) The value.

The equivalent C code for this subcommand would be:

value = XawDialogGetValueString(w);

D.17 Form Subcommands

The doLayout Form Subcommand

<form> doLayout <doLayout>

The doLayout Form subcommand provides an interface to the XawFormDoLayout func-
tion. It takes:

doLayout (String) A boolean value.

The equivalent C code for this subcommand would be:

XawFormDoLayout(w, doLayout);

D.18 List Subcommands

The change List Subcommand

<list> change <list> <resize>

The change List subcommand provides an interface to the XawListChange function. It
takes:

list (List) A new list of values.

resize (Boolean) 1 to resize, 0 otherwise.

The equivalent C code for this subcommand would be:

XavListChange(w, list, nitems, longest, resize);

The unhighlight List Subcommand

<list> unhighlight

The unhighlight List subcommand provides an interface to the XawListUnhighlight
function. The equivalent C code for this subcommand would be:

XawListUnhighlight (w);

235

The highlight List Subcommand

<list> highlight <item>

The highlight List subcommand provides an interface to the XawListHighlight func-
tion. It takes:

item (Integer) The item number in the list.

The equivalent C code for this subcommand would be:

XavListHighlight(w, item);

The showCurrent List Subcommand

<list> showCurrent
==> <element>

The showCurrent List subcommand provides an interface to the XawListShowCurrent
function. It returns:

element (String) The current element in the list.

The equivalent C code for this subcommand would be:

element = XawListShowCurrent(w);

D.19 Paned Subcommands

The setMinMax Paned Subcommand

<paned> setMinMax <min> <max>

The setMinMax Paned subcommand provides an interface to the XawPanedSetMinMax
function. It takes:

min (Integer) A minimum.

max (Integer) A maximum.

The equivalent C code for this subcommand would be:

XawPanedSetMinMax(w, min, max);

The getMinMax Paned Subcommand

<paned> getMinMax
==> <min> <max>

The getMinMax Paned subcommand provides an interface to the XawPanedGetMinMax
function. It returns:

min (Integer) The minimum.

max (Integer) The maximum.

The equivalent C code for this subcommand would be:

XawPanedGetMinMax(w, &minReturn, &maxReturn);

236

The setRefigureMode Paned Subcommand

<paned> setRefigureMode <mode>

The setRef igureMode Paned subcommand provides an interface to the XawPanedSetRef igureMode
function. It takes:

mode (Boolean) A refigure mode.

The equivalent C code for this subcommand would be:

XawPanedSetRefigureMode(w, mode);

The getNumSub Paned Subcommand

<paned> getNumSub
==> <sumSub>

The getNumSub Paned subcommand provides an interface to the XawPanedGetNumSub
function. It returns:

numSub (Integer) The numSub.

The equivalent C code for this subcommand would be:

numSub = XawPanedGetNumSub(w);

The allowResize Paned Subcommand

<paned> allowResize

The allowResize Paned subcommand provides an interface to the XawPanedAllowResize
function. The equivalent C code for this subcommand would be:

XavPanedAllowResize(w, allowResize);

D.20 Scrollbar Subcommands

The setThumb Scrollbar Subcommand

<scrollbar> setThumb <top> <shown>

The setThumb Scrollbar subcommand provides an interface to the XawScrollbarSetThumb
function. It takes:

top (Float) A value between 0 and 1.

shown (Float) A value between 0 and 1.

The equivalent C code for this subcommand would be:

XawScrollbarSetThumb(scrollbar, top, shown);

237

D.21 SimpleMenu Subcommands

The getActiveEntry SimpleMenu Subcommand

<simpleMenu> getActiveEntry
==> <widget>

The getActiveEntry SimpleMenu subcommand provides an interface to the
XawSimpleMenuGetActiveEntry function. It returns:

widget (Command Name) The name of the active entry Widget object com-
mand.

The equivalent C code for this subcommand would be:

widget = XawSimpleMenuGetActiveEntry(w);

The clearActiveEntry SimpleMenu Subcommand

<simpleMenu> clearActiveEntry

The clearActiveEntry SimpleMenu subcommand provides an interface to the
XawSimpleMenuClearActiveEntry function. The equivalent C code for this subcom-
mand would be:

XawSimpleMenuClearActiveEntry(w);

D.22 Text Subcommands

The display Text Subcommand

<text> display

The display Text subcommand provides an interface to the XawTextDisplay function.
The equivalent C code for this subcommand would be:

XawTextDisplay(w);

The enableRedisplay Text Subcommand

<text> enableRedisplay

The enableRedisplay Text subcommand provides an interface to the XawTextEnableRedisplay
function. The equivalent C code for this subcommand would be:

XawTextEnableRedisplay(w);

The disableRedisplay Text Subcommand

<text> disableRedisplay

The disableRedisplay Text subcommand provides an interface to the XawTextDisableRedisplay
function. The equivalent C code for this subcommand would be:

XawTextDisableRedisplay(w);

238

The setSelectionArray Text Subcommand

<text> setSelectionArray <sarray>

The setSelectionArray Text subcommand provides an interface to the XawTextSetSelectionArray
function. It takes:

sarray (List) A list of selection types. A selection type is one of null,
position, char, word, line, paragraph, or all.

The equivalent C code for this subcommand would be:
XawTextSetSelectionArray(w, sarray);

The getSelectionPos Text Subcommand

<text> getSelectionPos
==> <begin> <end>

The getSelectionPos Text subcommand provides an interface to the XawTextGetSelectionPos
function. It returns:

begin (Integer) The beginning of the selection.

end (Integer) The end of the selection.

The equivalent C code for this subcommand would be:
XawTextGetSelectionPos(w, &begin, &end);

The setSource Text Subcommand

<text> setSource <source> <position>

The setSource Text subcommand provides an interface to the XawTextSetSource func-
tion. It takes:

source (Command Name) A name of a TextSource object command.

position (Integer)

The equivalent C code for this subcommand would be:
XawTextSetSource(w, source, position);

The replace Text Subcommand

<text> replace <start> <end> <text>
==> <status>

The replace Text subcommand provides an interface to the XawTextReplace function.
It takes:

start (Integer) The start of the region in the buffer to be replaced.

end (Integer) The end of the region in the buffer to be replaced.

text (String) The text to replace the region in the buffer.

It returns:

status (Integer) The status.

The equivalent C code for this subcommand would be:
status = XawTextReplace(w, start, end, &text);

239

The topPosition Text Subcommand

<text> topPosition
-=> <position>

The topPosition Text subcommand provides an interface to the XawTextTopPosition
function. It returns:

position (Integer) The position of the top of the window in the buffer.

The equivalent C code for this subcommand would be:

position = XawTextTopPosition(w);

The setInsertionPoint Text Subcommand

<text> setInsertionPoint <position>

The setInsertionPoint Text subcommand provides an interface to the XawTextSet Insert ionPoint
function. It takes:

position (Integer) A position in the buffer.

The equivalent C code for this subcommand would be:

XawTextSetInsertionPoint(w, position);

The getInsertionPoint Text Subcommand

<text> getInsertionPoint
==> <position>

The getInsertionPoint Text subcommand provides an interface to the XawTextGetInsertionPoint
function. It returns:

position (Integer) The position of the insertion point in the buffer.

The equivalent C code for this subcommand would be:

position = XawTextGetInsertionPoint(w);

The unsetSelection Text Subcommand

<text> unsetSelection

The unsetSelection Text subcommand provides an interface to the XawTextUnsetSelect ion

function. The equivalent C code for this subcommand would be:

XawTextUnsetSelection(w);

240

The setSelection Text Subcommand

<text> setSelection <left> <right>

The setSelection Text subcommand provides an interface to the XawTextSetSelection
function. It takes:

left (Integer) A starting text position.

right (Integer) An ending text position.

The equivalent C code for this subcommand would be:

XawTextSetSelection(w, left, right);

The invalidate Text Subcommand

<text> invalidate <from> <to>

The invalidate Text subcommand provides an interface to the XawTextInvalidate
function. It takes:

from (Integer) A starting text position.

to (Integer) An ending text position.

The equivalent C code for this subcommand would be:

XawTextInvalidate(w, from, to);

The getSource Text Subcommand

<text> getSource
==> <widget>

The getSource Text subcommand provides an interface to the XawTextGetSource func-
tion. It returns:

widget (Command Name) The name of the TextSource object command.

The equivalent C code for this subcommand would be:

widget = XawTextGetSource(w);

The search Text Subcommand

<text> search <dir> <text>
==> <position>

The search Text subcommand provides an interface to the XawTextSearch function. It
takes:

dir (String) One of left or right.

text (String) The search key.

It returns:

position (Integer)

The equivalent C code for this subcommand would be:

position = XawTextSearch(w, dir, &text);

241

The displayCaret Text Subcommand

<text> displayCaret <visible>

The displayCaret Text subcommand provides an interface to the XawTextDisplayCaret
function. It takes:

visible (Boolean) 1 to make the caret visible, 0 otherwise.

The equivalent C code for this subcommand would be:

XawTextDisplayCaret(w, visible);

D.23 TextSink Subcommands

The displayText TextSink Subcommand

<textSink> displayText <position> <textPositionl> <textPosition2> \
<highlight>

The displayText TextSink subcommand provides an interface to the XawTextSinkDisplayText
function. It takes:

position (List) A list of two cursor coordinates.

textPositionl (Integer) A text position.

textPosition2 (Integer) A text position.

highlight (Boolean) 1 to highlight, 0 otherwise.

The equivalent C code for this subcommand would be:

XawTextSinkDisplayText(w, x, y, posl, pos2, highlight);

The insertCursor TextSink Subcommand

<textSink> insertCursor <position> <state>

The insertCursor TextSink subcommand provides an interface to the XawTextSinkIns ert Cursor
function. It takes:

position (Integer) A list of two cursor coordinates.

state (String) One of on or off.

The equivalent C code for this subcommand would be:

XawTextSinkInsertCursor(v, x, y, state);

The clearToBackground TextSink Subcommand

<textSink> clearToBackground <rect>

The clearToBackground TextSink subcommand provides an interface to the

XawTextSinkClearToBackground function. It takes:

rect (List) A list of four numbers: x, y, w, h.

The equivalent C code for this subcommand would be:

XawTextSinkClearToBackground(w, rect.x, rect.y,
rect.vidth, rect.height);

242

The f indPosition TextSink Subcommand
<textSink> findPosition <fromPos> <fromX> <width> <stopAtWordBreak>
==> <position> <width> <height>

The f indPosition TextSink subcommand provides an interface to the XawTextSinkFindPosit ion
function. It takes:

fromPos (Integer) A text position.
fromX (Integer) A from x coordinate.

width (Integer) A width.

stopAtWordBreak (Boolean)

It returns:

position (Integer) The position.

width (Integer) The width.
height (Integer) The height.

The equivalent C code for this subcommand would be:
XawTextSinkFindPosition(w, fromPos, fromX, width, stopAtWordBreak,

&pos, &widthReturn, &height);

The findDistance TextSink Subcommand

<textSink> findDistance <fromPos> <fromX> <toPos>
==> <height>

The findDistance TextSink subcommand provides an interface to the XawTextSinkFindDistance
function. It takes:

fromPos (Integer) A text position.

fromX (Integer) A from x coordinate.
toPos (Integer) A text position.

It returns:

height (Integer) The height.

The equivalent C code for this subcommand would be:
XawTextSinkFindDistance(w, fromPos, fromX, toPos,

&width, &pos, &height);

The resolve TextSink Subcommand
<textSink> resolve <fromPos> <fromX> <width>

==> <position>

The resolve TextSink subcommand provides an interface to the XawTextSinkResolve
function. It takes:

fromPos (Integer) A text position.

fromX (Integer) A from x coordinate.
width (Integer) A width.

It returns:

position (Integer) The text position.

The equivalent C code for this subcommand would be:
XawTextSinkResolve(w, fromPos, fromX, width, &pos);

243

The maxLines TextSink Subcommand

<textSink> maxLines <height>
==> <lines>

The maxLines TextSink subcommand provides an interface to the XawTextSinkMaxLines
function. It takes:

height (Integer) A height.

It returns:

lines (Integer) The number of lines.

The equivalent C code for this subcommand would be:

lines = XavTextSinkMaxLines(w, height);

The maxHeight TextSink Subcommand

<textSink> maxHeight <lines>
==> <height>

The maxHeight TextSink subcommand provides an interface to the XawTextSinkMaxHeight
function. It takes:

lines (Integer) A number of lines.

It returns:

height (Integer) The height.

The equivalent C code for this subcommand would be:

height = XawTextSinkMaxHeight (w, lines);

The setTabs TextSink Subcommand

<textSink> setTabs <tabs>

The setTabs TextSink subcommand provides an interface to the XawTextSinkSetTabs
function. It takes:

tabs (List) A list of integer tab stops.

The equivalent C code for this subcommand would be:

XawTextSinkSetTabs(w, tabCount, tabs);

The getCursorBounds TextSink Subcommand

<textSink> getCursorBounds
==> <rect>

The getCursorBounds TextSink subcommand provides an interface to the XawTextSinkGetCursorBounds
function. It returns:

rect (List) The cursor bounds as a list of four numbers: x, y, w, h.

The equivalent C code for this subcommand would be:

XavTextSinkGetCursorBounds(w, &rect);

244

D.24 TextSource Subcommands

The read TextSource Subcommand

<textSource> read <positionVar> <length>
==> <text>

The read TextSource subcommand provides an interface to the XawTextSourceRead
function. It takes:

positionVar (Variable Name) A variable holding a position value that is
updated as the read progresses.

length (Integer) The number if bytes to read.

It returns:

text (String) The text read.

The equivalent C code for this subcommand would be:
pos = XawTextSourceRead(w, pos, &text, length);

The replace TextSource Subcommand

<textSource> replace <start> <end> <text>
==> <status>

The replace TextSource subcommand provides an interface to the XawTextSourceReplace
function. It takes:

start (Integer) A starting text position.

end (Integer) An ending text position.

text (Siring) The text to replace the region in the buffer.

It returns:

status (Integer) The status.

The equivalent C code for this subcommand would be:
status = XavTextSourceReplace(w, start, end, &text);

The scan TextSource Subcommand

<textSource> scan <position> <type> <dir> <count> <include>
==> <position>

The scan TextSource subcommand provides an interface to the XawTextSourceScan
function. It takes:

position (Integer) A text position.

type (String) One of positions, whiteSpace, eol, paragraph, or all.

dir (String) One of left or right.

count (Integer) A count.

include (Boolean)

It returns:

position (Integer) The position.

The equivalent C code for this subcommand would be:
position = XavTextSourceScan(w, position, type, dir,

count, include);

245

The search TextSource Subcommand

<textSource> search <position> <dir> <text>
==> <position>

The search TextSource subcommand provides an interface to the XawTextSourceSearch
function. It takes:

dir (String) One of left or right.

text (String) The search key.

It returns:

position (Integer) The position.

The equivalent C code for this subcommand would be:

position = XawTextSourceSearch(w, position, dir, &text);

The convertSelection TextSource Subcommand

<textSource> convertSelection <selection> <target> <type>
==> <converted>

The convertSelection TextSource subcommand provides an interface to the
XawTextSourceConvertSelection function. It takes:

selection (Atom) A selection.

target (Atom) A target.

type (Type) A type.

It returns:

converted (Boolean) 1 if successful, 0 otherwise.

The equivalent C code for this subcommand would be:

converted = XawTextSourceConvertSelection(w, &selection, &target,
&type, &value, &length,
&format);

The setSelection TextSource Subcommand

<textSource> setSelection <start> <end> <selection>

The setSelection TextSource subcommand provides an interface to the XawTextSourceSetSelection
function. It takes:

start (Integer) A starting text position.

end (Integer) An ending text position.

selection (Atom) A selection.

The equivalent C code for this subcommand would be:

XawTextSourceSetSelection(w, start, end, selection);

246

D.25 Toggle Subcommands

The changeRadioGroup Toggle Subcommand

<toggle> changeRadioGroup <radioGroup>

The changeRadioGroup Toggle subcommand provides an interface to the XawToggleChangeRadioGroup
function. It takes:

radioGroup (Command Name) A name of a group Widget object command.

The equivalent C code for this subcommand would be:

XavToggleChangeRadioGroup(w, radioGroup);

The getCurrent Toggle Subcommand

<toggle> getCurrent
==> <group>

The getCurrent Toggle subcommand provides an interface to the XawToggleGetCurrent
function. It returns:

group (Command Name) The name of the current Widget object command.

The equivalent C code for this subcommand would be:

group = XawToggleGetCurrent(radioGroup);

The setCurrent Toggle Subcommand

<toggle> setCurrent <radioData>

The setCurrent Toggle subcommand provides an interface to the XavToggleSetCurrent
function. It takes:

group (Command Name) A Widget object command name.

The equivalent C code for this subcommand would be:

XawToggleSetCurrent(radioGroup, radioData);

The unsetCurrent Toggle Subcommand

<toggle> unsetCurrent

The unsetCurrent Toggle subcommand provides an interface to the XawToggleUnsetCurrent
function. The equivalent C code for this subcommand would be:

XawToggleUnsetCurrent(radioGroup);

247

D.26 Tree Subcommands

The forceLayout Tree Subcommand

<tree> forceLayout

The forceLayout Tree subcommand provides an interface to the XawTreeForceLayout
function. The equivalent C code for this subcommand would be:

XawTreeForceLayout (tree);

D.27 Viewport Subcommands

The setLocation ViewPort Subcommand

<viewport> setLocation <location>

The setLocation ViewPort subcommand provides an interface to the XawViewportSetLocation
function. It takes:

location (Lisi) A list of two floats.

The equivalent C code for this subcommand would be:

XavViewportSetLocation(gw, xoff, yoff);

The setCoordinates ViewPort Subcommand

<viewport> setCoordinates <position>

The setCoordinates ViewPort subcommand provides an interface to the XawViewportSetCoordinates
function. It takes:

position (List) A pair of coordinates: x, y.

The equivalent C code for this subcommand would be:

XawViewportSetCoordinates(gw, x, y);

248

Appendix E

The vspuzzle Example

Application

E.1 The vsPuzzle.h In-Band Module Header File

#ifndef _VSPUZZLE_H_
#define _VSPUZZLEH_

#ifdef __GNUG__
#pragma interface
#endif

extern "C" {
#include <stdlib.h>
}
#include <vs/vsEntity.h>
#include <vs/vsXdrBlock.h>
#include <vs/vsVideoFrame.h>
#include <vs/vsFilter.h>

extern "C" {
extern int VsPuzzlePositionCmd(ClientData,Tcl_Interp*,int,char*[]);
extern int VsPuzzleScrambleCmd(ClientData,Tcl_Interp*,int,char*[]);

}

class VsPuzzle :public VsFilter {
int config[6][6], x, y, dim;
Boolean solved;
friend int VsPuzzlePositionCmd(ClientData,TclInterp*,int,char*[]);
friend int VsPuzzleScrambleCmd(ClientData,TclInterp*,int,char*[]);
static VsEntity* Creator(TclInterp*,VsEntity*,const char*);
static VsSymbol* classSymbol;
VsPuzzle(const VsPuzzlet);
VsPuzzle& operator=(const VsPuzzle&);

protected:
virtual Boolean WorkRequiredP(VsPayload* p);

public:
VsPuzzle(TclInterp*, VsEntity*, const char*);
virtual ~VsPuzzle();
virtual VsSymbol* ClassSymbol() const { return classSymbol; };
virtual void* ObjPtr(const VsSymbol*);
virtual Boolean Work();
static VsPuzzle* DerivePtr(VsObj*);
static int Get(TclInterp*, char*, VsPuzzle**);
static void InitInterp(TclInterp*);

};

inline VsPuzzle*
VsPuzzle::DerivePtr(VsObj* o) {

return (VsPuzzle*)o->ObjPtr(classSymbol);

249

}

inline int
VsPuzzle::Get(Tcl_Interp* in, char* nm, VsPuzzle** pp) {

return VsTcl0bj::Get(in, nm, classSymbol, (void**)pp);
}

tendif /* _VSPUZZLE_H_ */

E.2 The vsPuzzle.cc In-Band Module Source File

#ifdef __GNUG__
#pragma implementation
#endif

extern "C" {
#include <string.h>
}
#include <vs/vslib.h>
#include <vs/vsVideoFrame.h>
#include <vs/vsPuzzle.h>
#include <vs/vsTclClass.h>

int
VsPuzzlePositionCmd(ClientData cd,TclInterp* in,int argc,char* argv []){

VsPuzzle* p = (VsPuzzle*)cd;

/* Check parameter count */
if (argc > 2 11 argc < 1)
return VsTclErrArgCnt(in, argv [01], "?position?");

/* Set new position if supplied */
if (argc == 2) {

/* Get position parameter and check it */
int x, y;
if (VsGetIntPair(in, argv[1], &x, &y) != TCL_OK) return TCLERROR;
if (x >= p->dim 11 x < 0)
return VsTclErrBadVal(in, "x position within range", argv[11]);

if (y >= p->dim II y < 0)
return VsTclErrBadVal(in, "y position within range", argv[2]);

if (x-p->x != 1 t& x-p->x != -1 && y-p->y != 1 && y-p->y != -1)
return VsTclErrBadVal(in, "x or y adjacent", "none");

if (x-p->x != 0 && y-p->y != 0)
return VsTclErrBadVal(in, "x or y adjacent", "both");

/* Change the position */
p->config[p->y] [p->x] = p->config[y] [x];
p->x = x;
p->y = y;p->configEp->y][p->x] = 0;

/* Check if the puzzle is solved */
p->solved = True;
for (int k=O; k<p->dim*p->dim; k++)
if (p->config[k/p->dim] [k*/p->dim]!=k) p->solved = False;

}

return VsReturnIntPair(in, p->x, p->y);

int
VsPuzzleScrambleCmd(ClientData cd,TclInterp* in,int argc,char* argv []) {
VsPuzzle* p = (VsPuzzle*)cd;

/* Get the dimemsion parameter */
int dim;
if (argc != 2) return VsTclErrArgCnt(in, argv[O], "dimension");
if (VsGetInt(in, argv[yll], Adim) != TCLOK) return TCLERROR;

250

if (dim > 6 11 dim < 3)
return VsTclErrBadVal(in, "integer from 3 to 6", argv[1]);

/* Change dimensions if necessary */
if (p->dim != dim) {
p->dim = dim;
p->x = 0;
p->y = 0;

}

/* Initialize The configuration matrix */
for (int k = O; k < dim*dim; k++)
p->config[k/dim] [k%dim] = k;

/* Scramble the puzzle */
for (k = 0; k < dim*dim; k++) {

int x = rand() % dim;
int y = rand() % dim;
int swap = p->config[k/dim][kdim];
p->config[k/dim] [k%dim] = p->config[x] [y];
p->config[x][y] = swap;

}

/* Figure out where the hole is */
for (k = 0; k < dim*dim; k++)
if (p->config[k/dim] [kdim]==O) {
p->x = kXdim;
p->y = k/dim;

}

/* Check if the puzzle is solved */
p->solved = True;
for (k=O; k<p->dim*p->dim; k++)
if (p->config[k/p->dim] [kp->dim] !=k) p->solved = False;

return VsReturnNull(in);

VsPuzzle::VsPuzzle(TclInterp* in, VsEntity* pr, const char* nm)
:VsFilter(in,pr,nm),dim(3),solved(True),x() ,y(O)

{
CreateCommand("position",VsPuzzlePositionCmd, (ClientData) this,O);
CreateCommand("scramble" ,VsPuzzleScrambleCmd, (ClientData)this,0O);
for (int i=O; i<dim*dim; i++)

config[i/dim][idim] =i;
}

VsPuzzle::~VsPuzzle() {
}

void*
VsPuzzle::ObjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsFilter::ObjPtr(cl);
}

Boolean
VsPuzzle::WorkRequiredP(VsPayload *p) {

return !solved && VsVideoFrame::DerivePtr(p) != 0;
}

Boolean
VsPuzzle::Work() {

VsVideoFrame* frame = VsVideoFrame::DerivePtr(payload);

if (!solved) {
caddrt image_data = frame->Data().Ptr() ;
int dx = frame->Width()/dim;
int dy = frame->Height()/dim;
int bytesPerLine = frame->BytesPerLine();
VsXdrBlock newData(frame->Data().Fore());
caddrt compute-data = newData.Ptr();

251

for (int j=O; j<dim; j++) {
for (int i=O; i<dim; i++) {

int c = config[j][i];
if (c == 0) {
caddrt dst = compute_data + j*dy*bytesPerLine + i*dx;
caddr-t dstEnd = dst + dy*bytesPerLine;
do {
memset(dst, 16, dx);
dst += bytesPerLine;

} while (dst != dstEnd);
} else {

caddr.t src=imagedata+c/dim*dy*bytesPerLine+c%dim*dx;
caddrjt dst = computedata + j*dy*bytesPerLine + i*dx;
caddr3t dstEnd = dst + dy*bytesPerLine;
do {
memcpy(dst, src, dx);
src += bytesPerLine;
dst += bytesPerLine;

} while (dst != dstEnd);

frame->Data() = newData;
}
return VsFilter::Work();

VsEntity*
VsPuzzle::Creator(TclInterp* in,

return new VsPuzzle(in, pr, nm):
VsEntity* pr, const char* nm) {

VsSymbol* VsPuzzle::classSymbol;

void
VsPuzzle::InitInterp(TclInterp* in) {

classSymbol = InitClass(in, Creator, "VsPuzzle", "VsFilter");
I

E.3 The vsPuzzle.tcl Module Script File

VsPuzzle classProc panel
apply Viewport $w \
-height 200 \
-allowVert true \
$args

{w orient args} {

Form $w.form

Label $w.form.label \
-label "Puzzle" \
-borderWidth 0

VsLabeledScrollbar $w.form.dimension \
-label "Dimension" \
-value [$self dimension] \
-converter "vsRoundingLinearConverter 3 10" \
-inverter "vsLinearInverter 3 10" \
-continuous [true] \
-callback "$self dimension" \
-fromVert $w.form.label

VsLabeledScrollbar $w.form.timeStep \
-label "TimeStep" \
-value [$self timeStep] \
-converter "vsLinearConverter 0 1" \
-inverter "vsLinearInverter 0 1" \
-continuous [true] \

252

-callback "$self timeStep" \
-fromVert $w.form.dimension

Command $w.form.scramble \
-label "Scramble" \
-callback "$self scramble" \
-fromVert $w.form.timeStep

Command $w.form.solve \
-label "Solve" \
-callback "$self solve 1" \
-fromVert $w.form.timeStep \
-fromHoriz $w.form.scramble

}

E.4 The vspuzzle Application Script

proc Puzzle {w m args} {
set dimension [keyarg -dimension $args 4]
set scale [keyarg -scale $args 2]
set args [keyargs {-dimension -scale} $args exclude]

apply Form $w \
$args

VsScreen $vw.screen \
-scale $scale \
-resizable true

Command $w.scramble \
-label "Scramble" \
-callback "$m.puzzle scramble" \
-fromVert $w.screen

Command $w.dismiss \
-label "Dismiss" \
-callback "catch {vs destroy}; exit" \
-fromVert $w.scramble

Command $w.controlPanel \
-label "Control Panel" \
-callback "VsPanelShell $w.controlPanel.shell -obj $m" \
-fromVert $w.scramble \
-fromHoriz $w.dismiss

$w.screen overrideTranslations "<BtnDown>: tcl($m position)"

VsEntity $m
$m set w $w
$m proc position {} {

set clickpos [,event position]
set width [$w.screen getValues -width]
set height [$w.screen getValues -height]
set x [expr {[lindex $clickpos O]*[$self.puzzle dimension]/$width}]
set y [expr {Clindex $clickpos 11* [$self.puzzle dimension]/$height}]
$self.puzzle position [list $x $y]

}
VsSunVfcSource $m.source \
-scale $scale

VsPuzzle $m.puzzle \
-dimension $dimension \
-input "bind $m.source.output"

VsWindowSink $m.sink \
-widget $w.screen \
-input "bind $m.puzzle.output"

proc main {} {
global argv errorInfo

xt appInitialize appContext "Puzzle" argv {}

set w [lindex $argv 0]
set args [lrange $argv 1 end]

253

$w setValues -allowShellResize true

vs appInitialize appContext vs

apply Puzzle $w.puzzle vs.puzzle \
$args

$w realize
vs start

while {[catch {appContext mainLoop} msg]} {
VsErrorShell $w.err \

-summary $msg \
-detail $errorInfo

}

main

254

Bibliography

[1] C. J. Lindblad, D. J. Wetherall, D. L. Tennenhouse, "The VuSystem: A Program-
ming System for Visual Processing of Digital Video," Proceedings of ACM Multime-
dia 94, October 1994.

[2] C. J. Lindblad, D. J. Wetherall, W. F. Stasior, J. F. Adam, H. H. Houh, M. Ismert, D.
R. Bacher, B. M. Phillips, D. L. Tennenhouse, "ViewStation Applications: Intelligent
Video Processing Over a Broadband Local Area Network," Proceedings of the 1994
USENIX Symposium on High Speed Networking, August 1994.

[3] D. Bacher, "Content-Based Indexing of Captioned Video," SB Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 1994.

[4] D. L. Tennenhouse, J. Adam, D. Carver, H. Houh, M. Ismert, C. Lindblad, W. Sta-
sior, D. Weatherall, D. Bacher, and T. Chang, "A Software-Oriented Approach to the
Design of Media Processing Environments," Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, May 1994.

[5] J. F. Adam, H. H. Houh, M. Ismert, and D. L. Tennenhouse, "A Network Architec-
ture for Distributed Multimedia Systems," Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, May 1994.

[6] B. Phillips, "A Distributed Programming System for Media Applications," SM The-
sis Proposal, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, May 1994.

[7] D. Wetherall, "A Visual Programming System for Media Computation," SM Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, MA, September 1994.

[8] W. Stasior, "Visual Processing for Seamless Interactive Computing," The ViewSta-
tion Collected Papers, MIT/LCS/TR 590, MIT Laboratory for Computer Science,
Cambridge, MA, November 1993.

[9] J. F. Adam, "The Vidboard: A Video Capture and Processing Peripheral for a
Distributed Multimedia System," Proceedings of the ACM Multimedia Conference,
August 1993.

[10] T. M. Levergood, A. C. Payne, J. Gettys, G. W. Treese, and L. C. Stewart, "Au-
dioFile: A Network-Transparent System for Distributed Audio Applications," Pro-
ceedings of the USENIX Summer Conference, June 1993

[11] Apple Computer Inc., "Hypercard (Version 2.2)," Apple Computer Inc., 1993.

[12] Apple Computer Inc., "Inside Macintosh: Quicktime, Inside Macintosh: Quicktime
Components," Addison Wesley, 1993.

255

[13] SMPTE Task Force on Headers/Descriptors, "SMPTE Header/Descriptor Task
Force: Final Report," SMPTE Journal, 101:6(411-429), June 1992

[14] "Extensions to the IEEE Standard Portable Operating System Interface for Com-
puter Environments for the Support of Realtime Applications," IEEE Std 1003.4-
1993.

[15] N. Abramson and W. Bender, "Context-Sensitive Multimedia," Proceedings of the
SPIE, Vol. 1785, September 1992.

[16] ISO/IEC JTC1/SC2/W10, "Digital Compression and Coding of Continuous-Tone
Still Images," IEC Draft International Standard 10918-1, 1992.

[17] Microsoft Corporation, "Microsoft Video For Windows Users Guide," Microsoft Cor-
poration, Redmond, WA, 1992.

[18] J. K. Ousterhout, "Tk: An X11 Toolkit Based on the Tcl Language," Computer
Science Division (EECS), University of California, Berkeley, CA, January 1991.

[19] D. P. Anderson, P. Chan, "Comet: A Toolkit for Multiuser Audio/Video Applica-
tions," Computer Science Division (EECS), University of California, Berkeley, CA,
October 1991.

[20] J. Escobar, D. Deutsch, C. Partridge, "A Multi-Service Flow Synchronization Pro-
tocol," BBN Systems and Technologies Division, Cambridge, MA, March 1991.

[21] ISO/IEC JTC1/SC29, "Coded Representation of Picture, Audio, and Multime-
dia/Hypermedia Information," Committee Draft of Standard ISO/IEC 11172, 1991.

[22] J. Rees and W. Clinger, eds., "The Revisedt4 Report on the Algorithmic Language
Scheme," Lisp Pointers, 4(3), ACM, July-September 1991.

[23] R. G. Herrtwich, "Time Capsules: An Abstraction for Access to Continuous-Media
Data," Proceedings of the 11th Real-Time Systems Symposium, IEEE Computer
Society, 11-20, December 1990.

[24] D. P. Anderson, R. Govindan, and G. Homsy, "Abstractions For Continuous Media
In A Network Window System," Technical Report No. UCB/CSD 90/596, Computer
Science Division (EECS), University of California, Berkeley, CA, September 1990.

[25] A. Hopper, "Pandora - an Experimental System for Multimedia Applications," Op-
erating Systems Review, 24(2):19-34, April 1990.

[26] J. K. Ousterhout, "Tcl: An Embedded Command Language," Computer Science
Division (EECS), University of California, Berkeley, CA, January 1990.

[27] D. L. Mills, "On the Accuracy and Stability of Clocks Synchronized by the Network
Time Protocol in the Internet System," ACM Computer Communication Review,
20(1):65-75, January 1990.

[28] G. L. Steel Jr., "Common Lisp the Language," Digital Press, 1990.

[29] C. Williams and J. Rasure, "A visual language for image processing," IEEE Com-
puter Society Workshop on Visual Languages, Skokie, Illinois, 1990.

[30] P. J. Asenta and R. R. Swick, "X Window System Toolkit: The Complete Program-
mer's Guide and Specification," Digital Press, 1990.

256

[31] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R.
Gurwitz, A. van Dam, "The Application Visualization System: A computational
environment for scientific visualization," IEEE Computer Graphics and Applications,
30-42, July 1989.

[32] J. F. Bartlett, "Scheme->C: a Portable Scheme-to-C Compiler," Digital WRL Re-
search Report 89/1, January 1989

[33] W. Bender and P. Chesnais, "Network Plus," Proceedings of the SPIE Electronic
Image Devices and Systems Symposium, 900:81-86, Los Angeles, CA, January 1988.

[34] C. A. Csuri, S. Dyer, J. Faust, and R. Marshall, "A Flexible Integrated Graphics
Environment for Supercomputers and Workstations," Science and Engineering on
Cray Supercomputers, Cray Research, Inc., 533-548, 1987.

[35] D. Ritchie, "A Stream Input-Output System," AT& T Bell Laboratories Technical
Journal, 63(8):1897-1910, October 1984.

[36] A. Black, "An Asymmetric Stream Communication System," Operating Systems
Review, 17(5):4-10, October 1983.

257

258

Index

VsReturnInt procedure, 191

addActionHook subcommand
to XtAppContext object commands,

204
addButton subcommand

to Dialog object commands, 234
addCallback subcommand

to Widget object commands, 230
addGlobalActions subcommand

to XtAppContext object commands,
212

addInput subcommand
to XtAppContext object commands,

205
addInstance subcommand

to VsTclClass object commands,
163

addtimeout subcommand
to XtAppContext object commands,

206
addWorkProc subcommand

to XtAppContext object commands,
206

alias subcommand
to VsTclObj object commands, 159

allowResize subcommand
to Paned object commands, 237

appInitialize subcommand
to the vs object command, 159
to the xt command, 203

applicationContext subcommand
to Display object commands, 213
to Widget object commands, 222

ApplicationShell object command, 203
apply command, 170
AsciiSink object command, 203
AsciiSource object command

changed subcommand, 234
freeString subcommand, 233
save subcommand, 233
saveAsFile subcommand, 234

AsciiSrc object command, 203
AsciiText object command, 203
assemble command, 170

assembleDestroy command, 170
audioserver subcommand

to VsDecAudioSink object com-
mands, 133

to VsDecAudioSource object com-
mands, 111

augmentTranslations subcommand
to Widget object commands, 222

backlog subcommand
to VsTcpListener object commands,

158
bind subcommand

to VsInputPort object commands,
167

Box object command, 203
brightness subcommand

to VsXVideoSource object com-
mands, 129

byteOrder subcommand
to VsColor8to24 object commands,

140
to VsJpegD object commands, 142
to VsSunVfcSource object com-

mands, 118
to VsTestVideoSource object com-

mands, 121
to VsVidboardSource object com-

mands, 125

callback subcommand
to VsEntity object commands, 165

callCallbacks subcommand
to Widget object commands, 231

captions subcommand
to VsVidboardSource object com-

mands, 124
cellsPerBurst subcommand

to VsVidboardSource object com-
mands, 128

change subcommand
to List object commands, 235

changed subcommand
to AsciiSource object commands,

234

259

changeRadioGroup subcommand
to Toggle object commands, 247

channel subcommand
to VsChannelSelect object com-

mands, 139
to VsChannelSet object commands,

139
to VsExternalSink object com-

mands, 134
to VsExternalSource object com-

mands, 112
to VsRateMeter object commands,

147
checkSubclassFlag subcommand

to Object object commands, 218
children subcommand

to VsEntity object commands, 165
class subcommand

to Object object commands, 219
to VsTclObj object commands, 159

classCommands subcommand
to VsTclClass object commands,

163
classOptions subcommand

to VsTclClass object commands,
163

classProc subcommand
to VsTclClass object commands,

163
classProcs subcommand

to VsTclClass object commands,
164

classSymbol member function, 179
clearActiveEntry subcommand

to SimpleMenu object commands,
238

clearToBackground subcommand
to TextSink object commands, 242

Clock object command, 203
close subcommand

to Display object commands, 213
color subcommand

to VsSunVfcSource object com-
mands, 116

to VsSunVideoSource object com-
mands, 119

to VsVidboardSource object com-
mands, 123

colorSpace subcommand
to VsVidboardSource object com-

mands, 123
Command object command, 203
Composite object command, 203

manageChild subcommand, 232

manageChildren subcommand, 232
unmanageChild subcommand, 232
unmanageChildren subcommand, 232

configCallback subcommand
to VsTclObj object commands, 160

connect subcommand
to VsOutputPort object commands,

167
Constraint object command, 203
contrast subcommand

to VsXVideoSource object com-
mands, 130

convert subcommand
to VsExternalSink object com-

mands, 135
convertSelection subcommand

to TextSource object commands,
246

copies
deep, 55
shallow, 55

Core object command, 203
create subcommand

to VsTclClass object commands,
164

createApplicationContext subcommand
to the xt command, 203

CreateCommand member function, 178
createManagedWidget subcommand

to ObjectClass object commands,
216

CreateOptionCommand member func-
tion, 178

createPopupShell subcommand
to ShellClass object commands, 218

createShell subcommand
to Display object commands, 212

createWidget subcommand
to ObjectClass object commands,

216
Creator static member function, 180
cycle subcommand

to VsTestVideoSource object com-
mands, 120

cycles subcommand
to VsExercise object commands,

140

date command, 168
debug command, 171
deep copies, 55
delay subcommand

to VsReTime object commands, 148
depth subcommand

260

to VsBuffer object commands, 138
to VsSunVfcSource object com-

mands, 117
to VsSunVideoSource object com-

mands, 119
to VsTestVideoSource object com-

mands, 120
to VsVidboardSource object com-

mands, 123
DerivePtr static member function, 180
destroy subcommand

to Event object commands, 215
to Object object commands, 219
to VsTclObj object commands, 160
to XtAppContext object commands,

207
destroyCallback subcommand

to VsTclObj object commands, 160
Dialog object command, 203

addButton subcommand, 234
getValueString subcommand, 235

dimension subcommand
to VsPuzzle object commands, 144

direction subcommand
to VsBlockShift object commands,

153
to VsWipe object commands, 158

disableRedisplay subcommand
to Text object commands, 238

disconnect subcommand
to VsOutputPort object commands,

167
disownSelection subcommand

to Widget object commands, 222
dispatch subcommand

to Event object commands, 215
Display, 201
Display object command

applicationContext subcommand, 213
close subcommand, 213
createShell subcommand, 212
getApplicationNameAndClass sub-

command, 213
getMultiClickTime subcommand, 213
lastTimestampProcessed subcommand,

214
resolvePathname subcommand, 214
setMultiClickTime subcommand, 214
windowToWidget subcommand, 215

display subcommand
to Object object commands, 219
to Text object commands, 238

displayCaret subcommand
to Text object commands, 242

displayText subcommand
to TextSink object commands, 242

dither subcommand
to VsVidboardSource object com-

mands, 124
doLayout subcommand

to Form object commands, 235
duration subcommand

to VsEffect object commands, 154

enableRedisplay subcommand
to Text object commands, 238

encoding subcommand
to VsColor8to24 object commands,

140
to VsJpegD object commands, 142
to VsSunVfcSource object com-

mands, 118
to VsVidboardSource object com-

mands, 125
end subcommand

to VsByteStream object commands,
151

endValue subcommand
to VsEffect object commands, 155

error subcommand
to XtAppContext object commands,

207
errorMsg subcommand

to XtAppContext object commands,
207

EvalCallback member function, 179
Event object command

destroy subcommand, 215
dispatch subcommand, 215
position subcommand, 215

false command, 168
felnit subcommand

to VsVidboardSource object com-
mands, 122

feOff subcommand
to VsVidboardSource object com-

mands, 121
findDistance subcommand

to TextSink object commands, 243
findFile subcommand

to the xt command, 204
findPosition subcommand

to TextSink object commands, 243
forceLayout subcommand

to Toggle object commands, 248
Form object command, 203

doLayout subcommand, 235

261

frameRate subcommand
to VsExternalSource object com-

mands, 113
to VsSunVfcSource object com-

mands, 117
to VsSunVideoSource

mands, 119
to VsVidboardSource

mands, 125
to VsXVideoSource

mands, 129
freeString subcommand

object com-

object com-

object com-

to AsciiSource object commands,
233

gain subcommand
to VsAudioFileSink object com-

mands, 132
to VsAudioFileSource object com-

mands, 110
to VsDecAudioSink object com-

mands, 133
to VsDecAudioSource object com-

mands, 112
to VsSunAudioSink object com-

mands, 137
to VsSunAudioSource object com-

mands, 115
Get static member function, 180
getActionList subcommand

to WidgetClass object commands,
217

getActiveEntry subcommand
to SimpleMenu object commands,

238
getApplicationNameAndClass subcom-

mand
to Display object commands, 213

getApplicationResources subcommand
to Widget object commands, 223

getCaption subcommand
to VsVidboardSource object com-

mands, 122
getConstraintResourceList subcommand

to ObjectClass object commands,
216

getCurrent subcommand
to Toggle object commands, 247

getCursorBounds subcommand
to TextSink object commands, 244

getFrame subcommand
to VsVidboardSource object com-

mands, 122
getInsertionPoint subcommand

to Text object commands, 240
getMinMax subcommand

to Paned object commands, 236
getMultiClickTime subcommand

to Display object commands, 213
getNumSub subcommand

to Paned object commands, 237
getResourceList subcommand

to ObjectClass object commands,
217

getSelectionPos subcommand
to Text object commands, 239

getSelectionRequest subcommand
to Widget object commands, 223

getSelectiontimeout subcommand
to XtAppContext object commands,

208
getSelectionValue subcommand

to Widget object commands, 223
getSelectionValueIncremental subcom-

mand
to Widget object commands, 224

getSelectionValues subcommand
to Widget object commands, 224

getSelectionValuesIncremental subcom-
mand

to Widget object commands, 225
getSource subcommand

to Text object commands, 241
getValues subcommand

to Object object commands, 219
getValueString subcommand

to Dialog object commands, 235
grab subcommand

to VsWindowSink object com-
mands, 138

Graph object command, 203
Grip object command, 203

hasCallbacks subcommand
to Widget object commands, 231

height subcommand
to VsResize object commands, 149

highlight subcommand
to List object commands, 236

history subcommand
to VsRateMeter object commands,

146
host subcommand

to VsTcpClient object commands,
152

hue subcommand
to VsSunVfcSource object com-

mands, 117

262

to VsVidboardSource object com-
mands, 124

to VsXVideoSource object com-
mands, 129

Idle member function, 173
to VsInputPort objects, 173

indexExtension subcommand
to VsFileSink object commands,

135
info commands subcommand

to VsTclObj object commands, 160
info options subcommand

to VsTclObj object commands, 161
info procs subcommand

to VsTclObj object commands, 162
info vars subcommand

to VsTclObj object commands, 162
InitClass static member function, 181
InitInterp static member function, 181
Input member function, 176
inputs subcommand

to VsEntity object commands, 165
insertCursor subcommand

to TextSink object commands, 242
installAccelerators subcommand

to Widget object commands, 225
installAllAccelerators subcommand

to Widget object commands, 225
instance creation subcommand

to RectClass object commands, 217
to ShellClass object commands, 218

instances subcommand
to VsTclClass object commands,

164
interBurstDelay subcommand

to VsVidboardSource object com-
mands, 127

interDatagramDelay subcommand
to VsVidboardSource object com-

mands, 127
invalidate subcommand

to Text object commands, 241
isManaged subcommand

to Rect object commands, 221
isObject subcommand

to Object object commands, 220
isRealized subcommand

to Widget object commands, 226
isSensitive subcommand

to Widget object commands, 226
isSubclass subcommand

to Widget object commands, 226
isSubclassOf subcommand

to Object object commands, 220

keyarg command, 169
keyargs command, 169
keyFrameInterval subcommand

to VsQRLC object commands, 146

Label object command, 203
lastTimestampProcessed subcommand

to Display object commands, 214
linesPerDatagram subcommand

to VsVidboardSource object com-
mands, 128

List object command, 203
change subcommand, 235
highlight subcommand, 236
showCurrent subcommand, 236
unhighlight subcommand, 235

lock subcommand
to VsPuzzle object commands, 144

Logo object command, 203
lsbFirst command, 171

Mailbox object command, 203
mainLoop subcommand

to XtAppContext object commands,
208

manageChild subcommand
to Composite object commands,

232
manageChildren subcommand

to Composite object commands,
232

map subcommand
to Widget object commands, 226

maxGain subcommand
to VsAudioFileSink object com-

mands, 132
to VsAudioFileSource object com-

mands, 110
maxHeight subcommand

to TextSink object commands, 244
maxLines subcommand

to TextSink object commands, 244
MenuButton object command, 203
microOp subcommand

to VsExercise object commands,
141

minGain subcommand
to VsAudioFileSink object com-

mands, 132
to VsAudioFileSource object com-

mands, 110
mode subcommand

263

to VsExercise object commands,
141

monitorGain subcommand
to VsSunAudioSource object com-

mands, 115

name subcommand
to Object object commands, 220
to VsTclObj object commands, 161

names subcommand
to VsTclObj object commands, 161

nextEvent subcommand
to XtAppContext object commands,

208
nextFile subcommand

to VsExternalSink object com-
mands, 134

to VsExternalSource object com-
mands, 113

Now static member function
to VsTimeval values, 175

numInputPorts subcommand
to VsMerge object commands, 155
to VsMux object commands, 156
to VsOrderedMerge object com-

mands, 156
to VsOrderedMux object com-

mands, 157
numOutputPorts subcommand

to VsDeMux object commands, 153
to VsDup object commands, 154

numPorts subcommand
to VsAudioFileSink object com-

mands, 132
to VsAudioFileSource object com-

mands, 110
to VsXVideoSource object com-

mands, 128

Object object command
checkSubclassFlag subcommand, 218
class subcommand, 219
destroy subcommand, 219
display subcommand, 219
getValues subcommand, 219
isObject subcommand, 220
isSubclassOf subcommand, 220
name subcommand, 220
setValues subcommand, 221
superclass subcommand, 221
window subcommand, 221

ObjectClass object command
createManagedWidget subcommand,

216

createWidget subcommand, 216
getConstraint ResourceList subcom-

mand, 216
getResourceList subcommand, 217

ObjPtr member function, 179
openDisplay subcommand

to XtAppContext object commands,
208

orientation subcommand
to VsWipe object commands, 157

Output member function, 177
outputs subcommand

to VsEntity object commands, 166
OverrideShell object command, 203
overrideTranslations subcommand

to Widget object commands, 227
ownSelection subcommand

to Widget object commands, 227
ownSelectionIncremental subcommand

to Widget object commands, 228

packType subcommand
to VsVidboardSource object com-

mands, 123
Paned object command, 203

allowResize subcommand, 237
getMinMax subcommand, 236
getNumSub subcommand, 237
setMinMax subcommand, 236
setRefigureMode subcommand, 237

Panner object command, 203
parent subcommand

to Widget object commands, 228
pathname subcommand

to VsCaptionSource object com-
mands, 111

to VsExternalSink object com-
mands, 134

to VsExternalSource object com-
mands, 113

to VsFileSink object commands,
135

to VsFileSource object commands,
113

to VsMpegSource object commands,
114

to VsQtimeSink object commands,
136

to VsQtimeSource object com-
mands, 114

to VsSunAudioSink object com-
mands, 136

to VsSunAudioSource object com-
mands, 115

264

to VsSunVfcSource object com-
mands, 116

to VsSunVideoSource object com-
mands, 118

payload subcommand
to VsExternalSink object com-

mands, 134
to VsFileSink object commands,

135
to VsPayloadDetect object com-

mands, 143
to VsPayloadFilter object com-

mands, 143
to VsRateMeter object commands,

147
to VsStepper object commands, 151

payloads, 193
peekEvent subcommand

to XtAppContext object commands,
209

pending subcommand
to XtAppContext object commands,

209
permute subcommand

to VsPuzzle object commands, 144
popdown subcommand

to Shell object commands, 233
popup subcommand

to Shell object commands, 233
popupSpringLoaded subcommand

to Shell object commands, 233
port subcommand

to VsAudioFileSink object com-
mands, 131

to VsAudioFileSource object com-
mands, 110

to VsDecAudioSink object com-
mands, 133

to VsDecAudioSource object com-
mands, 111

to VsSunAudioSink object com-
mands, 137

to VsSunAudioSource object com-
mands, 115

to VsSunVfcSource object com-
mands, 116

to VsSunVideoSource object com-
mands, 118

to VsTcpClient object commands,
152

to VsTcpListener object commands,
158

to VsVidboardSource object com-
mands, 122

to VsXVideoSource object com-
mands, 128

Porthole object command, 203
position subcommand

to Event object commands, 215
to VsPuzzle object commands, 143

proc subcommand
to VsTclObj object commands, 161

processEvent subcommand
to XtAppContext object commands,

209

quality subcommand
to VsJpegC object commands, 142
to VsQRLC object commands, 145

rate subcommand
to VsRateMeter object commands,

147
read subcommand

to TextSource object commands,
245

realize subcommand
to Widget object commands, 229

Receive member function, 174
Rect object command

isManaged subcommand, 221
RectClass object command

instance creation subcommand, 217
removeActionHook subcommand

to XtAppContext object commands,
205

removeAllCallbacks subcommand
to Widget object commands, 231

removeCallback subcommand
to Widget object commands, 231

removeInput subcommand
to XtAppContext object commands,

205
removeInstance subcommand

to VsTclClass object commands,
164

removetimeout subcommand
to XtAppContext object commands,

206
removeWorkProc subcommand

to XtAppContext object commands,
207

rename subcommand
to VsTclObj object commands, 162

Repeater object command, 203
replace subcommand

to Text object commands, 239

265

to TextSource object commands,
245

report subcommand
to VsRateMeter object commands,

146
reportInterval subcommand

to VsCCCC object commands, 139
to VsQRLC object commands, 145

resolve subcommand
to TextSink object commands, 243

resolvePathname subcommand
to Display object commands, 214

reverse subcommand
to VsFileSource object commands,

114

saturation subcommand
to VsXVideoSource object com-

mands, 129
save subcommand

to AsciiSource object commands,
233

saveAsFile subcommand
to AsciiSource object commands,

234
scale subcommand

to VsResize object commands, 149
to VsScale object commands, 150
to VsSunVfcSource object com-

mands, 117
to VsSunVideoSource object com-

mands, 119
to VsTestVideoSource object com-

mands, 120
to VsVidboardSource object com-

mands, 124
to VsXVideoSource object com-

mands, 130
scan subcommand

to TextSource object commands,
245

scramble subcommand
to VsPuzzle object commands, 144

Scrollbar object command, 203
setThumb subcommand, 237

search subcommand
to Text object commands, 241
to TextSource object commands,

246
seek subcommand

to VsByteStream object commands,
151

self, 161
Send member function

to VsOutputPort objects, 173
server subcommand

to VsAudioFileSink object com-
mands, 131

to VsAudioFileSource object com-
mands, 109

set subcommand
to VsTclObj object commands, 162

setCoordinates subcommand
to Viewport object commands, 248

setCurrent subcommand
to Toggle object commands, 247

setErrorHandler subcommand
to XtAppContext object commands,

210
setErrorMsgHandler subcommand

to XtAppContext object commands,
210

setFallbackResources subcommand
to XtAppContext object commands,

210
setInsertionPoint subcommand

to Text object commands, 240
setKeyboardFocus subcommand

to Widget object commands, 229
setLocation subcommand

to Viewport object commands, 248
setMappedWhenManaged subcommand

to Widget object commands, 229
setMinMax subcommand

to Paned object commands, 236
setMultiClickTime subcommand

to Display object commands, 214
setRefigureMode subcommand

to Paned object commands, 237
setSelection subcommand

to Text object commands, 241
to TextSource object commands,

246
setSelectionArray subcommand

to Text object commands, 239
setSelectiontimeout subcommand

to XtAppContext object commands,
209

setSensitive subcommand
to Widget object commands, 229

setSource subcommand
to Text object commands, 239

setTabs subcommand
to TextSink object commands, 244

setThumb subcommand
to Scrollbar object commands, 237

setValues subcommand
to Object object commands, 221

266

setWarningHandler subcommand
to XtAppContext object commands,

211
setWarningMsgHandler subcommand

to XtAppContext object commands,
211

shallow copies, 55
Shell object command, 203

popdown subcommand, 233
popup subcommand, 233
popupSpringLoaded subcommand,

233
ShellClass object command

createPopupShell subcommand, 218
instance creation subcommand, 218

showCurrent subcommand
to List object commands, 236

signalType subcommand
to VsXVideoSource object com-

mands, 130
Simple object command, 203
SimpleMenu object command, 203

clearActiveEntry subcommand, 238
getActiveEntry subcommand, 238

sleep command, 168
Sme object commandSme object com-

mand, 203
SmeBSB object command, 203
SmeLine object command, 203
softInit subcommand

to VsVidboardSource object com-
mands, 122

solve subcommand
to VsPuzzle object commands, 144

speed subcommand
to VsReTime object commands, 149

Start member function, 177
start subcommand

to VsEntity object commands, 166
StartInput member function, 176
StartOutput member function, 177
StartTimeout member function, 175
startValue subcommand

to VsEffect object commands, 155
StartWork member function, 174
std subcommand

to VsSunVfcSource object com-
mands, 116

to VsVidboardSource object com-
mands, 122

to VsXVideoSource object com-
mands, 130

Stop member function, 178
stop subcommand

to VsEntity object commands, 166
StopInput member function, 176
StopOutput member function, 177
StopTimeout member function, 175
StopWork member function, 174
StripChart object command, 203
superClass subcommand

to VsTclClass object commands,
165

superclass subcommand
to Object object commands, 221

tell subcommand
to VsByteStream object commands,

152
Text object command, 203

disableRedisplay subcommand, 238
display subcommand, 238
displayCaret subcommand, 242
enableRedisplay subcommand, 238
getInsertionPoint subcommand, 240
getSelectionPos subcommand, 239
getSource subcommand, 241
invalidate subcommand, 241
replace subcommand, 239
search subcommand, 241
setInsertionPoint subcommand, 240
setSelection subcommand, 241
setSelectionArray subcommand, 239
setSource subcommand, 239
topPosition subcommand, 240
unsetSelection subcommand, 240

TextSink object command, 203
clearToBackground subcommand, 242
displayText subcommand, 242
findDistance subcommand, 243
findPosition subcommand, 243
getCursorBounds subcommand, 244
insertCursor subcommand, 242
maxHeight subcommand, 244
maxLines subcommand, 244
resolve subcommand, 243
setTabs subcommand, 244

TextSource object command
convertSelection subcommand, 246
read subcommand, 245
replace subcommand, 245
scan subcommand, 245
search subcommand, 246
setSelection subcommand, 246

TextSrc object command, 203
timeBase subcommand

to VsTestVideoSource object com-
mands, 121

267

timeout member function, 175
timeout subcommand

to VsTcpListener object commands,
158

timeStep subcommand
to VsPuzzle object commands, 145
to VsTestVideoSource object com-

mands, 121
Toggle object command, 203

changeRadioGroup subcommand, 247
forceLayout subcommand, 248
getCurrent subcommand, 247
setCurrent subcommand, 247
unsetCurrent subcommand, 247

toolkitInitialize subcommand
to the xt command, 204

TopLevelShell object command, 203
topPosition subcommand

to Text object commands, 240
tportRemoteControl subcommand

to VsVidboardSource object com-
mands, 127

tportRemoteData subcommand
to VsVidboardSource object com-

mands, 127
transferUnit subcommand

to VsExercise object commands,
141

TransientShell object command, 203
translateCoords subcommand

to Widget object commands, 230
Tree object command, 203
true command, 168
type subcommand

to VsExternalSource object com-
mands, 112

unbind subcommand
to VsInputPort object commands,

167
unhighlight subcommand

to List object commands, 235
uninstallTranslations subcommand

to Widget object commands, 230
unmanageChild subcommand

to Composite object commands,
232

unmanageChildren subcommand
to Composite object commands,

232
unMap subcommand

to Widget object commands, 230
UnNamedObj object command, 203
unrealize subcommand

to Widget object commands, 230
unsetCurrent subcommand

to Toggle object commands, 247
unsetSelection subcommand

to Text object commands, 240

value subcommand
to VsEffect object commands, 154

vciLocalControlln subcommand
to VsVidboardSource object com-

mands, 126
vciLocalControlOut subcommand

to VsVidboardSource object com-
mands, 126

vciLocalDataIn subcommand
to VsVidboardSource object com-

mands, 125
vciRemoteControlOut subcommand

to VsVidboardSource object com-
mands, 126

vciRemoteDataOut subcommand
to VsVidboardSource object com-

mands, 126
VendorShell object command, 203
Viewport object command, 203

setCoordinates subcommand, 248
setLocation subcommand, 248

vs object command
appInitialize subcommand, 159

VsADPCMAudioSampleEncoding, 194
VsALawAudioSampleEncoding, 194
VsAudioFileSink module, 131
VsAudioFileSink object command

gain subcommand, 132
maxGain subcommand, 132
minGain subcommand, 132
numPorts subcommand, 132
port subcommand, 131
server subcommand, 131

VsAudioFileSource module, 109
VsAudioFileSource object command

gain subcommand, 110
maxGain subcommand, 110
minGain subcommand, 110
numPorts subcommand, 110
port subcommand, 110
server subcommand, 109

VsAudioFragment payloads, 194
VsAudioSink module, 107
VsAudioSource module, 106
VsBlockShift module, 153
VsBlockShift object command

direction subcommand, 153
VsBuffer module, 138

268

VsBuffer object command
depth subcommand, 138

VsByteStream module, 151
VsByteStream object command

end subcommand, 151
seek subcommand, 151
tell subcommand, 152

VsCaption payloads, 194
VsCaptionSink module, 132
VsCaptionSource module, 111
VsCaptionSource object command

pathname subcommand, 111
VsCCCC module, 138
VsCCCC object command

reportInterval subcommand, 139
VsCCCD module, 139
VsCCCFrame payloads, 196
VsChannelSelect module, 139
VsChannelSelect object command

channel subcommand, 139
VsChannelSet module, 139
VsChannelSet object command

channel subcommand, 139
VsColor24to8 module, 140
VsColor8to24 module, 140
VsColor8to24 object command

byteOrder subcommand, 140
encoding subcommand, 140

VsColorBGRVideoPixelEncoding, 195,
197

VsColorRGBVideoPixelEncoding, 195,
197

VsColorVideoPixelEncoding, 195, 197
VSCOMMAND, 178
VsDecAudioSink module, 133
VsDecAudioSink object command

audioserver subcommand, 133
gain subcommand, 133
port subcommand, 133

VsDecAudioSource module, 111
VsDecAudioSource object command

audioserver subcommand, 111
gain subcommand, 112
port subcommand, 111

VsDeMux module, 153
VsDeMux object command

numOutputPorts subcommand, 153
VsDup module, 154
VsDup object command

numOutputPorts subcommand, 154
VsEffect module, 154
VsEffect object command

duration subcommand, 154
endValue subcommand, 155

startValue subcommand, 155
value subcommand, 154

VsEntity object command
callback subcommand, 165
children subcommand, 165
inputs subcommand, 165
outputs subcommand, 166
start subcommand, 166
stop subcommand, 166
xPosition subcommand, 166
yPosition subcommand, 166

VsError procedure, 183
VsErrRecToTclErr procedure, 184
VsExercise module, 140
VsExercise object command

cycles subcommand, 140
microOp subcommand, 141
mode subcommand, 141
transferUnit subcommand, 141

VsExternalSink module, 133
VsExternalSink object command

channel subcommand, 134
convert subcommand, 135
nextFile subcommand, 134
pathname subcommand, 134
payload subcommand, 134

VsExternalSource module, 112
VsExternalSource object command

channel subcommand, 112
frameRate subcommand, 113
nextFile subcommand, 113
pathname subcommand, 113
type subcommand, 112

VsFade module, 155
VsFileSink module (composite), 108
VsFileSink module (primitive), 135
VsFileSink object command

indexExtension subcommand, 135
pathname subcommand, 135
payload subcommand, 135

VsFileSource module (composite), 108
VsFileSource module (primitive), 113
VsFileSource object command

pathname subcommand, 113
reverse subcommand, 114

VsFinish payloads, 194
VsFlush payloads, 195
VsGetBoolean procedure, 185
VsGetChar procedure, 186
VsGetDouble procedure, 187
VsGetFloat procedure, 186
VsGetFloatPair procedure, 186
VsGetInt procedure, 187
VsGetIntList procedure, 188

269

VsGetIntPair procedure, 187
VsGetLong procedure, 188
VsGetShort procedure, 188
VsGetShortPair procedure, 189
VsGetString procedure, 189
VsGetUnsignedChar procedure, 189
VsGetUnsignedInt procedure, 190
VsGetUnsignedLong procedure, 190
VsGetUnsignedShort procedure, 190
VsGrayVideoPixelEncoding, 195, 197
VsInputPort object command

bind subcommand, 167
unbind subcommand, 167

VsInputPort objects
Idle member function, 173

VsJpegC module, 141
VsJpegC object command

quality subcommand, 142
VsJpegD module, 142
VsJpegD object command

byteOrder subcommand, 142
encoding subcommand, 142

VsJpegFrame payloads, 195
VsLabeledChoice

procedure, 198
VsLabeledPathname

procedure, 198
VsLabeledScrollbar

procedure, 199
VsLinearAudioSampleEncoding, 194
vsLinearConverter

procedure, 199
vsLinearInverter

procedure, 200
VsMerge module, 155
VsMerge object command

numInputPorts subcommand, 155
VsMpegSource module, 114
VsMpegSource object command

pathname subcommand, 114
VsMux module, 156
VsMux object command

numInputPorts subcommand, 156
VsNullSink module, 136
VsNullSource module, 114
VsNullVideoPixelEncoding, 195, 197
VSOPTIONCOMMAND, 178
VsOrderedMerge module, 156
VsOrderedMerge object command

numInputPorts subcommand, 156
VsOrderedMux module, 157
VsOrderedMux object command

numInputPorts subcommand, 157
VsOutputPort object command

connect subcommand, 167
disconnect subcommand, 167

VsOutputPort objects
Send member function, 173

VsPanic procedure, 182
VsPayload payloads, 193
VsPayloadDetect module, 142
VsPayloadDetect object command

payload subcommand, 143
VsPayloadFilter module, 143
VsPayloadFilter object command

payload subcommand, 143
VsPopErrRec procedure, 183
VsPushErrRec procedure, 183
VsPuzzle module, 143
VsPuzzle object command

dimension subcommand, 144
lock subcommand, 144
permute subcommand, 144
position subcommand, 143
scramble subcommand, 144
solve subcommand, 144
timeStep subcommand, 145

VsQRLC module, 145
VsQRLC object command

keyFramelnterval subcommand, 146
quality subcommand, 145
reportInterval subcommand, 145

VsQRLD module, 146
VsQRLFrame payloads, 196
VsQtimeSink module, 136
VsQtimeSink object command

pathname subcommand, 136
VsQtimeSource module, 114
VsQtimeSource object command

pathname subcommand, 114
VsRateMeter module, 146
VsRateMeter object command

channel subcommand, 147
history subcommand, 146
payload subcommand, 147
rate subcommand, 147
report subcommand, 146

VsResize module, 149
VsResize object command

height subcommand, 149
scale subcommand, 149
width subcommand, 149

VsReTime module, 147
VsReTime object command

delay subcommand, 148
speed subcommand, 149

VsReturnBoolean procedure, 191
VsReturnDouble procedure, 192

270

VsReturnFloat procedure, 192
VsReturnIntPair procedure, 191
VsReturnLong procedure, 191
VsReturnLongPair procedure, 192
VsReturnNull procedure, 192
VsReturnString procedure, 193
VsReturnStringPair procedure, 193
VsReturnUnsignedLong procedure, 193
vsRoundingLinearConverter

procedure, 200
VsScale module, 150
VsScale object command

scale subcommand, 150
xmag subcommand, 150
ymag subcommand, 150

VsSink module, 104
VsSource module, 103
VsStart payloads, 197
VsStepper module, 150
VsStepper object command

payload subcommand, 151
VsSunAudioSink module, 136
VsSunAudioSink object command

gain subcommand, 137
pathname subcommand, 136
port subcommand, 137

VsSunAudioSource module, 115
VsSunAudioSource object command

gain subcommand, 115
monitorGain subcommand, 115
pathname subcommand, 115
port subcommand, 115

VsSunVfcSource module, 116
VsSunVfcSource object command

byteOrder subcommand, 118
color subcommand, 116
depth subcommand, 117
encoding subcommand, 118
frameRate subcommand, 117
hue subcommand, 117
pathname subcommand, 116
port subcommand, 116
scale subcommand, 117
st'd subcommand, 116

VsSunVideoSource module, 118
VsSun.VideoSource object command

color subcommand, 119
depth subcommand, 119
frameRate subcommand, 119
pathname subcommand, 118
port subcommand, 118
scale subcommand, 119

VsTclClass object command
addInstance subcommand, 163

classCommands subcommand, 163
classOptions subcommand, 163
classProc subcommand, 163
classProcs subcommand, 164
create subcommand, 164
instances subcommand, 164
removeInstance subcommand, 164
superClass subcommand, 165

VsTclErrArgCnt procedure, 184
VsTclErrBadVal procedure, 185
VsTclObj object command

alias subcommand, 159
class subcommand, 159
configCallback subcommand, 160
destroy subcommand, 160
destroyCallback subcommand, 160
info commands subcommand, 160
info options subcommand, 161
info procs subcommand, 162
info vars subcommand, 162
name subcommand, 161
names subcommand, 161
proc subcommand, 161
rename subcommand, 162
set subcommand, 162

VsTcpClient module, 152
VsTcpClient object command

host subcommand, 152
port subcommand, 152

VsTcpListener module, 158
VsTcpListener object command

backlog subcommand, 158
port subcommand, 158
timeout subcommand, 158

VsTcpServer module, 152
VsTestVideoSource module, 120
VsTestVideoSource object command

byteOrder subcommand, 121
cycle subcommand, 120
depth subcommand, 120
scale subcommand, 120
timeBase subcommand, 121
timeStep subcommand, 121

VsTimeval values
Now static member function, 175

VsULawAudioSampleEncoding, 194
VsUnknownAudioSampleEncoding, 194
VsVidboardSource module, 121
VsVidboardSource object command

byteOrder subcommand, 125
captions subcommand, 124
cellsPerBurst subcommand, 128
color subcommand, 123
colorSpace subcommand, 123

271

depth subcommand, 123
dither subcommand, 124
encoding subcommand, 125
feInit subcommand, 122
feOff subcommand, 121
frameRate subcommand, 125
getCaption subcommand, 122
getFrame subcommand, 122
hue subcommand, 124
interBurstDelay subcommand, 127
interDatagramDelay subcommand,

127
linesPerDatagram subcommand, 128
packType subcommand, 123
port subcommand, 122
scale subcommand, 124
softInit subcommand, 122
std subcommand, 122
tportRemoteControl subcommand,

127
tportRemoteData subcommand, 127
vciLocalControlIn subcommand, 126
vciLocalControlOut subcommand,

126
vciLocalDataIn subcommand, 125
vciRemoteControlOut subcommand,

126
vciRemoteDataOut subcommand,

126
VsVideoFrame payloads, 197
VsVideoSink module, 107
VsVideoSource module, 105
VsWindowSink module, 137
VsWindowSink object command

grab subcommand, 138
widget subcommand, 137

VsWipe module, 157
VsWipe object command

direction subcommand, 158
orientation subcommand, 157

VsXVideoSource module, 128
VsXVideoSource object command

brightness subcommand, 129
contrast subcommand, 130
frameRate subcommand, 129
hue subcommand, 129
numPorts subcommand, 128
port subcommand, 128
saturation subcommand, 129
scale subcommand, 130
signalType subcommand, 130
std subcommand, 130
widget subcommand, 131

warning subcommand
to XtAppContext object commands,

211
warningMsg subcommand

to XtAppContext object commands,
212

Widget, 203
Widget object command

addCallback subcommand, 230
applicationContext subcommand, 222
augmentTranslations subcommand,

222
callCallbacks subcommand, 231
disownSelection subcommand, 222
getApplicationResources subcommand,

223
getSelectionRequest subcommand,

223
getSelectionValue subcommand, 223
getSelectionValueIncremental sub-

command, 224
getSelectionValues subcommand, 224
getSelectionValuesIncremental sub-

command, 225
hasCallbacks subcommand, 231
installAccelerators subcommand, 225
installAllAccelerators subcommand,

225
isRealized subcommand, 226
isSensitive subcommand, 226
isSubclass subcommand, 226
map subcommand, 226
overrideTranslations subcommand,

227
ownSelection subcommand, 227
ownSelectionIncremental subcom-

mand, 228
parent subcommand, 228
realize subcommand, 229
removeAllCallbacks subcommand,

231
removeCallback subcommand, 231
setKeyboardFocus subcommand, 229
setMappedWhenManaged subcom-

mand, 229
setSensitive subcommand, 229
translateCoords subcommand, 230
uninstallTranslations subcommand,

230
unMap subcommand, 230
unrealize subcommand, 230

widget subcommand
to VsWindowSink object com-

mands, 137

272

to VsXVideoSource object com-
mands, 131

WidgetClass, 203
WidgetClass object command

getActionList subcommand, 217
width subcommand

to VsResize object commands, 149
window subcommand

to Object object commands, 221
windowToWidget subcommand

to Display object commands, 215
WMShell object command, 203
Work member function, 174

in subclasses to VsFilter, 182
WorkRequiredP member function, 182
WorkSpace object command, 203

XawAsciiSave function, 233
XawAsciiSaveAsFile function, 234
XawAsciiSourceChanged function, 234
XawAsciiSourceFreeString function, 233
XawDialogAddButton function, 234
XawDialogGetValueString function, 235
XawFormDoLayout function, 235
XawListChange function, 235
XawListHighlight function, 236
XawListShowCurrent function, 236
XawListUnhighlight function, 235
XawPanedAllowResize function, 237
XawPanedGetMinMax function, 236
XawPanedGetNumSub function, 237
XawPanedSetMinMax function, 236
XawPanedSetRefigureMode function, 237
XawScrollbarSetThumb function, 237
XawSimpleMenuAddGlobalActions func-

tion, 212
XawSimpleMenuClearActiveEntry func-

tion, 238
XawSimpleMenuGetActiveEntry func-

tion, 238
XawTextDisableRedisplay function, 238
XawTextDisplay function, 238
XawTextDisplayCaret function, 242
XawTextEnableRedisplay function, 238
XawTextGetInsertionPoint function, 240
XawTextGetSelectionPos function, 239
XawTextGetSource function, 241
XawTextInvalidate function, 241
XawTextReplace function, 239
XawTextSearch function, 241
XawTextSetInsertionPoint function, 240
XawTextSetSelection function, 241
XawTextSetSelectionArray function, 239
XawTextSetSource function, 239

XawTextSinkClearToBackground func-
tion, 242

XawTextSinkDisplayText function, 242
XawTextSinkFindDistance function, 243
XawTextSinkFindPosition function, 243
XawTextSinkGetCursorBounds function,

244
XawTextSinkInsertCursor function, 242
XawTextSinkMaxHeight function, 244
XawTextSinkMaxLines function, 244
XawTextSinkResolve function, 243
XawTextSinkSetTabs function, 244
XawTextSourceConvertSelection function,

246
XawTextSourceRead function, 245
XawTextSourceReplace function, 245
XawTextSourceScan function, 245
XawTextSourceSearch function, 246
XawTextSourceSetSelection function, 246
XawTextTopPosition function, 240
XawTextUnsetSelection function, 240
XawToggleChangeRadioGroup function,

247
XawToggleGetCurrent function, 247
XawToggleSetCurrent function, 247
XawToggleUnsetCurrent function, 247
XawTreeForceLayout function, 248
XawViewportSetCoordinates function,

248
XawViewportSetLocation function, 248
XEvent, 201
xmag subcommand

to VsScale object commands, 150
xPosition subcommand

to VsEntity object commands, 166
xt, 201
xt command

appInitialize subcommand, 203
createApplicationContext subcom-

mand, 203
findFile subcommand, 204
toolkitInitialize subcommand, 204

XtAddCallback function, 230
XtAppAddActionHook function, 204
XtAppAddInput function, 205
XtAppAddtimeout function, 206
XtAppAddWorkProc function, 206
XtAppContext, 201
XtAppContext object command

addActionHook subcommand, 204
addGlobalActions subcommand, 212
addInput subcommand, 205
addtimeout subcommand, 206
addWorkProc subcommand, 206

273

destroy subcommand, 207
error subcommand, 207
errorMsg subcommand, 207
getSelectiontimeout subcommand,

208
mainLoop subcommand, 208
nextEvent subcommand, 208
openDisplay subcommand, 208
peekEvent subcommand, 209
pending subcommand, 209
processEvent subcommand, 209
removeActionHook subcommand, 205
removeInput subcommand, 205
removetimeout subcommand, 206
removeWorkProc subcommand, 207
setErrorHandler subcommand, 210
setErrorMsgHandler subcommand,

210
setFallbackResources subcommand,

210
setSelectiontimeout subcommand,

209
setWarningHandler subcommand,

211
setWarningMsgHandler subcommand,

211
warning subcommand, 211
warningMsg subcommand, 212

XtAppCreateShell function, 212
XtAppError function, 207
XtAppErrorMsg function, 207
XtAppGetSelectiontimeout function, 208
XtAppInitialize function, 203
XtAppMainLoop function, 208
XtAppNextEvent function, 208
XtAppPeekEvent function, 209
XtAppPending function, 209
XtAppProcessEvent function, 209
XtAppSetErrorHandler function, 210
XtAppSetErrorMsgHandler function, 210
XtAppSetFallbackResources function, 210
XtAppSetSelectiontimeout function, 209
XtAppSetWarningHandler function, 211
XtAppSetWarningMsgHandler function,

211
XtAppWarning function, 211
XtAppWarningMsg function, 212
XtAugmentTranslations function, 222
XtCallCallbacks function, 231
Xtchecksubclassflag function, 218
XtClass function, 219
XtCloseDisplay function, 213
XtCreateApplicationContext function,

203

XtCreateManagedWidget function, 217
XtCreatePopupShell function, 218
XtCreateWidget function, 216
XtDestroyApplicationContext function,

207
XtDestroyWidget function, 219
XtDisownSelection function, 222
XtDispatchEvent function, 215
XtDisplayOfObject function, 219
XtDisplayToApplicationContext function,

213
XtFindFile function, 204
XtFree function, 215
XtGetActionList function, 217
XtGetApplicationNameAndClass func-

tion, 213
XtGetApplicationResources function, 223
XtGetConstraintResourceList function,

216
XtGetMultiClickTime function, 213
XtGetResourceList function, 217
XtGetSelectionRequest function, 223
XtGetSelectionValue function, 223
XtGetSelectionValueIncremental func-

tion, 224
XtGetSelectionValues function, 224
XtGetSelectionValuesIncremental func-

tion, 225
XtGetValues function, 219
XtHasCallbacks function, 231
XtInstallAccelerators function, 225
XtInstallAllAccelerators function, 225
XtIsManaged function, 221
XtIsObject function, 220
XtIsRealized function, 226
XtIsSensitive function, 226
XtIsSubclass function, 226
Xtissubclassof function, 220
XtLastTimestampProcessed function, 214
XtManageChild function, 232
XtManageChildren function, 232
XtMapWidget function, 226
XtName function, 220
XtOpenDisplay function, 208
XtOverrideTranslations function, 227
XtOwnSelection function, 227
XtOwnSelectionIncremental function, 228
XtParent function, 228
XtPopdown function, 233
XtPopup function, 233
XtPopupSpringLoaded function, 233
XtRealizeWidget function, 229
XtRemoveActionHook function, 205
XtRemoveAllCallbacks function, 231

274

XtRemoveCallback function, 231
XtRemovelnput function, 205
XtRemovetimeout function, 206
XtRemoveWorkProc function, 207
XtResolvePathname function, 214
XtSetKeyboardFocus function, 229
XtSetMappedWhenManaged function,

229
XtSetMultiClickTime function, 214
XtSetSensitive function, 229
XtSetValues function, 221
XtSuperclass function, 221
XtToolkitInitialize function, 204
XtTranslateCoords function, 230
XtUninstallTranslations function, 230
XtUnmanageChild function, 232
XtUnmanageChildren function, 232
XtUnmapWidget function, 230
XtUnrealizeWidget function, 230
XtWidgetToApplicationContext function,

222
XtWindowOfObject function, 221
XtWindowToWidget function, 215

ymag subcommand
to VsScale object commands, 150

yPosition subcommand
to VsEntity object commands, 166

275

