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Abstract

Accurate prediction of machine performance is a key to the design of
high performance machines. Due to the existence of clearance connections
and component flexibility, the dynamic behavior of machine systems exhibits
sensitivities to small variations of system parameters. These sensitivities
limit the usefulness of predictions from computer-based simulations for
design. Certain sensitivities are associated with chaotic behavior of the
systems. This thesis investigates the design implications of chaotic behavior
in machine systems with clearance connections and component flexibility. It
also proposes a design methodology to most effectively use the predictions of
machine models at the design stage.

The dynamic behaviors of two systems, called the Impact Beam System
and the Spatial Slider Crank, are investigated. The existence of chaotic
vibrations in these two systems is confirmed both numerically and
experimentally. The dynamic responses of these systems can be classified into
three characteristic types. These classifications are useful guidelines for
design.

While Type I Response is well-behaved, Type II and Type III Responses
are sensitive to small variations of the system parameters, presenting
important design problems. The dynamic behavior of such machine systems
could be quite different from model-based predictions due to these
sensitivities. In particular, the periodicity of the Type II Response may lead
designers to overlook the sensitivities. Design guidelines are developed for
classifying these three types of responses and for evaluating the fatigue life
and the reliability of machine systems at the design stage.

Thesis Supervisor: Dr. Steven Dubowsky
Title: Professor of Mechanical Engineering
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Chapter 1 Introduction

Chapter 1

Introduction

This chapter explains the motivation for this research, reviews

previous work in the related areas, highlights the contributions of the thesis,

and finally, outlines the organization of this thesis.

1.1 Motivation

Over the decades, many analytical design models have been developed

to predict the dynamic performance of machines with non-ideal

characteristics such as clearance connections and component flexibility [3-

10,12-14,25,27,28,34,40,41,57-59]. The effects of such non-ideal characteristics

often degrade a machine's dynamic performance by causing impacts,

vibration and noise, component fatigue, and poor precision. These

developed models have focused on predicting this dynamic behavior.

Recently, it has been found that the dynamic responses of machine

systems with clearance connections could exhibit both a large variation and

high sensitivity to small parameter changes and operating conditions [3,4].

The findings have suggested that there are limitations on predictions of the

responses based on machine models for design analysis, due to the sensitivity

of the responses to small variations of machine parameters. Since every real

engineering design, when manufactured and used, is subject to variations in

its parameters, such as in its component dimensions and material properties,

the real dynamic behavior of a machine could be quite different from the

behavior predicted using an analytical modeling method.

The sensitivity of the dynamic behavior in responding to small

variations in the parameters may indicate the existence of the chaotic
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behavior in the systems since a characteristic of a chaotic system is the

sensitivity of its dynamic response to small changes of initial conditions and

system parameters [16,36,61]. In fact, chaotic behavior has been found in

simulations of systems with non-ideal elements such as clearance

connections [1,21,26,29-30,32-33,37-39,44,49-56,60,62,67]. Most of the research

has focused on chaos itself and usually concerned with demonstrating the

existence of the chaos, rather than with the effects of chaotic behavior on

machine performance. Yet, the ability to predict accurately the performance

of real systems needs to remain the goal of their design analysis.

New approaches need to be developed to use the predictions of

machine models at the design stage effectively. In this thesis, the following

important issues will be addressed: 1) how does a designer effectively test for

the potential existence of chaotic vibrations in a machine design? 2) what are

the effects of chaotic vibrations on a machine's performance? and 3) what is

the relationship between chaotic vibrations and design parameters?

1.2 Background and Literature Review

1.2.1 Modeling Clearance Connections and Component Flexibility

Over the past three decades, the effects of clearance connections and

component flexibility in machines have been studied extensively. Research

in this area has been focused on the dynamic characteristics of a single

clearance connection [5,12,27], a rigid-link system with clearance connections

[9-10,13-14,25,34,57], and a flexible-link system with clearance connections [3,6-

8,28]. A brief review will be given here; a comprehensive review can be

found in reference [3].

Three different approaches have been proposed for modeling a single

clearance connection or its equivalent effects. The first approach models the
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connection as having compliance and friction but no clearance gap [25]. The

second approach treats a clearance impact as an instantaneous event,

characterized by conservation of momentum and energy dissipation described

by a restitution coefficient. [28,34,57]. These two models cannot directly

predict the clearance impact force. The third approach models the impact

force in the clearance connection as a function of the relative motion,

internal geometry, and material properties of the connection [5,27]. This

approach is capable of predicting a detailed time history of the contact force

during the impact. These connection models have been combined with rigid-

body and flexible-body models of machine components [3-10,25,28,34,57] in

order to predict an integrated machine's dynamics.

1.2.2 Chaotic Behavior of Simple Impact Oscillators

The clearance models described above, often called either the impact

pair or impact oscillator by researchers, have been applied to analyze the

chaotic behavior of the clearance connections. A bilinear system, a model of

an asymmetrical clearance, was studied by Shaw and Holmes [51-53] using

bifurcation theory and other tools of modern dynamical systems theory.

Harmonic, subharmonic and chaotic vibrations were found to exist. Shaw

[50] extended the analysis to a system having two-sided amplitude constraints.

He found that in certain parameter regions no simple stable motions exist. In

these regions complicated bifurcation sequences result in chaotic motions.

Moon and Shaw [38] studied forced vibrations of a nonlinear elastic

beam. The nonlinearity arose from bi-modal boundary conditions applied at

the end of the cantilevered beam. This system was numerically analyzed

using a simple single-mode model. They showed that the system exhibits
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chaotic behavior for a sinusoidal excitation. The numerical results were

experimentally confirmed later by Shaw [51].

Shaw and his coworkers studied pendulum-type-impact problems

[39,48-49,55]. In their studies, the system consisted of an inverted pendulum

with rigid barriers which limited the amplitude variation of the pendulum

from the unstable upright position. When subjected to a periodic excitation

the system response can be quite complicated and may include subharmonics

and/or chaotic motions. Their analytical results were verified by the

experiments [39].

Li, Rand and Moon [30] studied space truss structures having pin joints

with play, using a simple model called zero-stiffness model. They analyzed

simple symmetric and asymmetric motions of the model under small forcing

amplitudes. For large forcing amplitudes, it was numerically shown that the

system exhibits chaotic behavior. The chaotic behavior in such space truss

structures was confirmed experimentally [37].

For compliant off-shore structures, subharmonic and chaotic motions

were also predicted using an impact oscillator model by Thompson and his

coworkers [60,62]. They delineated cascades of period-doubling bifurcation

leading to chaotic regimes.

Heiman, Bajaj and Sherman [21] investigated the dynamics of an

inclined impact pair, consisting of a harmonically moved primary mass and a

secondary mass moving in an inclined slot within the primary mass. They

found that harmonic, subharmonic and chaotic motions can exist for various

values of parameters.

Mahfouz and Badrakhan [33] studied three systems with clearance.

Chaotic motions and subharmonics of various orders were observed. It was

shown that chaos is, in general, preceded and/or followed by a subharmonic
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motion of order 3. They also noticed that decreasing the viscous damping

level increases the chances of having chaotic motions.

Peterka and Vacik [441 explored the mechanisms of the transitions from

periodic to chaotic motions in impact systems. They studied the impact

behaviors of a one DOF impact oscillator and a multiple DOF oscillator. The

behaviors of the two systems included period-doubling and chaos. The global

behavior of one dimensional, harmonically excited impact oscillators was

studied by Kleczka and his coworkers [29] and Whiston [67]. Aidanpdii and

Gupta [1] recently investigated a two-degree-of-freedom impact oscillator with

proportional damping. The dynamic behavior of the system includes period-

doubling, period halving, and chaos. Their results may be applied to the

design of impact tools.

Paidoussis and Li [43] studied the chaotic dynamics of heat exchanger

tubes impacting on the loose baffle plate which supports the tubes. Their

numerical solutions showed that the amplitude of motion grew until

impacting with the loose support occurred; more complex motions arose

leading to chaos at a sufficiently high flow velocity. Furthermore, they used a

impact oscillator model with negative damping to study the complex

behavior of the system.

In general, it has been found both analytically [1,26,29,30,49-50,52-

55,60,62,67] and experimentally [32,37,39,51] that even under periodic

excitation, a simple impact system can exhibit very complex dynamics such as

subharmonic and chaotic vibrations.

1.2.3 Chaotic Behavior of Mechanisms

There has been a series of studies on impact printers. Chaotic motion

was found in impact printers at the high speeds at which impact print

~--·1111 __
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hammers operate [22]. In this case, strict periodicity of the actuator motion is

lost and randomness sets in. The chaotic motion causes print force

variations, resulting in unacceptable print quality. To improve the impact

printer's performance, Tung and Shaw [65,66] established printer performance

criteria and proposed a control method to increase the printer speeds

retaining acceptable print quality, based on the simulation results of their

mathematical model.

Recently, the study of chaotic behavior in more realistic machine

systems with multiple clearance connections and nonlinear kinematics has

become an active topic. Seneviratne and Earles [46,47] studied a four-bar

mechanism using a massless-link model for a clearance joint to predict

contact loss in the mechanism. Based on their numerical simulation, certain

cases were found where the response was non-periodic and sensitive to initial

conditions, indicating chaotic behavior. Farahanchi and Shaw [11] used a

one-degree of freedom model for a slider crank mechanism, with a clearance

in the sliding joint. They found numerically that chaotic motion is prevalent

over a range of parameters which corresponds to high crank speed and/or

low values of bearing friction.

To investigate the existence of chaos in more realistic systems having

rigid members, as opposed to the highly flexible structures often seen in

chaotic demonstrations [38,51], Peurach and Tongue [45] used a slider-crank

mechanism to approximate the single mode response of a continuous beam

under a periodic excitation [38]. The experimental setup displayed

complicated dynamic responses, including chaos, while the idealized

theoretical model only supported the existence of a period-one response.

However, it was shown that an extremely small external perturbation would

cause the response of the model to be chaotic.
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Mevel and Guyader [35] studied the dynamic motion of a lightly loaded

ball bearing system in order to find out the mechanisms involved in

transitions from periodic to chaotic behavior. The period-doubling route and

the quasiperiodic route to chaotic behavior were observed. They also noticed

that loss of contact always occurred when chaos took place under the two

routes and suggested that contact loss is a necessary condition for chaotic

behavior.

1.3 Objective and Approach

Up to now, however, research on chaotic behavior in realistic

machines has been limited mainly to numerical analysis. There have not

been experiments to confirm the existence of chaotic behavior in mechanisms

with nonlinear kinematics. Furthermore, there has not been a systematic

investigation to study the chaotic vibrations of machine systems from a

design point of view.

The objectives of this research are to confirm experimentally the

existence of chaotic vibrations in machine systems, to study the effects of this

behavior on the system performance, to develop practical methods for testing

chaotic behavior of machine models at the design stage, and to propose design

guidelines for dealing with potential chaotic behavior of machine systems.

Two systems have been investigated systematically in this research: an

Impact Beam System [3,42] and a Spatial Slider Crank mechanism [3,41]. The

Impact Beam System was designed to provide physical insights into the

dynamic behavior of machines with clearance connections and component

flexibility. It represents the features found in common machines. For

simplicity, this system excludes the interactions among multiple

nonlinearities, such as nonlinear nominal kinematic motions and multiple
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clearance connections. This system is used to suggest the basic characteristics

of chaotic behavior in machines with clearance connections and component

flexibility.

The Spatial Slider Crank mechanism is chosen to further explore

chaotic phenomenon in more complex machine systems. This mechanism,

as a prototype machine, has multiple clearance connections as well as

nonlinearities associated with full spatial nonlinear kinematic motions.

These two systems are modeled using techniques for modeling

machines with clearance connections and component flexibility [3,7,58,59].

Extensive numerical analyses are performed for each system. The numerical

results are compared with experiments. The global behaviors of these

systems are studied as functions of the major system parameters, such as

clearance size, excitation frequency, and component dimensions. From the

studies, the parameter regions causing chaotic vibrations are identified. The

effects of chaotic vibrations on machine performance are studied and

understood.

Based on the characteristics of dynamic responses common to the

Impact Beam System and the Spatial Slider Crank mechanism, design

guidelines for dealing with chaotic vibrations in this class of systems are

formulated and evaluated.

1.4 Contributions of the Research

The major contribution of this research is an exploration of the design

implications of chaotic behavior in machine systems through extensive

analytical and experimental studies of two systems with clearance

connections and component flexibility. The principal results of this research

are summarized as follows:
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* The existence of chaotic vibrations in machine systems with

clearance connections and component flexibility is confirmed both

numerically and experimentally. The Two-Step Test method and the Matrix

Update Test method are developed for testing chaotic vibrations of computer-

based dynamic simulation of machine models.

* Empirical predictive criteria are presented for the regions of system

parameters that result in chaotic vibrations. Chaotic vibrations are found to

be associated with large clearances, high operating speeds, and low values of

damping.

* Based on the characteristics of the dynamic response of machine

systems, the responses are classified into Type I, Type II, and Type III for

design purposes. Design guidelines are developed for classifying these three

types of responses and for evaluating fatigue life and reliability of the

machine systems which exhibit each of three response types.

* A design methodology, which implements the developed methods

and guidelines, is developed to effectively use the predictions of the machine

models at the design stage.

1.5 Thesis Overview

The thesis is organized as follows.

Chapter 2 reviews both a modeling technique for complex machine

systems with clearance connections and component flexibility and basic

concepts of chaotic dynamics. This modeling technique was originally

developed by Sunada [56,57] to model flexible spatial machine systems and

was later extended to include clearance joints by Deck [3,7]. It has been used to

model the two systems studied in this thesis. The purpose of including the

IM··III1IPI~··~-·-·*3III·C----L--·- ----
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basic concepts of chaotic dynamics is to clarify definitions and notations used

in the thesis.

Chapter 3 presents the experimental and analytical studies of a

simplified machine system called the Impact Beam System. The study of the

Impact Beam System provides physical insights into the chaotic vibration of

machine systems with clearance connections and component flexibility. The

Impact Beam System was designed and constructed by Deck [3], Oppenheimer

[42], and the author. The system, its experimental setup and dynamic model

are described. Numerical results and experimental data demonstrate the

chaotic vibrations of the system. The sensitivity of the dynamic response to

small variations of system parameters is investigated. Based on the

characteristics of the dynamic responses of the system, the responses are

classified into Type I, Type II and Type III for design purposes. The

comparison between numerical results and experimental measurements

indicate that the numerical model captures much of the qualitative dynamic

behavior of the system.

Chapter 4 presents the experimental and analytical studies of a more

complex machine system call the Spatial Slider Crank mechanism. The

mechanism was originally designed and constructed by Deck [3] and

O'Connell [41]. While the Impact Beam System has only one clearance

connection, the Spatial Slider Crank mechanism has two clearance

connections and other nonlinearities associated with full spatial, nonlinear

kinematic motions. The existence of chaotic vibrations in this mechanism is

confirmed both numerically and experimentally. The sensitivity of the

dynamic response to small variations of system parameters is studied. The

three identifiable types of responses are observed in different parameter

regions of the mechanism.
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Chapter 5 provides a design methodology to effectively use the

predictions of machine models at the design stage. The Two-Step Test method

and the Matrix Update Test method for testing chaotic vibrations of computer-

based dynamic simulation of machine models are developed. The guidelines

for classifying the response as Type I, Type II or Type III and for evaluating

fatigue life and reliability of the machines are formulated and evaluated.

Finally, Chapter 6 concludes the thesis with a brief summary of the

results.
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Chapter 2

Basic Tools and Concepts

2.1 Introduction

This chapter presents a modeling technique for machine systems with

clearance connections and component flexibility and basic concepts of chaotic

dynamics. The primary intent of this chapter is to clarify definitions, and

notations for readers who may be unfamiliar with the terminology used.

2.2 Dynamic Modeling of Machine Systems

In this section, an analytical modeling technique, developed for

complex machine systems with component flexibility and clearance

connections, is briefly reviewed. The technique was originally developed by

Sunada [58,59] to model flexible spatial machine systems with ideal joints and

later extended by Deck [3,7] to include clearance joints. This technique models

the distributed mass and flexibility of the machine components, large,

nonlinear kinematic motions, and clearance connections of the machine

system.

2.2.1 The Dynamic Modeling Technique

Using the finite element method, this technique models the distributed

mass and flexibility of machine components, which are called links. The

standard finite element models of the machine's links are combined with

Hartenberg-Denavit descriptions of the links' nominal motions to derive

equations of motion that include the effects of large kinematic motions on

the elastic deformations of the links.

32
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The FE nodal displacement coordinates are called perturbation

coordinates, and they describe the motions of the FE nodes of the link with

respect to a reference frame attached to the link's nominal motion. The

dynamic equations of motion for a given link are derived using Lagrange's

formulation, in which perturbation coordinates are the generalized

coordinates. The dynamic equations of motion for the ith link are given as:

Mi i + Gi[i + KiPi = fi (2.1)

where the vector Pi is the perturbation coordinate vector of the ith link. The

Pi and Oii are the perturbation velocities and accelerations, respectively. The

matrices Mi, Gi, and Ki are the mass, damping and stiffness matrices. The

vector fi includes the external forces applied to the link, the dynamic forces

resulting from the velocities and accelerations of the nominal link motion,

and the gravity force. The elements of the Mi, Gi, and Ki matrices and the

force vector fi are, in general, nonlinear functions of the nominal motions of

the machine components. These functions represent the nonlinear

kinematics of the machine system, including configuration-dependent mass

and stiffness properties and corrections for the accelerated motions of the link

reference frames.

In general, the detailed FE model of each link makes the equations of

motion, Eq. (2.1), a very large set. The numerical integration of such a large

set of equations for nonlinear analysis would be prohibitively expensive in

terms of computational time. The Component Mode Synthesis (CMS)

technique is used to reduce the size of the Eq. ( 2.1) without a serious loss of

dynamic accuracy[24]. The perturbation coordinate vector, pi, is transformed

into a vector, ai, which contains the interface coordinates and mode

coordinates of the link, through a CMS transformation matrix:
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Pi = Aiai, (2.2)

where Ai is the CMS transformation matrix. Now the size of the vector a, is

much small than that of the vector Pi. The number of modal coordinates

included in the vector ai depends on the requirement of the frequency

consideration.

A reduced set of equations of motion is produced for each link by

substituting Eq. (2.2) and its derivatives into Eq. (2.1). Furthermore, by

introducing the connection constraints between the links in the machine, the

reduced vector ai is written as:

ai = Biqi, (2.3)

where the matrix Bi is the compatibility matrix among link (i-1), link i, and

link (i+1). The vector q is the global independent generalized displacement

vector. The reduced link equations of motion are combined with Eq. (2.3) of

each link to form global dynamic equations of the machine system:

Mi +Gq +Kq = Q, (2.4)

in which the M, G, and K describe the mass, damping and stiffness matrices

of the system and , in general, are time varying. The vectors q, i4, and q are

the global independent displacement vector, velocity vector and acceleration

vector. The vector Q describes the force applied to the system, including

actuator force/torques and external loads. The matrices M, G, and K and

vector Q are given as follows [3,58]:

NL

M = BTAT MiAiBi, (2.5)
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NL NL NL
K= T BA TKiAiB i + Y BATGiAiBB0 j

i=1 i=1 j=1

+• BA T MiAi[ B + Bij6 j ,] (2.6)

= 2BfATMi Bj0 +BTATGiAiBi , (2.7)i=1 ji =1

NL
Q = Bf i., (2.8)

i=1

where NL is the number of links in the machine system, Bi is defined as dBi
d2B

i

and Bi, is defined as d . The forms of the compatibility matrices, Bi,

which are used to construct the equations of motion of the system, are

determined by the nature of the system's joints. These joints may be ideal

kinematic joints or non-ideal joints with compliance and clearances.

2.2.2 Connection Models

To form Eq. (2.4) from the dynamic equations of the motion for each

individual link, connection information between adjacent links is needed.

The flexible components of machine systems can have large relative motions,

and are connected by different types of joints such as revolute, spherical or

prismatic joints. The basic features of different connection models are briefly

presented as follows.

Ideal joints

An ideal joint is defined as a joint without any internal clearance and

compliance. When two links are connected through an ideal joint, certain

motions of one link are made to match those of another due to the kinematic

constraints of the joint. The relationships between the matched motions
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change over time. In addition, the kinematic constraints are relaxed for

motions that are permitted by the joint. For example, when two links are

connected through a revolute joint, the translation motion of one link

matches that of another link, but relative rotation is permitted by this joint.

Therefore, an ideal joint model provides kinematic constraints between

adjacent links. For ideal joints, the compatibility matrices, B,, which describe

the connection constraints are, in general, nonlinear functions of the

nominal motion vector 0 and its derivatives.

Clearance Joints

A clearance joint consists of two parts that fit together with a clearance.

The clearance is much smaller than the overall dimension of the joint. A

clearance joint model has internal compliance and clearance, and may also

have internal friction and other effects. Due to the existence of the clearance

in the joint, some of the kinematic constraints are removed between the

connected links. These relaxed motions of the links are constrained

whenever the relative motions between the links reach limits of the

clearance. The interaction forces and torques between the links constrain

their motions. These forces and torques are functions of the relative motion

between the links, and they are applied as reactions to both of the links.

Therefore, a clearance joint model provides nonlinear force constraints. If

the ith link is connected to the (i-1)th at one end and the (i+l)th link at the

other through two clearance joints, the elements of the Bi matrix are

constant, either zeros or one. Then all the elements of ith link's at vector are

independent, and the q vector is simply a concatenation of the a, vector.

Different types of clearance connection models such as spherical, revolute,

and prismatic joints can be found in reference [3,7].
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A numerical simulation package called ASSET (Advanced Spatial

Systems Emulation Technique) was developed by Deck [3] to implement this

modeling technique and the connection models. ASSET has been used

extensively throughout this research.

2.3 Basic Concepts of Chaotic Dynamics

Chaotic motions are complicated, unpredictable and seemingly random

motions in deterministic physical systems. The time history of a chaotic

motion in the deterministic physical system has a sensitive dependence on

initial conditions. This class of motions is associated with a state of motion

called a strange attractor [16,36,61].

2.3.1 Diagnostics of Chaotic Vibrations

There are many methods for determining whether or not a system is

truly chaotic and they provide useful information on the system

characteristics [36]: (a) Time histories, (b) Phase plane portraits, (c) Poincard

map, (d) Fourier spectrum, and (e) computation of Lyapunov exponents.

These methods, as described in reference [36], are outlined as follows:

Time Histories

Non-repeatability or irregular variations in the time history of a

dynamic response provide a first clue that the system may have chaotic

vibrations. The nature of the response can not be concluded by this

observation since a motion could have a long-period behavior beyond the

observation period, or could be a quasiperiodic response. Other test methods

should be used to confirm the nature of the response.
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Phase Plane Portraits

A phase plane portrait is a graphical representation of the behavior of a

dynamic system. When the motion is periodic, the phase plane portrait

shows a closed orbit. When the motion is chaotic, the phase plane portrait

shows an orbit that never closes or repeats. Thus, the trajectory of the orbit in

the phase plane portrait will tend to fill up a section or a band-section of the

phase plane. Phase plane portraits sometimes provide very little information

and thus Poincard maps have to be used.

Poincare Map

A Poincard map is a phase plane portrait in which the position of a

system's trajectory is recorded only at given times, not continuously. The

usual time interval used in a periodically excited system is equal to the

excitation period. For a single periodic response, the Poincare map will

appear as a single point in the phase space. For subharmonic dynamic

behavior, the Poincard map will appear as a set of points, the number of

which are equal to the number of external forcing periods contained in one

period of the response. Chaotic motion produces a Poincare map which

usually has a fractal structure and represents a cross-section of the actual

strange attractor associated with the system.

Frequency Spectrum

One of the clues to detecting chaotic response is the appearance of a

broadband spectrum of frequencies in the responses when the input is a

single frequency harmonic motion. This noise-like spectrum is a

characteristic exhibited by all chaotic systems. In some systems, in addition to
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the broadband components, the spectrum contains spikes indicating the

predominant frequencies in the responses.

Sensitivity to Initial Conditions and Lyapunov Exponents

Chaotic behavior of a deterministic system implies a sensitivity of the

response of the system to small changes in initial conditions. The accurate

prediction of long term response becomes impossible because, in this case, a

small initial condition uncertainty will be magnified exponentially as time

evolves and, as a result, two originally indistinguishable initial conditions

can lead to completely different long-term solutions.

In order to quantify this sensitivity to initial conditions, the Lyapunov

exponents of the response need to be calculated. The Lyapunov exponent is

an estimate of the rate of divergence or convergence and characterizes

quantitatively the average exponential divergence or convergence of

neighboring trajectories. Negative Lyapunov exponents indicate the

closeness of neighboring trajectories with evolution of time, thereby signaling

periodic responses. At least one positive Lyapunov exponent indicates a

chaotic trajectory and divergence of initially closed trajectories. A technique

for numerically calculating Lyapunov exponents of chaotic responses in

experiments was given by Wolf and his coworkers [68].

While phase plane portraits and Poincard maps can provide graphic

evidence for chaotic behavior and the fractal properties of strange attractors,

the Fourier spectrum and Lyapunov exponents can give quantitative

measures of chaotic vibrations. The quantitative measures of chaotic

vibrations are very important for the cases in which Poincard maps may be
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difficult to capture and the measures are the only hard evidence for chaotic

behavior.

2.3.2 Routes to Chaos

The mechanisms of the transitions from periodic to chaotic are of

fundamental importance for understanding the phenomenon of chaotic

behavior. In many systems, as some parameters vary, several characteristic

changes in the motion may occur due to bifurcations that can lead to chaos.

The bifurcation types leading to chaos are the infinite period-doubling

cascades, the intermittencies and the crises [36,61]. These routes to chaos are

briefly described as follows.

Period-doubling

The period-doubling route to chaos is the most widely known and

studied[16,36,61]. In this case, the variation of a typical system parameter leads

the dynamical system through a sequence of successive bifurcations in which

the period of all solutions at each step of the bifurcation is twice that at the

previous step: thus this process is call a period-doubling cascade. A common

feature of a chaos is a succession of bifurcations to higher and higher

subharmonics as a parameter is varied. In some systems, chaos occurs as a

sequence of period-doubling bifurcations with a limit point beyond which

strange attractors occur.

Intermittency

Intermittent bifurcations to chaos are caused by discontinuous or

catastrophic disappearance of a periodic attractor inside a phase space region

of chaotic transients [16,36,61]. Bifurcations to chaos via intermittency are
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usually found in the dynamical systems that have interrupted, or incomplete,

sequences of period doubling. In this route, one observes long periods of

periodic motion with bursts of chaos. As the parameter varies, the chaotic

bursts become more frequent and longer. Finally, the response becomes

complete chaotic.

Crises

A crisis is defined as a collision between a chaotic attractor and a

coexisting unstable fixed point or periodic orbit [15]. In crises, discontinuous

qualitative changes occur in the character of the long-time behavior of the

system. Phenomena associated with crises include sudden changes in the size

of chaotic attractors, sudden appearances of chaotic attractors, and sudden

destruction of chaotic attractors. It has been observed that response takes

longer time to settle down to steady state response when the parameter is

close to the crisis point [15,61].
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Chapter 3

Study of an Impact Beam System

3.1 Introduction

This chapter presents a study of the Impact Beam System, which

provides physical insights into the chaotic vibration of machine systems with

clearance connections and component flexibility. The system and its

experimental setup are introduced in Section 3.2, and the dynamic model is

described in Section 3.3. Numerical simulations of the system are presented

in Section 3.4. The effects of variations of system parameters are investigated

in Section 3.5. Experimental results are presented and compared with

numerical simulations in Section 3.6 and 3.7, respectively. Major results

from this study are summarized in Section 3.8.

Numerical results and experimental data demonstrate the chaotic

vibrations of the system. Based on the characteristics of the dynamic

responses of the system, the responses are classified into Type I, Type II and

Type III for design purposes. The comparison between numerical results and

experimental measurements indicate that the numerical model captures

much of the qualitative dynamic behavior of the system.

3.2 The System

The Impact Beam System (IBS) [3,42], illustrated schematically in Figure

3.1, consists of a beam, a one-dimensional adjustable clearance connection,

and a baseplate. One end of the beam is held by a zero-clearance bearing. The

other end of the beam is inside the one-dimensional clearance connection. In

operation, the beam is excited by an external force, F(t), as depicted in Figure

42
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3.1. Impact forces are generated at the clearance connection when the beam

end reaches the clearance.

The system has been used to study the basic characteristics of dynamic

behavior in common machines with clearance connections and component

flexibility. The elements of this system are designed to represent features in

such machines. The beam represents a flexible component; the clearance

connection represents a bearing with an internal clearance; and the baseplate

represents a supporting structure. For simplicity, this system includes only

one nonlinear element (i.e., one clearance connection) and excludes the

interactions among multiple nonlinearities, such as multiple clearance

connections and nonlinear kinematic motions.

The experimental IBS is illustrated in Figure 3.2. A steel beam is

mounted to the beam support using a flexure pivot, which provides a zero

clearance bearing. The beam is excited by sinusoidal forces, which are

generated by an electromechanical shaker attached to the beam through a

steel rod. The shaker's force magnitude is controlled by a signal generator and

a power amplifier. Figure 3.3 shows the instrumented adjustable-clearance

joint with two piezoelectric sensors. As the free end of the beam moves, it

strikes sensors that measure the contact forces at their tips. The author

proposed using piezoelectric ceramic materials to directly measure the impact

force at impact locations. The sensors were designed by the author and Uwe

Miiller, and constructed by Deck [3]. These sensors have flat dynamic

responses from near DC to 10 kHz [3].
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Figure 3.1 Schematic diagram of the Impact Beam System [4].

Figure 3.2 Experimental setup of the Impact Beam System.
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Schematic Diagram of a Contact Sensor.

Figure 3.3 IBS adjustable clearance joint and contact sensor.
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A schematical diagram of the experimental setup and data collection

on the IBS is shown in Figure 3.4. The clearance gap is set using feeler gauges,

which gives accuracy and repeatability of approximately ±0.0254 mm. An

analog Spectral Dynamics signal generator produces a sinusoidal signal,

which is monitored by a Hewlett-Packard period counter. The signal is

amplified by a B&K 2702 power amplifier to drive a Ling 603 shaker. The

shaker excites the beam through the pushing rod, so that the end of the beam

inside the clearance moves back and forth to impact the contact force sensors.

Figure 3.4 Schematic diagram of experimental measurement.

In the measurements, the signals generated by the contact force sensors

are amplified by two PCB 462A charge amplifiers. A B&K accelerometer,

mounted on the beam at the connection point of the pushing rod, measure
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the beam's motion. The output of the accelerometer is integrated twice to

obtain the displacement of the beam motion. The data collection is done

using a Concurrent 6000 computer with laboratory data acquisition hardware

and software called Laboratory Workbench [2].

3.3 Analytical Model of the Impact Beam System

The modeling technique presented in Section 2.1 was used to model

the Impact Beam System. As shown in Figure 3.5, three major parts of the

system, the beam, the clearance bearing, and the force input, were considered.

The beam was modeled using finite elements. The beam support post

and the yoke holding the force sensors were assumed to be rigid. The flexure

pivot mounting of the steel beam was modeled as two springs. One spring

has finite stiffness in one rotational degree of freedom. The other has finite

stiffness in one translation degree of freedom.

Rigid

ý Stiffness

Figure 3.5 Dynamic Model of the Impact Beam System.

The clearance bearing was modeled as a zero force zone to represent the

gap, and a non-zero force zone with linear contact stiffness and damping to

represent the bearing surface. The stiffness was calculated using a linearized
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Hertzian contact analysis [63]. The damping coefficient was determined by an

assumed damping ratio, an equivalent beam mass, and calculated contact

stiffness. The contact stiffness and damping coefficient in the model were

1.5x10 7 N/m and 20 N-s/m, respectively [3].

The shaker force was modeled as the force applied to the beam FE node

which corresponded to the attachment point of the connecting rod. The

shaker's internal suspension was represented by a linear spring and a damper.

The numerical values of the spring and damper were provided by Deck [3]

and Oppenheimer [42].

3.4 Simulations of Dynamic Responses of the System

The IBS model described above was numerically simulated using

ASSET. Numerical simulations of the IBS predicted the existence of chaotic

behavior. The model was found to have chaotic behavior for certain

excitation frequencies and clearances, and to be periodic in other cases.

The time history, phase plane portrait, Poincar6 map, and frequency

spectrum of the beam motion were used to analyze the nature of the system's

dynamic responses. The impact force in the clearance was also studied in

characterizing the system's responses, since it is important in design, having a

strong influence on system life, noise, etc.

For the results presented here, the system was excited by a sinusoidal

force of 8.9 N peak amplitude and the clearance was set to ±0.127 mm.

Periodic Response

Figures 3.6 (a)-(c) show a periodic response of the IBS in the time,

frequency, and phase domains at an excitation frequency of 19 Hz. The time

history and phase plane portrait of the beam tip motion at the clearance joint

48
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are shown in Figures 3.6 (a) and (b), respectively. The frequency spectrum of

the beam displacement is given in Figure 3.6 (c). The time history and the

phase diagram of the response clearly demonstrate the periodicity of the

system's response. The frequency spectrum, with spikes corresponding to the

excitation frequency and its harmonic components, also shows the feature of

periodic response.

The time history of the predicted impact force on one side of the

bearing is presented in Figure 3.6 (d). Because the impact force is periodic, the

magnitude of the impacts can be obtained from just a few cycles of

simulations.

Chaotic Response

Figures 3.7 (a)-(d) show a chaotic response of the IBS in the time,

frequency, and phase domains at an excitation frequency of 30 Hz. The time

history and phase plane portrait of the beam tip motion at the clearance joint

are shown in Figures 3.7 (a) and (b), respectively. The frequency spectrum of

the displacement and Poincar6 map of the response are given in Figures 3.7

(c) and 3.7 (d). The Poincard map is constructed by sampling the trajectory of

the beam motion once per period of excitation, at fixed phases of excitation,

over many periods.

From the time history, phase plane diagram, and Poincard map of the

response, it is clearly seen that the response is chaotic, exhibits irregular

variations from one excitation cycle to another. This chaotic nature is also

confirmed by the broad spectrum of frequencies in the response spectrum.
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(b) Phase plane portrait of the beam tip motion.

Figure 3.6 A simulation result. A periodic response of the IBS. ±0.127 mm

clearance, 19 Hz excitation frequency, and 8.9 N force amplitude.
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Figure 3.6 (Continued).
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Figure 3.7 A simulation result. A chaotic response of the IBS. ±0.127 mm

Clearance, 30 Hz excitation frequency, and 8.9 N force amplitude.

ti
ti

F;

cr
(d
a
rn

tl

V.2

0.1

0.0

-0.1

-n0

0.2

0.1

0.0

v,

C)0c,,-o•,4o
•>

-0.1

-n02 I I
0.2

Chapter 3

nA

35.00



Study of an Impact Beam System

-10

-20

-30

-40
0 20 40 60 80 100

Frequency (Hz)

(c) Frequency spectrum of the displacement.

0.06

0.04

0.02

0.00

00 N

-0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02

Displacement (mm)

(d) Poincar6 map of the beam tip motion.

Figure 3.7 (Continued).
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Figure 3.7 (Continued).

The time history of the predicted impact force on one side of the

bearing is presented in Figure 3.7 (e). Since the impact force varies from one

excitation cycle to another for a chaotic response, looking at only a few cycles

could result in a designer or analyst underestimating the peak impact force.

Therefore, many cycles must be simulated to determine the range of the

impact force for a chaotic response. A detailed discussion of the design issues

for chaotic responses is given in Section 5.4.

3.5 Effects of System Parameters on the Dynamic Response

The clearance size, excitation frequency, beam dimension, and

damping are four parameters that strongly affect the impact force in the

bearing. The effects of each of these parameters on the dynamic response are

discussed in this section.
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3.5.1 The Effect of Clearance and Excitation Frequency

Figures 3.8 (a) and (b) show impact forces as functions of the excitation

frequency for dimensionless clearances of ±0.01 (±0.032 mm clearance) and

+0.04 (±0.127 mm clearance), respectively. Dimensionless clearance is the

actual clearance normalized by the displacement of the beam tip if a static

force equal to peak magnitude of the excitation force were applied to the beam

without the constraint of the clearance bearing. Curves in these figures

record the peak impact forces for 100 cycles of machine operation at each

excitation frequency. For a periodic response, a single point appears since the

peak values of 100 cycles are the same. For a subharmonic response, a few

discrete points appear. For a chaotic response, distributed points appear since

the peak force varies from one excitation cycle to another. Based on the

characteristics of the impact force shown in the figures, the responses are

classified into three types.

Type I Response is periodic, and is not sensitive to initial conditions or

small variations of system parameters. The predicted impact force increases

smoothly as the excitation frequency increases in the range of 1 to 8 Hz, as

shown in Figure 3.8. This well-behaved region permits the designer to

predict trends accurately or without ambiguity.

Type II Response is periodic, and not sensitive to initial conditions, but

it is sensitive to small variations of system parameters. This sensitivity is

seen as the excitation frequency varies from 8 to 30 Hz in Figure 3.8 (a), and

from 8 to 17 Hz in Figure 3.8 (b). Note that the peak impact force significantly

fluctuates as the excitation frequency changes. For example, as the excitation

frequency increases from 18 to 20 Hz, the corresponding peak impact forces

are periodic, but change from 30.5 to 15.0 N (about 50% decrease), and then

rises to 28 N ( about 100% increase). For the Type II Response, the hidden
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danger is its periodicity. The periodic response may lead designers to

overlook its sensitivity to small variations of system parameters.

Type III Response is unpredictable, either chaotic or periodic, as shown

in Figure 3.8 (b) for excitation frequencies from 16 to 30 Hz. When chaotic,

the predicted impact force is sensitive to initial conditions. For example, at 30

Hz, the peak impact force varies between 30 Newton and 85 Newton,

depending on the initial displacements and velocities. The peak impact force

also fluctuates significantly as the excitation frequency changes. For example,

while the response is periodic with a peak impact force of 70 N at 29 Hz, it

becomes chaotic with peak impact force in the range of 30 - 85 N as the

excitation frequency increases to 30 Hz. For the Type III Response, the

variation range and statistical properties of the peak impact force in a chaotic

response may be obtained through sufficient cycles of simulation. These

statistical properties may be sufficient for designers to perform the necessary

design analysis. However, the uncertainty and sensitivity of the responses

present ambiguities for a designer or analyst using simulation predictions.

The above study is extended to different clearance sizes. The response

nature of the system is plotted in Figure 3.9 against the dimensionless

clearance and excitation frequency. In the figure, an open circle represents a

periodic response, and a black dot represents a chaotic response. According to

the above definitions for the three types of responses, the responses in this

parameter space are classified into three types. The corresponding regions for

these three types of responses are suggested in the figure using different

shadings. Furthermore, this figure shows that large clearance and high

frequency encourage a chaotic response. For example, chaotic vibrations

occur when the dimensionless clearance is larger than 0.02 and the excitation

frequency is higher than 16 Hz.
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Figure 3.9 Simulation results. Response nature of the IBS in Excitation
frequency-Clearance space. Regions of three types of responses are suggested
using three different shadings.

The existence of the Type II Response is due to both the clearance and

the beam flexibility. Impact forces generated at a clearance connection have a

broadband, high frequency spectrum. The broadband impact force excites the

high frequency modes of the beam, whose frequencies are much higher than

the excitation frequency. The vibrations of the high frequency modes

superpose on the rigid-body motion of the beam. The velocity of the beam tip

0 Simulation, Periodic Response
0 Simulation, Chaotic Response
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immediately prior to contact with the bearing is affected by the phase between

the rigid-body motion and the vibrations of the high frequency modes. The

velocity is higher than that of the rigid-body motion if the rigid-body motion

and the vibrations are in phase, or less than that of the rigid-body motion if

the rigid-body motion and the vibrations are out of phase. For the IBS, the

phase between the rigid-body motion and the vibrations of the high frequency

modes is a complicated function of the excitation frequency, clearance size,

and beam flexibility.

Table 3.1 The first natural frequencies of the beam
for different beam lengths

Beam length (mm) Frequency (Hz)

279.0 298.4

281.5 293.2

284.0 288.2

The sensitivity of the Type II Response is examined by changing the

beam flexibility. The original length of the beam is increased by 2.5 mm and

5.0 mm, respectively. The flexibility of the beam is quantified using its first

pinned-pinned mode frequency. The first pinned-pinned mode frequencies

of the beam for three different lengths are calculated and listed in Table 3.1.

The simulation results of the beam for these three lengths with ±0.015 mm

clearance are shown in Figure 3.10. In the figure, the peak impact force is

plotted as a function of the excitation frequency. The results show similar

patterns for all three lengths of the beam: the peak impact force fluctuates as

the excitation frequency varies from 15 Hz to 30 Hz. For frequencies lower

than 15 Hz, the impact force is too small to excite sufficiently large vibrations
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of the high frequency modes. Such

of the beam tip before the impact.

the beam flexibility is not sufficient.

in
5

small vibrations do not affect the velocity

In this frequency range, the influence of

The responses are, therefore, Type I.

10 15 20 25 30 35

Excitation Frequency (Hz)

Figure 3.10 Simulation results. Peak impact force as a function of excitation
frequency for different beam lengths. ±0.015 mm clearance and 8.9 N force
amplitude.

When the peak impact force for each beam length is depicted as a

function of the frequency ratio, (the ratio of the excitation frequency and the

first pinned-pinned mode frequency of each beam length), as shown in Figure

3.11, the crests and valleys in the fluctuation of the peak impact forces

coincide for all three lengths. These results indicate that the sensitivity of the

Type II Response is related to the beam flexibility and that the variation of any

system parameter, which can affect the beam flexibility, could result in a

different fluctuation pattern of the peak impact force for the same range of

excitation frequency. The results also show that there is an inherent
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relationship between the fluctuation of the peak impact force and the system

parameters, such as the excitation frequency, clearance size, and beam mode

frequencies. However, it is very difficult to develop a closed formula to show

explicitly the relationship because of the nonlinearity of the clearance.

35

30

o 25

a 20

• 15

10
0.02 0.04 0.06 0.08 0.10 0.12

Frequency Ratio

Figure 3.11 Simulation results. Peak impact force as a function of frequency
ratio for different beam lengths. +0.015 mm clearance and 8.9 N force
amplitude.

3.5.2 The Effect of Beam Dimensional Variation

Virtually every engineering design is subject to dimensional variations

when the design is manufactured. In some cases, the design is slightly

modified in order to use a new designed part. The replacement of one

component may cause small dimensional changes of other components that

fit into the modified design. Therefore, it is important to evaluate the effects

of dimensional variation on the dynamic response of machine systems.

Beam length is one of the major design parameters for the impact beam
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system, and was chosen for an investigation into the effect of dimensional

variation on the dynamic response.

100
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40

90
270 280 290 300 310

Beam Length (mm)

Figure 3.12 Simulation results. Peak impact force as a function of beam
length variation.

Figure 3.12 shows the peak impact force as a function of the variation

of the beam length at an excitation frequency of 29 Hz and a clearance of

±0.127 mm. The design length of the beam was assumed to be 279 mm. The

length was change from 279 mm to 304 mm with ten increments. Each

increment is 2.5 mm, which is about 1% of the original length. It is seen that

the nature of the response changes from chaotic to periodic or vice versa even

for a small variation of the beam length at different beam lengths. For

example, when the beam length increases by about 1% at the length of 281.5

mm, from 281.5 mm to 284 mm, the response changes from periodic to

I Clearance: +0.127 mm (r/A=+0.04)1

1 1 11I11 2 12111 111 1 111 is 1 11 1111 1,1 1 1. I1
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chaotic, and the maximum value of the peak impact force increases from 70

N to 95 N, almost a 30% increase.

100

80

60

40

20
0.010

Clearance-- 0.127 mm (r/A=+-0.04)
Excitation freauencv:30 Hz

1100
•• oo

Sg ooI03
0000000000000o

0.02 0.04 0.06

Structural Damping Ratio

0.08

Figure 3.13 Simulation results. Peak impact force as a function of the
structural damping ratio.

3.5.3 The Effect of Damping

In order to understand the effect of structural damping on a chaotic

response, the structural damping ratio was varied in the numerical

simulation. Figure 3.13 shows the peak impact force as a function of the

damping ratio at an excitation frequency of 30 Hz and ±0.127 mm clearance.

Note that the variation of the peak impact forces of chaotic responses

decreases as the damping ratio increases from 1% to 8%. It is clearly shown

that increasing damping is an effective way of minimizing the unsatisfactory

chaotic responses.
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3.6 Experimental Responses of the Impact Beam System

Extensive experiments were performed for different excitation

frequencies and clearances. The dynamic responses of the IBS were found to

be chaotic for certain excitation frequencies and clearances, and to be periodic

in other cases. The response nature was determined based on the

characteristics of the time history and phase portrait of the beam motion, and

the variation of the peak impact force in response to the periodic excitation.

For the two typical responses presented here, the peak magnitude of the

excitation force was 8.9 N, and the clearance was set to ±0.127 mm.

A Periodic Response

Figure 3.14 shows the measured response of the system when it is

excited at 10 Hz. Figures 3.14 (a) and (b) are the displacement and phase

portrait of the beam motion at the location of the input force. Figure 3.14 (c)

presents the time history of the impact force in the clearance bearing. These

results indicate the characteristics of a periodic response. Except for minor

deviation, the phase trajectory of the beam motion forms a closed orbit for

each excitation cycle, and the peak impact force repeats from one excitation

cycle to another. The slight deviations are due to experimental errors, such as

the quantization error of the A/D conversion and non-repeatability in the

sensors. These deviations are small; for example, the force variation was

found to be less than 5% of the average peak value of the impact force.

A Chaotic Response

Figure 3.15 shows the measured response of the system when it is

excited at 21 Hz. Figures 3.15 (a) and (b) are again the displacement and phase

portrait of the beam motion at the location of the input force. Figure 3.15 (c)
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(b) Phase plane portrait of the beam motion.

Figure 3.14 An experimental result. A periodic response. ±0.127 mm
clearance, 10 Hz excitation frequency, and 8.9 N force amplitude.
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(c) Impact force on one side of the bearing.
Figure 3.14 (Continued).

presents the time history of the impact force. These figures show the

characteristics of a chaotic response. The phase trajectory of the beam motion

does not close for each excitation cycle, and the peak impact force irregularly

fluctuates from one excitation cycle to another. This non-repeatability of the

response indicates that system behavior is unpredictable at this excitation

frequency. Although the exact value of a response parameter is

unpredictable, its range which covers all possible values can, in principle, be

obtained through sufficient measurements. For example, the range of the

peak impact force for such a chaotic response can be determined by measuring

the peak impact forces for a sufficient number of excitation cycles.
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(b) Phase plane portrait of the beam motion.

Figure 3.15 An experimental result. A chaotic response. ±0.127 mm

clearance, 21 Hz excitation frequency, and 8.9 N force amplitude.
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(c) Impact force on one side of the bearing.

Figure 3.15 (Continued).

Characteristics of Measured Responses

The measured peak impact forces as a function of the excitation

frequency are presented in Figure 3.16. Figure 3.16 (a) is the results of ±0.016

mm clearance and Figure 3.16 (b) is the results of ±0.127 mm clearance. Data

were collected in ensembles of 30 impact peaks at each excitation frequency.

The solid lines are plotted through the mean value of the ensemble of the

data at each excitation frequency.

In principle, a periodic response has zero variation in the ensemble

and should produce a single point at a given frequency on this figure. Due to

the non-repeatability of the sensor and other uncertainties in the

measurement, the measured values for a periodic response exhibit small

variations. On the other hand, a chaotic response produces irregular peak

impacts from one excitation cycle to another, leading to a large variation in

Chapter 3
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the peak impact force, characterized by distributed points at a given frequency

in the figure.

The non-repeatable error of the force sensor was found to be

approximately ±3 N. This error value, the small variation of the impact force,

is used to classify characteristics of system's responses. A response with force

variation larger than ±3 N is classified as chaotic. In Figure 3.16 (a), the

response is periodic for all excitation frequencies. For the excitation frequency

in the range of 4-9 Hz, the response is classified as Type I because of the well-

behave trend of the peak impact forces. For the excitation frequency in the

range of 10-30 Hz, the response is classified as Type II rather than Type I,

because its trend fluctuates with excitation frequency. In Figure 3.16 (b), the

response is periodic for excitation frequencies less than 19 Hz. For the

excitation frequency in the range of 4-9 Hz, the response is classified as Type I.

For the excitation frequency in the range of 10-19 Hz, the response is classified

as Type II rather than Type I, since its trend with excitation frequency is not

well-behaved. For excitation frequencies larger than 19 Hz, the response is

unpredictable (i.e. either periodic and chaotic) and is classified as Type III

response. These classifications were cross checked using other methods, such

as phase plane portraits and frequency spectra of the responses. The

conclusions from these methods on the nature of the responses were found

to be consistent.
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Figure 3.16 Experimental results. Peak impact force as a function of excitation

frequency. These two figures show Type I, Type II, and Type III Responses.
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3.7 Comparison of Experimental and Numerical Results

The previous sections have discussed numerical and experimental

evidence for the existence of chaotic responses in the IBS. This section

directly compares results from the numerical model with experimental

measurements.

Figure 3.17 is a comparison between experimental and numerical

results for an excitation frequency of 30 Hz at +0.127 mm clearance. The

parameters used for this comparison are the same as those for Figure 3.6, but

the beam motion presented here is at the location of the force input instead of

the beam tip. Figures 3.17 (a) and (b) give the comparisons between

simulation and measurements for the displacement and phase portrait of

beam motion, respectively. Figure 3.17 (c) presents both results for time

histories of the impact force. These figures show an excellent agreement

between the numerical results and the experimental data in three aspects.

First, both indicate that the response is chaotic. Second, both show that the

beam vibration has the similar pattern as well as the same variation range

(i.e. the displacement from -0.2 to 0.2 mm and the velocity from -0.1 to 0.1

m/s). Third, both show that the peak impact force has the same variation

range (i.e. from 40 to 100 N).

While the predictions and measurements are in an excellent

agreement for some sets of system parameters, the numerical model provides

a qualitatively good prediction for the whole parameter space. This can be

seen from the following two comparisons: 1) characteristics of the impact

force as a function of the excitation frequency for a given clearance, and 2)

characteristics of the impact force over the Excitation Frequency-Clearance

space.
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Figure 3.17 Comparison between experimental and numerical results.

mm clearance, 30 Hz excitation frequency, and 8.9 N force amplitude.
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(b) Phase plane portraits of the beam motion.

Figure 3.17 (Continued).
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For a given ±0.127 mm clearance (±0.04 dimensionless clearance),

Figures 3.8 (b) and 3.16 (b) are used for the comparison. Compared with the

numerical results shown in Figure 3.8 (b), the experimental data shown in

Figure 3.16 (b) exhibit similar patterns of the impact forces except for a small

difference in the frequency boundary between the Type II and Type II regions

(i.e. 16 Hz from simulation and 19 Hz from experiments). The similarity of

the numerical results and experimental data indicate that the numerical

model captures much of the qualitative dynamic behavior of the IBS.

Over the Excitation Frequency-Clearance space, Figure 3.18 reproduces

Figure 3.9, and adds two curves. The solid curve is a measured predictable-

unpredictable boundary curve. The curve was obtained experimentally such

that the responses are surely periodic when the clearance and excitation

frequency are in the region below the curve, but are either periodic or chaotic

in the region above the curve. In other words, the curve is a boundary

between the predictable- and unpredictable-response parameter regions or a

boundary between the Type I and Type II and the Type III Responses. The

dashed curve is a measured boundary between the Type I and Type II

Responses. The experimental results are qualitatively consistent with the

numerical data over the studied region.
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Figure 3.18 Comparison between experimental and numerical results. The

nature of responses in Excitation frequency-Clearance space. 8.9 N force

amplitude.

3.8 Summary

Interesting results from both numerical simulation and experimental

measurements of the Impact Beam System are:

* The existence of chaotic vibrations in the system is confirmed both

numerically and experimentally.

* Chaotic vibration usually occurs for large clearance and/or high

frequency of the excitation force.
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* Chaotic phenomena can be minimized by increasing the damping.

* Dynamic response of the system is found to consist of three

identifiable types:

Type I response is periodic, and is not sensitive to initial

conditions or small parameter variations;

Type II response is periodic and not sensitive to initial

conditions, but it is sensitive to small parameter variations;

Type III response is either chaotic or periodic, sensitive to both

initial conditions and small variations of the system parameters

such as clearance size, excitation frequency, component

dimension, and damping.
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Chapter 4

Study of a Spatial Slider Crank Mechanism

4.1 Introduction

Chapter 3 discusses the dynamic behavior of the IBS. Here dynamic

characteristics of complex machine systems with clearance connections and

component flexibility are explored. A Spatial Slide Crank (SSC) mechanism,

is studied. While the IBS has only one nonlinear element (its one clearance

connection), the SSC has multiple clearance connections and other

nonlinearities associated with spatial, large rotational motions. An

experimental Spatial Slider Crank was designed and constructed by Deck [3]

and O'Connell [41] as a testbed to study the dynamic behavior of more realistic

machines with clearance connections and component flexibility.

The experimental SSC is described in Section 4.2, and its numerical

model is presented in Section 4.3. Numerical simulations of dynamic

responses of the mechanism are presented in Section 4.4. In Section 4.5, the

effects of parameter variations on the dynamic behavior of the mechanism

are investigated. Experimental results are presented and compared with

numerical simulations in Sections 4.6 and 4.7, respectively. The conclusions

of this study are summarized in Section 4.8.

4.2 The Spatial Slider Crank Mechanism

The Spatial Slider Crank mechanism, shown schematically in Figure

4.1, consists of a motor and a crank, a ball joint which connects the crank to a

connecting rod, a universal joint, which connects the connecting rod to a

slider, and a slider guide rod. The slider and slider guide rod compose a

sliding prismatic joint. In operation, the slider moves along the guide rod as
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the crank turns. The slider's stroke can be adjusted by changing the motor

angle, which is the angle between the motor axis and the axis perpendicular

to the guide rod axis. The mechanism operates with spatial kinematic

motion when the motor angle is different from zero degrees, and with planar

kinematic motion when the motor angle is zero degrees. This mechanism is

widely used in manufacturing processes and assembly lines for feeding and

packing applications.

Ball joint
(with clearance) Connecting rod

Base

I

joint
clearance)

Motor
Angle, 7

Figure 4.1 Schematic diagram of a spatial slider crank mechanism [3].

An experimental SSC was designed and developed as a testbed to study

machine dynamics associated with clearance connections and component

flexibility [3,41]. Two views of the experimental SSC are shown in Figures 4.2

(a) and (b), with 250 motor angle representing a spatial slider crank

mechanism; and with 00 motor angle representing a planer slider crank

mechanism, respectively.

A flywheel is used to stabilize the machine's speed and also acts as the

crank. The ball joint is mounted on the flywheel. One end of the connecting

· _1~1~1~_·1 ·11
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rod is attached to the housing of the ball joint. The other end of the rod is

attached through a ball bearing to a yoke with a pair of ball bearings that

allows the slider to pivot. The slider moves along the slider guide rod as the

flywheel turns. The motor angle can be adjusted between 00 and 25', causing

the slider stroke to vary between 100 mm and 90 mm. The interference of the

ball joint housing with the flywheel limits the motor angle to 250. The entire

SSC mechanism is mounted on an aluminum baseplate, which is 12.7 mm

thick, 560 mm long and 457 mm wide. The operation speed of the SSC ranges

from 50 to 300 rpm.

The ball joint and sliding prismatic joint in the mechanism were

designed as instrumented, adjustable clearance joints with contact force

sensors. The force sensors used in these two joints have the same design as

those used in the clearance joint of the IBS. The ball joint is illustrated in

Figure 4.3 (a), and the geometrical configuration of its contact force sensors is

shown in Figure 4.3 (b). The ball joint has four force sensors placed

symmetrically so that they retain a 15.9 mm diameter hard steel ball. The

force sensors used in the ball joint have steel tips, ground to flat surfaces.

The sliding prismatic joint is illustrated in Figure 4.4 (a), and the

geometrical configuration of its contact force sensors is shown in Figure 4.4

(b). It has eight sensors, set off-center symmetrically. This pattern prevents

the slider from rotating due to torques parallel to the guide rod axis. Four of

the sensors are oriented vertically, and the other four are horizontal. The

force sensors are like those of the ball joint, except that their tips are made of

brass, machined to an approximately hemispherical shape of 4.8 mm

diameter.
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(a) Top view, 250 motor angle.

(b) Front view, 00 motor angle.

Figure 4.2 Experimental spatial slider crank mechanism [3].
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Force Sensor

Ball

Figure 4.3 (a) Instrumented, adjustable clearance ball joint.

Figure 4.3 (b) Geometrical configuration of four force sensors inside ball joint.
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Force Sensor Stud
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Figure 4.4 (a) Instrumented, adjustable clearance slider joint

Figure 4.4 (b) Geometrical configuration of eight force sensors inside slider

joint
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The clearances in both joints are set by adjusting the sensors in their

threaded mounting holes. The clearances can be adjusted from near zero to 1

mm. In the experiments, both joints were lubricated using light machine oil.

4.3 Analytical Model of the Spatial Slider Crank Mechanism

4.3.1 Model of the Mechanism

The dynamic modeling method presented in Section 2.2 is used to

model the SSC mechanism. The model of the experimental SSC, shown in

Figure 4.5, consists of seven links: link 0 is the base and the motor; link 1 is

the crank; links 2 and 3 are zero length kinematic links associated with the

ball joint; link 4 is the connecting rod; link 5 is the slider yoke; link 6 is the

slider. The slider guide rod is modeled as part of link 0 because it is mounted

on the base.
Ball Joint

Slider Guide Rod

Flywheel

Figure 4.5 Numerical model of the SSC. Hartenberg-Denavit coordinate

frames of links.

Zo

Ko
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The Hartenberg-Denavit reference frames used in numerical

simulations are attached to links in the model. The Hartenberg-Denavit

parameters and the link types of seven links are listed in Table 4.1. The

nominal motions of these seven links, 00(t) to 06(t), and their derivatives are

provided by kinematic analysis of the mechanism.

Table 4.1 Hartenberg-Denavit parameters and link types of the SSC

Link 0 L H ac Link Type

0 00 0 0 0 Kinematic

01 1 L1  0 00 Kinematic

2 02 0 H2 900 Kinematic

3 03 0 0 900 Kinematic

4 04 L4  0 00 FE Model Link

5 05 0 H5  900 Rigid Link

6 06 0 0 -900 Rigid Link

In the model, the connecting rod, link 4, is modeled using finite

elements. Other components such as the slider yoke, slider, and slider guide

rod are assumed to be rigid.

4.3.2 Models of Clearance Connections

In this study, two models for the ball joint are used. One is the

instrumented clearance ball joint model shown in Figure 4.3. The other is

the spherical clearance model shown in Figure 4.6 [7]. In the spherical

clearance model, one part is a hollow spherical shell, and the other part is a

solid sphere that fits closely within the shell part. The depicted spherical
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clearance model is exaggerated for illustrating the clearance.

spherical clearance model is close to conventional ball

instrumented clearance model is a representation of the ball joint

experimental SSC in this study.

While

joints,

used in

Linl

Link i+1

Figure 4.6 Spherical Clearance Connection Model [7].

There are two relative motion modes for clearance joints: contact and

no contact. The contact mode is a point contact in both ball joint models. In

the spherical clearance model, the point contact is between the ball and the

shell. In the instrumented ball joint model, the contact is between the ball

surface and the surfaces of the sensor tips, see Figure 4.3 (b) .

To represent the sliding prismatic joint, the instrumented prismatic

joint model, illustrated in Figure 4.4, is used in this study. The contact mode

the

the

the
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is either a point contact or a multi-point contact, which is between the

hemispherical tips of the force sensors and the flat sides of the guide rod. The

multi-point contact may involve simultaneous contacts with several sensors,

representing a line contact.

When contact occurs in the joints, a contact force is calculated from the

local deformations of the contact parts, which are determined by the

kinematic interference of the contact parts at their contact location. The

interference is calculated based on the geometrical configurations and the

relative motions of the contact parts. The detailed computation procedure of

the contact force can be found in Reference [3,7]. These forces are used in

simulations to predict the contact forces.

4.4 Simulations of Dynamic Responses of the Mechanism

The dynamic responses of the SSC were simulated using the system

model described in the previous section. In numerical simulations, impacts

occurred in the clearance joints with certain clearance sizes and operating

speeds. In the parameter regions where the impacts occurred, the SSC model

was found to have chaotic behavior in some cases, and to have periodic

behavior in other cases.

To provide general insights into the SSC, the motor angle was set to be

zero degrees, i.e., the planar case of the mechanism was studied. Simulations

were performed for two situations: (1) The ball joint was assumed to be a

clearance joint while the slider joint was assumed to have zero clearance; (2)

The slider joint was assumed to be a clearance joint while the ball joint was

assumed to have zero clearance. The results are presented in Sections 4.4.1

and 4.4.2, respectively.
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Figure 4.7 A simulation result. Contact force in ball joint. Spherical

Clearance model.

4.4.1 Impact Responses in the Clearance Ball Joint

For simulation results presented in this section, the ball joint is

modeled a clearance joint while the slider joint has zero clearance. For the

ball joint, both the spherical clearance model and the instrumented clearance

model are used. Results of the spherical clearance model are presented first,

followed by results of the instrumented clearance model.

Spherical Clearance Model

To determine whether impacts occur in the clearance ball joint, the

system model was simulated for different clearance sizes at different

operating speeds. It was found that impacts occur usually at large clearances

and low crank speeds, and that system responses could be chaotic only in the

impact regions.

Chapter 4
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Figure 4.7 shows a sample response of the SSC in one revolution

during which an impact occurs. In the figure, the contact force in the ball

joint is plotted as a function of the crank rotation angle for ±0.0635 mm

clearance and 120 rpm crank speed. A non-zero contact force corresponds to a

contact between the ball and shell, and a zero contact force indicates the loss of

contact between these two parts. Impacts occur when contact is resumed after

the contact loss. As seen in the figure, the ball and shell are in contact at

crank angles from 00 to 701, out of contact afterwards, then in contact again at

950. After bouncing for a while in the range from 950 to 1300, the ball and

shell remain in contact for the rest of the cycle.

0nn
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0
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0
0 50 100 150 200 250 300 350

Crank Speed (RPM)

Figure 4.8 Simulation results. Peak impact forces as a function of the crank
speed. Spherical clearance model.

Figure 4.8 shows different responses as the crank speed is varied, with

+0.127 mm clearance. In the figure, the peak contact forces of 50 operating

cycles are plotted at each crank speed. A single point at a given crank speed
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indicates a periodic response at that speed, since the peak values of 50 cycles

are the same. A few discrete points indicate a subharmonic response.

Densely distributed points indicate a chaotic response since the peak force

varies from one operating cycle to another. As noted above, the examination

of the contact force time history reveals whether the peak contact force is

caused by impacts. Speed regions where the peak force is due to impacts are

indicated on the figure. Impacts occur in the crank speed range from 110 rpm

to 190 rpm and at 280 rpm. Chaotic responses are found to occur at 120 rpm,

130 rpm, and 140 rpm, which are in the region with impacts. Chaotic

responses are observed only in crank speed regions with impacts.
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Figure 4.9 Simulation results. The nature of responses in Crank speed-
Clearance space. Spherical clearance model.

To further examine the characteristics of responses in the Crank speed-

Clearance space, the above analysis was repeated using different clearance

sizes of the ball joint. Simulation results are plotted in Figure 4.9. The stars

m No Impact, Periodic
0 Impact, Periodic
* Impact, Chaotic
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represent responses without impacts. The black dots represent responses with

impacts and chaotic behavior, while the open circles mark responses with

impacts and periodic behavior. As seen in the figure, responses with impacts

occur only in a small crank speed range (100 - 200 rpm) at typical sizes of

clearances (< ±0.127 mm). For the clearance range considered here, there are

no impacts at crank speeds above 300 rpm.

These dynamic behaviors are affected by the orientation of the

mechanism. In the above cases, the mechanism operates in a plane which is

parallel to the gravitation (see Figure 4.5). For a given clearance, whether

impacts occur depends upon not only the magnitudes of the centrifugal force

(proportional to the square of the crank speed) and the inertia force of the

slider during a revolution, but also the magnitude and direction of the

gravity forces acting on the mechanism (proportional to the mass of the

mechanism). At crank speeds of less than 100 rpm, the gravity force and the

inertia force of the slider keep the ball in contact with the shell. When the

operating speed is higher than 300 rpm, centrifugal force keeps the ball in

continuous contact with the shell. In between, depending upon the net effect

of these three forces, contact between the ball and the shell may be lost and

impact occurs when contact is resumed. If the mechanism operates in the

plane which is perpendicular to gravity, centrifugal force and the inertia force

of the slider keep the ball in continuous contact with the shell. In this case

there are no contact loss or no impacts.

Instrumented Clearance Ball Joint Model

The simulated dynamic behavior of the SSC with the instrumented

clearance model can be different from the behavior just discussed using the

spherical clearance model. In the instrumented clearance model, an impact
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can occur without a complete contact loss between the ball and four

tetrahedrally distributed sensors around it. Whenever the ball strikes one of

the sensors, an impact is recorded by the sensor no matter whether or not the

ball is still in contact with other sensors.

Figure 4.10 shows the magnitude of the contact force vector in the joint

as a function of the crank angle with ±0.127 mm clearance at 100 rpm crank

speed. Two large impulsive forces occurring at 1000 and 3000 crank rotation

angles indicate the impacts. Note that there is no contact loss, since the

contact force is not zero before the impacts occur, particularly at the 3000 crank

angle. When an impact was recorded by one sensor at the 3000 crank angle,

the ball was in contact with one or more other sensors.
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Figure 4.10 A simulation result. Contact force in instrumented clearance ball

joint.

Although the instrumented clearance model can not predict the

dynamic behavior of conventional ball joints, it provides good predictions of

I I I I - I~



Chapter 4 Study of a Spatial Slider Crank Mechanism

the instrumented ball joint. The comparison between numerical and

experimental results are given in Section 4.7.

4.4.2 Impact Response in the Clearance Slider Joint

For simulation results presented in this section, the slider joint is

modeled as a clearance joint while the ball joint has zero clearance. The

system response was found to be chaotic in some parameter regions and

periodic in other cases.
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Figure 4.11 A simulation result. Contact force in instrumented clearance
slider joint.

Figure 4.11 shows a sample response in one revolution during which

an impact occurs. The figure shows the contact force in the instrumented

slider joint as a function of the crank angle for ±0.032 mm clearance and 230

rpm crank speed. While positive values of the contact force indicate contacts

of the upper sensors of the slider with the guide rod, negative values indicate
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contacts of the lower sensors. A non-zero contact force corresponds to contact

between the contact force sensors and the slider guide rod, and a zero contact

force indicates contact loss. Impact occurs when contact is resumed after

contact loss. The figure indicates that contact loss occurs at 550 crank angle,

and contact is resumed at 750, which is characterized by a large impact force.

Figure 4.12 shows the above response in time and phase domains for

the slider motion perpendicular to the axis of the slider guide rod with ±0.032

mm clearance and 230 rpm crank speed. Figures 4.12 (a), (b), and (c) show the

time history of the displacement, phase portrait and Poincard Map of the

slider vibration, respectively. The impact force in the slider joint is shown in

Figure 4.12 (d). As seen in the figures, the displacement time history, phase

portrait and Poincar6 Map of the slider vibration show irregular variations

and non-repeatability. The impact force varies from one operating cycle to

another. Therefore, the response is chaotic.

Figure 4.13 shows the peak contact forces in the slider joint as a

function of the crank speed for ±0.032 mm clearance. For each crank speed,

the peak contact forces for 50 cycles of machine operation are recorded. Thus,

at a given crank speed in the figure, a single point appears for a periodic

response; a few discrete points appear for a subharmonic response; and

distributed points appear for a chaotic response. Chaotic responses occur at a

number of crank speeds (e.g., from 110 - 190 rpm ) and periodic responses

occur at other speeds ( e.g., at 100 , 200 rpm).
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Figure 4.12 A simulation result. (a) Time history, (b) phase plane portrait, (c)
Poincar' map of the of the slider vibration, and (d) time history of the impact
force. +0.032 mm clearance and 230 rpm crank speed. Instrumented clearance

slider joint model.
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Results shown in Figures 4.7, 4.10 and 4.11 indicate that the contact

forces of the SSC follow a pattern similar to the one observed in the IBS: an

initial large peak force, then a bouncing period, finally a contact period. Other

similar characteristics between these two systems will be discussed in the

following sections.
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Figure 4.13 Simulation results. Peak impact force in slider joint as a function
of crank speed. 6.35 mm diameter connecting rod.

4.5 Effects of System Parameters on the Dynamic Response

The clearance size, crank speed, joint friction, link dimension, contact

damping, and component flexibility are the system parameters that strongly

affect the contact force in the clearance joint. The effects of each of these

parameters on the dynamic response of the SSC are discussed in this section.

The results presented are for the slider joint with clearance and the ball joint

with no clearance.
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Figure 4.14 Simulation results. Peak impact force in slider joint as a function
of crank speed for different clearances. (a) ±0.032 mm clearance. (b) ±0.254
mm clearance. Instrumented clearance slider joint model.
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4.5.1 The Effect of Clearance and Crank Speed

To examine the effects of the slider clearance and crank speed on the

dynamic behavior of the SSC, Figures 4.14 (a) and (b) present the peak impact

force as a function of the crank speed for dimensionless clearances of ±0.002

(±0.032 mm clearance) and ±0.016 (±0.254 mm clearance). The dimensionless

clearance is the actual clearance normalized by the magnitude of the slider

vibration due to a force equal to the slider inertia force, applied perpendicular

to the slider guide rod axis. In Figures 4.8 and 4.13, the peak forces from 50

cycles of operations are plotted for each crank speed, and the nature of the

response - periodic, subharmonic or chaotic - is indicated by the distribution

of dots. The responses are further classified into three characteristic types

based on the trend of the peak impact force as the crank speed is varied.

Type I Response is periodic, and not sensitive to initial conditions or

small parameter variations. The predicted impact force increases smoothly as

the crank speed increases in the range of 100 - 180 rpm for ±0.032 mm

clearance. This well-behaved response permits designers to predict trends.

Type II Response is periodic and not sensitive to initial conditions.

However, it is sensitive to small parameter variations. This sensitivity is

seen as the crank speed varies from 190 - 300 rpm for ±0.032 mm clearance.

The peak impact force fluctuates significantly as the crank speed varies. For

example, as the crank speed increases from 270 to 290 rpm, the peak impact

force first increases from 35 to 48 N, a 40% increase, and then drops to 40 N, a

20% decrease. The hidden danger of the Type II Response is its periodicity.

Designers may see periodic responses, and overlook the sensitivity to small

variations of system parameters.

Type III Response is unpredictable, either chaotic or periodic as shown

in Figure 4.14 (b). For a chaotic response, the predicted impact force, which is
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characterized by the large variations in the peak impact force at a given crank

speed, is sensitive to initial conditions. For example, at 190 rpm, the peak

impact force varies between 85 and 110 N, depending on the initial

displacements and velocities used in the simulation. The peak impact force

also fluctuates considerably as the crank speed changes. For example, while

the response is periodic with a peak impact force of 105 N at 210 rpm, it

becomes chaotic with a peak impact force in the range of 110 to 130 N as the

crank speed increases to 220 rpm. For the Type III Response, the variation

range and statistical properties of the peak impact force may be obtained

through sufficient cycles of simulation. These statistical properties may be

sufficient for designers to perform the necessary design analysis. However,

the uncertainty and sensitivity of the responses present ambiguities for a

designer or analyst to use the predictions of computer-based simulations.

The above analysis was repeated for several more slider clearances.

Figure 4.15 summarize the simulation results. The black dots represent

chaotic responses, while the open circles mark periodic responses. The

responses in this parameter space are classified into three types according to

the definitions of the Type I, Type II, and Type III Responses. The

corresponding regions of these three types of responses in the parameter space

are suggested in the figure using three different shadings. This figure also

shows that chaotic responses usually occur at large sizes of clearance and high

operation speeds.

These three types of responses demonstrate that the dynamic behavior

of the SSC has characteristics similar to those of the IBS .
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Figure 4.15 Simulation results. The nature of responses of the SSC in Crank
speed-Clearance space. Instrumented clearance slider joint model.

4.5.2 The Effect of Link Dimensional Variation

The length of the connecting rod is one of the design parameters for

the SSC, and was chosen to investigate the effect of dimensional variation on

dynamic behavior.

Figure 4.16 shows the peak impact force as a function of the variation

in connecting rod length for 250 rpm crank speed and ±0.032 mm clearance.

Simulation data
O Periodic response
S * Chaotic response

I I I I I - - I
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In this parameter region, the response is a Type III Response. The length of

the connecting rod varies from 0.235 to 0.265 m. The figure shows that even a

small variation in the length of the rod can change the nature of the

response. For instance, as the rod length decreases from 0.2575 to 0.255 m, a

decrease of approximately 1%, the response changes from periodic to chaotic,

and peak impact force changes from 34 N to a range of 33 to 43 N, a 25%

increase in the maximum values. The effect of dimensional variation on the

dynamic behavior in the SSC is similar to that of the IBS.
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Figure 4.16 Simulation results. Peak impact force

of length variation of the connecting rod.
in slider joint as a function

4.5.3 The Effect of Friction in the Slider Joint

Friction was added to the numerical model of the slider joint to

examine its effect on the dynamic responses. The Coulomb friction model

was used to model friction in the slider joint. In the model, the magnitude of

friction force is proportional to the normal contact force in the joint, and the
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direction of the friction force opposes the nominal velocity of the slider. For

the reciprocating motion of the slider, friction force calculated based on this

model is discontinuous when the nominal velocity of the slider passes

through zero. This discontinuity makes numerical integration difficult. To

overcome this difficulty, a ramp function is used to modify the model so that

the friction force changes continuously when the nominal velocity of the

slider passes through zero [3].

Figures 4.17 (a) and (b) show the peak impact force as a function of the

crank speed for +0.032 mm clearance with and without friction in the slider

joint. The friction coefficient g was set to be 0.1 in Figure 4.17 (b). Here, a

Type III Response is chosen as an example. Similar to Figure 4.13, the peak

impact forces are recorded for 50 cycles of machine operations at each crank

speed. The figure shows the effect that lubrication between the contact

surfaces can have on the nature of the responses. For example, when

Coulomb friction is added to model an non-lubricated joint, the response

changes from periodic to chaotic at 230 rpm, but chaotic to periodic at 260 rpm.

The sensitivity of responses to friction suggests the difficulty of

predicting the dynamic behavior of a machine when it is built, since it is

difficult to get reliable estimations of friction conditions between contact

surfaces in the machine.

4.5.4 The Effect of Contact Damping

In all the simulation results presented in this section, two contact

damping ratios, 2.5% and 5%, were used. The results in Figure 4.17 (a) were

obtained using a 2.5% contact damping ratio, while the results in Figure 4.14

(a) were obtained using a 5% contact damping ratio. Other parameters are the

same for both figures. Comparing these figures indicates that all chaotic
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Figure 4.17 Simulation results. Effect of friction in the slider joint on the

dynamic behavior. (a) without friction. (b) with friction.
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responses disappear when the damping ratio increases from 2.5% to 5%. As a

result, the responses change from Type II to either Type I or Type II.

From this comparison, two points should be noted. First, increasing

contact damping is an effective way of minimizing chaotic behavior. Second,

the Type II Response can not be eliminated by increasing the contact damping.

This conclusion is consistent with the characteristics of the Type II Response

discussed in Section 3.5.

4.5.5 Effect of Component Flexibility

As seen in Chapter 3, the component flexibility strongly affects the

characteristics of the dynamic behavior of the IBS, especially for the Type II

Response. In addition to this similar effect, numerical simulations of the SSC

reveal that superharmonic resonant responses occur at certain operating

speeds due to the flexibility of the connecting rod.

Figure 4.18 shows the peak impact force as a function of the crank speed

with ±0.127 mm clearance. The peak impact forces are recorded for 50 cycles

of machine operations at each crank speed. The figure shows several

resonant responses, occurring at 600 rpm (15 Hz), 1140 rpm (19 Hz), and 1500

rpm (25 Hz). The curve of the peak impact force has local maxima at 600, 1140

and 1500 rpm. These extrema are due to superharmonic resonances. They

can be either periodic or chaotic. The resonant responses are found to be

independent of the clearance size, and they occur even for zero clearance.

These superharmonic responses are excited by inertia force in the SSC.

In contrast to the IBS, where the excitation force is a pure sinusoidal, the

inertia force of the slider in the SSC is periodic with different harmonic

components due to the nonlinear kinematic motion of the mechanism. The

high order harmonic terms of the inertia forces excite the resonances when
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their frequencies coincide with the natural frequencies of the systems.

Eigenvalue analysis of the system at the zero crank angle position (see Figure

4.5) shows the first natural frequency of the system to be 75.6 Hz. The mode

shape at this frequency is bending of the connecting rod with the ball joint

housing mass at its one end and the slider yoke mass at its other end. This

mode is excited when the crank speed is at 15, 19 and 25 Hz. Hence, the

resonant responses at 15, 19, and 25 Hz are the 5th-order, 4th-order, and 3rd-

order superharmonic resonant responses.
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Figure 4.18 Simulation results. Peak impact force in slider joint as a function

of crank speed. Showing superharmonic resonant responses at 15, 19, and 25
Hz.

In general, the natural frequencies of a mechanism with nonlinear

kinematic motion are configuration dependent. However, it is found that the

first natural frequency of the SSC varies only slightly, from 75.6 to 76.8 Hz as

the mechanism configuration changes in operation.
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The superharmonic resonant responses are dangerous since they

induce much larger impact forces than non-resonant responses. As shown in

Figure 4.18, the peak impact force of the 3rd order superharmonic resonant

response at 1500 rpm is up to 2500 N. The corresponding vibration of the

connecting rod violates the small perturbation assumption of the model. In

reality, this indicates a likely failure of a machine. One suggestion for

avoiding superharmonic resonances is to choose a material with high

stiffness and light mass for the connecting rod in order to maintain high

operating speeds.
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Figure 4.19 Schematic diagram of the SSC measurement.

4.6 Experimental Responses of the Mechanism

A schematic diagram of the experimental measurement for the SSC is

shown in Figure 4.19. A Hewlett-Packard variable regulated DC power supply

drives the motor. The output of the motor's tachometer is fed back to a

control loop to stabilize the motor speed. A photonic sensor reads an optical

mark on the flywheel to provide a synchronizing pulse per revolution at 00
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crank angle. The pulse signal is sent to a digital period counter to precisely

monitor cycle period. This pulse is also used as an trigger signal to acquire

signals from the force sensors. The outputs of the force sensors in the

instrumented clearance joints are amplified by charge amplifiers and sent to

the data acquisition system. A Frequency Device 9016 multichannel

programmable analog filter provides anti-aliasing filtering for the signals

before they enter the A/D converter of the data acquisition system. The data

are collected by a Concurrent 6000 computer with laboratory data acquisition

hardware and software called Laboratory Workbench [2].

Extensive experiments were performed for different crank speeds and

clearances for the SSC with 00 motor angle. In the experiments, two

connecting rods, of 6.35 mm and 3.18 mm diameter, were used. Results

presented here are for the 6.35 mm rod unless noted.

Contact Force in the Ball Joint

Figure 4.20 (a) shows the measured outputs of the four contact force

sensors in the ball joint as functions of the crank angle for 100 rpm crank

speed and ±0.127 mm clearance. The position of each sensor in the joint is

shown in Figure 4.2 (b). Note that the ball is always in contact with at least

one sensor. There is no real contact loss in the joint. The occurrence of

impacts with large forces in the outputs is due to the fact that the ball contacts

each sensor sequentially, causing an impact to be recorded even when the ball

is still in contact with another sensor. The recorded forces of the four sensors

can be summed vectorially to obtain the resultant contact force in the ball

joint. Figure 4.20 (b) depicts the magnitude of the contact force as a function

of the crank angle.
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Figure 4.20 (a) Measured contact forces of four sensors in instrumented ball
joint. ±0.127 mm clearance and 100 rpm crank speed.
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Figure 4.20 (b) Resultant force in instrumented ball joint.
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Figure 4.21 (a) Measured contact forces of four sensors in instrumented slider
joint. ±0.032 mm clearance and 230 rpm crank speed.
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Figure 4.21 (b) Resultant force in instrumented slider joint.
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Chapter 4 Study of a Spatial Slider Crank Mechanism

Contact Force in the Slider Joint

Figure 4.21 (a) shows the measured outputs of the four vertical contact

force sensors in the slider joint as functions of the crank angle for 230 rpm

crank speed and ±0.032 mm clearance. The position of each sensor in the

joint is shown in Figure 4.4 (b). This figure shows that impacts occur at each

of the vertical sensors. The outputs of the four sensors are summed

according to the orientation of each sensor to obtain the resultant contact

force in the joint. Figure 4.21 (b) shows the resultant force in the joint as a

function of the crank angle. The resultant force in this figure reveals impacts

due to contact loss.

Characteristics of Measured Responses: Periodic and Chaotic

The nature of the response can be characterized based on the time

history and phase plane portrait of the slider vibration, and the variation of

the peak impact force in response to the periodic operation. The dynamic

responses of the SSC are found to be chaotic for certain crank speeds and

clearances, and to be periodic in other cases.

Figure 4.22 shows the measured peak impact force as a function of the

crank speed for ±0.032 mm slider joint clearance and near zero ball joint

clearance. This figure is constructed for 20 cycles of machine operation at each

crank speed. For each cycle of machine operation, the peak value of the

resultant contact force is calculated from outputs of four force sensors and

depicted in the figure as a point.

In principle, a periodic response has zero variation in 20 cycles of

machine operation and should produce a single point at a given crank speed

on this figure. The non-repeatability of the force sensors and other

uncertainties in the measurement produce a small variation in the measured
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values for a periodic response. On the other hand, a chaotic response

produces highly irregular peak impacts from one operating cycle to another,

leading to a large variation in the peak impact force, shown by distributed

points in the figure at a given crank speed.

The non-repeatable error of the force sensors was found to be

approximately +3 N. This value is used as the maximum amount of the

variation of the peak impact force in a response classified as periodic. As

shown in Figure 4.22, the responses are periodic at crank speeds of 100, 110,

120, 180, 200, 240 rpm and chaotic at other speeds. The response in the studied

crank speed range(100 - 250 rpm) is Type III since whether it will be periodic or

chaotic is unpredictable. The response at 130 rpm was seen to be a likely

period three subharmonic response during the experiments since the pattern

of the contact force repeats every three revolutions.
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Figure 4.22 Measured peak impact force in instrumented slider joint as a

function of crank speed.
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Figure 4.23 (a) An
vibration.

experimental result. Phase plane portrait of slider
10.032 mm clearance and 210 rpm crank speed.
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Figure 4.23 (b) An experimental result. Poincard map of slider vibration.

±0.032 mm clearance and 210 rpm crank speed.
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The phase plane portrait and Poincard map of the slider vibration are

used to confirm the chaotic behavior shown in Figure 4.22. The slider

vibration perpendicular to the axis of the slider guide rod is measured by an

accelerometer attached to the slider. As an example, at 210 rpm crank speed,

the measured phase plane portrait and Poincard map are shown in Figures

4.23 (a) and (b), respectively. These figures show the characteristics of chaotic

responses. The phase trajectory of the slider vibration does not close for each

revolution, and the Poincard map shows a fuzzy collection of points with no

visible pattern.

In the experiments, the variation of the peak impact force was found to

be slightly reduced when the accelerometer was attached to the slider. This is

because the accelerometer's cable adds constraint to the slider. However, the

phase plane portrait still shows the irregular vibration of the slider.

The Effect of the Length Variation of the Connecting Rod

To investigate the sensitivity of the dynamic response to the length

variation of the connecting rod, experiments are performed for two different

connecting rod lengths of 0.235 m and 0.240 m (about 2% variation). The

diameter of the connecting rod is 3.18 mm. Figures 4.24 (a) and (b) show the

peak impact force as a function of the crank speed for connecting rod lengths

of 0.235 m and 0.240 m, respectively. These two figures are constructed in the

same way as Figure 4.23. The responses in the measured region are Type III.

It is seen that the responses change from chaotic to periodic or vice versa

when there is even a small variation in the length of the connecting rod. For

instance, as the rod length increases by 5 mm, the response changes from

chaotic to periodic at crank speeds of 210 and 220 rpm, and from periodic to

chaotic at 180 rpm.
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Figure 4.24 (a) Experimental results. Peak impact force in instrumented
slider joint as a function of crank speed. Original rod length.
diameter connecting rod.
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Figure 4.24 (b) Experimental results. Peak impact force in instrumented

slider joint as a function of crank speed. Length increment of the connecting

rod is 5 mm. 3.18 mm diameter connecting rod.
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The sensitivity of the dynamic behavior of the SSC to the dimensional

variation of the connecting rod is experimentally demonstrated.

The Effect of the Flexibility of the Connecting Rod

In Figure 4.24 (b), there is a tremendous increase of peak impact force

around 260 rpm. This is due to superharmonic resonance. From the

fluctuation interval (the ripples) of the measured contact force, it is found

that the first natural frequency of the system is about 18 Hz, which

corresponds to 1080 rpm. Therefore, the resonant response at 260 rpm is a

4th-order superharmonic resonant response or near a 4th-order

superharmonic resonant response. In the experiment, the connecting rod

broke when the mechanism operated at 260 rpm.

The experimental results presented in this section confirm

experimentally, for the first time, the existence of chaotic vibrations in a

realistic mechanism with nonlinear kinematic motions, in this case, a spatial

slider crank.

4.7 Comparison of Experimental and Numerical Results

This section compares results from the numerical model with

experimental measurements. The instrumented clearance ball joint model

and instrumented clearance slider joint model are used in the numerical

model. The predictions and measurements are found to be in close

agreement for some sets of parameters, and qualitatively consistent for the

whole parameter space.

Figures 4.25 (a) and (b) present a comparison between experimental and

numerical results of the contact force in the ball joint, for a 3.175 mm
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diameter connecting rod, 200 rpm crank speed, and ± 0.127 mm clearance.

The figures show a close agreement between the numerical results and

experimental data in two aspects: the contact forces have similar patterns,

and the contact forces agree in order of magnitudes. This consistency can also

be seen by comparing Figure 4.19 with Figure 4.9 for the ball joint and Figure

4.20 with Figure 4.10 for the slider joint with the connecting rod of 6.35 mm

in diameter.

Detailed profiles of the contact forces show small discrepancies between

the numerical and experimental results. The frequencies of the fluctuations

of the contact forces occurring after each impact are different. As shown in

the above figures, the frequency of the fluctuation of the predicted contact

force is higher than that of the fluctuation of the measured contact force.

Since the fluctuation of the contact force represent the impulse vibration of a

system, the frequency of the fluctuation is the first natural frequency of the

system. The high frequency fluctuation shown in the numerical results

indicates that the numerical model is stiffer than the real system. One reason

for this is the approximation in modeling the moment of inertia of the slider

yoke. The moment of inertia of the slider yoke affects the first natural

frequency of the system. Since the slider yoke consists of many components,

the calculation of the moment of inertia may not be accurate. An

underestimation of the moment of the inertia in the model can result in a

high first natural frequency of the system.
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Figure 4.25 Comparison between experimental and numerical results. 3.18
mm diameter connecting rod. Instrumented clearance ball joint model.

119

Chapter 4

I -

|

m



Chapter 4 Study of a Spatial Slider Crank Mechanism

The close agreement between numerical and experimental results

shown above was found only for some sets of parameters. For the whole

parameter space in this study, the numerical predictions are found to be

qualitatively consistent with the experimental measurements. This can be

seen by comparing Figure 4.22 and Figure 4.13 over a range of the crank

speeds from 100 to 300 rpm for the slider joint with ±0.032 mm clearance. The

results show that simulation and experimental results are qualitatively

consistent in three aspects: (1) responses are sensitive to the crank speed; (2)

chaotic responses are prevalent over this crank speed range; and (3) the

responses are Type III, i.e. irregularly periodic or chaotic. Although there is

no one-to-one corresponding relationship, the qualitative similarity of the

numerical results and experimental data indicate that the numerical model

captures much of the qualitative dynamic behavior of the SSC.

4.8 Summary

Numerical simulations and experimental measurements of the SSC

have yielded the following important results, which are quite similar to those

of the IBS:

* Chaotic vibration exists in the SSC.

* Chaotic responses are associated with large clearances, high crank

speeds, and low values of the contact damping.

* Dynamic responses of the SSC can be classified into three

characteristic types:

Type I Response is periodic, not sensitive to initial conditions or

small variations of system parameters, such as clearance size, crank speed,

component dimension, joint friction, and contact damping.
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Type II Response is also periodic, not sensitive to initial conditions,

but it is sensitive to small variations of system parameters.

Type III Response is unpredictable, either periodic or chaotic,

sensitive to both initial conditions and small variations of system parameters.
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Chapter 5

Design Methodology for Machine Systems with Chaotic Vibration

5.1 Introduction

The sensitivity of the dynamic behavior of a machine system to small

variations of system parameters makes it difficult to use computer-based

predictions of its dynamic behavior for reliable design analysis at the design

stage. Yet, neglecting the effect of the sensitivity at the design stage could

result in premature failure of the system, because the dynamic behavior of

the system could be quite different from its model predictions due to small,

inadequate variations of the parameters. In order to provide reliable design

analysis, this chapter details a design methodology that effectively uses the

predictions of machine models at the design stage.

As discussed in Chapters 3 and 4, the sensitivity is due to both the

existence of chaotic behavior and the existence of clearance connections and

component flexibility in machine systems. Therefore, Section 5.2 describes

two methods called the Two-Step Test method and the Matrix Update Test

method for testing chaotic vibration in machine models. Empirical

predictive criteria are discussed in Section 5.3 for the values of design

parameters that cause chaotic vibrations. In section 5.4, design guidelines are

presented for the evaluations of the fatigue life and the reliability of a

machine. For design purposes, an approach that classifies the responses into

Type I, Type II or Type III is described in Section 5.5. Finally, a design

methodology is proposed in Section 5.6.
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5.2 Methods for Testing Chaotic Vibration

Based on the characteristics of the dynamic behavior of machines with

clearance connections and component flexibility, the Two-Step Test Method

(TST) and the Matrix Update Test method (MUT) for detecting chaotic

vibrations in machine models are described in this section.

5.2.1 Two-Step Test Method

The Two-Step Test analyzes the nature of dynamic responses of a

machine's model using three conventional tools: (a) Time history, (b)

Poincard map, and (c) Frequency spectrum. The first two are graphic methods

that provide qualitative evidence for chaotic behavior. With current graphic

software, these two methods can be easily applied to the results of machine

system simulations. The frequency spectrum can give a quantitative measure

of chaotic responses. Detailed descriptions of these tools have been given in

Chapter 2.

The Two-Step Test has two steps. Step I determines whether the

system response is periodic or non-periodic. Step II determines whether a

non-periodic response is chaotic or quasiperiodic.

Step I

To test whether the response is periodic or non-periodic, the machine

model needs to be simulated for many cycles of machine operations at a given

set of system parameters. The time histories of the response parameters from

the output of the numerical simulation, e.g. the peak impact force, are then

plotted and observed. If the output of a particular parameter converges to one

value or varies among a few values, the response is periodic or periodic
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subharmonics. If the output exhibits irregular variations or non-repeatability,

the response is non-periodic. In this case, the second test is applied.

Step II

Non-periodicity of the time history of a response is a necessary

condition for chaotic response, but the Poincare map and frequency spectrum

must be generated to distinguish between a quasiperiodic response and a true

chaotic response of the system. If the Poincard map has the pattern of a closed

orbit, the response is quasiperiodic, consisting of two incommensurate

frequencies. If the Poincar6 map shows a fractal structure, the response is

chaotic. The appearance of the fractal structure in the Poincard map is a

strong indicator of the chaotic response.

A frequency spectrum needs to be generated for the following two

cases. One case is a quasiperiodic response which consists of three or more

dominant incommensurate frequencies, the other case is a chaotic response of

a multiple DOF (>3) system. For multiple DOF (> 3) systems, the fractal

nature of the Poincar6 map might not be evident, since the Poincar6 map is a

projection of a multiple DOF phase space on a particular plane. For these two

cases, the Poincar6 map always appears as a fuzzy collection of points, and

hence the frequency spectrum must be calculated to determine whether the

response is quasiperiodic or chaotic. The frequency spectrum has a few well-

pronounced peaks for a quasiperiodic response, but has a broad spectrum of

frequency components for a chaotic response.

5.2.2 Matrix Update Test Method

The Matrix Update Test method is an effective means to test whether

chaotic vibration exists in a machine model by examining characteristics of

chaotic systems. This method directly tests whether the response is sensitive
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to initial conditions, a necessary and sufficient condition for chaotic

responses. A variation in initial conditions can be introduced by varying the

time interval of matrix updates in the numerical simulation. In this section,

a description of the Matrix Update Test method is given first, followed by a

demonstration of its application.

The global dynamic equations of the machine system are given by Eq.

(2.4) and repeated here:

M(9, 8, )4 + G(8,P, ,)4 + K(, 8, 8)q = Q, (5.1)
where M, G and K are the mass, damping and stiffness matrices of the

system, respectively. Their elements are functions of the position vector 0,

the velocity vector 8 and the acceleration vector 8 of the components'

nominal motion, as well as the physical properties of the components such as

mass and stiffness.

Repeated calculations of these time varying matrices in numerical

simulation can be computationally expensive for large systems. To improve

simulation efficiency, Eq. (5.1) is implemented using piecewise constant

values of the M, G, and K in the simulation. The M, G, and K matrices are

updated at a time interval AT, which can be much larger than the integration

time step, At. The update interval AT is chosen such that the change in

physical configuration of the system is small between matrix updates.

However, each matrix update results in a small step change of system

parameters, and the dynamic equilibrium state of the system is disturbed.

This disturbance amounts to a variation of initial conditions and therefore

tests for the nature of the system's response.

To implement the method, the system dynamic equations are

simulated twice, with different matrix update time intervals. The second
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time interval differs only slightly from the first. If the outcomes of these two

simulations agree at each observation, the response is periodic; if the

outcomes of these two simulations are different at each observation, the

response is chaotic.

To demonstrate the Matrix Update Test method, the SSC is used as an

example. Two cases are selected here: case one is from Figure 4.14 (a) with 270

rpm crank speed, and case two is from Figure 4.14 (b), with 190 rpm crank

speed. In both cases, the matrix update time interval is described by the crank

rotation angle instead of time.

Case One: Figure 5.1 shows the peak impact force of each operation

cycle as a function of crank rotation cycles for matrix-update intervals of 50

and 10' of crank angle. The response is periodic, and the two results converge

after the initial transient response which lasts about 6 cycles. The initial

transient response will be discussed in Section 5.2.3.

Case Two: Figure 5.2 shows the peak impact force of each operation

cycle as a function of crank rotation cycles for matrix update intervals of 5'

and 60 of crank angle. The two outcomes diverge from each other as

simulation continues. For example, at the 62nd crank rotation cycle, the peak

impact forces are 85 N for the 50-update simulation and 105 N for the 60-

update simulation.

The outcomes of two chaotic responses with different update intervals

(different initial conditions) are different at each observation. According to

theory of chaotic dynamics, their statistical parameters should remain the

same because the trajectories in both cases are traveling on the same strange

attractor. This is illustrated in Figure 5.3 which shows the means and

standard deviations (STD) of the peak impact forces as functions of different
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Figure 5.2 Simulation Results of the SSC. Peak impact force in the slider
joint as a function of operating cycle. (a) 100 Cycles. (b) Enlargement of figure

in (a) within 10 cycles.
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update intervals. Variations of the statistical parameters for different update

intervals are very small.

ILU
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onlvv
0

Matrix Update Interval (degrees)

Figure 5.3 Simulation Results of the SSC. The mean and one standard
deviation of the chaotic response as functions of matrix update interval.
+0.254 mm clearance and 190 rpm crank speed.

5.2.3 Discussion

In applying the Two-Step Test and the Matrix Update Test method to

the design analyses, designers should be aware of the initial transient

responses of the machine model. Usually, a designer arbitrarily selects initial

conditions for a simulation. This leads to an initial transient response, which

could last a few operating cycles or a few hundred operating cycles. The initial

transient response always exhibits non-periodicity, which may result in an

incorrect conclusion that the response is non-periodic. In the numerical

analyses, the simulation should run long enough to guarantee that the
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response reaches the steady state (either periodic or chaotic). However, the

computer time must be manageable. These are competing constraints,

although more powerful computers are steadily relaxing the latter. The

simulation periods specific to the IBS and SSC are discussed here.

For the numerical models of the IBS and SSC, the transient decay time

was found to be inversely proportional to the number of DOF in the machine

model. More DOF resulted in quick decay of the transient response. For an

IBS model with 5 DOF, the response converged to its steady state after about

50 excitation cycles. When simplified to a single DOF model, up to 150 cycles

were required before the response became steady. For a 9 DOF model of the

SSC, the response reached its steady state after 10 operating cycles. These

observations suggest that the response of a machine model with more than 5

DOF is non-periodic if the response continuously shows non-periodic

patterns after 50 cycles.

Transient chaos is another phenomenon to be noted. Transient chaos

is a chaotic response which appears when some parameters are changed, but

eventually settles into a periodic or quasiperiodic motion after a certain

period [16,36,61]. Transient chaos lasts much longer, well beyond what would

be typically considered as an initial transient response just mentioned.

Transient chaos was observed in the simulations. As an example, Figure 5.4

(a) shows a transient chaotic response for the IBS with ±0.127 mm clearance,

excited by a force of 8.9 N at 30 Hz. In the figure, the peak impact force is

plotted as a function of the excitation cycle. The transient chaotic response

lasts about 350 cycles before it settles into a period-four subharmonic response

eventually. For the same system, when the structural damping ratio slightly

decreases by 0.001 (from 0.011 to 0.01), the simulated response is chaotic up to

4000 cycles, as shown in Figure 5.4 (b). Transient chaos is sensitive to small
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Figure 5.4 (a) A simulation result of the IBS. A transient chaotic response.

+0.127 mm clearance, 30 Hz excitation frequency, and structural damping ratio

S=0.011.
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Figure 5.4 (b) A simulation result of the IBS. A chaotic response. ±0.127 mm

clearance, 30 Hz excitation frequency, and structural damping ratio ý=0.01.
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parameter variations and is usually a precursor to steady state chaos [16,36,61].

The Two-Step Test method and the Matrix Update Test method classify

transient chaos as a chaotic response.

It should be pointed out that the Matrix Update Test method is limited

to systems whose M, G and K matrices are functions of system

configurations. For systems such as the IBS whose matrices are constant, the

Two-Step Test is more suitable. The application of these two methods for

determining the dynamic nature of a machine system is shown by a flow

chart in Figure 5.5.

5.3 Predictive Criteria for Chaotic Vibration

From a design point of view, it would be useful to have criteria that

could predict whether chaotic behavior would result from a given set of

system parameters and operating conditions. In this section predictive

criteria for the values of the clearance size, operating speed, and damping that

cause chaotic vibrations are discussed based on studies of the IBS and the SSC.

A discussion of a precursor of chaotic vibrations in the machine model is also

provided.

5.3.1 Predictive Criteria

To classify the specific parameter regions for the IBS and SSC (i.e., to

obtain predictive criteria for chaotic response), some important results

presented in Chapters 3 and 4 are reviewed here. From these studies, chaotic

response in the IBS and the SSC has been found to be associated with large

clearances, high operating speeds, and low values of damping.
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Figure 5.5 Flow chart of testing chaotic vibrations for computer-based

simulations of machine models.
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For the IBS, Figure 3.18 indicates that chaotic vibrations occur when the

dimensionless clearance is larger than ±0.02 (i.e., ±0.064 mm clearance) and

the excitation frequency is higher than 16 Hz. The structural damping ratio of

the beam used for these results is 1%. When the structural damping ratio of

the beam increases, the minimum clearance value causing chaotic vibration

shifts upwards. As shown in Figure 3.13, chaotic vibrations do not occur even

at a larger dimensionless clearance of ±0.04 (i.e., ±0.127 mm clearance), as the

damping ratio increases from 1% to 8%.

For the SSC, Figure 4.15 shows that chaotic vibrations occur when the

dimensionless clearance is larger than ±0.004 (i.e., ±0.064 mm clearance) and

the crank speed is higher than 100 rpm. The contact damping ratio used for

these results is 5%. When the contact damping ratio decreases, the minimum

clearance value causing chaotic vibration shifts downwards. For example, as

discussed in Section 4.5.4, chaotic vibrations occur even at a smaller

dimensionless clearance of ±0.002 (i.e., ±0.032 mm clearance), as the damping

ratio decreases from 5% to 2.5%.

Damping plays an important role in determining the nature of

dynamic responses. If larger damping is introduced, it is possible to suppress

chaotic vibrations in all of the studied parameter regions.

These observations provide the predictive criteria for the regions in a

parameter space where chaotic vibrations are possible for the IBS and the SSC.

However, the search for predictive criteria that indicate under what set of

parameters and operating conditions a machine will exhibit chaotic tends to

be ad hoc. Therefore, the strategy for designers is to find predictive criteria for

specific machine models with basic features in more general or complex

machines, and then use these models as paradigms to infer when the more

general or complex machine systems exhibit chaotic vibrations.
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5.3.2 Precursors of Chaotic Behavior

In addition to the above predictive criteria for the IBS and the SSC,

observations from simulations indicate three precursors of chaotic vibrations.

The period-doubling scenario, one of the routes to chaos described in

Section 2.3.2, is one precursor: period-doubling bifurcation in the simulations

of the IBS and SSC. Another precursor is the occurrence of a subharmonic

motion of order 3 [33,69]. The numerical simulations of the IBS and the SSC

showed that subharmonic responses of order 3 are followed and/or preceded

by chaotic responses.

Besides the above precursors observed previously, another precursor

was directly observed in the course of this study. This precursor can be seen

from the pattern of the time history of the impact force. Consider the IBS as

an example. During each half-cycle of operation, an impact event begins with

an initial, large impact force as the beam hits one of the two sensors. The

impact is followed by a period of bouncing in and out of contact. The

bouncing period can be as short as a small fraction of the half-cycle or last for

the rest of the half-cycle. In the former case, the bouncing period is followed

by a continuous contact. If the bouncing period does not end before the end of

the half-cycle, the chance of having chaotic vibration is greater. This is

because the long bouncing period provides many sequential impacts. These

impacts are sensitive to small disturbances that exist in a system, such as high

frequency residual vibrations [3] and noise in experiments or numerical

round-off errors in simulations [64]. During the bouncing period, the motion

of the beam is influenced by these small disturbances. At the moment when

the beam hits another sensor, the velocity of the beam could vary from cycle

to cycle, if the system is sensitive to the disturbances. Hence, the long

bouncing period is a necessary condition for chaotic vibrations.
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Figure 5.6 A simulation result of the IBS. Time history of impact force. (a)
±0.03 mm clearance and 18 Hz excitation frequency. (b) ±0.127 mm clearance

and 30 Hz excitation frequency.
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This idea is consistent with the following facts: 1) the bouncing of the

impact lasts long for small damping, but has little time to be damped out for

high excitation frequency, and 2) small damping or high excitation frequency

corresponds to a large possibility of chaotic vibrations.

To illustrate this idea, Figure 5.6 shows two time histories of impact

forces for periodic and chaotic responses, respectively. For the periodic

response as shown in Figure 5.6 (a), the bouncing period lasts only one

seventh of each half excitation cycle. For the chaotic response as shown in

Figure 5.6 (b), the bouncing periods for some of the cycles last until the end of

the half-cycle.

5.4 Design for Machines with Chaotic Response

One fundamental characteristic of a machine's chaotic vibrations is that

the values of response parameters, such as the impact force, change

irregularly from one operating cycle to another. This characteristic creates a

difficult problem for designers: a single value of each response parameter,

preferred for classical design, is not available in the case of chaotic response.

Using the statistical properties of these parameters becomes an essential

approach for design. In this section, the statistical characteristics of the peak

impact force of chaotic responses in the IBS and SSC are studied first, then

guidelines for estimations of fatigue life and reliability are developed by

combining the statistical characteristics of the peak impact force with the

probabilistic design method.
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5.4.1 Characteristics of Impact Force

Impact Force and its Variation

Results presented in Chapters 3 and 4 indicate that a chaotic response

induces larger peak impact forces as well as a large variation range of the

forces in comparison with a periodic response. This conclusion may be

explained as follows. According to the theory of chaotic dynamics, a chaotic

attractor in the phase space of a response is an ensemble of unstable periodic

orbits, i.e., a chaotic attractor occurs when all possible periodic orbits become

unstable [16,61]. The large variation range of the force is a result of the

trajectory moving from one unstable periodic orbit to another. The large

impact force induced by the chaotic response is due to the transient motions

of the trajectory as it moves from one unstable periodic orbit to another. The

transient motions can make the trajectory reach some of the unstable periodic

orbits associated with large impact forces.

Histogram of Peak Impact Force

As discussed in the following, the peak impact force for the chaotic

response of a machine is bounded. Individual impact forces vary irregularly,

but the ensemble characteristics over many impacts is a multi-peak statistical

distribution that is time invariant.

There are two methods often used to obtain the statistical properties of

chaotic responses. One is a time average method, carrying out a large number

of simulations in order to provide a sufficiently large number of observations

to calculate the statistical properties. The assumption of ergodicity for a

chaotic response is used in this method [31]. The other method is called the

state space averaging method using the Cell-to-Cell Mapping technique

developed by Hsu [23].
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In this study, the time averaging method is chosen to calculate the

statistical properties of the peak impact force. During a simulation or

experiment, the peak impact force of each operation cycle is recorded. The

data for many cycles are collected to generate the distribution of the peak

impact force. To show the basic features of the peak impact force distribution,

the histograms of peak impact forces for different systems, with different

parameters and operating conditions, are plotted. Figures 5.7 (a), (b), and (c)

show such histograms from the simulations of the IBS with the ±0.127 mm

clearance and an excitation force of 8.9 N at frequencies of 22 Hz, 25 Hz, and 30

Hz, respectively. Figures 5.8 (a), (b), and (c) show the experimental histograms

of peak impact forces in the slider joint of the SSC with 250 rpm crank speed

and clearances of ±0.032 mm, ±0.064 mm, and ±0.127 mm, respectively.

Figure 5.9 shows the numerical histogram of peak impact forces in the slider

joint of the SSC at a crank speed of 190 rpm and ±0.254 mm clearance.

These histograms suggest two features specific to impact forces for

chaotic vibrations.

First, the impact force is bounded because of the bounded motion of the

beam. With regard to the chaotic response of dissipative systems after

transients have decayed, the response is always "attracted" to a strange

attractor which occupies a finite bounded space.

Second, the peak impact force distribution is mainly characterized by a

multiple-peak distribution function. That is, for most cases the distributions

of the peak impact force have more than one peak. Typical random processes

obey a Gaussian Distribution which has only one peak. Since the chaotic

attractor is an ensemble of unstable periodic orbits [16,61], a multi-peak

distribution appears when the trajectory moves among these unstable

periodic orbits in a random fashion but visits some more than others.
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Figure 5.7 Simulation results of the IBS. Histograms of the peak impact force.
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Figure 5.8 Experiment results of the SSC. Histograms of peak impact forces in

instrumented slider joint.
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Figure 5.9 A simulation result of the SSC. Histogram of peak impact forces in

slider joint. Instrumented clearance slider joint model.

Peak Impact Diagram

The Peak Impact Diagram is a figure which shows the magnitude and

the location of the peak impact force on the bearing surface for each operating

cycle. While one point corresponds to a periodic response, many points

spread on the diagram correspond to a chaotic response. Unlike the case of a

periodic response, in which the impact is localized on one spot of the bearing

surface, the impacts in a chaotic response act on different locations of the

bearing surface for different operating cycles. Because of these distributed

impacts on the bearing surface, the fatigue life of the bearing surface might be

improved.

Figures 5.10 and 5.11 show the Peak Impact Diagrams of the SSC for the

ball joint and slider joint, respectively. Figures 5.10 (a) and (b) are plotted for

120 rpm crank speed with +0.064 mm clearance and for 110 rpm crank speed
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Figure 5.10 Simulation results of the SSC. Peak Impact Diagrams of peak
impact forces in ball joint. Spherical clearance model.
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with ±0.245 mm clearance, respectively. In these figures, the location of each

peak impact on the bearing surface is represented by a relative polar angle.

For ±0.064 mm clearance, the peak impacts are spread on only one sixth of the

half bearing surface, while for ±0.245 mm clearance the peak impacts are

spread over almost half of the bearing surface . In Figure 5.11, the Peak

Impact Diagram is plotted for 190 rpm crank speed with ±0.127 mm clearance.

The location of each peak impact on the bearing surface is represented by the

relative distance along the slider guide rod. The peak impacts distribute over

a region of about 6 mm in length, which is about 6% of the bearing length.

1 1r) '
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110

C0)

100

-z

90

0 1 2 3 4 5 6

Relative Location of Peak Impact on Slider Rod (mm)

Figure 5.11 A simulation result of the SSC. Peak Impact Diagram of peak
impact forces in slider joint. Instrumented clearance slider joint model.

A large clearance gives a large distributed region of impacts. The

distributed impacts may moderately improve the fatigue life of the bearing.

However, the large clearance results in large impact forces which strongly
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reduce the fatigue life. Therefore, there is a trade off between minimizing the

peak impact force and maximizing the distributed region of impacts in

choosing an optimal clearance size for potential chaotic vibrations.

5.4.2 Estimations of Fatigue Life and Reliability

In this section, guidelines for designs by integrating the statistical

properties of the chaotic vibration into the probabilistic design method are

proposed. Two examples, i.e. fatigue life estimation and reliability

evaluation, are descried here.

Fatigue Life Estimation

Take a simple rolling contact bearing as an example. The general

formula for the fatigue life of the rolling contact is given by[19]

L= -, (5.2)

where p=10/3. L is the life in millions of revolutions, C is the basic dynamic

load rating of the bearing, and F is the bearing load acting under the

conditions applicable to the basic dynamic load rating.

When a designer selects a bearing which meets the requirements of a

particular design, he is usually interested in finding the value of C so that he

can enter the table in a bearing catalog and pick up a bearing for a desired

fatigue life. For convenience, we rewrite Eq. (5.2) as
1

C = F(L) P (5.3)

In the current design approach, Eqs. (5.2) and (5.3) are used to predict

the bearing life or to find a suitable bearing based on the dynamic simulation

of a machine model. If the machine model exhibits periodic responses in the

designed operation conditions, the bearing life can be estimated based on the
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prediction of impact force magnitudes given in Eq. (5.2). Similarly, the

required dynamic load rating C for a desired fatigue life can be calculated

using Eq. (5.3).

However, this approach needs to be modified if the model exhibits

chaotic responses. For a chaotic response, there is a large variation of peak

impact forces from one operating cycle to another. Since the simulated peak

impact forces are different for different simulation cycles, the estimated

values for the fatigue life are different, i.e. the information for design is

ambiguous. Moreover, since the fatigue life is inversely proportional to the

power of the force magnitude, even a small difference in peak impact forces

can result in a large difference in the fatigue life.

For example, the relative fatigue life calculated based on the

experimental data of Figure 4.16 is shown in Figure 5.12. The fatigue life for

different crank speeds is normalized by the fatigue life at 100 rpm crank speed.

The fatigue life is assumed to be inversely proportional to the third power of

the peak impact force. This figure reveals two points. First, when the

response is chaotic, a few cycles of measurement are not enough to get a

complete picture of fatigue life. The arbitrary selection of the measured peak

force could result in a few orders of difference in the estimation of the fatigue

life, e.g., the relative fatigue life varies from 10-3 to 10-1 at 140 rpm crank

speed. Secondly, if the crank speed has a small variation the fatigue life could

change dramatically, e.g., the relative fatigue life varies from about 10-3 at 200

rpm to a range of 10-2-10 -4 at 210 rpm crank speed.

Hence, in the case of chaotic responses, sufficient simulation is

necessary in order to obtain a complete picture of the impact force and

therefore reliable design parameters. Here two approaches are suggested for

estimating fatigue life and dynamic load rating. The first is a conservative
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design approach which applies the maximum value of the varying peak

impact force from numerical simulation into Eqs. (5.2) and (5.3).

The second approach is to combine the statistical distribution of the

peak impact force with the Palmgren-Miner cycle-ratio summation theory,

which is widely used at the present time to explain cumulative fatigue

damage [56]. The magnitudes of the peak impact forces in a chaotic response

are assumed to consist of n levels. The life estimation for chaotic response is

given by

1= , (5.4)
L i=1 Li

where pi is the occurrence probability of the ith impact force with a

magnitude of Fi, and Li = is the fatigue life corresponding to the ith

impact force Fi. Substituting Li = - into Eq. (5.4) and rearranging the

terms, we obtain the equation for dynamic load rating:
1

n
C= [L(YpiFiP) . (5.5)

1i I

The estimations of the fatigue life using Eq. (5.5) for the data presented

in Figure 5.12 are also shown in the same figure with a solid line. Use of the

cumulative damage theory with the distribution of the peak impact forces

gives a reasonable estimation of the fatigue life. This approach is consistent

with the idea of probabilistic design which will be addressed shortly.

In comparison with the second approach which uses statistical

estimation, the first approach is too conservative to be economical. To justify

the validity of the statistical estimation for the fatigue life, one has to check

whether the impact induced stress meets the specified Hertzian endurance
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strength of the materials.
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Figure 5.12 Experimental results of the SSC. Estimated relative fatigue life of

slider joint as a function of crank speed. The solid line represents the

statistical mean life calculated based on Eq. (5.4).

Component Reliability Estimation

In the classic design for a component, the accepted criterion is set such

that the impact induced stress is always less than the specified Hertzian

endurance strength of the materials. For an adequate strength-limited design,

the criterion is stated as:

Se= (SF)- Kf -s, (5.6)
where Se denotes the component Hertzian endurance limit, Kfis the fatigue

factor, SF denotes the safety factor and s denotes applied stress. If the

prediction of applied stress based on the dynamic simulation of the machine

model meets the condition (5.6), then the design of the component is

148



Design Methodology for Machine Systems

finished. Otherwise the design of the component needs to be modified until

the criterion is satisfied.

When uncertainties of loading, geometry and material properties

encountered in engineering design exist, the single-value condition in Eq.

(5.6) is no long available. To deal with this situation, the probabilistic design

method was developed [20]. In this method, the allowed stress (S) and applied

stress(s) are modeled by distribution function with some statistical

parameters. The accepted design criterion for this situation is that the

probability which the strength of the material exceeds the applied stress equals

or exceeds a stated probability. This probability is called reliability of the

component.

When the machine model exhibits a chaotic response, a further

complexity is introduced due to the large variation of the impact force and the

behavior which is sensitive to the parameter variations. Considering the

similarity of the force variations in chaotic responses and the load uncertainty

in real environments(?), we propose to use the modified probabilistic

method. Instead of using the loading distribution caused by random events,

the distributions of impact forces of the chaotic responses are used in the

estimation of the component reliability.

Suppose a component's endurance limit Se, is described by a probability

density function f(Se), selected at random from a population of nominally

identical components. The component is subjected to a chaotic loading,

which induces impact stress s described by probability density function f(s).

Then, by definition,

Reliability = R = P(Se > s). (5.7)

where P(Se > s) indicates the probability of Se greater than s.
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When distributions of Se and s are known, the reliability of the

component is given by [20]:

R = JdR = Jf(s) -[ f (S)dsjs, (5.8)
where

f(S)dS = 1: f (s)ds = 1.
As an example, for the Normal distributions of Se and s, the Reliability,

R, is given by [20]:
R f , e "2d z (5.9)

where a,, ms are the means, and as, as are the standard deviations of the

normal distributions of stress and strength, respectively. The random

variable z is a standard normal variable. Hence for given p,, .C , Ps, and as

the reliability can be found by referring to the Normal tables. Equation(5.9)

can also be utilized to estimate the effects of design parameters such as

clearance size, if p, and a, are functions explicitly or implicitly containing the

design parameters when R is specified.

In most cases of chaotic responses, the distributions of the peak impact

forces are not the Normal distribution, but the multi-peak distribution as

described in Section 5.4.1. To calculate the reliability for such cases, numerical

integration for evaluating Eq. (5.8) must be used. For a rough estimation, we

may use the normal distribution to approximate the distributions of the peak

impact forces. The normal distribution model ignores the details of the real

distributions of peak impact forces of chaotic response, but retains the main

features of the distributions such as the variation ranges and mean values.

Also note that larger stresses in the components can be induced in the

chaotic response than in the periodic responses. The design of machine

systems which might exhibit chaotic response should be relatively
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conservative in terms of operating conditions. Design reliability should be

high to provide a design tolerance for the system.

5.4.3 Calculation of Statistical Parameters

In estimations of fatigue life and component reliability using the above

approaches, the length of the simulation period becomes an important issue.

It should be not only long enough to obtain the complete statistical properties

of chaotic responses, but also short enough to have an efficient computation.

To obtain the statistical properties of the impact force, the simulation should

run until the chaotic trajectory has visited most regions of the attractor. To

verify this (i.e. to determine the minimum number of the simulation cycles),

there are two tests. One test is to examine the Peak Impact Diagram, as shown

in Figure 5.8. Testing the Peak Impact Diagram involves observing when the

Peak Impact Diagram takes shape and when the peak impact forces fill in the

different sections of the Diagram. Shown in Figure 5.13 is an example to

demonstrate this test for the SSC for 190 rpm crank speed and ±0.127 mm

clearance. In the figure, three Peak Impact Diagrams are shown for operating

cycles of 40, 60, and 80, respectively. When these three figures are compared

with Figure 5.11, it is clearly shown that after 80 cycles the Peak Impact

Diagram takes shape. Therefore, at least 80 cycles are needed for calculation of

the statistical parameters for this specific case.

To avoid subjective judgment in deciding whether the peak impact

forces have filled in the different sections of the Diagram, a second test is

developed. Running values of the mean and the standard deviation of the

ensemble of the peak impact forces are calculated as the simulation runs. The

necessary number of simulation cycles is obtained when the calculated mean

and standard deviation converge to steady values. This method is more

151

Chapter 5



Chapter 5 Design Methodology for Machine Systems

I n
13U

120

S 110

100

90

8o
0 1 2 3 4 5 6

Relative Location of Peak Impact on Slider Rod (mm)

130
Clearance: ±0.254 mm (b)
Crank speed: 190 rpm

120 Operating cycle: 60

110 -

Dl 0

100 .- * ...

90 9 ."

*80
80 I I I I I

0 1 2 3 4 5 6

Relative Location of Peak Impact on Slider Rod (mm)

Figure 5.13 A simulation result of the SSC. Peak Impact Diagrams of slider

joint. The diagrams are constructed using different lengths of the data. (a) 40

operating cycles. (b) 60 operating cycles. (c) 80 operating cycles.
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Figure 5.13 (Continued).

convenient and reliable. For the same case shown in Figure 5.13, Figure 5.14

shows the mean and standard deviation of the peak impact forces as

functions of the number of operating cycles. The mean and standard

deviation of the ensemble converge after 80 cycles, as is expected to be

consistent with the first test.

5.5 The Classification of Type I, Type II, and Type III Responses

5.5.1 The Approach

As described in Chapters 3 and 4, classifying responses into Type I, Type

II, and Type III is very important at the design stage. Type I Response is

periodic and not sensitive to small variations of system parameters or initial

conditions. Type II Response is also periodic and not sensitive to initial

153

z

0U-z0Cd

Clearance: ±0.254 mm
Crank speed: 190 rpm
Operating cycle: 80

°
e.°* *g..

0, 0 *

* *

* * *

. *

I I I I I

6

(mm)

, | J . |

____ _ --_I·IIC·C·-·II_--

I

a - - a-A.



Chapter 5 Design Methodology for Machine Systems

100

Operating cycles

20 40 60 80 100

Operating Cycles

Figure 5.14 A simulation result for the SSC. Statistical parameters of peak

impact forces of a chaotic response as functions of the number of simulation

cycles. (a) Mean value as a function of the number of cycles, and (b) One
standard deviation as a function of the number of cycles. ±0.254 clearance and
190 rpm crank speed.
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conditions, but it is sensitive to small variations of system parameters. Type

III Response is unpredictable, either periodic or chaotic, and sensitive to small

variations of system parameters and initial conditions. If a system response is

Type II or Type III Response, the machine behavior might be quite different

from the prediction due to variations in parameters caused by manufacturing

processes and to uncertainties in parameters chosen for the simulation.

Unexpected behavior could substantially reduce the machine's performance.

Hence, designers need to identify the regions in parameter space that result in

Type I, Type II, and Type III Responses.

In classification, a designer first evaluates each system's response at

each point in parameter space (i.e., for each given set of system parameters),

over a selected region with densely-spaced trials. Each response can be

characterized as periodic, quasiperiodic, or chaotic by using the Two-Step Test

method and the Matrix Update Test method. Then, the designer classifies the

responses into Type I, Type II, or Type III Responses. The selected region may

consist of one, two or three response types. All possible situations are

summarized in the following three cases

Case I If all the responses over the selected region are periodic, three

possible outcomes must be distinguished. (1) If all responses are well-

behaved as the parameters vary within the whole region, the responses are

Type I. (2) If all responses change irregularly as the parameters vary within

the whole region, the responses are Type II. (3) If in a subset of the region, a

group of responses is well-behaved as the parameters vary within the subset,

this group of responses is Type I, and the rest of the responses are Type II.

Case II If chaotic responses occur in a subset of the selected region,

they are Type III. The rest of the periodic responses are further classified into
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Type I, or Type II, or Type I and Type II, following the procedure described in

Case I.

Case III If periodic and chaotic responses distribute irregularly in the

selected region, the responses are Type III.

5.5.2 Discussion

In applying the above approach to classify the Type I, Type II, and Type

III Responses, several issues are discussed here.

The Quasiperiodic Response

If a response is quasiperiodic, it is classified as Type III. Note that the

quasiperiodic response is non-periodic, and, of course, does not belong to

Type I or Type II. From a design point of view, a quasiperiodic response

exhibits a problem which is similar to the problem of a chaotic response. That

is, a large amount of simulation is required to obtain the variation range of

the response for each input parameter set. In this thesis study, no

quasiperiodic response has yet been observed. Therefore, more detailed

discussion of the quasiperiodic responses would be beyond the scope of this

study.

The Selection of Variation Region of Parameters

The variation region of the parameters used to classify the response

types is selected according to the possible variations of the parameters

introduced in the manufacturing and assembly processes. The design

tolerances of geometrical dimensions and the empirical data ranges of

important parameters are the basic references. The selected parameter region

can be chosen as one tolerance of the parameter or double of the tolerance if
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necessary. For example, if the nominal clearance of a journal bearing of a

shaft of X mm in diameter is Y mm and the tolerance of the clearance is Z

mm, the selected variation region for the clearance in the analysis is from Y-Z

to Y+Z. If consequences of the bearing wear are considered, the clearance size

will increases in the service. Thus, the selected variation region may be from

Y-2Z to Y+2Z.

The Criterion for Sensitivity to Small Variations of Parameters

The classification of the Type I and Type II Responses is based on the

criterion of whether the responses are sensitive to small variations of the

parameters. When a parameter changes by a small amount, whether the

change of the response is well-behaved or significantly irregular depends on

the relevant engineering significance. Take a bearing system as an example.

Suppose that a decrease of the bearing fatigue life within 25% is acceptable.

This 25% decrease corresponds to a 10% increase of the impact force in the

bearing, assuming that the fatigue life is inversely proportional to the third

power of the force magnitude. This 10% increase of the force is used as a

criterion for determining the degree of the response sensitivity to parameter

variations. If any small parameter variation causes a less than 10% increase

of the impact force (e.g., operating speed drifts by 10 rpm), the responses in

that parameter variation region are classified as Type I. Otherwise, the

responses are classified as Type II. Hence, from the design point of view, less

than a 10% increase of the impact force is not significant, and the responses

are well-behaved as the parameter varies. On the other hand, more than a

10% increase of the impact force is significant, and the responses change

irregularly as the parameter varies.
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5.6 The Proposed Design Methodology

Every engineering design is subject to: (1) dimensional variations

when the design is manufactured, (2) uncertainties in values chosen for

model parameters such as damping coefficients, Young's Modules, etc., and

(3) inconsistencies between assumed and actual boundary conditions.

Chapters 3 and 4 show the significant effects of parameter variations on the

dynamic behavior of machines. These issues have not yet been considered in

current design approaches. Here, a systematic methodology is proposed for

designing such machines with clearance connections and component

flexibility. The flow chart of this methodology is presented in Figure 5.15.

The basic idea of the methodology is to effectively use the predictions

of the machine models at the design stage. The methodology consists of

seven phases: machine modeling, parameter selection, numerical simulation,

test of response nature, classification of dynamic responses, and design

analysis. The methods and guidelines presented in the previous four sections

are used in the implementation of these phases.

Phase I. The methodology begins with the dynamic modeling of a

machine, using the modeling techniques such as one presented in Section 2.1.

The machine model is described by the major system parameters, such as the

values of the clearances, operating speed, component dimensions, and

damping. The dynamic response of the machine model is characterized by

response parameters such as the impact force. All these parameters are called

design parameters.

Phase II. To analyze the effects of the variations of the system

parameters on the dynamic behavior, the variation region for each parameter
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is selected according to its possible variation in the manufacturing and

assembly processes. The selection procedure is described in Section 5.4.2.

Phase III. The simulation is performed over the selected parameter

regions with densely-spaced trials. The designer should run the simulation

long enough to let the response reach steady state after the initial transient

response decays. The determination of the transient decay time is discussed

in Section 5.2.3.

Phase IV. When the machine model is simulated for each

combination of parameters in their variation ranges, the nature of each

response is tested using the flow chart given in Figure 5.5, which combines

the Two-Step Test and the Matrix Update Test. The characteristics of the

response are recorded for each specific parameter set. If the response is

chaotic, further simulation needs to be done. Following the guidelines given

in Section 5.4, the designer first determines the required length of simulation

necessary for obtaining a complete statistical picture, then calculates the

statistical values of the response parameters, such as the mean and standard

derivation.

Phase V. After simulating all the possible combinations of parameters

in the selected region, the designer can classify the dynamic responses into

Type I, Type II and Type III Responses, following the approach described in

Section 5.5. Thus, the major parameter region for each response type is

defined.
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Phase VI. Once the response types are determined in the parameter

space, the machine's performance, such as fatigue life and reliability of the

component for given design criteria, can be evaluated using different

approaches for different response types.

For Type I Response, the designer can use the predicted trend of the

machine behavior to evaluate the machine's performance.

For Type II Response, the designer should use the worst case (e.g. the

maximum peak impact force) found in the Type II parameter region to

evaluate the machine's performance.

For Type III Response, the designer should use statistical parameters of

the response to evaluate the machine's performance using the modified

probabilistic design method described in Section 5.4.

Phase VII. If the evaluation results indicate that the designed machine

system meets the design criteria, the system is moved into the prototype stage.

Otherwise, the system needs to be modified and again analyzed through

Phase I to Phase VI. This process is repeated until the designed machine

meets the design criteria.
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Figure 5.15 Flow chart of the proposed design methodology.
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Chapter 5 Design Methodology for Machine Systems

5.7 Summary

This chapter discusses a major design issue for a machine that exhibits

chaotic vibrations due to clearance connections and component flexibility.

The following contributions have been achieved:

* The Two-Step Test method and Matrix Update Test method are

developed for testing chaotic vibrations of the machine models and for

classifying Type I, Type II, and Type III Responses at the design stage.

* Empirical predictive criteria are presented for the regions of system

parameters that result in chaotic vibrations.

* Design guidelines are developed for evaluations of fatigue life and

reliability of the components.

* A design methodology is developed to effectively use the predictions

of the machine models at the design stage.
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Chapter 6 Conclusions

Chapter 6

Conclusions

6.1 Conclusions

The subject of this research is the design implications of chaotic

vibrations in machine systems with clearance connections and component

flexibility. In order to provide physical insights into the chaotic behavior of

this class of machine systems, an Impact Beam System (IBS) and a Spatial

Slider Crank (SSC) are investigated both numerically and experimentally.

The major conclusions of this research are summarized as follows:

* The existence of chaotic vibrations in these two systems is

confirmed both numerically and experimentally. The comparison between

numerical and experimental results indicates that the numerical models

capture much of the qualitative dynamic behaviors of the physical systems.

* Empirical predictive criteria are presented for the regions of system

parameters that result in chaotic vibrations in the systems. Chaotic vibrations

are found to be associated with large clearances, high operating speeds, and

low values of damping.

* The sensitivity of the dynamic behaviors of the systems to small

variations of the system parameters, such as clearance, component

dimension, operating speed, and damping, is studied both numerically and

experimentally. The sensitivities exhibited by both the physical systems and

the numerical models limit the usefulness of predictions from computer-
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based simulations for design. New approaches need to be developed in order

to effectively use the predictions of machine models at the design stage.

* Based on the characteristics of the dynamic behaviors of the

systems, the dynamic responses are classified into three characteristic types:

Type I Response is periodic, and is not sensitive to initial

conditions and small variations of system parameters.

Type II Response is also periodic, and is not sensitive to initial

conditions, but it is sensitive to small variations of system parameters.

Type III Response is unpredictable, either periodic or chaotic, and

is sensitive to both initial conditions and small variations of system

parameters.

* These classifications are useful guidelines for design. While the

Type I Response is well-behaved, the Type II and Type III Responses are very

sensitive to small variations of the parameters, presenting important design

problems. If the system parameters are in the regions resulting in these two

types of responses, the dynamic behavior of a machine system could be quite

different from the predictions of its model, due to small dimension

variations and uncertainties in the values chosen for model parameters. In

particular, the periodicity of the Type II Response may lead designers to

overlook the sensitivity of the dynamic behavior. The sensitivity of the Type

II Response to the small variations of the parameters is due to the existence of

clearance connections and component flexibility. If there is no component

flexibility, other than bearing compliance, there will be no the Type II

Response.
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Chapter 6 Conclusions

* To test the chaotic behavior of machine models at the design stage,

the Two-Step Test method and the Matrix Update Test method are developed.

Guidelines are developed for classifying three types of responses and for

evaluating the fatigue life and reliability of machine systems. A design

methodology, which implements these methods and guidelines, is developed

to most effectively use the predictions of machine models at the design stage.
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