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ABSTRACT

Various forms of micromechanical bridges have been successfully built with both silicon
and III-V material systems. These structures include various forms of bridges with
minimum realized feature size of 1 tm and with different configurations of holes placed
periodically along the length of the bridge. These structures can potentially be used to
realize a new class of devices called the photonic bandgap bridge resonators. Also,
micromechanical cantilevers with the smallest realized feature size of 2 gm have been
constructed.

The relevant fabrication techniques used for the following material systems have
been documented: (a) amorphous Si/SiO 2; (b) GaAs/Alo.3Gao.7As; (c) GaAs/A1As; and (d)
GaAs/Ino.5Gao.sP. Specifically, the RIE and wet etch techniques for the III-V material
systems have been investigated to provide a viable and reproducible fabrication process.
At the same time, micromechanical issues have also been considered. For instance, stress
measurements of the amorphous silicon film has been conducted. Also, important lessons
are drawn from the failure of certain mechanical designs and will be instrumental in future
development.
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Chapter 1

Introduction

Since the introduction of the concept of a photonic bandgap less than a decade ago" 2,

intense effort has been devoted to the development of the field. One of the first forays

was to determine the crystal structures that would yield a photonic bandgap 3'4. At the

same time, a theoretical basis to the analysis of the structures was established where the

concepts of Bloch wave functions, reciprocal space, Brillouin zones and dispersion

relations became applicable 5' 6 . Experimentally, photonic bandgap crystals in the

lengthscale of the wavelength of operation have typically been constructed for operation in

the microwave region 7'8. At a much smaller scale, the fabrication of three dimensional

photonic crystals has only been suggested 9 •0 while the fabrication of a two-dimensional

photonic bandgap nanostructure has recently been reported".

This thesis focuses on the fabrication of a class of photonic bandgap structures

proposed by a group led by Professor John D. Joannopoulos at the Massachusetts

Institute of Technology. These structures are essentially planar waveguides made of a

high refractive index material surrounded by a medium of low index (for instance, air),

with a distinct periodicity in dielectric constant along the axis of the waveguidel2 (see

Figure 1.1). The waveguide itself confines electromagnetic radiation in the y and z

directions, while the presence of the periodicity in refractive index along the axis results in

strong confinement in the x direction. Such a structure can be physically realized by the

formation of a micromechanical air bridge with holes placed periodically along the axis of

the bridge.



z

Figure 1.1: The proposed photonic bandgap bridge resonator structure.

The periodicity on the waveguide can be broken by the presence of a local defect

which spatially confines electromagnetic radiation around the defect region. This defect is

introduced via the removal of a single hole or by the addition of a locally different material

on the bridge. A direct consequence of such a defect region is a microcavity where a high

spatial concentration of a single mode electromagnetic radiation exists. Indeed, theoretical

simulations of the structures have revealed the presence of a resonant defect mode with a

high Q factor and compact localization"3 (see Figure 1.2).

Such a microcavity design has various important advantages over existing designs

like those found in the distributed Bragg reflector (DBR) laser, the vertical cavity surface

emitting laser (VCSEL) and the microdisk laser. The new microcavity design, for instance,

allows for potentially very high quantum efficiencies as any spontaneous emission is

channeled into a single mode. Further, the strong spatial confinement of the resonant

mode implies a strong overlap of the mode with any gain region introduced in the cavity;

this effect, in turn, should enhance spontaneous emissions. The high quantum efficiencies

and small volume, furthermore, will vastly reduce the threshold needed to achieve

spontaneous emission in the gain region. In addition, the planar configuration of the

bridge structure allows for possible incorporation of large number of such structures into

optoelectronic integrated circuits (OEIC), an increasingly important thrust in the research

community with strong commercial appeal.



Figure 1.2: Result of computer simulations demonstrating a resonant state around the defect
region using TE modes1 3. The structure at the bottom illustrates the model of an air-hole array
strip waveguide that has been simulated. A defect is created by separating the otherwise
periodical array of air-holes into two groups of 7 holes on both sides of the defect region. The
most strongly-localized state is found at a/L=0.24 and d=1.4a where a is the separation between
holes, h is the electromagnetic wavelength of interest, and d is the width of the defect region.

The plot at the top shows a surface plot of the z-component of the magnetic field across the
waveguide. The field amplitude decays rapidly in both the x and y directions. Using the time-
domain method, the Q factor of this resonant state is calculated to exceed 13,000 after an initial
transient period.

The purpose of this project is to fabricate the photonic bandgap bridge structures

in both Si/SiO2 and III-V material systems. Apart from demonstrating the viability of

producing these structures on the order of 1 gm in dimension, the study serves as a

pathfinder in the salient issues involved in the fabrication of these micromechanical

structures. In comparison, practical micromechanical structures have traditionally been

constructed with Si-based materials at dimensions in the order of 10 to 100 gpm.

Furthremore, the fabrication of III-V micromechanical structures will be of considerable

---- ... ......W91 A X_ -&A &



interest since micromechanical structures using III-V materials have not been previously

achieved.

The experimental techniques using silicon technology is described in Chapter 2,

while those for the III-V counterpart will be documented in Chapter 3. The subsequent

chapter (Chapter 4) contains a compilation of the results obtained with both material

systems. Finally, the thesis closes with Chapter 5 which summarizes and outlines several

possible extensions of the current work.



Chapter 2

Silicon-based Material System

While the operational photonic bandgap bridge structures will be built with III-V

semiconductor material, the silicon-based approach highlights certain micromechanical

issues which are also pertinent to the III-V based structures. In addition, a relatively vast

amount of research knowledge and literature has already been accumulated for silicon

micromechanical structures; the same cannot be said of the III-V counterpart.

Consequently, an attempt to build the bridge structures with silicon technology will yield

important and useful guidelines when fabricating similar III-V structures.

In this Chapter, the fabrication process for the silicon-based structures will be

described in detail. The process consists of two main stages: a sequence material

fabrication steps where the appropriate heterostructure is attained, and a sequence of

device fabrication steps where the micromechanical structures are constructed. Further,

some material characterizations deemed to provide important information are conducted

and recorded.

2.1 Material Fabrication

The material system that need to be fabricated consists of a layer of SiO2 topped with a

thin film of Si (see Figure 2.1). The starting substrates for the silicon process are P-prime

<100> Si wafers which are 100 mm in diameter and 525±25 glm thick. The resistivity of

the wafers are specified by the manufacturers to be between 5 to 25 Q-cm. A single lot of

25 wafers is usually used in each fabrication step.



Si 0.5 gm

Si Substrate

Figure 2.1: Schematic of Si/SiO 2 heterostructure.

2.1.1 RCA clean

Prior to any processing work on the wafers, an RCA clean is performed to remove any

ionic or organic contaminants. The wafers are first placed in a 1:1:5 NH40H:H 20 2:H20

solution at 800 C for 30 minutes which removes any organic contaminants. Thereafter, the

wafers are placed in a dump-rinser to rinse off the organic clean solution and then dipped

in a diluted HF solution (50:1 H20:HF) for 15 seconds. The HF dip helps to remove the

resident surface oxide and then passivates the surfacel 4

After the HF dip, the wafers are rinsed and placed subsequently in an ionic clean

solution of 6:1:1 H20:HCI:H 20 2 which has already been preheated to 80'C. Following a

30 minute clean in the solution, the wafers are again rinsed in a dump-rinser. Finally, the

wafers are spun dry in a spin rinser/dryer.

2.1.2 Low-Temperature Oxide (LTO) Deposition

The sacrificial layer is made of SiO2 deposited at low temperature which is highly

amenable to removal by wet chemical etch. A 1.0 gm layer of LTO is deposited by low-

pressure chemical vapor deposition (LPCVD) in the Integrated Circuit Laboratory (ICL)

of the Microsystems Technology Laboratory (MTL) at M.I.T. The deposition is

performed in an automated Heraeus Amerasil Model SLS-125 furnace. The deposition

temperature is 400'C and the gas flow rates are: 30 sccm N2, 31 seem 02 and 38.5 sccm

SiH 4.



2.1.3 Amorphous Silicon Deposition

The thin film that will ultimately form the beam of the bridges is made of amorphous

silicon. An amorphous silicon deposition is performed in the LPCVD furnace at the

Teaching Research Laboratory (TRL) in MTL. At a system pressure of 150 mTorr, a

SiH4 flow rate of 60 sccm, a N2 flow rate of 240 sccm and a deposition temperature of

5900 C, the expected deposition rate is approximately 2000 A/hour. Unlike the LTO

deposition, LPCVD of the amorphous silicon is done manually where wafers are loaded

onto a short quartz boat and then gradually introduced into the furnace with a quartz rod.

In all the experiments conducted for the silicon-based system, 5000 A of

amorphous silicon are deposited. In addition to the actual wafers that are used in

fabricating the bridge structures, monitor wafers with an existing layer of SiO2 1000 A in

thickness are included with the batch.

2.1.4 Thickness Measurement

The actual thickness deposited after each deposition step above invariably deviates from

the initial targeted thickness. This is due to fluctuations in process parameters which are

beyond the control of the operator. For instance, the temperature along the quartz wafer

boats varies with distance away from the furnace door, hence resulting in non-uniform film

thickness across the entire lot of wafers. Consequently, monitor wafers are used to

measure the actual thickness of the films grown with the use of an ellipsometer.

In the LTO deposition, the average thickness is measured on the process wafers to

be 9900±100 AO. The wafers further away from the furnace door are found to possess

thicker but more non-uniform films. In the amorphous silicon deposition, the thickness

measurement is performed on the monitor wafers since the ellipsometer is already

programmed to measure the thickness of silicon films on 1000 A thick SiO 2*. The

The reflectivity of a silicon film on I gm thick SiO 2 is unknown and to use an actual wafer for the
thickness measurement would require additional calibration. As such, monitor wafers with 1000 A of
SiO 2 are used in anticipation of the limitations of the ellipsometer.



amorphous silicon film thickness after 21 hours of deposition is measured to be

5500±75 A. Unlike the oxide deposition step, there is no discernible pattern in the

variation of film thickness between wafers in any single lot. This is probably due to the fact

that the quartz boat used is short and the total number of wafers involved in the deposition

was only 8 (in contrast, 25 wafers were used in the oxide deposition step). Consequently,

the wafers are not placed sufficiently far apart for a systematic variation to be discernible.

2.1.5 Stress Measurement

At the early stages of the project, a polysilicon thin film deposited by LPCVD at 6300 C

has been used in place of the amorphous silicon layer. However, the residual stress in the

polysilicon layer is found to be highly compressive in nature ". Consequently, any bridges

constructed from this film are found to twist and buckle. Such a phenomenon was indeed

observed in one of the first attempts at the bridge construction and is demonstrated in

Figure 2.2.

The solution is found in several studies conducted on the nature of stress in

polysilicon films deposited under different growth conditions16 '17. In particular, the studies

revealed that silicon deposited within a certain temperature range will result in a thin film

with residual tensile stress. The temperature range that will produce a tensile film for a

particular LPCVD furnace depends largely on the system pressure at which the film is

deposited. Further, rapid thermal annealing of the samples after the silicon deposition will

often release or eradicate any form of stress in the film.

To attain bridges that are less likely to buckle, therefore, the thin film forming the

beams should have ideally zero or low tensile stress*. In the TRL, for instance, the

amorphous silicon deposition recipe at 5900 C was established to yield a tensile film18. To

confirm this supposition, the residual stresses in the amorphous silicon films deposited for

this project are measured.

* High tensile stress, on the other hand, may be undesirable since the film may rip under the stress.



Figure 2.2: (Plan view) Nomarski microscope photograph of a photonic bandgap bridge structure using
polysilicon as the bridge material. Note the alternating bright and dark fringes which correspond to the
difference in the depth of focus at various parts of the beam. This phenomenon is due to the buckling of
the beam, which in turn arises from the compressive nature of the film.

The stress measurements are achieved with a TENCOR FLX-2320 Stress

Measurement Instrument on three wafers chosen from different positions of the quartz

boat. The measurement technique is based essentially on the change in wafer curvature

that results from the deposition of an additional film on the surface. The radius of

curvature of the wafer is determined by a laser beam which scans across the diameter of

the wafer parallel to the flat. A first scan is made on the wafer before the film deposition.

After the subsequent film deposition, the wafer is reintroduced into the equipment and the

surface curvature measurement is repeated. By setting the wafer on a customized block, it

is ensured that the laser beam will scan the same location on the wafer as the first scan.

The difference in curvature before and after the film deposition is calculated and provides

a notion of the nature of the stress inherent in the film. For instance, the stress is tensile if

the surface of the wafer is concave, compressive if convex (see Figure 2.3)19.



Quantification of the stress is provided by the following equation20:

E, t2
SV = (Eq. 1)

6(1- u,)tRc

where the symbols represent the following:

Sf : stress of the deposited film

tf: thickness of the deposited film

E, : Young's modulus of the substrate
t,: thickness of the substrate
v,: Poisson's ratio of the substrate

: biaxial Young's modulus of the substrate
(1 -V )

In the calculations, a (100)Si substrate, instead of the actual SiO2, is assumed to be

underneath the amorphous silicon film. Consequently, the biaxial elastic modulus of

(100)Si is used. This assumption is valid since the thickness of the oxide deposited (1 gLm)

is negligible compared to the substrate thickness (525 gm). As such, the deposited

amorphous silicon film can be considered to be effectively changing the radius of

curvature of the silicon bulk. The parameters used in the calculations and the results are

given in Table 2-1. The results confirm that the amorphous silicon film is indeed tensile in

nature.

COMPRESSIVE TENSILE
j -ft- --

Deposited Film

Figure 2.3: TvDes of residual stress within devosited film.
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Table 2-1: Parameters used in the stress measurement of the amorphous
silicon film with the TENCOR FLX 2320.

2.2 Device Fabrication

2.2.1 Process Outline

The fabrication process for both silicon and III-V material systems are identical and is

illustrated by Figure 2.4. The first step in the process involves the photolithography and

pattern definition of the bridges. A sequence of reactive-ion etching follows that will cut

anisotropically into the material and expose the sacrificial layer to the subsequent wet etch.

The bridges are then released from the underlying sacrificial material by a selective wet

etch.

* The residual stress is tensile if the stress value is positive, compressive if negative.

Eg

Biaxial Young's Modulus, s 1.805x10" Pa

Film thickness, tf 0.5 gm

Substrate thickness, ts 525 gtm

Substrate type (100) Si

Substrate Diameter 100 mm

Stress of Amor. Si Film #1* +179.9 MPa

Stress of Amor. Si Film #2 +213.2 MPa

Stress of Amor. Si Film #3 +205.3 MPa

Average Stress +200 MPa



2.2.2 Mask design

The mask consists of various micromechanical structures of varying dimensions. The

smallest feature on the mask has the dimension of 0.5 gpm which pushes the limit of optical

lithography. The mix of structures is conceived to reveal as much information pertaining

to micromechanical issues as possible. The structures include cantilevers of different

lengths and widths, bridges with and without periodic holes, and bridge structures

corresponding to a design suggested elsewhere21 . A layout and explanation of the mask

design can be found in Appendix A. The same mask design is used in both the Si/SiO 2 and

III-V processes.

Starting Material
_A_ Si

InGaP
GaAs

SiO 2
Si

4+ Photolithography
Photoresi

4+ RIE

S Photoresist Removal &
Wet Etch

Figure 2.4: An illustration of the process outline for the fabrication of the photonic
bandgap bridge resonator structures. Apart from InGaP, the sacrificial layer for the III-V
material system has also been made from AlxGal-•As where x=0.3 or 1.0.



2.2.3 Photolithography

The photolithography step is probably the most critical of all the fabrication steps involved

in this project. In particular, the definition of minimum feature sizes of 1 pm, which

pushes the efficacy of optical lithography, requires care, practice and patience. Iterations

and rework are not uncommon in establishing the acceptable photolithographic results

before proceeding to the next step. Once the subsequent processing steps have been

committed, a dissatisfactory lithography outcome will be irreversible.

The Si wafers are first vapor-coated with hexamethyldisilazane (HMDS) to

improve the photoresist adhesiveness on the surfaces. The treated wafers are then batch

processed on a GCA Wafertrac 1006 spin coater where they are first subjected to a

dehydration bake at 2000 C. After the brief pre-bake, OCG 820-27CS positive photoresist

is then spun onto the wafers at 5000 rpm for 20 s (with an initial dynamic dispense). The

resulting photoresist thickness on a flat surface is specified by the ICL to be 1.15 gm. The

coated wafers are then soft-baked for 30 s at 130 0 C. The pattern transfer is performed

with a stepper using a 10X reticule printing out an array of 10-by-10 dies on the wafer.

The printed wafers are then brought back to the Wafertrac 1006 where the wafers are

developed with the OCG934 developer. The photolithography step is completed after a

post-bake of 30 s at 130 0 C.



An initial focus-exposure characterization is usually conducted by varying the

focus and exposure parameters on the stepper across a test wafer, hence creating a matrix

of patterns formed with different focus depth and exposure times. A careful visual

examination of the so-called "focus-expo" wafer is then carried out with an optical

microscope. The pattern that appears to be the most sharply focused and well exposed is

selected and provides the focus depth and exposure time to be used for the actual process

wafers.

To facilitate the task of deciding the best focus depth and exposure time, special

patterns have been included on the mask. In particular, the desired focus can be

determined by comparing the mask objects which appear as both dark field and bright field

patterns. For instance, the features in Figure 2.5 should all have the same width if the

focus is adequate. To decide if a certain exposure time is satisfactory, one would look at

the array of squares as illustrated in Figure 2.6. The coloration observed within the

squares provides a good indication of whether the photoresist has been exposed to the

right extent. Specifically, a pink coloration due to the photoresist will remain within the

square patterns which have not been sufficiently exposed. In addition, the squares provide

Figure 2.5: Special markers used for achieving the best depth of focus and exposure time.
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Figure 2.6: A series of squares useful in determining the limits of resolution and adequacy of exposure.

a gauge of the resolution limits in the lithography technique by determining the smallest

squares and square separation with the highest pattern fidelity.

Upon reaching a subjective decision on the focus depth and exposure time that

yields the best results, the actual process wafers are processed with the stepper set at the

particular focus-exposure combination. A brief visual inspection is usually performed on

the first wafer that has been exposed with the set values before committing the entire lot

to the process. In the event that the outcome of the photolithography is not satisfactory in

any way, the photoresist can be removed by a photoresist asher and the entire step

repeated.

2.2.4 Reactive Ion Etch

The technique of reactive ion etch (RIE) has the important property of achieving good

anisotropy of the etched features. Consequently, the method is ideal in defining the

vertical walls of the micromechanical bridge structures. In this project, the two layers of

top semiconductor materials will be etched anisotropically by RIE, hence exposing the

sacrificial layer for the subsequent wet chemical etch.

Two separate parallel-plate, fully automated LAM Research AutoEtch 690

systems are used for the RIE steps. For the amorphous silicon layer, a gas mixture of

CC14/0 2 in a He ambient is used. The gas flow rates are, respectively, 130 sccm for CC14,

20 sccm for 02 and 70 sccm for He. The system pressure is set at 200 mTorr and an



incident power of 300 W is used. The samples are etched until a preset endpoint has been

reached.

Subsequently, a gas mixture of CHF3, CF4 and O0 in a N2/He ambient is used to

etch the underlying LTO layer. The etch parameters are set at gas flow rates of 30 sccm

for CHF3, 130 sccm for CF4, 5 sccm for 02, 125 sccm for He, 30 sccm for N2, system

pressure of 3 torr, and incident power of 900 W. The samples are etched for 1 minute

40 seconds at an etch rate estimated to be 50 A/second, followed by an overetch of

20 seconds with the following settings: system pressure of 2 torr, incident power of

800 W, and gas flow rates of 10 sccm for CHF3, 60 sccm for He and 5 sccm for 02.

It has been observed that apart from the semiconductor material, the photoresist

has also been marginally etched during the RIE steps. Consequently, some of the smallest

hole patterns have been enlarged to merge with the sides of the bridges. After the

sacrificial layer is removed with the subsequent wet etch, these bridges are seen to be in a

state of collapse and destruction (see Figure 2.7). In a satisfactory photolithography step,

the smallest holes that survive the RIE steps are 2 gm in diameter. This observation

provides an indication of the resolution limits of the stepper in the ICL.

The remnant photoresist on the wafers is then stripped in a DryTek Megastrip

6 H.F. asher using an 02 plasma with a setting of 950 W incident power and 400 mTorr

Figure 2.7: (Plan view) Nomarski microscope photograph (cropped and magnified)
showing collapsed and broken bridge structures (4 pm wide with 2 gtm diameter holes).
The difficulty in obtaining a sharp focus from the photolithography and the subsequent
degradation of the resist by the RIE steps cause the holes to enlarge and merge with the
edges.



system pressure for about 15 minutes.

2.2.5 Wet Etch

The purpose of the wet etch step is to remove the sacrificial layer supporting the bridges.

By choosing a chemical system that will selectively etch LTO over silicon, the beams that

form the bridges will ideally be unscathed and the bridges thus formed should be

free-standing. Apart from the etchant selectivity between LTO and Si, the etch should

also be isotropic so that there is appreciable undercutting of the beams to free the bridges.

In this particular instance of LTO and Si, hydrofluoric acid (HF) presents a highly effective

etchant for the purpose.

Before the wet etch step, the array of 10x10 dies is first cut into individual dies

with a die-saw outside the ICL. The dies are then brought over to the Chemical Beam

Epitaxy (CBE) Laboratory where the wet etch is performed. Each individual die, held by

a teflon tweezer, is carefully dipped in a teflon petri dish containing concentrated (49%)

HF. The etching action is fairly rigorous as bubbles can be seen forming on the surface of

the die.

After a period of 20 minutes, the die is removed and rinsed twice in two petri

dishes of deionized water. Finally, the die is rinsed with isopropanol and left to dry in the

acid hood. The use of isopropanol essentially dehydrates the material. At the same time,

isopropanol has a lower surface tension than water or other commonly available alcohol.

This is particularly relevant since a high surface tension of the rinsing liquid may pull the

beams down as the liquid evaporates and shrinks (see Figure 2.8). When the beams are

Figure 2.8: Surface tension of the drying liquid meniscus pulling the beam down.



pulled down and come into contact with the substrate surface, the stiction force between

the two entities may cause the top layer to be permanently pinned to the substrate22

A novel method employed to circumvent the problem posed by the surface tension

of the rinsing agent is called the freeze-drying technique23'24 . In one variant of this

method, tertiary butyl-alcohol (tert-butyl alcohol) is used. Tert-butyl alcohol has the

unique property of having a melting point at 250 C and remaining in solid form at room

temperature. The sample is first dehydrated by a isopropanol rinse followed by an

immersion in the tert-butyl alcohol that has been melted on a hotplate. The container of

liquid alcohol together with the sample is next placed in a freezer where the alcohol readily

freezes. The container is subsequently transferred to a vacuum chamber which is then

evacuated. As the pressure in the chamber decreases, the alcohol will sublimate (i.e.

changes from solid to gaseous phase without passing through the liquid phase).

Consequently, the problem that would have arisen from any liquid surface tension will thus

be avoided.*

Even though experiments employing the technique have been conducted, the

technique is found to be largely unnecessary for the purpose of the project. This is due to

the fact that the tensile residual stress in the film itself is sufficiently large to render the

downward pulling action of the drying liquid irrelevant. Nonetheless, the freeze-drying

technique remains a valuable procedure that could prove useful in the future.

The sublimated tert-butyl alcohol that has been evacuated from the vacuum chamber may condense in
the pump. The alcohol is known to degrade the pump oil that is routinely used in most pumps. As
such, as small an amount of alcohol should be used or frequent replacement of the pump oil may be
necessary.



Chapter 3

III-V Material System

3.1 Material Fabrication

a. Gas Source Molecular Beam Epitaxy (GSMBE)

The III-V heterostructures are fabricated using the technique of GSMBE in the Chemical

Beam Epitaxy Laboratory. The crystal growth is performed in a Riber CBE 32P reactor, a

system which has been described elsewhere 25' 26 . The starting substrates consist of

one-quarters of epitaxy-ready 2-inch GaAs wafers mounted with melted indium solder on

3-inch silicon wafers. Prior to each growth, the native oxide on the substrate is desorbed

and the flux of the material sources measured. During the growth, an InSb eutectic

mounted near the samples together with a pyrometer are used to calibrate the temperature

reading of the thermocouple located close to the substrate. Further, Reflection High

Energy Electron Diffraction (RHEED) oscillations off the surface of the sample are used

to measure the real-time growth rates. Detailed description of the growth procedures can

be found in references 25 and 26.

The typical structure fabricated for the purpose of this project is illustrated in

Figure 3.1. The top GaAs layer represents the material that forms the beam of the

micromechanical structures and is chosen for its relatively higher dielectric constant at a

wavelength of 1.55 gm. The sacrificial layer is made of either Ino.sGao.sP, Alo. 3Ga0.7As or

AlAs, which also form the supports on either end of the GaAs beam. The choice of the

sacrificial material is based primarily on the presence of an effective selective etch between

GaAs and the sacrificial layer material. The refractive index differential between the two

materials should also be as large as possible. In addition, the various layers are



GaAs 0.5 gm

GaAs Buffer Layer 0.5 pm

GaAs Substrate

Figure 3.1: Schematic of III-V heterostructure.

lattice-matched to provide an essentially stress-free top film, which enhances the

mechanical stability of the micromechanical structures.

The thickness of the top two layers are chosen arbitrarily, though the beam should

be as far above the substrate as possible. However, the maximum practical thickness is

limited by the GSMBE growth of the material in the system. A thickness of 1 jm is

chosen as a reasonable thickness for both growth and device performance. Directly

underneath the sacrificial layer and on top of the substrate surface is a GaAs buffer layer

which is 0.5 gm thick.

For the GaAs/Ino.sGao.sP heterostructure, the GaAs buffer layer is first epitaxially

grown at a rate of 0.46 gm/hour as deduced from the RHEED oscillations. During the

process, the substrate temperature is maintained at 590 'C, with the Ga source at 880 'C

and the arsine cracker temperature at 900 'C. The As flux is measured to be 1.00 sccm.

The Ino.sGao.5P layer is grown at a rate of 0.89 gm/hour with the substrate temperature at

470 oC, the Ga source at 880 'C, the In source at 790 'C and the arsine cracker at 900 oC.

The As flux is calculated to be 2.00 sccm while the mole fraction is estimated to be 51.5%

Ga. A few monolayers of GaAs is next grown at a substrate temperature of 470 'C with

all other settings identical to those used for the buffer layer. Finally, the top GaAs layer is

grown using the same parameters as the buffer layer.



For the GaAs/Alo.3Gao.7As heterostructure, the GaAs buffer layer is epitaxially

grown with the substrate at 620 'C, the Ga source at 910 oC and the arsine cracker at

900 'C (resulting in an As flux of 1.00 sccm). The growth rate is calculated to be

0.74 jim/hour. The Alo.3Gao.7As layer is grown at a rate of 1.05 gm/hour, with the

substrate at 620 'C, the Ga source at 910 oC, the Al source at 1070 'C and the arsine

cracker at 900 'C (As flux= 1.00 sccm). The final top GaAs layer is grown at the same

conditions as the buffer layer.

For the GaAs/A1As heterostructure, the GaAs buffer layer is grown with the

substrate temperature set at 620 'C, the Ga source at 930 'C and the cracker at 900 'C

(As flux= 1.00 sccm). The AlAs layer is grown with a substrate temperature of 620 'C and

the Ga source at 930 'C , the Al source at 1090 'C and the cracker at 900 'C (As

flux= 1.00 sccm). The growth rate is estimated from RHEED oscillations to be

0.50 gm/hour. Finally, the top GaAs layer is grown at the same conditions as the initial

GaAs buffer layer.

b. Sample Dismount and Backside Indium Removal

After the heterostructures have been fabricated and removed from the GSMBE reactor,

the quarter wafers need to be dismounted from the 3-inch silicon wafer for further

processing. The indium solder which mounts the quarter wafers onto the silicon wafer is

first melted by placing the silicon wafer on a hot plate. The quarter wafers are then

carefully removed by a sliding action along the silicon wafer, leaving behind as much

indium as possible.

At this juncture, a considerable amount of indium is still left on the back of the

quarter wafers. The roughness that results from the remnant indium solder will render

processing of the samples difficult, hence as much of the so-called backside indium should

be removed as possible. This is achieved by first mounting the sample with its face down

on a glass slide with wax. The glass slide is then introduced into a concentrated

hydrochloric acid (HC1) solution. Since HCI will also etch GaAs, the surface is protected



from the etchant by ensuring that the wax has fully sealed the edges of the wafer while not

covering any of the backside indium.

Upon dipping the backward-mounted sample in the HCl, rigorous reaction can be

observed as the acid begins to etch the remaining indium. After a period of about 30

minutes, most of the indium will have been removed. Note that it is not entirely possible

to remove all the remnant indium solder, and some roughness will remain. But the back of

the sample should be fairly smooth after the etching action has subsided.

The wax used to mount the sample on the glass slide will next be removed. The

glass slide is placed in a beaker of boiling 1,1,1-trichloroethane (TCA) which dissolves the

wax. The sample is then transferred to another beaker of boiling TCA, spraying the

surface with TCA and keeping it covered with the solvent during the transfer. Care

should be taken not to allow the TCA to dry up at any point, as this may leave some

particularly stubborn wax residue on the sample. The sample is finally rinsed in acetone

followed by methanol, and then dried with a stream of nitrogen. Visual inspection of the

sample surface while the methanol is evaporating will give a good indication of its

smoothness and the amount of residue that may have remained.

3.2 Device Fabrication

Fabrication of the III-V material-based devices is performed in the Microelectronic

Technology Central Facility (MTCF) at the Center for Material Science and Engineering.

The environmental control of the MTCF is considerably less stringent than the ICL. In

addition, a variety of material research is conducted in the Facility, in contrast to the ICL

where only silicon-based materials are allowed.

3.2.1 Photolithography

The sample is first prebaked in a 2000 C oven to remove any moisture from the surface and

hence to improve the adhesiveness of the photoresist. Immediately upon its removal from

the prebake oven, the sample is spin-coated with photoresist. The photoresist used is the

Shipley 1400-27 positive resist, which is statically dispensed onto the sample with a



filtered syringe. The sample is then spun at 5000 rpm for 30 seconds which yields an

average photoresist thickness of 1.15 km. A soft bake at 90 0 C for 30 minutes follows the

spin-on step.

After the soft bake, the sample is allowed to cool to ambient temperature.

Exposure with a one-step contact mask is then performed on a Karl Suss aligner with the

wavelength set at 320 nm and the incident power of 8 mW/cm 2. Unlike in the ICL, the

aligner is set manually and the focus deemed sufficient is purely subjective. After an

exposure time of 39 seconds, the sample is developed in the Shipley MF319 resist

developer for 75 seconds, followed by a rinse in a beaker of deionized water for a minute.

Visual inspection on a microscope is then carried out to ensure that the pattern transfer is

satisfactory. The technique used to decide if the optical focus and exposure time are

adequate is as described in Section 2.2.3*. In addition, a monitor GaAs wafer is usually

used together with the actual samples to confirm the process values. The samples are

finally hard-baked at 130 0C for 30 minutes.

3.2.2 Reactive Ion Etch

The technique of RIE has traditionally been of great interest in III-V material processing,

particularly since mesa definition forms the usual approach in III-V device fabrication.

Not only does RIE yield an etch profile with higher anisotropy and resolution than wet

etching, it also allows a more controlled etch rate. As such, great attention has been paid

to the development of RIE processes for various combinations of III-V heterostructures.

The types of gases used in the RIE of III-V materials can basically be classified

into two main categories 27. One is the chlorine- or bromine-based gas mixtures which are

effective since gallium and most other group III chlorides or bromides are volatile at low

temperatures. Indium-based III-V materials, however, form the major exception to this

Note that the exposure and development times have been determined by a previous characterization
exercise with plain GaAs wafers. In that experiment, different exposure and development times are
explored to yield the most satisfactory parameters.



rule as the indium chloride by-products are reported to have low vapor pressure28 and tend

to leave an undesirable residue on the etched surface. The other main category of gases

consists of the methane or ethane and hydrogen mixtures. These gas mixtures have been

reported to etch both gallium- and indium-based material29' 30. The main difference of

using the organic gases lies in the fact that the etch rate for GaAs is notably lower than

that with the chlorine-based gases.

In this project, three different III-V heterostructures are used, namely

(a) GaAs/Ino.sGao.sP; (b) GaAs/Alo.3Gao.7As; and (c) GaAs/A1As. All the samples are

etched in a PlasmaTherm 700 Series PECVD*/RIE system at the MTCF. The system

consists of a set of parallel plate electrodes driven at an RF frequency of 13.56 MHz tuned

with an automatic impedance matching network. The temperatures of the lower electrode

and the chamber walls are controlled via a heat exchanger and the system is evacuated to

high vacuum with a turbomolecular pump.

In the experiments, the samples consist of single dies which have been cleaved

from the quarter wafers after the photolithography step. Prior to the initial use of the

system, the RIE chamber is usually cleaned with 02 plasma using a standard recipe in the

MTCF.

For the GaAs/ Ino.sGao.sP heterostructure, the RIE procedure involves a sequence

of etches using gases from both categories described above. The first etch involves the

SiCl4/BC13 gas mixture which removes most of the top GaAs layer. The flow rates for the

gases are 20 sccm for SiC14 and 30 sccm for BC13, while the system pressure is set at

15 mTorr. The temperatures of both the chamber walls and the lower electrode are kept

at 40'C using a heat exchanger, and a DC bias of -300 V is employed. In addition, an

alumina susceptor is used to protect the lower electrode from the corrosive chloride gases.

The sample is etched for 1 minute 48 seconds with an expected etch rate of about

* PECVD is the acronym for Plasma Enhanced Chemical Vapor Deposition.



2500 A/min*, hence leaving about 500 A of GaAs before the GaAs/ Ino.sGao. 5P interface.

The etch time is chosen such that the Ino.sGa 0.sP layer will not be exposed to the

SiC14/BC1 3 gas. At the same time, as much of the GaAs is etched away as possible since

the next gas mixture (CH 4/H2) etches GaAs very slowly.

At this juncture, a brief 02 plasma clean is performed to remove any residual SiC14

or BC13 gases that might have remained in the chamber. The settings for the system for

the clean step are: gas flow rate of 100 sccm, system pressure of 75 mTorr, incident

power of 100 W and active plasma discharge time of 10 minutes. The rest of the GaAs

layer and about 2000 A of the In 0.sGao.sP layer are then etched with the CH4/H2 mixture

using the following parameters: gas flow rates of 10 sccm for CH 4 and 40 sccm for H2,

system pressure of 20 mTorr, DC bias of -300 V and etch time of 20 minutes. The

temperatures of the chamber wall and the lower electrode are both raised to 50'C. The

sample is placed on a cleaned silicon wafer (on top of the alumina susceptor) to reduce the

residue that tends to appear after the etch. In fact, the residue on the sample surface is

further removed by a 02 plasma etch with 100 seem gas flow rate, 200 mTorr system

pressure and 100 W incident RF power for 5 minutes after the CH4/H2 etch.

For both the GaAs/Alo.3Gao.7As and GaAs/A1As heterostructures, only the single

gas mixture of SiC14/BC13 is used with the same parameters as in the case of the

GaAs/In0.5Gao.sP structure. The etch times for both structures are 4 minutes and the top

layer of GaAs is completely etched away together with about 3000 A of Alo.3Gao.7As and

3600 A of AlAs. Finally, the bulk of photoresist remaining on the samples is removed by

spraying the sample first with a stream of acetone, followed by methanol. A 5-minute 02

plasma ash at 100 W incident RF power, 100 sccm gas flow rate on an asher removes any

remaining photoresist residue.

* See Appendix B for a detailed calculation of the etch rate for the various RIE experiments conducted for
this project.



3.2.3 Wet Etch

One of the main criteria for the heterostructures to use for this project is the existence of a

highly selective etch between the bridge material and the sacrificial layers. In the case of

the GaAs/AlxGat-•As-based material systems, a host of effective selective wet etches

between the two materials have long existed. The various etching solutions that etch

AlxGa_-xAs selectively over GaAs include: (a) a hydrogen peroxide/ammonium hydroxide

(H20 2/NH40H) mixture; (b) a ferrichloride/ferrochloride (FeCl3/FeC12) mixture; (c) a

potassium ferricyanide/potassium ferrocyanide [K3Fe(CN)6/K 4Fe(CN)6] mixture; (d) a

cerium IV sulfate/cerium III nitrate [Ce(S0 4)2/Ce(NO3) 3] mixture; (e) a iodine/potassium

iodide (I2/KI) mixture; and (f) hydrofluoric acid (HF).

Of the mixtures above, etchant (a) involves chemicals that are readily available in

electronic grade purity but require a tight pH margin for the solution to selectively etch

AlxGal.xAs 31. Etchants (b), (c) and (d) also involves stringent pH requirements for the

selective etch to be effective 32, and the chemicals are relatively more expensive in their

purer forms. Etchant (e) is stable over a wider range of pH but still requires a chemical

which is costly in a sufficiently pure form. Nonetheless, the I2/KI mixture has shown good

selectivity and etch rates32. Etchant (f) has also demonstrated good etch rate and

selectivity, but the etch rate at room temperature becomes grossly inadequate when the

aluminum content in the alloy is less than 40%33 . To achieve appreciable etch rate for

x<0.40 in the AlxGal_-As alloy, the HF solution needs to be heated which causes the

emission of an undesirable and dangerous fume.

For the purpose of this project, the HF etching solution was used for both the

GaAs/Al 0.3Ga0.7As and GaAs/AlAs heterostructures. For the former, the sample is etched

in a teflon petri dish where warm 49% concentrated HF solution is added periodically.

The HF solution is warmed in a PFA beaker which is, in turn, placed in a warm water bath

kept at 60'C. Since the HF solution begins to fume at about 40-500 C, the experiments are



conducted in a well-ventilated acid hood*. For the GaAs/AlAs heterostructures, the

samples are readily etched in a HF solution at room temperature. In fact, the etching of

AlAs is so rigorous in an undiluted HF solution that a mixture of 20:1 H20:HF is

preferred. Even for this amount of dilution, the AlAs material is sufficiently undercut such

that the sacrificial layer is removed after 30 seconds with discernible bubbling in the

process. For both etches, two rounds of rinsing in two separate petri dishes of deionized

water ensue. The sample is finally rinsed in isopropanol and left to dry in the hood.

In contrast to the GaAs/AlxGal-xAs heterostructures, significantly less work has

been published about the selective etching of Ino.sGao.sP over GaAs. The main etching

solution that has been reported to date is the H3P0 4/HC1/H20 mixture which demonstrates

good selectivity and etch rate, as well as little surface roughness after the etch34. In the

experiments for this project, several etching solutions with different proportions have been

used with varying results (see Appendix B). These solutions include a 1:1:5

H3PO4/HC1/H 20 solution, a 1:1 H3PO4/HCI solution, a 1:4 H3P0 4/HCI solution and a

1:10 H3PO4/HCL solution. All of the GaAs/ Ino.5Gao.5P selective wet etches are conducted

at room temperature where the solutions are stirred with a magnetic stirrer (particularly

since H3PO4 is inherently viscous). As in the wet etch for the GaAs/AlxGal-xAs

heterostructures, the wet etch is followed by two rounds of rinse in two separate petri

dishes of deionized water and a final rinse in isopropanol. The sample is then left to dry in

the hood.

Extraneous glassware is removed from the hood as the HF fume will condense on the cool glass surfaces.
All glassware in the hood are thoroughly rinsed after the experiments.



Chapter 4

Results and Discussion

The primary goal of this project is to demonstrate the ability to fabricate photonic bandgap

bridge resonator structures out of both silicon and more important, III-V semiconductor

material. To this end, scanning electron microscopic (SEM) images of the

micromechanical structures represent the main presentation format of the results. In cases

where free-standing structures are not attained, SEM images of the fabrication processes

often reveals the reasons why they have not been successfully built. In this Chapter, the

results and findings are presented for the various material systems employed.

4.1 Amorphous Si/SiO 2 Material System

As anticipated, the maturity of silicon technology produces Si/SiO2 structures which

present the more reliable and reproducible results in the project. The processes are well-

controlled with the use of standard, characterized recipes in the Class 100 cleanroom

environment of the ICL and TRL. Figure 4.1 illustrates free-standing 10 gm long bridges

without any holes. Note the smoothness of the surfaces, a result of the excellent and

reliable fabrication facilities available in the ICL and TRL. The beams are also relatively

straight, thus implying that the inherent tensile stress in the amorphous silicon film is

instrumental in this respect. Figure 4.2 shows another SEM photograph of a set of bridges

without holes.

Figure 4.3 shows a 1 gtm wide bridge which is 10 gtm in length. Note the apparent

transparency visible in part of the bridge, which is a result of the electrons penetrating that



portion of the beam. The actual width of the bridge is probably less than 1 jtm as

designed, particularly since a considerable amount of pattern fidelity has been lost when

the photoresist mask is slightly etched during the RIE steps. Figure 4.4 shows a bridge

that has buckled, presumably under its own weight. This bridge is 20 gtm long and 1.5 gtm

wide by design. The buckling of the bridge illustrates the fundamental issue of mechanical

soundness of the structures. In fact, while theoretical simulations of the resonators may

yield structures with an optimized set of dimensions, the fundamental mechanical issues

will introduce another limitation to the realization of the structures.

The importance of the mechanical issues become evident in Figure 4.5, where the

SEM images of a set of collapsed structures can be seen. All the structures have

invariably pinned to the substrate, with the defect region in the middle of the smaller

bridges adhering to the substrate surface. One can imagine these bridge structures to be

akin to a slab of material supported by two chains of the same material. The defect region

material appears to have weighed down the two supporting links.

Figures 4.6 to 4.10 show some bridge structures with holes of different diameters

and separations. It is observed that the longest bridges that remain standing are 30 jim in

length, regardless of the width or type of hole configurations on the beam. Figures 4.11

and 4.12 illustrate some cantilever structures. Again, the cantilevers with lengths greater

than 30 gim tend to droop and adhere to the substrate.



Figure 4.1: SEM photograph of bridge

structures without hole. The bridges are

10 [tm long; the structure in the foreground

is 1.5 jtm wide, while that in the background

is 2 gim wide.

Figure 4.3: SEM photograph of a bridge

structure that is 10 gm long and 1 jtm wide
(by design). Note the apparent transparency
of a portion of the beam.

Figure 4.2: SEM photograph of bridge

structures without holes. The bridges are

10 RIm long; the structure in the foreground

is 3 Rm wide and that in the background is

4 Ltm wide.

Figure 4.4: SEM photograph of a bridge

structure which is 20 jLm long and 4 jm

wide. Note the buckling of the bridge,
apparently under its own weight.



Figure 4.5: SEM photograph of collapsed
bridge structures.

Figure 4.7: SEM photograph of bridge
structure with 2 holes, each 2 tm in
diameter and separated by 1 gm (side-to-
side). The beam is 10 gm long and 3 Rm
wide.

Figure 4.6: SEM photograph of bridge
structure with a 2 .tm diameter hole. The
structure is 10 ýtm long and 3 gm wide.

Figure 4.8: SEM photograph of bridge
structure with 2 holes, each 2 ýtm in diameter
and separated by 2 tm (side-to-side). The
beam is 10 gm long and 3 gm wide.



Figure 4.9: SEM photograph of bridge
structure with 4 holes, each 2 gm in diameter
and separated by 1 gm. The length of the
bridge is 10 jm while its width is 4 gm.

Figure 4.11: SEM photograph of a
cantilever structure 10 lim long and 2 jm
wide.

Figure 4.10: SEM photograph of bridge
structure with 2 holes, each 3 jgm in diameter
and separated by 1 Lm. The width of the
beam is 4.5 gm and the length is 10 gim.

Figure 4.12: SEM photograph of a
cantilever structure 10 jm long and 3 gLm
wide.



4.2 GaAs/Ino.s5Gao.sP Material System

In comparison to the amorphous Si/SiO2 structures, the GaAs/Ino.5Gao.sP heterostructures

yield less satisfactory results. Specifically, the etchant used to remove the sacrificial layer

in the GaAs/Ino.sGao.sP process has a practically negligible rate of undercutting the

microstructures. The main structures that have been built successfully are the cantilever

structures (Figures 4.13-4.14). In contrast, the bridge structures are not free standing as

the sacrificial layer is not fully cleared (Figure 4.15). The drastic difference in the amount

of undercut that has taken place is probably due to the fact that the etchant could reach the

sacrificial layer in the cantilever structure via the tip. Nonetheless, one bridge structure

was observed to have been free-standing (Figure 4.16).

Figure 4.13: SEM photograph of GaAs/InGaP
cantilever structures. The structures are both
10 glm long; the cantilever in the foreground is
2 mrn wide, while that in the background is
3 pm wide.

Figure 4.14: SEM photograph of GaAs/InGaP
cantilever structures. The structures are 20 gm
long and the only free-standing structure is 4 gtm
wide.
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4.3 GaAs/Al0. 3Gao.7As Material System

As mentioned previously, the etchant used to remove the sacrificial layer in the

GaAs/Al0.3Gao.7As heterostructure is far from ideal. Not only must the HF solution (the

etchant) be warmed which results in the emission of a highly poisonous fume, the etching

action is slow and leaves behind a relatively rough surface. The work on this material

system, however, provides the motivation for working with a heterostructure with a higher

Al content.

Figure 4.17 shows a bridge that has not been totally cleared, with a residual stump

supporting the structure. Figure 4.18 provides a view of the roughness of the etched

surface.

Figure 4.17: SEM photograph of the cross
section of a 1 pm wide bridge. Note the
stump underneath the beam which has not
been cleared.

Figure 4.18: SEM photograph of the beam
in Figure 4.17 at a higher magnification.
Note the rough surface remaining after the
wet etch.



4.4 GaAs/AlAs Material System

The experiments with the GaAs/AlAs material system are motivated by the difficulty

encountered when using the GaAs/Alo.3Gao.7As heterostructure. The etching action of the

HF solution on the sacrificial layer is expected to be much faster in the former than in the

latter. In addition, the HF solution etches AlAs readily at room temperature, while it

etches Alo.3Gao.7As at elevated temperature.

Amongst the III-V material systems that have been used in this project, the

GaAs/A1As material system yields a higher proportion of successful micromechanical

structures. The quality of the structures, however, are not comparable with the

amorphous Si/SiO2 counterparts. In particular, the surface of the GaAs film that has had

the underlying sacrificial material removed tend to buckle discernibly (see Figure 4.19).

Figure 4.20 illustrates the fundamental flaw of the design used for one of the

structures. The amount of undercutting that has taken place on both ends of the beam is

clearly visible leaving two triangle-shaped material remaining at either end. The support

afforded by the two support seem insufficient to hold the beam up.

Figures 4.21 to 4.23 shows a series of bridges with various configurations of holes.

The shadow cast by the beams clearly indicate that the holes have been etched through

completely. Further, the etched surfaces, both on the substrate and on the beams

themselves, appear to be smooth. In addition, the sidewalls of the bridges are sufficiently

straight, a manifestation of the effectiveness of the RIE process.



Figure 4.19: SEM photograph of GaAs/AlAs
bridge structures without holes. Note the
slightly raised surfaces on both ends of the
beams which indicate the amount of
undercutting that has taken place.

Figure 4.21: SEM photograph of GaAs/AlAs
bridge structures. The bridges are all 20 gm
long and the holes are 2.5 .tm in diameter. The
widths range from 3.5 to 5.5 4Lm.

Figure 4.20: SEM photograph of a GaAs/AlAs
bridge structure which is pinned to the substrate.
The margins visible along the edges of the
structure arise from the undercutting that has
taken place.

Figure 4.22: SEM photograph of GaAs/AlAs
bridge structures. The physical dimensions of
the structures are similar to those in Figure 4.21.



Figure 4.23: SEM photograph of GaAs/AIAs
bridge structures. The structures are all 30 jim
long and the holes are all 3 gm in diameter.
The widths of the structures range from 4 to
7 gm.



Chapter 5

Conclusion

In summary, micromechanical bridge resonator structures have been fabricated with both

Si/SiO2 and III-V material systems. Various configurations of these bridges, consisting of

different dimensions and number of holes along the beam, have been built. These bridges

can potentially be used as photonic band gap bridge resonators which in turn, have

immense promise in the introduction of a new class of photonic devices. Other

micromechanical features like the cantilevers have also been fabricated with both types of

material systems.

In the process of building these devices, various fabrication issues have been

investigated and addressed. Particularly salient in this respect are the process steps for the

III-V material. First, the composition of the heterostructure has been varied to provide an

idea of the easier combination to employ from the process standpoint. The process

characteristics for the fabrication of various III-V heterostructures have also been

established, and the idiosyncrasies pertaining to each material system have been recorded.

In particular, the appropriate RIE and wet etch parameters have been investigated to

provide a viable and reproducible way of fabricating these devices. In addition, device

dimensions approaching the limits of optical lithography have been attained.

Apart from the fabrication process, the mechanical issues involved in fabricating

these micromechanical structures have also been highlighted. For instance, a tensile

amorphous silicon film yields positive results, where a compressive polysilicon film fails to

produce free-standing structures. Stress measurements have been conducted to verify that

the residual stress in the amorphous silicon film is indeed tensile in nature. Furthermore,



the failure of certain device designs has brought to light the importance of the structural

integrity of the essentially mechanical structures.

The free-standing structures arising from this effort have brought not only

immense satisfaction, but they have also provided the impetus for future work. Looking

ahead, the next step will be the optical testing of these devices to establish the physical

phenomenon that computer simulations have demonstrated. The optical testing will likely

involve the propagation of electromagnetic radiation along the devices which, in turn,

introduces other challenges. For instance, the reflection of the electromagnetic waves at

the edge of the devices will need to be addressed. Should the outcome be positive,

nonetheless, the ultimate goal will be the introduction of an active region into the defect

region. By introducing a practical dimension to the physically interesting effect, it is

hoped that the devices will take on an important role in both the research and the

commercial community.

Along the path to the ultimate goal, several issues will have to be addressed.

Broadly, these issues can be classified as either fabrication or mechanical problems. In the

fabrication sequence, novel techniques will have to be employed to attain smaller device

sizes beyond the limits of optical lithography. In particular, resonators operating in the

regime of 1.55 [tm wavelength may require features to be as small as 0.4 im'3 .

Increasingly sophisticated processes will then need to be devised to optimize the

structures. Also, as different material systems may have to be used, possibly whole new

sets of process parameters will need to be investigated.

As mentioned previously, not all mechanical designs conceived are structurally

sound. Consequently, some form of mechanical simulations will have to be incorporated

in tandem with the purely electromagnetic simulations. In addition, the mechanical

properties of the III-V material will need to be better understood, though work in this

regard is already underway elsewhere35' 36

All in all, the progress in the field of photonic band gap devices has been exciting

and promises to be so in the future. Hopefully, this project will provide a launching pad



for more exciting results and deeper understanding of the intrinsically intriguing physical

phenomenon.



Appendix A

The layout of the mask is shown in Figure A-i while Figure A-2 represents a

categorization of the various features on the mask. The various categories of structures

are described as follows:

a) These micromechanical bridges, illustrated by Figure A-3, are as derived from

Reference 21. There are in total five rows of these bridges with eight holes

each (four on each side of the defect region), scaled by approximately twofolds

in the dimensions between adjacent rows. The dimensions of the relevant

features are summarized in Table A-1:

Width of Length of Approx.Hole Hole Width of Defect

Bridge, W Bridge, L Diameter,d Separation,S Region, D (gim)

(wim) (w(m) (wm) (wim)

Row 1 4.2 33.0 2.5 1.0 4.5

Row 2 8.5 68.5 5.2 2.0 9.0

Row 3 12.8 98.0 7.8 3.0 13.8

Row 4 17.0 130.0 10.6 4.0 18.2

Row 5 21.5 160.0 13.2 5.0 22.6

Table A-i: Physical features dimensions of structures in Zone A.



Figure A-1: A macroscopic view of the layout of the mask.
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Figure A-2: Categorization of the various micromechanical features on the mask.
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Figure A-3: The photonic bandgap bridge structure in zone A.

b) Zone B: This category of micromechanical structures consist of 7 groups of

cantilevers. The length of the cantilevers varies between groups from 10 to 50 jim, in

increment of 10 jim, and from 100 to 300 gtm, in steps of 50 gLm. Within each group of a

constant length, the width of the cantilevers range from 2 to 10 jim, in steps of 1 jim (see

Figure A-4).

c) Zone C: This zone consists of 6 separate groups of micromechanical bridges

without holes. In subzone C1, the length of the bridges range from 10 to 100 jim in steps

of 10 jim in the x direction (as marked in Figure A-2), while the width of the bridges range

from 2 to 10 jim in steps of 1 gm in the -y direction. Subzones C2 and C3 have the same

structures as Cl. In subzone C4, the length of the bridges are 0.5 jm, 0.7 jim, 1.0 jim,

1.5 jm and 2.0 jim respectively; the width of the bridges range from 10 to 100 jim in

steps of 10 jim. Subzones C5 and C6 mimics the pattern in C4.

d) Zone D: The structures in this zone consist of micromechanical bridges with

holes placed in a periodic fashion along the beams in different ways. The zone can further

be subdivided into six main clusters, with holes of different diameters in each subzone. In

Figure A-4: Micromechanical cantilever structures in a group of constant length. The width of the
cantilevers range from 2 gLm to 10 glm, in steps of 1 gtm from left to right.
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subzone D1, the holes are all 1 jim in diameter. Within the subzone, the bridges range

from 10 to 100 gim in the x-direction. In the -y direction within the subzone, there are

seven sets of bridges all with widths ranging from 3 to 6 gim in steps of 1 Rtm. These sets

of bridges have different number of holes and different hole-to-hole separation: (a) 1 hole

in the middle of the beam; (b) 2 holes separated by 1 jim; (c) 2 holes separated by 2 jlm;

(d) 4 holes separated by 1 jim; (e) 4 holes separated by 2 jim; (f) 8 holes separated by

1 jim; and (g) 8 holes separated by 2 jLm.

In subzone D2, the holes are all 1 jim in diameter. Again, the bridges range from

10 to 100 jtm in length by steps of 10 glm in the x direction. In the -y direction within the

subzone, there are seven sets of bridges all with widths ranging from 2 to 5 jim in steps of

1 jim. These sets of bridges have different number of holes and different hole-to-hole

separation: (a) 1 hole in the middle of the beam; (b) 2 holes separated by 1 jim; (c) 2 holes

separated by 2 gim; (d) 4 holes separated by 1 jLm; (e) 4 holes separated by 2 jim; (f) 8

holes separated by 1 jm; and (g) 8 holes separated by 2 jm.

In subzone D3, the holes are all 1.5 jim in diameter. In the x-direction, the bridges

range 10 to 100 jim in length by steps of 10 jim. In the -y direction within the subzone,

there are seven sets of bridges all with widths ranging from 2.5 to 5.5 jim in steps of

1 jm. These sets of bridges have different number of holes and different hole-to-hole

separation: (a) 1 hole in the middle of the beam; (b) 2 holes separated by 1 jim; (c) 2 holes

separated by 2 jim; (d) 4 holes separated by 1 jim; (e) 4 holes separated by 2 jim; (f) 8

holes separated by 1 jim; and (g) 8 holes separated by 2 jim.

In subzone D4, the holes are all 2.5 jim in diameter. In the x-direction, the bridges

range 10 to 100 jim in length by steps of 10 jm. In the -y direction within the subzone,

there are seven sets of bridges all with widths ranging from 3.5 to 6.5 jLm in steps of

1 jim. These sets of bridges have different number of holes and different hole-to-hole

separation: (a) 1 hole in the middle of the beam; (b) 2 holes separated by 1 jim; (c) 2 holes

separated by 2.5 jim; (d) 4 holes separated by 1 jim; (e) 4 holes separated by 2.5 jim; (f) 8

holes separated by 1 jim; and (g) 8 holes separated by 2.5 jim.



In subzone D5, the holes are all 3.0 gim in diameter. In the x-direction, the bridges

range 10 to 100 jim in length by steps of 10 gim. In the -y direction within the subzone,

there are seven sets of bridges all with widths ranging from 4 to 7 jim in steps of 1 jim.

These sets of bridges have different number of holes and different hole-to-hole separation:

(a) 1 hole in the middle of the beam; (b) 2 holes separated by 1 jim; (c) 2 holes separated

by 3 j[m; (d) 4 holes separated by 1 jim; (e) 4 holes separated by 3 gim; (f) 8 holes

separated by 1 gtm; and (g) 8 holes separated by 3 gim.

In subzone D6, the holes are all 4 jm in diameter. In the x-direction, the bridges

range 10 to 100 jim in length by steps of 10 jim. In the -y direction within the subzone,

there are seven sets of bridges all with widths ranging from 5 to 8 jim in steps of 1 jim.

These sets of bridges have different number of holes and different hole-to-hole separation:

(a) 1 hole in the middle of the beam; (b) 2 holes separated by 1 jLm; (c) 2 holes separated

by 4 jim; (d) 4 holes separated by 1 jm; (e) 4 holes separated by 4 jm; (f) 8 holes

separated by 1 jim; and (g) 8 holes separated by 4 jim.

e) Zone E: The structures in this zone consist of long bridges with lengths

varying from 100 to 500 jim in steps of 50 jim in the +y direction. Within a group of

bridges with constant length, the width ranges from 2 to 10 jm in steps of 1 jm in the x

direction.



Appendix B

Results from RIE and Wet Etch of III-V
Materials
The etch rates of the various RIE steps for the different material are determined by

profilometric measurements before and after the fact. In addition, the SEM images taken

of the samples after the wet etch sequence also reveal the morphology of the surfaces after

the etch. The following sections summarize the results for the three different kinds of

material systems that have been used.

B.1 GaAs/Alo. 3Gao.7As

B.1.1 RIE

(a) Before the RIE etch, the thickness of the photoresist (PR) is measured, at a step

feature on the sample to be: hi = 1.11 gim.

(b) After a 4 minute etch in the SiC14/BC13 gas discharge as described in Section 3.2.2, the

step height is measured to be: h2 = 1.73 gm. Hence, Ah = (1.73-1.11) gim = 0.62 gm. Of

the 0.62 gim thickness of material removed, 0.5 gtm consists of the top GaAs layer.

(c) The PR was removed and the step height measured again to yield: h3 = 0.81 jm. This

implies that the amount of PR left after the RIE step is: tpR = (1.73-0.81) glm = 0.92 gLm.

Consequently, the amount of PR that has been etched in 4 minutes is: AtPR = hI-tPR =

(1.11-0.92) gm = 0.29 jm. Hence, the etch rate for the PR is calculated to be 725 A/min.

(d) At the same time, 0.50 jim of GaAs and 0.31 jm of Alo.3Gao.7As have been etched in

4 minutes. However, by assuming the etch rate of GaAs to be approximately 2500 A/min



(as obtained in a separate etch characterization experiment), the etch rate for Alo.3Gao.7As

is estimated to be 1600 A/min.

B.1.2 Wet Etch

After etching the samples in warmed HF for 10 minutes, the step height is measured to be

1.47 gtm. Further etching yields no change in step height, thus implying that the wet etch

has stopped on the substrate. As a result, the lower bound of the etch rate of A10.3Gao.7As

in warmed HF is: (1.47-0.81) jm/10 min = 660 A/min. The etch rate is, nonetheless,

expected to be faster than the above.

However, the SEM images revealed that the sacrificial layer has not been totally

removed (see Figure B.1). In fact, the morphology of the etched surface appears

relatively rough as illustrated in Figure B.2. Interestingly, there is an apparent

crystallographic preference in the etch characteristic as revealed in Figure B.3. At this

juncture, no further experiment is conducted with the heterostructure due to a shortage of

the material. The GaAs/A1As material system is used instead which yields better results.



Figure B.I: Cross-sectional view of a cleaved
beam. Note that the sacrificial layer is not totally
cleared and that the etched surfaces are relatively
rough.

Figure B.2: Morphology of the etched
surfaces. The roughness on the surface of
the sacrificial layer under the beam is
visible.

Figure B.3: A side view of the etch front. The
preference of the etching action for a certain
crystallographic direction is apparent.



B.2 GaAs/AlAs

B.2.1 RIE

(a) Before the etch, the PR thickness on a step feature is measured to be: hi = 1.10 Rm.

(b) After an etch with SiCl4/BCl 3 for 4 minutes, the step height is measured to be:

h2 = 1.82 jim.

(c) After the PR has been removed, the step height is measured to be: h3 = 0.87 Rim.

Therefore, the PR thickness after the RIE is: Ah = h3-h2 = (1.82-0.87) jim = 0.95 jim. The

amount of PR that has been removed in 4 minutes of etch is: (1.10-0.95) gtm = 0.15 Rtm.

Consequently, the etch rate for PR in this experiment is: 0.15 jtm/4 min = 375 A/min.

This is about half the rate obtained in Section B. 1. The discrepancy is probably due to the

different condition (for instance, humidity, temperature etc.) under which the resist has

been processed. Nonetheless, the discrepancy is not critical to the overall process.

The amount of GaAs/A1As material that has been etched thus far is 0.87 RLm. Of

this amount, 0.5 jim consists of GaAs and 0.37 gm is AlAs. Assuming the etch rate of

GaAs to be 2500 A/min, the etch rate for AlAs is: 0.37 jtm/4 min = 925 A/min. Figure B.5

shows an optical micrograph of the sample after the RIE step. Note the distinct globular

features on the etched surface, which is probably due to the fact that AlAs becomes

rapidly oxidized when exposed to air. The non-uniformity in oxidation has thus resulted in

the rough surface morphology.

B.2.2 Wet Etch

The wet etch of the GaAs/A1As heterostructure is particularly rigorous, even in a diluted

HF solution. The nominal etch rate of 20:1 H20:HF on AlAs is estimated to be: (1.50-

0.37) gtm/0.5 min = 2.26 jtm/min. Of course, the etch rate is probably much faster than

the above figure, given the rapid etching action of the solution.



Figure B.5 shows the morphology of the sample after the wet etch. Note that the

etched surface is relatively smooth. However, the top GaAs surface appears wrinkled,

probably due to the fact that the etch is so intense with a great amount of bubbling. This

phenomenon may also be a result of the oxidation of the sacrificial AlAs layer, which alters

the initial lattice-matched, stress-free condition of the GaAs/A1As interface.

Figure B.4: Nomarski microscope photograph
of the sample after the RIE sequence. Note the
roughness of the etched regions between the
bridge structure, which is due to the oxidation of
the AlAs material when exposed to air.

Figure B.5: SEM micrograph of bridge
structures. The uneven surfaces on the ends of
the beams reveal the amount of undercutting
that has taken place.
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B.3 GaAs/Ino.sGao.sP

B.3.1 RIE

(a) The PR thickness on a step feature is first measured to be: hi = 1.18 pm.

(b) After an RIE etch with SiCl4/BC13 for 1.8 min, the step height is measured to

be: h2 = 1.58 pm. Hence, the change in step height is: Ah= (1.58-1.18) pm= 0.40 pm.

Assuming that the amount of PR that has been etched away is negligible and that the

change in step height is purely due to the removal of III-V material, the etch rate for the

GaAs top layer is estimated to be: 0.40 pm/1.8 min = 2200 A/min.

(c) The sample is then subjected to an RIE step with CH4/H2 for 20 minutes. After the

PR has been stripped, the step height is measured to be: h3 = 0.65 pm with a distinct layer

of residue left on the surface of the sample. As data pertaining to the etch rate of GaAs in

CH4/H2 is unavailable, the etch rate of Ino.5Gao.sP in the same gases cannot be inferred.

Nonetheless, the fact that Ino.5Gao.sP is etched at all implies that the scheme of stopping

the chlorine-based etch before the Ino.sGao.sP layer has succeeded.

B.3.2 Wet Etch

The wet etch using the H3PO4/HCl mixture of varying proportions have yielded the same

results. Specifically, while the etch rate in the normal direction to the sample has

proceeded as expected (as measured by step profilometry before and after the etch), the

etch in the directions transverse to the plane of the sample has been obstinately slow. In

fact, even an extended etch period of more than 2 hours with the various mixtures fails to

produce any significant undercut. It is speculated that there exists very strong

crystallographic preferences of the etchant on Ino.sGao.sP, as revealed in Figure B.6.

Further, a number of irregular features tend to exist on the etched surfaces (Figure B.7).



Figure B.6: SEM photograph of two
perpendicular etch fronts (marked as A and B).
Note the distinctly different angles at which the
two fronts seem to have proceeded.

Figure B.7: SEM photograph of the etched
surface of an uncleared sacrificial layer. The
irregular features on the surface can be easily
seen. This sample has been etched for two hours
in a 1:1 H3PO4/HCI etchant.
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